

Jear Dataile

Assessor Name:James McglashanStroma Number:STRO000976Software Name:Stroma FSAP 2009Software Version:Version: 1.5.0.95

Area(m²)	Software Name:	Stroma FSAP 2009	Software Ve	ersion:	Versio	n: 1.5.0.95	
Area(m²)			· · · ·				
Ground floor Ground floor Ground floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) Total floor area TFA = (1a)+(1b)+(1c)+(1e)+(1n) Total floor area TFA = (1a)+(1b)+(1e)+(1n) Total floor area TFA = (1a)+(1b)+(1e)+	Address:	•	Bayham Street, LOND	ON, NW1 0B	A		
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)	r. Overall dwelling dim	ensions.	Δrea(m²)	Ave Heigh	t(m)	Volume(m	3)
Dwelling volume	Ground floor				``	•	<u> </u>
Dwelling volume	Total floor area TFA = (1	la)+(1b)+(1c)+(1d)+(1e)+(1n	161.88 (4)	<u> </u>			
Number of chimneys				3b)+(3c)+(3d)+(3	e)+(3n) =	400.81	(5)
Number of chimneys	2. Ventilation rate:						
Number of chimneys	zi ventilation rate.		y other	total		m³ per hou	ur
Number of intermittent fans 0	Number of chimneys		+ 0 =	0	x 40 =	0	(6a)
Number of passive vents 0	Number of open flues	0 + 0	+ 0 =	0	x 20 =	0	(6b)
Number of passive vents 0	Number of intermittent fa	ans		0	x 10 =	0	一 _(7a)
Number of flueless gas fires Air changes per hour Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ $\div (5) = 0$ (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) Additional infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - $[0.2 \times (14) \div 100] = 0$ (15) Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = $[(17) \div 20]+(8)$, otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - $[0.075 \times (19)] = 0.42$ (21) Infiltration rate incorporating shelter factor	Number of passive vents	5		0	x 10 =		= ``
Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 0	·				x 40 =		=
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ $\div (5) = 0$ (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) Additional infiltration Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - $[0.2 \times (14) \div 100] = 0$ (15) Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = $[(17) \div 20]+(8)$, otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - $[0.075 \times (19)] = 0.42$ (21) Infiltration rate incorporating shelter factor	Trainibor of hadreds gas t			0]	0	(10)
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) Additional infiltration Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 Q (12) If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - [0.2 × (14) \div 100] = Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) \div 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 × (19)] = 0 (9) (10) (9) (10) (9) (10) (9) (10) (10) (11) (11) 0 (12) 0 (12) 1(3) (12) (13) (14) 1(4) 1(5) = 0 (15) 0 (15) 0 (15) 0 (15) 0 (15) 0 (15) 0 (15) 0 (15) 0 (16) 0 (15) 1(6) 0 (15) 1(7) 1(7) 1(8) 1(9) 1(9) 1(1) 1(9) 1(1)					Air ch	anges per h	our
Number of storeys in the dwelling (ns) Additional infiltration Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - [0.2 x (14) \div 100] = 0 (15) Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) \div 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 x (19)] = 0 (15) 0.49 (18) 2 (19) 0.85 (20) Infiltration rate incorporating shelter factor (21) = (18) x (20) = 0 (12)	Infiltration due to chimne	eys, flues and fans = $(6a)+(6b)+(7a)$	a)+(7b)+(7c) =	0	÷ (5) =	0	(8)
Additional infiltration [(9)-1]x0.1 = 0 (10) Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 O (12) If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - [0.2 × (14) ÷ 100] = 0 (15) Infiltration rate Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 × (19)] = 0.85 (20) Infiltration rate incorporating shelter factor (21) = (18) × (20) = 0.42 (21)			d to (17), otherwise continue	from (9) to (16)			_
Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 - [0.2 × (14) \div 100] = 0 (15) Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) \div 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 × (19)] = 0 (15) 0 (15) 0 (16) 0.49 (18) 17) 18) 19) 10) 10) 11)	•	the dwelling (ns)				0	
if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05 , else enter 0 Percentage of windows and doors draught stripped Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 0 0 0 0 0 0					[(9)-1]x0.1 =	0	
deducting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration $0.25 \cdot [0.2 \times (14) \div 100] =$ 0(15)Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaIf based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ 0.49(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides on which sheltered2(19)Shelter factor $(20) = 1 \cdot [0.075 \times (19)] =$ 0.85(20)Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.42(21)			•	truction		0	(11)
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ Infiltration rate $0.25 - [0.2 \times (14) \div 100] =$ $0.25 - [0.2 \times (14) \div 100] =$ Infiltration rate $0.25 - [0.2 \times (14) \div 100] =$ $0.25 - [0.2$			the greater wall area (after				
Percentage of windows and doors draught stripped Window infiltration $0.25 - [0.2 \times (14) \div 100] = 0 (15)$ Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0 (16)$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.85$ $(21) = (18) \times (20) = 0.42$ Infiltration rate incorporating shelter factor		= : :	1 (sealed), else enter ()		0	(12)
Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15) Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ 0.49 (18) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.85 (20) Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.42 (21)	If no draught lobby, er	nter 0.05, else enter 0				0	(13)
Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 × (19)] = 0 (16) 0.49 (18) (18) 2 (19) Shelter factor (21) = (18) × (20) = 0.42 (21)	Percentage of window	s and doors draught stripped				0	(14)
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 9.89 (17) If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 × (19)] = (20) Infiltration rate incorporating shelter factor (21) = $(18) \times (20) = (21)$	Window infiltration		0.25 - [0.2 x (14) ÷	100] =		0	(15)
If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$	Infiltration rate		(8) + (10) + (11) +	(12) + (13) + (15) =	0	(16)
Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ (21)	Air permeability value	, q50, expressed in cubic metre	s per hour per square i	metre of enve	lope area	9.89	(17)
Number of sides on which sheltered $ (20) = 1 - [0.075 \times (19)] = $ (20) $ (21) = (18) \times (20) = $ (21)	If based on air permeab	ility value, then $(18) = [(17) \div 20] + (8)$	3), otherwise (18) = (16)			0.49	(18)
Shelter factor $ (20) = 1 - [0.075 \times (19)] = $ $ (20)$ Infiltration rate incorporating shelter factor $ (21) = (18) \times (20) = $ $ (21)$	Air permeability value appli	es if a pressurisation test has been don	e or a degree air permeabilit	y is being used			
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 0.42$ (21)	Number of sides on which	ch sheltered				2	(19)
0.72	Shelter factor		(20) = 1 - [0.075 x]	(19)] =		0.85	(20)
Infiltration rate modified for monthly wind speed	Infiltration rate incorpora	ting shelter factor	(21) = (18) x (20) =	=		0.42	(21)
	Infiltration rate modified	for monthly wind speed					_

