

User Details

Assessor Name:James McglashanStroma Number:STRO000976Software Name:Stroma FSAP 2009Software Version:Version: 1.5.0.95

Area(m²)	Software Name:	Stroma FSAP 2009	Software Ve	ersion:	Versio	n: 1.5.0.95	
Area(m²)			· · · ·				
Ground floor Ground floor Ground floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) Total floor area TFA = (1a)+(1b)+(1c)+(1e)+(1n) Total floor area TFA = (1a)+(1b)+(1e)+(1n) Total floor area TFA = (1a)+(1b)+(1e)+	Address:	•	Bayham Street, LOND	ON, NW1 0B	A		
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)	r. Overall dwelling dim	ensions.	Δrea(m²)	Ave Heigh	t(m)	Volume(m	3)
Dwelling volume	Ground floor				``	•	<u> </u>
Dwelling volume	Total floor area TFA = (1	la)+(1b)+(1c)+(1d)+(1e)+(1n	161.88 (4)	<u> </u>			
Number of chimneys				3b)+(3c)+(3d)+(3	e)+(3n) =	400.81	(5)
Number of chimneys	2. Ventilation rate:						
Number of chimneys	zi ventilation rate.		y other	total		m³ per hou	ur
Number of intermittent fans 0	Number of chimneys		+ 0 =	0	x 40 =	0	(6a)
Number of passive vents 0	Number of open flues	0 + 0	+ 0 =	0	x 20 =	0	(6b)
Number of passive vents 0	Number of intermittent fa	ans		0	x 10 =	0	一 _(7a)
Number of flueless gas fires Air changes per hour Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ $\div (5) = 0$ (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) Additional infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - $[0.2 \times (14) \div 100] = 0$ (15) Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = $[(17) \div 20]+(8)$, otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - $[0.075 \times (19)] = 0.42$ (21) Infiltration rate incorporating shelter factor	Number of passive vents	5		0	x 10 =		= ``
Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 0	·				x 40 =		=
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ $\div (5) = 0$ (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) Additional infiltration Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 Infiltration rate 0.25 - $[0.2 \times (14) \div 100] = 0$ (12) Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = $[(17) \div 20]+(8)$, otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - $[0.075 \times (19)] = 0.42$ (21) Infiltration rate incorporating shelter factor (21) = (18) \times (20) = 0.42 (21)	Trainibor of hadreds gas t			0]	0	(10)
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) Additional infiltration Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 Q (12) If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - [0.2 × (14) \div 100] = Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) \div 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 × (19)] = 0 (9) (10) (9) (10) (9) (10) (9) (10) (10) (11) (11) 0 (12) 0 (12) 1(3) (12) (13) (14) 1(4) 1(5) = 0 (15) 0 (15) 0 (15) 0 (15) 0 (15) 0 (15) 0 (15) 0 (15) 0 (16) 0 (15) 1(6) 0 (15) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(8) 1(9) 1(9) 1(9) 1(10) 1(10) 1(11) 1(10) 1(11) 1(11) 1(12) 1(12) 1(13) 1(14) 1(15) 1(15) 1(16) 1(16) 1(17) 1(17) 1(17) 1(18) 1(19) 1(19) 1(10) 1(10) 1(11) 1(10)					Air ch	anges per h	our
Number of storeys in the dwelling (ns) Additional infiltration Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - [0.2 x (14) \div 100] = 0 (15) Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) \div 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 x (19)] = 0 (15) 0.49 (18) 2 (19) 0.85 (20) Infiltration rate incorporating shelter factor (21) = (18) x (20) = 0 (12)	Infiltration due to chimne	eys, flues and fans = $(6a)+(6b)+(7a)$	a)+(7b)+(7c) =	0	÷ (5) =	0	(8)
Additional infiltration [(9)-1]x0.1 = 0 (10) Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 O (12) If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - [0.2 × (14) ÷ 100] = 0 (15) Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 × (19)] = 0.85 (20) Infiltration rate incorporating shelter factor (21) = (18) × (20) = 0.42 (21)			d to (17), otherwise continue	from (9) to (16)			_
Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - [0.2 × (14) \div 100] = 0 (15) Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) \div 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 × (19)] = 0 (15) 0 (15) 0 (16) 0.49 (18) 17) 18) 19) 10) 10) 11)	•	the dwelling (ns)				0	
if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05 , else enter 0 Percentage of windows and doors draught stripped Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 0 0 0 0 0 0					[(9)-1]x0.1 =	0	
deducting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration $0.25 \cdot [0.2 \times (14) \div 100] =$ 0(15)Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaIf based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ 0.49(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides on which sheltered2(19)Shelter factor $(20) = 1 \cdot [0.075 \times (19)] =$ 0.85(20)Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.42(21)			•	truction		0	(11)
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration $0.25 - [0.2 \times (14) \div 100] = 0$ Infiltration rate $0.25 - [0.2 \times (14) \div 100] = 0$ Infiltration rate $0.25 - [0.2 \times (14) \div 100] = 0$ Infiltration rate $0.25 - [0.2 \times (14) \div 100] = 0$ Infiltration rate $0.25 - [0.2 \times (14) \div 100] = 0$ $0.25 - [0.2 \times (14) \div 1$			the greater wall area (after				
Percentage of windows and doors draught stripped Window infiltration $0.25 - [0.2 \times (14) \div 100] = 0 (15)$ Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0 (16)$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.85$ $(21) = (18) \times (20) = 0.42$ Infiltration rate incorporating shelter factor		= : :	1 (sealed), else enter ()		0	(12)
Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15) Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ 0.49 (18) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.85 (20) Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.42 (21)	If no draught lobby, er	nter 0.05, else enter 0				0	(13)
Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 × (19)] = 0 (16) 0.49 (18) (18) 2 (19) Shelter factor (21) = (18) × (20) = 0.42 (21)	Percentage of window	s and doors draught stripped				0	(14)
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 9.89 (17) If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 × (19)] = (20) Infiltration rate incorporating shelter factor (21) = $(18) \times (20) = (21)$	Window infiltration		0.25 - [0.2 x (14) ÷	100] =		0	(15)
If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$	Infiltration rate		(8) + (10) + (11) +	(12) + (13) + (15) =	0	(16)
Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ (21)	Air permeability value	, q50, expressed in cubic metre	s per hour per square i	metre of enve	lope area	9.89	(17)
Number of sides on which sheltered $ (20) = 1 - [0.075 \times (19)] = $ (20) $ (21) = (18) \times (20) = $ (21)	If based on air permeab	ility value, then $(18) = [(17) \div 20] + (8)$	3), otherwise (18) = (16)			0.49	(18)
Shelter factor $ (20) = 1 - [0.075 \times (19)] = $ $ (20)$ Infiltration rate incorporating shelter factor $ (21) = (18) \times (20) = $ $ (21)$	Air permeability value appli	es if a pressurisation test has been don	e or a degree air permeabilit	y is being used			
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 0.42$ (21)	Number of sides on which	ch sheltered				2	(19)
0.72	Shelter factor		(20) = 1 - [0.075 x]	(19)] =		0.85	(20)
Infiltration rate modified for monthly wind speed	Infiltration rate incorpora	ting shelter factor	(21) = (18) x (20) =	=		0.42	(21)
	Infiltration rate modified	for monthly wind speed					

