

User Details: James Mcglashan STRO000976 **Assessor Name: Stroma Number: Software Name:** Stroma FSAP 2009 **Software Version:** Version: 1.5.0.95 Property Address: 22 ASHP Address: Flat 22, Anello Building, 116 Bayham Street, LONDON, NW1 0BA

1. Overall dwelling dimension	ons:							
			Area(m²)		Ave Height(m)	Volume(m³)
Ground floor			191.89	(1a) x	2.476	(2a) =	475.12	(3a)
Total floor area TFA = (1a)+	(1b)+(1c)+(1	d)+(1e)+(1n)	191.89	(4)				_
Dwelling volume				(3a)+(3b)+(3c)+(3d)+(3e)-	+(3n) =	475.12	(5)
2. Ventilation rate:								
	main heating	Secondary heating	other	_	total		m³ per hou	r _
Number of chimneys	0	+ 0	+ 0	= [0	x 40 =	0	(6a)

zi vermaneri rate.	main heating		Secondary heating	′	other		total		m³ per hour	
Number of chimneys	0	+	0	+	0	=	0	x 40 =	0	(6a)
Number of open flues	0	+	0	+	0	=	0	x 20 =	0	(6b)
Number of intermittent fans							4	x 10 =	40	(7a)
Number of passive vents							0	x 10 =	0	(7b)
Number of flueless gas fires							0	x 40 =	0	(7c)
								_		_

Air changes per hour

1.27

Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) =	40	÷ (5) =	0.08	(8)
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from	n (9) to (16)			_
Number of storeys in the dwelling (ns)			0	(9)
Additional infiltration		[(9)-1]x0.1 =	0	(10)
Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constructions	ction		0	(11)
if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35		,		_
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0			0	(12)
				_

If no draught lobby, enter 0.05, else enter 0

Percentage of windows and doors draught stripped (14)0 Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)

Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =(16)0 Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)9.83 If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise (18) = (16)(18)0.58

Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used

Number of sides on which sheltered (19)2 $(20) = 1 - [0.075 \times (19)] =$ Shelter factor (20)0.85 Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ (21)0.49

0.92

Infiltration rate modified for monthly wind speed

1.27

(22a)m =

	on late				op 000							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Monthly	y avera	ge wind	speed fr	om Tabl	e 7							
(22)m=	5.4	5.1	5.1	4.5	4.1	3.9	3.7	3.7	4.2	4.5	4.8	5.1
Wind F	actor (2	2a)m =	(22)m ÷	4								

0.98

1.12

1.02

1.27

(13)

O

Adjusted infilt	ration rate (a	allowing fo	r shelter	and wind s	speed) =	(21a) x	(22a)m					
0.66	1 	0.62 0.9		0.48	0.45	0.45	0.51	0.55	0.59	0.62]	
Calculate effe		•	or the ap	plicable ca	ise							
	al ventilation		VI (00h) (22a) Fas (\ \ \\\ a4b.a		(00-)			0	(23a)
	neat pump using)) = (23a)			0	(23b)
	th heat recovery	-									0	(23c)
	ed mechanio	1	<u> </u>	1	, 	, 	í `	, 	, 	``) ÷ 100] 1	(240)
(24a)m= 0	0	0 (0	0 /-	0	0	0	0	0]	(24a)
· ·	ed mechanio				 	- 	ŕ	 		<u> </u>	1	(O.4h.)
(24b)m= 0	0	0 (0	0	0	0	0	0	0]	(24b
,	nouse extrac m < 0.5 × (2		•	•				5 v (22h	,)			
(24c)m = 0	0.5 x (2.	0 (` 		0	0 - (221	0	0	0	0	1	(24c
('')	ventilation of										J	(=,
,	m = 1, then (0.5]				
(24d)m= 0.72	0.69 0	0.69	5 0.63	0.61	0.6	0.6	0.63	0.65	0.67	0.69]	(24d
Effective air	r change rate	e - enter (24a) or (2	24b) or (24	c) or (24	d) in bo	x (25)				_	
(25)m= 0.72	0.69 0	0.69	5 0.63	0.61	0.6	0.6	0.63	0.65	0.67	0.69]	(25)
3. Heat losse	es and heat l	loss nara	neter:	•	•						-	
ELEMENT	Gross	·	enings	Net A	rea	U-val	ue.	AXU		k-value	Δ	ΑΧk
	area (m²		m²	Α,		W/m2		(W/I		kJ/m²-		kJ/K
Windows Typ	e 1			30.9	7 x1	/[1/(1.6)+	0.04] =	46.57				(27)
Windows Typ	e 2			18.5	x1	/[1/(1.6)+	0.04] =	27.82	$\overline{}$			(27)
Windows Typ	e 3			2.23	x1	/[1/(1.6)+	0.04] =	3.35				(27)
Windows Typ	e 4			63.4	₅ x1	/[1/(1.6)+	0.04] =	95.43	=			(27)
Windows Typ	e 5			2.23	x1	/[1/(1.6)+	0.04] =	3.35	一			(27)
Rooflights				1.44	. x1	/[1/(1.6) +	0.04] =	2.304	=			(27b
Walls	151.16	1 [17.39	33.7	=	0.29		9.79	Ħ r			(29)
Roof	191.89	╡⊢	4.32	187.5	=	0.14	=	26.26	=		-	(30)
Total area of		 2	02	343.0	=	<u> </u>		20.20				(31)
Party wall	515111611t6, 111				=		<u> </u>	<i></i>				(32)
* for windows and	d roof windows	use effecti	e window I	27.5 I-value calcu		0.2	= /[(1/ -val)	5.5 (e)+0.041 a	L as aiven in	naragrani		(32)
** include the are					atou usirig	, .o.maa 1	, _{L(1} , 0 - valt	,o, i o.o+j d	.c givoii III	paragrapi		
Fabric heat lo	ss, W/K = S	(A x U)				(26)(30) + (32) =				224.58	(33)
Heat capacity	Cm = S(A x)	(k)					((28).	(30) + (32	2) + (32a).	(32e) =	2711.11	01 (34)
Thermal mass	s parameter	(TMP = 0	m ÷ TFA	in kJ/m²k			Indica	tive Value	: Low		100	(35)
For design asses				uction are no	t known pi	recisely the	e indicative	e values of	TMP in T	able 1f		
Thermal bridg	jes : S (L x Y	/) calcula	ed using	Appendix	K						51.46	(36)
if details of therm		not known	36) = 0.15 >	(31)			(33) +	· (36) =			276.04	
Ventilation he		ulated mo	nthly					= 0.33 × ((25)m x (5))	210.0	(0.)
Jan	1		or Ma	y Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
Jan	1 . 55 1		- 1 1410	,	1 541	, , , , , ,	1 226	1 000	1		J	