minuat	ion rate	modific	4 101 1110	ittilly will	ia opeca							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Monthl	Monthly average wind speed from Table 7											
(22)m=	5.4	5.1	5.1	4.5	4.1	3.9	3.7	3.7	4.2	4.5	4.8	5.1
Wind Factor (22a)m = (22)m ÷ 4												
(22a)m=	1.35	1.27	1.27	1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.2	1.27

Adjusted infilt	ration rate	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
0.57	0.54	0.54	0.47	0.43	0.41	0.39	0.39	0.44	0.47	0.5	0.54		
<i>Calculate effe</i> If mechanic		-	rate for t	he appli	cable ca	se	-		-			0.5	(23
If exhaust air h			endix N. (2	3b) = (23a	a) × Fmv (e	equation (N	N5)) . othe	wise (23b) = (23a)			0.5	(23
If balanced with									, (===,			73.1	(23
a) If balanc		-	-	_					2h)m + (1	23h) 🗴 ['	1 – (23c)		(23
24a)m= 0.7	0.67	0.67	0.61	0.57	0.54	0.52	0.52	0.58	0.61	0.64	0.67	. 100]	(24
b) If balanc	ed mecha	anical ve	entilation	without	heat red	coverv (N	//V) (24b	0 m = (22)	2b)m + (2	 23b)		l	
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24
c) If whole I	nouse ext m < 0.5 ×			•	•				.5 × (23b))		ı	
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24
d) If natural	ventilatio m = 1, the								0.51		l	l	
24d)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24
Effective air	r change i	rate - en	nter (24a	or (24k	o) or (24	c) or (24	d) in box	(25)	ı		1	ı	
25)m= 0.7	0.67	0.67	0.61	0.57	0.54	0.52	0.52	0.58	0.61	0.64	0.67		(25
0 115-54 5-55		-4											
3. Heat losse	es and ne Gros	•	Openin		Net Ar	00	U-valı	10	AXU		k-value	`	AXk
ELEMENT	area	_	m		A ,r		W/m2		(W/F	<)	kJ/m²-		kJ/K
Vindows Typ	e 1				20.99	x1,	/[1/(1.6)+	0.04] =	31.56				(27
Vindows Typ	e 2				16.23	x1,	/[1/(1.6)+	0.04] =	24.41				(27
Vindows Typ	e 3				2.23	x1,	/[1/(1.6)+	0.04] =	3.35				(27
Vindows Typ	e 4				53.37	x1,	/[1/(1.6)+	0.04] =	80.26				(27
Vindows Typ	e 5				2.23	x1,	/[1/(1.6)+	0.04] =	3.35				(27
Rooflights					1.44	x1,	/[1/(1.6) +	0.04] =	2.304				(27
Valls	132.8	36	95.0	5	37.81	x	0.29	=	10.96				(29
Roof	161.8	38	4.32	<u> </u>	157.5	6 X	0.14	<u> </u>	22.06				(30
Total area of	elements,	, m²			294.7	4							(31
Party wall					27.51	x	0.2		5.5				(32
for windows and * include the are						ated using	formula 1	/[(1/U-valu	ıe)+0.04] a	s given in	paragraph	3.2	
abric heat lo	ss, W/K =	= S (A x	U)				(26)(30)	+ (32) =				187.95	(33
leat capacity	Cm = S(x)	Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	2497.580)1 (34
hermal mass	s paramet	ter (TMF	P = Cm ÷	- TFA) ir	n kJ/m²K			Indica	tive Value:	Low		100	(35
For design asses an be used inste				construct	ion are no	t known pr	ecisely the	indicative	e values of	TMP in Ta	able 1f		
hermal bridg	jes : S (L	x Y) cal	culated (using Ap	pendix I	<						44.21	(30