minuat	minitation rate modified for mortally wind speed												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind speed from Table 7													
(22)m=	5.4	5.1	5.1	4.5	4.1	3.9	3.7	3.7	4.2	4.5	4.8	5.1	
Wind Factor (22a)m = (22)m ÷ 4													
(22a)m=	1.35	1.27	1.27	1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.2	1.27	

Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m 0.54 0.47 0.43 0.41 0.39 0.47 0.5 0.39 0.44 0.54 Calculate effective air change rate for the applicable case If mechanical ventilation: (23a) 0.5 If exhaust air heat pump using Appendix N, (23b) = (23a) x Fmv (equation (N5)), otherwise (23b) = (23a) (23b) 0.5 If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = 73.1 (23c)a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) x [1 − (23c) ÷ 100] (24a)m= 0.7 0.67 0.67 0.61 0.57 0.54 0.52 0.52 0.58 0.61 0.64 (24a)0.67 b) If balanced mechanical ventilation without heat recovery (MV) (24b)m = (22b)m + (23b) (24b)(24b)m: 0 n 0 n 0 0 0 0 0 0 0 0 c) If whole house extract ventilation or positive input ventilation from outside if $(22b)m < 0.5 \times (23b)$, then (24c) = (23b); otherwise $(24c) = (22b)m + 0.5 \times (23b)$ (24c)0 0 0 (24c)m =0 d) If natural ventilation or whole house positive input ventilation from loft if (22b)m = 1, then (24d)m = (22b)m otherwise $(24d)m = 0.5 + [(22b)m^2 \times 0.5]$ (24d)m=O 0 (24d)Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25) (25)m =0.7 0.67 0.67 0.61 0.57 0.54 0.52 0.52 0.58 0.61 0.64 0.67 (25)3. Heat losses and heat loss parameter: U-value AXUAXkGross Net Area k-value **ELEMENT** Openings m² A,m² W/m2K (W/K) kJ/m²·K kJ/K area (m²) Windows Type 1 $\chi 1/[1/(1.6) + 0.04] =$ 20.99 31.56 (27)Windows Type 2 16.23 $\chi 1/[1/(1.6) + 0.04] =$ (27)24.41 Windows Type 3 $\chi 1/[1/(1.6) + 0.04] =$ (27)2.23 3.35 Windows Type 4 $\chi 1/[1/(1.6) + 0.04] =$ 53.37 80.26 (27)Windows Type 5 $\chi 1/[1/(1.6) + 0.04] =$ 2.23 3.35 (27)Rooflights $\chi 1/[1/(1.6) + 0.04]$ (27b)1.44 2.304 Walls 132.86 (29)95.05 37.81 0.29 10.96 Roof 161.88 (30)4.32 157.56 0.14 22.06 Total area of elements, m² 294.74 (31)Party wall (32)27.51 0.2 5.5 * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 ** include the areas on both sides of internal walls and partitions (26)...(30) + (32) =Fabric heat loss, $W/K = S(A \times U)$ 187.95 (33)Heat capacity $Cm = S(A \times k)$ ((28)...(30) + (32) + (32a)...(32e) =(34)2497.5801 Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K Indicative Value: Low (35)100 For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation. Thermal bridges: S (L x Y) calculated using Appendix K (36)44.21 if details of thermal bridging are not known (36) = 0.15 x (31) Total fabric heat loss (33) + (36) =(37)232.16 Ventilation heat loss calculated monthly (38)m = $0.33 \times (25)$ m x (5)Jan Feb Mar May Jun Jul Sep Oct Dec Apr Aug Nov

