V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS					1
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

GARDEN		EXISTING REAR WALL		
FINISH	4.50	330 WALL	11 X 6.6 = 66KN/m	
SOIL	14.50			
	19.00KN/m ²			
IL	2.50KN/m ²			
GROUND FLOOR				
FINISH	2.00			
SLAB	3.60			
	5.60KN/m ²			
IL	1.50KN/m ²			
NEW EXTERNAL WALL	3.30KN/m ²			
			_	

ROOF SLAB UNDER GARDEN

DESIGN LOAD = 30.6KN/m²

BM MAX = $30.6 \times 3.8^{2}/8 = 55.2 \text{KN.m}$

RC SLAB DESIGN (BS8110)

RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

CONCRETE SLAB DESIGN (CL 3.5.3 & 4)

SIMPLE ONE WAY SPANNING SLAB DEFINITION

Overall depth of slab h = 200 mm

Cover to tension reinforcement resisting sagging $c_{\text{b}} = \textbf{35} \text{ mm}$

Trial bar diameter $D_{tryx} = 16 \text{ mm}$

Depth to tension steel (resisting sagging)

$$d_x = h - c_b - D_{tryx}/2 = 157 \text{ mm}$$

Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Characteristic strength of concrete $f_{cu} = 35 \text{ N/mm}^2$

V & R	Project				Job Ref.		_
VINCENT & RYMILL	28	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINCENT & DVAILL	Section		Sheet no./rev.	Sheet no./rev.			
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		PRELIMINARY	CALCULAT	IONS		2	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SURREY GU16 6PT	TV	11/09/2016					

One-way spanning slab (simple)

ONE WAY SPANNING SLAB (CL 3.5.4)

MAXIMUM DESIGN MOMENTS IN SPAN

Design sagging moment (per m width of slab) $m_{sx} = 55.0 \text{ kNm/m}$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab) $m_{sx} = 55.0 \text{ kNm/m}$

Moment Redistribution Factor $\beta_{bx} = 1.0$

Area of reinforcement required

$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.064$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist sagging

Slab requiring outer tension steel only - bars (sagging)

$$z_x = min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{(0.25 - K_x/0.9))})) = 145 mm$$

Neutral axis depth $x_x = (d_x - z_x) / 0.45 = 27 \text{ mm}$

Area of tension steel required

$$A_{sx_req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_y \times z_x) = 873 \text{ mm}^2/\text{m}$$

Tension steel

Provide 16 dia bars @ 150 centres outer tension steel resisting sagging

$$A_{sx_prov} = A_{sx} = 1340 \text{ mm}^2/\text{m}$$

Area of outer tension steel provided sufficient to resist sagging

TRANSVERSE BOTTOM STEEL - INNER

Inner layer of transverse steel

Provide 10 dia bars @ 200 centres

$$A_{sy_prov} = A_{sy} = 393 \text{ mm}^2/\text{m}$$

Check min and max areas of steel resisting sagging

Total area of concrete $A_c = h = 200000 \text{ mm}^2/\text{m}$

Minimum % reinforcement k = 0.13 %

$$A_{st min} = k \times A_c = 260 mm^2/m$$

$$A_{st max} = 4 \% \times A_c = 8000 \text{ mm}^2/\text{m}$$

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINICENT & DVAILL	Section				Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	1	PRELIMINARY	CALCULATION	S		3
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Steel defined:

Outer steel resisting sagging $A_{sx_prov} = 1340 \text{ mm}^2/\text{m}$

Area of outer steel provided (sagging) OK

Inner steel resisting sagging A_{sy prov} = **393** mm²/m

Area of inner steel provided (sagging) OK

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

Slab span length $I_x = 3.800 \text{ m}$

Design ultimate moment in shorter span per m width $m_{sx} = 55 \text{ kNm/m}$

Depth to outer tension steel $d_x = 157 \text{ mm}$

Tension steel

Area of outer tension reinforcement provided $A_{sx_prov} = 1340 \text{ mm}^2/\text{m}$

Area of tension reinforcement required A_{sx req} = 873 mm²/m

Moment Redistribution Factor $\beta_{bx} = 1.00$

Modification Factors

Basic span / effective depth ratio (Table 3.9) ratio_{span_depth} = **20**

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

$$f_{\text{s}} = 2 \times f_{\text{y}} \times A_{\text{sx_req}} \, / \, \left(3 \times A_{\text{sx_prov}} \times \beta_{\text{bx}} \, \right) = \text{217.1 N/mm}^2$$

factor_{tens} = min (2, 0.55 + (477 N/mm² - f_s) / (120 × (0.9 N/mm² + m_{sx} / d_x²))) = **1.242**

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span $I_{max} = ratio_{span_depth} \times factor_{tens} \times d_x = 3.90 \text{ m}$

Check the actual beam span

Actual span/depth ratio $l_x / d_x = 24.20$

Span depth limit ratio_{span_depth} × factor_{tens} = **24.83**

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

Slab thickness h = 200 mm

Effective depth to bottom outer tension reinforcement $d_x = 157.0$ mm

Diameter of tension reinforcement $D_x = 16 \text{ mm}$

Diameter of links $L_{diax} = 0$ mm

Cover to outer tension reinforcement

$$c_{tenx} = h - d_x - D_x / 2 = 35.0 \text{ mm}$$

Nominal cover to links steel

$$c_{nomx} = c_{tenx} - L_{diax} = 35.0 \text{ mm}$$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

$$c_{min} = 35 \text{ mm}$$

Cover over steel resisting sagging OK

V&R	Project				Job Ref.	
VINCENT & RYMILL	28	MARESFIELD (GARDENS NW3	5SX	16H02	
VINCENT O DVAILL	Section		Sheet no./rev.			
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		PRELIMINARY	CALCULATION	IS		4
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

H16 AT 150 BOTTOM, H10 200 DISTN

SLAB UNDER HOUSE

DESIGN LOAD = 10.3KN/m² BM ULT = 10.3 X 3.6² / 8 = 17KN.m

RC SLAB DESIGN (BS8110)

RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

CONCRETE SLAB DESIGN (CL 3.5.3 & 4)

SIMPLE ONE WAY SPANNING SLAB DEFINITION

Overall depth of slab h = 150 mm

Cover to tension reinforcement resisting sagging $c_b = 35 \text{ mm}$

Trial bar diameter $D_{tryx} = 12 \text{ mm}$

Depth to tension steel (resisting sagging)

$$d_x = h - c_b - D_{tryx}/2 = 109 \text{ mm}$$

Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Characteristic strength of concrete $f_{cu} = 35 \text{ N/mm}^2$

One-way spanning slab (simple)

ONE WAY SPANNING SLAB (CL 3.5.4)

MAXIMUM DESIGN MOMENTS IN SPAN

Design sagging moment (per m width of slab) $m_{sx} = 17.0 \text{ kNm/m}$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab) $m_{sx} = 17.0 \text{ kNm/m}$

Moment Redistribution Factor $\beta_{bx} = 1.0$

Area of reinforcement required

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINICENT & DVAILL	Section		Sheet no./rev.			
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		PRELIMINARY	CALCULATION	S		5
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

 $K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.041$

 $K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$

Outer compression steel not required to resist sagging

Slab requiring outer tension steel only - bars (sagging)

 $z_x = min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{(0.25 - K_x/0.9))})) = 104 \text{ mm}$

Neutral axis depth $x_x = (d_x - z_x) / 0.45 = 12 \text{ mm}$

Area of tension steel required

 $A_{sx_req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_y \times z_x) = 378 \text{ mm}^2/\text{m}$

Tension steel

Provide 12 dia bars @ 150 centres outer tension steel resisting sagging

 $A_{sx_prov} = A_{sx} = 754 \text{ mm}^2/\text{m}$

Area of outer tension steel provided sufficient to resist sagging

TRANSVERSE BOTTOM STEEL - INNER

Inner layer of transverse steel

Provide 10 dia bars @ 200 centres

 $A_{sy_prov} = A_{sy} = 393 \text{ mm}^2/\text{m}$

Check min and max areas of steel resisting sagging

Total area of concrete $A_c = h = 150000 \text{ mm}^2/\text{m}$

Minimum % reinforcement k = 0.13 %

 $A_{st min} = k \times A_c = 195 mm^2/m$

 $A_{st max} = 4 \% \times A_c = 6000 \text{ mm}^2/\text{m}$

Steel defined:

Outer steel resisting sagging A_{sx_prov} = **754** mm²/m

Area of outer steel provided (sagging) OK

Inner steel resisting sagging A_{sy_prov} = **393** mm²/m

Area of inner steel provided (sagging) OK

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

Slab span length $l_x = 3.600 \text{ m}$

Design ultimate moment in shorter span per m width $m_{sx} = 17 \text{ kNm/m}$

Depth to outer tension steel $d_x = 109 \text{ mm}$

Tension steel

Area of outer tension reinforcement provided $A_{sx_prov} = 754 \text{ mm}^2/\text{m}$

Area of tension reinforcement required $A_{sx_req} = 378 \text{ mm}^2/\text{m}$

Moment Redistribution Factor $\beta_{bx} = 1.00$

Modification Factors

Basic span / effective depth ratio (Table 3.9) ratio_{span_depth} = **20**

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

 $f_{\text{s}} = 2 \times f_{\text{y}} \times A_{\text{sx_req}} \, / \, (3 \times A_{\text{sx_prov}} \times \beta_{\text{bx}} \,) = \text{166.9 N/mm}^2$

factor_{tens} = min (2, 0.55 + (477 N/mm² - f_s) / (120 × (0.9 N/mm² + m_{sx} / d_x²))) = **1.659**

V & R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINICENT & DVMILL	Section				Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS					6
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span $I_{max} = ratio_{span depth} \times factor_{tens} \times d_x = 3.62 m$

Check the actual beam span

Actual span/depth ratio $I_x / d_x = 33.03$

Span depth limit ratio_{span_depth} × factor_{tens} = **33.17**

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

Slab thickness h = 150 mm

Effective depth to bottom outer tension reinforcement $d_x = 109.0$ mm

Diameter of tension reinforcement $D_x = 12 \text{ mm}$

Diameter of links Ldiax = 0 mm

Cover to outer tension reinforcement

$$C_{tenx} = h - d_x - D_x / 2 = 35.0 \text{ mm}$$

Nominal cover to links steel

$$C_{nomx} = C_{tenx} - L_{diax} = 35.0 \text{ mm}$$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

 $c_{min} = 35 \text{ mm}$

Cover over steel resisting sagging OK

H12 AT 150 BOTTOM AND H10 200 DISTN

SECONDARY BEAM UNDER GARDEN

SPAN = 5.50m

DL = 4 X 19 = 76KN/m

IL = 4 X 2.5 = 10KN/m

RC BEAM ANALYSIS & DESIGN (BS8110)

RC BEAM ANALYSIS & DESIGN BS8110

TEDDS calculation version 2.1.12

VINCENT & RYMILL
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN
SURREY GU16 6PT

V & D

Project		Job Ref.	Job Ref.		
28 MARESFIELD GARDENS NW3 5SX				1	6H02
Section		Sheet no./rev.	Sheet no./rev.		
	PRELIMINARY CALCULATIONS				7
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	11/09/2016	6			

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Applied loading

Dead full UDL 76 kN/m

Imposed full UDL 10 kN/m

Load combinations

Imposed \times 1.60

Span 1 Dead \times 1.40

Imposed × 1.60

Support B Dead × 1.40

Imposed × 1.60

Analysis results

Maximum moment support A $M_{A_max} = 0$ kNm $M_{A_red} = 0$ kNm Maximum moment span 1 at 2750 mm $M_{s1_max} = 463$ kNm $M_{s1_red} = 463$ kNm

Maximum shear support B $V_{B_max} = -337 \text{ kN}$ $V_{B_red} = -337 \text{ kN}$

Maximum shear support B span 1 at 5100 mm $V_{B_s1_max} = -288 \text{ kN}$ $V_{B_s1_red} = -288 \text{ kN}$ Maximum reaction at support A $R_A = 337 \text{ kN}$

Maximum reaction at support B $R_B = 337 \text{ kN}$

Flanged section details

Section width b = 500 mm Section depth h = 450 mm Maximum flange width $b_f = 1250 \text{ mm}$ Flange depth $h_f = 200 \text{ mm}$

Material details

Concrete strength class C35/45 Char comp cube strength $f_{cu} = 45 \text{ N/mm}^2$ $E_c = 29000 \text{ N/mm}^2$ Modulus of elasticity of conc Maximum aggregate size $h_{agg} = 20 \text{ mm}$ $f_v = 500 \text{ N/mm}^2$ Char yield str of shear reinf $f_{yv} = 500 \text{ N/mm}^2$ Char yield strength of reinf Nominal cover to top reinf $c_{nom_t} = 40 \text{ mm}$ Nominal cover to bottom reinf $C_{nom_b} = 40 \text{ mm}$ Nominal cover to side reinf $c_{nom_s} = 40 \text{ mm}$

Mid span 1

Flanged section in flexure

Design bending moment M = 463 kNm K = 0.054 K' = 0.156

K' > K - No compression reinforcement is required

Lever armz = 364 mmDepth of neutral axisx = 56 mmArea of tension reinf prov $A_{s,req} = 2920 \text{ mm}^2$ Tension reinf provided $6 \times 25 \phi$ barsArea of tension reinf prov $A_{s,prov} = 2945 \text{ mm}^2$ Minimum area of reinf $A_{s,min} = 293 \text{ mm}^2$

Maximum area of reinf $A_{s,max} = ? mm^2$

Rectangular section in shear

Shear reinforcement provided $4 \times 8\phi$ legs at 225 c/c

Area of shear reinf provided $A_{sv,prov} = 894 \text{ mm}^2/\text{m}$ Minimum area of shear reinf $A_{sv,min} = 460 \text{ mm}^2/\text{m}$

PASS - Area of shear reinforcement provided exceeds minimum required

Max longitudinal spacing $s_{vl,max} = 292 \text{ mm}$

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Spacing of reinforcement (cl 3.12.11)

Actual dist between bars s = 51 mm Min dist between bars $s_{min} = 25 \text{ mm}$

PASS - Satisfies the minimum spacing criteria

Design service stress $f_s = 330.4 \text{ N/mm}^2$ Max distance between bars $s_{max} = 142 \text{ mm}$

PASS - Satisfies the maximum spacing criteria

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINCENT & DVAILL	Section			Sheet no./rev.		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS				9	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Span to depth ratio (cl. 3.4.6)

Span to depth ratio (T.3.9) span_to_depth_{basic} = **16.6** Service stress in tension rein $f_s = 330.4 \text{ N/mm}^2$ Modification for tension reinf $f_{tens} = 0.916$ Modification for comp reinf $f_{comp} = 1.076$

Modification for span > 10m $f_{long} = 1.000$ Allowable span to depth ratio $span_to_depth_{allow} = 16.3$

Actual span to depth ratio span_to_depth_{actual} = **14.1**

PASS - Actual span to depth ratio is within the allowable limit

6 H25 BOTTOM H8 LINKS IN PAIRS AT 225

UNDER HOUSE

Max span = 5.50m DL = $5.6 \times 3.5 = 19.6$ KN/m IL = $1.5 \times 3.5 = 5.3$ KN/m

RC BEAM ANALYSIS & DESIGN (BS8110)

RC BEAM ANALYSIS & DESIGN BS8110

TEDDS calculation version 2.1.12

Support conditions

Support A Vertically restrained Rotationally free Support B Vertically restrained

VIXIX VINCENT & RYMILL	
VINCENT & RYMILL	
LAKESIDE COUNTRY CLUB	
FRIMLEY GREEN	

SURREY GU16 6PT

V/ 0 ln

Project				Job Ref.		
	28 MARESFIELD GARDENS NW3 5SX			1	16H02	
Section		Sheet no./rev.	Sheet no./rev.			
	PRELIMINARY CALCULATIONS				10	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
TV	11/09/2016					

Rotationa	llν	free
i iotationa	IJΥ	1100

Applied loading

Dead full UDL 19.6 kN/m Imposed full UDL 5.3 kN/m

Load combinations

Load combination 1 Support A Dead × 1.40

Imposed \times 1.60

Span 1 Dead \times 1.40

 $\text{Imposed} \times 1.60$

Support B ${\sf Dead} \times {\sf 1.40}$

Imposed \times 1.60

Analysis results

Maximum moment support A $M_{A max} = 0 kNm$ $M_{A red} = 0 kNm$ Maximum moment span 1 at 2750 mm $M_{s1_max} = 136 \text{ kNm}$ $M_{s1_red} = 136 \text{ kNm}$ $M_{B_max} = 0 \text{ kNm}$ Maximum moment support B $M_{B_red} = 0 \text{ kNm}$ $V_{A \text{ max}} = 99 \text{ kN}$ Maximum shear support A $V_A red = 99 kN$ $V_{A_s1_red} = 88 \text{ kN}$ Maximum shear support A span 1 at 300 mm $V_{A_s1_{max}} = 88 \text{ kN}$ Maximum shear support B $V_{B max} = -99 kN$ $V_B red = -99 kN$ Maximum shear support B span 1 at 5200 mm $V_{B_s1_max} = -88 \text{ kN}$ $V_{B_s1_red} = \textbf{-88} \ kN$ Maximum reaction at support A $R_A = 99 \text{ kN}$