f details of therm Total fabric he		are not kn	own (36) =	= 0.15 x (3	31)			(33) +	(36) =			232.16	(37
/entilation he	at loss ca	lculated	l monthly	,				(38)m	= 0.33 × (25)m v (5)	١		
enthalion ne		a.a.coa		y				(00)	- 0.55 x (20)III X (0)	,		

(0.0)					l					T			1	(00)
(38)m=	92.84	88.68	88.68	80.34	74.78	72	69.22	69.22	76.17	80.34	84.51	88.68		(38)
	ransfer o	coefficier		242.5	200.04	204.40	204.20	204.00	- ` ´	(37) + (<u> </u>	220.04	l	
(39)m=	325.01	320.84	320.84	312.5	306.94	304.16	301.38	301.38	308.33	312.5 Average =	316.67	320.84	312.62	(39)
Heat Id	oss para	meter (H	HLP), W	/m²K						$= (39) m \div$		12 / 12-	012.02	
(40)m=	2.01	1.98	1.98	1.93	1.9	1.88	1.86	1.86	1.9	1.93	1.96	1.98		
Numbe	er of day	s in mo	nth (Tab	le 1a)					,	Average =	Sum(40) ₁	12 /12=	1.93	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
		-			•			-		-	-	-	•	
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
Assum	ned occu	ıpancy, l	N								2.	.95		(42)
	A > 13.9 A £ 13.9		+ 1.76 x	[1 - exp	(-0.0003	849 x (TF	A -13.9)2)] + 0.0	0013 x (TFA -13.			l	, ,
		•	ater usad	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		10	04.3		(43)
Reduce	the annua	al average	hot water	usage by	5% if the c	lwelling is	designed i	to achieve		se target o		71.0		(- /
not more						hot and co	<u> </u>						1	
Hot wate	Jan er usage ir	Feb	Mar day for ea	Apr ach month	Vd.m = fa	Jun ctor from	Jul Table 1c x	(43)	Sep	Oct	Nov	Dec		
(44)m=	114.73	110.56	106.38	102.21	98.04	93.87	93.87	98.04	102.21	106.38	110.56	114.73		
(,									<u> </u>	Total = Su	L	<u> </u>	1251.59	(44)
Energy (content of	hot water	used - cal	culated m	onthly $= 4$.	190 x Vd,r	n x nm x E	OTm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	lc, 1d)		_
(45)m=	170.55	149.16	153.92	134.19	128.76	111.11	102.96	118.15	119.56	139.33	152.09	165.17		_
If instan	taneous w	ater heati	ng at point	of use (no	o hot wate	r storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =	=	1644.95	(45)
(46)m=	25.58	22.37	23.09	20.13	19.31	16.67	15.44	17.72	17.93	20.9	22.81	24.77		(46)
	storage anufactu		clared lo	oss facto	r is knov	vn (kWh	/dav):				1	.67		(47)
,			m Table			`	,					.54		(48)
•			· storage		ear			(47) x (48)) =			9018		(49)
			-			s not kno								
•		•	•	•		age with		•				0		(50)
	-	•		•		litres in bo eous comb	. ,	enter '0' in	box (50)					
			•			h/litre/da	,		()			0		(51)
	e factor	_				,	.,,					0		(52)
			m Table	2b								0		(53)
Energy	lost fro	m water	storage	, kWh/ye	ear			((50) x (51	I) x (52) x	(53) =		0		(54)
Enter ((49) or (5	54) in (5	5)								0).9		(55)
Water	storage	loss cal	culated t	for each	month			((56)m = (55) × (41)	m			_	
(56)m=	27.96	25.25	27.96	27.05	27.96	27.05	27.96	27.96	27.05	27.96	27.05	27.96		(56)
If cylinde	er contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	om Append	ix H	

