Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system.

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in England and Wales. Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, conclusions and other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endorsed by it. Please note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure and cannot be guaranteed. If verification is required please telephone the sender of the email.

The contents of the e-mail and any transmitted files are confidential and intended solely for the use of the individual or entity to whom they are addressed. Transport for London hereby exclude any warranty and any liability as to the quality or accuracy of the contents of this email and any attached transmitted files. If you are not the intended recipient be advised that you have received this email in error and that any use, dissemination, forwarding, printing or copying of this email is strictly prohibited., If you have received this email in error please notify postmaster@tfl.gov.uk., This email has been sent from Transport for London, or from one of the companies within its control within the meaning of Part V of the Local Government and Housing Act 1989. Further details about TfL and its subsidiary companies can be found at http://www.tfl.gov.uk/ourcompany, This footnote also confirms that this email message has been swept for the presence of computer viruses.

Click <u>here</u> to report this email as spam.[attachment "IP leaflet No.2 Requesting location info.pdf" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system.

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in England and Wales. Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, conclusions and other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endorsed by it. Please note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure and cannot be guaranteed. If verification is required please telephone the sender of the email.

14 November 2012 Date

20878-SI-6-141112 Our Ref

Your Ref 11167

To Ellen Jones

Campbell Reith

EllenJones@campbellreith.com

Hello Ellen

Greenwood Place, Highgate Road, NW5

Thank you for your communication of 13th February 2012.

I can confirm that London Underground has no assets within 50 metres of your site as shown on the plan you provided.

Should you have any further enquiries, please do not hesitate to contact me.

Shahina Inayathusein Information Manager LUL Infrastructure Protection E-mail: Locationenquiries@tube.tfl.gov.uk

Tel: 020 7918 0016

London Underground Limited

11167 Petroleum Search Request Enquiry

Ellen Jones to: barryc.walford, petroleum

Cc: Rhyadd Watkins

27/02/2013 18:07

Hi Barry,

Many thanks for assisting me with my earlier query.

Please find attached a site location plan for the search area. The site comprises three separate buildings in close proximity which some I believe historically were part of the same site.

As discussed, would it be possible to undertake a search for the three buildings as part of one request? As they are in close proximity I ideally would not want to pay for three separate searches.

Below is some information regarding the three buildings.

Highgate Day Centre, Highgate Road Greenwood Centre/ Camden society, Greenwood Place AA self storage, Greenwood Place NW5 1LB

I am unsure if there was a different historical address for the site, however, I believe the Camden Society/ Greenwood community centre used to be a heavy chemical works, AA self storage used to be a building coach works and the Highgate Day Centre was previously used for terraced housing.

I would be most grateful if you could confirm whether the search for the three buildings could be undertaken using the same request.

If you have any questions please do not hesitate to contact me.

Many thanks,

Ellen

11167-GIS001A-DSFig1 SiteLocn.pdf 11167 Greenwood Place Location Map.pdf

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

RE: 11167 Petroleum Search Request Enquiry Ellen Jones to: petroleum, barryc.walford

28/02/2013 14:16

Cc: Rhyadd Watkins

From: Ellen Jones/CRH

petroleum@london-fire.gov.uk, barryc.walford@london-fire.gov.uk, To:

Cc: Rhyadd Watkins/CRH@Campbellreith

Hello Barry,

Apologies for the late response.

Please find attached the search template required in order to obtain a quote. There are now only two buildings I am concerned with; the Highgate Day Centre 19-37 Highgate Road NW5 1JY and Greenwood Centre/Choices/Camden Society 37 Greenwood Place NW5 1LB.

I look forward to receiving a quote for the search. I would be most grateful if you don't undertake the work prior to me confirming that we would be happy with the cost.

If you have any questions just ask.

Many thanks for your help.

Ellen

11167 Petroleum Search.docx

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane. Redhill, Surrey **RH1 1SS**

Tel +44 (0)1737 784500 www.campbellreith.com

> Dear Ellen, 28/02/2013 08:34:13

From: <barryc.walford@london-fire.gov.uk> <EllenJones@campbellreith.com>, To:

28/02/2013 08:34 Date:

RE: 11167 Petroleum Search Request Enquiry Subject:

Dear Ellen,

Thank you for your e-mail below and attachments.

I attach our revised Environment Search Request Template completion. Please list the full postal address for each site to be searched. I will confirm the fees to be charged in due course based on the information provided.

Please send your completed Environmental Search Request Form to the following web address petroleum@london-fire.gov.uk and my e-mail address as well.

There are two fundamental reasons for the revision:

- 1. The current financial climate together with a substantial increase in the number of requests received forced the Authority to review the real cost of providing the service and to consider how the continue to provide adequate resources to continue to provide the service within the statutory and voluntary (the Express Service) time limits. We have not reviewed the system or the fees since its inception in 2006. The new template shows the new fees that come into force from 1st April 2012.
- 2. There are restrictions on how we are able to interrogate both our current and historic databases. They are all purely based on the addresses at which petrol was stored in below ground tanks at the time when a Petroleum Licence was in force for the premises. In many cases when searching for the addresses requested, we may miss a historic address either because it is now encompassed by a larger site following a redevelopment, or that at some point the address has changed. To overcome this likelihood, we will now undertake to search both current and historic addresses for a single location should this information be provided at the time of making the request.

From 1st April 2012 onwards, we will only accept requests submitted on the new template. Please take time to read the revised 'Additional Information' on Page 2 of the form, which we hope will clearly explain the limitations of our searches, and how best to ensure that any locations that have or had underground petrol tanks will be encompassed by your request.

Many thanks.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at <u>www.london-fire.gov.uk</u>

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]

Sent: 27 February 2013 18:08 **To:** WALFORD, BARRY; Petroleum **Cc:** RhyaddWatkins@campbellreith.com

Subject: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for assisting me with my earlier query.

Please find attached a site location plan for the search area. The site comprises three separate buildings in close proximity which some I believe historically were part of the same site.

As discussed, would it be possible to undertake a search for the three buildings as part of one request? As they are in close proximity I ideally would not want to pay for three separate searches.

Below is some information regarding the three buildings.

Highgate Day Centre, Highgate Road Greenwood Centre/ Camden society, Greenwood Place AA self storage, Greenwood Place NW5 1LB

I am unsure if there was a different historical address for the site, however, I believe the Camden Society/ Greenwood community centre used to be a heavy chemical works, AA self storage used to be a building coach works and the Highgate Day Centre was previously used for terraced housing.

I would be most grateful if you could confirm whether the search for the three buildings could be undertaken using the same request.

If you have any questions please do not hesitate to contact me.

Many thanks,

Ellen

Ellen JonesGraduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a
For fire safety advice please go to http://www.london-fire.gov.uk/YourSafety.asp
EMAIL DISCLAIMER: The Information in the email may contain confidential or privileged materials. Please read the full email disclaimer notice at http://www.london-fire.gov.uk/EmailDisclaimer.asp .
Click here to report this email as spam.[attachment "Environmental Survey Request Form (Revised 29 3 12).docx" deleted by Ellen Jones/CRH]
If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your syste. This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Eng Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is autt any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endo note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure guaranteed. If verification is required please telephone the sender of the email.

RE: 11167 Petroleum Search Request Enquiry

01/03/2013 11:51

Ellen Jones to: barryc.walford Cc: brian.humm, RhyaddWatkins

From: Ellen Jones/CRH

To: <barryc.walford@london-fire.gov.uk>,

Cc: brian.humm@london-fire.gov.uk, RhyaddWatkins@campbellreith.com

Hi Barry,

Many thanks for your email.

We are having trouble confirming the exact numbers of the buildings that need to be searched. For the building at Greenwood Place the numbers range between 25-37. Would it be possible to check the buildings that come up on your register with the site location plan attached please? (All buildings within the red line boundary excluding the AA storage building need to be searched).

Apologies for the confusion. If you should have any questions please feel free to give me a call.

Many thanks for your help.

Ellen

11167 Greenwood Place Location Map.pdf 11167 Petroleum Search.docx

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House. 29 Linkfield Lane, Redhill, Surrey **RH1 1SS**

Tel +44 (0)1737 784500 www.campbellreith.com

> 01/03/2013 09:36:19 Hi Ellen,

From: <barryc.walford@london-fire.gov.uk> <EllenJones@campbellreith.com>, To:

<RhyaddWatkins@campbellreith.com>, <bri>, <bri>brian.humm@london-fire.gov.uk> Cc:

Date: 01/03/2013 09:36

RE: 11167 Petroleum Search Request Enquiry Subject:

Hi Ellen,

Further to your e-mail below, I have spoken with my manager, Brian Humm. It has been agreed that we will charge a single fee (£70.00 +VAT /£140.00 + VAT as per the fees listed on the submitted Environment Search Request form) to undertake the search for each of the buildings listed below. Both of these buildings have separate file numbers on our Fire Safety database.

Please confirm by e-mail if you are happy for me to proceed with these searches on this basis or if you decide to cancel your request. I will not start any work on these searches until I hear from you either way.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: <u>barryc.walford@london-fire.gov.uk</u>
Visit our website at <u>www.london-fire.gov.uk</u>

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]

Sent: 28 February 2013 14:16 **To:** Petroleum; WALFORD, BARRY **Cc:** RhyaddWatkins@campbellreith.com

Subject: RE: 11167 Petroleum Search Request Enquiry

Hello Barry,

Apologies for the late response.

Please find attached the search template required in order to obtain a quote. There are now only two buildings I am concerned with; the Highgate Day Centre 19-37 Highgate Road NW5 1JY and Greenwood Centre/Choices/Camden Society 37 Greenwood Place NW5 1LB.

I look forward to receiving a quote for the search. I would be most grateful if you don't undertake the work prior to me confirming that we would be happy with the cost.

If you have any questions just ask.

Many thanks for your help.

Ellen

Ellen JonesGraduate Environmental Scientist

CampbellReith

Raven House,

29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From: <<u>barryc.walford@london-fire.gov.uk</u>>
To: <<u>EllenJones@campbellreith.com</u>>,

Date: 28/02/2013 08:34

Subject: RE: 11167 Petroleum Search Request Enquiry

Dear Ellen,

Thank you for your e-mail below and attachments.

I attach our revised Environment Search Request Template completion. Please list the full postal address for each site to be searched. I will confirm the fees to be charged in due course based on the information provided.

Please send your completed Environmental Search Request Form to the following web address petroleum@london-fire.gov.uk and my e-mail address as well.

There are two fundamental reasons for the revision:-

- 1. The current financial climate together with a substantial increase in the number of requests received forced the Authority to review the real cost of providing the service and to consider how the continue to provide adequate resources to continue to provide the service within the statutory and voluntary (the Express Service) time limits. We have not reviewed the system or the fees since its inception in 2006. The new template shows the new fees that come into force from 1st April 2012.
- 2. There are restrictions on how we are able to interrogate both our current and historic databases. They are all purely based on the addresses at which petrol was stored in below ground tanks at the time when a Petroleum Licence was in force for the premises. In many cases when searching for the addresses requested, we may miss a historic address either because it is now encompassed by a larger site following a redevelopment, or that at some point the address has changed. To overcome this likelihood, we will now undertake to search both current and historic addresses for a single location should this information be provided at the time of making the request.

From 1st April 2012 onwards, we will only accept requests submitted on the new template. Please take time to read the revised 'Additional Information' on Page 2 of the form, which we hope will clearly explain the limitations of our searches, and how best to ensure that any locations that have or had underground petrol tanks will be encompassed by your request.

Many	than	KS.
------	------	-----

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: <u>barryc.walford@london-fire.gov.uk</u>
Visit our website at <u>www.london-fire.gov.uk</u>

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]

Sent: 27 February 2013 18:08 **To:** WALFORD, BARRY; Petroleum **Cc:** RhyaddWatkins@campbellreith.com

Subject: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for assisting me with my earlier query.

Please find attached a site location plan for the search area. The site comprises three separate buildings in close proximity which some I believe historically were part of the same site.

As discussed, would it be possible to undertake a search for the three buildings as part of one request? As they are in close proximity I ideally would not want to pay for three separate searches.

Below is some information regarding the three buildings.

Highgate Day Centre, Highgate Road Greenwood Centre/ Camden society, Greenwood Place AA self storage, Greenwood Place NW5 1LB

I am unsure if there was a different historical address for the site, however, I believe the Camden Society/ Greenwood community centre used to be a heavy chemical works, AA self storage used to be a building coach works and the Highgate Day Centre was previously used for terraced housing.

I would be most grateful if you could confirm whether the search for the three buildings could be undertaken using the same request.

If you have any questions please do not hesitate to contact me.

Many thanks,

Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

For fire safety advice please go to http://www.london-fire.gov.uk/YourSafety.asp

EMAIL DISCLAIMER: The Information in the email may contain confidential or privileged materials. Please read the full email disclaimer notice at http://www.london-fire.gov.uk/EmailDisclaimer.asp.

Click <u>here</u> to report this email as spam.[attachment "Environmental Survey Request Form (Revised 29 3 12).docx" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Eng Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is auth any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure guaranteed. If verification is required please telephone the sender of the email.

RE: 11167 Petroleum Search Request Enquiry

01/03/2013 15:45

Ellen Jones to: barryc.walford Cc: brian.humm, RhyaddWatkins

From: Ellen Jones/CRH

<barryc.walford@london-fire.gov.uk>, To:

Cc: brian.humm@london-fire.gov.uk, RhyaddWatkins@campbellreith.com

Hi Barry,

No problem I appreciate you must be extremely busy.

Please find attached an up to date search request form. If the cost is still £70.00 + VAT /£140.00 + VATI would be happy to proceed.

Look forward to hearing from you.

Kind regards,

Ellen

11167 Petroleum Search.docx

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey **RH1 1SS**

Tel +44 (0)1737 784500 www.campbellreith.com

> 01/03/2013 13:29:20 Hi Ellen,

From: <barryc.walford@london-fire.gov.uk> To: <EllenJones@campbellreith.com>,

<bri><bri>dondon-fire.gov.uk>, <RhyaddWatkins@campbellreith.com> Cc:

01/03/2013 13:29 Date:

Subject: RE: 11167 Petroleum Search Request Enquiry

Hi Ellen,

Thank you for your e-mail below.

Unfortunately, I am unable to look up the information that you require due to time and workload constraints. We will search on whatever address data that you submit and cost it and then inform you accordingly.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: <u>barryc.walford@london-fire.gov.uk</u>
Visit our website at <u>www.london-fire.gov.uk</u>

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]

Sent: 01 March 2013 11:52 To: WALFORD, BARRY

Cc: HUMM, BRIAN; RhyaddWatkins@campbellreith.com **Subject:** RE: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for your email.

We are having trouble confirming the exact numbers of the buildings that need to be searched. For the building at Greenwood Place the numbers range between 25-37. Would it be possible to check the buildings that come up on your register with the site location plan attached please? (All buildings within the red line boundary excluding the AA storage building need to be searched).

Apologies for the confusion. If you should have any questions please feel free to give me a call.

Many thanks for your help.

Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500

www.campbellreith.com

From: <<u>barryc.walford@london-fire.gov.uk</u>>
To: <<u>EllenJones@campbellreith.com</u>>,

Cc: < RhyaddWatkins@campbellreith.com >, < brian.humm@london-fire.gov.uk >

Date: 01/03/2013 09:36

Subject: RE: 11167 Petroleum Search Request Enquiry

Hi Ellen,

Further to your e-mail below, I have spoken with my manager, Brian Humm. It has been agreed that we will charge a single fee (£70.00 +VAT /£140.00 + VAT as per the fees listed on the submitted Environment Search Request form) to undertake the search for each of the buildings listed below. Both of these buildings have separate file numbers on our Fire Safety database.

Please confirm by e-mail if you are happy for me to proceed with these searches on this basis or if you decide to cancel your request. I will not start any work on these searches until I hear from you either way.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: <u>barryc.walford@london-fire.gov.uk</u>
Visit our website at <u>www.london-fire.gov.uk</u>

From: <u>EllenJones@campbellreith.com</u> [<u>mailto:EllenJones@campbellreith.com</u>]

Sent: 28 February 2013 14:16 **To:** Petroleum; WALFORD, BARRY **Cc:** RhyaddWatkins@campbellreith.com

Subject: RE: 11167 Petroleum Search Request Enquiry

Hello Barry,

Apologies for the late response.

Please find attached the search template required in order to obtain a quote. There are now only two buildings I am concerned with; the Highgate Day Centre 19-37 Highgate Road NW5 1JY and Greenwood Centre/Choices/Camden Society 37 Greenwood Place NW5 1LB.

I look forward to receiving a quote for the search. I would be most grateful if you don't undertake the work prior to me confirming that we would be happy with the cost.

If you have any questions just ask.

Many thanks for your help.

Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From: <<u>barryc.walford@london-fire.gov.uk</u>>
To: <<u>EllenJones@campbellreith.com</u>>,

Date: 28/02/2013 08:34

Subject: RE: 11167 Petroleum Search Request Enquiry

Dear Ellen,

Thank you for your e-mail below and attachments.

I attach our revised Environment Search Request Template completion. Please list the full postal address for each site to be searched. I will confirm the fees to be charged in due course based on the information provided.

Please send your completed Environmental Search Request Form to the following web address petroleum@london-fire.gov.uk and my e-mail address as well.

There are two fundamental reasons for the revision:-

- 1. The current financial climate together with a substantial increase in the number of requests received forced the Authority to review the real cost of providing the service and to consider how the continue to provide adequate resources to continue to provide the service within the statutory and voluntary (the Express Service) time limits. We have not reviewed the system or the fees since its inception in 2006. The new template shows the new fees that come into force from 1st April 2012.
- 2. There are restrictions on how we are able to interrogate both our current and historic databases. They are all purely based on the addresses at which petrol was stored in below ground tanks at the time when a Petroleum Licence was in force for the premises. In many cases when searching for the addresses requested, we may miss a historic address either because it is now encompassed by a larger site following a redevelopment, or that at some

point the address has changed. To overcome this likelihood, we will now undertake to search both current and historic addresses for a single location should this information be provided at the time of making the request.

From 1st April 2012 onwards, we will only accept requests submitted on the new template. Please take time to read the revised 'Additional Information' on Page 2 of the form, which we hope will clearly explain the limitations of our searches, and how best to ensure that any locations that have or had underground petrol tanks will be encompassed by your request.

Many thanks.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: <u>barryc.walford@london-fire.gov.uk</u>
Visit our website at www.london-fire.gov.uk

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]

Sent: 27 February 2013 18:08
To: WALFORD, BARRY; Petroleum
Cc: RhyaddWatkins@campbellreith.com

Subject: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for assisting me with my earlier query.

Please find attached a site location plan for the search area. The site comprises three separate buildings in close proximity which some I believe historically were part of the same site.

As discussed, would it be possible to undertake a search for the three buildings as part of one request? As they are in close proximity I ideally would not want to pay for three separate searches.

Below is some information regarding the three buildings.

Highgate Day Centre, Highgate Road Greenwood Centre/ Camden society, Greenwood Place AA self storage, Greenwood Place NW5 1LB

I am unsure if there was a different historical address for the site, however, I believe the Camden Society/ Greenwood community centre used to be a heavy chemical works, AA self storage used to be a building coach works and the Highgate Day Centre was previously used for terraced housing.

I would be most grateful if you could confirm whether the search for the three buildings could be undertaken using the same request.

If you have any questions please do not hesitate to contact me.

Many thanks,

Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLI other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

For fire safety advice please go to http://www.london-fire.gov.uk/YourSafety.asp

EMAIL DISCLAIMER: The Information in the email may contain confidential or privileged materials. Please read the full email disclaimer notice at http://www.london-fire.gov.uk/EmailDisclaimer.asp.

Click <u>here</u> to report this email as spam.[attachment "Environmental Survey Request Form (Revised 29 3 12).docx" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system. This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl

Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill L other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or end
As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure
If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system.
This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in En Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill L other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or end-
As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure
If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your syst
This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Er Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is au any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinion other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or end note that email traffic and content may be monitored.
As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure guaranteed. If verification is required please telephone the sender of the email.

PETROLEUM ENVIRONMENTAL ENQUIRY DETAIL FORMS:- GREENWOOD CENTRE/CAMDEN SOCIETY, 25-37 GREENWOOD PLACE, NW5 1LB & HIGHGATE DAY CENTRE, 19-37 HIGHGATE ROAD, NW5 1JY barryc.walford

to:

EllenJones

25/03/2013 16:12

Hide Details

From: <baryc.walford@london-fire.gov.uk> To: <EllenJones@campbellreith.com>, History: This message has been forwarded.

2 Attachments

02-015892 B11 ES response to Campbell Reith Hill LLP 25 03 13.docx

02-018794 B11 ES response to Campbell Reith Hill LLP 25 03 13.docx

Hi Ellen,

Please find the attached electronic copy of the covering letter and Petroleum Environmental Enquiry Detail Form for each of the above sites.

I will arrange for a separate invoice for a total of £70.00 + VAT for each site to be sent to you in due course under separate cover from our Finance Office

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: barryc.walford@london-fire.gov.uk

Visit our website at www.london-fire.gov.uk

For fire safety advice please go to http://www.london-fire.gov.uk/YourSafety.asp

EMAIL DISCLAIMER: The Information in the email may contain confidential or privileged materials. Please read the full email disclaimer notice at http://www.london-fire.gov.uk/EmailDisclaimer.asp.

Click <u>here</u> to report this email as spam.

Re: FW: 11167 Petroleum Search Request Enquiry

Ellen Jones to: barryc.walford

Cc: brian.humm, RhyaddWatkins, petroleum

From: Ellen Jones/CRH

To:
 <b

Cc: brian.humm@london-fire.gov.uk, RhyaddWatkins@campbellreith.com,

petroleum@london-fire.gov.uk

Hi Barry,

I can confirm we are happy for you to undertake the two separate searches for the Highgate Day Centre and the Greenwood Centre/Camden Society.

Kind regards,

Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

Hi Ellen, 01/03/2013 16:45:22

01/03/2013 17:09

From: >a>a<a

Cc: <RhyaddWatkins@campbellreith.com>, <bri>, <bri>dondon-fire.gov.uk>

Date: 01/03/2013 16:45

Subject: FW: 11167 Petroleum Search Request Enquiry

Hi Ellen,

Thank you for your e-mail.

Can you please confirm, via e-mail, that you understand that we will charge the normal fee (£70.00 + VAT) for each search on the Highgate Day Centre and the Greenwood Centre/Camden Society? I will proceed with the search process upon your confirmation. Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: <u>barryc.walford@london-fire.gov.uk</u>

Visit our website at www.london-fire.gov.uk

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]

Sent: 01 March 2013 15:46 **To:** WALFORD, BARRY

Cc: HUMM, BRIAN; RhyaddWatkins@campbellreith.com **Subject:** RE: 11167 Petroleum Search Request Enquiry

Hi Barry,

No problem I appreciate you must be extremely busy.

Please find attached an up to date search request form. If the cost is still £70.00 + VAT /£140.00 + VAT I would be happy to proceed.

Look forward to hearing from you.

Kind regards,

Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From: <<u>barryc.walford@london-fire.gov.uk</u>>
To: <<u>EllenJones@campbellreith.com</u>>,

Cc: <u>hrian.humm@london-fire.gov.uk</u>>, <u>RhyaddWatkins@campbellreith.com</u>>

Date: 01/03/2013 13:29

Subject: RE: 11167 Petroleum Search Request Enquiry

Hi Ellen,

Thank you for your e-mail below.

Unfortunately, I am unable to look up the information that you require due to time and workload constraints. We will search on whatever address data that you submit and cost it and then inform you accordingly.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: <u>barryc.walford@london-fire.gov.uk</u>
Visit our website at <u>www.london-fire.gov.uk</u>

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]

Sent: 01 March 2013 11:52 **To:** WALFORD, BARRY

Cc: HUMM, BRIAN; RhyaddWatkins@campbellreith.com **Subject:** RE: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for your email.

We are having trouble confirming the exact numbers of the buildings that need to be searched. For the building at Greenwood Place the numbers range between 25-37. Would it be possible to check the buildings that come up on your register with the site location plan attached please? (All buildings within the red line boundary excluding the AA storage building need to be searched).

Apologies for the confusion. If you should have any questions please feel free to give me a call.

Many thanks for your help.

Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From: <<u>barryc.walford@london-fire.gov.uk</u>>
To: <<u>EllenJones@campbellreith.com</u>>,

Cc: ">khyaddWatkins@campbellreith.com">">khyaddWatkins@campbellreith.com">">khyaddWatkins@campbellreith.com">">khyaddWatkins@campbellreith.com">">khyaddWatkins@campbellreith.com">">khyaddWatkins@campbellreith.com">">khyaddWatkins@campbellreith.com">">khyaddWatkins@campbellreith.com">">khyaddWatkins@campbellreith.com">">khyaddWatkins@campbellreith.com<">khyaddWatkins@campbellreith.com

Date: 01/03/2013 09:36

Subject: RE: 11167 Petroleum Search Request Enquiry

Hi Ellen,

Further to your e-mail below, I have spoken with my manager, Brian Humm. It has been agreed that we will charge a single fee (£70.00 + VAT /£140.00 + VAT as per the fees listed on the submitted Environment Search Request form) to undertake the search for each of the buildings listed below. Both of these buildings have separate file numbers on our Fire Safety database.

Please confirm by e-mail if you are happy for me to proceed with these searches on this basis or if you decide to cancel your request. I will not start any work on these searches until I hear from you either way.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: <u>barryc.walford@london-fire.gov.uk</u>
Visit our website at <u>www.london-fire.gov.uk</u>

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]

Sent: 28 February 2013 14:16 **To:** Petroleum; WALFORD, BARRY **Cc:** RhyaddWatkins@campbellreith.com

Subject: RE: 11167 Petroleum Search Request Enquiry

Hello Barry,

Apologies for the late response.

Please find attached the search template required in order to obtain a quote. There are now only two buildings I am concerned with; the Highgate Day Centre 19-37 Highgate Road NW5 1JY and Greenwood Centre/Choices/Camden Society 37 Greenwood Place NW5 1LB.

I look forward to receiving a quote for the search. I would be most grateful if you don't undertake the work prior to me confirming that we would be happy with the cost.

If you have any questions just ask.

Many thanks for your help.

Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From: <<u>barryc.walford@london-fire.gov.uk</u>>
To: <<u>EllenJones@campbellreith.com</u>>,

Date: 28/02/2013 08:34

Subject: RE: 11167 Petroleum Search Request Enquiry

Dear Ellen,

Thank you for your e-mail below and attachments.

I attach our revised Environment Search Request Template completion. Please list the full postal address for each site to be searched. I will confirm the fees to be charged in due course based on the information provided.

Please send your completed Environmental Search Request Form to the following web address petroleum@london-fire.gov.uk and my e-mail address as well.

There are two fundamental reasons for the revision:-

1. The current financial climate together with a substantial increase in the number of requests received forced the Authority to review the real cost of providing the service and to consider how the continue to provide

adequate resources to continue to provide the service within the statutory and voluntary (the Express Service) time limits. We have not reviewed the system or the fees since its inception in 2006. The new template shows the new fees that come into force from 1st April 2012.

2. There are restrictions on how we are able to interrogate both our current and historic databases. They are all purely based on the addresses at which petrol was stored in below ground tanks at the time when a Petroleum Licence was in force for the premises. In many cases when searching for the addresses requested, we may miss a historic address either because it is now encompassed by a larger site following a redevelopment, or that at some point the address has changed. To overcome this likelihood, we will now undertake to search both current and historic addresses for a single location should this information be provided at the time of making the request.

From 1st April 2012 onwards, we will only accept requests submitted on the new template. Please take time to read the revised 'Additional Information' on Page 2 of the form, which we hope will clearly explain the limitations of our searches, and how best to ensure that any locations that have or had underground petrol tanks will be encompassed by your request.

Many thanks.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858

F: 020 7960 3624

E: <u>barryc.walford@london-fire.gov.uk</u>
Visit our website at www.london-fire.gov.uk

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]

Sent: 27 February 2013 18:08 **To:** WALFORD, BARRY; Petroleum **Cc:** RhyaddWatkins@campbellreith.com

Subject: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for assisting me with my earlier query.

Please find attached a site location plan for the search area. The site comprises three separate buildings in close proximity which some I believe historically were part of the same site.

As discussed, would it be possible to undertake a search for the three buildings as part of one request? As they are in close proximity I ideally would not want to pay for three separate searches.

Below is some information regarding the three buildings.

Highgate Day Centre, Highgate Road Greenwood Centre/ Camden society, Greenwood Place AA self storage, Greenwood Place

NW5 1LB

I am unsure if there was a different historical address for the site, however, I believe the Camden Society/ Greenwood community centre used to be a heavy chemical works, AA self storage used to be a building coach works and the Highgate Day Centre was previously used for terraced housing.

I would be most grateful if you could confirm whether the search for the three buildings could be undertaken using the same request.

If you have any questions please do not hesitate to contact me.

Many thanks,

Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500

www.campbellreith.com

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLD other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

For fire safety advice please go to http://www.london-fire.gov.uk/YourSafety.asp

EMAIL DISCLAIMER: The Information in the email may contain confidential or privileged materials. Please read the full email disclaimer notice at http://www.london-fire.gov.uk/EmailDisclaimer.asp.

Click <u>here</u> to report this email as spam.[attachment "Environmental Survey Request Form (Revised 29 3 12).docx" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system. This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Eng Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLD other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endo
As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure
If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system. This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Eng Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLD other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endo
As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure
If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system. This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Eng Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLD other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endo
As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure
[attachment "11167 Petroleum Search.docx" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Eng Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is auth any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endoinote that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure guaranteed. If verification is required please telephone the sender of the email.

RE: Planning Enquiry (Ref. ENQ\09113) - 11167 Greenwood Place, Highgate Road, NW5

Planning

to:

'EllenJones@campbellreith.com'

22/11/2012 12:11

Hide Details

From: Planning < Planning @camden.gov.uk >

To: "'EllenJones@campbellreith.com'" <EllenJones@campbellreith.com>,

History: This message has been forwarded.

1 Attachment

How to search for planning records on Camden web pages - August 2011.pdf

Dear Ellen,

Thank you for your enquiry, please accept our apologies for the delay in providing you with a response.

The Council's <u>Online Planning Search</u> enables you to find planning applications using a wide variety of search options. I would recommend looking at the planning history of the site to establish the previous uses and current use (should the most recent permission have been implemented). You can also view the planning applications online and any plans, drawings and documents associated with the applications. I have attached some guidance notes on how to do this.

You would need to contact the <u>contaminated land</u> team to establish whether the land is contaminated and if there were any tanks on the land. More information can be found in the frequently asked questions section on this page.

Please use the following pages on our website to check if the building is listed or is in a conservation area:

- Find a listed building
- Find a conservation area

More information on archeological priority areas can be found in Camden's <u>Local Development Framework Development Policies Document 2010</u> (adopted version) in policy DP25 and there is a map on page 122 which shows the areas.

I trust this information is of assistance. Should you have any further queries please do not hesitate to contact me.