												1	ı	
(38)m=	112.61	108.91	108.91	102.15	98.12	96.24	94.46	94.46	99.09	102.15	105.43	108.91		(38)
Heat t	ransfer c	coefficie	nt, W/K			•			(39)m	= (37) + (37)	38)m		•	
(39)m=	388.64	384.95	384.95	378.19	374.15	372.27	370.49	370.49	375.13	378.19	381.46	384.95		- 1
Heat le	oss para	meter (l	HLP), W	/m²K						Average = = (39)m ÷	Sum(39) ₁ . · (4)	12 /12=	378.65	(39)
(40)m=	2.03	2.01	2.01	1.97	1.95	1.94	1.93	1.93	1.95	1.97	1.99	2.01		_
Numb	er of day	s in mo	nth (Tab	le 1a)						Average =	Sum(40) ₁	12 /12=	1.97	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
Assum	ned occu	inancy	N									00		(42)
	FA > 13.9			[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (TFA -13.		.99		(42)
	FA £ 13.9	•						(O= 11)					İ	
	al averag		,	_	•		_	` ,		se target o		5.24		(43)
	e that 125	_		• .		-	-			Ü				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage ii	n litres pei	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)				•		
(44)m=	115.77	111.56	107.35	103.14	98.93	94.72	94.72	98.93	103.14	107.35	111.56	115.77		
-						400 - 1/4		T / 000/			m(44) ₁₁₂ =		1262.94	(44)
	content of												I	
(45)m=	172.09	150.51	155.32	135.41	129.93	112.12	103.89	119.22	120.64	140.6	153.47	166.66		7(45)
If instan	ntaneous w	ater heati	ng at point	t of use (no	o hot wate	r storage),	enter 0 in	boxes (46		l otal = Su	m(45) ₁₁₂ =	=	1659.87	(45)
(46)m= Water	0 storage	0	0	0	0	0	0	0	0	0	0	0		(46)
	anufactu		clared lo	oss facto	r is knov	wn (kWh	/day):					0		(47)
Tempe	erature fa	actor fro	m Table	2b		`	• ,					0		(48)
•	y lost fro				ear			(47) x (48)) =			0		(49)
If man	ufacture	r's decla	ared cylir	nder loss	s factor i									, ,
•	er volum	•	•	•		•		!				0		(50)
	mmunity he	-		_				- :t- :- 101 ::-	h (FO)					
	rwise if no							enter U in	DOX (50)				l	
	ater stora	_		om lab	ie 2 (KVV	n/litre/da	ay)					0		(51)
	ie factor erature fa			. 2h								0		(52)
-								(/E0) ·· /E4) (50)	(50)		0] 	(53)
	y lost fro (49) or (_	;, KVVN/Y(eai			((50) x (51) X (5∠) X	(၁၁) =		0		(54) (55)
	storage	, ,	,	for each	month			((56)m = (55) × (41):	m		U	I	(33)
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
	_		_							_		m Append	ix H	(30)
-	_		1		(-0)	1 (/	, ,,,,,	,, ,,,,,,,			, .5		Ī	
(57)m =	0	0	0	l 0	0	0	1 0	0	0	0	0	0	1	(57)