(00)	00.04	00.00	00.00	00.04	74.70	70	00.00	00.00	70.47	00.04	04.54	00.00		(20)
(38)m=	92.84	88.68	88.68	80.34	74.78	72	69.22	69.22	76.17	80.34	84.51	88.68		(38)
Heat tra										= (37) + (3				
(39)m=	325.01	320.84	320.84	312.5	306.94	304.16	301.38	301.38	308.33	312.5	316.67	320.84	040.00	7(20)
Heat los	ss para	meter (H	HLP), W/	m²K						Average = = (39)m ÷	Sum(39) _{1.} (4)	12 /12=	312.62	(39)
(40)m=	2.01	1.98	1.98	1.93	1.9	1.88	1.86	1.86	1.9	1.93	1.96	1.98		_
Number	r of day	s in mo	nth (Tab	le 1a)					,	Average =	Sum(40) _{1.}	12 /12=	1.93	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
_			-	-	-	-	-		-					
4. Wat	er heat	ing ene	rgy requi	irement:								kWh/ye	ar:	
Assume	ed occu	ipancy.	N								2	95		(42)
if TFA	A > 13.9	9, N = 1		[1 - exp	(-0.0003	349 x (TF	A -13.9)2)] + 0.0	0013 x (ΓFA -13.		<u> </u>		(/
		9, N = 1	otor usac	no in litro	se nor da	w Vd aw	orago –	(25 x N)	+ 36		40	4.0		(42)
								to achieve		e target of		4.3		(43)
not more	that 125	litres per _l	person per	day (all w	ater use, l	not and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water	r usage ii	n litres pei	day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	114.73	110.56	106.38	102.21	98.04	93.87	93.87	98.04	102.21	106.38	110.56	114.73		_
Energy co	ontent of	hot water	used - cal	culated m	onthly – 4	190 x Vd n	пуптуГ	OTm / 3600			$m(44)_{112} =$	L	1251.59	(44)
	170.55	149.16	153.92	134.19	128.76	111.11	102.96	118.15	119.56	139.33	152.09	165.17		
(43)111=	170.55	149.10	155.92	134.19	120.70	111.11	102.90	110.13			m(45) ₁₁₂ =		1644.95	(45)
If instanta	aneous w	ater heati	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46)		otal – oal	11(40)112	L	1044.00	(```
(46)m=	25.58	22.37	23.09	20.13	19.31	16.67	15.44	17.72	17.93	20.9	22.81	24.77		(46)
Water s	•					(1.34/1	/ I \							
,			clared lo		r is knov	vn (kvvn	/day):					67		(47)
•			m Table								0.	54		(48)
• • • • • • • • • • • • • • • • • • • •			storage ared cylir	-		s not kna		(47) x (48)) =		0.9	018		(49)
) includir									0		(50)
If comr	munity he	eating and	l no tank in	dwelling,	enter 110	litres in bo	x (50)							
Otherw	vise if no	stored ho	t water (th	is includes	instantan	eous comb	oi boilers)	enter '0' in	box (50)					
Hot wat	er stora	age loss	factor fr	om Tab	e 2 (kW	h/litre/da	ıy)					0		(51)
Volume	factor	from Ta	ble 2a								(0		(52)
Temper	ature fa	actor fro	m Table	2b							(0		(53)
Energy	lost fro	m water	· storage	, kWh/ye	ear			((50) x (51) x (52) x ((53) =	(0		(54)
Enter (4	19) or (5	54) in (5	5)								0	.9		(55)
Water s	torage	loss cal	culated f	for each	month			((56)m = (55) × (41)r	n				
(56)m=	27.96	25.25	27.96	27.05	27.96	27.05	27.96	27.96	27.05	27.96	27.05	27.96		(56)
If cylinder	contains	dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (I	H11) is fro	m Appendi	хН	
(57)m=	27.96	25.25	27.96	27.05	27.96	27.05	27.96	27.96	27.05	27.96	27.05	27.96		(57)

Primary circuit loss (annual) from Table 3	360	(58)
Primary circuit loss calculated for each month (59)m = (58) \div 365 \times (41)m		
(modified by factor from Table H5 if there is solar water heating and a cylinder thermo		
(59)m= 30.58 27.62 30.58 29.59 30.58 29.59 30.58 29.59 30.58	29.59 30.58	(59)
Combi loss calculated for each month (61)m = (60) ÷ 365 x (41)m		
(61)m= 0 0 0 0 0 0 0 0 0 0	0 0 ((61)
Total heat required for water heating calculated for each month (62)m = 0.85 × (45)m +	(46)m + (57)m + (59)m + (61)m	
(62)m= 229.08 202.03 212.45 190.83 187.29 167.75 161.49 176.68 176.2 197.87	208.74 223.7	(62)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution	tion to water heating)	
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)	-	
(63)m= 0 0 0 0 0 0 0 0 0 0	0 0 ((63)
Output from water heater		
(64)m= 229.08 202.03 212.45 190.83 187.29 167.75 161.49 176.68 176.2 197.87	208.74 223.7	
Output from water heate	er (annual) ₁₁₂ 2334.11 (((64)
Heat gains from water heating, kWh/month 0.25 x $[0.85 \times (45)\text{m} + (61)\text{m}] + 0.8 \times [(46)\text{m}]$		
(65)m= 103.53 91.89 98 89.93 89.64 82.26 81.06 86.11 85.07 93.15		(65)
	,	,
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is f	Tom community nearing	
5. Internal gains (see Table 5 and 5a):		
Metabolic gains (Table 5), Watts	T T.= 1	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct	Nov Dec	(0.0)
(66)m= 177.09 177.09 177.09 177.09 177.09 177.09 177.09 177.09 177.09 177.09 177.09	177.09 177.09	(66)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5	· · · · · · · · · · · · · · · · · · ·	
(67)m= 74.26 65.95 53.64 40.61 30.35 25.63 27.69 35.99 48.31 61.34	71.59 76.32	(67)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5		
(68)m= 497.27 502.43 489.43 461.75 426.8 393.96 372.02 366.86 379.86 407.54	442.49 475.33	(68)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5		
(69)m= 55.66 55.66 55.66 55.66 55.66 55.66 55.66 55.66 55.66 55.66	55.66 55.66	(69)
Pumps and fans gains (Table 5a)	· · · · · · · · · · · · · · · · · · ·	
(70)m= 10 10 10 10 10 10 10 10 10 10	10 10 (70)
Losses e.g. evaporation (negative values) (Table 5)	<u> </u>	
(71)m= -118.06 -118.06 -118.06 -118.06 -118.06 -118.06 -118.06 -118.06 -118.06 -118.06	-118.06 -118.06	71)
Water heating gains (Table 5)	<u> </u>	
(72)m= 139.16 136.74 131.73 124.91 120.48 114.25 108.95 115.74 118.15 125.21	133.17 136.75	72)
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (70)m$,	,
	, , , ,	(73)
(73)m= 835.38 829.82 799.48 751.95 702.33 658.53 633.35 643.28 671.01 718.78 6. Solar gains:	771.95 615.09	13)
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applical	ble orientation	
	FF Gains	
0=	Table 6c (W)	
Northeast 0.9x 0.77 x 20.99 x 11.51 x 0.63 x		(75)
Northeast 0.9x 0.77 x 16.23 x 11.51 x 0.63 x	0.8 = 65.25	(75)