 $R_B = 99 \text{ kN}$

Flanged section details

Maximum reaction at support B

Section width b = 500 mm Section depth h = 350 mm Maximum flange width $b_f = 1250 \text{ mm}$ Flange depth $h_f = 200 \text{ mm}$

Material details

C35/45 $f_{cu} = 45 \text{ N/mm}^2$ Concrete strength class Char comp cube strength Ec = 29000 N/mm² $h_{agg} = 20 \text{ mm}$ Modulus of elasticity of conc Maximum aggregate size $f_{yv} = \textbf{500 N/mm}^2$ $f_v = 500 \text{ N/mm}^2$ Char yield strength of reinf Char yield str of shear reinf Nominal cover to top reinf $c_{nom_t} = 40 \text{ mm}$ Nominal cover to bottom reinf $c_{nom_b} = 40 \text{ mm}$ Nominal cover to side reinf $C_{nom_s} = 40 \text{ mm}$

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINCENT & DVMII I	Section	Sheet no./rev.				
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS				11	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Mid span 1		
350 →		4 x 12φ bars
▼ 150 ▼ 150		4 ¥ 8ቂ _¢ sh <u>a</u> ar legs at 200 c/c
	375 500 375	J

Flanged section in flexure

Design bending moment M = 136 kNm K = 0.028 K' = 0.156

K' > K - No compression reinforcement is required

Lever arm z = 277 mm Depth of neutral axis x = 32 mmArea of tension reinf prov $A_{s,req} = 1126 \text{ mm}^2$ Tension reinf provided $4 \times 20 \phi$ bars Area of tension reinf prov $A_{s,prov} = 1257 \text{ mm}^2$ Minimum area of reinf $A_{s,min} = 228 \text{ mm}^2$

Maximum area of reinf $A_{s,max} = ? mm^2$

Rectangular section in shear

Shear reinforcement provided $4 \times 8\phi$ legs at 200 c/c

Area of shear reinf provided $A_{sv,prov} = 1005 \text{ mm}^2/\text{m}$ Minimum area of shear reinf $A_{sv,min} = 460 \text{ mm}^2/\text{m}$

PASS - Area of shear reinforcement provided exceeds minimum required

Max longitudinal spacing $s_{vl,max} = 219 \text{ mm}$

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Spacing of reinforcement (cl 3.12.11)

Actual dist between bars s = 108 mm Min dist between bars $s_{min} = 25 \text{ mm}$

PASS - Satisfies the minimum spacing criteria

Design service stress $f_s = 298.6 \text{ N/mm}^2$ Max distance between bars $s_{max} = 157 \text{ mm}$

PASS - Satisfies the maximum spacing criteria

Span to depth ratio (cl. 3.4.6)

Span to depth ratio (T.3.9) span_to_depth_{basic} = **16.6** Service stress in tension rein $f_s = 298.6 \text{ N/mm}^2$ Modification for tension reinf $f_{tens} = 1.234$ Modification for comp reinf $f_{comp} = 1.040$

Modification for span > 10m $f_{long} = 1.000$ Allowable span to depth ratio $span_to_depth_{allow} = 21.3$

Actual span to depth ratio span_to_depth_{actual} = **18.8**

PASS - Actual span to depth ratio is within the allowable limit

4 H20 BOTTOM + H8 LINKS IN PAIRS AT 200

MAIN SPINE BEAM

SPAN = 9.70m

TAKE SLBA AS UDL BETWEEN 1.8 AND 7.0m DEAD LOAD = 5.5 / 2 X (19 + 5.6) = 68 KN/m IL = 5.5 / 2 X (2.5 + 1.5) = 11 KN/m

RC BEAM ANALYSIS & DESIGN (BS8110)

RC BEAM ANALYSIS & DESIGN BS8110

TEDDS calculation version 2.1.12

VINCENT & RYMILL
VINCENT & RYMILL
AKESIDE COUNTRY CLUB
FRIMLEY GREEN

SURREY GU16 6PT

V & D

Project		Job Ref.				
28 MARESFIELD GARDENS NW3 5SX				1	6H02	
Section				Sheet no./rev.	Sheet no./rev.	
PRELIMINARY CALCULATIONS					12	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
TV	11/09/2016					

Support conditions

Support A Vertically restrained Rotationally free
Support B Vertically restrained

Rotationally free

Applied loading

Dead partial UDL 68 kN/m from 1800 mm to 7000 mm Imposed partial UDL 11 kN/m from 1800 mm to 7000 mm Dead full UDL 5 kN/m

Load combinations

Load combination 1 Support A Dead \times 1.40 Imposed \times 1.60 Span 1 Dead \times 1.40 Imposed \times 1.60 Support B Dead \times 1.40 Imposed \times 1.60 Imposed \times 1.60 Imposed \times 1.60

Analysis results

Maximum moment support A $M_{A_max} = 0$ kNm $M_{A_red} = 0$ kNm Maximum moment span 1 at 4653 mm $M_{S1_max} = 1114$ kNm $M_{S1_red} = 1114$ kNm Maximum moment support B $M_{B_max} = 0$ kNm $M_{B_red} = 0$ kNm $M_{B_red} = 0$ kNm Maximum shear support A $V_{A_max} = 354$ kN $V_{A_red} = 354$ kN $V_{A_red} = 354$ kN $V_{A_red} = 351$ kN

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	Section				Sheet no./rev.	
	PRELIMINARY CALCULATIONS				13	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN
SURREY GU16 6PT

Maximum shear support B $V_{B max} = -300 kN$ $V_B red = -300 kN$ Maximum shear support B span 1 at 9175 mm $V_{B_s1_{max}} = -296 \text{ kN}$ $V_{B_s1_{red}} = -296 \text{ kN}$

 $R_A = 354 \text{ kN}$ Maximum reaction at support A $R_B = 300 \text{ kN}$ Maximum reaction at support B

Rectangular section details

Section width b = 1000 mmSection depth h = **575** mm

Material details

C35/45 $f_{cu} = 45 \text{ N/mm}^2$ Concrete strength class Char comp cube strength Modulus of elasticity of conc $E_c = 29000 \text{ N/mm}^2$ Maximum aggregate size $h_{agg} = 20 \text{ mm}$ Char yield strength of reinf $f_v = 500 \text{ N/mm}^2$ Char yield str of shear reinf $f_{yy} = 500 \text{ N/mm}^2$ Nominal cover to top reinf $c_{nom_t} = 40 \text{ mm}$ Nominal cover to bottom reinf $C_{nom_b} = 40 \text{ mm}$ Nominal cover to side reinf $c_{nom_s} = 40 \text{ mm}$

Mid span 1

Design moment resistance of rectangular section (cl. 3.4.4)

d = 509 mmDesign bending moment M = 1114 kNmDepth to tension reinf. K = 0.096K' = 0.156

K' > K - No compression reinforcement is required

Lever arm z = 448 mmDepth of neutral axis x = 137 mmArea of tension reinf req'd $A_{s,req} = 5724 \text{ mm}^2$ Tension reinf provided $9 \times 32\phi$ bars Area of tension reinf prov $A_{s,prov} = 7238 \text{ mm}^2$ Minimum area of reinf $A_{s,min} = 748 \text{ mm}^2$

Maximum area of reinf $A_{s.max} = 23000 \text{ mm}^2$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Rectangular section in shear

Shear reinforcement provided $6 \times 10\phi$ legs at 300 c/c

Area of shear reinf provided $A_{sv,prov} = 1571 \text{ mm}^2/\text{m}$ Minimum area of shear reinf $A_{sv,min} = 920 \text{ mm}^2/\text{m}$

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINCENT & DVAILL	Section			Sheet no./rev.		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS			14		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

PASS - Area of shear reinforcement provided exceeds minimum required

Max longitudinal spacing $s_{vl,max} = 382 \text{ mm}$

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Spacing of reinforcement (cl 3.12.11)