Mainer Associates James McGlashan 07942721222

Primary circuit loss (an	nual) from Tab	le 3							0		(58)
Primary circuit loss cal	•		(59)m =	(58) ÷ 36	65 × (41)	m				I	
(modified by factor fr	om Table H5 i	there is	solar wa	ter heati	ng and a	cylinde	r thermo	stat)			
(59)m= 0 0	0 0	0	0	0	0	0	0	0	0		(59)
Combi loss calculated	for each month	(61)m =	(60) ÷ 3	65 × (41)m					'	
(61)m= 0 0	0 0	0	0	0	0	0	0	0	0		(61)
Total heat required for	water heating	 calculated	for eac	h month	(62)m =	: 0.85 × ((45)m +	 (46)m +	(57)m +	(59)m + (61)m	
(62)m= 146.28 127.94	132.02 115.1	110.44	95.3	88.31	101.34	102.55	119.51	130.45	141.66		(62)
Solar DHW input calculated			<u> </u>	<u> </u>				l .	<u> </u>	ł	
(add additional lines if									, , , , , , , , , , , , , , , , , , , ,		
(63)m= 0 0	0 0	0	0	0	0	0	0	0	0		(63)
Output from water hea	ter	Į.		!						ļ	
(64)m= 146.28 127.94	132.02 115.1	110.44	95.3	88.31	101.34	102.55	119.51	130.45	141.66		
				<u> </u>	<u> </u>	out from w	Later heate	<u>l</u> r (annual)₁	12	1410.89	(64)
Heat gains from water	heating kWh/ı	nonth 0 2	5 x [0 85	5 × (45)m						. 1	١.
(65)m= 36.57 31.98	33 28.77	27.61	23.83	22.08	25.33	25.64	29.88	32.61	35.42	' , 	(65)
(11)		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	 	()
include (57)m in calc	· ·	•	zylinder i	s in the t	aweiling	or not w	aterisii	OIII COIII	munity i	eaung	ı
5. Internal gains (see	Table 5 and 5	a):									
Metabolic gains (Table		1		·						I	
Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(00)
(66)m= 149.57 149.57	149.57 149.5		149.57	149.57	149.57	149.57	149.57	149.57	149.57		(66)
Lighting gains (calculat	ted in Appendi	L, equat	ion L9 o	r L9a), a	lso see	Table 5				1	
(67)m= 32.39 28.76	23.39 17.71	13.24	11.18	12.08	15.7	21.07	26.75	31.22	33.29		(67)
Appliances gains (calc	ulated in Appe	ndix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5				
(68)m= 363.27 367.04	357.54 337.32	311.79	287.8	271.77	268	277.5	297.72	323.25	347.24		(68)
Cooking gains (calcula	ted in Appendi	x L, equa	tion L15	or L15a), also se	ee Table	: 5				
(69)m= 37.96 37.96	37.96 37.96	37.96	37.96	37.96	37.96	37.96	37.96	37.96	37.96		(69)
Pumps and fans gains	(Table 5a)	-			-	-	-	-	-	,	
(70)m= 0 0	0 0	0	0	0	0	0	0	0	0		(70)
Losses e.g. evaporatio	n (negative va	ues) (Tab	ole 5)	•	•	•	•			ı	
(71)m= -119.65 -119.65	-119.65 -119.6	-119.65	-119.65	-119.65	-119.65	-119.65	-119.65	-119.65	-119.65		(71)
Water heating gains (T	able 5)		•					ı	ı	I	
(72)m= 49.15 47.6	44.36 39.96	37.11	33.09	29.67	34.05	35.61	40.16	45.3	47.6		(72)
Total internal gains =	ļ .	Į	(66)m + (67)m	1 + (68)m -	+ (69)m + ((70)m + (7	1)m + (72)	m	l	
(73)m= 512.68 511.27	493.17 462.86	430.01	399.94	381.39	385.62	402.05	432.5	467.64	496		(73)
6. Solar gains:	.00		1 000.0	1 00 1.00	000.02	102.00	102.0	107101			
Solar gains are calculated	using solar flux fro	m Table 6a	and assoc	iated equa	ations to co	onvert to th	ne applicat	ole orientat	ion.		
Orientation: Access F	-		Flu			g_		FF		Gains	
Table 6d	m m			ble 6a	Т	able 6b	T	able 6c		(W)	
Northeast 0.9x 0.77	x 3	0.97	x ·	11.51] x	0.63	$\neg x \vdash$	0.8		124.5	(75)
Northeast 0.9x 0.77		8.5		11.51] ^ <u> </u>	0.63	^	0.8	=	74.37](75)
0.77	^	0.0		11.01	J ^ L	0.03	^ L	0.0		14.31	٦(٠٥)