Nowth cost of		7		1		1		ı		1		٦
Northeast _{0.9x}	0.77	X	20.99	X	23.55	X	0.63	X	0.8	=	172.68	(75)
Northeast _{0.9x}	0.77	X	16.23	X	23.55	X	0.63	X	0.8	=	133.52	(75)
Northeast _{0.9x}	0.77	X	20.99	X	41.13	X	0.63	X	0.8] =	301.51	(75)
Northeast _{0.9x}	0.77	X	16.23	X	41.13	X	0.63	X	0.8	=	233.13	(75)
Northeast _{0.9x}	0.77	X	20.99	X	67.8	X	0.63	X	0.8	=	497.04	(75)
Northeast _{0.9x}	0.77	X	16.23	X	67.8	X	0.63	X	0.8	=	384.32	(75)
Northeast _{0.9x}	0.77	X	20.99	X	89.77	X	0.63	X	0.8	=	658.09	(75)
Northeast _{0.9x}	0.77	X	16.23	X	89.77	X	0.63	X	0.8	=	508.86	(75)
Northeast _{0.9x}	0.77	X	20.99	X	97.5	X	0.63	X	0.8	=	714.81	(75)
Northeast 0.9x	0.77	X	16.23	X	97.5	X	0.63	x	0.8	=	552.71	(75)
Northeast _{0.9x}	0.77	X	20.99	X	92.98	X	0.63	X	0.8	=	681.65	(75)
Northeast _{0.9x}	0.77	X	16.23	X	92.98	X	0.63	X	0.8	=	527.07	(75)
Northeast _{0.9x}	0.77	X	20.99	X	75.42	x	0.63	x	0.8	=	552.9	(75)
Northeast _{0.9x}	0.77	X	16.23	x	75.42	x	0.63	X	0.8	=	427.52	(75)
Northeast _{0.9x}	0.77	X	20.99	x	51.24	x	0.63	x	0.8	=	375.69	(75)
Northeast _{0.9x}	0.77	x	16.23	x	51.24	x	0.63	x	0.8	=	290.49	(75)
Northeast _{0.9x}	0.77	x	20.99	x	29.6	x	0.63	x	0.8] =	217	(75)
Northeast _{0.9x}	0.77	X	16.23	x	29.6	x	0.63	x	0.8	j =	167.79	(75)
Northeast _{0.9x}	0.77	x	20.99	x	14.52	x	0.63	x	0.8	j =	106.49	(75)
Northeast _{0.9x}	0.77	x	16.23	x	14.52	x	0.63	x	0.8	j =	82.34	(75)
Northeast _{0.9x}	0.77	X	20.99	x	9.36	x	0.63	x	0.8	j =	68.62	(75)
Northeast _{0.9x}	0.77	x	16.23	x	9.36	х	0.63	х	0.8	j =	53.06	(75)
Southeast 0.9x	0.77	x	2.23	x	37.39	х	0.63	х	0.8	j =	29.12	(77)
Southeast 0.9x	0.77	x	2.23	x	63.74	x	0.63	x	0.8	j =	49.64	(77)
Southeast 0.9x	0.77	x	2.23	x	84.22	x	0.63	x	0.8	j =	65.59	(77)
Southeast 0.9x	0.77	x	2.23	x	103.49	x	0.63	x	0.8	=	80.61	(77)
Southeast 0.9x	0.77	x	2.23	x	113.34	x	0.63	x	0.8	j =	88.28	(77)
Southeast 0.9x	0.77	x	2.23	x	115.04	х	0.63	х	0.8	j =	89.61	(77)
Southeast 0.9x	0.77	X	2.23	x	112.79	х	0.63	x	0.8	j =	87.85	(77)
Southeast 0.9x	0.77	X	2.23	x	105.34	х	0.63	х	0.8	j =	82.05	(77)
Southeast 0.9x	0.77	j×	2.23	x	92.9	x	0.63	x	0.8	j =	72.36	(77)
Southeast 0.9x	0.77	X	2.23	x	72.36	x	0.63	х	0.8	j =	56.36	(77)
Southeast 0.9x	0.77	X	2.23	x	44.83	x	0.63	х	0.8	j =	34.91	(77)
Southeast 0.9x	0.77	j x	2.23	x	31.95	x	0.63	x	0.8	j =	24.88	(77)
Southwest _{0.9x}	0.77	X	53.37	X	37.39	i	0.63	x	0.8	=	696.93	(79)
Southwest _{0.9x}	0.77	X	53.37	X	63.74	ĺ	0.63	x	0.8	=	1188.07	(79)
Southwest _{0.9x}	0.77	X	53.37	X	84.22	j	0.63	x	0.8	=	1569.84	(79)
Southwest _{0.9x}	0.77	X	53.37	X	103.49	ĺ	0.63	x	0.8]] =	1929.1	(79)
Southwest _{0.9x}	0.77	X	53.37	X	113.34	ĺ	0.63	x	0.8	, =	2112.67	(79)
Southwest _{0.9x}	0.77	X	53.37	X	115.04	ĺ	0.63	x	0.8	,] =	2144.5	(79)
Southwest _{0.9x}	0.77	X	53.37	X	112.79	ĺ	0.63	x	0.8	,] =	2102.5	(79)
_		_		1		,		I		1		」 '