Primary circuit loss (annual) from Table 3	360	(58)
Primary circuit loss calculated for each month (59) m = $(58) \div 365 \times (41)$ m		
(modified by factor from Table H5 if there is solar water heating and a cylinder thermo		1 (50)
(59)m= 30.58 27.62 30.58 29.59 30.58 29.59 30.58 30.58 29.59 30.58	29.59 30.58	(59)
Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m		,
(61)m= 0 0 0 0 0 0 0 0 0	0 0	(61)
Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (62)m + (62)m = 0.85 \times (45)m + (62)m +$	(46)m + (57)m +	(59)m + (61)m
(62)m= 229.08 202.03 212.45 190.83 187.29 167.75 161.49 176.68 176.2 197.87	208.74 223.7	(62)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contributi	on to water heating)	
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)	ı	1
(63)m= 0 0 0 0 0 0 0 0 0	0 0	(63)
Output from water heater		1
(64)m= 229.08 202.03 212.45 190.83 187.29 167.75 161.49 176.68 176.2 197.87	208.74 223.7	
Output from water heater	,	2334.11 (64)
Heat gains from water heating, kWh/month $0.25 \times [0.85 \times (45)m + (61)m] + 0.8 \times [(46)m]$	+ (57)m + (59)n	<u>1</u>]
(65)m= 103.53 91.89 98 89.93 89.64 82.26 81.06 86.11 85.07 93.15	95.89 101.74	(65)
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from	om community h	neating
5. Internal gains (see Table 5 and 5a):		
Metabolic gains (Table 5), Watts		
Jan Feb Mar Apr May Jun Jul Aug Sep Oct	Nov Dec	
(66)m= 147.58 147.58 147.58 147.58 147.58 147.58 147.58 147.58 147.58 147.58	147.58 147.58	(66)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5		_
(67)m= 29.7 26.38 21.45 16.24 12.14 10.25 11.08 14.4 19.32 24.54	28.64 30.53	(67)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5		
(68)m= 333.17 336.63 327.92 309.37 285.96 263.95 249.25 245.8 254.51 273.05	296.47 318.47	(68)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5		•
(69)m= 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76	37.76 37.76	(69)
Pumps and fans gains (Table 5a)	•	
(70)m= 10 10 10 10 10 10 10 10 10 10	10 10	(70)
Losses e.g. evaporation (negative values) (Table 5)	•	•
(71)m= -118.06 -118.06 -118.06 -118.06 -118.06 -118.06 -118.06 -118.06 -118.06 -118.06	-118.06 -118.06	(71)
Water heating gains (Table 5)	•	1
(72)m= 139.16 136.74 131.73 124.91 120.48 114.25 108.95 115.74 118.15 125.21	133.17 136.75	(72)
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (70)m$	1)m + (72)m	ı
(73)m= 579.3 577.02 558.37 527.79 495.85 465.72 446.55 453.2 469.25 500.07	535.55 563.02	(73)
6. Solar gains:		
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicab	le orientation.	
Orientation: Access Factor Area Flux g_	FF	Gains
Table 6d m² Table 6a Table 6b Ta	able 6c	(VV)
Northeast 0.9x 0.77 x 20.99 x 11.51 x 0.63 x	0.8 =	84.38 (75)
Northeast 0.9x 0.77 x 16.23 x 11.51 x 0.63 x	0.8 =	65.25 (75)