Northeast _{0.9x}	0.77	X	30.97	X	23.55	X	0.63	X	0.8	=	254.79	(75)
Northeast _{0.9x}	0.77	X	18.5	x	23.55	x	0.63	X	0.8	=	152.2	(75)
Northeast _{0.9x}	0.77	X	30.97	X	41.13	x	0.63	X	0.8	=	444.87	(75)
Northeast _{0.9x}	0.77	X	18.5	X	41.13	x	0.63	X	0.8	=	265.74	(75)
Northeast 0.9x	0.77	X	30.97	x	67.8	x	0.63	x	0.8	=	733.37	(75)
Northeast 0.9x	0.77	X	18.5	X	67.8	x	0.63	x	0.8	=	438.08	(75)
Northeast 0.9x	0.77	X	30.97	X	89.77	x	0.63	x	0.8	=	970.99	(75)
Northeast _{0.9x}	0.77	X	18.5	x	89.77	X	0.63	x	0.8	=	580.03	(75)
Northeast _{0.9x}	0.77	X	30.97	x	97.5	X	0.63	x	0.8	=	1054.67	(75)
Northeast 0.9x	0.77	X	18.5	X	97.5	x	0.63	x	0.8	=	630.01	(75)
Northeast _{0.9x}	0.77	X	30.97	x	92.98	X	0.63	x	0.8	=	1005.75	(75)
Northeast _{0.9x}	0.77	X	18.5	x	92.98	X	0.63	x	0.8	=	600.79	(75)
Northeast _{0.9x}	0.77	X	30.97	x	75.42	X	0.63	x	0.8	=	815.79	(75)
Northeast _{0.9x}	0.77	X	18.5	x	75.42	X	0.63	x	0.8	=	487.31	(75)
Northeast 0.9x	0.77	X	30.97	x	51.24	X	0.63	x	0.8	=	554.31	(75)
Northeast _{0.9x}	0.77	X	18.5	x	51.24	X	0.63	x	0.8	=	331.12	(75)
Northeast _{0.9x}	0.77	X	30.97	x	29.6	X	0.63	x	0.8	=	320.17	(75)
Northeast 0.9x	0.77	X	18.5	x	29.6	x	0.63	x	0.8	=	191.25	(75)
Northeast _{0.9x}	0.77	X	30.97	x	14.52	X	0.63	x	0.8	=	157.12	(75)
Northeast 0.9x	0.77	X	18.5	x	14.52	x	0.63	x	0.8	=	93.85	(75)
Northeast _{0.9x}	0.77	X	30.97	x	9.36	X	0.63	x	0.8	=	101.25	(75)
Northeast _{0.9x}	0.77	X	18.5	x	9.36	X	0.63	X	0.8	=	60.48	(75)
Southeast 0.9x	0.77	X	2.23	x	37.39	X	0.63	x	0.8	=	29.12	(77)
Southeast 0.9x	0.77	X	2.23	X	63.74	x	0.63	x	0.8	=	49.64	(77)
Southeast 0.9x	0.77	X	2.23	x	84.22	x	0.63	x	0.8	=	65.59	(77)
Southeast 0.9x	0.77	X	2.23	X	103.49	x	0.63	x	0.8	=	80.61	(77)
Southeast 0.9x	0.77	X	2.23	X	113.34	x	0.63	X	0.8	=	88.28	(77)
Southeast 0.9x	0.77	X	2.23	X	115.04	x	0.63	x	0.8	=	89.61	(77)
Southeast 0.9x	0.77	X	2.23	X	112.79	X	0.63	X	0.8	=	87.85	(77)
Southeast 0.9x	0.77	X	2.23	X	105.34	x	0.63	X	0.8	=	82.05	(77)
Southeast 0.9x	0.77	X	2.23	X	92.9	x	0.63	x	0.8	=	72.36	(77)
Southeast 0.9x	0.77	X	2.23	X	72.36	x	0.63	x	0.8	=	56.36	(77)
Southeast 0.9x	0.77	X	2.23	X	44.83	x	0.63	x	0.8	=	34.91	(77)
Southeast 0.9x	0.77	X	2.23	x	31.95	X	0.63	x	0.8	=	24.88	(77)
Southwest _{0.9x}	0.77	X	63.46	X	37.39]	0.63	x	0.8	=	828.69	(79)
Southwest _{0.9x}	0.77	X	63.46	x	63.74]	0.63	x	0.8	=	1412.68	(79)
Southwest _{0.9x}	0.77	X	63.46	x	84.22]	0.63	x	0.8	=	1866.63	(79)
Southwest _{0.9x}	0.77	x	63.46	x	103.49]	0.63	x	0.8	=	2293.81	(79)
Southwest _{0.9x}	0.77	x	63.46	x	113.34]	0.63	x	0.8	=	2512.08	(79)
Southwest _{0.9x}	0.77	X	63.46	x	115.04]	0.63	x	0.8	=	2549.93	(79)
Southwest _{0.9x}	0.77	x	63.46	x	112.79]	0.63	x	0.8	=	2499.99	(79)