Kind regards,

Sally Shepherd
Planning Officer
Advice and Consultation Team
Planning and Regeneration
Culture and Environment Directorate
London Borough of Camden

Telephone: 0207 974 4672

Web: camden.gov.uk

6th Floor Camden Town Hall Judd Street London WC1H 8ND

The London Borough of Camden has a waste minimisation policy. Please do not print out this email.

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]

Sent: 13 November 2012 12:09

To: Planning

Cc: RhyaddWatkins@campbellreith.com

Subject: ENQ\09113 - 11167 Greenwood Place, Highgate Road, NW5

Dear Sir/ Madam.

I am undertaking a geo-environmental desk study review of Greenwood Place, Highgate, NW5, National Grid Reference: 528840^E, 185400^N.

I would be grateful if you could provide any information on the following:

- What is the site's current and previous land use history, including that of the adjacent land?
- Are there any concerns about the site or surrounding areas being contaminated?
- Are there any planning constraints placed on the site, for example, Listed Buildings, archaeology, etc?
- Do you hold any plans or drawings relating to the site which we could have access to?
- Have there been any tanks containing hazardous substances stored on site?

If you are aware of any other information (factual, anecdotal etc) that you believe would better inform the study, please feel free to add this or any other comments.

Please could you advise if there is likely to be a charge for providing the above information. Thank you for your time in advance.

I look forward to hearing from you.

Many thanks,

Ellen

Ellen Jones

Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system.

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in England and Wales. Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, conclusions and other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endorsed by it. Please note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure and cannot be guaranteed. If verification is required please telephone the sender of the email.

This e-mail may contain information which is confidential, legally privileged and/or copyright protected. This e- mail is intended for the addressee only. If you receive this in error, please contact the sender and delete the material from your computer.

Click <u>here</u> to report this email as spam.

The Greenwood Centre, Camden Land Quality Statement		CampbellReith
	Appendix C: SITE INVESTIGATION IN	FORMATION

PHASE 2 – GROUND INVESTIGATION REPORT

FOR A PROPOSED COMMERCIAL DEVELOPMENT

AT

GREENWOOD CENTRE, GREENWOOD PLACE, CAMDEN, LONDON. NW5 1LB

Prepared For

Kier Construction Ltd 2 Langston Road Loughton Essex **IG10 3SD**

Report Reference Number: 1655,GI/LF,PD/23-06-16/V1

Project Number: 1655,GI Issue Reference:

Issue Date: 23 June 2016

DOCUMENT ISSUED RECORD

1655,GI/LF,PD/23-06-16/V1 Report Number: Client: Kier Construction Ltd Project: Greenwood Centre, Greenwood Place, Camden Project Number: 1655,GI Report Type: **Factual Ground Investigation Report** Date of Report: 23 June 2016 Prepared by: Lianne Fountain Date: 23 June 2016 Gargain Thous Parky Reviewed by: **Tom Powling** 23 June 2016 Authorised by: 23 June 2016 **Paul Davies** Date: Geosphere Environmental Ltd, Brightwell Prepared by: Barns, Ipswich Road, Brightwell, Telephone Suffolk, IP10 298 076. OBJ. (01603)www.geosphereenvironmental.co.uk

Confidentiality, Copyright and Reproduction This document has been prepared by Geosphere Environmental Ltd in connection with a contract to supply goods and/or services and is submitted only on the basis of strict confidentiality. The contents must not be disclosed to third parties other than in accordance with the terms of the contract. Geosphere Environmental Ltd accepts no responsibility whatsoever to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

REVISION RECORD

Revision	Date	Document	Prepared By:	Admin

AMENDMENT RECORD

Revision	Date	Amendments		

CONTENTS

		Page No.
DOCUM	MENT ISSUED RECORD	1
1.	INTRODUCTION	4
2.	SITE SETTINGS	5
2.1	Site Description	5
3.	SITE WORKS	6
3.1	Methodology	6
3.2	Scope of Investigation	6
3.3	Exploratory Holes	6
3.3.1	Cable Percussive Boreholes	7
3.3.2	Windowless Sampling and Dynamic Probing	7
3.3.3	Hand-dug Pits for California Bearing Ratio Testing	7
3.3.4	Foundation Inspection Pits	8
3.4	Ground Conditions Encountered	8
3.5	Groundwater	9
3.6	Visual and Olfactory Evidence of Contamination	9
4.	LABORATORY TESTING	10
4.1	Methodology	10
4.2	Environmental Testing Suite	10
4.2.1	Quality Control	10
4.2.2	Environmental Testing Suite – Soils	10
4.2.3	Environmental Testing Suite – Water	11
4.2.4	Environmental Testing Suite – Ground Gas	11
4.3	Geotechnical Testing Suite	11
5.	MONITORING	12
5.1	Ground Gas	12
5.2	Groundwater	14
6.	CONCLUSIONS	16
ADDITIO	ONAL INFORMATION	17
Α.	CONSULTATION	17
В.	SHORT-TERM MITIGATION MEASURES	17
C.	DISCOVERY STRATEGY	18

CONTENTS

APPENDICES
APPENDIX 1 – ACRONYMS AND ABBREVIATIONS
APPENDIX 2 – REPORT LIMITATIONS AND CONDITIONS
APPENDIX 3 – REFERENCES
APPENDIX 4 – EXPLORATORY HOLE LOGS
APPENDIX 5 – GAS AND GROUNDWATER MONITORING DATA
APPENDIX 6 – ENVIRONMENTAL LABORATORY TEST RESULTS
APPENDIX 7 – GEOTECHNICAL LABORATORY TEST RESULTS
APPENDIX 8 – DRAWINGS
APPENDIX 9 – PHOTOGRAPHS

TABLES

	Page No.
Table 1 - Ground Conditions	8
Table 2 - Ground Gas Monitoring Results	12
Table 3 - Ground Gas Monitoring Results by PID	13
Table 4 - Groundwater Monitoring Results	14
Table 5 – Low Flow Groundwater Monitoring	15

1. INTRODUCTION

Geosphere Environmental Ltd was commissioned by the Client, Kier Construction Ltd, to undertake a Phase 2 Ground Investigation for a proposed commercial development at the Greenwood Centre, Greenwood Place, Camden, NW5 1LB.

The primary objective of this ground investigation are to:

o Assess the ground conditions at the site for use in the design of the proposed development.

These are to be achieved by:

- Undertaking an intrusive investigation of the site based on proposals provided by Campbell Reith;
- Logging, sampling and in-situ testing of the soils encountered;
- Environmental and geotechnical laboratory analysis of selected samples;
- Subsequent monitoring and sampling of ground gas and ground water levels.

A Proposed Development Plan drawn by PCKO, Drawing ref. 1213 PL 002 Rev B, was provided by the Client, and is presented within Appendix 8.

It was understood that the proposed development will comprise of the demolition of the existing structures at the site, and the construction of a new four storey community centre, including a basement, which will cover an overall approximate area of 3600m². A new access way, cycle parking and associated soft landscaped areas are also proposed.

SITE SETTINGS

Site Description 2.1

The subject site was situated in Camden, London, approximately 0.2 km to the north west of the Kentish Town Station, and may be located by National Grid Reference, (NGR), TQ 28816 85385.

A Site Location Plan, Drawing ref. 1655,GI 001/Rev 0 is included in Appendix 8 at the back of the report, and in Figure 1 below:

Figure 1 - Site Location Plan

Figure 2 – Site Plan

The subject site comprised of an irregularly shaped former community centre, previously known as the Greenwood Community Centre. At the time of the investigation, the building was derelict and comprised of two adjoining single storey structures.

The former Greenwood Community Centre was of brick construction, and as mentioned above, comprised of two adjoining structures. A basement was present in the south west of the building, and a small garden area and pathway existed in the south of the site.

Ground levels were found to decrease toward the south west of the site, falling from approximately 40mAOD in the north, to approximately 34mAOD in the south.

The neighbouring building of Deane House bounded the site to the north west, and Greenwood Place ran adjacent to the eastern boundary of the site. A compound owned by Murphy and unspecified buildings bounded the site to the south and south west respectively.

A site plan Drawing ref. GIS001 – A, is presented in Figure 2 above, and within Appendix 8 of this report.

3. SITE WORKS

3.1 Methodology

This ground investigation was carried out on the basis of the practices set out in BS 10175: 2011+A1:2013, (ref. **R.1**), and BS 5930: 2015, (ref. **R.2**).

A geoenvironmental engineer from Geosphere Environmental Ltd, supervised the intrusive works and ensured safe methods of working at all times.

3.2 Scope of Investigation

Site works were carried out over a period of five weeks, between 14 March and 21 April 2016, and comprised of the following:

- The formation of two cable percussive boreholes, (BH01 and BH02), to an approximate depth of 25.0m bgl;
- The formation of two windowless sampler boreholes, (WS101 and WS102), to an approximate depth of 6.0m bgl;
- The extension of a windowless sampler borehole, WS102, by dynamic probing to an approximate depth of 12.0m bgl;
- The excavation of four hand dug or vacuum excavated foundation pits, (FIP1-FIP4), to varying depths;
- The excavation of two hand dug trial pits, (CBR3 and CBR4), and the subsequent CBR testing of encountered soils by in-situ methods with a TRL probe;
- o In-situ soil logging, sampling and testing within each exploratory hole location;
- The installation of three ground gas and groundwater monitoring wells within cable percussive and windowless sampler boreholes, (BH1, BH2 and WS102) to depths of 10.0m and 6.0m bgl respectively;
- Subsequent return visits to site in order to monitor ground gas and groundwater levels;
- Installation of ground gas sampling equipment within the monitoring wells during monitoring visit 2 and the subsequent uninstallation during monitoring visit 3;
- Low flow monitoring of groundwater, where present, and subsequent sampling from monitoring wells
 installed during this investigation as well as the previous investigation.

3.3 Exploratory Holes

The locations and depths of the exploratory holes were defined by the consulting engineer, Campbell Reith. The positions of exploratory holes are presented on the exploratory hole location plan provided within Appendix 8 of this report, Drawing ref. 1655,GI 002/Rev 0.

The details of the methods used are provided within the following sections.

3.3.1 Cable Percussive Boreholes

Two cable percussive boreholes, (BH01 and BH02), were drilled within the existing structure using a track mounted cut down cable percussive rig to a required depth of 25.0m bgl. The original scope of the investigation included the formation of three cable percussive boreholes, however, due to restricted headroom, BH03 could not be undertaken.

Representative disturbed and undisturbed samples were collected at regular intervals throughout the boreholes. These samples included undisturbed thin wall samples, (UT100s), within clay soils, nominal disturbed, (D), samples and SPT samples. Environmental samples were of the Made Ground, and natural soils were also collected at each position.

Standard Penetration Tests, (SPTs), were undertaken at regular intervals throughout the depth of the boreholes using a split spoon sampler.

Following completion of drilling, the boreholes were backfilled to a depth of 10.0m bgl, and 50mm diameter combined ground gas and groundwater monitoring wells were installed with a gravel surround and a bentonite seal.

As the third cable percussive borehole could not be commenced, the intended BH03 position was relocated to outside of the existing structure, within the small garden area in the south of the site. Due to further access constraints, this borehole could not be commenced using cable percussive techniques, and windowless sampling and dynamic probing methods were used instead.

3.3.2 Windowless Sampling and Dynamic Probing

As mentioned above, windowless sampling and dynamic probing methods were used within the south of the site, within vicinity of the original BH03 position. A windowless sampler borehole, WS102, was drilled to 6.0m depth and disturbed samples for environmental and geotechnical purposes were collected throughout the depth of the borehole. SPTs were also undertaken every metre.

In order to achieve sufficient depth, the windowless sampling was ceased at 6.0m bgl, and dynamic probing methods were used to extend the borehole to 12.0m bgl where refusal was encountered.

Following the completion of WS102, a 50mm diameter combined ground gas and groundwater monitoring well was installed to a depth of 5.0m bgl.

A windowless sampler borehole, (WS101), was also undertaken in the proposed position of CBR1, to a depth of 6.0m bgl. Windowless sampling was undertaken in this position, as hand-digging was not possible due to the presence of a block and beam suspended floor. Disturbed samples were collected and SPTs were undertaken at regular intervals.

3.3.3 Hand-dug Pits for California Bearing Ratio Testing

Four hand pit positions, (CBR1-CBR4), were defined by the Client, for the purpose of undertaking in-situ California Bearing Ratio, (CBR), testing. Each position required surface break out, which was completed prior to undertaking the in-situ CBR tests. Block and beam suspended floors were encountered within positions CBR1 and CBR2, and therefore hand excavation and in-situ testing were deemed to be unsuitable.

Hand pits were excavated within the positions of CBR3 and CBR4, to depths of 0.60m and 0.85m bgl respectively, for the purpose of undertaking in-situ CBR tests. A CBR test by TRL Probe methods was undertaken in each pit, and the results of these tests are presented within Appendix 7 of this report.

Representative environmental samples were also collected within these pits to ensure appropriate coverage of the site.

3.3.4 Foundation Inspection Pits

Four hand dug pits were excavated at the site, in order to determine the depth and type of existing foundations.

Foundation inspection pits FIP2, FIP3 and FIP4, were hand dug to various depths to expose the top of the foundations. Hand auger methods were then used to extend the pits, in order to determine an approximate depth of the underside of the foundations. Representative samples for environmental and geotechnical purposes were collected from these pits.

Due to the nature of the ground conditions encountered within FIP1, hand excavation was not possible and vacuum excavation methods were used. A concrete obstruction, presumed to be the underlying concrete slab of the suspended floor, was encountered at a depth of 1.1m bgl, and therefore excavation was ceased.

Foundation profile sketches were produced for each foundation inspection pits, these are provided within Appendix 4 of this report.

3.4 Ground Conditions Encountered

The sequence of the strata encountered during the investigation generally confirms the anticipated geology as interpreted from the British Geological Survey (BGS) map, Sheet Number 256, Solid Edition, 1:50,000 scale, published, 2001 as well as the BGS digital mapping geology viewer, at a scale of 1:50,000.

The sequence and indicative thickness of strata are provided below:

Table 1 - Ground Conditions							
Strate	Depth Encou	ıntered (mgl)	Strata Thickness	Location and Composition			
Strata	From	То	(m)	Location and Composition			
				BH01, BH02, WS101, FIP1, FIP3, FIP2, FIP4, CBR4 - Concrete			
Surface Materials	0.00 - 0.20	0.10 - 0.30	0.10 to 0.30	WS102, CBR4 - Wooden decking			
				FIP4, CBR4 - Flexible Surfacing			
				Numerous layers of Made Ground of varying consistency were recorded.			
Made Ground	0.10 - 0.45	2.00 - 5.00	1.90 to 4.90	FIP1, BH01, BH02:			
				Coarse granular Made Ground within the sub-floor void space recorded to comprise a dark red			

				brown, grey and brown sand and gravel with angular to subangular brick, concrete, glass and wood fragments. BH01, WS102, WS102, FIP2, FIP3, CBR3:
				Dark brown, orange brown and grey clayey sand and gravel with brick, clinker, charcoal fragments and flint.
				BH01, BH02, WS101, WS102, FIP3, FIP4, CBR4:
				Dark brown and orange brown mottled silty clay with brick, concrete, clinker fragments and flint and varying sand content.
Weathered London Clay	2.00 - 5.00	10.50 - 13.00	7.50 to 8.00	FIP4, BH01, BH02, WS101, WS102: Orange brown and blue grey mottled fissured clay
London Clay Formation	10.50 - 13.00	>25.00	Base not proven	BH01 and BH02: Dark grey silty clay with occasional white fossils and occasional claystone bands

3.5 Groundwater

Groundwater seepage was recorded in FIP3 and FIP4, at a depth of 1.70 mbgl and 1.35 mbgl respectively. No groundwater was encountered in any of the other exploratory holes.

During subsequent visits to site to monitor groundwater levels, it was found that water had accumulated within monitoring wells DSC1, DSCBH2 (otherwise known as OBH2), and DSC4, (installed during the previous investigation), as well as WS102. The depths at which water was recorded is presented within section 5.2 of this report.

3.6 Visual and Olfactory Evidence of Contamination

Significant thicknesses of Made Ground were recorded during the intrusive investigation. Fragments of brick, concrete, clinker and charcoal were recorded within the Made Ground soils, and a natural organic odour with associated discolouration was noted within FIP2.

A suspected volatile odour was recorded within the Weathered London Clay in BH01 and WS101, at depths of 5.00m and 5.30m bgl respectively.

During surface break-out of the concrete slab at positions BH02 and FIP1, suspected asbestos containing materials were encountered.

4. LABORATORY TESTING

4.1 Methodology

Representative disturbed and undisturbed samples were taken at the depths shown on the exploratory hole records and dispatched to the laboratory. The exploratory hole logs are included in Appendix 4.

Numerous samples were collected for environmental purposes in amber glass jars and bulk bags and kept in a cool box with cooling aid. Geotechnical samples were recovered in plastic bulk bags, plastic tubs and undisturbed thin walled UT100 liners.

Water samples were collected from the monitoring wells during subsequent monitoring visits to site in glass bottles and vials, and kept in a cool box with cooling aid.

Ground gas samples were collected using Tenax Tubes and dispatched to the environmental laboratory. The Tenax tubes were installed into the monitoring wells during the second monitoring visit, and removed during the third monitoring visit.

All analyses of the soil samples took place in the laboratory.

4.2 Environmental Testing Suite

4.2.1 Quality Control

The environmental laboratories used, (Envirolab Ltd and Gradko International Ltd), were accredited laboratories by the United Kingdom Accreditation Service, (UKAS), and at least 50% of individual parameters are from methods pending accreditation to the Environment Agency Monitoring Certification Scheme, (MCERTS), for the range of analyses undertaken as part of this investigation. The MCERTS performance standard for the chemical testing of soil is an application of ISO 17025: 2000 specifically for the chemical testing of soil.

4.2.2 Environmental Testing Suite - Soils

The suite of chemical analyses was defined by Campbell Reith, and carried out on a number of samples. The nature of the analyses is detailed below:

- Metals screen arsenic, cadmium, chromium, lead, mercury, selenium, boron, (water soluble), beryllium, copper, nickel, vanadium and zinc;
- Organic screen total petroleum hydrocarbons, (TPH) with specific carbon banding; benzene, toluene, ethylbenzene and xylenes, (BTEX); polyaromatic hydrocarbons, (PAH) – USEPA 16 suite; monohydric phenols;
- Inorganics screen cyanide, (total), sulphate, (water soluble);
- Others pH, organic matter, asbestos;
- Volatile Organic Compounds, (VOC) including: benzene, toluene, ethylbenzene and xylenes, (BTEX), and chlorinated solvents;
- o Semi-Volatile Organic Compounds, (SVOC) including: phenols and polyaromatic hydrocarbons, (PAH).

A copy of the laboratory test results is included in Appendix 6 toward the end of this report.

4.2.3 Environmental Testing Suite – Water

The suite of chemical analyses was defined by Campbell Reith, and carried out on three samples. The nature of the analyses is detailed below:

- Metals screen arsenic, cadmium, chromium, hexavalent chromium, lead, mercury, selenium, boron, (water soluble), copper, nickel, and zinc;
- Organic screen total petroleum hydrocarbons, (TPH), polyaromatic hydrocarbons, (PAH) USEPA 16 suite; phenol, (total);
- o Inorganics screen cyanide, (total and free), sulphate, (water soluble), sulphur and sulphide;
- Others pH;
- Volatile Organic Compounds, (VOC);
- Semi-Volatile Organic Compounds, (SVOC).

A copy of the laboratory test results is included in Appendix 6 toward the end of this report.

4.2.4 Environmental Testing Suite – Ground Gas

The suite of chemical analyses undertaken on the ground gas samples was defined by Campbell Reith, and is detailed below:

Top 15 VOC suite.

A copy of the laboratory test results is included in Appendix 6 toward the end of this report.

4.3 Geotechnical Testing Suite

The geotechnical testing schedule was also defined by Campbell Reith, and undertaken in accordance with BS 1377 at a UKAS accredited laboratory. The following tests were undertaken:

- Moisture content determination;
- Plasticity testing;
- pH and soluble sulphate testing;
- Total sulphur content;
- Organic content (dichromate) testing;
- Particle size distribution testing;
- Determination of undrained shear strength.

A copy of the laboratory test results is included in Appendix 7 toward the end of this report.

5. MONITORING

Ground gas and groundwater monitoring wells were installed within three exploratory holes excavated during the intrusive investigation, (BH01, BH02 and WS102). Subsequent return visits were undertaken in order to monitor ground gas and groundwater levels which had accumulated within these wells. Monitoring wells installed during the previous investigation, (DSC1, DSC4 and DSCBH2), were also monitored during these visits. The results are presented within the following sections and within Appendix 5 of this report.

5.1 Ground Gas

Ground gas monitoring was undertaken by a suitably qualified environmental consultant, using a GA2000 landfill gas analyser. The main determinants recorded were methane, (CH_4) , carbon dioxide, (CO_2) , oxygen, (O_2) , as well as flow and groundwater levels. Levels of hydrogen sulphide, (H_2S) , carbon monoxide, (CO), and volatile organic compounds, (VOC), were recorded using a Photoionization Detector, (PID).

Ground gas monitoring was carried out in accordance with current guidance, (ref. **R.3**). Three consecutive monitoring visits were undertaken over a period of four weeks and included a monitoring visit during low barometric pressure conditions.

The results and dates of the monitoring visits are presented in Tables 2 and 3 below. Graphical representation of these results are presented within Appendix 5 of this report.

Table 2 - Ground Gas Monitoring Results								
Monitoring Well	Monitoring Date	Atmospheric Pressure (mb)	Flow Rate (I/hr)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)		
	27-04-16	1009	-0.2	<0.1	0.1	20.9		
BH01	12-05-16	996	-0.4	<0.1	0.2	19.6		
	19-05-16	1004	+0.5	<0.1	0.3	20.0		
	27-04-16	1009	-0.2	<0.1	0.1	20.9		
BH02	12-05-16	996	-0.5	<0.1	0.1	20.9		
	19-05-16	1004	+0.5	<0.1	0.1	21.2		
	27-04-16	1009	-0.2	<0.1	0.9	20.9		
WS102	12-05-16	996	-0.3	0.1	0.7	20.7		
	19-05-16	1005	+0.5	<0.1	1.0	20.7		
	27-04-16	1010	-0.1	<0.1	4.9	8.8		
DCS1	12-05-16	996	-0.5	<0.1	3.7	15.8		
	19-05-16	1004	+0.5	0.1	5.3	15.0		
	27-04-16	1010	-0.1	<0.1	2.7	18.3		
DCSBH2	12-05-16	996	-0.3	<0.1	5.2	15.3		
	19-05-16	1004	+0.4	0.1	5.3	12.3		
DCS4	27-04-16	nm	nm	nm	nm	nm		

12-05-16 99
6 10

Table 3 - Ground Gas Monitoring Results by PID							
Monitoring Well	Monitoring Date	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	VOC (ppm)			
	27-04-16	56.0	<0.1	241.0			
BH01	12-05-16	38.0	0.1	326.0			
	19-05-16	35.0	<0.1	406.0			
	27-04-16	1.0	<0.1	9.0			
BH02	12-05-16	<0.1	<0.1	19.0			
	19-05-16	<0.1	<0.1	12.0			
	27-04-16	<0.1	<0.1	15.0			
WS102	12-05-16	4.0	<0.1	28.0			
	19-05-16	<0.1	<0.1	<0.1			
	27-04-16	<0.1	<0.1	3.0			
DCS1	12-05-16	<0.1	<0.1	5.0			
	19-05-16	<0.1	<0.1	3.0			
	27-04-16	<0.1	<0.1	1.0			
DCSBH2	12-05-16	<0.1	<0.1	3.0			
	19-05-16	45.0	<0.1	23.0			
	27-04-16	nm	nm	nm			
DCS4	12-05-16	<0.1	<0.1	<0.1			
	19-05-16	<0.1	<0.1	<0.1			

5.2 Groundwater

The groundwater levels were also monitored during the monitoring visits, over a period of four weeks. The water levels and dates of monitoring are presented in the table below:

Table 4 - Groundwater Monitoring Results								
Monitoring	Depth of							
Well	Monitoring Well	Visit 1	Visit 2	Visit 3				
	(mbgl)	27/04/16	12/05/16	19/05/16				
BH01	9.95	Dry	Dry	Dry				
BH02	10.00	Dry	Dry	Dry				
WS102	5.00	Dry	2.30	2.00				
DSC1	4.10	1.43	1.40	1.75				
DSCBH2	2.20	1.66	1.65	1.40				
DSC4	2.15	1.97	Dry	Dry				

Notes:

Dry - no groundwater encountered

n/m – not measured

0 - well filled with water

As mentioned previously, groundwater samples were collected during the second monitoring visit and dispatched to the environmental laboratory for analysis. Prior to collecting the samples, low flow monitoring was undertaken, whereby conductivity, dissolved oxygen, pH and redox potential values of the groundwater were measured. The results of this monitoring are presented in the table overleaf.

Table 5 - Low Flow Groundwater Monitoring							
Monitoring	Depth of Monitoring Well (mbgl)	Time	Parameter				
Well		(mins)	Dissolved Oxygen (%)	Electrical Conductivity (μs/cm)	рН	Redox Potential (mV)	
		0	52.3	5757	7.62	254	
		5	12.5	5681	7.59	256	
		10	11.3	5534	7.57	240	
WS102	5.00	15	10.7	5528	7.58	238	
		20	10.0	5521	7.57	236	
		25	10.1	5522	7.58	237	
		30	10.0	5520	7.58	237	
		0	36.5	1379	7.17	261	
		5	15.0	1334	7.13	259	
		10	12.6	1295	7.11	247	
DSC1	4.10	15	8.9	1232	7.12	246	
		20	8.7	1159	7.12	243	
		25	8.8	1132	7.11	242	
		30	8.8	1120	7.12	241	
		0	21.0	1259	7.56	369	
		5	4.6	1187	7.58	321	
		10	10.8	1065	7.33	297	
DSCBH2	2.20	15	11.6	1066	7.34	291	
		20	9.9	899	7.32	250	
		25	9.5	789	7.34	246	
Notes		30	9.8	890	7.31	245	

Notes:

Dry - no groundwater encountered

n/m – not measured

6. CONCLUSIONS

Geosphere Environmental Ltd was commissioned by the Client, Kier Construction Ltd, to undertake a Phase 2 Ground Investigation for a proposed commercial development at the Greenwood Centre, Greenwood Place, Camden.

A ground investigation was undertaken at the former Greenwood Centre, Greenwood Place, Camden. The investigation comprised of the formation of cable percussive boreholes, windowless sampler boreholes and the excavation of a number of hand dug or vacuum excavated pits to varying depths. Monitoring wells were installed within three boreholes and three subsequent monitoring visits were undertaken after the intrusive works, in order to monitor ground gas and groundwater levels and collect samples of ground gas and groundwater.

The ground conditions beneath the site were found to comprise of varying thicknesses of surface materials and Made Ground overlying cohesive deposits of the London Clay Formation. A number of samples were collected during the ground investigation, for environmental and geotechnical purposes, and dispatched to the relevant laboratories for testing.

Whilst this report provides a detailed account of the intrusive investigation and the subsequent monitoring and laboratory testing undertaken, the interpretation of the laboratory results and the ground conditions encountered is the responsibility of the consulting engineers instructed by the Client.

ADDITIONAL INFORMATION

A. CONSULTATION

During the development of a contaminated site, consultation may be required for a number of reasons with a number of Regulatory Authorities. The following provides an indication as to the most likely Authorities with which consultation may be required. The remediation strategy would have to be agreed with the following:

- Local Authority. Consultation is likely to be required with a designated Contaminated Land Officer within the Environmental Health Department, as part of the planning process. The Local Authority is generally concerned with human health risks. Some Authorities now require 'Completion Certificates' to be signed off following remediation works;
- Environment Agency. Where a site is within a groundwater protection zone or has been designated as a special site, the Environment Agency is likely to be involved to ensure that controlled waters are protected.

In addition to which, the following may also be involved in the consultation process:

National House Building Council, NHBC. Section 4.1 of the NHBC Standards requires land management to be addressed.

 Water Authorities. They are likely to impose constraints on the nature of water supply pipes that are to be laid in contaminated land. Guidance on the selection of materials for water pipes is provided by the Water Regulations Advisory Scheme, (ref. R.4).

Based upon the results of any consultation, there may be specific remediation requirements imposed by one or more of the aforementioned Authorities.

B. SHORT-TERM MITIGATION MEASURES

During site preparatory works of any potential development/construction works, some short-term mitigation measures will be required to protect the site workers, neighbouring sites users and the environment from the potential effects of exposure to potentially contaminated materials and soils. The majority of the proposed measures represent good practice for the construction industry and include:

- Briefing all of the site workers of the identified contamination on site, and ensuring they are aware of the potential health effects from exposure;
- Where appropriate, workers who are at potentially risk due to their working in areas of identified contamination will be provided with suitable PPE;
- Ensuring good hygiene is enforced on site and washing facilities are maintained on the site. Workers are discouraged from smoking, eating or drinking without washing their hands first;
- Ensuring site personnel report any unusual complaints, such as skin rashes, nausea, light-headedness etc. which may be attributable to the contamination on the site;
- Ensuring that dust suppression measures are put into practice where contamination is becoming airborne;

- Site drainage should be prevented from entering the adjacent watercourse;
- Where necessary contamination will be prevented from dirtying adjacent highways, a wheel-wash or other method for cleaning vehicles may be required.

Where contaminated materials are being removed from the site they should be disposed of at a suitably licensed landfill, with a 'duty of care' system in place and maintained throughout the disposal operations. The classification of contaminated soils for disposal is dependent upon the individual landfill operator, which is in term dependent upon the operator's license.

C. DISCOVERY STRATEGY

There is the possibility that other sources of contamination may be present on the site which were not detected during the investigation. Should such contamination be identified or suspected during the site clearance or ground works, these should be dealt with accordingly. A number of options are available for handling this material, which include:

- The removal from site and disposal to a suitably licensed tip of all material suspected of being contaminated;
- Short-term storage of the suspected material while undertaking verification testing for suspected contamination. The storage area should be a contained area to ensure that contamination does not migrate and affect other areas of the site. Depending upon the amounts of material under consideration, this could be either a skip or a lined area;
- Treatment of the identified contamination in accordance with the site-specific Remediation Method Statement;
- Having a suitably experienced Environmental Engineer either on-call or with a watching brief for the visual and olfactory assessment of the material, and sampling for verification purposes.

Should any anomalous materials be identified within the soils, the Regulatory Authorities should be informed and where necessary the remedial strategy agreed.