Actual dist between bars s = 77 mm Min dist between bars $s_{min} = 25 \text{ mm}$

PASS - Satisfies the minimum spacing criteria

Design service stress $f_s = 263.6 \text{ N/mm}^2$ Max distance between bars $s_{max} = 178 \text{ mm}$

PASS - Satisfies the maximum spacing criteria

Span to depth ratio (cl. 3.4.6)

Span to depth ratio (T.3.9) span_to_depthbasic = **20.0** Service stress in tension rein $f_s = 263.6 \text{ N/mm}^2$ Modification for tension reinf $f_{tens} = 0.892$ Modification for comp reinf $f_{comp} = 1.106$

Modification for span > 10m $f_{long} = 1.000$ Allowable span to depth ratio $span_{low} = 19.7$

Actual span to depth ratio span_to_depth_{actual} = **19.1**

PASS - Actual span to depth ratio is within the allowable limit

R C WALLS AND BASES

1. UNDER HOUSE

CANTILEVER PROOPED AT BASE LEVEL TO RESIST SLIDING

WT OF WALL OVER = 66KN/m

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

V & R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINCENT & RYMILL	Section			Sheet no./rev.		
	1	PRELIMINARY	CALCULATION	S	-	15
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

& RYMILL	20 117 11 12 25 37 11 12 21 10 11 11 10 00 71					101102		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT	Section	Sheet no./rev	Sheet no./rev.					
	Calc. by	Date 11/09/2016	Chk'd by	Date	App'd by	Date		
Wall details								

Wall details Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 4600 mm	Wall stem thickness	t _{wall} = 350 mm
Length of toe	l _{toe} = 1200 mm	Length of heel	I _{heel} = 150 mm
Overall length of base	l _{base} = 1700 mm	Base thickness	t _{base} = 375 mm
Height of retaining wall	h _{wall} = 4975 mm	Dage triolated	tbase – 070 mm
Depth of downstand	d _{ds} = 0 mm	Thickness of downstand	t _{ds} = 375 mm
Position of downstand	l _{ds} = 1325 mm	Thickness of downstand	tus — 010 111111
Depth of cover in front of wall	$d_{cover} = 0 \text{ mm}$	Unplanned excavation depth	d _{exc} = 200 mm
Height of ground water	h _{water} = 4000 mm	Density of water	$\gamma_{\text{water}} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$
•	•	-	•
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	Heff = 49/5 Hilli
Mobilisation factor	M = 1.5	Ostomata di dansita	04.0 1.01/3
Moist density	$\gamma_{\rm m} = 18.0 \ {\rm kN/m^3}$	Saturated density	$\gamma_s = 21.0 \text{ kN/m}^3$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 0.0 deg
Design shear strength	$\phi'_b = $ 24.2 deg	Design base friction	δ_b = 18.6 deg
Moist density	γ_{mb} = 18.0 kN/m ³	Allowable bearing	P _{bearing} = 150 kN/n
Using Coulomb theory			
Active pressure	$K_a = 0.419$	Passive pressure	$K_p = 4.187$
At-rest pressure	$K_0 = 0.590$		
Loading details			
Surcharge load	Surcharge = 10.0 kN/m ²		
Vertical dead load	$W_{dead} = 66.0 \text{ kN/m}$	Vertical live load	$W_{live} = 0.0 \text{ kN/m}$
Horizontal dead load	$F_{dead} = 0.0 \text{ kN/m}$	Horizontal live load	$F_{live} = 0.0 \text{ kN/m}$
Position of vertical load	l _{load} = 1375 mm	Height of horizontal load	$h_{load} = 0 \text{ mm}$
		10	
	Prop	×	
		# #	
	 -		
		42 73 187 332	
	Prop		
	79.2		

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS			16		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Calculate propping force

Propping force $F_{prop} = 123.8 \text{ kN/m}$

Check bearing pressure

Total vertical reaction R = 134.6 kN/m Distance to reaction $x_{bar} = 850 \text{ mm}$

Eccentricity of reaction e = 0 mm

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe} = 79.2 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = 79.2 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

Calculate propping forces to top and base of wall

Propping force to top of wall $F_{prop_top} = 40.355 \text{ kN/m}$ Propping force to base of wall $F_{prop_base} = 83.488 \text{ kN/m}$

V & R	Project			Job Ref.		
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
	Section			Sheet no./rev.		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS			17		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

RETAINING WALL DESIGN	(BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{f d} = 1.4$ Live load factor $\gamma_{f l} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 123.8 \text{ kN/m}$

Calculate propping forces to top and base of wall

Propping force to top of wall $F_{prop_top_f} = 77.602 \text{ kN/m}$ Propping force to base of wall $F_{prop_base_f} = 154.016 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_{V} = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{toe} = 118.4 \text{ kN/m}$ Moment at heel $M_{toe} = 93.2 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 125 mm centres

Area required $A_{s_toe_req} = 711.7 \text{ mm}^2/\text{m}$ Area provided $A_{s_toe_prov} = 1608 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.373 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c_toe} = 0.588 \text{ N/mm}^2$

 $v_{toe} < v_{c_toe}$ - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

Design of retaining wall heel

Shear at heel $V_{heel} = 7.3 \text{ kN/m}$ Moment at heel $M_{heel} = 0.3 \text{ kNm/m}$

Compression reinforcement is not required

Check heel in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required $A_{s_heel_req} = 487.5 \text{ mm}^2/\text{m}$ Area provided $A_{s_heel_prov} = 754 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = 0.023 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c_heel} = 0.484 \text{ N/mm}^2$

Vheel < Vc_heel - No shear reinforcement required

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
	Section				Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS				18	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem $c_{\text{stem}} = 75 \text{ mm}$ Cover in wall $c_{\text{wall}} = 50 \text{ mm}$

Design of retaining wall stem

Shear at base of stem $V_{\text{stem}} = 198.6 \text{ kN/m}$ Moment at base of stem $M_{\text{stem}} = 160.0 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 125 mm centres

Area required $A_{s_stem_req} = 1476.6 \text{ mm}^2/\text{m}$ Area provided $A_{s_stem_prov} = 1608 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{\text{stem}} = 0.744 \text{ N/mm}^2$ Allowable shear stress $v_{\text{adm}} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress v_c stem = **0.650** N/mm²

V_{stem} > V_{c_stem} - Shear reinforcement required

Design of retaining wall at mid height

Moment at mid height $M_{wall} = 75.1 \text{ kNm/m}$

Compression reinforcement is not required

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required $A_{s_wall_req} = 618.3 \text{ mm}^2/\text{m}$ Area provided $A_{s_wall_prov} = 754 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided to the retaining wall at mid height is adequate

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
	Section			Sheet no./rev.		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS			19		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Indicative retaining wall reinforcement diagram

Toe bars - 16 mm dia.@ 125 mm centres - (1608 mm²/m)

Heel bars - 12 mm dia.@ 150 mm centres - $(754 \text{ mm}^2/\text{m})$

Wall bars - 12 mm dia.@ 150 mm centres - (754 mm²/m)

Stem bars - 16 mm dia.@ 125 mm centres - (1608 mm²/m)

EXTERNAL WALL UNDER GARDEN

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

V	&	R
VIN	ICE	

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT

Project				Job Ref.	Job Ref.		
28 MARESFIELD GARDENS NW3 5SX				16H02			
Section				Sheet no	Sheet no./rev.		
PRELIMINARY CALCULATIONS					20		
Calc. by	Date	Chk'd by	Date	App'd by	Date		
TV	11/09/2016						