Southwest _{0.9x}	0.77	X	63	3.46	X	105.34			0.63	x [0.8	=	2334.86	(79)
Southwest _{0.9x}	0.77	X	63	3.46	X	92.9]		0.63	x [0.8	=	2059.05	(79)
Southwest _{0.9x}	0.77	X	63	3.46	X	72.36			0.63	x [0.8	=	1603.91	(79)
Southwest _{0.9x}	0.77	X	63	3.46	X	44.83]		0.63	x	0.8	=	993.55	(79)
Southwest _{0.9x}	0.77	X	63	3.46	x	31.95]		0.63	x	0.8	=	708.16	(79)
Northwest _{0.9x}	0.77	X	2	.23	x	11.51	x		0.63	x	0.8	=	8.96	(81)
Northwest 0.9x	0.77	×	2	.23	x	23.55	X		0.63	x	0.8	-	18.35	(81)
Northwest _{0.9x}	0.77	×	2	.23	x	41.13	X		0.63	x	0.8	_ =	32.03	(81)
Northwest _{0.9x}	0.77	×	2	.23	x	67.8	×		0.63	x	0.8	-	52.81	(81)
Northwest 0.9x	0.77	X	2	.23	X	89.77	X		0.63	x	0.8	=	69.92	(81)
Northwest _{0.9x}	0.77	×	2	.23	x	97.5	X		0.63	x	0.8	_ =	75.94	(81)
Northwest 0.9x	0.77	X	2	.23	x	92.98	x		0.63	x	0.8	=	72.42	(81)
Northwest _{0.9x}	0.77	×	2	.23	x	75.42	×		0.63	x	0.8	=	58.74	(81)
Northwest 0.9x	0.77	X	2	.23	X	51.24	X		0.63	x	0.8	=	39.91	(81)
Northwest 0.9x	0.77	X	2	.23	X	29.6	X		0.63	x	0.8	=	23.05	(81)
Northwest 0.9x	0.77	X	2	.23	X	14.52	X		0.63	x [0.8	=	11.31	(81)
Northwest 0.9x	0.77	X	2	.23	X	9.36	X		0.63	x [0.8	=	7.29	(81)
Rooflights 0.9x	1	X	1.	.44	X	26	X		0.63	x [0.8	=	50.95	(82)
Rooflights 0.9x	1	X	1.	.44	X	54	X		0.63	x [0.8	=	105.82	(82)
Rooflights 0.9x	1	X	1.	.44	X	94	X		0.63	x [0.8	=	184.2	(82)
Rooflights 0.9x	1	X	1.	.44	X	150	X		0.63	x [0.8	=	293.93	(82)
Rooflights 0.9x	1	X	1.	.44	X	190	X		0.63	x [0.8	=	372.31	(82)
Rooflights 0.9x	1	X	1.	.44	X	201	X		0.63	x [0.8	=	393.87	(82)
Rooflights 0.9x	1	X	1.	.44	X	194	X		0.63	x [0.8	=	380.15	(82)
Rooflights 0.9x	1	X	1.	.44	X	164	X		0.63	x [0.8	=	321.37	(82)
Rooflights 0.9x	1	X	1.	.44	X	116	X		0.63	x	0.8	=	227.31	(82)
Rooflights 0.9x	1	X	1.	.44	X	68	X		0.63	x [0.8	=	133.25	(82)
Rooflights 0.9x	1	X	1.	.44	X	33	X		0.63	x [0.8	=	64.67	(82)
Rooflights 0.9x	1	X	1.	.44	X	21	X		0.63	x	0.8	=	41.15	(82)
Solar gains in					_		 	_	ım(74)m .	(82)m			1	
(83)m= 1116.6			1			794.02 4646.95	4100	0.11	3284.05	2327.99	1355.41	943.22		(83)
Total gains – ir			· · ·	<u> </u>	<u> </u>	<u> </u>			i				1	4
(84)m= 1629.28	2504.74	3352.23	4355.46	5023.6	2 51	193.96 5028.34	4485	5.73	3686.1	2760.5	1823.05	1439.22		(84)
7. Mean inter	nal temp	erature	(heatin	g seaso	n)									
Temperature	during h	eating _l	periods	in the liv	ing	area from Ta	ble 9	, Th1	l (°C)				21	(85)
Utilisation fac	tor for ga	ains for	living a	ea, h1,	n (s	ee Table 9a)			·				1	
Jan	Feb	Mar	Apr	May	_	Jun Jul	+	ug	Sep	Oct	Nov	Dec		
(86)m= 0.94	0.89	8.0	0.68	0.54		0.4 0.28	0.3	31	0.53	0.76	0.91	0.95		(86)
Mean internal	tempera	ature in	living a	rea T1 (follo	w steps 3 to	7 in T	able	9c)				-	
(87)m= 17.53	18.18	19.01	19.78	20.43	2	20.92	20.	91	20.59	19.73	18.36	17.54		(87)
Temperature	during h	eating _l	periods	in rest o	f dw	elling from Ta	able 9	9, Th	2 (°C)					
(88)m= 19.32	19.34	19.34	19.36	19.37		9.38 19.39	19.	39	19.37	19.36	19.35	19.34		(88)
						•		-					-	