Southwest _{0.9x}	0.77	- ,	50.07	٦ ,		25.24	1 1	0.00	— , г	0.0	-	4000.00	(70)
Southwest _{0.9x}	0.77	X	53.37	X		05.34] 1	0.63	X	8.0	_ =	1963.62	(79)
Southwest _{0.9x}	0.77	×	53.37	X		92.9]]	0.63	X	0.8	╡ =	1731.67	(79)
<u> </u>	0.77	■ ×	53.37	」 ×		2.36]	0.63	×	0.8	=	1348.89	(79)
Southwest _{0.9x}	0.77	×	53.37	X	4	4.83]	0.63	×	0.8	_ =	835.58	(79)
Southwest _{0.9x}	0.77	×	53.37	X	3	1.95		0.63	×	0.8	=	595.56	(79)
Northwest 0.9x	0.77	X	2.23	X	1	1.51	X	0.63	×	0.8	=	8.96	(81)
Northwest 0.9x	0.77	X	2.23	X	2	3.55	X	0.63	X	0.8	=	18.35	(81)
Northwest _{0.9x}	0.77	X	2.23	X	4	1.13	X	0.63	X	0.8	=	32.03	(81)
Northwest 0.9x	0.77	X	2.23	X		67.8	X	0.63	X	0.8	=	52.81	(81)
Northwest 0.9x	0.77	X	2.23	X	8	9.77	X	0.63	X	8.0	=	69.92	(81)
Northwest 0.9x	0.77	X	2.23	X	(97.5	X	0.63	х	0.8	=	75.94	(81)
Northwest 0.9x	0.77	X	2.23	X	9	2.98	X	0.63	x	0.8	=	72.42	(81)
Northwest 0.9x	0.77	x	2.23	X	7	5.42	X	0.63	x [0.8	=	58.74	(81)
Northwest 0.9x	0.77	x	2.23	X	5	1.24	X	0.63	x	0.8	=	39.91	(81)
Northwest _{0.9x}	0.77	x	2.23	X	2	29.6	X	0.63	х	0.8	=	23.05	(81)
Northwest 0.9x	0.77	×	2.23	X	1	4.52	x	0.63	x	0.8	=	11.31	(81)
Northwest 0.9x	0.77	x	2.23	X		9.36	х	0.63	x	0.8	=	7.29	(81)
Rooflights _{0.9x}	1	x	1.44	X		26	x	0.63	×	0.8	=	50.95	(82)
Rooflights _{0.9x}	1	×	1.44	i x		54	x	0.63	x	0.8	-	105.82	(82)
Rooflights 0.9x	1	x	1.44	X		94	х	0.63	×	0.8	_ =	184.2	(82)
Rooflights 0.9x	1	×	1.44	X		150	X	0.63	= x [0.8	╡ -	293.93	(82)
Rooflights 0.9x	1	×	1.44	i x		190	X	0.63	i x	0.8	= =	372.31	(82)
Rooflights 0.9x	1	×	1.44	X		201	X	0.63	_ x [0.8	= =	393.87	(82)
Rooflights 0.9x	1	x	1.44	X		194	X	0.63	x [0.8		380.15	(82)
Rooflights 0.9x	1	×	1.44	x		164	X	0.63	=	0.8	-	321.37	(82)
Rooflights 0.9x	1	×	1.44	x		116	X	0.63	= x	0.8	= =	227.31	(82)
Rooflights 0.9x	1	╡ ×	1.44	X		68] _X	0.63	=	0.8	= =	133.25	(82)
Rooflights 0.9x	1	۲ ×	1.44	X		33) x	0.63	=	0.8	╡ -	64.67	(82)
Rooflights 0.9x	1	= x	1.44	ا ا		21]]	0.63	=	0.8	= =	41.15	(82)
	<u> </u>]	0.00		0.0		11110	(` '
Solar gains in	watts. calcu	ulated	for each moi	nth			(83)m	= Sum(74)m .	(82)m				
(83)m= 935.59	1668.08 23		3237.81 3810		971.42	3851.64				1135.29	790.58]	(83)
Total gains – ir	nternal and	solar	(84)m = (73)	m + ((83)m	, watts		I				J	
(84)m= 1770.97	2497.89 31	85.79	3989.76 4512	.45 4	629.95	4484.99	4049	.48 3408.43	2665.12	1907.24	1603.67]	(84)
7. Mean inter	nal tempera	ature (heating seas	on)			·		•				
Temperature	· ·		Ĭ		area	rom Tal	ole 9.	Th1 (°C)				21	(85)
Utilisation fac	•	•		_			,	(- /					` ′
Jan		Mar	Apr Ma	Ť	Jun	Jul	A	ug Sep	Oct	Nov	Dec]	
(86)m= 0.92).77	0.65 0.5	- 	0.37	0.26	0.2		0.72	0.88	0.93	1	(86)
Mean interna	temperatu	ıra in li	iving area T1	(foll-	ow etc	ne 3 to 7	7 in T	able 0c)	<u> </u>	1	ı	1	
(87)m= 18.48		9.51	20.05 20.4		20.72	20.82	20.8		20.04	19.08	18.5	1	(87)
` '	l l								1	1 .0.00	I	J	(3.)
Temperature				_		rrom Ta	able 9	i, Th2 (°C)			1	•	
(88)m= 19.33	19.35 1	9.35	19.39 19.4	14 I	19.42	19.43	19.4	43 19.4	19.39	19.37	19.35		(88)