APPENDICES

APPENDIX 1 – ACRONYMS AND ABBREVIATIONS

Acronym /	Definition
Abbreviation	
ACM	Asbestos containing material
ADE	Average daily exposure
ASPT	Average score per Taxon
BOD	Biochemical oxygen demand
ВН	Borehole
BRE	Building Research Establishment
BS	British Standard
ВТЕХ	Benzene, Toluene, Ethyl benzene and Xylenes
CIRIA	Construction Industry Research and Information Association
CLEA	Contaminated Land Exposure Assessment
CLR	Contaminated Land Research reports
DEFRA	Department of the Environment, Food and Rural Affairs (formerly the DoE and DETR)
DETR	Department of the Environment, Transport and the Regions (formerly the DoE and now Defra)
DO	Dissolved oxygen
DoE	Department of the Environment (then DETR and later Defra)
DQRA	Detailed quantitative risk assessment (Tier 2)
EA	Environment Agency
EPH	Extractable petroleum hydrocarbons
EQI	Environmental Quality Index
EQS	Environmental Quality Standards
GQRA	Generic quantitative risk assessment (Tier 1)
mAOD	Metres above ordnance datum
mbgl	Metres below ground level
NGR	National grid reference
NHBC	National House Building Council
NRA	National Rivers Authority (now the Environment Agency)
PACM	Potentially asbestos containing material

APPENDIX 2 - REPORT LIMITATIONS AND CONDITIONS

This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of future changes in the condition of the site.

The comments given in this report, and the opinions expressed herein, are based upon the readily available information collated for the report and an assessment based upon the current UK guidance, primarily the Contaminated Land Research (CLR) Reports, and most importantly CLR Report 3, (ref. **R.5**).

This report has been prepared for the sole use of the Client for the purposes described and no extended duty of care to any third party is implied or offered. Third parties using any information contained within this report do so at their own risk.

This report is prepared and written for the use stated herein; it should not be used for any other purposes without reference to Geosphere Environmental Limited. The report has been prepared in relation to the proposed end-use should another end-use been intended a further re-assessment may be required. It is likely that over time practises will improve and the relevant guidance and legislation be amended or superseded, which may necessitate a re-assessment of the site.

The report is limited to those aspects of land contamination specifically reported on and is necessarily qualified accordingly, no liability shall be accepted for other aspects which may be the result of gradual or sudden pollution incidents, past or present unrecorded land uses both on and off site and the potential for associated contaminant migration. The opinions expressed cannot be absolute due to the limitations of time and resources imposed by the agreed brief.

The accuracy of any map extracts cannot be guaranteed. It is possible that different conditions existed on site, between and subsequent to the various map surveys appended.

Whilst the report may express an opinion on possible configurations of strata between or beyond exploratory holes discussed or on the possible presence of features based on visual, verbal or published evidence, this is for guidance only and no liability can be accepted for its accuracy.

The conceptual model is based on the information available at the time of conducting this assessment and is an interpretative assessment of the conditions at the site. It should be noted that the redevelopment and/or further investigation of the site may reveal additional information and therefore alter the conceptual model and the conclusion of this report.

APPENDIX 3 - REFERENCES

- **R.1.** British Standards Institute: BS 10175 'Code of practice for the investigation of potentially contaminated sites', BSI 2011+A1:2013.
- **R.2.** British Standards Institute: BS 5930 'Code of practice for ground investigations', 2015.
- **R.3.** CIRIA Report C665, 'Assessing risks posed by hazardous ground gases to buildings', 2007.
- **R.4.** Water Regulations Advisory Scheme, Information and Guidance Note, October 2002, 'The Selection of Materials for Water Supply Pipes to be Laid in Contaminated Land'.
- **R.5.** CLR 3, 'Documentary research on industrial sites', Report by RPS Consultants Ltd, DoE 1994.

APPENDIX 4 - EXPLORATORY HOLE LOGS

Borehole Logs (BH01 and BH02)

Windowless Sample Hole Logs (WS101 and WS102)

CBR Pits (CBR3 and CBR4)

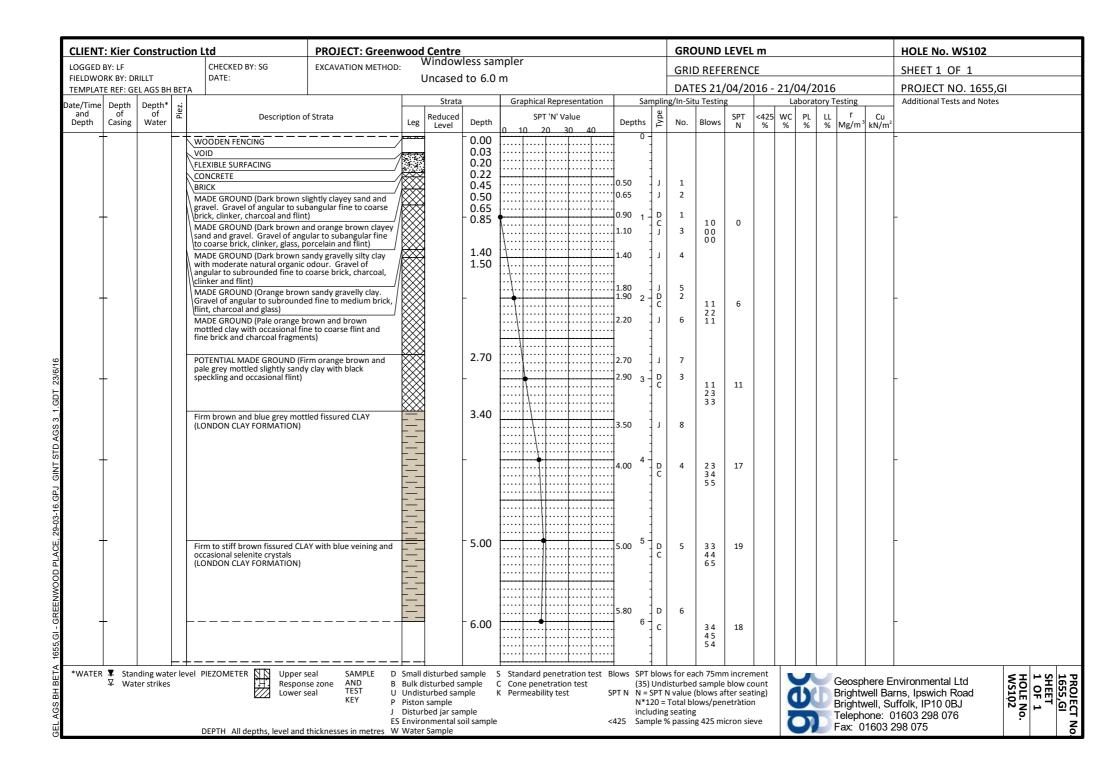
Foundation Inspection Pit Logs
(FIP1 to FIP4)

Hand Auger Logs
(HA1)

Dynamic Probe Logs (BH01, WS102)

CLIENT	: Kier (onst	ructio	n Ltd	PROJECT: Greenv	vood	Cohlo B	woules!	an /shall and augar'		GRO	DUND	LEVE	. m						HOLE No. BH01
LOGGED I				CHECKED BY: SG DATE:	EXCAVATION METHOD:				on (shell and auger)		GRI	D REFE	RENC	Œ						SHEET 1 OF 3
FIELDWO TEMPLAT			BH BET <i>A</i>			,	Uncased	1 (0 25.	5 M		DAT	ES -								PROJECT NO. 1655,GI
ate/Time	Depth	Depth	1* 2				Strata		Graphical Representation		ng/In-Si	tu Testin	g		La	borato	ry Test	ting		Additional Tests and Notes
and Depth	of Casing	of Wate	Piez.	Description of	Strata	Leg	Reduced Level	Depth	SPT 'N' Value 0 10 20 30 40	Depths ≥	No.	Blows	SPT N	<425 %	WC %		LL % M	r lg/m³	Cu kN/m²	
1	_			CONCRETE			4	0.00		0 -										No groundwater encountered during drilling
				MADE GROUND (Brown, grey as gravel of brick, concrete, clinker			3	0.10		# 1										
						\bowtie	3													
1	_			CONCRETE			Š	1.10		1 1										
			甘	MADE GROUND (Dark brown cla angular to subangular fine to co	ayey sand and gravel of			1.30	I	1 1										
				concrete and clinker)	urse briek, riirt,		X													
1	_		111			\bowtie	3			2.00 ² J+D	1									
						\bowtie				t t										
			1111			\bowtie	3			1 1										
1	-			MADE GROUND (Dark brown ar mottled slightly sandy slightly gr	nd orange brown		3	3.00		1+D	2									
				angular to subangular fine to moccasional brick and charcoal)	edium flint and	\bowtie														
			<u>:</u> :	occasional orien and charcoary		\bigotimes	3													
1	_			MADE GROUND (Brown, orange	brown and blue grey		9	4.00		4.00 ⁴ J+D	3									BRE SD1 suite, soil organic matter, moistur content, Atterberg limit, triaxial
				mottled slightly gravelly fissured subangular to subrounded fine occassional brick)	to coarse flint and	\bowtie				1 1										content, Attenders mine, triaxial
				occassional bricky		\bigotimes	3			: 1										
1	_		廿廿	Firm brown and blue grey mottl suspected volatile odour	ed fissured CLAY with		1	5.00		5.00 ⁵ J+D	4									BRE SD1 suite and moisture content
				(LONDON CLAY FORMATION)		<u> </u>				1										
			131			=				# #										
1	-					<u> </u>		<u> </u>		6.00 ⁶ J+D	5	23	18							Moisture content and Atterberg limit
										1		46								
			:[]:			=				_										
1	_		#							7.00 / J+D	6									Moisture content
			: <u> </u> : -	Stiff brown fissured CLAY with o	occasional salanita			7.50		7.50- UT10	n 1									Triaxial
			 	crystals (LONDON CLAY FORMATION)	occasional sciente	<u> </u>				7.95										TTGAG
1	-			(LONDON CLATTONMATION)				<u> </u>		8.00 ⁸ J+D	7									BRE SD1 suite and moisture content
						==				1 1										
						=	1			1 1										
1	_								•	9.00 ⁹ J+D	8	2 4 5 4	22							
												67								
							-													
*WATER	_ ▼ Stan	ding w	ater lev	el PIEZOMETER De Upper se		Small	disturbed:	E sample	S Standard penetration test E	lows SPT blov	vs for ea	ach 75mr	n increr	nent						
	∇ Wat	er strik	es	el PIEZOMETER Upper so Respons Lower so	_{eal} TEST U		listurbed s turbed san	ample	C Cone penetration test		listurbe	d sample	blow c	ount						Environmental Ltd Irns, Ipswich Road uffolk, IP10 0BJ 01603 298 076
				22	KEY _P	Piston	sample bed jar sar	•	,		Total b	lows/per					Bri	ightw	ell, Su	uffolk, IP10 0BJ
				DEPTH All depths, level and t	ES	Enviro	onmental s		•	425 Sample 9			icron sie	eve			le Fa	elepho ax 01	one: (1603 1	01603 298 076 P

CLIENT: Kier Constru	ction Ltd	PROJECT: Green	wood	Centre		7.1.11		GRO	DUND	LEVEL	. m					HOLE No. BH01
LOGGED BY: LF	CHECKED BY: SG DATE:	EXCAVATION METHOD				n (shell and auger)		GRI	D REFE	RENC	Œ					SHEET 2 OF 3
FIELDWORK BY: DRILLT TEMPLATE REF: GEL AGS BH				Jncased	10 25.5)		DAT	ES -							PROJECT NO. 1655,GI
Date/Time Depth Depth*	رة Description o			Strata		Graphical Representation		ng/In-Si	tu Testing			Laborat				Additional Tests and Notes
Depth Casing Water	Description of	of Strata	Leg	Reduced Level	Depth	SPT 'N' Value 0 10 20 30 40	Depths P	No.	Blows	SPT N	<425 %	WC PL % %	LL %	r Mg/m³	Cu kN/m²	
†	Stiff brown fissured CLAY with crystals	occasional selenite	=				10.00 10-J+D	9								
	(LÓNDON CLAY FORMATION) ((continued)					10.50- UT10	0 2								Triaxial
							10.95	_								_
			==				11.00 J+D	10								
	12.00 Becoming dark brown w	ith denth			-	•	12.00 12 D	11	23	23						-
	12.00 Becoming dark brown w	iai depai				•			45 68	23						
			==													
+	Stiff dark grey fissured CLAY w	ith occasional white fine	=		13.00		13.00 ¹³ D	12								-
	fossil fragments (LONDON CLAY FORMATION)						13.50- UT10	n 2								Triaxial
						•	13.95									manai
9							14.00 ¹⁴ D	13								pH & sulphate
23/67.							1									
- H					-		15 00 15	11	2.5	25						-
3 1.0							15.00 17+0	11	25 57 67	25						
AGS							1									
H H					_		16.00 16 J+D	12								-
GINT																
OBD.							16.50- UT10 16.95	0 4								Triaxial
3-16.0					_		17.00 17- J+D	13 18								
29-0								10								
ACE							18									-
14 00						•	18.00 D	19	25 67	33						
JOM									10 10							
 					-		19 00- 19 19 00- 19 17 10	0 5								_
91 - GRI			==				19.45									
1655, GI																Triaxial
. +	r level PIEZOMETER DUpper:	seal SAMPLE D	Small	disturbed s	ample s	Standard penetration test Bl	20- lows SPT blov	vs for ea	ach 75mn	n increr	nent					F = N (0) > -
*WATER \ Standing water \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Respon	nse zone AND B seal TEST U	Bulk d	listurbed sa turbed sam	ample (Cone penetration test		listurbe	d sample	blow co	ount	AV.	G	Geosph Grightwo	ere Ei ell Bai	nvironmental Ltd rns, Ipswich Road uffolk, IP10 0BJ 11603 298 076
1989	222	KEY P	Piston	sample bed jar san		·	N*120 = includin	Total b	iows/pen g	etràtio	n .	<u></u>	⊌ B	rightw	ell, Su	iffolk, IP10 0BJ
3 1 1	DEPTH All depths, level and	ES	Enviro	onmental so		</td <td>125 Sample</td> <td></td> <td></td> <td>icron sie</td> <td>eve</td> <td></td> <td></td> <td></td> <td></td> <td>298 075</td>	125 Sample			icron sie	eve					298 075


CLIENT	: Kier C	Constru	ıctio	n Ltd	PROJECT: Greenv	wood	Centre				GRO	UND L	EVEL	m						HOLE No. BH01
LOGGED E				CHECKED BY: SG	EXCAVATION METHOD				n (shell and auger)		GRID	REFE	RENC	E						SHEET 3 OF 3
FIELDWO!			I BETA	DATE:			Uncased	1 to 25.	5 M		DATE	S -								PROJECT NO. 1655,GI
	Depth	Depth*	Piez.	•			Strata	l I	· · · · · · · · · · · · · · · · · · ·		/In-Situ	Testing			Lat	orato	ry Tes	ting		Additional Tests and Notes
and Depth	of Casing	of Water	Pie	Description of	f Strata	Leg	Reduced Level	Depth	SPT 'N' Value Depths	Туре	No.	Blows	SPT N	<425 %		PL %	LL % M	r 1g/m³	Cu kN/m²	
+	-		Ηŧ	Stiff dark grey fissured CLAY wit	th occasional white fine	=		-	0 10 20 30 40 20.00 20	D	19									
				fossil fragments (LONDON CLAY FORMATION) (c	ontinued)	==-			1											
+	-							-	214	D	20	24	37							-
												8 8 9 12								
†	-							-	22.00 22	D	21									-
						=			22 50	T100	_									Triavial
						=			22.95	Γ100	0									Triaxial
†	-								22.50- b 22.95 23.00 23-	D	22									-
									24.00 24											
1	_					=			24.00 24	D	23	2 4 7 8	33							-
									1			99								
						=			25											
									25.00- ²⁵ 25.45	Г100	7									Triaxial
								25.45												Borehole completed at 25.45m depth
1	_																			_
									1											
1	-							Ļ	27											-
4	-							-	28											_
+	-							-	29											-
+	- T ::	alta a :	<u> </u>	-L DISTONATION ALTON		<u> </u>		<u> </u>	30	la:	f ·	h 75								-
WATER	▼ Stan ▼ Wat	er strikes	er leve	el PIEZOMETER Upper so Respons Lower so	se zone AND B	Bulk	disturbed s	ample (Jndist	urbed	sample	blow co	unt						nvironmental Ltd rns, Ipswich Road uffolk, IP10 0BJ 01603 298 076
				Lower se	KEY P	Pisto	sturbed san n sample			0 = To	otal blo	ws/pen					Br	ightw	/ell, Sι	rns, Ipswich Road ISE SET UNITED IN 1975
					ES	Envir	rbed jar sar onmental s				eating passing		ron sie	ve		7	Te	elepho	one: 0	01603 298 076 298 075
				DEPTH All depths, level and t				•									Fa	ax: U	1003 2	290 075

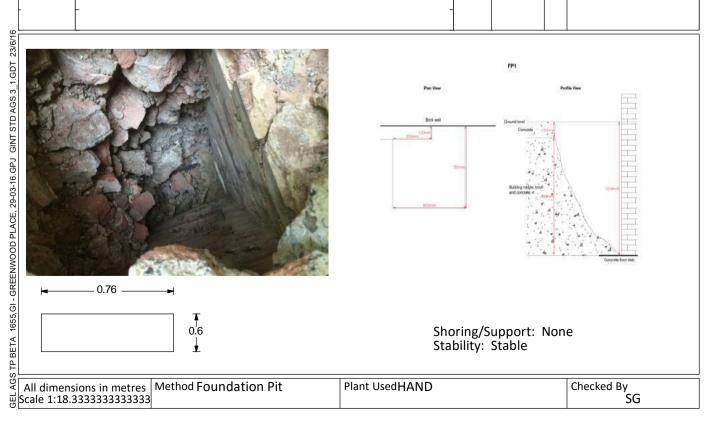
CLIENT: K	Kier C	onstru	ction	n Ltd	PROJECT: Greenwo	od Ce	entre					GRO	UND	LEVEL	m					HOLE No. BH02
LOGGED BY:				CHECKED BY: SG	EXCAVATION METHOD:				(shell and auger)			GRID	REFE	RENC	E					SHEET 1 OF 3
FIELDWORK TEMPLATE R			BETA	DATE:		Und	cased to 25.	5.U r	n			DATE	ES -							PROJECT NO. 1655,GI
and	of	Depth* of Water	Piez.	Description o	f Strata L		Strata educed Level Depth	1 0	Graphical Representation SPT 'N' Value	Sai Depths	Type Type	g/In-Situ No.	u Testing	SPT N	<425 W	C PL	LL	esting r Mg/m	Cu kN/m²	Additional Tests and Notes
	asing	Water		CONCRETE MADE GROUND (Dark red brown Gravel of angular to subangular concrete, wood, glass and fragrasbestos containing materials) CONCRETE MADE GROUND (Orange brown mottled gravelly silty clay. Grassubrounded fine to coarse bric concrete) Firm brown and orange brown (LONDON CLAY FORMATION) 2.50 Becoming gravelly with desubrounded fine to coarse flint Firm orange brown and blue grounded fine to coarse flint 4.00 Becoming silty and sheare 4.50 Selenite crystals present was a subangular free free free free free free free fr	vn silty sand and gravel. fine to coarse brick, ments of potential n and dark brown el of angular to c, charcoal and mottled fissured CLAY pth with subangular to ey mottled fissured	······································	- 1.20 1.30 - 2.00			1.70 2 - 2.00 2 - 2.45 2.00 2.50 3 - 3.45 3.60 4 - 5.00 5.50 5.00 6 - 5.50 5.00 6 - 5.50 5.00 6 - 5.50 5.50 5.50 6 - 5.50 5.50 6 - 5.50 6	В	1 1 2 3 4 2 3 4 5	13 22 22 22 11 13 34 44	8 13 17	19 30 31 28	24	69	1.98	80 80 127	Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH, PAH and asbestos screen Motsture content, Atterberg limit, metals, cyanide, pH, TPH, PAH and asbestos screen Triaxial Moisture content Moisture content Triaxial Triaxial Triaxial
+							-		•	9.00 ^{9 -} 9.50-	D D	9	23 55 77	24	28	3				Moisture content, pH & sulphate and sulphur content
				PIEZOMETER Upper s Respon Lower s	se zone AND B Bu eal TEST U Un KEY P Pis J Dis ES En	ulk distund ndisturb ston sar sturbed nvironm	urbed sample bed sample imple d jar sample nental soil sample	C K	·	(35) TN N = N*1	Undi SPT N 20 = 1 uding	sturbed I value (I Total blo seating	sample blows at ows/per	blow co fter seat etràtion	unt ing)		D	Brightv Brightv Teleph	vell Ba vell, Su one: 0	Invironmental Ltd rns, Ipswich Road uffolk, IP10 0BJ 01603 298 076 298 075

CLILIVI	. Kier C	onstruc	LIOI	n Lla	PROJECT: Green	IWOOL	Centre		un /ahall aud augau)		GK	OUND	LEVEL	. m						HOLE No. BH02
LOGGED				CHECKED BY: SG DATE:	EXCAVATION METHO	D:	Uncased		on (shell and auger)		GR	D REF	ERENC	Œ						SHEET 2 OF 3
	RK BY: DR E REF: GE	L AGS BH E	BETA				UIICASEO	1 10 25.	U III		DA ⁻	TES -								PROJECT NO. 1655,GI
ate/Time	Depth	Depth*	Piez.				Strata	-	Graphical Representation		pling/In-S	itu Testin	ng		La	borato	ory Test	ting		Additional Tests and Notes
and Depth	of Casing	of Water	Pic	Description o	f Strata	Leg	Reduced Level	Depth	SPT 'N' Value 0 10 20 30 40		No.	Blows	SPT N	<425 %	WC %	PL %	LL % M	r lg/m³	Cu kN/m²	
-				Stiff dark grey silty CLAY with o fossil fragments and bands of c (LONDON CLAY FORMATION) 13.20 - 13.60 Claystone band	ccasional fine white laystone		Level	-		10.00 10- 10.50 11- 11.00- 11.45 11.00 12- 12.50- 12.50- 12.95 13- 13.00 13- 14.45 15- 15.50- 15.50- 15.50- 17.00- 17.45 16- 18.00 18- 18.00 18- 18.00 18- 18.00 18- 18.00 18- 18.50- 18.95 19- 18.95-19-	D 10 D 11 100 D 13 D 13 D D D D D D D D	23 45 67	22	76	27		76		290 132	Atterberg limit and triaxial pH & sulphate Triaxial
*WATER		ding water er strikes	leve	PIEZOMETER Upper s Respon Lower s	se zone AND I eal TEST I KEY I	B Bulk of Undis D Pistor Distur	disturbed siturbed san n sample rbed jar sar onmental s	ample nple mple		(35) U T N N = SI N*12	Indisturbe PT N value D = Total b Iing seatir	ed sample (blows a blows/pe	e blow co after sea netration	ount ting) n		D.	Bri Bri	ightv ightv	vell Ba vell, Sι	invironmental Ltd rns, Ipswich Road uffolk, IP10 0BJ 01603 298 076

LOGGED BY: LF CHECKED BY: SG	I NOJECT. GI	wood Centre			GRO	DUND	LEVEL r	<u>n_</u> _				HOLE No. BH02
	EXCAVATION METHOD	J:		n (shell and auger)	GRI	D REF	ERENCE					SHEET 3 OF 3
FIELDWORK BY: DRILLT DATE: TEMPLATE REF: GEL AGS BH BETA		Uncased	ιο 25.0	<u>, </u>		ES -						PROJECT NO. 1655,GI
Date/Time Depth Depth* 장 전 De	tion of Strata	Strata		 	ling/In-Si	tu Testin	ĭ			tory Testin		Additional Tests and Notes
Depth Casing Water	tion of Strata	Leg Reduced Level	Depth	SPT 'N' Value Depths 20		Blows	SPT <	425 W % %	C PL %		m³ kN/m²	2
fossil fragments and (LONDON CLAY FORM	ON) (continued)		-	20.00-20-10-20-10-20-10-20-10-20-20-20-20-20-20-20-20-20-20-20-20-20		37 78 99	46	25		2.0		Triaxial, pH & sulphate and sulphur content
*WATER Standing water level PIEZOMETER Water strikes DEPTH All depths,	sponse zone AND B ower seal TEST U KEY P	Bulk disturbed sam Undisturbed sam Piston sample Disturbed jar san S Environmental so	ample (nple I	K Permeability test SPT N N = SPT N*120 includir	idisturbe FN value = Total b ng seatin	d sample (blows a lows/per g	e blow cou fter seatin netration	nt g)	O	Brigh Brigh Tele	ntwell Ba ntwell, S ohone: (Environmental Ltd arns, Ipswich Road uffolk, IP10 0BJ 01603 298 076 298 075

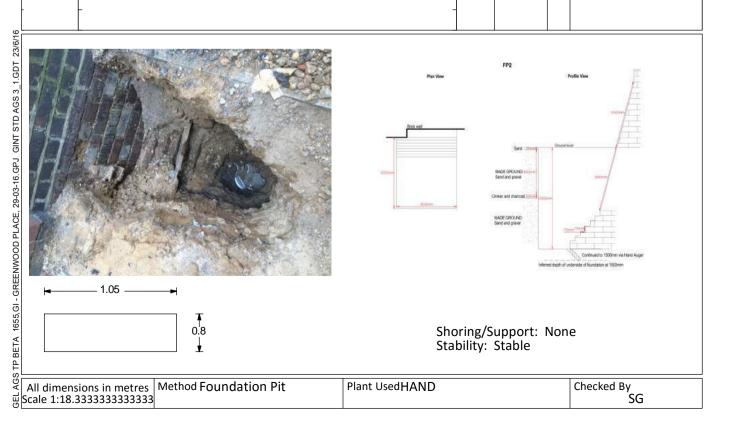
CLIENT	Kier C	onstru	ıctio	n Ltd	PROJECT: Greenv				mnlor		GRO	DUND	LEVE	. m						HOLE No. WS101		
OGGED E				CHECKED BY: SG	EXCAVATION METHOD:		Window		•		GRI	D REFE	RENC	Œ						SHEET 1 OF 1		
FIELDWOI FEMPLATI			I BETA	DATE:		·	Uncased	ı to 6.0	m		DAT	ES 20/	/04/20	 - 016	20/	04/20)16			PROJECT NO. 1655,G	il ——	
te/Time	Depth	Depth*					Strata	9	Graphical Representation	Samplir		tu Testin				aborato		sting		Additional Tests and Notes	·-	
and Depth	of Casing	of Water	Piez.	Description o	Strata	Leg	Reduced Level	Depth	SPT 'N' Value 0 10 20 30 40	Depths 2	No.	Blows	SPT N	<425 %	wc %	PL %	LL %	r Mg/m³	Cu kN/m²			
-	-			CONCRETE		22.22	4	0.00		0 -										-		
				SUB FLOOR VOID				0.05														
+	-							-		1 -										_		
				CONCRETE MADE GROUND (Grey brown si	ightly clayey sand and		g X X	1.20		4 4	1											
				gravel. Gravel of angular to sub brick, concrete and flint) MADE GROUND (Orange brown clay. Gravel of angular to subro	and blue grey mottled unded fine to coarse			1.50		1.60 D	2 1 3											
+	-		_	flint, occasional fine brick and c Firm orange brown and blue gro	harcoal fragments)			2.10		L 2 L	2	00 12 22	7							_		
				CLAY (LONDON CLAY FORMATION)						2.50	4	22										
										3.00 ³ D	3 5	11 12 33	9							_		
				3.50 Becoming silty and sheared	d with depth	=																
1	-			3.80 Fine selenite crystals prese	nt with depth			_		4.00 4 D	4	12	10							-		
										c		13										
+	-		-	Firm becoming stiff dark brown blue grey veining. (LONDON CLAY FORMATION)	fissured CLAY with			5.00	•	5.00 5 D	5	2223	13							_		
				(LONDON CLAY FORMATION) 5.30 Moderate suspected volat	le odour with depth					5.30	6	4 4										
										5.80- D	7 6											
1	-							6.00		6.00 6 C		20 23 31								-		
WATER	▼ Stan	ding wat	er leve	el PIEZOMETER Duppers			disturbed		S Standard penetration test E									٠		n iron montal I t-l	≤I	<u> </u>
	¥ Wat	er strikes		el PIEZOMETER Upper s Respons Lower s	eal TEST U KEY P	Undis Piston	listurbed s turbed sar sample bed jar sa	nple	C Cone penetration test K Permeability test	(35) Und PTN N = SPT I N*120 = including	N value Total bl	(blows a lows/per	fter sea	ting)		D	B	Brightv Brightv	vell Ba vell, Su	nvironmental Ltd rns, Ipswich Road uffolk, IP10 0BJ	HOLE No. WS101	유[
				DEPTH All depths, level and	ES	Enviro	onmental s		•	425 Sample 9			icron sie	eve	() T	eleph	one: 0 1603 2)1603 298 076 298 075		

Project				Client					TRIAL PIT No
	enwood Co	entre			struction Lt				CBR 3
Job No		Date	Ground	d Level (m)	Grid Referen	ce ()			CDN 3
	55,GI								
Fieldwork	-			Logged By					Sheet
DRI	LLI			LF		1			1 of 1
Depth		IDEA CINIC	DESCRIPT	ION		Legend	Depth	No	Remarks/Tests
0.00-0.10	-	UND (Yellow bro	own silty very gr rete and flint).	avelly fine to co	arse sand.		0.40	1,	Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH and PAH
 <	ions in metre	→				oring/S bility:	upport:		
All dimens Scale 1:8.33	ions in metre 333333333333	Method Hand	Method	Plant U	sedHAND				Checked By SG

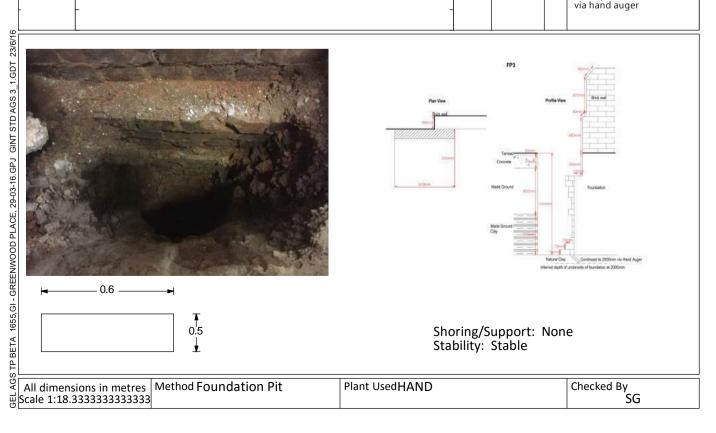


Greenwood Centre Job No 1655,GI Fieldwork By DRILLT Depth Depth Description Description Description Concrete Kier Construction Ltd Ground Level (m) Grid Reference () Logged By LF Description Description Description Concrete	Depth No	CBR 4 Sheet 1 of 1 Remarks/Tests
Tieldwork By Logged By DRILLT LF Depth DESCRIPTION Legend D 0.00-0.20 PATIO	Depth No	Sheet 1 of 1
Fieldwork By DRILLT LF Depth Depth DOUBLET	Depth No	1 of 1
DRILLT LF Depth DESCRIPTION Legend D 0.00-0.20 PATIO	Depth No	1 of 1
Depth DESCRIPTION Legend D	Depth No	T
0.00-0.20 PATIO	Depth No	Remarks/Tests
0.00-0.20 PATIO		
0.20-0.30 CONCRETE		
0.30-0.85 MADE GROUND (Dark brown very sandy very gravelly clay with bricks, wood, glass and fragments of flexible surfacing).	30 1J	Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH and PAH
Shoring/Supp. Stability: All dimensions in metres Method Hand Method Plant UsedHAND Scale 1:8:33333333333333333333333333333333333	port:	Checked By