Wall	details	
------	---------	--

Position of vertical load

Wall actalis			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 4600 mm	Wall stem thickness	$t_{\text{wall}} = \textbf{350} \text{ mm}$
Length of toe	$I_{toe} = 1200 \text{ mm}$	Length of heel	$I_{\text{heel}} = 150 \text{ mm}$
Overall length of base	$I_{base} = 1700 \text{ mm}$	Base thickness	$t_{\text{base}} = 375 \text{ mm}$
Height of retaining wall	$h_{wall} = 4975 \text{ mm}$		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 375 \text{ mm}$
Position of downstand	$I_{ds} = 1250 \text{ mm}$		
Depth of cover in front of wall	d _{cover} = 0 mm	Unplanned excavation depth	dexc = 200 mm
Height of ground water	$h_{water} = 4000 \text{ mm}$	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$	Density of base construction	γ_{base} = 23.6 kN/m ³
Angle of soil surface	β = 0.0 deg	Effective height at back of wall	h _{eff} = 4975 mm
Mobilisation factor	M = 1.5		
Moist density	$\gamma_m = 18.0 \text{ kN/m}^3$	Saturated density	$\gamma_{\text{S}} = \textbf{21.0} \text{ kN/m}^3$
Design shear strength	$\phi' = 24.2 \text{ deg}$	Angle of wall friction	δ = 0.0 deg
Design shear strength	$\phi'_b = 24.2 \text{ deg}$	Design base friction	δ_b = 18.6 deg
Moist density	γ_{mb} = 18.0 kN/m ³	Allowable bearing	$P_{bearing} = 150 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	$K_a = 0.419$	Passive pressure	$K_p = 4.187$
At-rest pressure	$K_0 = 0.590$		
Loading details			
Surcharge load	Surcharge = 10.0 kN/m ²		
Vertical dead load	$W_{dead} = 35.0 \text{ kN/m}$	Vertical live load	$W_{live} = 0.0 \text{ kN/m}$
Horizontal dead load	$F_{dead} = 0.0 \text{ kN/m}$	Horizontal live load	$F_{live} = 0.0 \text{ kN/m}$

Height of horizontal load

 $h_{load} = 0 \text{ mm}$

 $I_{load} = 1375 \text{ mm}$

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT

Project				Job Ref.		
28 MARESFIELD GARDENS NW3 5SX			161	H02		
Section				Sheet no./rev.		
PRELIMINARY CALCULATIONS			:	21		
Calc. by		Date	Chk'd by	Date	App'd by	Date
TV		11/09/2016				

Loads shown in kN/m, pressures shown in kN/m 2

Calculate propping force

Propping force $F_{prop} = 134.3 \text{ kN/m}$

Check bearing pressure

Total vertical reaction R = 103.6 kN/m Distance to reaction $x_{bar} = 850 \text{ mm}$

Eccentricity of reaction e = 0 mm

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe} = 60.9 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = 60.9 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

Calculate propping forces to top and base of wall

Propping force to top of wall $F_{prop_top} = 43.346 \text{ kN/m}$ Propping force to base of wall $F_{prop_base} = 90.930 \text{ kN/m}$

V & R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
	Section	ction			Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS			22		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

RETAINING WALL DESIGN	(BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{f d} = 1.4$ Live load factor $\gamma_{f l} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 134.3 \text{ kN/m}$

Calculate propping forces to top and base of wall

Propping force to top of wall $F_{prop_top_f} = 81.790 \text{ kN/m}$ Propping force to base of wall $F_{prop_base_f} = 164.434 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{toe} = 87.7 \text{ kN/m}$ Moment at heel $M_{toe} = 69.1 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 125 mm centres

Area required $A_{s_toe_req} = 527.5 \text{ mm}^2/\text{m}$ Area provided $A_{s_toe_prov} = 1608 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.277 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c_toe} = 0.625 \text{ N/mm}^2$

 $v_{toe} < v_{c_toe}$ - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

Design of retaining wall heel

Shear at heel $V_{heel} = 11.1 \text{ kN/m}$ Moment at heel $M_{heel} = 1.7 \text{ kNm/m}$

Compression reinforcement is not required

Check heel in bending

Reinforcement provided B785 mesh

Area required $A_{s_heel_req} = 487.5 \text{ mm}^2/\text{m}$ Area provided $A_{s_heel_prov} = 785 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = 0.035 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c_heel} = 0.489 \text{ N/mm}^2$

Vheel < Vc_heel - No shear reinforcement required

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINCENT & DVAILL	Section			Sheet no./rev.		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY CALCULATIONS			23		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem C_{stem} = **75** mm Cover in wall c_{wall} = **50** mm

Design of retaining wall stem

Shear at base of stem $V_{\text{stem}} = 198.6 \text{ kN/m}$ Moment at base of stem $M_{\text{stem}} = 160.0 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 125 mm centres

Area required $A_{s_stem_req} = 1476.6 \text{ mm}^2/\text{m}$ Area provided $A_{s_stem_prov} = 1608 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{stem} = 0.744 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress v_c stem = **0.691** N/mm²

V_{stem} > V_{c_stem} - Shear reinforcement required

Design of retaining wall at mid height

Moment at mid height $M_{wall} = 75.1 \text{ kNm/m}$

Compression reinforcement is not required

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required $A_{s_wall_req} = 618.3 \text{ mm}^2/\text{m}$ Area provided $A_{s_wall_prov} = 754 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided to the retaining wall at mid height is adequate

Check retaining wall deflection

Max span/depth ratio $ratio_{max} = 20.06$ Actual span/depth ratio $ratio_{act} = 17.23$

PASS - Span to depth ratio is acceptable

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX			16H02		
VINICENT & DVAILL	Section				Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		PRELIMINARY	CALCULATION	S		24
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Indicative retaining wall reinforcement diagram Wall reinforcement

Toe bars - 16 mm dia.@ 125 mm centres - (1608 mm²/m)

Heel mesh - B785 - (785 mm²/m)

Wall bars - 12 mm dia.@ 150 mm centres - (754 mm²/m)

Stem bars - 16 mm dia.@ 125 mm centres - (1608 mm²/m)

ADJACENT TO NO 26

SAY SURCHARGE WALL LOAD = 80 KN/mHORIZONTAL LOAD AT 2.000m BELOW GL = 80 X k = 40 KN/m

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

V	&	R				
VINCENT						

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT

Project				Job Ref.		
	28 MARESFIELD GARDENS NW3 5SX				6H02	
Section	n				Sheet no./rev.	
PRELIMINARY CALCULATIONS					25	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
TV	11/09/2016					

Wall details	
--------------	--

Position of vertical load

wan details			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 4600 mm	Wall stem thickness	$t_{\text{wall}} = 350 \text{ mm}$
Length of toe	I _{toe} = 1200 mm	Length of heel	$I_{heel} = 150 \text{ mm}$
Overall length of base	$I_{\text{base}} = 1700 \text{ mm}$	Base thickness	$t_{\text{base}} = 375 \text{ mm}$
Height of retaining wall	$h_{wall} = 4975 \text{ mm}$		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 375 \text{ mm}$
Position of downstand	$I_{ds} = 1325 \text{ mm}$		
Depth of cover in front of wall	$d_{cover} = 0 \text{ mm}$	Unplanned excavation depth	$d_{exc} = 200 \text{ mm}$
Height of ground water	$h_{water} = 4000 \text{ mm}$	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$	Density of base construction	γ_{base} = 23.6 kN/m ³
Angle of soil surface	β = 0.0 deg	Effective height at back of wall	$h_{\text{eff}} = 4975 \text{ mm}$
Mobilisation factor	M = 1.5		
Moist density	$\gamma_m = 18.0 \text{ kN/m}^3$	Saturated density	$\gamma_s = \textbf{21.0} \text{ kN/m}^3$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 0.0 deg
Design shear strength	φ' _b = 24.2 deg	Design base friction	$\delta_b = \textbf{18.6} \ \text{deg}$
Moist density	$\gamma_{mb} = \textbf{18.0} \text{ kN/m}^3$	Allowable bearing	$P_{bearing} = 150 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	$K_a = 0.419$	Passive pressure	$K_p = 4.187$
At-rest pressure	$K_0 = 0.590$		
Loading details			
Surcharge load	Surcharge = 10.0 kN/m ²		
Vertical dead load	$W_{dead} = 30.0 \text{ kN/m}$	Vertical live load	$W_{live} = 0.0 \text{ kN/m}$
Horizontal dead load	$F_{dead} = 40.0 \text{ kN/m}$	Horizontal live load	$F_{live} = 0.0 \text{ kN/m}$

Height of horizontal load

h_{load} = **2800** mm

 $I_{load} = 1375 \text{ mm}$

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT

1							
Project	ject				Job Ref.		
28 MARESFIELD GARDENS NW3 5SX				1	6H02		
Section				Sheet no./rev.	Sheet no./rev.		
PRELIMINARY CALCULATIONS					26		
Calc. by	Date	Chk'd by	Date	App'd by	Date		
TV	11/09/2016						

Loads shown in kN/m, pressures shown in kN/m 2

Calculate propping force

Propping force $F_{prop} = 176.0 \text{ kN/m}$

Check bearing pressure

Total vertical reaction R = 98.6 kN/m Distance to reaction $x_{bar} = 850 \text{ mm}$

Eccentricity of reaction e = 0 mm

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe} = 58.0 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = 58.0 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