Litilian	stion for	star for a	aina far	root of d	م زال میر	h2 m /oc	o Toblo	00)						
		ctor for g		i		· `	1		0.4	0.00	0.00	0.04		(89)
(89)m=	0.9	0.83	0.73	0.6	0.44	0.29	0.17	0.18	0.4	0.66	0.86	0.91		(69)
		l temper			1	- ` `								>
(90)m=	16.18	16.82	17.59	18.31	18.86	19.13	19.22	19.22	19.01	18.33	17.04	16.22		(90) —
									f	LA = Livin	g area ÷ (4	1) =	0.56	(91)
Mean	interna	ıl temper	ature (fo	r the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	A) × T2					
(92)m=	17.46	18	18.66	19.28	19.77	20.01	20.11	20.1	19.9	19.28	18.18	17.49		(92)
Apply	adjustr	nent to t	he mean	interna	l temper	ature fro	m Table	4e, whe	ere appro	priate				
(93)m=	17.46	18	18.66	19.28	19.77	20.01	20.11	20.1	19.9	19.28	18.18	17.49		(93)
8. Spa	ace hea	ıting requ	uirement											
						ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
tne ut		factor fo				1	11	A	0	0-4	Name			
Litiliae	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(94)m=	0.88	otor for g	0.72	0.6	0.46	0.32	0.21	0.23	0.43	0.66	0.83	0.89		(94)
		hmGm				0.32	0.21	0.23	0.43	0.00	0.83	0.09		(34)
		2020.01				1503.85	931.62	922.95	1469.99	1759.57	1592.41	1430.17		(95)
		age exte		<u> </u>	<u> </u>		001.02	022.00	1400.00	1700.07	1002.41	1400.17		(00)
(96)m=	4.5	5	6.8	8.7	11.7	14.6	16.9	16.9	14.3	10.8	7	4.9		(96)
		e for mea												, ,
(97)m=		4170.37					967.6	965.68	<u> </u>	2650.21	3539.67	4039.07		(97)
, ,		g require		l .										` '
(98)m=							0.02	[(~.	, (00) <u>]</u>	· /···			
	1 1973.10	I 1445.04	1133.94	661.16	305.12	0	0	0	0	662.63	1402.03	1941.02		
	1973.16	1445.04	1133.94	661.16	305.12	0	0		<u> </u>	662.63 (kWh/year		1941.02 8) _{15,912} =	9524.13	(98)
Space		ļ		<u> </u>	<u> </u>	0	0		0 I per year					===
·	e heatin	ıg require	ement in	kWh/m²	<u> </u>	0	0		<u> </u>				9524.13 58.83	(98)
8c. S	e heatin	ng require	ement in Juiremen	kWh/m²	ı ²/year		0		<u> </u>					===
8c. S	e heatin	ng require poling record	ement in uiremer July and	kWh/m² nt August.	²/year See Tal	ole 10b		Tota	l per year	(kWh/year) = Sum(9	8)15,912 =		===
8c. Sp Calcu	e heatin pace co llated fo Jan	ng require poling red or June, c	ement in Juiremen July and Mar	kWh/m² it August. Apr	²/year See Tal May	ole 10b Jun	Jul	Tota	I per year	(kWh/year) = Sum(90	8) _{15,912} =		===
8c. Sp Calcu	e heatin pace co llated fo Jan loss rat	ng require poling record	ement in Juiremen July and Mar	kWh/m² it August. Apr	²/year See Tal May	ole 10b Jun	Jul perature	Tota	I per year	(kWh/year) = Sum(90	8) _{15,912} =		===
8c. Sp Calcu Heat (100)m=	e heatin pace co llated fo Jan loss rate	og require coling recording recordin	ement in Juiremen July and Mar Iculated	kWh/m² t August. Apr using 25	See Tal May 5°C inter	ole 10b Jun	Jul perature	Tota Aug and exte	l per year Sep ernal ten	Oct	Nov e from T	8) _{15,912} = Dec able 10)		(99)
8c. Sp Calcu Heat (100)m=	e heatin pace co lated fo Jan loss rat 0 ation face	og require oling record or June, compression Feb e Lm (ca	ement in Juiremen July and Mar Iculated	kWh/m² t August. Apr using 25	See Tal May 5°C inter	ole 10b Jun	Jul perature	Tota Aug and exte	l per year Sep ernal ten	Oct	Nov e from T	8) _{15,912} = Dec able 10)		(99)
8c. Sp Calcu Heat (100)m= Utilisa (101)m=	e heatin pace co plated for Jan loss rate 0 ation face	or June, complete the complete	ement in Juiremen July and Mar Iculated 0 pss hm	kWh/m² August. Apr using 25	See Tal May 5°C inter 0	ole 10b Jun rnal temp 2615.79	Jul perature 1868.56	Aug and exte	Sep ernal ten	Oct nperatur 0	Nov e from T	8) _{15,912} = Dec able 10)		(99)
8c. Sp Calcu Heat (100)m= Utilisa (101)m=	e heatin pace co lated for Jan loss rate 0 ation face	or require recording recor	ement in Juiremen July and Mar Iculated 0 pss hm	kWh/m² August. Apr using 25	See Tal May 5°C inter 0	ole 10b Jun rnal temp 2615.79	Jul perature 1868.56 0.91	Aug and exte	Sep ernal ten	Oct nperatur 0	Nov e from T	8) _{15,912} = Dec able 10)		(99)
8c. Sp Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m=	e heatin pace co plated for Jan loss rate 0 ation face 0 plated for 0 p	or June, control of Jun	ement in uiremen July and Mar Iculated 0 oss hm 0 Vatts) = (kWh/m² August. Apr using 25 0 (100)m x	See Tal May 5°C inter 0	ole 10b Jun rnal temp 2615.79 0.87	Jul perature 1868.56 0.91	Aug and exte 1868.56 0.9	Sep ernal ten 0	Oct nperatur 0	Nov e from T	B) _{15,912} = Dec able 10)		(99) (100) (101)
8c. Sp Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m=	e heatin pace co lated for Jan loss rate 0 ation face 0 l loss, f	require recording recordin	ement in uiremen July and Mar Iculated 0 oss hm 0 Vatts) = (kWh/m² August. Apr using 25 0 (100)m x	See Tal May 5°C inter 0	ole 10b Jun rnal temp 2615.79 0.87 2264.81	Jul perature 1868.56 0.91	Aug and exte 1868.56 0.9	Sep ernal ten 0	Oct nperatur 0	Nov e from T	B) _{15,912} = Dec able 10)		(99) (100) (101)
8c. Sp Calcul Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m=	e heatin pace co plated for Jan loss rate 0 ation face 0 Il loss, h 0 s (solar 0	require roling recording r	ement in July and Mar Iculated 0 oss hm 0 Vatts) = (0 Iculated	kWh/m² August. Apr using 29 0 (100)m x 0 for appli	See Tal May 5°C inter 0 (101)m 10 cable we	ole 10b Jun rnal temp 2615.79 0.87 2264.81 eather re 5509.79	Jul perature 1868.56 0.91 1708.81 egion, se 5267.07	Aug and exte 1868.56 0.9 1684.21 e Table 4806.77	Sep ernal ten 0 0 10) 0	Oct nperatur 0 0	Nov e from T 0 0 0	Dec Table 10) 0	58.83	(100) (101) (102)
8c. Sp Calcul Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space	e heatin pace co lated for Jan loss rate 0 ation face 0 l loss, h 0 s (solar 0 e cooling	require roling recording r	ement in uiremen July and Mar Iculated 0 oss hm 0 Vatts) = (0 Iculated 0	kWh/m² August. Apr using 29 0 (100)m x for appli 0 r month,	See Tal May 5°C inter 0 (101)m 0 cable we	ole 10b Jun rnal temp 2615.79 0.87 2264.81 eather re 5509.79	Jul perature 1868.56 0.91 1708.81 egion, se 5267.07 continue	Aug and exte 1868.56 0.9 1684.21 e Table 4806.77	Sep ernal ten 0 0 10) 0 0 /h) = 0.00	Oct nperatur 0 0	Nov e from T 0 0 0	Dec able 10) 0 0	58.83	(100) (101) (102)
8c. Sp Calcul Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space	e heatin pace co lated for Jan loss rate 0 ation face 0 Il loss, h 0 s (solar 0 e cooling 04)m to	require roling recording recording recording recording recording recording require recording require	ement in uiremen July and Mar Iculated 0 oss hm 0 Vatts) = (0 Iculated 0	kWh/m² August. Apr using 29 0 (100)m x for appli 0 r month,	See Tal May 5°C inter 0 (101)m 0 cable we	ole 10b Jun rnal temp 2615.79 0.87 2264.81 eather re 5509.79	Jul perature 1868.56 0.91 1708.81 egion, se 5267.07	Aug and exte 1868.56 0.9 1684.21 e Table 4806.77	Sep ernal ten 0 0 10) 0 0 /h) = 0.00	Oct nperatur 0 0	Nov e from T 0 0 0	Dec able 10) 0 0	58.83	(100) (101) (102)
8c. Sp Calcul Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m=	e heatin pace co lated for Jan loss rate 0 ation face 0 Il loss, h 0 s (solar 0 e cooling 04)m to	require rolling record June, control for local c	ement in July and Mar Iculated 0 oss hm 0 /atts) = (0 lculated 0 ement fo 104)m <	kWh/m² August. Apr using 29 0 (100)m x 0 for appli 0 r month,	See Tal May 5°C inter 0 (101)m 0 cable we 0 whole come	ole 10b Jun rnal temp 2615.79 0.87 2264.81 eather re 5509.79	Jul perature 1868.56 0.91 1708.81 egion, se 5267.07 continue	Aug and exte 1868.56 0.9 1684.21 e Table 4806.77	Sep ernal ten 0 0 10) 0 0	Oct nperatur 0 0 24 x [(10) = Sum(Nov e from T 0 0 0 0 0 104)	Dec	58.83	(100) (101) (102) (103)
8c. Sp Calcul Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m=	e heatin pace co plated for Jan loss rate 0 ation face 0 s (solar 0 e coolin 04)m to d fractio	require roling recording recording recording recording recording recording recording require require require require require recording recor	ement in July and Mar Iculated 0 oss hm 0 lculated 0 lculated 0 ement for 104)m <	kWh/m² August. Apr using 29 0 (100)m x 0 for appli 0 r month, 3 x (98	See Tal May 5°C inter 0 (101)m 0 cable we 0 whole come	ole 10b Jun rnal temp 2615.79 0.87 2264.81 eather re 5509.79	Jul perature 1868.56 0.91 1708.81 egion, se 5267.07 continue	Aug and exte 1868.56 0.9 1684.21 e Table 4806.77	Sep ernal ten 0 0 10) 0 0	Oct nperatur 0 0 24 x [(10) = Sum(Nov e from T 0 0 0 0 0 0 0 0 0 0 0 0	Dec	58.83	(99) (100) (101) (102) (103)
8c. Sp Calcul Heat (100)m= Utilisa (101)m= Useful (102)m= Gains (103)m= Space set (1 (104)m=	e heatin pace co lated for Jan loss rate 0 ation face (solar) (solar) e coolin 04)m to d fraction attency f	require rolling record for June, control for local section for loc	ement in uiremen luly and Mar lculated 0 oss hm 0 vatts) = (0 lculated 0 ement fo 104)m < 0	kWh/m² August. Apr using 29 0 (100)m x 0 for appli 0 r month, 3 x (98	See Tal May 5°C inter 0 (101)m 0 cable we 0 whole c)m 0	ole 10b Jun nal temp 2615.79 0.87 2264.81 eather re 5509.79 dwelling, 2336.39	Jul perature 1868.56 0.91 1708.81 egion, se 5267.07 continue	Aug and exte 1868.56 0.9 1684.21 e Table 4806.77 ous (kW	Sepernal ten 0 10) 0 10) 0 Total f C =	Oct nperatur 0 0 0 24 x [(10) cooled a	Nov e from T 0 0 0 0 0 1,0,4) area ÷ (4	Dec fable 10) 0 0 102)m] >	58.83 c (41)m 7306.91	(100) (101) (102) (103)
8c. Sp Calcul Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m=	e heatin pace co lated for Jan loss rate 0 ation face (solar) (solar) e coolin 04)m to d fraction attency f	require roling recording recording recording recording recording recording recording require require require require require recording recor	ement in July and Mar Iculated 0 oss hm 0 lculated 0 lculated 0 ement for 104)m <	kWh/m² August. Apr using 29 0 (100)m x 0 for appli 0 r month, 3 x (98	See Tal May 5°C inter 0 (101)m 0 cable we 0 whole come	ole 10b Jun rnal temp 2615.79 0.87 2264.81 eather re 5509.79	Jul perature 1868.56 0.91 1708.81 egion, se 5267.07 continue	Aug and exte 1868.56 0.9 1684.21 e Table 4806.77	Sep ernal ten 0 0 10) 0 0	Oct nperatur 0 0 24 x [(10) = Sum(Nov e from T 0 0 0 0 0 1,0,4) earea ÷ (4	Dec	58.83 c (41)m 7306.91	(100) (101) (102) (103)