Litilio	otion for	stor for a	aina far	root of d	المطالميا	h2 m (oo	o Toblo	00)						
(89)m=	0.93	tor for g	0.77	0.63	0.47	0.31	0.18	0.2	0.44	0.71	0.9	0.94		(89)
		l temper	ļ		_			ļ			0.0	0.01		(==)
(90)m=	16.31	16.94	17.73	18.44	19	19.27	19.37	19.36	19.16	18.44	17.13	16.33		(90)
(50)111=	10.01	10.04	17.70	10.44	10	10.27	10.07	10.00			g area ÷ (4		0.57	(91)
											3 ()	L	0.51	(01)
		l temper	· `											(5.5)
(92)m=	17	17.65	18.46	19.21	19.81	20.13	20.26	20.24	19.98	19.18	17.83	17.02		(92)
		nent to t									47.00	47.00		(02)
(93)m=	17	17.65	18.46	19.21	19.81	20.13	20.26	20.24	19.98	19.18	17.83	17.02		(93)
		iting requ												
		mean int factor fo		•		ed at ste	ep 11 of	Table 9b	o, so tha	t Ti,m=(7	76)m and	d re-calc	ulate	
uic u	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa		tor for g	l		iviay	Juli	oui	, lug	ССР	001	1407			
(94)m=	0.91	0.84	0.75	0.63	0.49	0.35	0.24	0.26	0.47	0.7	0.87	0.93		(94)
	∟∟∟⊥ JI gains.	hmGm	. W = (94	1 4)m x (84	4)m									
(95)m=		2109.34				1840.21	1181.5	1165.33	1743.81	1943.75	1592.33	1332.16		(95)
Mont	hly aver	age exte	rnal tem	perature	from Ta	able 8		<u>[</u>						
(96)m=	4.5	5	6.8	8.7	11.7	14.6	16.9	16.9	14.3	10.8	7	4.9		(96)
Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m·	– (96)m	1				
(97)m=	4859.77			3973.37		2057.71		1239.1	<u> </u>	3167.99	4131.5	4666.83		(97)
Spac	e heatin	g require	ement fo	r each n	nonth. k\	Mh/mont	h = 0.02	14 v [/07]	\m /0E	\ml v ///	1\m			
(0.0)						, , , , , , , , , , , , , , , , , , , ,	– 0.02	24 X [(97))111 – (ອວ	<i>)</i>	1 <i>)</i> 111			
(98)m=	2507.24	1854.38		887.9	432.69	0	0.02	0	0 0	910.83	1828.21	2481		
(98)m=	2507.24	1854.38						0		910.83	1828.21		12374.85	(98)
		1854.38	1472.61	887.9	432.69			0	0	910.83	1828.21		12374.85	(98) (99)
Spac	e heatin	g require	1472.61 ement in	887.9 kWh/m²	432.69			0	0	910.83	1828.21			=
Spac 8c. S	e heatin	g require	1472.61 ement in uiremer	887.9 kWh/m²	432.69 ² /year	0		0	0	910.83	1828.21			=
Spac 8c. S	e heatin	g require oling rec	1472.61 ement in uiremen July and	kWh/m²	432.69 ² /year See Tal	0 ole 10b	0	0 Tota	0 I per year	910.83 (kWh/year	1828.21) = Sum(96	8)15,912 =		=
Spac 8c. S Calcu	e heatin pace co llated fo Jan	g require	ement in uirement July and Mar	kWh/m² it August. Apr	432.69 Pyear See Tal	ole 10b	0 Jul	0 Tota	0 I per year	910.83 (kWh/year	1828.21) = Sum(96	8) _{15,912} =		=
Spac 8c. S Calcu	e heatin pace co plated for Jan loss rate	g require	ement in uirement July and Mar	kWh/m² it August. Apr	432.69 Pyear See Tal May	ole 10b Jun	0 Jul	O Tota Aug and exte	0 I per year	910.83 (kWh/year	1828.21) = Sum(96	8) _{15,912} =		=
Spac 8c. S Calcu Heat (100)m=	e heatin pace co plated for Jan loss rate	g require	ement in uirement July and Mar Iculated	kWh/m² t August. Apr using 25	432.69 E/year See Tal May 5°C inter	ole 10b Jun	Jul perature	O Tota Aug and exte	0 I per year Sep ernal ten	910.83 (kWh/year	1828.21) = Sum(96 Nov e from T	8) _{15,912} = Dec able 10)		(99)
Spac 8c. S Calcu Heat (100)m=	e heatin pace co lated for Jan loss rate o ation face	g require oling rec r June, c Feb e Lm (ca	ement in uirement July and Mar Iculated	kWh/m² t August. Apr using 25	432.69 E/year See Tal May 5°C inter	ole 10b Jun	Jul perature	O Tota Aug and exte	0 I per year Sep ernal ten	910.83 (kWh/year	1828.21) = Sum(96 Nov e from T	8) _{15,912} = Dec able 10)		(99)
Spac 8c. S Calcu Heat (100)m= Utilisa (101)m=	e heatin pace co pace co Jan loss rate 0 ation face	g require oling red r June, c Feb e Lm (ca	ement in uirement July and Mar Iculated 0 oss hm	kWh/m² kWh/m² August. Apr using 25	432.69 See Tal May 5°C inter 0	0 Jun rnal temp 3201.56	Jul perature 2297.05	O Tota Aug and exte	0 I per year Sep ernal ten 0	910.83 (kWh/year Oct nperature 0	1828.21) = Sum(90 Nov e from T	B) _{15,912} = Dec able 10)		(99)