Calculate propping forces to top and base of wall

 $Propping force to top of wall \qquad F_{prop_top} = \textbf{65.656} \text{ kN/m} \qquad \qquad Propping force to base of wall } \qquad F_{prop_base} = \textbf{110.303} \text{ kN/m}$

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINICENT & DVMII I	Section				Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		PRELIMINARY	CALCULATION	IS	2	27
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{f d} = 1.4$ Live load factor $\gamma_{f l} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 176.0 \text{ kN/m}$

Calculate propping forces to top and base of wall

Propping force to top of wall $F_{prop_top_f} = 113.024 \text{ kN/m}$ Propping force to base of wall $F_{prop_base_f} = 191.556 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

←100**→**

Design of retaining wall toe

Shear at heel $V_{toe} = 82.8 \text{ kN/m}$ Moment at heel $M_{toe} = 65.2 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

Area required $A_{s_toe_req} = 497.8 \text{ mm}^2/\text{m} \qquad \text{Area provided} \qquad A_{s_toe_prov} = 2011 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.261 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c toe} = 0.625 \text{ N/mm}^2$

v_{toe} < v_{c_toe} - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT

Project	oject					Job Ref.		
28 MARESFIELD GARDENS NW3 5SX				161	H02			
Section				Sheet no./rev.				
PRELIMINARY CALCULATIONS				:	28			
Calc. by	Date	Э	Chk'd by	Date	App'd by	Date		
TV	11	1/09/2016						

Design of retaining wall heel

 $M_{heel} = 1.9 \text{ kNm/m}$ Shear at heel $V_{heel} = 11.7 \text{ kN/m}$ Moment at heel

Compression reinforcement is not required

Check heel in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

 $A_{s_heel_req} = \textbf{487.5} \ mm^2/m$ Area required Area provided $A_{s_heel_prov} = 754 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $V_{heel} = 0.037 \text{ N/mm}^2$ Allowable shear stress $V_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c heel} = 0.484 \text{ N/mm}^2$

v_{heel} < v_c heel - No shear reinforcement required

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

 $f_{cu} = 40 \text{ N/mm}^2$ Strength of concrete Strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = **0.13** %

Cover in stem c_{stem} = **75** mm Cover in wall cwall = 50 mm

-200-

4-100-▶

Design of retaining wall stem

Shear at base of stem $V_{stem} = 215.5 \text{ kN/m}$ Moment at base of stem $M_{stem} = 206.1 \text{ kNm/m}$

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				161	H02
VINCENT & DVAILL	Section				Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		PRELIMINARY	CALCULATION	IS	;	29
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

Area required $A_{s_stem_req} = 1945.8 \text{ mm}^2/\text{m}$ Area provided $A_{s_stem_prov} = 2011 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{\text{stem}} = 0.807 \text{ N/mm}^2$ Allowable shear stress $v_{\text{adm}} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c \text{ stem}} = 0.691 \text{ N/mm}^2$

V_{stem} > V_{c_stem} - Shear reinforcement required

Design of retaining wall at mid height

Moment at mid height $M_{wall} = 121.1 \text{ kNm/m}$

Compression reinforcement is not required

Reinforcement provided 16 mm dia.bars @ 200 mm centres

Area required A_s wall req = 1003.5 mm²/m Area provided A_s wall prov = 1005 mm²/m

PASS - Reinforcement provided to the retaining wall at mid height is adequate

Check retaining wall deflection

Max span/depth ratio $ratio_{max} = 17.79$ Actual span/depth ratio $ratio_{act} = 17.23$

PASS - Span to depth ratio is acceptable

Indicative retaining wall reinforcement diagram

Toe bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m)

Heel bars - 12 mm dia.@ 150 mm centres - (754 mm²/m)

Wall bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)

Stem bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m)

BASE SLAB

MAX SPAN = 4.00m

MAX UPLIFT = $(4.6 \times 10) - 5.6 = 40.4 \text{KN/m}^2$

BM MAX = $40.4 \times 4^{2} / 9 = 85 \text{KN.m}$

RC SLAB DESIGN (BS8110)

RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

CONCRETE SLAB DESIGN (CL 3.5.3 & 4)

SIMPLE ONE WAY SPANNING SLAB DEFINITION

Overall depth of slab h = 225 mm

Cover to tension reinforcement resisting sagging $c_b = 50 \text{ mm}$

Trial bar diameter $D_{tryx} = 10 \text{ mm}$

Depth to tension steel (resisting sagging)

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MARESFIELD GARDENS NW3 5SX				16H02	
VINCENT & DVAILL	Section				Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		PRELIMINARY	CALCULATION	S	;	31
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

 $d_x = h - c_b - D_{tryx}/2 = 170 \text{ mm}$

Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Characteristic strength of concrete fcu = 35 N/mm²

One-way spanning slab (simple)

ONE WAY SPANNING SLAB (CL 3.5.4)

MAXIMUM DESIGN MOMENTS IN SPAN

Design sagging moment (per m width of slab) msx = 85.0 kNm/m

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab) $m_{sx} = 85.0 \text{ kNm/m}$

Moment Redistribution Factor $\beta_{bx} = 1.0$

Area of reinforcement required

$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.084$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist sagging

Slab requiring outer tension steel only - bars (sagging)

$$z_x = min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{(0.25 - K_x/0.9))})) = 152 mm$$

Neutral axis depth $x_x = (d_x - z_x) / 0.45 = 39 \text{ mm}$

Area of tension steel required

$$A_{sx_req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_y \times z_x) = 1284 \text{ mm}^2/\text{m}$$

Tension steel

Provide 16 dia bars @ 125 centres outer tension steel resisting sagging

$$A_{\text{sx_prov}} = A_{\text{sx}} = \text{1610} \text{ mm}^2\text{/m}$$

Area of outer tension steel provided sufficient to resist sagging

TRANSVERSE BOTTOM STEEL - INNER

Inner layer of transverse steel

Provide 10 dia bars @ 200 centres

$$A_{sy_prov} = A_{sy} = 393 \text{ mm}^2/\text{m}$$

Check min and max areas of steel resisting sagging

Total area of concrete $A_c = h = 225000 \text{ mm}^2/\text{m}$

Minimum % reinforcement k = 0.13 %

VINCENT & RYMILL
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN
SURREY GU16 6PT

V/ 0 In

Project	Project					Job Ref.		
	28 MARESFIELD GARDENS NW3 5SX				161	H02		
Section				Sheet no./rev.				
PRELIMINARY CALCULATIONS				;	32			
Calc. by	Date		Chk'd by	Date	App'd by	Date		
-								

 $A_{st min} = k \times A_c = 293 mm^2/m$

 $A_{st_max} = 4 \% \times A_c = 9000 \text{ mm}^2/\text{m}$

Steel defined:

Outer steel resisting sagging A_{sx_prov} = **1610** mm²/m

Area of outer steel provided (sagging) OK

Inner steel resisting sagging A_{sy_prov} = **393** mm²/m

Area of inner steel provided (sagging) OK

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

Slab span length $I_x = 4.000 \text{ m}$

Design ultimate moment in shorter span per m width $m_{sx} = 85 \text{ kNm/m}$

Depth to outer tension steel $d_x = 170 \text{ mm}$

Tension steel

Area of outer tension reinforcement provided $A_{sx_prov} = 1610 \text{ mm}^2/\text{m}$

Area of tension reinforcement required $A_{sx_req} = 1284 \text{ mm}^2/\text{m}$

Moment Redistribution Factor $\beta_{bx} = 1.00$

Modification Factors

Basic span / effective depth ratio (Table 3.9) ratio_{span depth} = 26

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

$$f_s = 2 \times f_y \times A_{sx req} / (3 \times A_{sx prov} \times \beta_{bx}) = 265.8 \text{ N/mm}^2$$

factor_{tens} = min (2, 0.55 + (477 N/mm² -
$$f_s$$
) / (120 × (0.9 N/mm² + m_{sx} / d_x ²))) = **1.008**

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span $I_{max} = ratio_{span_depth} \times factor_{tens} \times d_x = 4.46 \text{ m}$

Check the actual beam span

Actual span/depth ratio $I_x / d_x = 23.53$

Span depth limit ratio_{span_depth} × factor_{tens} = **26.21**

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

Slab thickness h = 225 mm

Effective depth to bottom outer tension reinforcement $d_x = 170.0$ mm

Diameter of tension reinforcement $D_x = 16 \text{ mm}$

Diameter of links $L_{diax} = 0$ mm

Cover to outer tension reinforcement

$$c_{tenx} = h - d_x - D_x / 2 = 47.0 \text{ mm}$$

Nominal cover to links steel

$$c_{nomx} = c_{tenx} - L_{diax} = 47.0 \text{ mm}$$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

H16 AT 150 IN AD	H16 AT 150 IN ADDITION TO A393 MESH					

SURREY GU16 6PT

Project	ect				Job Ref.		
	28 MAREFIELD GARDENS NW5 5SX				16H02		
Section				Sheet no./rev	Sheet no./rev.		
T.WORKS DESIGN				1			
Calc. by	Date	Chk'd by	Date	App'd by	Date		
TV	11/09/2016	1					

Propping DESIGN CASES. 1. PI + PZ.