Project			Client		TRIAL PIT No
Greenwood Co	entre		Kier Cor	nstruction Ltd	EID1
Job No 1655,GI	Date 01-04-16 01-04-16	Groun	d Level (m)	Grid Reference ()	FIP1
Fieldwork By		•	Logged By		Sheet
DRILLT			LF		1 of 1

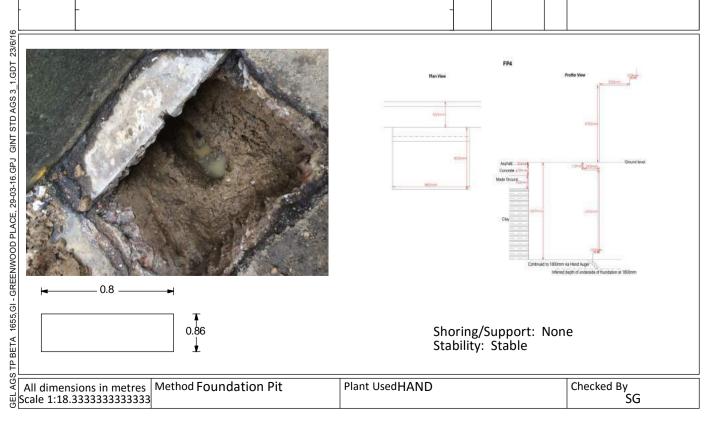

Depth	DESCRIPTION	Legend	Depth	No	Remarks/Tests
0.00-0.12	CONCRETE				
0.12-1.10	MADE GROUND (Red/brown/grey silty sand & gravel with bricks and cobbles of concrete. Gravel of angular to subangular fine to coarse brick, concrete and clinker)				
-	- -		0.50	1J	Metals, cyanide, pH, TPH, PAH and asbestos screen
-	- - -				
-		-			Hand pit completed at 1.1m due to concrete obstruction
-	- -				
-	_ _	_			
_	_				
-	- -				
_					

Project			Client		TRIAL PIT No
Greenwood Centre			Kier Construction Ltd		FIP2
Job No	Date 01-04-16	Groun	d Level (m)	Grid Reference ()	FIPZ
1655,GI	01-04-16				
Fieldwork By			Logged By		Sheet
DRILLT			LF		1 of 1


Depth	DESCRIPTION	Legend	Depth	No	Remarks/Tests
0.00-0.10	MADE GROUND (Patio slab)				,
0.10-0.80	MADE GROUND (Orange brown slightly clayey sand & gravel. Gravel of angular to subrounded fine to coarse flint and brick)		0.30	1 J	Metals, cyanide, pH, TPH, PAH and asbestos screen
0.80-0.86	angular to subrounded fine to coarse flint and brick)		0.80	2J	Metals, cyanide, pH, TPH, PAH and asbestos screen
1.00-1.40	MADE GROUND (Black/orange brown sand & gravel. Gravel of angular to _ subangular fine to coarse flint and clinker)		1.30	2D	
1.40-1.50	Dark grey/brown CLAY with occasional gravel of flint and moderate natural organic odour		1.40	1D	Hand pit extended to 1.5m via hand auger
-	- - -				
	-				

Project			Client		TRIAL PIT No
Greenwood Centre			Kier Construction Ltd		EID2
Job No 1655,GI	Date 01-04-16 01-04-16	Groun	d Level (m) Grid Reference ()		FIP3
Fieldwork By		•	Logged By		Sheet
DRILLT			LF		1 of 1

Depth	DESCRIPTION	Legend	Depth	No	Remarks/Tests
0.00-0.03	MADE GROUND (Flexible surfacing) - CONCRETE				
0.20-1.20	MADE GROUND (Dark brown very gravelly silty fine to coarse sand. – Gravel of angular to subangular fine to coarse brick, clinker and flint)		0.20 0.20	1D 3J	Fraction organic carbon
-	- - -		0.40	1J	Metals, cyanide, pH, TPH, PAH and asbestos screen
-	- - 		0.80	2J	
1.20-1.70	MADE GROUND (Orange brown/blue grey mottled gravelly sandy clay. Gravel of angular to subangular fine to medium brick and clinker)		1.20	4J	Metals, cyanide, pH, TPH and PAH
1.70-2.00	Soft to firm orange brown/blue grey mottled CLAY		1.70	3D	Seepage inflow of water at 1.7 m
_		-			Hand pit extended to 2.0m via hand auger



TRIAL PIT LOG

Project			Client		TRIAL PIT No
Greenwood C	entre		Kier Cor	nstruction Ltd	FIP4
Job No 1655,GI	Date 01-04-16 01-04-16	Groun	d Level (m)	Grid Reference ()	FIP4
Fieldwork By		•	Logged By	•	Sheet
DRILLT			LF		1 of 1

Depth	DESCRIPTION	Legend	Depth	No	Remarks/Tests
0.00-0.03 0.03-0.15	MADE GROUND (Flexible surfacing) - CONCRETE				
0.15-0.30	Concrete Orange brown sandy CLAY with occasional gravel of flint and brick				
0.13-0.30	_ Orange brown samuy CLAT with occasional graver or milit and brick				
0.30-1.80	Orange brown/pale grey mottled CLAY with occasional gravel of flint	<u> </u>	0.30	4D	
-	-		0.40	3J	
-	-	==	0.50-0.70	1J	Metals, cyanide, pH, TPH, PAH and asbestos screen
-	-				PAH and asbestos screen
-	-				
-	-				
-			0.90	1D	
_			0.90	ID	
_					
_					
	_		1.20	2D	
Ψ					Seepage inflow of water at
	-				Seepage inflow of water at 1.35 m
-	-				
	-				
-	-				
-			1.80	3D	Hand pit extended to 1.8m via hand auger
-	-	-			via hand auger
-	-	-			
-	-	-			

TRIAL PIT LOG

Project			Client		TRIAL PIT No
Greenwood Co	entre		Kier Cor	nstruction Ltd	HA1
Job No	Date 20-04-16	Groun	d Level (m)	Grid Reference ()	пат
1655,GI	20-04-16				
Fieldwork By			Logged By		Sheet
DRILLT			LF		1 of 1

0.00-0.10 PATIO SLAB 0.10-1.40 MADE GROUND (Orange brown and black slightly clayey sand and gravel. Gravel of angular to subrounded fine to coarse flint, charcoal and brick) Dark grey and brown CLAY with occassional gravel of flint and moderate natural organic odour 1.40 1J	Depth	DESCRIPTION	Legend	Depth	No	Remarks/Tests
				zeptii		
1.40-1.50 Dark grey and brown CLAY with occassional gravel of flint and moderate natural organic odour	0.10-1.40	MADE GROUND (Orange brown and black slightly clayey sand and gravel. Gravel of angular to subrounded fine to coarse flint, charcoal and brick)				
1.40-1.50 Dark grey and brown CLAY with occassional gravel of flint and moderate natural organic odour		-				
1.40-1.50 Dark grey and brown CLAY with occassional gravel of flint and moderate natural organic odour 1.40 1J	_	-				
1.40-1.50 Dark grey and brown CLAY with occassional gravel of flint and moderate natural organic odour						
1.40-1.50 Dark grey and brown CLAY with occassional gravel of flint and moderate natural organic odour	_	- -				
1.40-1.50 Dark grey and brown CLAY with occassional gravel of flint and moderate natural organic odour				4.40		
	1.40-1.50	natural organic odour		1.40	11)	
		_	-			
			-			

Shoring/Support: Stability:	
Plant UsedHAND	Checked By SG

DYNAMIC PROBE LOG

Project		PROBE No								
Gı	reenwood Cer	ntre								DD4 (DU04)
Job No		Date	06-04-16	Ground Leve	l (m)	Co-Ordina	ates ()			DP1 (BH01)
	655,GI		06-04-16 06-04-16							
Contracto										Sheet
G	eosphere Envi	ironme	ental Limited							1 of 1
Depth	Reading	gs		Diagram	(N100 \	/alues)			Torque	
(m)	Reading (blows/100	Ďmm)	5	10	15	20	25	30	(Nm)	Remarks
				1	1				_	
- -								į	-	
-								į		
- -									-	
<u> </u>	4									
	1 1	3 _							-	
- -	2	2								
- -	1 1	1						İ	-	
_ 2	1	່ 1						į		
	2 2	1						į		
-	1	' 1							-	
	1 1	1								
_ 3	1	' 1							_	
- - -	1 1	2								
- Г	1	1						į	-	
- - -	1 1	4						į		
_ 4	1	1 1							_	
- - L	1 2	4								
-	2	1 3							-	
- - -	2 2	0								
- - 5	2	2								
, - -	1 2	0						į		
	3	2						į	-	
	2 3	0						ļ		
- 6		3							_	
- - 									-	
- - -										
-								İ	-	
- - -								<u>į</u>		
Hamme	erWt(kg)		63.5							GENERAL REMARKS
	er Drop (mm)		760							KLWAKKS
Cone D	ia (mm)		50							
Cone T			DPH							
Dampe			None							
All dimer	nsions in metres le 1:43.75	Clie	ent Kier Cons	struction Ltd	Metho	od/ ^{Jsed} Dynami	ic Probes	ampling	L	ogged By PS
566						yı ıarı ıı	10110062	anping		ı o

DYNAMIC PROBE LOG

	Project												PROBE No
	Gre	eenwood Cer	tre										DD0 (14/0400)
	Job No		Data	21 04 1	2	Grour	nd Level (n	n)	Co-Ordin	nates ()			DP2 (WS102)
	165	55,GI		21-04-10 21-04-10	6								
	Contractor					1							Sheet
	Ge	osphere Envi	ronme	ntal Limi	ted								1 of 2
	D 11	Dandina				Diag	gram (N	1100 \/	duoc)			T	
	Depth (m)	Reading (blows/100	js)mm)		_					0=		Torque (Nm)	Remarks
	()				5	10)	15	20	25	30	()	
	-										İ		
	-										į		
	-												
	- 4												
	_ 1 [-	
											į		
	-										į		
	_ 2											-	
	-												
											į		
	-												
	3											_	
	-										į		
	-										į		
	_ 4											-	
	-										 		
	-										 		
23/6/16	-										į		
1.GD	- 3											-	
GS 3	-												
TD A											į		
INTS	- 0										į		
PJ G	6											-	
3-16.G													
29-03	-	1 1		h							 		
ACE,	-	1 2	2 _								į		
DD PL	<u> </u>		2										CENEDAL
NWOC	Hammer	Wt (kg)		63.5									GENERAL REMARKS
REE	Lommor	Dron (mm)		760									
GI-G	панттег	Drop (mm)		760		-							
1655,	Cone Di	a (mm)		50									
3BC	Cone Ty	ne											
CPRC	Cone Ty	he	_			\perp							
NAMIC	Damper			None									
AGS3 DYNAMIC PROBE 1655,GI - GREENWOOD PLACE, 29-03-16.GPJ GINT STD AGS 3_1.GDT	All dimens	ions in metres	Clie	nt Kier	Constr	uction	Ltd	Method/					ogged By
AGS	Scale	e 1:43.75						Hant Us	^{æd} Dynam	nic Probesa	ampling		LF

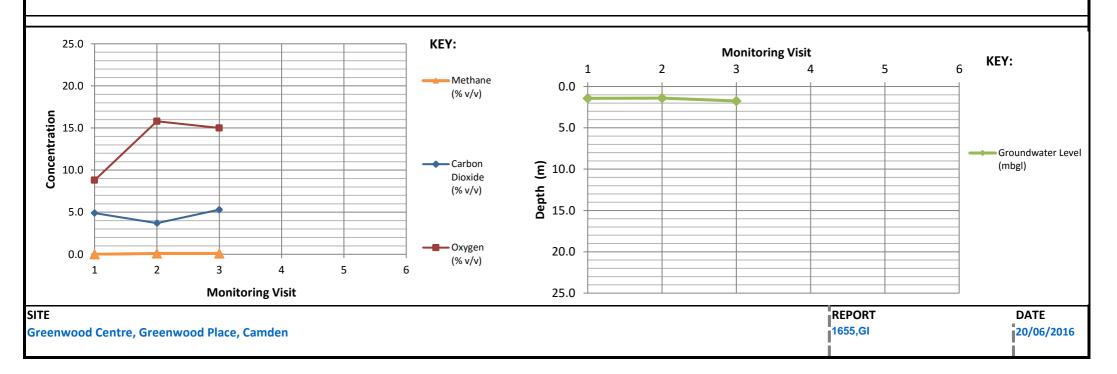
DYNAMIC PROBE LOG

Project											PROBE No
	ood Centr										DD2 (MC402)
Job No		Date	21-04-16	Gro	ound Level (r	n)	Co-Ord	inates ()			DP2 (WS102)
1655,GI	I		21-04-16								Object
Contractor	Farin										Sheet
Geosph	ere Enviro	nme	ental Limited								2 of 2
Depth F	Readings	;		Di	agram (N	1100 V a	alues)			Torqu	e Remarks
(m) (blo	ws/100n	nm)	5		10	15	20	25	30	(Nm)	Nemarks
4	4										-
-	4 4	4]
5	7	4		1					 		‡
	6 6	5		•]
[8 ₇	9	Ü							 		-
-	8 9	9		\perp					İ		-
9	11 10				\perp				İ]
9 13	10	12			+				į		1
	12								į]
<u> </u>	12 12 12	13							į		1
15	15 14 16								į		1
									į		1
10 17	16 18 24					\pm					1
		23						\Box]
- 23	28								⊐ ¦		1
		28							□ ¦]
	24 28 28								¦]
130		30									-
5-	31 31	,							31 31 32]
12 35	32	33							33 35		-
?[_ -									i I]
											1
5-									İ		-
13									į		-
5-									į		1
									į]
i- 2-									į]
		<u> </u>									 GENERAL
Hammer Wt	(kg)	+	63.5								REMARKS
Hammer Dro	p (mm)	\perp	760								
Cone Dia (m	m)	\perp	50								
Cone Type											
Damper			None								
All dimensions i Scale 1:43	n metres 3.75	Clie	ent Kier Const	ructio	on Ltd	Method/ Plant Us	^{ed} Dynar	mic Probes	sampling		Logged By LF

APPENDIX 5 – GAS AND GROUNDWATER MONITORING DATA

geosphere environmental Itd

xplorate	ory Hole Locat	ion	BH1									Date of Installation	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Com	ments
1	27/04/2016	1009	<0.1	<2	0.1	20.9	-0.2	241.0	<0.1	56	Dry	Cold, sunny, dry and bree	zy
2	12/05/2016	996	<0.1	<2	0.2	19.6	-0.4	326.0	1.0	38	Dry	Cool, sunny, dry and calm	
3	19/05/2016	1004	<0.1	<2	0.3	20.0	+0.5	406.0	<0.1	35	Dry	Cool, overcast, damp and	calm
strumer	nt Used:	GA2000 gas anal	yser				NOTE:				n/a nm	Not applicable Not measured	
25	.0				KEY	:		1	2	Monito 3	ring Visit	5	6 KEY:
20	.0	•				Methane (% v/v)	0.0		2	3	4	3	
Concentration 10	0						5.0						Groundwater Le
Concen	.0				-	Carbon Dioxide (% v/v)	Depth (m) 15.0						(mbgl)
5	.0						å 15.0						
0	.0	2 3	4	5		Oxygen (% v/v)	20.0					ed at 0.0 m - no ring monitoring	
	1	_	toring Visit	5	6		25.0		9	135		<u> </u>	
TE reenwo	ood Centre, Gr	eenwood Place	, Camden									REPORT 1655,GI	DATE 20/06/201


xplorato	ory Hole Locat	ion	BH2									Date of Installation	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	e Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Comr	nents
1	27/04/2016	1009	<0.1	<2	0.1	20.9	-0.2	9.0	<0.1	1.0	Dry	Cold, sunny, dry and breez	у
2	12/05/2016	996	<0.1	<2	0.1	20.9	-0.5	19.0	<0.1	<0.1	Dry	Cool, sunny, dry and calm	
3	19/05/2016	1004	<0.1	<2	0.1	21.2	+0.5	12.0	<0.1	<0.1	Dry	Cool, overcast, damp and	calm
strumer MARKS		GA2000 gas anal	yser				NOTE:				n/a nm	Not applicable Not measured	
25.	.0				KEY	:		1	2	Monito 3	ring Visit	5	6 KEY :
20.	.0					1ethane % v/v)	0.0		2	3			
15.	.0						5.0						Groundwater Le
Concervation 10.	.0					arbon ioxide % v/v)	Debth (m) 10.0 15.0						(mbgl)
5.	.0						å 15.0						- - - -
0.	.0	2 3	4	5	6	oxygen % v/v)	20.0	Wher	_	rater recor ountered (m - no groundwater nitoring	
	1		oring Visit	3	U		25.0						-
TE reenwo	ood Centre, Gr	eenwood Place	, Camden									REPORT 1655,GI	DATE 20/06/2016

GROUND GAS AND GROUNDWATER MONITORING DATA

geosphere environmental Itd

xplorato	ry Hole Locat	ion	WS102									Date of Installation	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Com	ments
1	27/04/2016	1009	<0.1	<2	0.9	20.9	-0.2	15.0	<0.1	<0.1	Dry	Cold, sunny, dry and bree	zy
2	12/05/2016	996	0.1	1	0.7	20.7	-0.3	28.0	<0.1	4.0	2.30	Cool, sunny, dry and calm	
3	19/05/2016	1005	<0.1	<2	1.0	20.7	+0.5	<0.1	<0.1	<0.1	2.00	Cool, overcast, damp and	calm
strumen MARKS	t Used:	GA2000 gas anal	yser				NOTE:				n/a nm	Not applicable Not measured	
25.0	n				KEY					Monito	oring Visit		
20.0						Methane (% v/v)	0.0 5.0	1	2	3	4	5	6 KEY:
Concutration 10.0						Carbon Dioxide (% v/v)	(w) 10.0 pot 15.0						Groundwater Le
5.0						Oxygen (% v/v)	20.0	Whe) m - no groundwater	
0		2 3 Monit o	4 oring Visits	5	6	(/~ */ */	25.0		en	countered	during mo	onitoring	
TE												REPORT	DATE
reenwo	od Centre, Gr	eenwood Place	, Camden									1655,GI	20/06/201

xplorato	ry Hole Locat	ion	DCS1									Date of Installation
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Comments
1	27/04/2016	1010	<0.1	<2	4.9	8.8	-0.1	3.0	<0.1	<0.1	1.43	Cold, sunny, dry and breezy
2	12/05/2016	996	0.1	1	3.7	15.8	-0.5	5.0	<0.1	<0.1	1.40	Cool, sunny, dry and calm
3	19/05/2016	1004	0.1	1	5.3	15.0	+0.5	3.0	<0.1	<0.1	1.75	Cool, overcast, damp and calm
nstrumen	t Used:	GA2000 gas anal	yser				NOTE:				n/a	Not applicable
EMARKS											nm	Not measured

cplorato	ory Hole Locat	ion	DCSBH2									Date of Installation	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Co	mments
1	27/04/2016	1010	<0.1	<2	2.7	18.3	-0.1	1.0	<0.1	<0.1	1.66	Cold, sunny, dry and bro	eezy
2	12/05/2016	996	<0.1	<2	5.2	15.3	-0.3	3.0	<0.1	<0.1	1.65	Cool, sunny, dry and cal	m
3	19/05/2016	1004	<0.1	3	5.3	12.3	+0.4	23.0	<0.1	45.0	1.40	Cool, overcast, damp ar	nd calm
MARKS		GA2000 gas analy	yser				NOTE:				n/a nm	Not applicable Not measured	
25.	0				KEY	:		1	2	Monitorin	g Visit	5	6 KEY:
20.	0					Methane % v/v)	0.0		2	3	-		d RET.
:ration 15.	0						5.0						
Concentration 10.	0					Dioxide	De bth (#) 15.0						Groundwater Le (mbgl)
5.	0				(% v/v)	15.0						
0.		2 3	4	5		Oxygen % v/v)	20.0						
			toring Visit				25.0						
TE reenwo	od Centre, Gr	eenwood Place	, Camden									REPORT 1655,GI	DATE 20/06/201

xplorato	ory Hole Locat	ion	DCS4									Date of Installation	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Com	ments
1	27/04/2016	1010	-	-	-	-	-	-	-	-	1.43	Cold, sunny, dry and bree	zy
2	12/05/2016	996	0.1	1	1.0	20.2	-0.3	<0.1	<0.1	<0.1	Dry	Cool, sunny, dry and calm	l
3	19/05/2016	1004	<0.1	1	0.9	20.3	+0.5	<0.1	<0.1	<0.1	Dry	Cool, overcast, damp and	calm
strumen EMARKS		GA2000 gas anal	yser				NOTE:				n/a nm	Not applicable Not measured	
25.	0				KEY	:		1	2	Monitorin 3	g Visit	5 6	5 KEY:
20.	0					Лethane % v/v)	0.0	1	2	3	-	3	KET.
ration 15.	0						5.0						
Concentration 10.	0					Carbon Dioxide % v/v)	Depth (m) 15.0						Groundwater Le
5.	0												
0.		2 3	4	5		0xygen % v/v)	20.0	Where			ded at 0.0 i during mor	m - no groundwater nitoring	
		Monit	toring Visit				25.0					1	J
TE reenwo	od Centre, Gr	eenwood Place	, Camden									REPORT 1655,GI	DATE 20/06/201

APPENDIX 6 – ENVIRONMENTAL LABORATORY TEST RESULTS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 16/02271

Issue Number: 1 **Date:** 25 April, 2016

Client: Geosphere Environmental Ltd

Unit 11

Brightwell Barns Ipswich Road Brightwell Ipswich Suffolk IP10 0BJ

Project Manager: Lianne Fountain

Project Name: Greenwood Place Resource Centre

Project Ref: 1655, GI
Order No: 1655GI
Date Samples Received: 19/04/16
Date Instructions Received: 19/04/16
Date Analysis Completed: 25/04/16

Prepared by: Approved by:

Kate Ellison Lianne Bromiley

Administrative Assistant Senior Client Manager

					Client Proj	ect ner. 10	55, GI		
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5				
Client Sample No	J1	J2	J3	J4	J5				
Client Sample ID	BH01	BH01	BH01	BH01	BH01				
Depth to Top	2.00	3.00	4.00	5.00	6.00				
Depth To Bottom									
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16				
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES				Method ref
Sample Matrix Code	5A	5A	5A	3	3			Units	Meth
% Moisture _A	10.6	-	14.1	18.5	18.8			% w/w	A-T-044
% Stones >10mm _A #	<0.1	24.8	9.6	<0.1	<0.1			% w/w	A-T-044
pH _D ^{M#}	11.61	-	8.92	8.02	7.85			pН	A-T-031s
Sulphate (acid soluble) _D M#	4400	-	5800	5600	11000			mg/kg	A-T-028s
Cyanide (total) _A ^{M#}	<1	-	<1	1	<1			mg/kg	A-T-042sTCN
Phenois - Total by HPLC _A	<0.2	-	<0.2	<0.2	<0.2			mg/kg	A-T-050s
Sulphide _A	<15	-	<15	<15	<15			mg/kg	A-T-S2-s
Total Organic Carbon _D ^{M#}	-	0.74	-	-	-			% w/w	A-T-032s
Arsenic _D ^{M#}	7	-	7	3	4			mg/kg	A-T-024s
Cadmium _D ^{M#}	0.7	-	0.7	1.0	1.0			mg/kg	A-T-024s
Copper _D ^{M#}	35	-	15	17	16			mg/kg	A-T-024s
Chromium _D ^{M#}	21	-	26	40	33			mg/kg	A-T-024s
Chromium (hexavalent) _D	<1	-	-	<1	-			mg/kg	A-T-040s
Lead _D ^{M#}	54	-	42	12	11			mg/kg	A-T-024s
Mercury _D	1.28	-	0.23	<0.17	0.33			mg/kg	A-T-024s
Nickel _D ^{M#}	16	-	21	31	31			mg/kg	A-T-024s
Selenium _D	<1	-	<1	<1	2			mg/kg	A-T-024s
Vanadium _D ^{M#}	27	-	-	56	-			mg/kg	A-T-024s
Zinc _D ^{M#}	43	-	41	55	52			mg/kg	A-T-024s

Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5			
Client Sample No	J1	J2	J3	J4	J5			
Client Sample ID	BH01	BH01	BH01	BH01	BH01			
Depth to Top	2.00	3.00	4.00	5.00	6.00			
Depth To Bottom								
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16			*
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			Method ref
Sample Matrix Code	5A	5A	5A	3	3		Units	Meth
Asbestos in Soil (inc. matrix)								
Asbestos in soil _A #	Chrysotile	NAD	-	-	-			A-T-045
Asbestos Matrix (microscope) _A	Loose Fibres	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A		-	-			Gravimetry

						ect ner. 10		 	
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5				
Client Sample No	J1	J2	J3	J4	J5				
Client Sample ID	BH01	BH01	BH01	BH01	BH01				
Depth to Top	2.00	3.00	4.00	5.00	6.00				
Depth To Bottom									
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16				Į.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES				od re
Sample Matrix Code	5A	5A	5A	3	3			Units	Method ref
PAH 16									
Acenaphthene _A ^{M#}	<0.01	-	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	-	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	-	<0.02	<0.02	<0.02			mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	•	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	•	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	•	<0.05	<0.05	<0.05			mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	•	<0.05	<0.05	<0.05			mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	•	<0.07	<0.07	<0.07			mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	•	<0.06	<0.06	<0.06			mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	•	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08	•	<0.08	<0.08	<0.08			mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	•	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	•	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	•	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.07	•	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	-	<0.07	<0.07	<0.07			mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	<0.08	-	<0.08	<0.08	<0.08			mg/kg	A-T-019s
TPH Banded 1									
>C6-C8 _A #	<10	-	<10	<10	<10			mg/kg	A-T-007s
>C8-C10 _A #	<10	-	<10	<10	<10		_	mg/kg	A-T-007s
>C10-C12 _A #	<10	-	<10	<10	<10		_	mg/kg	A-T-007s
>C12-C16 _A #	<10	-	<10	<10	<10			mg/kg	A-T-007s
>C16-C21 _A #	<10	-	<10	<10	<10			mg/kg	A-T-007s
>C21-C40 _A	23	-	<10	<10	<10			mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40) _A	23	-	<10	<10	<10			mg/kg	A-T-007s

				1			,		
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5				
Client Sample No	J1	J2	J3	J4	J5				
Client Sample ID	BH01	BH01	BH01	BH01	BH01				
Depth to Top	2.00	3.00	4.00	5.00	6.00				
Depth To Bottom									
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16				.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES				od re
Sample Matrix Code	5A	5A	5A	3	3			Units	Method ref
svoc									
Hexachlorobenzene _A	-	-	-	<100	-			μg/kg	A-T-052s
Diethyl phthalate _A	-	-	-	<100	-			μg/kg	A-T-052s
Dimethyl phthalate _A	-	-	-	<100	-			μg/kg	A-T-052s
Dibenzofuran _A	-	-	-	<100	-			μg/kg	A-T-052s
Carbazole _A	-	-	-	<100	-			μg/kg	A-T-052s
Butylbenzyl phthalate A	-	•	-	<100	-			μg/kg	A-T-052s
Bis(2-ethylhexyl)phthalate _A	-	-	-	<100	-			μg/kg	A-T-052s
Bis(2-chloroethoxy)methane _A	-	-	-	<100	-			μg/kg	A-T-052s
Bis(2-chloroethyl)ether _A	-	-	-	<100	-			μg/kg	A-T-052s
4-Nitrophenol _A	-	-	-	<100	-			μg/kg	A-T-052s
4-Methylphenol _A	-	-	-	<100	-			μg/kg	A-T-052s
4-Chloro-3-methylphenol _A		-	-	<100	-			μg/kg	A-T-052s
2-Nitrophenol _A	-			<100	•			μg/kg	A-T-052s
2-Methylphenol _A	-		•	<100	•			μg/kg	A-T-052s
2-Chlorophenol _A	-	•	•	<100	·			μg/kg	A-T-052s
2,6-Dinitrotoluene _A	•	•	•	<100	•			μg/kg	A-T-052s
2,4-Dinitrotoluene _A	-		•	<100	•			μg/kg	A-T-052s
2,4-Dimethylphenol _A	-	•	•	<100	·			μg/kg	A-T-052s
2,4-Dichlorophenol _A	-	•	•	<100	•			μg/kg	A-T-052s
2,4,6-Trichlorophenol _A	-	•	•	<100	•			μg/kg	A-T-052s
2,4,5-Trichlorophenol _A	-	-	-	<100	-			μg/kg	A-T-052s
2-Chloronaphthalene _A	-	-	-	<100	-			μg/kg	A-T-052s
2-Methylnaphthalene _A	-	-	-	<100	-			μg/kg	A-T-052s
Bis(2-chloroisopropyl)ether _A	-	-	-	<100	-			μg/kg	A-T-052s
Phenol _A	-	-	-	<100	-			μg/kg	A-T-052s
Pentachlorophenol _A	-	-	-	<100	-			μg/kg	A-T-052s
n-Nitroso-n-dipropylamine _A	-	-	-	<100	-			μg/kg	A-T-052s
n-Dioctylphthalate _A	-	-	-	<100	-			μg/kg	A-T-052s
n-Dibutylphthalate _A	-	-	-	<100	-			μg/kg	A-T-052s
Nitrobenzene _A	-	-	-	<100	-			μg/kg	A-T-052s
Isophorone _A	-	-	-	<100	-			μg/kg	A-T-052s
Hexachloroethane _A	-	-	-	<100	-			μg/kg	A-T-052s

Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5			
Client Sample No	J1	J2	J3	J4	J5			
Client Sample ID	BH01	BH01	BH01	BH01	BH01			
Depth to Top	2.00	3.00	4.00	5.00	6.00			
Depth To Bottom								
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16			+
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		,	Method ref
Sample Matrix Code	5A	5A	5A	3	3		Units	Meth
Hexachlorocyclopentadiene _A	-	-	-	<100	-		μg/kg	A-T-052s
Perylene _A	-		-	<100	•		μg/kg	A-T-052s