Space cooling of 107)m= 0	requirer 0	nent for	month =	(104)m	× (105)	× (106)r	n 484.32	0	0	0	0		
0	U	L	U	U	707.07	331.8	704.32		= Sum(=	1523.29	(10
Space cooling	requirer	ment in k	:Wh/m²/\	ear					· · + (4) =	,	F	9.41	(10
i. a. Energy req	•		-		ystems i	ncluding	micro-C	` ,			L		
Space heatin					,	<u>_</u>		,					
Fraction of spa	ace hea	at from se	econdar	y/supple	mentary	system						0	(20
Fraction of spa	ace hea	at from m	ain syst	em(s)			(202) = 1 -	- (201) =				1	(20
Fraction of tot	al heatii	ng from i	main sys	stem 1			(204) = (20	02) x [1 –	(203)] =			1	(20
Efficiency of n	nain spa	ace heat	ing syste	em 1								250	(20
Efficiency of s	econda	ry/supple	ementar	y heating	g systen	າ, %					Γ	0	(20
Cooling Syste	m Ener	gy Efficie	ency Rat	io							Ī	4.63	(20
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	 ear
Space heating	require	ement (c	alculate	d above))	•							
1973.18	1445.04	1133.94	661.16	305.12	0	0	0	0	662.63	1402.03	1941.02		
211)m = {[(98)	m x (20	4)]} x 10	0 ÷ (206	5)									(21
789.27	578.02	453.58	264.46	122.05	0	0	0	0	265.05	560.81	776.41		_
							Tota	I (kWh/yea	ar) =Sum(2	211) _{15,1012}	- _	3809.65	(2
Space heating	,		, , .	month									
: {[(98)m x (20				_			I .	_	_	_			
215)m= 0	0	0	0	0	0	0	0	0	0	0	0		٦,,
							Tota	I (KWN/yea	ar) =Sum(2	215) _{15,1012}		0	(21
Vater heating		tor (colo	ام امدوار دا	20110)									
Output from wa	202.03	212.45	190.83	187.29	167.75	161.49	176.68	176.2	197.87	208.74	223.7		
Efficiency of wa	ater hea	ter										175	(2
217)m= 175	175	175	175	175	175	175	175	175	175	175	175		(2 ⁻
uel for water h	neating,	kWh/mo	onth										
(64)r = (64) r													
219)m= 130.9	115.44	121.4	109.05	107.02	95.86	92.28	100.96	100.69 I = Sum(2)	113.07	119.28	127.83		٦,,
							Tota	1 = Sum(2	19a) ₁₁₂ =		L	1333.78	(21
Space cooling 221)m = (107)			ıtn.										
221)m= 0	0	0	0	0	105.19	119.19	104.59	0	0	0	0		
<u> </u>					<u> </u>	<u> </u>	Tota	I = Sum(22	21) ₆₈ =			328.97	(22
Annual totals									k\	Wh/year		kWh/yea	' r
Space heating	fuel use	ed, main	system	1						, J Ca.	Γ	3809.65	
Vater heating f	fuel use	d									Ļ	1333.78	Ħ
valei nealinu i											L T	328.97	\dashv
•	11161 1166	·u									L	320.91	
space cooling			olootrio I	koon ha	+								
Space cooling to	umps, fa	ans and		·									
Space cooling to the	umps, fa	ans and		·		nput fron	n outside	е			623.47		(23