Northeast _{0.9x}	0.77	X	20.99	X	23.55	X	0.63	X	0.8	=	172.68	(75)
Northeast _{0.9x}	0.77	X	16.23	x	23.55	x	0.63	X	0.8	=	133.52	(75)
Northeast _{0.9x}	0.77	X	20.99	X	41.13	x	0.63	X	0.8	=	301.51	(75)
Northeast _{0.9x}	0.77	X	16.23	X	41.13	x	0.63	X	0.8	=	233.13	(75)
Northeast 0.9x	0.77	X	20.99	X	67.8	x	0.63	x	0.8	=	497.04	(75)
Northeast _{0.9x}	0.77	X	16.23	x	67.8	X	0.63	x	0.8	=	384.32	(75)
Northeast 0.9x	0.77	X	20.99	x	89.77	X	0.63	x	0.8	=	658.09	(75)
Northeast _{0.9x}	0.77	x	16.23	x	89.77	x	0.63	x	0.8	=	508.86	(75)
Northeast _{0.9x}	0.77	x	20.99	x	97.5	x	0.63	x	0.8	=	714.81	(75)
Northeast 0.9x	0.77	X	16.23	x	97.5	x	0.63	x	0.8	<u> </u>	552.71	(75)
Northeast _{0.9x}	0.77	x	20.99	x	92.98	x	0.63	x	0.8	=	681.65	(75)
Northeast _{0.9x}	0.77	X	16.23	x	92.98	x	0.63	x	0.8	=	527.07	(75)
Northeast _{0.9x}	0.77	X	20.99	x	75.42	x	0.63	x	0.8] =	552.9	(75)
Northeast _{0.9x}	0.77	x	16.23	x	75.42	x	0.63	x	0.8	=	427.52	(75)
Northeast _{0.9x}	0.77	X	20.99	x	51.24	x	0.63	x	0.8	=	375.69	(75)
Northeast _{0.9x}	0.77	X	16.23	x	51.24	x	0.63	x	0.8] =	290.49	(75)
Northeast _{0.9x}	0.77	X	20.99	x	29.6	X	0.63	x	0.8	=	217	(75)
Northeast 0.9x	0.77	X	16.23	x	29.6	X	0.63	x	0.8	=	167.79	(75)
Northeast _{0.9x}	0.77	X	20.99	x	14.52	X	0.63	x	0.8	=	106.49	(75)
Northeast _{0.9x}	0.77	X	16.23	x	14.52	X	0.63	x	0.8	=	82.34	(75)
Northeast _{0.9x}	0.77	X	20.99	x	9.36	X	0.63	x	0.8	=	68.62	(75)
Northeast _{0.9x}	0.77	X	16.23	x	9.36	X	0.63	X	0.8	=	53.06	(75)
Southeast 0.9x	0.77	X	2.23	x	37.39	X	0.63	X	0.8	=	29.12	(77)
Southeast 0.9x	0.77	X	2.23	x	63.74	X	0.63	x	0.8	=	49.64	(77)
Southeast 0.9x	0.77	X	2.23	x	84.22	X	0.63	x	0.8	=	65.59	(77)
Southeast 0.9x	0.77	X	2.23	x	103.49	X	0.63	x	0.8	=	80.61	(77)
Southeast 0.9x	0.77	X	2.23	x	113.34	X	0.63	x	0.8	=	88.28	(77)
Southeast 0.9x	0.77	X	2.23	x	115.04	X	0.63	x	0.8	=	89.61	(77)
Southeast 0.9x	0.77	X	2.23	x	112.79	X	0.63	x	0.8	=	87.85	(77)
Southeast 0.9x	0.77	X	2.23	x	105.34	X	0.63	x	0.8	=	82.05	(77)
Southeast 0.9x	0.77	X	2.23	x	92.9	X	0.63	x	0.8	=	72.36	(77)
Southeast 0.9x	0.77	X	2.23	x	72.36	X	0.63	x	0.8	=	56.36	(77)
Southeast 0.9x	0.77	X	2.23	x	44.83	X	0.63	x	0.8	=	34.91	(77)
Southeast 0.9x	0.77	x	2.23	x	31.95	x	0.63	x	0.8	<u> </u>	24.88	(77)
Southwest _{0.9x}	0.77	X	53.37	x	37.39		0.63	x	0.8	=	696.93	(79)
Southwest _{0.9x}	0.77	x	53.37	x	63.74]	0.63	x	0.8] =	1188.07	(79)
Southwest _{0.9x}	0.77	X	53.37	×	84.22]	0.63	x	0.8	<u> </u>	1569.84	(79)
Southwest _{0.9x}	0.77	X	53.37	x	103.49]	0.63	x	0.8	=	1929.1	(79)
Southwest _{0.9x}	0.77	x	53.37	x	113.34]	0.63	x	0.8	=	2112.67	(79)
Southwest _{0.9x}	0.77	X	53.37	x	115.04]	0.63	x	0.8	=	2144.5	(79)
Southwest _{0.9x}	0.77	x	53.37	x	112.79]	0.63	x	0.8	=	2102.5	(79)