		1		1		ect her: 10	1	1	-
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5				
Client Sample No	J1	J2	J3	J4	J5				
Client Sample ID	BH01	BH01	BH01	BH01	BH01				
Depth to Top	2.00	3.00	4.00	5.00	6.00				
Depth To Bottom									
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16				ţ
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES				od re
Sample Matrix Code	5A	5A	5A	3	3			Units	Method ref
voc									
Dichlorodifluoromethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Chloromethane _A #	-	-	-	<10	-			μg/kg	A-T-006s
Vinyl Chloride _A #	-	-	-	<1	-			μg/kg	A-T-006s
Bromomethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Chloroethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Trichlorofluoromethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,1-Dichloroethene _A #	-	-	-	12	-			μg/kg	A-T-006s
Carbon Disulphide _A #	-	-	-	<1	-			μg/kg	A-T-006s
Dichloromethane A	-	-	-	21	-			μg/kg	A-T-006s
trans 1,2-Dichloroethene _A #	-	-	-	4	-			μg/kg	A-T-006s
1,1-Dichloroethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
cis 1,2-Dichloroethene,#	-	-	-	15	-			μg/kg	A-T-006s
2,2-Dichloropropane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Bromochloromethane _A #	-	-	-	<5	-			μg/kg	A-T-006s
Chloroform _A #	-	-	-	85	-			μg/kg	A-T-006s
1,1,1-Trichloroethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,1-Dichloropropene _A #	-	-	-	<1	-			μg/kg	A-T-006s
Carbon Tetrachloride _A #	-	-	•	<1	-			μg/kg	A-T-006s
1,2-Dichloroethane _A #	-	-	-	29	-			μg/kg	A-T-006s
Benzene _A #	-	-	-	4	-			μg/kg	A-T-006s
Trichloroethene _A #	-	-	•	21100	-			μg/kg	A-T-006s
1,2-Dichloropropane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Dibromomethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Bromodichloromethane _A #	-	-	-	<10	-			μg/kg	A-T-006s
cis 1,3-Dichloropropene _A #	-	-	-	<1	-			μg/kg	A-T-006s
Toluene A#	-	-	-	10	-			μg/kg	A-T-006s
trans 1,3-Dichloropropene _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,1,2-Trichloroethane _A #	-	-	-	243	-			μg/kg	A-T-006s
1,3-Dichloropropane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Tetrachloroethene _A #	-	-	-	3690	-			μg/kg	A-T-006s
Dibromochloromethane _A #	-	-	-	<3	-			μg/kg	A-T-006s
1,2-Dibromoethane _A #	-	-	-	<1	-			μg/kg	A-T-006s

Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5			
Client Sample No	J1	J2	J3	J4	J5			
Client Sample ID	BH01	BH01	BH01	BH01	BH01			
Depth to Top	2.00	3.00	4.00	5.00	6.00			
Depth To Bottom								
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16			+
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			od re
Sample Matrix Code	5A	5A	5A	3	3		Units	Method ref
Chlorobenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	-	-	6	-		μg/kg	A-T-006s
Ethylbenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
m & p Xylene _A #	-	-	-	4	-		μg/kg	A-T-006s
o-Xylene _A #	-	-	-	<1	-		μg/kg	A-T-006s
Styrene _A #	-	-	-	<1	-		μg/kg	A-T-006s
Bromoform _A #	-	-	-	<1	-		μg/kg	A-T-006s
Isopropylbenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	-	-	2	-		μg/kg	A-T-006s
1,2,3-Trichloropropane _A #	-	-	-	<1	-		μg/kg	A-T-006s
Bromobenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
n-Propylbenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
2-Chlorotoluene _A #	-	-	-	<1	-		μg/kg	A-T-006s
1,3,5-Trimethylbenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
4-Chlorotoluene _A #	-	-	-	<1	-		μg/kg	A-T-006s
tert-Butylbenzene _A #	-	-	-	<2	-		μg/kg	A-T-006s
1,2,4-Trimethylbenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
sec-Butylbenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
4-Isopropyltoluene _A #	-	-	-	<1	-		μg/kg	A-T-006s
1,3-Dichlorobenzene _A	-	-	-	<1	-		μg/kg	A-T-006s
1,4-Dichlorobenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
n-Butylbenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
1,2-Dichlorobenzene _A #	-	-	-	<1	-		μg/kg	A-T-006s
1,2-Dibromo-3-chloropropane _A	-	-	-	<2	-		μg/kg	A-T-006s
1,2,4-Trichlorobenzene _A	-	-	-	<3	-		μg/kg	A-T-006s
Hexachlorobutadiene _A #	-	-	-	<1	-		μg/kg	A-T-006s
1,2,3-Trichlorobenzene _A	-	-	-	<3	-		μg/kg	A-T-006s

Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5			
Client Sample No	J1	J2	J3	J4	J5			
Client Sample ID	BH01	BH01	BH01	BH01	BH01			
Depth to Top	2.00	3.00	4.00	5.00	6.00			
Depth To Bottom								
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16			_
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			od re
Sample Matrix Code	5A	5A	5A	3	3		Units	Method ref
TPH UKCWG								
Ali >C5-C6 _A #	-	-	-	<0.01	-		mg/kg	A-T-022s
Ali >C6-C8 _A #	-	-	-	<0.01	-		mg/kg	A-T-022s
Ali >C8-C10 _A #	-	-	-	<0.01	-		mg/kg	A-T-022s
Ali >C10-C12 _A #	-	-	-	<0.1	-		mg/kg	A-T-023s
Ali >C12-C16 _A #	-	-	-	<0.1	-		mg/kg	A-T-023s
Ali >C16-C21 _A #	-	-	-	<0.1	-		mg/kg	A-T-023s
Ali >C21-C35 _A #	-	-	-	<0.1	-		mg/kg	A-T-023s
Ali >C35-C44 _A	-	-	-	<0.1	-		mg/kg	A-T-023s
Total Aliphatics _A	-	•	•	<0.1	-		mg/kg	A-T-023s
Aro >C5-C7 _A #	•	•	•	<0.01	-		mg/kg	A-T-022s
Aro >C7-C8 _A #	•	•	•	<0.01	-		mg/kg	A-T-022s
Aro >C8-C9 _A #	•	•		<0.01	-		mg/kg	A-T-022s
Aro >C9-C10 _A #	-	-	-	<0.01	-		mg/kg	A-T-022s
Aro >C10-C12 _A #	-	-	-	<0.1	-		mg/kg	A-T-023s
Aro >C12-C16 _A #	-	-	-	<0.1	-		mg/kg	A-T-023s
Aro >C16-C21 _A #	-	-	-	<0.1	-		mg/kg	A-T-023s
Aro >C21-C35 _A #	-	-	-	<0.1	-		mg/kg	A-T-023s
Aro >C35-C44 _A	-	-	-	<0.1	-		mg/kg	A-T-023s
Total Aromatics _A	-	-	-	<0.1	-		mg/kg	A-T-023s
TPH (Ali & Aro) _A	-	-	-	<0.1	-		mg/kg	A-T-023s
BTEX - Benzene _A #	-	-	-	<0.01	-		mg/kg	A-T-022s
BTEX - Toluene _A #	-	-	-	<0.01	-		mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	-	-	-	<0.01	-		mg/kg	A-T-022s
BTEX - m & p Xylene _A #	-	-	-	<0.01	-		mg/kg	A-T-022s
BTEX - o Xylene _A #	-	-	-	<0.01	-		mg/kg	A-T-022s
MTBE _A #	-	-	-	<0.01	-		mg/kg	A-T-022s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable. A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 16/02115

Issue Number: 1 **Date:** 15 April, 2016

Client: Geosphere Environmental Ltd

Unit 11

Brightwell Barns Ipswich Road Brightwell Ipswich Suffolk IP10 0BJ

Project Manager: Lianne Fountain

Project Name: Greenwood Place Resource Centre

Project Ref: 1655, GI
Order No: 1655, GI
Date Samples Received: 08/04/16
Date Instructions Received: 11/04/16
Date Analysis Completed: 15/04/16

Prepared by: Approved by:

Danielle Brierley

Administrative Assistant I

John Gustafson

Director

				0.1101111111	ject Ref: 16	oo, a.		
Lab Sample ID	16/02115/1	16/02115/2	16/02115/3					
Client Sample No	J1	J3	J4					
Client Sample ID	FIP1	FIP3	FIP3					
Depth to Top	0.50	0.20	1.20					
Depth To Bottom								
Date Sampled	01-Apr-16	06-Apr-16	06-Apr-16					-
Sample Type	Solid	Soil - ES	Soil - ES					Method ref
Sample Matrix Code	7	5AB	5AB				Units	Meth
% Stones >10mm _A #	<0.1	29.2	10.4				% w/w	A-T-044
pH _D ^{M#}	12.22	-	8.76				pН	A-T-031s
Cyanide (total) _A ^{M#}	<1	-	<1				mg/kg	A-T-042sTCN
Fraction of organic carbon _D #	-	0.0110	-				N/A	A-T-032 FOC
Arsenic _D ^{M#}	5	-	6				mg/kg	A-T-024s
Cadmium _D ^{M#}	0.5	-	1.0				mg/kg	A-T-024s
Copper _D ^{M#}	6	-	29				mg/kg	A-T-024s
Chromium _D ^{M#}	21	-	44				mg/kg	A-T-024s
Lead _D ^{M#}	14	-	38				mg/kg	A-T-024s
Mercury _D	0.41	-	<0.17				mg/kg	A-T-024s
Nickel _D ^{M#}	14	-	31				mg/kg	A-T-024s
Selenium _D	2	-	<1				mg/kg	A-T-024s
Zinc _D ^{M#}	28	-	84				mg/kg	A-T-024s
TPH total (>C6-C40) _A	<10	-	<10				mg/kg	A-T-007s

Lab Sample ID	16/02115/1	16/02115/2	16/02115/3				
Client Sample No	J1	J3	J4				
Client Sample ID	FIP1	FIP3	FIP3				
Depth to Top	0.50	0.20	1.20				
Depth To Bottom							
Date Sampled	01-Apr-16	06-Apr-16	06-Apr-16				*
Sample Type	Solid	Soil - ES	Soil - ES				Method ref
Sample Matrix Code	7	5AB	5AB			Units	Meth
Asbestos in Soil (inc. matrix)							
Asbestos in soil _A #	NAD	-	-				A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	-	-				Gravimetry

				Oneme 1 10	ject ker: 16	oo, a.		
Lab Sample ID	16/02115/1	16/02115/2	16/02115/3					
Client Sample No	J1	J3	J4					
Client Sample ID	FIP1	FIP3	FIP3					
Depth to Top	0.50	0.20	1.20					
Depth To Bottom								
Date Sampled	01-Apr-16	06-Apr-16	06-Apr-16					_
Sample Type	Solid	Soil - ES	Soil - ES					Method ref
Sample Matrix Code	7	5AB	5AB				Units	Meth
PAH 16								
Acenaphthene _A ^{M#}	<0.01	-	<0.01				mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	-	<0.01				mg/kg	A-T-019s
Anthracene _A ^{M#}	0.03	-	<0.02				mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.07	-	<0.04				mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.05	-	<0.04				mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.07	-	<0.05				mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	-	<0.05				mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	-	<0.07				mg/kg	A-T-019s
Chrysene _A ^{M#}	0.07	-	<0.06				mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	-	<0.04				mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.17	-	<0.08				mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	-	<0.01				mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.04	-	<0.03				mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	-	<0.03				mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.09	-	<0.03				mg/kg	A-T-019s
Pyrene _A ^{M#}	0.12	-	<0.07				mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.75	-	<0.08				mg/kg	A-T-019s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable. A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test

results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT **SUPPLEMENT TO TEST REPORT 16/01877/1**

Envirolab Job Number: 16/01877

Issue Number: Date: 15 April, 2016

Client: Geosphere Environmental Ltd

Unit 11

Brightwell Barns Ipswich Road Brightwell **Ipswich** Suffolk **IP10 0BJ**

Project Manager: Lianne Fountain

Project Name: Greenwood Place Resource Centre

Project Ref: 1655, GI **Order No:** 0872/LF **Date Samples Received:** 24/03/16 **Date Instructions Received:** 04/04/16 **Date Analysis Completed:** 15/04/16

Prepared by: Approved by:

Kate Ellison

Lianne Bromiley Senior Client Manager Administrative Assistant

						jeet Hell 10	,			
Lab Sample ID	16/01877/1	16/01877/2	16/01877/3	16/01877/4	16/01877/5	16/01877/6	16/01877/7	16/01877/8		
Client Sample No	J1	J2	J3	J4	J1	J1	J2	J1		
Client Sample ID	BH02	BH02	BH02	BH02	CBR3	CBR4	CBR4	FIP3		
Depth to Top	0.30	0.50	1.70	2.00	0.40	0.60	0.80	0.40		
Depth To Bottom										
Date Sampled	15-Mar-16	15-Mar-16	15-Mar-16	15-Mar-16	18-Mar-16	17-Mar-16	18-Mar-16	21-Mar-16	Units	Method ref
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		
Sample Matrix Code	7	4A	5A	5A	4A	4A	4A	4AB		Meth
% Stones >10mm _A #	<0.1	<0.1	11.8	<0.1	23.2	13.0	24.6	<0.1	% w/w	A-T-044
pH _D ^{M#}	10.96	9.92	10.22	8.76	10.13	8.63	7.80	9.64	рН	A-T-031s
Cyanide (total) _A ^{M#}	<1	1	<1	<1	<1	<1	<1	<1	mg/kg	A-T-042sTCN
Arsenic _D ^{M#}	9	23	8	7	5	75	14	9	mg/kg	A-T-024s
Cadmium _D ^{M#}	0.8	1.3	0.6	0.7	0.6	4.9	1.0	0.8	mg/kg	A-T-024s
Copper _D ^{M#}	24	48	25	8	17	262	144	24	mg/kg	A-T-024s
Chromium _D ^{M#}	25	28	18	19	15	35	16	26	mg/kg	A-T-024s
Lead _D ^{M#}	264	580	106	30	45	377	296	73	mg/kg	A-T-024s
Mercury _D	0.41	0.78	0.25	<0.17	<0.17	0.42	0.35	<0.17	mg/kg	A-T-024s
Nickel _D ^{M#}	15	18	11	8	20	88	18	17	mg/kg	A-T-024s
Selenium _D	7	8	3	1	<1	4	<1	3	mg/kg	A-T-024s
Zinc _D ^{M#}	174	397	48	30	70	1040	143	61	mg/kg	A-T-024s
TPH total (>C6-C40) _A	44	175	45	<10	52	<10	<10	<10	mg/kg	A-T-007s

Lab Sample ID	16/01877/1	16/01877/2	16/01877/3	16/01877/4	16/01877/5	16/01877/6	16/01877/7	16/01877/8		
Client Sample No	J1	J2	J3	J4	J1	J1	J2	J1		
Client Sample ID	BH02	BH02	BH02	BH02	CBR3	CBR4	CBR4	FIP3		
Depth to Top	0.30	0.50	1.70	2.00	0.40	0.60	0.80	0.40		
Depth To Bottom										
Date Sampled	15-Mar-16	15-Mar-16	15-Mar-16	15-Mar-16	18-Mar-16	17-Mar-16	18-Mar-16	21-Mar-16		"
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	40	Method ref
Sample Matrix Code	7	4A	5A	5A	4A	4A	4A	4AB	Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A #	Chrysotile & Amosite	Chrysotile & Amosite	NAD	NAD	NAD	NAD	-	Chrysotile		A-T-045
Asbestos Matrix (visual) _A	-	Loose Insulation	-	-	-	-	-	-		A-T-045
Asbestos Matrix (microscope) _A	Loose Insulation & Loose Fibres	Loose Fibres	-	-	-	-	-	Loose Fibres		A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	N/A	-	N/A		Gravimetry
Asbestos in Soil Quantification % (Hand Picking & Weighing)										
Asbestos in soil % composition (hand picking and weighing) _D	0.026	0.073	-	-	-	-	-	<0.001	% w/w	A-T-054

_					Official 10	ect her: 16	55, GI			
Lab Sample ID	16/01877/1	16/01877/2	16/01877/3	16/01877/4	16/01877/5	16/01877/6	16/01877/7	16/01877/8		
Client Sample No	J1	J2	J3	J4	J1	J1	J2	J1		
Client Sample ID	BH02	BH02	BH02	BH02	CBR3	CBR4	CBR4	FIP3		
Depth to Top	0.30	0.50	1.70	2.00	0.40	0.60	0.80	0.40		
Depth To Bottom										
Date Sampled	15-Mar-16	15-Mar-16	15-Mar-16	15-Mar-16	18-Mar-16	17-Mar-16	18-Mar-16	21-Mar-16		_
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re
Sample Matrix Code	7	4A	5A	5A	4A	4A	4A	4AB	Units	Method ref
PAH 16										
Acenaphthene _A ^{M#}	<0.01	0.02	0.09	0.02	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	0.07	<0.01	<0.01	0.05	0.01	<0.01	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	0.15	0.16	0.35	0.06	0.04	<0.02	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.18	1.33	0.49	0.07	0.15	0.31	<0.04	0.07	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.09	1.24	0.42	0.06	0.16	0.38	<0.04	<0.04	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.21	1.74	0.55	0.09	0.21	0.50	0.07	0.07	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.08	0.87	0.26	<0.05	0.20	0.26	<0.05	<0.05	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.20	0.50	0.21	<0.07	<0.07	0.17	<0.07	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	0.10	1.45	0.49	0.09	0.17	0.34	<0.06	0.07	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	0.23	0.07	<0.04	<0.04	0.06	<0.04	<0.04	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.18	1.65	1.12	0.27	0.34	0.33	0.10	0.18	mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	0.02	0.08	0.02	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.08	0.92	0.30	0.04	0.17	0.33	0.05	0.04	mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	0.19	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.10	0.68	1.01	0.25	0.12	0.12	0.06	0.08	mg/kg	A-T-019s
Pyrene _A ^{M#}	0.17	2.04	0.92	0.24	0.31	0.32	0.09	0.15	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	1.39	12.9	6.34	1.51	2.03	3.21	0.45	0.66	mg/kg	A-T-019s

-					ject ner. 10			
Lab Sample ID	16/01877/11	16/01877/12	16/01877/13					
Client Sample No	J1	J2	J1					
Client Sample ID	FIP2	FIP2	FIP4					
Depth to Top	0.30	0.80	0.50					
Depth To Bottom			0.70					Method ref
Date Sampled	23-Mar-16	23-Mar-16	23-Mar-16					
Sample Type	Soil - ES	Soil - ES	Soil - ES					
Sample Matrix Code	1A	4A	5A				Units	Meth
% Stones >10mm _A #	48.8	14.2	<0.1				% w/w	A-T-044
pH _D ^{M#}	8.54	8.23	7.91				рН	A-T-031s
Cyanide (total) _A ^{M#}	<1	<1	4				mg/kg	A-T-042sTCN
Arsenic _D ^{M#}	4	23	4				mg/kg	A-T-024s
Cadmium _D ^{M#}	<0.5	1.8	0.8				mg/kg	A-T-024s
Copper _D ^{M#}	4	353	9				mg/kg	A-T-024s
Chromium _D ^{M#}	9	27	35				mg/kg	A-T-024s
Lead _D ^{M#}	12	636	19				mg/kg	A-T-024s
Mercury _D	<0.17	5.69	2.23				mg/kg	A-T-024s
Nickel _D ^{M#}	9	36	13				mg/kg	A-T-024s
Selenium _D	<1	<1	3				mg/kg	A-T-024s
Zinc _D ^{M#}	21	674	49				mg/kg	A-T-024s
TPH total (>C6-C40) _A	<10	25	<10				mg/kg	A-T-007s

Lab Sample ID	16/01877/11	16/01877/12	16/01877/13				
Client Sample No	J1	J2	J1				
Client Sample ID	FIP2	FIP2	FIP4				
Depth to Top	0.30	0.80	0.50				
Depth To Bottom			0.70				
Date Sampled	23-Mar-16	23-Mar-16	23-Mar-16				-
Sample Type	Soil - ES	Soil - ES	Soil - ES				Method ref
Sample Matrix Code	1A	4A	5A			Units	Meth
Asbestos in Soil (inc. matrix)							
Asbestos in soil _A #	NAD	-	NAD				A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	-	N/A				Gravimetry

					ject ner. 10	,		
Lab Sample ID	16/01877/11	16/01877/12	16/01877/13					
Client Sample No	J1	J2	J1					
Client Sample ID	FIP2	FIP2	FIP4					
Depth to Top	0.30	0.80	0.50					
Depth To Bottom			0.70					
Date Sampled	23-Mar-16	23-Mar-16	23-Mar-16					Į.
Sample Type	Soil - ES	Soil - ES	Soil - ES					od re
Sample Matrix Code	1A	4A	5A				Units	Method ref
PAH 16								
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01				mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01				mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02				mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	<0.04	<0.04				mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	<0.04				mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	0.06	<0.05				mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05				mg/kg	A-T-019s
Benzo(k)fluoranthene _A M#	<0.07	<0.07	<0.07				mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06				mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04				mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	<0.08				mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01				mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	0.03	<0.03				mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03				mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.04	<0.03	<0.03				mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07				mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.15	0.09	<0.08				mg/kg	A-T-019s

-				Oneme 1 10	ject Ret: 16	00, ai		-
Lab Sample ID	16/01877/11	16/01877/12	16/01877/13					
Client Sample No	J1	J2	J1					
Client Sample ID	FIP2	FIP2	FIP4					
Depth to Top	0.30	0.80	0.50					
Depth To Bottom			0.70					
Date Sampled	23-Mar-16	23-Mar-16	23-Mar-16					
Sample Type	Soil - ES	Soil - ES	Soil - ES					od re
Sample Matrix Code	1A	4A	5A				Units	Method ref
TPH UKCWG								
Ali >C5-C6 _A #	-	<0.02	-				mg/kg	A-T-022s
Ali >C6-C8 _A #	-	<0.02	-				mg/kg	A-T-022s
Ali >C8-C10 _A #	-	<0.02	-				mg/kg	A-T-022s
Ali >C10-C12 _A #	-	<0.1	-				mg/kg	A-T-023s
Ali >C12-C16 _A #	-	<0.1	-				mg/kg	A-T-023s
Ali >C16-C21 _A #	-	<0.1	-				mg/kg	A-T-023s
Ali >C21-C35 _A #	-	<0.1	-				mg/kg	A-T-023s
Ali >C35-C44 _A	•	<0.1	•				mg/kg	A-T-023s
Total Aliphatics _A	-	<0.1	•				mg/kg	A-T-023s
Aro >C5-C7 _A #	•	<0.02	•				mg/kg	A-T-022s
Aro >C7-C8 _A #	•	<0.02	•				mg/kg	A-T-022s
Aro >C8-C9 _A #	•	<0.02	•				mg/kg	A-T-022s
Aro >C9-C10 _A #	-	<0.02	-				mg/kg	A-T-022s
Aro >C10-C12 _A #	-	<0.1	-				mg/kg	A-T-023s
Aro >C12-C16 _A #	-	<0.1	-				mg/kg	A-T-023s
Aro >C16-C21 _A #	-	<0.1	-				mg/kg	A-T-023s
Aro >C21-C35 _A #	-	<0.1	-				mg/kg	A-T-023s
Aro >C35-C44 _A	-	<0.1	-				mg/kg	A-T-023s
Total Aromatics _A	-	<0.1	-				mg/kg	A-T-023s
TPH (Ali & Aro) _A	-	<0.1	-				mg/kg	A-T-023s
BTEX - Benzene _A #	-	<0.02	-				mg/kg	A-T-022s
BTEX - Toluene _A #	-	<0.02	-				mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	-	<0.02	-				mg/kg	A-T-022s
BTEX - m & p Xylene _A #	-	<0.02	-				mg/kg	A-T-022s
BTEX - o Xylene _A #	-	<0.02	-				mg/kg	A-T-022s
MTBE _A #	-	<0.02	-				mg/kg	A-T-022s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable. A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT SUPPLEMENT TO TEST REPORT 16/02405/1

Envirolab Job Number: 16/02405

Issue Number: 2 Date: 20 May, 2016

Client: Geosphere Environmental Ltd

Unit 11

Brightwell Barns Ipswich Road Brightwell Ipswich Suffolk IP10 0BJ

Project Manager: Lianne Fountain

Project Name: Greenwood Place Resource Centre

Project Ref: 1655,GI
Order No: 0880/LF
Date Samples Received: 25/04/16
Date Instructions Received: 26/04/16
Date Analysis Completed: 18/05/16

Prepared by: Approved by:

Kate Ellison

Administrative Assistant Senior Client Manager

orman on our manager

Lianne Bromiley

_					Official 1 To	ect Ref: 16	55,GI		
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		-
Sample Type	Soil - ES Soil - ES	Soil - ES		od re					
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Method ref
% Moisture _A	17.2	16.5	-	15.9	20.3	25.5	17.3	% w/w	A-T-044
% Stones >10mm _A #	24.2	22.7	<0.1	<0.1	<0.1	5.0	<0.1	% w/w	A-T-044
pH _D ^{M#}	10.02	8.04	-	7.63	9.60	7.98	7.93	рН	A-T-031s
Sulphate (acid soluble) _D M#	1500	250	-	8300	5000	1200	290	mg/kg	A-T-028s
Cyanide (total) _A ^{M#}	<1	<1	-	<1	<1	<1	<1	mg/kg	A-T-042sTCN
Phenois - Total by HPLC _A	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	mg/kg	A-T-050s
Sulphide	<15	<15	-	<15	<15	<15	<15	mg/kg	A-T-S2-s
Total Organic Carbon _D ^{M#}	-	-	-	-	5.81	-	-	% w/w	A-T-032s
Arsenic _D ^{M#}	6	9	-	4	53	17	9	mg/kg	A-T-024s
Cadmium _D ^{M#}	<0.5	0.8	-	1.0	2.4	0.9	1.1	mg/kg	A-T-024s
Copper _D ^{M#}	58	8	-	19	25200	122	28	mg/kg	A-T-024s
Chromium _D ^{M#}	20	39	-	52	33	23	45	mg/kg	A-T-024s
Chromium (hexavalent) _D	-	-	<1	-	-	-	<1	mg/kg	A-T-040s
Lead _D ^{M#}	95	12	-	14	4710	1240	22	mg/kg	A-T-024s
Mercury _D	0.39	<0.17	-	<0.17	1.24	1.62	0.51	mg/kg	A-T-024s
Nickel _D ^{M#}	13	13	-	40	54	21	36	mg/kg	A-T-024s
Selenium _D	2	<1	-	1	2	<1	<1	mg/kg	A-T-024s
Vanadium _D ^{M#}	-	-	57	-	-	-	75	mg/kg	A-T-024s
Zinc _D ^{M#}	37	35	-	68	5280	173	71	 mg/kg	A-T-024s

					-	,	•		
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		-
Sample Type	Soil - ES oil - ES	Soil - ES		Method ref					
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Meth
Asbestos in Soil (inc. matrix)									
Asbestos in soil _A #	-	-	-	-	Chrysotile	-	-		A-T-045
Asbestos Matrix (microscope) _A	-	-	-	-	Loose Fibres	-	-		A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	-	-	-	-	N/A	-	-		Gravimetry
Asbestos in Soil Quantification % (Hand Picking & Weighing)									
Asbestos in soil % composition (hand picking and weighing) _D	-	-	-	-	<0.001	-	-	% w/w	A-T-054

Ī					00	ject nei. 10			
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		.
Sample Type	Soil - ES il - ES	Soil - ES		Method ref					
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Meth
PAH 16									
Acenaphthene _A ^{M#}	0.05	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	0.05	<0.02	-	<0.02	<0.02	0.04	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.24	<0.04	-	<0.04	0.10	0.24	<0.04	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.23	<0.04	-	<0.04	0.10	0.28	<0.04	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.27	<0.05	-	<0.05	0.13	0.38	<0.05	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.14	<0.05	-	<0.05	<0.05	0.18	<0.05	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.11	<0.07	-	<0.07	<0.07	0.14	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	0.24	<0.06	-	<0.06	0.11	0.33	<0.06	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	-	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.39	<0.08	-	<0.08	0.19	0.56	<0.08	mg/kg	A-T-019s
Fluorene _A ^{M#}	0.04	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.16	<0.03	-	<0.03	0.08	0.20	<0.03	mg/kg	A-T-019s
Naphthalene _A ^{M#}	0.12	<0.03	-	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.33	<0.03	-	<0.03	0.08	0.20	<0.03	mg/kg	A-T-019s
Pyrene _A ^{M#}	0.34	<0.07	-	<0.07	0.16	0.48	<0.07	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	2.73	<0.08	-	<0.08	0.94	3.03	<0.08	mg/kg	A-T-019s
TPH Banded 1									
>C6-C8 _A #	<10	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
>C8-C10 _A #	<10	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
>C10-C12 _A #	<10	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
>C12-C16 _A #	<10	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
>C16-C21 _A #	<10	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
>C21-C40 _A	80	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40) _A	80	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s

-		ı	ı	1	· · · · · · · · · ·	ject her: 16			
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		-
Sample Type	Soil - ES	Soil - ES	Soil - ES		Method ref				
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Meth
svoc									
Hexachlorobenzene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Diethyl phthalate _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Dimethyl phthalate _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Dibenzofuran _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Carbazole _A	•	-	<100	-	-	-	<100	μg/kg	A-T-052s
Butylbenzyl phthalate A	-	-	<100	-	-	-	<100	 μg/kg	A-T-052s
Bis(2-ethylhexyl)phthalate _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Bis(2-chloroethoxy)methane _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Bis(2-chloroethyl)ether _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
4-Nitrophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
4-Methylphenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
4-Chloro-3-methylphenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2-Nitrophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2-Methylphenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2-Chlorophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,6-Dinitrotoluene₄	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,4-Dinitrotoluene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,4-Dimethylphenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,4-Dichlorophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,4,6-Trichlorophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,4,5-Trichlorophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2-Chloronaphthalene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2-Methylnaphthalene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Acenaphthylene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Acenaphthene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Anthracene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Benzo(a)anthracene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Benzo(b)fluoranthene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Benzo(k)fluoranthene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Benzo(a)pyrene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Benzo(ghi)perylene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Chrysene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s

						100111011110			
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		J
Sample Type	Soil - ES il - ES	Soil - ES		Method ref					
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Meth
Fluoranthene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Fluorene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Indeno(1,2,3-cd)pyrene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Phenanthrene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Pyrene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Naphthalene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Dibenzo(ah)anthracene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Bis(2-chloroisopropyl)ether _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Phenol A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Pentachlorophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
n-Nitroso-n-dipropylamine _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
n-Dioctylphthalate _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
n-Dibutylphthalate _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Nitrobenzene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Isophorone _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Hexachloroethane _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Hexachlorocyclopentadiene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Perylene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s

		Client Project Ref: 1000,GI										
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16					
Client Sample No	J1	J3	J6	J7	J1	J3	J1					
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1					
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40					
Depth To Bottom												
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16			4		
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			Method ref		
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5		Units	Meth		
voc												
Dichlorodifluoromethane _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Chloromethane _A #	-	-	<10	-	-	-	<10		μg/kg	A-T-006s		
Vinyl Chloride _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Bromomethane _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Chloroethane _A #	•	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Trichlorofluoromethane _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
1,1-Dichloroethene _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Carbon Disulphide _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Dichloromethane A	-	-	<5	-	-	-	7		μg/kg	A-T-006s		
trans 1,2-Dichloroethene _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
1,1-Dichloroethane _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
cis 1,2-Dichloroethene _A #	-	-	<1	-	-	-	305		μg/kg	A-T-006s		
2,2-Dichloropropane _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Bromochloromethane _A #	-	-	<5	-	-	-	<5		μg/kg	A-T-006s		
Chloroform _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
1,1,1-Trichloroethane _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
1,1-Dichloropropene _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Carbon Tetrachloride _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
1,2-Dichloroethane _A #	-	-	<2	-	-	-	<2		μg/kg	A-T-006s		
Benzene A#	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Trichloroethene _A #	-	-	1640	-	-	-	1300		μg/kg	A-T-006s		
1,2-Dichloropropane _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Dibromomethane _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Bromodichloromethane _A #	-	-	<10	-	-	-	<10		μg/kg	A-T-006s		
cis 1,3-Dichloropropene _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Toluene A#	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
trans 1,3-Dichloropropene _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
1,1,2-Trichloroethane _A #	-	-	11	-	-	-	4		μg/kg	A-T-006s		
1,3-Dichloropropane _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		
Tetrachloroethene _A #	-	-	486	-	-	-	104		μg/kg	A-T-006s		
Dibromochloromethane _A #	-	-	<3	-	-	-	<3		μg/kg	A-T-006s		
1,2-Dibromoethane _A #	-	-	<1	-	-	-	<1		μg/kg	A-T-006s		