PROPPING AT P1 AND P2

RC BEAM ANALYSIS & DESIGN (BS8110)

RC BEAM ANALYSIS & DESIGN BS8110

TEDDS calculation version 2.1.12

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT

Project				Job Ref.		
	28 MAREFIELD	GARDENS N	W5 5SX	1	6H02	
Section				Sheet no./rev.		
	T.WO	RKS DESIGN			2	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
TV	11/09/2010	6				

Support conditions

Support A Vertically free

Rotationally free
Support B Vertically restrained

Rotationally free

Support C Vertically restrained

Rotationally free

Support D Vertically free Rotationally free

Applied loading

Imposed full UDL 5 kN/m
Span 1 loads
Dead VDL 9.000 kN/m at 0 mm to 12.600 kN/m at 400 mm

 Span 2 loads
 Dead VDL 12.600 kN/m at 0 mm to 22.500 kN/m at 1100 mm

 Span 3 loads
 Dead VDL 22.500 kN/m at 0 mm to 27.000 kN/m at 500 mm

Load combinations

Imposed \times 1.00

Span 1 Dead \times 1.00

Imposed × 1.00

Support B Dead \times 1.00

Imposed \times 1.00

Span 2 Dead × 1.00

Imposed \times 1.00

Support C Dead × 1.00

Imposed \times 1.00

Span 3 Dead \times 1.00

Imposed \times 1.00

Support D Dead × 1.00

 $Imposed \times 1.00 \\$

V&R	Project				Job Ref.	
VINCENT & RYMILL	28	MAREFIELD G	ARDENS NW5	5SX	161	H02
VINICENT & DVAILL	Section				Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		T.WORK	S DESIGN			3
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Analysis results		
Maximum moment support A	$M_{A_max} = 0 \text{ kNm}$	$M_{A_red} = 0 \text{ kNm}$
Maximum moment span 1 at support	$M_{s1_max} = 0 \text{ kNm}$	$M_{s1_red} = 0 \text{ kNm}$
Maximum moment support B	$M_{B_{max}} = -1 \text{ kNm}$	$M_{B_red} = -1 \text{ kNm}$
Maximum moment span 2 at 464 mm	$M_{s2_max} = 1 \text{ kNm}$	$M_{s2_red} = 1 \text{ kNm}$
Maximum moment support C	$M_{C_{max}} = -4 \text{ kNm}$	$M_{C_red} = -4 \text{ kNm}$
Maximum moment span 3 at support	$M_{s3_max} = 0 \text{ kNm}$	$M_{s3_red} = 0 \text{ kNm}$
Maximum moment support D	$M_{D_{max}} = 0 \text{ kNm}$	$M_{D_red} = 0 \text{ kNm}$
Maximum shear support A	$V_{A_{max}} = 0 \text{ kN}$	$V_{A_red} = 0 \text{ kN}$
Maximum shear support A span 1 at 300 mm	$V_{A_s1_{max}} = -5 \text{ kN}$	$V_{A_s1_red} = -5 \text{ kN}$
Maximum shear support B	$V_{B_max} = 9 \text{ kN}$	$V_{B_red} = 9 \text{ kN}$
Maximum shear support B span 1 at 100 mm	$V_{B_s1_{max}} = -1 \text{ kN}$	$V_{B_s1_red} = -1 \text{ kN}$
Maximum shear support B span 2 at 300 mm	$V_{B_s2_max} = 3 \text{ kN}$	$V_{B_s2_red} = 3 \text{ kN}$
Maximum shear support C	$V_{C_max} = -16 \text{ kN}$	$V_{C_red} = -16 \text{ kN}$
Maximum shear support C span 2 at 800 mm	$V_{C_s2_max} = -8 \text{ kN}$	$V_{C_s2_red} = -8 \text{ kN}$
Maximum shear support C span 3 at 300 mm	$V_{C_s3_max} = 6 \text{ kN}$	$V_{C_s3_red} = 6 \text{ kN}$
Maximum shear support D	$V_{D_max} = 0 \text{ kN}$	$V_{D_red} = 0 \text{ kN}$
Maximum shear support D span 3 at 200 mm	$V_{D_s3_max} = 9 \text{ kN}$	$V_{D_s3_red} = 9 \text{ kN}$
Maximum reaction at support A	$R_A = 0 \text{ kN}$	
Maximum reaction at support B	$R_B = 15 \text{ Kn} = PROP P1$	
Maximum reaction at support C	$R_C = 31 \text{ Kn} = PROP P2$	
Maximum reaction at support D	$R_D = 0 \text{ kN}$	

PROPPING AT P1 AND P3

RC BEAM ANALYSIS & DESIGN (BS8110)

RC BEAM ANALYSIS & DESIGN BS8110

TEDDS calculation version 2.1.12

770m	Project				Job Ref.	
V X K VINCENT & RYMII I	28	MAREFIELD G	ARDENS NW	5 5SX	161	H02
	Section				Sheet no./rev.	
	T.WORKS DESIGN				4	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

Support conditions

Support A Vertically free
Rotationally free

Support B Vertically restrained

Rotationally free

Support C Vertically restrained

Rotationally free

Support D Vertically free

Rotationally free

Applied loading

Imposed full UDL 5 kN/m

Imposed \times 1.00

 Span 1 loads
 Dead VDL 9.000 kN/m at 0 mm to 12.600 kN/m at 400 mm

 Span 2 loads
 Dead VDL 12.600 kN/m at 0 mm to 33.300 kN/m at 2300 mm

 Span 3 loads
 Dead VDL 33.300 kN/m at 0 mm to 42.300 kN/m at 1000 mm

Load combinations

Support A	Dead \times 1.00
	$Imposed \times 1.00$
Span 1	$Dead \times 1.00$
	$Imposed \times 1.00$
Support B	$Dead \times 1.00$
	$Imposed \times 1.00$
Span 2	$Dead \times 1.00$
	$Imposed \times 1.00$
Support C	$Dead \times 1.00$
	$Imposed \times 1.00$
Span 3	$Dead \times 1.00$
	$Imposed \times 1.00$
Support D	$Dead \times 1.00$
	Span 1 Support B Span 2 Support C Span 3

Analysis results

Maximum moment support A	$M_{A_{max}} = 0 \text{ kNm}$	$M_{A_red} = 0 \text{ kNm}$
Maximum moment span 1 at support	$M_{s1_max} = 0 \text{ kNm}$	$M_{s1_red} = 0 \text{ kNm}$
Maximum moment support B	$M_{B_{max}} = -1 \text{ kNm}$	$M_{B_red} = -1 \text{ kNm}$
Maximum moment span 2 at 884 mm	$M_{s2_max} = 8 \text{ kNm}$	$M_{s2_red} = 8 \text{ kNm}$
Maximum moment support C	$M_{C_{max}} = -22 \text{ kNm}$	$M_{C_red} = -22 \text{ kNm}$
Maximum moment span 3 at support	$M_{s3_max} = 0 \text{ kNm}$	$M_{s3_red} = 0 \text{ kNm}$
Maximum moment support D	$M_{D_{max}} = 0 \text{ kNm}$	$M_{D_red} = 0 \text{ kNm}$
Maximum shear support A	$V_{A_max} = 0 \text{ kN}$	$V_{A_red} = 0 \text{ kN}$

V & VINCE & RYM	N	Т
ICENT 8	×	RY

VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN
SURREY GU16 6PT

Project					
	28 MAREFIEL	D GARDENS N	W5 5SX		16H02
Section				Sheet no./rev	-
	T.WORKS DESIGN				5
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	11/09/201	16			