Southwest _{0.9x}	0.77	X	53.37	X	105.34]	0.63	x	0.8	=	1963.62	(79)
Southwest _{0.9x}	0.77	X	53.37	X	92.9]	0.63	x	0.8	=	1731.67	(79)
Southwest _{0.9x}	0.77	X	53.37	X	72.36		0.63	x	0.8	=	1348.89	(79)
Southwest _{0.9x}	0.77	X	53.37	X	44.83]	0.63	x	0.8	=	835.58	(79)
Southwest _{0.9x}	0.77	X	53.37	X	31.95]	0.63	x	0.8	=	595.56	(79)
Northwest _{0.9x}	0.77	X	2.23	X	11.51	x	0.63	x	0.8	=	8.96	(81)
Northwest 0.9x	0.77	X	2.23	X	23.55	x	0.63	x	0.8	=	18.35	(81)
Northwest 0.9x	0.77	X	2.23	X	41.13	x	0.63	x	0.8	=	32.03	(81)
Northwest 0.9x	0.77	X	2.23	X	67.8	X	0.63	x	0.8	=	52.81	(81)
Northwest 0.9x	0.77	X	2.23	X	89.77	X	0.63	x	0.8	=	69.92	(81)
Northwest _{0.9x}	0.77	X	2.23	X	97.5	x	0.63	x	0.8	=	75.94	(81)
Northwest 0.9x	0.77	X	2.23	X	92.98	X	0.63	x	8.0	=	72.42	(81)
Northwest 0.9x	0.77	X	2.23	X	75.42	x	0.63	x	0.8	=	58.74	(81)
Northwest 0.9x	0.77	X	2.23	X	51.24	X	0.63	x	8.0	=	39.91	(81)
Northwest 0.9x	0.77	X	2.23	X	29.6	X	0.63	x	8.0	=	23.05	(81)
Northwest _{0.9x}	0.77	X	2.23	X	14.52	x	0.63	x	0.8	=	11.31	(81)
Northwest _{0.9x}	0.77	X	2.23	X	9.36	x	0.63	x	0.8	=	7.29	(81)
Rooflights _{0.9x}	1	X	1.44	X	26	X	0.63	x	0.8	=	50.95	(82)
Rooflights 0.9x	1	X	1.44	X	54	x	0.63	x	0.8	=	105.82	(82)
Rooflights 0.9x	1	X	1.44	X	94	x	0.63	x	0.8	=	184.2	(82)
Rooflights _{0.9x}	1	X	1.44	X	150	x	0.63	x	0.8	=	293.93	(82)
Rooflights _{0.9x}	1	X	1.44	X	190	x	0.63	x	0.8	=	372.31	(82)
Rooflights _{0.9x}	1	X	1.44	X	201	x	0.63	x	0.8	=	393.87	(82)
Rooflights _{0.9x}	1	X	1.44	X	194	x	0.63	x	0.8	=	380.15	(82)
Rooflights 0.9x	1	X	1.44	X	164	x	0.63	x	0.8	=	321.37	(82)
Rooflights 0.9x	1	X	1.44	X	116	x	0.63	x	0.8	=	227.31	(82)
Rooflights _{0.9x}	1	X	1.44	X	68	x	0.63	x	0.8	=	133.25	(82)
Rooflights _{0.9x}	1	X	1.44	X	33	x	0.63	x	0.8	=	64.67	(82)
Rooflights _{0.9x}	1	X	1.44	X	21	x	0.63	x	0.8	=	41.15	(82)
Solar gains in w				_		(83)m	s = Sum(74)m.	- 			ı	
` '	1668.08 2				3851.64	340	6.2 2737.42	1946.34	1135.29	790.58		(83)
Total gains – int			` 	<u> </u>	<u> </u>		1	ı	1 1		l	(0.1)
(84)m= 1514.89	2245.1 2	944.68	3765.6 4305.9	98 44	137.15 4298.19	385	9.4 3206.67	2446.41	1670.84	1353.6		(84)
7. Mean interna	al temper	rature (heating seaso	on)								_
Temperature d	uring hea	ating pe	eriods in the li	ving	area from Tal	ole 9	Th1 (°C)				21	(85)
Utilisation facto	Ť			Ť			ı	ı	1 1		l	
Jan	Feb	Mar	Apr Ma	_	Jun Jul	$\overline{}$	ug Sep	Oct	Nov	Dec		(2.5)
(86)m= 0.94	0.88	0.79	0.67 0.52		0.39 0.27	0.3	3 0.51	0.74	0.9	0.94		(86)
Mean internal t				`	i			.	, , ,		ı	
(87)m= 18.35	18.83	19.43	20 20.47	7 2	20.71 20.82	20.	81 20.59	19.98	18.97	18.37		(87)
Temperature d	uring hea	ating pe	eriods in rest	of dw	elling from Ta	able 9	9, Th2 (°C)					
(88)m= 19.33	19.35	19.35	19.39 19.41	1 7	19.42 19.43	19.	43 19.4	19.39	19.37	19.35		(88)

Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.92 0.85 0.76 0.62 0.46 0.3 0.17 0.19 0.42 0.69 0.88 0.93 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 16 16.67 17.49 18.25 18.84 19.12 19.22 19.22 19 18.26 16.89 16.03 (90) Mean internal temperature (for the whole dwelling) = fLA × T1 + (1 – fLA) × T2 (92)m= 17.31 17.87 18.57 19.23 19.75 20 20.11 20.1 19.88 19.21 18.05 17.33 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 17.31 17.87 18.57 19.23 19.75 20 20.11 20.1 19.88 19.21 18.05 17.33 (93)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 16 16.67 17.49 18.25 18.84 19.12 19.22 19.22 19 18.26 16.89 16.03 (90) The state of the st
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m= 17.31 17.87 18.57 19.23 19.75 20 20.11 20.1 19.88 19.21 18.05 17.33 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m= 17.31 17.87 18.57 19.23 19.75 20 20.11 20.1 19.88 19.21 18.05 17.33 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate
(92)m= 17.31 17.87 18.57 19.23 19.75 20 20.11 20.1 19.88 19.21 18.05 17.33 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate
Apply adjustment to the mean internal temperature from Table 4e, where appropriate
(93)m= 17.31 17.87 18.57 19.23 19.75 20 20.11 20.1 19.88 19.21 18.05 17.33 (93)
8. Space heating requirement
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate
the utilisation factor for gains using Table 9a
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Utilisation factor for gains, hm:
(94)m= 0.9 0.83 0.74 0.62 0.47 0.34 0.22 0.24 0.45 0.69 0.86 0.91 (94)
Useful gains, hmGm , W = (94)m x (84)m
(95)m= 1369.23 1866.66 2170.94 2321.34 2035.75 1492.05 928.17 918.4 1443.65 1677.44 1437.33 1238.21 (95)
Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 16.9 14.3 10.8 7 4.9 (96)
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (97)m=
Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$
(98)m= 2077.82 1520.89 1194.21 696.77 322.83 0 0 0 708.31 1484.41 2046.55
Total per year (kWh/year) = Sum(98) _{15,912} = 10051.79 (98)
Space heating requirement in kWh/m²/year 62.09 (99)
8c. Space cooling requirement
Calculated for June, July and August. See Table 10b
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Heat loss rate Lm (calculated using 25°C internal temperature and external temperature from Table 10)
(100)m= 0 0 0 0 0 2615.79 1868.56 1868.56 0 0 0 (100)
Utilisation factor for loss hm (101)m= 0 0 0 0 0 0.87 0.91 0.9 0 0 0 0 (101)
Useful loss, hmLm (Watts) = (100) m x (101) m
Gains (solar gains calculated for applicable weather region, see Table 10) (103)m= 0
Space cooling requirement for month, whole dwelling, continuous (kWh) = 0.024 \times [(103) m – (102) m] \times (41) m set (104) m to zero if (104) m < 3 \times (98) m
(104)m= 0 0 0 0 0 2336.39 2647.34 2323.18 0 0 0 0
Total = Sum(1.0.4) = 7306.91 (104)
Cooled fraction $f C = cooled area \div (4) = 0.83$ (105)
Intermittency factor (Table 10b)
(106)m= 0 0 0 0 0 0.25 0.25 0.25 0 0 0 0
Total = Sum(1Q4) = 0 (106)