County C										
Client Sample ID	Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
CBR1 CBR1	Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Depth To Bottom	Client Sample ID					WS102 (BH3)	WS102 (BH3)	HA1		
Date Sampled 20-Apr-16 20-Apr-16 20-Apr-16 20-Apr-16 21-Apr-16 21-Apr-16 20-Apr-16 2	Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Sample Type	Depth To Bottom									
Chlorobenzene," - - - -	Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		f
Chlorobenzene," - - - -	Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re
1.1.1.2-Tertachloroethanea	Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Meth
Ethylenzane,*	Chlorobenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
m & p Xylene,"	1,1,1,2-Tetrachloroethane _A	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Description of the control of the c	Ethylbenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Styrene,*	m & p Xylene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
September Sept	o-Xylene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Sopropylbenzene,	Styrene _A #	•	•	<1	-	-		<1	μg/kg	A-T-006s
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane," 1,2,3-Trichloropropane," 1,2,3-Trichloropropane," 1,2,3-Trichloropropane," 1,2,3-Trichloropropane," 1,2,3-Trichloropropane," 1,2,3-Trichloropropane," 1,2,3-Trichloropropane," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,3,5-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Dichlorobenzene," 1,4-Dichlorobenzene," 1,4-Dichlorobenzene," 1,4-Dichlorobenzene," 1,4-Trimethylbenzene," 1,4-Dichlorobenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trimethylbenzene," 1,4-Trichlorobenzene," 1,4	Bromoform _A #	•	•	<1	-	-	•	<1	μg/kg	A-T-006s
1,2,3-Trichloropropane,*	Isopropylbenzene _A #	•	•	<1	-	-	•	<1	μg/kg	A-T-006s
Bromobenzene,*	1,1,2,2-Tetrachloroethane _A	•	•	<1	-	-	•	<1	μg/kg	A-T-006s
n-Propylbenzene, s	1,2,3-Trichloropropane _A #	•	•	<1	-	-	•	<1	μg/kg	A-T-006s
2-Chlorotoluene, f	Bromobenzene _A #	•	•	<1	-	-	•	<1	μg/kg	A-T-006s
1,3,5-Trimethylbenzene, [#] · · · · · · · · · · · · · · · · · · ·	n-Propylbenzene _A #	•	•	<1	-	-	•	<1	μg/kg	A-T-006s
4-Chlorotoluene _A ^g	2-Chlorotoluene _A #	•	•	<1	-	-	•	<1	μg/kg	A-T-006s
tert-Butylbenzene, f	1,3,5-Trimethylbenzene _A #	•	•	<1	-	-	•	<1	μg/kg	A-T-006s
1,2,4-Trimethylbenzene,# 1,2,4-Trimethylbenzene,# 1,2,4-Trimethylbenzene,# 1,2,4-Trimethylbenzene,# 1,2,4-Trimethylbenzene,# 1,2,4-Trimethylbenzene,# 1,2,4-Trimethylbenzene,# 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 1,4-Dichlorobenzene,# 1,4-Dichlorobenzene,# 1,2-Dichlorobenzene,# 1,2	4-Chlorotoluene _A #	•	•	<1	-	-	•	<1	μg/kg	A-T-006s
sec-Butylbenzene _A [#] - -	tert-Butylbenzene _A #	-	-	<2	-	-	-	<2	μg/kg	A-T-006s
4-Isopropyltoluene _A #	1,2,4-Trimethylbenzene _A #	•	•	<1	-	-	•	<1	μg/kg	A-T-006s
1,3-DichlorobenzeneA -	sec-Butylbenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,4-Dichlorobenzene $_A^{\#}$ - - -1 - <t< td=""><td>4-Isopropyltoluene_A#</td><td>-</td><td>-</td><td><1</td><td>-</td><td>-</td><td>-</td><td><1</td><td>μg/kg</td><td>A-T-006s</td></t<>	4-Isopropyltoluene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
n-Butylbenzene _A #	1,3-Dichlorobenzene _A	-	-	<1	-	-	-	<1	 μg/kg	A-T-006s
1,2-Dichlorobenzene _A # - </td <td>1,4-Dichlorobenzene_A#</td> <td>-</td> <td>-</td> <td><1</td> <td>-</td> <td>-</td> <td>-</td> <td><1</td> <td> μg/kg</td> <td>A-T-006s</td>	1,4-Dichlorobenzene _A #	-	-	<1	-	-	-	<1	 μg/kg	A-T-006s
1,2-Dibromo-3-chloropropane _A <2 <2 μg/kg ^{A-T-006s} 1,2,4-Trichlorobenzene _A <3 <3 μg/kg ^{A-T-006s} Hexachlorobutadiene _A <1 - <1 μg/kg ^{A-T-006s}	n-Butylbenzene _A #	-	-	<1	-	-	-	<1	 μg/kg	A-T-006s
1,2,4-Trichlorobenzene _A <3 <3 μg/kg ^{A-T-006s} Hexachlorobutadiene _A # <1 - <1 μg/kg ^{A-T-006s}	1,2-Dichlorobenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Hexachlorobutadiene _A [#] <1 <1 μg/kg ^{A-T-0068}	1,2-Dibromo-3-chloropropane _A	-	-	<2	-	-	-	<2	μg/kg	A-T-006s
	1,2,4-Trichlorobenzene _A	-	-	<3	-	-	-	<3	 μg/kg	A-T-006s
1,2,3-Trichlorobenzene _A <3 <3 µg/kg A-T-006s	Hexachlorobutadiene _A #	-	-	<1	-	-	-	<1	 μg/kg	A-T-006s
	1,2,3-Trichlorobenzene _A	-	-	<3	-	-	-	<3	μg/kg	A-T-006s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable. A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

(A division of Gradko International Ltd.)

St. Martins House, 77 Wales Street Winchester, Hampshire SO23 0RH tel.: 01962 860331 fax: 01962 841339 e-mail:diffusion@gradko.co.uk

LABORATORY ANALYSIS REPORT

REPORT NUMBER AMENDMENT TO REPORT K03210R CUSTOMER GEOSPHERE ENVIRONMENTAL

Brightwell Barns, Ipswich Road

Brightwell Suffolk IP10 0BJ

GRADKO LAB REFERENCE 02K0837-02K0842

DESPATCH NOTE No. 30302

JOB REFERENCE 1655

DATE SAMPLES RECEIVED 26.05.2016

BOOKING IN REF. X5915

IDENTIFICATION AND ESTIMATION (SEMI-QUANTITATIVE ANALYSIS) OF TOP 15 VOC ON TENAX DIFFUSION TUBES BY GC/MS

Analysis has been carried out in accordance with in-house method GLM 13

CDA ASCAS

Index to UKAS Accreditation Status

Tuba Numban

U Analysis is UKAS accredited under our Fixed Scope
F Analysis is UKAS accredited under our Flexible Scope

N Analysis is not UKAS accredited

lube Number	GRA 02692			
Exposure Time(mins)	10080			
Sample ID	OBH2			
	Accreditation			
Top 15 VOC	Status	ng on tube	ppb in air*	μgm ⁻³ *
Tetrachloroethylene	F	4391	217.79	1428.7
Trichloroethylene	F	3551	176.14	915.92
cis-1,2-Dichloroethylene	F	552.92	27.43	105.32
4,7-Methano-1H-indene, octahydro-	N	122.66	6.08	33.10
Carbon disulfide	F	64.45	3.20	9.72
Cyclopentane, methyl-	N	58.85	2.92	9.81
Cyclohexane, isothiocyanato-	N	55.73	2.76	15.59
Toluene	F	54.08	2.68	9.87
m/p-Xylene	F	46.33	2.30	9.74
trans-1,2-Dichloroethylene	F	42.51	2.11	8.10
Benzene, 1-ethyl-3-methyl-	F	37.30	1.85	8.88
Naphthalene, decahydro-1,2-dimethyl-	N	31.29	1.55	10.30
Pentane, 3-methyl-	F	29.80	1.48	5.08
Decahydro-4,4,8,9,10-				
pentamethylnaphthalene	N	29.70	1.47	12.26
Naphthalene, decahydro-2,6-dimethyl-	N	28.81	1.43	9.49

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd. This report is not to be reproduced, except in full, without the written permission of Gradko International Ltd.

Form LQF32b Issue 6 - February 2015

REPORT OFFICIALLY CHECKED

This si
Signed

Tube Number

(A division of Gradko International Ltd.)

St. Martins House, 77 Wales Street Winchester, Hampshire SO23 0RH tel.: 01962 860331 fax: 01962 841339 e-mail:diffusion@gradko.co.uk

LABORATORY ANALYSIS REPORT

GRA 04596

Tube Number	OILA 07000			
Exposure Time(mins)	10080			
Sample ID	DCS1			
	Accreditation			
Top 15 VOC	Status	ng on tube	ppb in air*	μgm ⁻³ *
Tetrachloroethylene	F	17393	862.73	5659.5
Trichloroethylene	F	7612	377.57	1963.4
cis-1,2-Dichloroethylene	F	6768	335.70	1289.1
Dichloroacetaldehyde	N	419.19	20.79	93.15
Benzene, 1-ethyl-3-methyl-	F	147.26	7.30	35.06
m/p-Xylene	F	130.21	6.46	27.38
trans-1,2-Dichloroethylene	F	125.20	6.21	23.85
Toluene	F	107.75	5.34	19.67
Cyclohexadecane	N	87.86	4.36	39.05
Heptane, 2,2,4,6,6-pentamethyl-	N	83.26	4.13	28.08
o-Xylene	F	74.86	3.71	15.74
Benzene, 1,2,4-trimethyl-	F	74.31	3.69	17.69
Cyclohexane, 1-ethyl-2,3-dimethyl-	N	69.91	3.47	19.42
3-Carene	F	69.10	3.43	18.65
Cyclohexane, 1,2,4-trimethyl-,				
(1.alpha.,2.beta.,4.beta.)-	N	61.93	3.07	15.48
Tube Number	GRA 05727			
Exposure Time(mins)	10080			
Sample ID	BH2			
	Accreditation			
Top 15 VOC	Status	ng on tube	ppb in air*	μgm ⁻³ *
Trichloroethylene	F	19886	986.39	5129.3
Tetrachloroethylene	F	7130	353.69	2320.2
Decane	F	3477	172.46	979.57
Decane, 4-methyl-	N	1429	70.87	442.23
Undecane	F	1373	68.09	424.88
Benzene, 1,2,4-trimethyl-	F	1302	64.57	309.95
Benzene, 1-ethyl-3-methyl-	F	1286	63.80	306.22
Octane, 2,6-dimethyl-	N	1264	62.67	355.99
Decane, 2-methyl-	N	1224	60.71	378.85
4,7-Methano-1H-indene, octahydro-	N	1205	59.77	325.15
Cyclohexane, butyl-	N	1107	54.91	307.49
Nonane, 2-methyl-	N	1080	53.58	304.31
sec-Butylbenzene	F	1004	49.79	266.85

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd. This report is not to be reproduced, except in full, without the written permission of Gradko International Ltd.

F

Ν

Form LQF32b Issue 6 - February 2015

Nonane

Decane, 3-methyl-

REPORT OFFICIALLY CHECKED

Report Number K03210R Amended Page 2 of 4

Gradko International Ltd

This signature confirms the authenticity of these results

1002

920.11

L. Gates, Laboratory Manager

49.70

45.64

254.47

284.79

(A division of Gradko International Ltd.)

St. Martins House, 77 Wales Street Winchester, Hampshire SO23 0RH tel.: 01962 860331 fax: 01962 841339 e-mail:diffusion@gradko.co.uk

LABORATORY ANALYSIS REPORT

Tube Number Exposure Time(mins) Sample ID	GRA 06921 10080 BH1 Accreditation			
Top 15 VOC	Status	ng on tube	ppb in air*	μgm ⁻³ *
Trichloroethylene	F	40214	1994.7	10373
Tetrachloroethylene	F	39667	1967.6	12907
Decane	F	2824	140.06	795.56
Benzene, 1,2,4-trimethyl-	F	1145	56.79	272.60
Undecane	F	1135	56.28	351.16
Decane, 4-methyl-	N	1117	55.38	345.59
Benzene, 1-ethyl-3-methyl-	F	1038	51.51	247.26
Octane, 2,6-dimethyl-	N	990.92	49.15	279.19
4,7-Methano-1H-indene, octahydro-	N	973.84	48.31	262.78
Decane, 2-methyl-	N	945.92	46.92	292.79
Cyclohexane, butyl-	N	872.01	43.25	242.23
m/p-Xylene	F	839.15	41.62	176.49
Nonane, 2-methyl-	N	822.52	40.80	231.74
sec-Butylbenzene	F	781.78	38.78	207.85
Decane, 3-methyl-	N	740.66	36.74	229.25
Tube Number	GRA 10132			
Exposure Time(mins)	10080			
Sample ID	WS102			
	Accreditation			
Top 15 VOC	Status	na on tubo		· · · · · · · · · · · · · · · · · · ·
Trichloroethylene		ng on tube	ppb in air*	µgm⁻³*
•	F	16644	825.61	4293.2
cis-1,2-Dichloroethylene	F F	16644 3133	825.61 155.43	4293.2 596.84
•	F F F	16644 3133 2897	825.61 155.43 143.69	4293.2 596.84 816.18
cis-1,2-Dichloroethylene Decane Undecane	F F F	16644 3133 2897 1473	825.61 155.43 143.69 73.08	4293.2 596.84 816.18 456.05
cis-1,2-Dichloroethylene Decane Undecane Benzene, 1,2,4-trimethyl-	F F F F	16644 3133 2897 1473 1435	825.61 155.43 143.69 73.08 71.20	4293.2 596.84 816.18 456.05 341.77
cis-1,2-Dichloroethylene Decane Undecane Benzene, 1,2,4-trimethyl- Benzene, 1-ethyl-3-methyl-	F F F F	16644 3133 2897 1473 1435 1298	825.61 155.43 143.69 73.08 71.20 64.39	4293.2 596.84 816.18 456.05 341.77 309.09
cis-1,2-Dichloroethylene Decane Undecane Benzene, 1,2,4-trimethyl- Benzene, 1-ethyl-3-methyl- Decane, 4-methyl-	F F F F N	16644 3133 2897 1473 1435 1298 1281	825.61 155.43 143.69 73.08 71.20 64.39 63.54	4293.2 596.84 816.18 456.05 341.77 309.09 396.50
cis-1,2-Dichloroethylene Decane Undecane Benzene, 1,2,4-trimethyl- Benzene, 1-ethyl-3-methyl- Decane, 4-methyl- Decane, 2-methyl-	F F F F N N	16644 3133 2897 1473 1435 1298 1281 1149	825.61 155.43 143.69 73.08 71.20 64.39 63.54 56.97	4293.2 596.84 816.18 456.05 341.77 309.09 396.50 355.50
cis-1,2-Dichloroethylene Decane Undecane Benzene, 1,2,4-trimethyl- Benzene, 1-ethyl-3-methyl- Decane, 4-methyl- Decane, 2-methyl- 4,7-Methano-1H-indene, octahydro-	F F F F N N	16644 3133 2897 1473 1435 1298 1281 1149	825.61 155.43 143.69 73.08 71.20 64.39 63.54 56.97 56.64	4293.2 596.84 816.18 456.05 341.77 309.09 396.50 355.50 308.14
cis-1,2-Dichloroethylene Decane Undecane Benzene, 1,2,4-trimethyl- Benzene, 1-ethyl-3-methyl- Decane, 4-methyl- Decane, 2-methyl- 4,7-Methano-1H-indene, octahydro- Octane, 2,6-dimethyl-	F F F F N N N	16644 3133 2897 1473 1435 1298 1281 1149 1142	825.61 155.43 143.69 73.08 71.20 64.39 63.54 56.97 56.64 53.98	4293.2 596.84 816.18 456.05 341.77 309.09 396.50 355.50 308.14 306.63
cis-1,2-Dichloroethylene Decane Undecane Benzene, 1,2,4-trimethyl- Benzene, 1-ethyl-3-methyl- Decane, 4-methyl- Decane, 2-methyl- 4,7-Methano-1H-indene, octahydro- Octane, 2,6-dimethyl- m/p-Xylene	F F F F N N N N F	16644 3133 2897 1473 1435 1298 1281 1149 1142 1088	825.61 155.43 143.69 73.08 71.20 64.39 63.54 56.97 56.64 53.98 49.95	4293.2 596.84 816.18 456.05 341.77 309.09 396.50 355.50 308.14 306.63 211.79
cis-1,2-Dichloroethylene Decane Undecane Benzene, 1,2,4-trimethyl- Benzene, 1-ethyl-3-methyl- Decane, 4-methyl- Decane, 2-methyl- 4,7-Methano-1H-indene, octahydro- Octane, 2,6-dimethyl- m/p-Xylene Cyclohexane, butyl-	F F F F N N N N F F	16644 3133 2897 1473 1435 1298 1281 1149 1142 1088 1007	825.61 155.43 143.69 73.08 71.20 64.39 63.54 56.97 56.64 53.98 49.95 49.82	4293.2 596.84 816.18 456.05 341.77 309.09 396.50 355.50 308.14 306.63 211.79 278.99
cis-1,2-Dichloroethylene Decane Undecane Benzene, 1,2,4-trimethyl- Benzene, 1-ethyl-3-methyl- Decane, 4-methyl- Decane, 2-methyl- 4,7-Methano-1H-indene, octahydro- Octane, 2,6-dimethyl- m/p-Xylene Cyclohexane, butyl- Nonane, 2-methyl-	F F F F N N N F F N	16644 3133 2897 1473 1435 1298 1281 1149 1142 1088 1007 1004 936.55	825.61 155.43 143.69 73.08 71.20 64.39 63.54 56.97 56.64 53.98 49.95 49.82 46.46	4293.2 596.84 816.18 456.05 341.77 309.09 396.50 355.50 308.14 306.63 211.79 278.99 263.87
cis-1,2-Dichloroethylene Decane Undecane Benzene, 1,2,4-trimethyl- Benzene, 1-ethyl-3-methyl- Decane, 4-methyl- Decane, 2-methyl- 4,7-Methano-1H-indene, octahydro- Octane, 2,6-dimethyl- m/p-Xylene Cyclohexane, butyl-	F F F F N N N N F F	16644 3133 2897 1473 1435 1298 1281 1149 1142 1088 1007	825.61 155.43 143.69 73.08 71.20 64.39 63.54 56.97 56.64 53.98 49.95 49.82	4293.2 596.84 816.18 456.05 341.77 309.09 396.50 355.50 308.14 306.63 211.79 278.99

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd. This report is not to be reproduced, except in full, without the written permission of Gradko International Ltd.

Form LQF32b Issue 6 - February 2015

REPORT OFFICIALLY CHECKED

Report Number K03210R Amended Gradko International Ltd This signature confirms the authenticity of these results 15Cates L. Gates, Laboratory Manager

(A division of Gradko International Ltd.)

St. Martins House, 77 Wales Street Winchester, Hampshire SO23 0RH tel.: 01962 860331 fax: 01962 841339 e-mail:diffusion@gradko.co.uk

LABORATORY ANALYSIS REPORT

Tube Number Exposure Time(mins) Sample ID	GRA 02680 10080 DCS4 Accreditation			
Top 15 VOC	Status	ng on tube	ppb in air*	μgm ⁻³ *
Trichloroethylene	F	8880	440.48	2290.5
Tetrachloroethylene	F	7017	348.06	2283.2
m/p-Xylene	F	291.48	14.46	61.30
Butane, 2-methyl-	N	260.87	12.94	37.27
o-Xylene	F	165.58	8.21	34.82
Benzene, 1,2,4-trimethyl-	F	157.02	7.79	37.39
Toluene	F	140.65	6.98	25.67
Benzene, 1-ethyl-3-methyl-	F	118.32	5.87	28.17
Ethylbenzene	F	101.89	5.05	21.43
alpha-Pinene	F	86.86	4.31	23.44
3-Carene	F	54.66	2.71	14.75
Benzene, 1,2,3-trimethyl-	F	53.05	2.63	12.63
1,2,4-Metheno-1H-indene, octahydro-1,7a-dimeth	yl-5-(1-methylethyl)-, [1S-			
(1.alpha.,2.alpha.,3a.beta.,4.alpha.,5.alpha.,7a.be				
	N	51.68	2.56	20.92
Benzene, 1-ethyl-2-methyl-	F	51.66	2.56	12.30
cis-1,2-Dichloroethylene	F	51.44	2.55	9.80

UPTAKE RATES

All Compounds 2.00ng.ppm⁻¹ min⁻¹

Identification and estimation results for ng on tube are calculated by reference to toluene and toluene-d8 Internal standard.

Results greater than 1000ng are outside of our UKAS accredited calibration range.

Exposure time was calculated from start and finish dates given on the exposure sheet.

Report was amended to add µgm⁻³ at the customer request.

Date of Analysis 02.06.2016

Date of Amended

Analysts Name Mariella Angelova Report 17.06.2016

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd. This report is not to be reproduced, except in full, without the written permission of Gradko International Ltd.

Form LQF32b Issue 6 - February 2015

REPORT OFFICIALLY CHECKED

APPENDIX 7 – GEOTECHNICAL LABORATORY TEST RESULTS

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: 18/03/16 PAGE 1 of 7 Pages

Contract

Serial No.

Greenwood Road Camden London

16131

CLIENT:

Geosphere Environmental Ltd Brightwell Barns Ipswich Road Brightwell Suffolk IP10 0BJ Soil Property Testing Ltd

Materials Division
15,16 & 18 Halcyon Court,
St Margarets Way,
Stukeley Meadows, Huntingdon,
Cambs. PE29 6DG.

Telephone (01480) 455579 Fax (01480) 453619 Email enquiries@soilpropertytesting.com

SAMPLES SUBMITTED BY:

DCP Tests carried out by our own engineer

APPROVED SIGNATORIES:

J.C.GARNER B.Eng (Hons.) FGS
Technical Director

S.P.TOWNEND FGS
Quality Manager

W.JOHNSTONE
Materials Lab Manager

SAMPLES LABELLED:

DATE RECEIVED:

18/03/16

SAMPLES TESTED BETWEEN 18/03/16 and 18/03/16

REMARKS: For the attention of Mr Stephen Gilchrist

- NOTES: 1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.
 - 2 (a) UKAS United Kingdom Accreditation Service.
 - (b) Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.
 - 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.
 - 4 This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

Soil Property Testing Ltd

Greenwood Road Camden London

Page 2 of 7 Pages 16131

TRL Dynamic Cone Penetrometer - Determination of CBR Value (%)

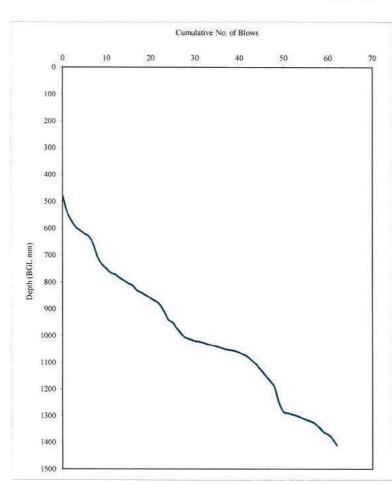
To TRL Report PR INT 277 04 and CNS Farnell Operating Instructions

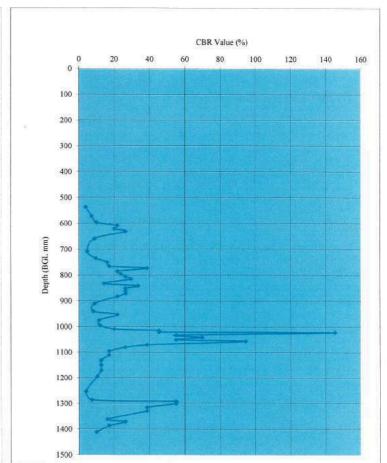
Chainage: 0

Test No.: DCP 1 Location: CBR3

Final Depth (mm BGL): 1410

Date Tested: 18/03/2016 Layers Removed: 0,45m


Dark yellowish brown slighty silty gravelly SAND. Surface Type:


Surface moisture: DRY

Easting: 0 Northing: 0

Existing Level: m OD 0.000 Test Level: m OD

Dynamic Cone Penetrometer Graph

Remarks:

Dark yellowish brown slightly silty gravelly SAND. Gravel is brown white and black fine to coarse sub angular to sub rounded flint with occasional brick fragments

Test started at 450mm below Ground Level. Material removed was engineered fill consisting of crushed concrete, brick and asphalt.

Excessively high or anomalous readings may be the result of cone encountering obstructions such as large gravel fragments.

See attached sheet for Equivalent CBR values for each penetration

Soil Property Testing Ltd

Date of Issue: as page 1

Contract: Greenwood Road Camden London

Page 3 of 7 Pages Serial No: 16131

TRL Dynamic Cone Penetrometer - Determination of CBR Value (%)

To TRL Report PR/INT/277/04 and CNS Farnell Operating Instructions

Chainage: 0 Layers Removed: 0.45m

Test No.: DCP 1 Dark yellowish brown slighty silty gravelly SAND.

 Location:
 CBR3
 Surface moisture:
 DRY

 Direction:
 0
 Easting:
 0

 Final Depth (mm BGL):
 1410
 Northing:
 0.000

 Date Tested:
 18/03/2016
 Existing Level: m OD
 0,000

Test Level: m OD 0.000

Initial Zero reading = 60

No. of Blows	Total Blows	Measured Depth (mm BGL)	Corrected Depth (mm BGL)	Penetration (mm/blow)	Log 10 CBR	CBR Value (%)
0	0	85	475	0.00	0.00	0.00
1	1	146	536	61.00	0.59	3.92
1	2	180	570	34.00	0.86	7.26
1	3	205	595	25.00	1.00	10.05
1	4	217	607	12.00	1.34	21.84
1	5	230	620	13.00	1.30	20.07
1	6	240	630	10.00	1.42	26.49
1	7	268	658	28.00	0.95	8.92
1	8	318	708	50.00	0.68	4.83
1	9	344	734	26.00	0.98	9.65
1	10	360	750	16.00	1.21	16.12
1	11	375	765	15.00	1.24	17.25
1	12	382	772	7.00	1.59	38.61
1	13	394	784	12.00	1.34	21.84
1	14	405	795	11.00	1.38	23.95
1	15	415	805	10.00	1.42	26.49
1	16	424	814	9.00	1.47	29.61
1	17	442	832	18.00	1.15	14.23
1	18	450	840	8.00	1.53	33.53
1	19	460	850	10.00	1.42	26.49
1	20	470	860	10.00	1.42	26.49
1	21	480	870	10.00	1.42	26.49
1	22	492	882	12.00	1.34	21.84
1	23	520	910	28.00	0.95	8.92
1	24	550	940	30.00	0.92	8.29
1	25	562	952	12.00	1.34	21.84
1	26	584	974	22.00	1.06	11.51
1	27	605	995	21.00	1.08	12.09
1	28	618	1008	13.00	1.30	20.07
1	29	624	1014	6.00	1.66	45.45
1	30	630	1020	6.00	1.66	45.45
1	31	632	1022	2.00	2.16	145.15
2	33	1032	1032	5.00	1.74	55.10
2	35	1040	1040	4.00	1.84	69.76
2	37	1050	1050	5.00	1.74	55.10
2	39	1056	1056	3.00	1.98	94.55
2	41	680	1070	7.00	1.59	38.61
1	42	690	1080	10.00	1.42	26.49
1	43	705	1095	15.00	1.24	17.25
1	44	720	1110	15.00	1.24	17.25
1	45	740	1130	20.00	1.10	12.73
1	46	760	1150	20.00	1.10	12.73
1	47	780	1170	20.00	1.10	12.73

Soil Property Testing Ltd

Date of Issue:

as page 1

Greenwood Road Camden London

Page 4 of 7 Pages Serial No:

16131

TRL Dynamic Cone Penetrometer - Determination of CBR Value (%)

To TRL Report PR/INT/277/04 and CNS Farnell Operating Instructions

Chainage:

Direction:

0

Layers Removed:

0.45m

Test No.: Location: DCP 1

CBR3

0

1410

Date Tested:

Final Depth (mm BGL):

18/03/2016

Surface Type:

Dark yellowish brown slighty silty gravelly SAND.

Surface moisture:

DRY

Easting: Northing: 0 0.000

Existing Level: m OD 0.000

Test Level: m OD

0.000

1	48	804	1194	24.00	1.02	10.50
1	49	862	1252	58.00	0.62	4.13
1	50	895	1285	33.00	0.87	7.50
1	51	900	1290	5.00	1.74	55.10
1	52	905	1295	5.00	1.74	55.10
1	53	910	1300	5.00	1.74	55.10
2	55	924	1314	7.00	1.59	38.61
2	57	938	1328	7.00	1.59	38.61
2	59	970	1360	16.00	1.21	16.12
1	60	980	1370	10.00	1.42	26.49
1	61	995	1385	15.00	1.24	17.25
1	62	1020	1410	25.00	1.00	10.05

TEST REPORT Soil Property Testing Ltd

Date of Issue: as page 1

Greenwood Road Camden London Contract:

16131

TRL Dynamic Cone Penetrometer - Determination of CBR Value (%)

To TRL Report PR INT 277 04 and CNS Farnell Operating Instructions

0 Chainage:

Test No.: DCP 2 Location: CBR4

Final Depth (mm BGL): Date Tested:

Direction:

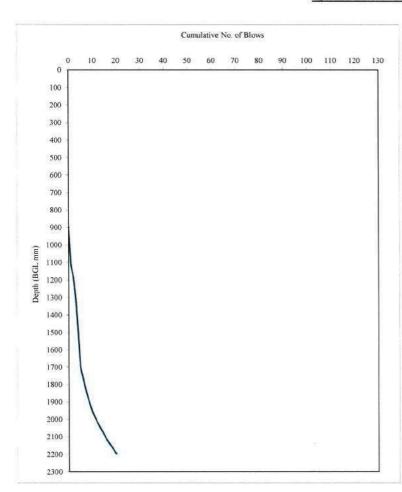
2196 18/03/2016

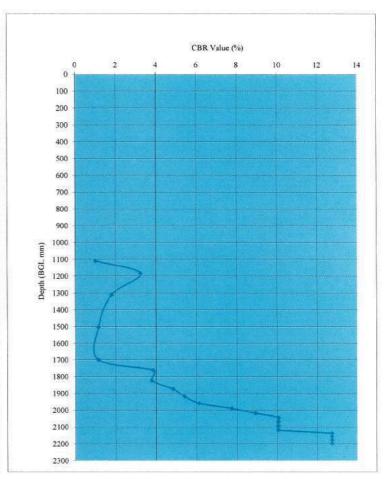
0

Layers Removed:

0.85m

Surface Type: Greyish brown slightly sandy gravelly CLAY.