Spac 8c. S Calcu Heat (100)m= Utilisa (101)m=	e heating pace concluded for Jan loss rate of the loss, heating for Jan loss, heating fo	g require oling rec r June, c Feb e Lm (ca 0 ctor for lo	ement in uirement July and Mar Iculated 0 oss hm	kWh/m² kWh/m² August. Apr using 25	432.69 See Tal May 5°C inter 0	0 Die 10b Jun Thal temp 3201.56	Jul Derature 2297.05	O Tota Aug and exte	0 I per year Sep ernal ten 0	910.83 (kWh/year Oct nperature 0	1828.21) = Sum(90 Nov e from T	B) _{15,912} = Dec able 10)		(99)
Space 8c. S Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m=	e heatin pace co ulated for Jan loss rate 0 ation face ul loss, h	g require oling red r June, c Feb e Lm (ca o ctor for lo	ement in uirement July and Mar Iculated 0 oss hm 0 Vatts) = 0	kWh/m² kWh/m² August. Apr using 25 0 (100)m x	432.69 See Tal May 5°C inter 0 (101)m	0 ole 10b Jun onal temp 3201.56 0.85	Jul perature 2297.05 0.9	0 Tota Aug and exte 2297.05 0.89	Sep ernal ten 0	910.83 (kWh/year Oct nperature 0	Nov e from T 0	Dec able 10) 0		(99) (100) (101)
Space 8c. S Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m=	e heating pace couldated for Jan loss rate 0 ation face 1 0 ation face 1 0 at loss, heat 1 0 at loss, heat 2 0 at loss, heat 3 colors (solar at loss)	g require oling rec r June, c Feb e Lm (ca 0 ctor for lo nmLm (W	ement in uirement July and Mar Iculated 0 oss hm 0 Vatts) = 0	kWh/m² kWh/m² August. Apr using 25 0 (100)m x	432.69 See Tal May 5°C inter 0 (101)m	0 ole 10b Jun nal temp 3201.56 0.85 2736.44 eather re	Jul perature 2297.05 0.9	0 Tota Aug and exte 2297.05 0.89	Sep ernal ten 0	910.83 (kWh/year Oct nperature 0	Nov e from T 0	Dec able 10) 0		(99) (100) (101)
Space 8c. S Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space	e heatin pace co pa	g require oling rec r June, c Feb e Lm (ca 0 ctor for lo nmLm (W gains ca 0 g require	ement in July and Mar Iculated 0 oss hm 0 Vatts) = 0 lculated 0 ement fo	kWh/m² August. Apr using 25 0 (100)m x 0 for appli 0 r month,	432.69 See Tak May S°C inter 0 (101)m 0 cable we 0 whole co	0 Die 10b Jun Thal temp 3201.56 0.85 2736.44 Eather re 6492.19	Jul perature 2297.05 0.9 2078.83 egion, see 6200.81	0 Tota Aug and exte 2297.05 0.89 2044.29 ee Table 5627.76	Sep ernal ten 0 0 10) 0	Oct nperature 0 0 0	Nov e from T 0 0 0	Dec able 10) 0	64.49	(100) (101) (102)
Space 8c. S Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1	e heating pace coulated for Jan loss rate 0 ation face 1 0 ation face 1 0 ation face 1 0 ation face 1 0 ation face 2 0 ation f	g require oling rec r June, c Feb e Lm (ca 0 ctor for lo omLm (W gains ca 0 g require czero if (ement in uirement July and Mar lculated 0 oss hm 0 Vatts) = 0 lculated 0 ement fo 104)m <	kWh/m² August. Apr using 25 0 (100)m x 0 for appli 0 r month,	432.69 See Tak May S°C inter 0 (101)m 0 cable we 0 whole come	0 Die 10b Jun Thal temp 3201.56 0.85 2736.44 Eather re 6492.19 Gwelling,	Jul perature 2297.05 0.9 2078.83 egion, se 6200.81 continue	0 Tota Aug and exte 2297.05 0.89 2044.29 ee Table 5627.76 Dus (kW	0 I per year Sep ernal ten 0 0 10 0 (/h) = 0.00	910.83 (kWh/year Oct nperature 0 0 0 24 x [(10	Nov e from T 0 0 0 03)m - (*	Dec able 10) 0 0 102)m] x	64.49	(100) (101) (102)
Space 8c. S Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space	e heating pace coulated for Jan loss rate 0 ation face 1 0 ation face 1 0 ation face 1 0 ation face 1 0 ation face 2 0 ation f	g require oling rec r June, c Feb e Lm (ca 0 ctor for lo nmLm (W gains ca 0 g require	ement in July and Mar Iculated 0 oss hm 0 Vatts) = 0 lculated 0 ement fo	kWh/m² August. Apr using 25 0 (100)m x 0 for appli 0 r month,	432.69 See Tak May S°C inter 0 (101)m 0 cable we 0 whole co	0 Die 10b Jun Thal temp 3201.56 0.85 2736.44 Eather re 6492.19	Jul perature 2297.05 0.9 2078.83 egion, se 6200.81 continue	0 Tota Aug and exte 2297.05 0.89 2044.29 ee Table 5627.76	0 1 per year Sep ernal ten 0 0 10 0 0	910.83 (kWh/year Oct nperatur 0 0 0 24 x [(10)	Nov e from T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dec able 10) 0 0	64.49	(99) (100) (101) (102) (103)