Maximum shear support A span 1 at 300 mm	$V_{A_s1_{max}} = -5 \text{ kN}$	$V_{A_s1_red} = -5 \text{ kN}$
Maximum shear support B	$V_{B_max} = 19 \text{ kN}$	$V_{B_red} = 19 \text{ kN}$
Maximum shear support B span 1 at 100 mm	$V_{B_s1_{max}} = -1 \text{ kN}$	$V_{B_s1_red} = -1 kN$
Maximum shear support B span 2 at 300 mm	$V_{B_s2_max} = 13 \text{ kN}$	$V_{B_s2_red} = 13 \text{ kN}$
Maximum shear support C	$V_{C_max} = -45 \text{ kN}$	$V_{C_red} = -45 \text{ kN}$
Maximum shear support C span 2 at 2000 mm	$V_{C_s2_max} = -34 \text{ kN}$	$V_{C_s2_red} = -34 \text{ kN}$
Maximum shear support C span 3 at 300 mm	$V_{C_s3_max} = 31 \text{ kN}$	$V_{C_s3_red} = 31 \text{ kN}$
Maximum shear support D	$V_{D_max} = 0 \text{ kN}$	$V_{D_red} = 0 \text{ kN}$
Maximum shear support D span 3 at 700 mm	$V_{D_s3_max} = 14 \text{ kN}$	$V_{D_s3_red} = 14 \text{ kN}$
Maximum reaction at support A	$R_A = 0 \text{ kN}$	
Maximum reaction at support B	R _B = 25 Kn = PROPPING AT 1	
Maximum reaction at support C	R _C = 88 Kn = PROPPING AT 3	
Maximum reaction at support D	$R_D = 0 \text{ kN}$	

KEY PLAN

Job Ref. Project 28 MAREFIELD GARDENS NW5 5SX 16H02 Sheet no./rev. Section **VINCENT & RYMILL** T.WORKS DESIGN 6 LAKESIDE COUNTRY CLUB Calc. by Date Chk'd by Date Date App'd by FRIMLEY GREEN TV 11/09/2016 SURREY GU16 6PT

PROP LOADS

PROP REF	REF PROP LOADS AT PRO		PROP LOADS AT PROP 3				
P1	31 X 3	=	93KN	88 X 3	=	264 KN	
P2	2 X 1.1416 X 31	=	71KN	2 X 1.1416 X 88	=	201KN	
P3	1.5 X 1.1416 X 31	=	54 KN	1.5 X 1.1416 X 88	=	151 KN	
P4			DITTO			DITTO	
P5	31 X 3	=	93KN	88 X 3	=	264KN	
P6	31 X 3	=	93KN	88 X 3	=	264KN	
P7	31 X 3 X 1.1416	=	107KN	88X3 X 1.1416	=	301KN	
P8							

LEVEL 1 & 2

MAX WALER SPAN / LOAD, 3.0 m SPAN UDL = 31 KN/m PROP CHECK PROP P6, L = 9.0 m, AXIAL LOAD = 93

STEEL BEAM ANALYSIS & DESIGN (BS5950)

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN

SURREY GU16 6PT

Project				Job Ref.	
28 MAREFIELD GARDENS NW5 5SX			16H02		
Section				Sheet no./rev.	
T.WORKS DESIGN				7	
Calc. by	Date	Chk'd by	Date	App'd by	Date
T\/	11/00/2016				

	conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Applied loading

Beam loads Imposed full UDL 31 kN/m

Load combinations

Imposed \times 1.60

Span 1 Dead \times 1.40

Imposed × 1.60

Support B Dead \times 1.40

 $Imposed \times 1.60$

Analysis results

Unfactored imposed load reaction at support A $R_{A_Imposed} = 46.5 \text{ kN}$

Maximum reaction at support B $R_{B_max} = 74.4 \text{ kN}$ $R_{B_min} = 74.4 \text{ kN}$

Unfactored imposed load reaction at support B R_{B_Imposed} = **46.5** kN

Section details

Section type UC 152x152x37 (BS4-1) Steel grade S275

Classification of cross sections - Section 3.5

Tensile strain coefficient $\epsilon = 1.00$ Section classification Plastic

Shear capacity - Section 4.2.3

Design shear force $F_v = 74.4 \text{ kN}$ Design shear resistance $P_v = 213.6 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Job Ref. Project 28 MAREFIELD GARDENS NW5 5SX 16H02 Section Sheet no./rev. **VINCENT & RYMILL** T.WORKS DESIGN 8 LAKESIDE COUNTRY CLUB Calc. by Date Chk'd by Date App'd by Date FRIMLEY GREEN TV 11/09/2016 SURREY GU16 6PT

Moment capacity - Section 4.2.5

Design bending moment M = 55.8 kNm Moment capacity low shear $M_c = 84.9 \text{ kNm}$

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

Limiting deflection $\delta_{lim} = 7.5 \text{ mm}$ Maximum deflection $\delta = 7.215 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

USE 152 X 152 X 37 WALER

STEEL MEMBER DESIGN (BS5950)

STEEL MEMBER DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Section details

Section type UC 152x152x37 (BS4-1) Steel grade S275

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$ Section classification Plastic

Shear capacity - Section 4.2.3

Design shear force $F_v = 100 \text{ kN}$ Design shear resistance $P_{y,v} = 213.6 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Shear capacity - Section 4.2.3

Compression members - Section 4.7

Design compression force $F_c = 150 \text{ kN}$ Compression resistance $P_{cx} = 439 \text{ kN}$

PASS - Compression resistance exceeds design compression force

USE 152 X 152 X 37 UC PROPS

V&R	Project				Job Ref.	
VINCENT & RYMILL	28 MAREFIELD GARDENS NW5 5SX					16H02
	Section			Sheet no./rev	Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		T.WORK	S DESIGN			9
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	11/09/2016				

PROPPING AT LEVEL 3

MAX WALER SPAN / LOAD, 3.0 m SPAN UDL = 88KN/m PROP CHECK PROP P6, L = 9.0m, AXIAL LOAD = 264KN

STEEL BEAM ANALYSIS & DESIGN (BS5950)

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Support conditions

Support A Vertically restrained Rotationally free

Support B Vertically restrained

Rotationally free

Applied loading

Beam loads Imposed full UDL 88 kN/m

Load combinations

Load combination 1 Support A Dead \times 1.40 Imposed \times 1.60

Span 1 Dead \times 1.40

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT

Project				Job Ref.		
	28 MAREFIELD GARDENS NW5 5SX				16H02	
Section		Sheet no./rev.	Sheet no./rev.			
T.WORKS DESIGN					10	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
TV	11/09/2016	6				

 $\label{eq:lmposed} \begin{array}{ll} \text{Imposed} \times 1.60 \\ \text{Support B} & \text{Dead} \times 1.40 \\ \end{array}$

 $Imposed \times 1.60$

Analysis results

Unfactored imposed load reaction at support A $R_{A_Imposed} = 132 \text{ kN}$

Maximum reaction at support B $R_{B_{max}} = 211.2 \text{ kN}$ $R_{B_{min}} = 211.2 \text{ kN}$

Unfactored imposed load reaction at support B R_{B_Imposed} = **132** kN

Section details

Section type UC 203x203x60 (BS4-1) Steel grade S275

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$ Section classification Plastic

Shear capacity - Section 4.2.3

Design shear force $F_v = 211.2 \text{ kN}$ Design shear resistance $P_v = 325.1 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment M = 158.4 kNm Moment capacity high shear $M_c = 177.9 \text{ kNm}$

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

 $\mbox{Limiting deflection} \qquad \qquad \delta_{\mbox{\scriptsize lim}} = \mbox{\bf 8.333} \mbox{ mm} \qquad \qquad \mbox{Maximum deflection} \qquad \qquad \delta = \mbox{\bf 7.392} \mbox{ mm}$

PASS - Maximum deflection does not exceed deflection limit

USE 203 X 203 X 60 WALER

V&R VINCENT & RYMILL
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN

SURREY GU16 6PT

Project				Job Ref.		
	28 MAREFIELD GARDENS NW5 5SX				16H02	
Section		Sheet no./rev.	Sheet no./rev.			
	T.WORKS DESIGN				11	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
TV	11/09/2016	6				

STEEL MEMBER DESIGN (BS5950)

STEEL MEMBER DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

S275

Section details

Section type

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$ Section classification Plastic

Compression members - Section 4.7

Design compression force $F_c = 422 \text{ kN}$ Compression resistance $P_{cx} = 1068.1 \text{ kN}$

PASS - Compression resistance exceeds design compression force

USE 203 X 203 X 60 UC PROPS