Surface moisture: DRY


Easting:

Northing: 0 Existing Level: m OD 0,000

Test Level: m OD

Dynamic Cone Penetrometer Graph

Remarks:

Greyish brown slightly sandy gravelly CLAY. Gravel is brown white and black fine to coarse sub angular to sub rounded flint with occasional brick fragments.

Rod appeared very wet on retrieval

Test started at 850mm below ground level. Material removed was engineered fill consisting of crushed concrete, brick and asphalt.

Excessively high or anomalous readings may be the result of cone encountering obstructions such as large gravel fragments.

See attached sheet for Equivalent CBR values for each penetration.

Soil Property Testing Ltd

Date of Issue: as page 1

Contract:

Greenwood Road Camden London

Page 6 of 7 Pages Serial No:

16131

TRL Dynamic Cone Penetrometer - Determination of CBR Value (%)

To TRL Report PR/INT/277/04 and CNS Farnell Operating Instructions

Chainage:

0

Test No.: Location: DCP 2 CBR4

Direction:

0

Final Depth (mm BGL):

Date Tested:

2196

18/03/2016

Layers Removed:

0.85m

Surface Type:

Greyish brown slightly sandy gravelly CLAY.

Surface moisture:

Easting:

Northing:

0.000 Existing Level: m OD 0.000

Test Level: m OD

0,000

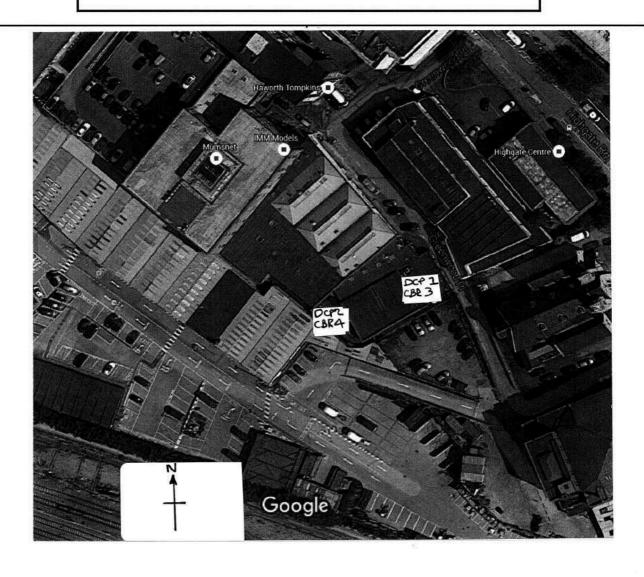
Initial Zero reading =

850

No. of Blows	Total Blows	Measured Depth (mm BGL)	Corrected Depth (mm BGL)	Penetration (mm/blow)	Log 10 CBR	CBR Value (%)
0	0	124	890	0.00	0.00	0.00
1	1	342	1108	218.00	0.01	1.02
1	2	415	1181	73.00	0.51	3.24
1	3	542	1308	127.00	0.26	1.80
1	4	735	1501	193.00	0.06	1.16
1	5	930	1696	195.00	0.06	1.15
1	6	992	1758	62.00	0.59	3.85
1	7	1055	1821	63.00	0.58	3.79
1	8	1105	1871	50.00	0.68	4.83
1	9	1150	1916	45.00	0.73	5.40
1	10	1190	1956	40.00	0.79	6.12
1	11	1222	1988	32.00	0.89	7.75
1	12	1250	2016	28.00	0.95	8.92
1	13	1275	2041	25.00	1.00	10.05
1	14	1300	2066	25.00	1.00	10.05
1	15	1325	2091	25.00	1.00	10.05
1	16	1350	2116	25.00	1.00	10.05
1	17	1370	2136	20.00	1.10	12.73
1	18	1390	2156	20.00	1.10	12.73
1	19	1410	2176	20.00	1.10	12.73
1	20	1430	2196	20.00	1.10	12.73

ISSUED BY : MATE

: MATERIAL PROPERTY TESTING LTD.


DATE OF ISSUE: 18/03/16 PAGE 7of 7 Pages

Contract

Serial No.

Greenwood Road Camden London

16131

TRL Dunamic Cone Penetrometer Location Plan NOTTO SCALE DATE: 12/3/16

A. Butcher Bsa(How

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: 23/04/16 PAGE 1 of 19 Pages

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.

S29908

CLIENT	•
--------	---

Geosphere Environmental Ltd. Brightwell Barns Brightwell Ipswich IP10 0BJ

Soil Property Testing Ltd.

15,16 & 18 Halcyon Court, St Margarets Way, Stukeley Meadows, Huntingdon,

Cambs. PE29 6DG.

Telephone (01480) 455579 Fax (01480) 453619 Email enquiries@soilpropertytesting.com

SAMPLES SUBMITTED BY:

Geosphere Environmental Ltd.

APPROVED SIGNATORIES:

- Technical Director
- Quality Manager
- W. JOHNSTONE

Materials Lab Manager

S.P. TOWL

SAMPLES LABELLED:

Greenwood Centre, Greenwood Place, Camden, London.

DATE RECEIVED:

30/03/16

SAMPLES TESTED BETWEEN 30/03/16 and 23/04/16

REMARKS:

For the attention of Lianne Fountain

Your Ref: 1655,GI

Sulphate suite of tests subcontracted to Chemtest - results

included as Appendix A of this Test Report

- NOTES: 1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.
 - 2 (a) UKAS United Kingdom Accreditation Service.
 - (b) Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.
 - 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.
 - 4 This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE 2 of 19

Contract

Serial No.

Greenwood Centre, Greenwood

S29908

Place, Camden, London.

SCHEDULE OF LABORATORY TESTS

Bh./ P No.	Sample Ref	Depth (from)	_	1:140)	19 tur 3 ili	e Col	rent Place	Detro	LINITE PROPERTY OF THE PROPERT	at 10 at 10 at 2 at 2 118	010000000000000000000000000000000000000	2 12 13 12 12 12 12 12 12 12 12 12 12 12 12 12	Mare Mare	ACE SOLVE	110	Ya.	er						Remarks
12	D2.5	2.00		*	*		<u></u>		;														
	U3.0	3.00				*		L.										T		:			
	D3.45	3.45	*								<u> </u>						<u>†</u> ~			!		-	
	D4.0	4.00	*	*			+	*	*	. *] -						Ī			<u> </u>		7	
	UT5.0	5.00	-		1	*					1		,			Γ.				-		·	
	UT8.0	8.00				*	Τ.			·-··			-			_ -		<u> </u>				.n.	
	D9.0	9.00	*				*		*	. *		T	·		 	· · —							
	UT11.0	11.00		*		*	-					 			· 						 -		
	D14.0	14.00				÷·· –	*		·· —	*													
	UT15.5					; *		 		*	 -			-		 	-				<u> </u>		
	UT18.5	•				*					ĺ	<u> </u>			<u> </u>	:						 	·
	UT21.5								 			+· ·									<u>: </u>	 	
	UT24.5	21.50		 -							 						- - -			<u> </u>	·		
_	0124.5	24.50			<u>-</u>	*			*	*												1	
	†·	-	4	3	1	8	4	3	3	4				<u> </u>			_					< Tota	l Number of Tests
	 			<u> </u>			<u>:</u>				 -							<u> </u>				<u>:</u> [··-
								<u> </u>	}		<u>.</u>	٠		<u> </u>									,
	 								<u>, </u>			 -											
		-								_			ļ				<u> </u>			 -			
				i	-									ļ							_		
				<u> </u>	<u> </u>		<u>-</u>			! !	<u> </u>										<u> </u>		
					<u> </u>		<u> </u>			: : :			_				ļ						
<u> </u>	-			<u> </u>	ļ .—						<u> </u>			<u> </u>			<u> </u>				<u>_</u>		
				<u> </u>	<u> </u>			<u> </u>			<u> </u>												
	<u> </u>			<u> </u>		ļ. <u>.</u> .				 				<u> </u>									• • • • • • • • • • • • • • • • • • • •
	<u> </u>				<u> </u>			<u></u> .	l			<u> </u>											
						<u> </u>				·		L	ļ 										
	ļ	<u>-</u> .		<u> </u>							<u> </u>												·
	<u> </u>																	!					
						i																	
											!												
		by: G													_	٠			·	ι			Date: 21/04

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 3 of 19

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.

S29908

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

PLASTICITY INDEX AND LIQUIDITY INDEX

	1		100000000000000000000000000000000000000		_							<u> </u>	<u> </u>
Bonehote/	Depth	Sample	Moisture Content		Plastic Limit	Plast- icity	Liqu- idity	. ;	SAMPLE PE	Corr'd			
Pit No.	m.		(%)	(%)	(%)	Index (%)	Index (≰)	Method S/N	0.425mm	M/C <0.425mm	Time	Description	CLASS
BH2	2.50	D2.5	19	69	24	4 5	0.18*	ស្ន	41 (M)	32	24	Stiff yellowish brown slightly sandy gravelly CLAY. Gravel is brown, black and white fine to coarse angular to subrounded flint	CH
BH2	3.45	D3.45	31	-	-	-						Stiff closely fissured yellowish brown ChaY with occasional bluish grey mottling, recently active and decayed roots and rare selenite crystals	-
вн2	4.00	D4.0	28	65	26	39	0.05	N	0 (A)		95	Stiff dark yellowish brown CLAY with rare bluish grey veins, decayed roots and selenite crystals	CH
вн2	9.00	D9.0	28	**	-	-						Stiff dark yellowish brown CLAY with rare orange silt partings and selenite crystals	-
BH2	11.00	UT11	27	76	29	47	-0.04	N	0 (A)		75	Very stiff (Very high strength) fissured friable locally thickly laminated dark greyish brown CLAY with occasional dark grey mottling	ĊV

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

S = Wet Sieved Specimen N = prepared from Natural

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

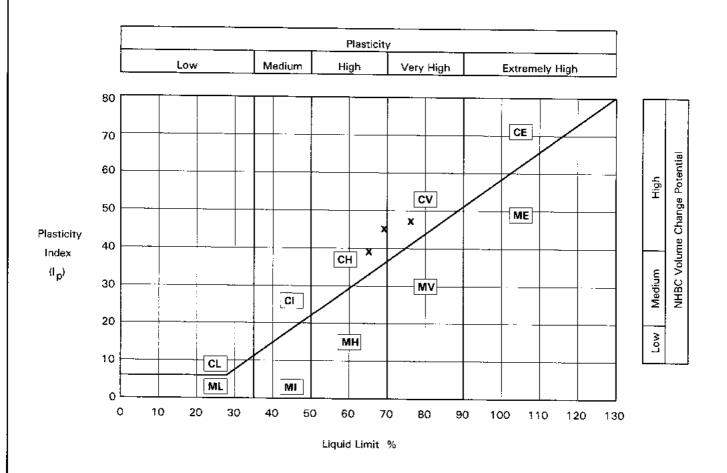
TYPE OF SAMPLE KEY

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter. A = Assumed, M ≠ Measured

COMMENTS

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin


ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE ψ of θ

Contract Serial No.

Greenwood Centre, Greenwood S29908 Place, Camden, London.

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT USING CASAGRANDE CLASSIFICATION CHART

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY

: U = Undisturbed, 8 = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

; VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

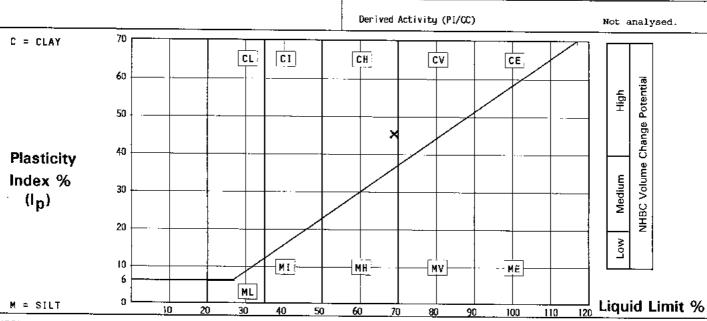
PLASTICITY CHART BS5930:1999:Figure 18

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE 5 of 19

Contract Serial No.

Greenwood Centre, Greenwood Place, Camden, London.


S29908

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Cantent #	Description	Remarks
BH2	2.50	D2.5	19 Stiff yellowish CLAY. Gravel is to coarse angul	brown slightly sandy gravelly brown, black and white fine ar to subrounded flint	

•			Derived Activity (PI/CC)	Not analysed. %
Curing Time	24	Hours	Clay Content	-
Corrected moisture content for material passing 0.425mm	32	×	Liquidity Index	0.18
Sample retained 0.425 sieve (Measured)	41	*	Plasticity Index	45 X
Method of Preparation Sieved Specimen			Plastic Limit	24 🔏
PREPARATION			Liquid Limit	69 X

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: B\$ 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

40% retained on 2mm sieve.

Corrected moisture content and calculated liquidity index assume material greater than 0.425mm

non porous. See BS1377:Part2:1990 Clause 3 Note 1.

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 6 of 19

Contract

Serial No.

Greenwood Centre, Greenwood

S29908

Place, Camden, London.

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content	Description Remarks
вн2	4.00	D4.0	28	Stiff dark yellowish brown CLAY with rare bluish grey veins, decayed roots and selenite Oven dried at a maximum of 80°C due to the presence of selenite

<u></u>											
	PREPARATION		Liquid Limit		65. \$						
Method of Preparation	Specimen from Natu	ral Soil	Plastic Limit	Plastic Limit 26 ≰							
Sample retained 0.425	sieve (Assumed)	0 %	Plasticity Index		39 %						
Corrected moisture con	tent for material passing	0.425пт ≰	Liquidity Index		0.85						
Curing Time		95 Hc	urs Clay Content		Not analysed. 🕻						
·4, .			Derived Activity (PI/CC)	Not analysed.						
Plasticity Index % (Ip)	70 60 50 40 30 20	CL CI	CH CV		Low Medium High NHBC Volume Change Potential						
M = SILT	0 10 20	ML 30 40 5	0 60 70 80	90 100 110	Liquid Limit %						

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: B\$ 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE 7 of 19

Contract

Corrected moisture content for material passing 0.425mm

Serial No.

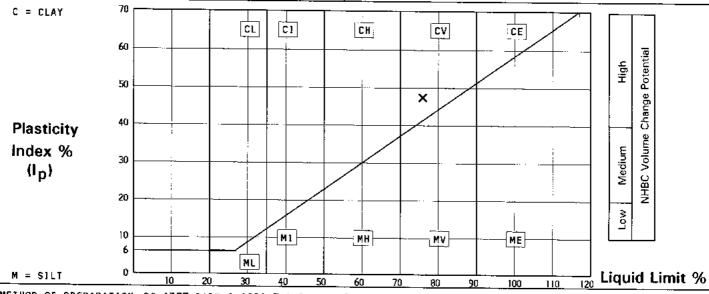
Greenwood Centre, Greenwood

S29908

Place, Camden, London.

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Cantent:	Description Remarks
BH2	11.00	UT11	friabl	tiff (Very high strength) fissured e locally thickly laminated dark h brown CLAY with occasional dark grey
	PI	REPARA	FION	Liquid Limit 76 ≸
Method of Pr	eparation	Specimen fr	om Natural Soil	Plastic Limit 29 ≰
Sample retai	ned 0.425 siev	e (Assume	d) 0	X Plasticity Index 47 K


Curing Time 75 Hours Clay Content Not analysed. %

Derived Activity (PI/CC)

Liquidity Index

Not analysed.

-0.04

NHBC Volume Change Potential

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE 8 of (9)

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.

S29908

DETERMINATION OF DENSITY, MOISTURE CONTENT AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Bonehole/	Depth	Sample	Moisture Content	Bulk Density	Dry Density	Lateral Pressure	Deviator Stress	Shear Stress		CIRCLE YSIS	
Pit No.	т.	<u> </u>	(%)	(Mg/m ³)	(Mg/m ³)	(kPa)	(kPa)	Suress (kPa)	Cu (kPa)	Ø (degrees)	Description
BH2	3.00	U3	30	1.98	1.52	64	159	80			Stiff (High strength) fissured yellowish brown CLAY with occasional grey and orangish brown mottling and rare decaye roots
вн2	5.00	uts	30	1.96	1.51	10 1	254	127			Stiff (Righ strength) fissured dark yellowish brown CLAY with occasional grey and orangish brown mottling and selenite crystals
вн2	8.00	UT8	27	1.98	1.56	161	265	133			Stiff (High strength) fissured dark yellowish brown CLAY with occasional grey and orangish brown mottling and selenite crystals
вн2	11.00	UT11	27	2.02	1.59	222	579	290			Very stiff (Very high strength fissured friable locally thick laminated dark greyish brown CLAY with occasional dark grey mottling
BH2	15,50	UT15	30	1.98	1.52	310	265	132			Stiff (High strength) fissured dark greyish brown CLAY with occasional dark grey mottling and rare fossil fragments
вн2	18.50	UT18	28	2.00	1.56	372	349	175			Very stiff (Very high strength fissured dark greyish brown CI with occasional dark grey mottling
вн2	21.50	UT21	26	0.02	0.02	434	698	34.9			Extremely weak fissured dark greyish brown MUDSTONE with occasional dark grey mottling
ВН2	24,50	UT24	25	2.05	1.64	491	439	219			Very stiff (Very high strength fissured friable dark greyish brown CLAY with occasional dar grey mottling

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4.2 & 8 PART 2:1990:7.2 PART 7:1990:8.3

METHOD OF TEST

: BS 1377:PART 2:1990:3 Determination of Moisture Content 1990:7 Determination of Density :PART 7:1990:8 Undrained Shear Strength 1990:9 Multi-stage test

Note Multi-stage test used when specimen has granular content / behaviour and length of specimen precludes the taking of 3 x 100mm dia by 200mm long specimens.

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

TYPE OF SAMPLE KEY

C = Core Cutter

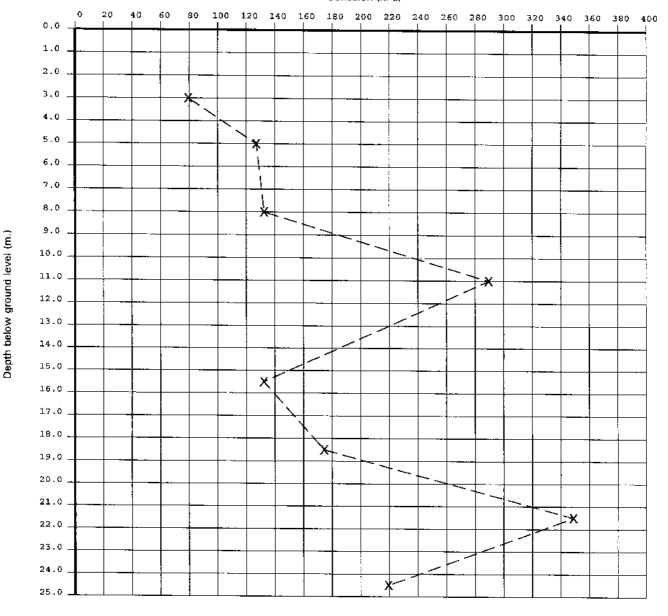
COMMENTS

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample. Oven drying temperature if not 105-110 deg C.

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE 9 of 19


Contract Serial No.

Greenwood Centre, Greenwood Place, Camden, London.

S29908

Cohesion (kPa) vs Depth below ground level (m.).

Cohesion (kPa)

1/	X : BH2	,		 	
Key to					
Data Points		 		 	
			<u> </u>	 _	

ISSUED BY

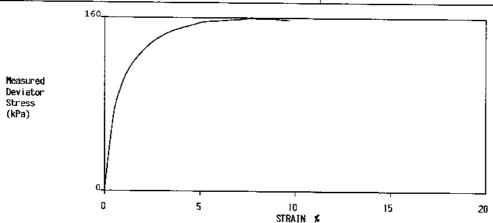
: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE (O of (9)

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.


S29908

DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

orehole/ it No.	Depth m.	Sample	Description Remarks						
BH2	3.00	U3	Stiff occasion decayer						
Initial Specimen Depth of Top of Specimen (m) 3.05		Height. mm		Diameter mm	Weight 9	Maisture Content	Wet Density Mg/m ³	Dry Density Mg/m ³	
		199,6		102.1	3235	30	1.98	1.52	

Specimen at Faiture	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected New Shear Stress Hohrs Circle Analysis
Specimen at Failure	Ø 3 (kPa)	(x)	Rubber Membrane	Piston Friction	O 1 - O 3 % (O 1 - O 3) f Cu (RPa) PHI °
	64	8.7	0.6	/	159 ag

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

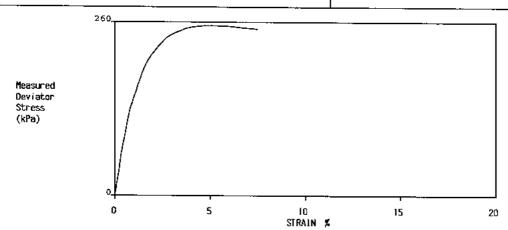
: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE (of (9

Contract

Serial No.

Greenwood Centre, Greenwood


S29908

Place, Camden, London.

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

UTS					Renanks		
	with	(High strength) foccasional grey and ite crystals	issured dark yell d orangish brown	Oven dried at a maximum of 80°C due to the presence of selenite			
m		Diameter mm	Weight 9	Moisture Content	Wet Density Mg∕m ³	Dry Density Mg∕m ³	
`	6	102.8	3252	30	1.96	1.51	
	(m)	Height mm	selemite crystals Height Diameter mm mm	Height Diameter Weight mm g	Height Diameter Weight Content Ton 9 \$	Height Diameter Weight Content Density Mg/m 3	

Specimen et Fail	Measured Cell Pressure	Strain at Failure	Stress Corr	ections (kPa)	Corrected Max. Sheer Stress Mohrs Circle Analysis Deviator Stress Cu
Specimen at Failure	О 3 (kPa)	(%)	Rubber Membrane	Piston Friction	σ1 σ3 %(σ1 σ1)ε Cu (κPa) PH1 °
	101	5.1	0.4	/	.254 127

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation,

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

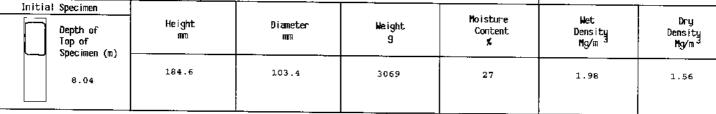
: Sample disturbance, loss of moisture, variation from test procedure, location and origin

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE (2 of (9)

Contract

Serial No.


Greenwood Centre, Greenwood Place, Camden, London.

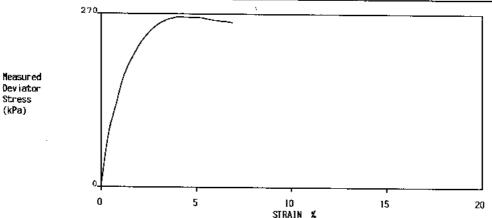
S29908

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

e/ 	Depth m.	Sample			Remarks			
	8.00	UT8	Stiff (Hig with occas selenite o	sional grey and	issured dark yello d orangish brown n	owish brown CLAY	Oven dried at a r 80°C due to the p selenite	
_	Specimen Depth of Top of Specimen (m)	Height nom		Diameter mm	Weight 9	Moisture Content ≴	Wet Density Mg/m ³	Dry Density Mg/m ³

TEST INFORMATION

Bonehole/ Pit No.


BH2

Rate of Strain

% per Min

Rubber Membrane Thickness

0.3

				STATISTIC NO.	
Specimen at Failure	Measured Cell Pressure	Strain at Failure	Stress Corr	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Cu
	σ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	
	161	4.1	0.3	/	265 133

METHOD OF PREPARATION: BS 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

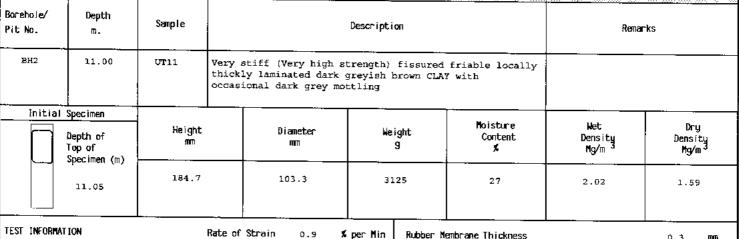
: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE (3 of 19

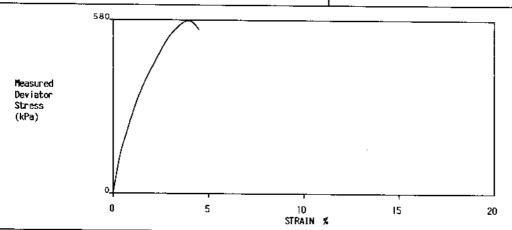
Contract

Serial No.


Greenwood Centre, Greenwood Place, Camden, London.

S29908

DETERMINATION OF UNDRAINED SHEAR STRENGTH


IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Rate of Strain

Rubber Membrane Thickness

0.3 mm

*	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Sheer Stress Mohrs Gircle Analysis Deviator Stress Gu
Specimen at Failure	σ3 (kPa)	(%)	Rubber Membrane	Piston Friction	
	222	4.0	0.3	/	579 290

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method, 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kM.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 14 of 19

Contract

Serial No.

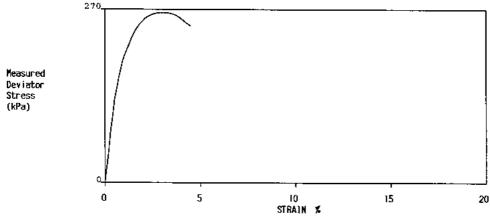
Greenwood Centre, Greenwood

S29908

Place, Camden, London.

DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE


rehole/ t No.	Depth m.	Sample		Remarks			
BH2	15.50	,	Stiff (High strength) f with occasional dark gr fragments	Premature failure at 3.1% strain			
Initial Specimen Depth of Top of Specimen (m)		Height mm	Diameter mm	Weight 9	Moisture Content	Wet Density Mg/m 3	Dry Density Mg/π ³
	15.56	199.5	103.4	3313	30	1.98	1.52

TEST INFORMATION

Rate of Strain

0.9 % per Min Rubber Membrane Thickness

0.3 mm

	Measured Cell Pressure	Strain at Fail ur e	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Cu
Specimen at Failure	σ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	Deviator Stress Cu $\sigma_1 - \sigma_3$ $V_6(\sigma_1 - \sigma_3)_f$ Cu (kPa) PHI \circ
	310	3.1	0.2	/	265 132

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

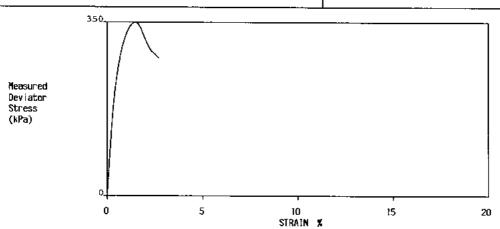
: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 15 of 19

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.



DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Depth m.	Sample		Rema	Remarks			
18.50	UT18 V	ery stiff (Very high s rown CLAY with occasion	Premature failure at 1.5% strain				
Specimen Depth of Top of Specimen (m)	Height.	Diameter mm	Weight 9	Moisture Content %	Wet Density Mg/m ³	Dry Density Mg/m ³	
18.53	199.6	103.6	3370	28	2.00	1.56	
	Specimen Depth of Top of Specimen (m)	Specimen Depth of Top of Specimen (m) Sample VT18 V Height FINA 199.6	Sample 18.50 UT18 Very stiff (Very high s brown CLAY with occasion Specimen Depth of Top of Specimen (m) 199.6 103.6	Sample Description 18.50 UT18 Very stiff (Very high strength) fissured brown CLAY with occasional dark grey mot Specimen Depth of Top of Specimen (m) 199.6 103.6 3370	Sample Description 18.50 UT18 Very stiff (Very high strength) fissured dark greyish brown CLAY with occasional dark grey mottling Specimen Depth of Top of Specimen (m) 199.6 103.6 3370 28	Top of Specimen (m) Sample Description Remail Description Remail Description Remail Remail Description Remail Remail Description Remail Remail Remail Description Remail	

\$	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Ou
Specimen at Failure	♂ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	σ (- σ 3 % (σ (- σ 3)) Cu (kPa) PHI
	372	1.5	0.2	/	349 175

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

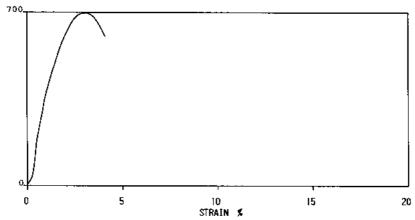
DATE OF ISSUE : As page 1 PAGE 16 of 19

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.

S29908



DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Pit No.	Depth m.	Sample	ple Description Re								
BH2	21.50		tremely weak fissured casional dark grey mod		own MUDSTONE with	Premature failure strain	e at 3.1%				
	Specimen Depth of Top of Specimen (m)	Height mm	Diameter mm	Weight 9	Moisture Content メ	Wet Density Mg/m 3	Dry Density Mg/m ³				
	21.54	199.5	103.3	34	26	0.02	0.02				

	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohos Circle Analysis Deviator Stress Co
Specimen at Failure	♂ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	
	434	3.1	0.2	/	696 349

METHOD OF PREPARATION: 8S 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE 17 of 19

Contract

Serial No.

Greenwood Centre, Greenwood

S29908

Place, Camden, London.

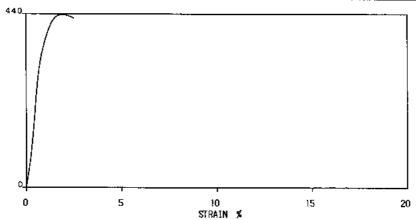
DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Barehole/ Pit No.	Depth m.	Sample		Remarks			
вн2	24.50	UT24	Very stiff (Very high s greyish brown CLAY with	trength) fissured occasional dark	friable dark grey mottling	Premature failure strain	e at 1.9%
	Specimen Depth of Top of Specimen (m)	Height mm	Diameter mm	Weight 9	Moisture Content %	Wet Density Mg/m	Dry Density Mg/m ³
	24.54	199.5	103.4	3428	25	2.05	1.64

TEST INFORMATION

Rate of Strain


≸ per Min 0.8

Rubber Membrane Thickness

0.3

mm

0 - 1 5 11	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Cu
Specimen at Failure	σ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	
	491	1.9	0.2	/	439 219

METHOD OF PREPARATION: BS 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE (of

Contract

Serial No.

Greenwood Centre, Greenwood

S29908

Place, Camden, London.