sum of (230a)...(230g) =Total electricity for the above, kWh/year (231)753.47 Electricity for lighting (232)524.56 Electricity generated by PVs (233)-686.72 10a. Fuel costs - individual heating systems: **Fuel Fuel Price Fuel Cost** kWh/year (Table 12) £/year Space heating - main system 1 (211) x x 0.01 =(240)11.46 436.586 Space heating - main system 2 (213) x x 0.01 =(241)0 0 (215) x x = 0.01 =Space heating - secondary 0 (242)0 Water heating cost (other fuel) (219)x 0.01 =11.46 152.85 (247)Space cooling (221)x 0.01 =11.46 37.7 (248)(231)Pumps, fans and electric keep-hot x 0.01 =(249)11.46 86.35 (if off-peak tariff, list each of (230a) to (230g) separately as applicable and apply fuel price according to Table 12a **Energy for lighting** x 0.01 =(250)11.46 60.11 Additional standing charges (Table 12) 0 (251)one of (233) to (235) x) x 0.01 =(252)11.46 -78.7 Appendix Q items: repeat lines (253) and (254) as needed (245)...(247) + (250)...(254) =(255)Total energy cost 694.9002 11a. SAP rating - individual heating systems Energy cost deflator (Table 12) 0.47 (256) $[(255) \times (256)] \div [(4) + 45.0] =$ Energy cost factor (ECF) (257)1.5787 SAP rating (Section 12) 77.977 (258)12a. CO2 emissions - Individual heating systems including micro-CHP **Emission factor Emissions** Energy kg CO2/kWh kg CO2/year kWh/year (211) x Space heating (main system 1) (261)0.517 1969.59 (215) x Space heating (secondary) (263)Water heating (219) x(264)0.517 689.56 (261) + (262) + (263) + (264) =Space and water heating 2659.15 (265)(221) x Space cooling 0.517 170.08 (266)Electricity for pumps, fans and electric keep-hot (231) x (267)0.517 389.54 Electricity for lighting (232) x (268)0.517 271.2

Energy saving/generation technologies

Item 1

Total CO2, kg/year

CO2 emissions per m²

(269)

(272)

(273)

-363.27

3126.69

19.31

0.529

sum of (265)...(271) =

 $(272) \div (4) =$

El rating (section 14) 80 (274)

13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	2.92	11124.18 (261)
Space heating (secondary)	(215) x	0 =	0 (263)
Energy for water heating	(219) x	2.92	3894.63 (264)
Space and water heating	(261) + (262) + (263) + (264) =		15018.81 (265)
Space cooling	(221) x	2.92	960.59 (266)
Electricity for pumps, fans and electric keep-hot	(231) x	2.92	2200.13 (267)
Electricity for lighting	(232) x	0 =	1531.71 (268)
Energy saving/generation technologies			
Item 1		2.92	-2005.22 (269)
'Total Primary Energy	sum	of (265)(271) =	17706.01 (272)
Primary energy kWh/m²/year	(272	2) ÷ (4) =	109.38 (273)