Space cooling r	equiren	nent for	month =	(104)m	× (105)	- ` 	m	•					
107)m= 0	0	0	0	0	487.07	551.9	484.32	0	0	0	0		_
								Tota	I = Sum((107)	= [1523.29	(10
Space cooling re	equiren	nent in k	:Wh/m²/y	/ear				(107)) ÷ (4) =			9.41	(10
a. Energy requ		ıts – Indi	vidual h	eating sy	ystems i	ncluding	micro-C	CHP)					
Space heating Fraction of spa		t from se	acondar	u/sunnla	mentary	, evetam					Г	0	(20
Fraction of spa					memary	•	(202) = 1	- (201) =			l T	1	=\\(^2\)
Fraction of tota			-	` ,			(204) = (2	, ,	(203)] =			1	=\(\begin{array}{c} (2) \\ (2) \end{array}
Efficiency of m		•	-				(204) - (2	02) * [1	(200)] =				=\(\begin{array}{c} (2) \\ (2) \end{array}
•					a oveton	o 0/					ļ	250	╡`
Efficiency of se			,		g system	11, 70					Į	0	(2)
Cooling Syster							l .		l _			4.63	(20
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space heating 2077.82			696.77	322.83	0	0	0	0	708.31	1484.41	2046.55		
									7 00.01	1 10 1.11	20 10.00		(2)
211)m = {[(98)r _{831.13}	608.36	4)]} X 10	278.71	129.13	0	0	0	0	283.32	593.76	818.62		(2
	000.00		2.0				_	_	ar) =Sum(2			4020.72	(2
{[(98)m x (201 215)m= 0)] } x 1	00 ÷ (20	08) 0	0	0	0	0	0	0	0	0		
							Tota	ıl (kWh/yea	ar) =Sum(2	215) _{15,101}	2=	0	(2
Vater heating		4/l	اء اد ماداد	h \									
Output from wat	er nea 202.03	212.45	190.83	187.29	167.75	161.49	176.68	176.2	197.87	208.74	223.7		
Efficiency of wa	ter hea	ter			<u> </u>						1	175	(2
217)m= 175	175	175	175	175	175	175	175	175	175	175	175		(2 ⁻
uel for water h													
(64)m = (64) m = (64)	115.44) ÷ (217) 121.4	m 109.05	107.02	95.86	92.28	100.96	100.69	113.07	119.28	127.83		
100.0	110.44	121.4	100.00	107.02	33.00	32.20		I = Sum(2	L	110.20	127.00	1333.78	(2
Space cooling	fuel. k'	Wh/mor	nth.					,	¥112		L	1000.70	(
221)m = (107)r						,							
221)m= 0	0	0	0	0	105.19	119.19	104.59	0	0	0	0		_
							Tota	ıl = Sum(2	21) ₆₈ =		L	328.97	(2
nnual totals									k'	Wh/yea	r r	kWh/yea	<u>r</u>
space heating f	uel use	ed, main	system	1							اِ	4020.72	╛
Vater heating for	use use	d										1333.78	
Space cooling for	uel use	d										328.97	
Electricity for pu	mps, fa	ans and	electric	keep-ho	t						-		_
mechanical ve	ntilatior	n - balan	ced, ext	ract or p	ositive i	nput fror	n outside	Э			623.47		(23
central heating			,			•					130		(23
oonida nealing	pump.										130		(2)

Total electricity for the above, kWh/year sum of (230a)...(230g) = 753.47 (231)

Electricity for lighting 524.56 (232)

Electricity generated by PVs -686.72 (233)

120	CO2 omissions	Individual heating systems	including mioro CHD
⊥∠a.	COZ emissions –	maividuai nealing systems	including micro-ChP

	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.517 =	2078.71 (261)
Space heating (secondary)	(215) x	0 =	0 (263)
Water heating	(219) x	0.517 =	689.56 (264)
Space and water heating	(261) + (262) + (263) + (264) =		2768.27 (265)
Space cooling	(221) x	0.517 =	170.08 (266)
Electricity for pumps, fans and electric keep-hot	(231) x	0.517	389.54 (267)
Electricity for lighting	(232) x	0.517 =	271.2 (268)
Energy saving/generation technologies			
Item 1		0.529	-363.27 (269)
Total CO2, kg/year	sum	of (265)(271) =	3235.81 (272)
Dwelling CO2 Emission Rate	(272	() ÷ (4) =	19.99 (273)
EI rating (section 14)			79 (274)