Space 8c. S Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m=	e heating pace coulated for Jan loss rate 0 ation face ation face (solar of the cooling of	g require oling rec r June, c Feb e Lm (ca 0 ctor for lo omLm (W ogains ca o grequire o zero if (ement in uirement July and Mar lculated 0 oss hm 0 Vatts) = 0 lculated 0 ement fo 104)m <	kWh/m² August. Apr using 25 0 (100)m x 0 for appli 0 r month,	432.69 See Tak May S°C inter 0 (101)m 0 cable we 0 whole come	0 Die 10b Jun Thal temp 3201.56 0.85 2736.44 Eather re 6492.19 Gwelling,	Jul perature 2297.05 0.9 2078.83 egion, se 6200.81 continue	0 Tota Aug and exte 2297.05 0.89 2044.29 ee Table 5627.76 Dus (kW	0 per year Sep ernal ten 0 0 10) 0 (h) = 0.00 0 Total	910.83 (kWh/year Oct nperature 0 0 0 24 x [(10) 0 = Sum(1828.21) = Sum(90) Nov e from T 0 0 0 0 1,0,4)	Dec able 10) 0 0 102)m] x	64.49 (41)m	(100) (101) (102) (103)
Spac 8c. S Calcu Heat (100)m= Utilisa (101)m= Gains (103)m= Spac set (1 (104)m=	e heatin pace co lated fo Jan loss rate 0 ation face 0 ul loss, h 0 s (solar 0 e coolin 04)m to	g require oling rec r June, c Feb e Lm (ca 0 ctor for lo 0 mmLm (W gains ca 0 g require zero if (ement in uirement July and Mar Iculated 0 oss hm 0 Vatts) = 0 Iculated 0 ement for 104)m <	kWh/m² kWh/m² August. Apr using 25 0 (100)m x 0 for appli 0 r month, 3 x (98	432.69 See Tak May S°C inter 0 (101)m 0 cable we 0 whole come	0 ole 10b Jun nal temp 3201.56 0.85 2736.44 eather re 6492.19 dwelling,	Jul perature 2297.05 0.9 2078.83 egion, se 6200.81 continue	0 Tota Aug and exte 2297.05 0.89 2044.29 ee Table 5627.76 Dus (kW	0 per year Sep ernal ten 0 0 10) 0 (h) = 0.00 0 Total	910.83 (kWh/year Oct nperature 0 0 0 24 x [(10) 0 = Sum(Nov e from T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dec able 10) 0 0 102)m] x	64.49	(99) (100) (101) (102) (103)
Spac 8c. S Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Spac set (1 (104)m= Cooled Interm	e heatin pace co lated for Jan loss rate 0 ation face 0 loss, h 0 s (solar 0 e coolin 04)m to d fractio ittency f	g require oling rec r June, c Feb e Lm (ca 0 ctor for lo omLm (W gains ca 0 g require zero if (0 n actor (Ta	ement in Juirement In July and Mar Iculated 0 oss hm 0 Vatts) = (0 0 lculated 0 ement for 104)m < 0 ostable 10b	kWh/m² August. Apr using 25 0 100)m x 0 for appli 0 r month, 3 x (98	432.69 See Tat May 5°C inter 0 (101)m 0 cable we 0 whole come	0 ole 10b Jun rnal temp 3201.56 0.85 2736.44 eather re 6492.19 dwelling, 2704.14	Jul Derature 2297.05 0.9 2078.83 egion, see 6200.81 continue	0 Tota Aug and exte 2297.05 0.89 2044.29 ee Table 5627.76 Dus (kW	0 per year Sep ernal ten 0	910.83 (kWh/year Oct nperature 0 0 0 24 x [(10) cooled a	Nov e from T 0 0 0 0 0 1,0,4) area ÷ (4	Dec able 10) 0 0 0 102)m] x	64.49 (41)m	(100) (101) (102) (103)
Spac 8c. S Calcu Heat (100)m= Utilisa (101)m= Gains (103)m= Spac set (1 (104)m=	e heatin pace co lated for Jan loss rate 0 ation face 0 loss, h 0 s (solar 0 e coolin 04)m to d fractio ittency f	g require oling rec r June, c Feb e Lm (ca 0 ctor for lo 0 mmLm (W gains ca 0 g require zero if (ement in uirement July and Mar Iculated 0 oss hm 0 Vatts) = 0 Iculated 0 ement for 104)m <	kWh/m² kWh/m² August. Apr using 25 0 (100)m x 0 for appli 0 r month, 3 x (98	432.69 See Tak May S°C inter 0 (101)m 0 cable we 0 whole come	0 ole 10b Jun nal temp 3201.56 0.85 2736.44 eather re 6492.19 dwelling,	Jul perature 2297.05 0.9 2078.83 egion, se 6200.81 continue	0 Tota Aug and exte 2297.05 0.89 2044.29 ee Table 5627.76 Dus (kW	0 Sep Sep O O O O O O O O Total f C = O O	910.83 (kWh/year Oct nperature 0 0 0 24 x [(10) 0 = Sum(Nov e from T 0 0 0 0 0 1,04) earea ÷ (4	Dec able 10) 0 0 102)m] x	64.49 (41)m	(100) (101) (102) (103)

Mainer Associates James McGlashan 07942721222

Fabric Efficiency WorkSheet: New dwelling as built

Space cooling requirement for month = (104)m × (105) × (106)m

(107)m= 675.79 766.41 666.29 0 0 0 0 0 0 Total = Sum(1.07)(107) 2108.5 Space cooling requirement in kWh/m²/year $(107) \div (4) =$ (108) 10.99

8f. Fabric Energy Efficiency (calculated only under special conditions, see section 11)

Fabric Energy Efficiency (99) + (108) = 75.48 (109)