DETERMINATION OF THE SULPHATE CONTENT OF SOIL AND GROUNDWATER

Borehole/	Depth		Concentral Si	tion of Solub ail	le Sulphete	≭ of sample	Description	
Pit No.	m.	Sample	Acid Solybje	Soluble 2:1		passing 2mm sieve	j besa ipeloji	Remarks
BH2	14,00	D14.0	Acid Soluble SOL	Soluble 2:1 SO3 9/1 0.72	9 /1		Very stiff fissured dark greyish brown CLAY	Kenarks

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.5 BS1377:PART 3:1990:5.2 Acid Soluble, 5.3 Soil/Water Extract

METHOD OF TEST

: BS 1377:PART 3:1990:5.5

:5.4 Groundwater

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Test not UKAS accredited.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE (9 of (9

Contract

Serial No.

Greenwood Centre, Greenwood

S29908

Place, Camden, London.

			DETERN	VINATION OF THE PH VALUE	
orehole∕ it No.	Depth m.	Sample	p∺ Value	Description	Remarks
BH2	14.00	D14.0	8.0	Very stiff fissured dark greyish brown CLAY	
		}			
	:				
		1		!	

METHOD OF PREPARATION: BS 1377:PART 1:1990:7 BS 1377:PART 3:1990:9.4

METHOD OF TEST : BS 1377:PART 3:1990:9.5

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Test not UKAS accredited.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample. Oven drying temperature if not 105-110 deg C.

SPT Test Report No.: S29908 Appendix A

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report No.:

16-08730-1

Initial Date of Issue:

20-Apr-2016

Client

Soil Property Testing

Client Address:

18 Halycon Court St Margarets Way

Stukeley Meadows

Huntingdon Cambridgeshire

PE29 6DG

Contact(s):

Jon Garner

Project

S29908 - Greenwood Centre,

Greenwood Place, Camden, London

Quotation No.:

Q16-06170

Date Received:

15-Арг-2016

Order No.:

S29908

Date Instructed:

15-Apr-2016

21-Apr-2016

No. of Samples:

3

5

Turnaround (Wkdays):

Results Due:

Date Approved:

20-Apr-2016

Approved By:

Details:

Keith Jones, Technical Manager

London

Client: Soil Property Testing		Che		ab Nos	16,08730	(10×087/0)	16,08730
Quotation No.: Q16-06170		Chemte	st Sam	ple ID.:	280667	280668	280669
Order No.: S29908		Clie	nt Samp	le Ref.:	8H2	BH2	BH2
		C∄	ent Sam	iple ID.:	D4.0	D9.0	UT24.5
			Sampl	е Туре:	SOIL	SOIL	SOIL
				pth (m):	4.00	9.00	24.50
Designation of the second second	i Valencia	7 je.,	Million (Contraction)	Wro y			
Moisture	N	2030	%	0.020	21	21	20
рН	Ų	2010		N/A	7.9	7.9	8.7
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	2.1	2.4	0.25
Total Sulphur	U	2175	%	0.010	0.36	1.2	0.50
Sulphate (Acid Soluble)	U	2430	%	0.010	0.88	1.7	0.16

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.co.uk

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: 11/05/16 PAGE 1 of 7 Pages

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London

S29994-1

CLIENT:

Geosphere Environmental Ltd. Brightwell Barns Brightwell Ipswich IP10 OBJ

Soil Property Testing Ltd.

15,16 & 18 Halcyon Court, St Margarets Way, Stukeley Meadows, Huntingdon, Cambs. PE29 6DG.

Telephone (01480) 455579 Fax (01480) 453619 Email enquiries@soilpropertytesting.com

SAMPLES SUBMITTED BY:

Geosphere Environmental Ltd.

APPROVED SIGNATORIES:

J.C.GARNER B.Eng (Hons.) FGS Technical Director

S.P. TOWNEND FGS Quality Manager

W. JOHNSTONE

Materials Lab Manager

SAMPLES LABELLED:

DATE RECEIVED:

Greenwood Centre, Greenwood Place, Camden, London

22/04/16

SAMPLES TESTED BETWEEN 22/04/16 and 11/05/16

REMARKS: For the attention of Lianne Fountain

Your reference 1655,GI

- NOTES: 1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.
 - 2 (a) UKAS - United Kingdom Accreditation Service.
 - (b) Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.
 - 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.
 - This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE 2 of γ

Contract Serial No.

Greenwood Centre, Greenwood \$29994-1

Place, Camden, London

SCHEDULE OF LABORATORY TESTS

Bh./ Tp No.	Sample Ref	Depth (from)	/4	100:5	501.01.1 102.1	ate y	est (ve cid	(2:1 0 00 0 10 0 10 0 10 0 10 0 10 0 10 0	Wate ole ole ole vid vid s.wet	r wal bulph areas 618	er beter stick	soar Limit	ation ation	olar For	jim								Ren	narks		
FIP2	D1	1,40	*	. *	*	*	*	•									:									
FIP3	D3	1.70				*	*	*		:							Ī									
FIP4	D1	0.90	*	*	*	*	*	*																		
	D3	1.20				: *] -											{				
	D2	1.80]			*												Ī	ļ—			_~				
-		-	2	2	2	5	3	3														< Tota	ıl Num	ber o	of Tes	ts —
					<u> </u>	<u> </u>				<u> </u>									<u>L</u>							
		<u></u>			<u>.</u>	ļ																				
							L.,		}												:					
		L									Γ					"						-				
				!		Ţ- <u>-</u>													,							
•		-						+	1				<u> </u>		 			Ť								
		-						•					ļ —					†-·-		ļ	 					
				- · -				-					†					<u> </u>				_				
				 	ļ .				1				r									!				
				Ť.					 -	1			İ	 					 	 						
-						•			 				†	-						 						
						i		 - -		 		 					 				 	·				
						†				+					 	 			:		: 					
						 				 	+				 											
 ·					ì	-	\ <u></u>		<u> </u> 	+	┼	-					╁		-							
		-				 			1	+	+	ļ					ļ	+								
	 		┢	ļ				<u> </u>		+		\vdash		<u> </u>	!		<u> </u>	┼								
			\vdash		-		<u> </u> 	-						 					 	!						
		-	\vdash		 -	-			-	 			-	ـ			_		<u> </u>							_,
	<u> </u>	<u></u>	-	 					<u> </u>	-			-	ļ	<u>. </u>		1		<u> </u>	ļ <u>-</u>		1				
	 		<u> </u>	ļ	_		<u> </u>		_			<u> </u>	: 	\perp					·					-		
		<u> </u>	_		ļ	-				ļ. <u> </u>	+				<u> </u>					<u> </u>						
<u>.</u>		ļ -	lacksquare	<u> </u>	ļ			<u> </u>		ļ				ļ. <u>.</u> .			<u> </u>			<u> </u>						
	<u> </u>		<u> </u>	_	\perp						<u> </u>	ļ	1	\perp	<u> </u>	ļ	<u> </u>		<u>. </u>			<u> </u>				
	<u> </u>]			L .					L.				ļ		<u> </u>								
che	duled	bv: 6	ieo	spl	her	^ e	En	vi v	rOn	me:	nts	רי	T.÷~	₹								Targe	+ D^	to:	10/) E / 1

: SOIL PROPERTY TESTING LTD.

PAGE 3 of ? DATE OF ISSUE : As page 1

Serial No. Contract

Greenwood Centre, Greenwood Place, Camden, London

S29994-1

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

PLASTICITY INDEX AND LIQUIDITY INDEX

			Moisture	Liquid	Plastic	Plast-	Liou-	SAMPLE PREPARATION		I			
Borehole/ Pit No.	Depth m.	Sample	Content (%)	Limit (%)	Limit	icity Index (%)	idity Index (%)	Hethod S/N	Ret'd 0.425mm (%)	Connid M/C <0.425mm	Curing Time (hrs.)	Description	CLASS
FIP2	1.40	D1	38	58	22	36	0.69*	ឆ	19 (M)	47	73	Very soft yellowish brown slightly sandy slightly gravelly CLAY with occasional greyish brown mottling and coke/coal fragments. Gravel is white, grey, light brown and brown fine and medium subangular and subrounded	CH
FIP3	1.70	D3	39	73	26	47	0.38*	S	11(M)	44	28	Soft yellowish brown slightly sandy slightly gravelly CLAY with occasional grey mottling and brick fragments. Gravel is dark grey and black fine and medium rounded to subangular	
FIP4	0.90	D1	25	51	19	32	0.25*	. 03	7 (M)	27	25	Stiff yellowish brown slightly sandy slightly gravelly CLAY with occasional grey and light orangish brown mottling. Gravel is red, white, grey, dark grey and brown fine and medium rounded to subangular	
FIP4	1.20	D3	29	-	-	-						Stiff slightly fissured yellowish brown CLAY with occasional grey and light orangish brown mottling and calcareous aggregations and powder	-
FIP4	1.80	D2	27	-								Stiff slightly fissured yellowish brown CLAY with occasional grey mottling, rare orange staining, calcareous aggregations and powder and decayed roots	-

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2 S ≠ Wet Sieved Specimen N = prepared from Natural

METHOD OF TEST : BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter. A = Assumed, M = Measured

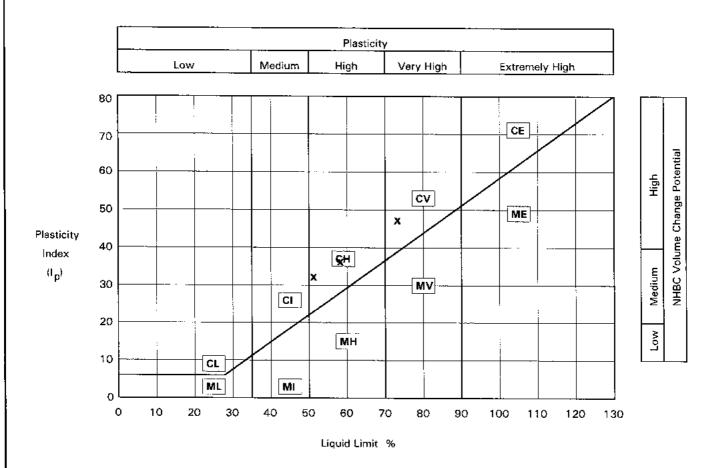
COMMENTS

TYPE OF SAMPLE KEY

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 4 of ?


Contract Serial No.

Greenwood Centre, Greenwood

S29994-1

Place, Camden, London

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT **USING CASAGRANDE CLASSIFICATION CHART**

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

PLASTICITY CHART BS5930:1999:figure 18

ISSUED BY : SOIL PROPERTY TESTING LTD.

PAGE 5 of 7 DATE OF ISSUE : As page 1

Contract Serial No.

Greenwood Centre, Greenwood Place, Camden, London

S29994-1

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content %		Description p									
FIP2	1.40	D1	38	Very soft yel: slightly grave greyish brown fragments. Gra and brown fine	elly CLAY wi mottling an evel is whit	th occasion: d coke/coal e, grey, lic	al ght brown							
	PI	REPARAT	ION	subrounded	Liquid Lin				58 K					
Method of Pro	eparation	Sieved Speci	men		Plastic Li	mit			22 🕻					
Sample retain	ned 0.425 siev	e (Measure	d)	19 %	Plasticity	Index			36 %					
Corrected mo	isture content	for material	passing 0.425mm	47 %	Liquidity	Index			D. 69					
Curing Time		·		73 Hours	Clay Conte	nt		Not an	nalysed. %					
					Derived Ac	tivity (PI∕∝)	Not ar	nalysed.					
C = CL	`	70 60 50	CL	CI	СН	[cv]	CE	High	Change Potential					
Plasti Index (I _p)	ci ty %	30		MI	X	MV	ME	Low Medium	NHBC Volume C					
M = SI	LT	6 10	ML 20 30	40 50	60 70	:	00 100 110	Liqui	d Limit %					

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

15% retained on 2mm sieve.

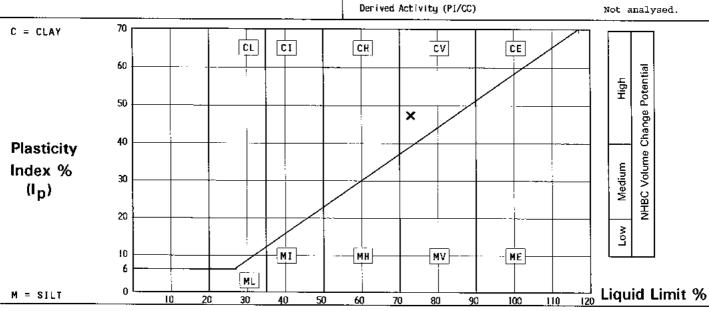
Corrected moisture content and calculated liquidity index assume material greater than $0.425 \mathrm{mm}$

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 6 of 7

Contract Serial No.

Greenwood Centre, Greenwood Place, Camden, London


S29994-1

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content \$	Description	Remarks
FIP3	1.70	D3	39	Soft yellowish brown slightly sandy slightly gravelly CLAY with occasional grey mottling and brick fragments. Gravel is dark grey and black fine and medium rounded to subangular	

PREPARATION		Liquid Limit	
Method of Preparation Sieved Specimen		Plastic Limit	26 ≰
Sample retained 0.425 sieve (Measured)	11 %	Plastic Limit Plasticity Index	47 7
Corrected moisture content for material passing 0.425mm	44 %	Liquidity Index	0.38
Curing Time	28 Hours	Clay Content	Not analysed. %
	· · · · · ·		

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST : B\$ 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS : PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

10% retained on 2mm sieve.

Corrected moisture content and calculated liquidity index assume material greater than 0.425mm

ISSUED BY : SOIL PROPERTY TESTING LTD.

PAGE 7 of 7 DATE OF ISSUE : As page 1

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-1

Place, Camden, London

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content &		Description		Remarks					
₽IP4	0.90	D1		gravelly CLAY orangish brow white, grey,	sh brown slightl with occasional m mottling. Grav dark grey and br ed to subangular	el is red,	Strong odou	r noted				
	F	REPARAT	ION		Liquid Limit			51 🕻				
Method of Pre	eparation	Sieved Speci	men		Plastic Limit			19 🕱				
Sample retain	ned 0.425 sie	eve (Measure	ed)	7 🟌	Plasticity Ind	ex		3.2 🕏				
Corrected mai	isture conter	nt for material	passing 0.425mm	27 🟌	Liquidity Inde			0.25				
Curing Time		·		25 Hours	: Clay Content			Not analysed. 🛪				
					Derived Activi	ty (PI/CC)		Not analysed.				
C = CL	AY	70	CL	CI	CH	CV CE						
		60		 T -	<u> </u>			High Potential				
		50						High ge Potent				
Plasti	citv	40						Change				
Index	%	30		×				Medium 3C Volume				
(I _p)		20				+		NHBC WHBC				
		10		MI	MH			Low				
		6					,					
M = S1	LŤ	0	20 30	40 50	60 70	80 90 100	110 120	Liquid Limit %				

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip \times (% less than 425 microns/100)

6% retained on 2mm sieve.

Corrected moisture content and calculated liquidity index assume material greater than 0.425mm

SPT Test Report No.: S29994-1 Appendix A

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report No.:

16-10385-1

Initial Date of Issue:

11-May-2016

Client

Soil Property Testing

Client Address:

18 Halycon Court

St Margarets Way Stukeley Meadows

Huntingdon Cambridgeshire PE29 6DG

Contact(s):

Jon Garner

Project

S29994-1 Greenwood Centre,

Greenwood Place

Quotation No.:

Q16-06170

Date Received:

05-May-2016

Order No.:

S29994-1

Date Instructed:

05-May-2016

No. of Samples:

2

Turnaround (Wkdays):

5

Results Due:

11-May-2016

Date Approved:

11-May-2016

Approved By:

Details:

Keith Jones, Technical Manager

Project: S29994-1 Greenwood Centre, Greenwood Place

Client: Soil Property Testing		4 CH	me v		1000	16,1008
Quotation No.: Q16-06170		Chemte	st Sam	ple ID.:	289713	289714
Order No.: S29994-1		Clie	nt Samp	le Ref.:	FIP2	FIP4
······································		Cli	ent Sam	ple ID.:	D1	D1
			Sampl	е Туре:	SOIL	SOIL
			Top De	oth (m):	1.40	0.90
Coloronia en la coloronia del Coloronia en la coloronia en la coloronia en la coloronia en la coloronia en la c		3 33 (3)	NUMES	filt elect		
Moisture	N	2030	%	0.020	26	26
pH		2010		N/A	8.3	8.3
Sulphate (2:1 Water Soluble) as SO4		2120	g/l	0.010	0.11	0.12
Total Sulphur	Ų	2175	%	0.010	0.030	0.050
Sulphate (Acid Soluble)	Ü	2430	%	0.010	0.079	0.077

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : 13/05/16 PAGE 1 of 7 Pages

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London

S29994-2

CLIENT:

Geosphere Environmental Ltd. Brightwell Barns Brightwell Ipswich IP10 0BJ

Soil Property Testing Ltd.

15,16 & 18 Halcyon Court, St Margarets Way, Stukeley Meadows, Huntingdon, Cambs. PE29 6DG.

Telephone (01480) 455579 Fax (01480) 453619 Email enquiries@soilpropertytesting.com

SAMPLES SUBMITTED BY:

Geosphere Environmental Ltd.

APPROVED SIGNATORIES:

J.C.GARNER B.Eng (Hons.) FGS
Technical Director

S.P.TOWNEND FGS
Quality Manager

W.Johnstone

Materials Lab Manager

SAMPLES LABELLED:

Greenwood Centre, Greenwood Place, Camden, London

DATE RECEIVED:

27/04/16

SAMPLES TESTED BETWEEN 27/04/16 and 13/05/16

REMARKS:

For the attention of Lianne Fountain

Your reference 1655,GI

Chemical testing subcontracted to Chemtest - results included as Appendix A to this Test Report

- NOTES: 1
- All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.
- 2 (a) UKAS United Kingdom Accreditation Service.
 - (b) Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.
- 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.
- 4 This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE 2 of \mathcal{F}

Contract Serial No.

Greenwood Centre, Greenwood S29994-2 Place, Camden, London

SCHEDULE OF LABORATORY TESTS

D1 D1 D2 D3 D4 D6	3 4 5	1.60 0.90 1.90 2.90 4.00 5.80	* * * * * * 6	* * * * 6	*		* 3	* * *	* * 3	1											< Tota	Remarks 1 Number of Test	.s —
D2 D3 D4 D6	3 4 5	0.90 1.90 2.90 4.00 5.80	*	*	*	*	* .	*	*												< Tota	1 Number of Test	.s
D3 D4 D6	3	1.90 2.90 4.00 5.80	*	*	*	*	* .	*	*			-									< Tota	1 Number of Test	.s —
D4	<u>1</u>	4.00	*	*	*	*	* .	*	*												< Tota	1 Number of Test	.s —
D6	5	5.80	*	*	3	i	†···	*		1											< Tota	1 Number of Test	:s —
					3	i	†···	t		1											< Total	1 Number of Test	:s —
		_	6	6	3	3	3	5	3	1											< Tota	1 Number of Test	.s —
									Ì						,								
									Ì														
)				!												
											!		¦					.				******	
								ļ	_		:			!		i			1	i			
								1		1		1					<u> </u>						
								1		ļ													
	- 1				 -	_			<u> </u>	ļ	<u> </u>					<u> </u>			<u> </u>	<u> </u>			
						1		ļ		ļ								<u> </u>			!		
					ļ		<u> </u>					<u> </u>						<u> </u>		ļ			
									!	<u> </u>	ļ	! 			- -								
	${-}$				<u> </u>	_	<u> </u>	_				-											
	_							ļ <u>.</u>	<u> </u>		!						<u> </u>			:			
1	_			ļ —				ļ			:								<u> </u>				
	_	•	_	 	<u> </u>		:	-	ļ. <u></u>										1				<u>.</u> .
1							<u> </u>	1	<u> </u>		 												
	_				ļ	ļ					-										_		
	-				<u> </u>				<u> </u>	<u> </u>									<u> </u>		:		
						-				_								-	<u> </u>	ļ	<u> </u>		
	\perp				!	<u> </u>	i		<u> </u>	<u> </u>		<u> </u>									ļ		
					<u>:</u> .				<u>i</u>	-							ı			<u>`</u>			
	\rightarrow					ļ. <u></u>				ļ <u>. </u>						_				<u> </u>			
Schedule		7,		1	:	1		<u> </u>	··														

ISSUED BY

: SOIL PROPERTY TESTING LTD.

PAGE 3 of 7 DATE OF ISSUE : As page 1

Contract

Serial No.

Greenwood Centre, Greenwood

529994-2

Place, Camden, London

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

PLASTICITY INDEX AND LIQUIDITY INDEX

			Moisture	Liquid	 Plast.ic	Plast-	Ligu-	,	SAMPLE PR	EPARAT ION	ı		
Borehole/ Pit No.	Depth π.		Content (≰)		Limit (≴)	icity Index (%)	idity Index (%)	Method S/N	Ret'd 0.425mm (%)	Conn'd M/C <0.425mm	Ouring Time (hrs.)	Description	CLASS
WS102	0.90	D1	3.0	51	30	21	1.05*	Ø	42 (M)	52	24	MADE GROUND comprising dark grey and dark greyish brown slightly organic sandy clay, brick, mortar, concrete and glass fragments, fine and medium subangular and subrounded flint, rare ceramic fragments and decayed roots	МНО
WS102	1.90	D2	25	-	_	-						Soft yellowish brown slightly gravelly CLAY with occasional light brownish grey and light orangish brown mottling. Gravel is white, brown and grey fine and medium angular to subrounded gravel	
WS102	2.90	D3	22	57	23	34	-0.03	N	0 (A)		25	Stiff slightly fissured reddish yellow and dark grey CLAY with occasional grey and light orangish brown mottling	
W\$102	4.00	D4	28	-	-	-						Stiff slightly fissured brown CLAY with occasional grey and yellowish brown mottling	
WS102	5.80	D6	28	75	29	46	-0.02	N	0 (A)		24	Stiff slightly fissured yellowish brown CLAY with occasional grey mottling and selenite crystals	cv

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

S = Wet Sieved Specimen N = prepared from Natural

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY

METHOD OF TEST

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter. A = Assumed, M = Measured

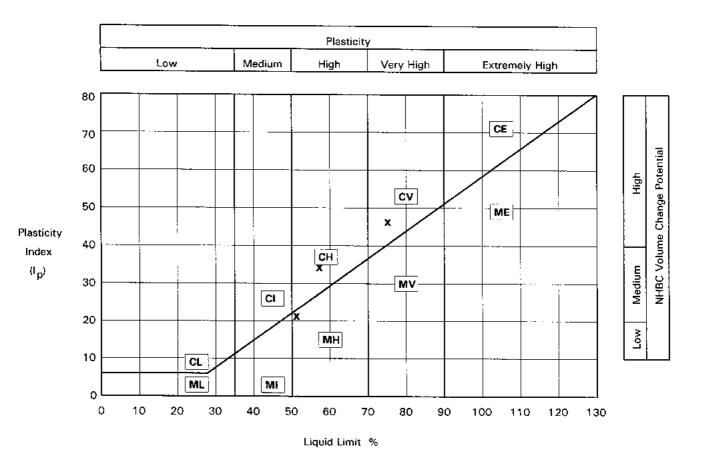
COMMENTS

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample. Oven drying temperature if not 105-110 deg C.

SPTR2CT

ISSUED BY : SOIL PROPERTY TESTING LTD.


PAGE 4 of 7 DATE OF ISSUE : As page 1

Serial No.

Greenwood Centre, Greenwood Place, Camden, London

S29994-2

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT **USING CASAGRANDE CLASSIFICATION CHART**

METHOD OF PREPARATION: BS 1377: PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: 8\$ 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

PLASTICITY CHART BS5930:1999:Figure 18

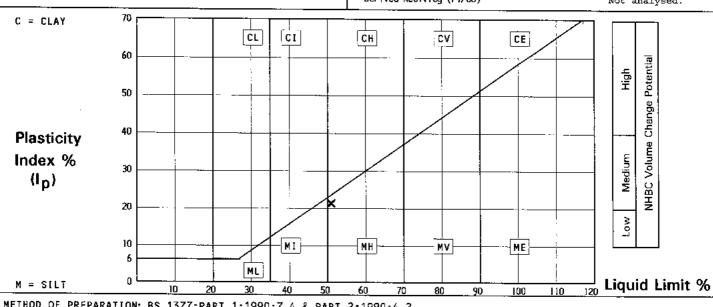
ISSUED BY : SOIL PROPERTY TESTING LTD.

PAGE 5 of 7 DATE OF ISSUE : As page 1

Contract

Serial No. Greenwood Centre, Greenwood S29994-2

Place, Camden, London


DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content %	Description	Remarks
WS102	0.90	Dl		MADE GROUND comprising dark grey and dark	"-
				greyish brown slightly organic sandy clay,	
				brick, mortar, concrete and glass fragments,	
				fine and medium subangular and subrounded flint, rare ceramic fragments and decayed	
		<u> </u>		flint, rare ceramic fragments and decayed	<u>L</u>
1				roots	

PREPARATION	oots	Liquid Unit.	51 💃
Method of Preparation Sieved Specimen		Plastic Limit	30 🔏
Sample retained 0.425 sieve (Measured)	42 🕱	Plasticity Index	21 \$
Corrected moisture content for material passing 0.425mm	52 🕺	Liquidity Index	1.05
Curing Time	24 Hours	Clay Content	Not analysed. %
	-		

Derived Activity (P1/CC)

Not analysed.

Change F

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

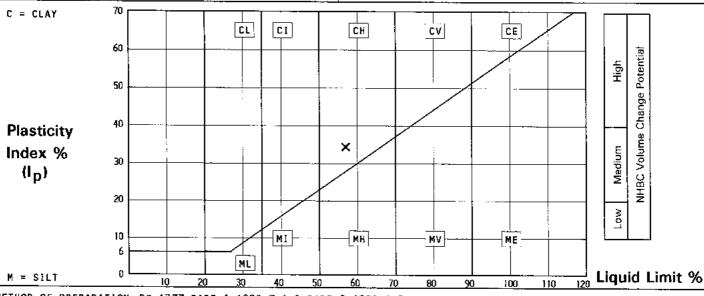
29% retained on 2mm sieve.

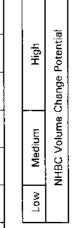
Corrected moisture content and calculated liquidity index assume material greater than 0.425mm

: SOIL PROPERTY TESTING LTD.

PAGE 6 of } DATE OF ISSUE : As page 1

Contract Serial No. Greenwood Centre, Greenwood S29994-2


Place, Camden, London



DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content		Description		Remarks	<u> </u>
WS102	2.90	D3	22		fissured reddish yel with occasional grey mottling	and fine an	ly organic pock d medium gravel sibly fallen fr g sampling	L
	Р	REPARA	rion		Liquid Limit		.57	,
Method of Pr	eparation	Specimen fr	om Natural Soi	.1	Plastic Limit		23	1
Sample retai	ned 0.425 siev	e (Assume	d)	o %	Plasticity Index		34	¥
Corrected mo	isture content	for material	passing 0.425mm	x	Liquidity Index		-0.	03
Curing Time				25 Hours	Clay Content		Not analysed.	x

Derived Activity (PI/CC) Not analysed.

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377: PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

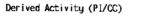
VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100) <1% gravel by dry mass picked out by hand and excluded from limits tests.

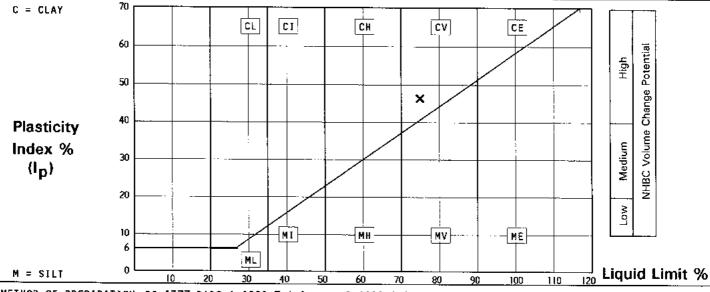
ISSUED BY : SOIL PROPERTY TESTING LTD.

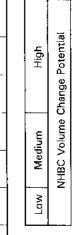
PAGE 7 of 7 DATE OF ISSUE : As page 1

Contract Serial No.

Greenwood Centre, Greenwood Place, Camden, London


S29994-2


DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX


Borehole/ Pit No.	Depth m.	Sample	Hoisture Content X	Description	Renarks
WS102	5.80	D6		ightly fissured yellowish asional grey mottling and	Oven dried at a maximum of 80°C due to the presence of selenite

Curing Time	24 Hours	Clay Content	Not analysed. %
Corrected moisture content for material passing 0.425mm	*	Liquidity Index	-0.02
Sample retained 0.425 sieve (Assumed)	o %	Plasticity Index Liquidity Index	46 \$
Method of Preparation Specimen from Natural Soil		Plastic Linit	29 💃
PREPARATION		Liquid Limit	75 🔏

Not analysed.

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

SPT Test Report No: \$29994-2 Appendix A

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.co.uk

Final Report

Report No.:

16-10366-1

Initial Date of Issue:

11-May-2016

Client

Soil Property Testing

Client Address:

18 Halycon Court St Margarets Way

Stukeley Meadows

Huntingdon Cambridgeshire

PE29 6DG

Contact(s):

Jon Garner

Project

S29994-2 - Greenwood Centre,

Greenwood Place, Camden, London

Quotation No.:

Q16-06170

Date Received:

05-May-2016

Order No.:

S29994-2

Date Instructed:

05-May-2016

No. of Samples:

6

Turnaround (Wkdays):

O

: 5

Results Due:

11-May-2016

Date Approved:

11-May-2016

Approved By:

Details:

Keith Jones, Technical Manager

Results - Soil

London

<u></u>										
Client: Soil Property Testing		4.616	mestel	ol-Mor	16>10386	(6/1086)		18670368	16-10366	16/10396
Quotation No.: Q16-06170	(hemte	st Sam	ple ID.:	289638	289639	289640	289641	289642	289643
Order No.: S29994-2		Clie	nt Samp	le Ref.:	WS101	WS102	WS102	WS102	WS102_	WS102
		Clic	ent Sam	ple ID.:	D1	D1	D2	D3	D4	D6
			Samp!	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	1.60	0.90	1.90	2.90	4.00	5.80
Deferrition of the state of the		241	. Inl. v	0000						
Moisture	N	2030	%	0.020	20	19	20	18	22	21
рН	ر	2010		N/A	8.3	8.5	8,0	8.1	8.3	8.1
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.065	0.019	< 0.010	0.061	0.34	0.72
Total Sulphur	U	2175	%	0.010	0.020	0.18				0.22
Sulphate (Acid Soluble)	כ	2430	%	0.010	0.025	0.15				0.55
Organic Matter BS1377	N	2930	%	0,10	0.90	2.1		0.90		

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: 19/05/16 PAGE 1 of 17 Pages

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London

\$29994-3

CLIENT:

Geosphere Environmental Ltd. Brightwell Barns Brightwell Ipswich IP10 0BJ

Soil Property Testing Ltd.

15,16 & 18 Halcyon Court, St Margarets Way, Stukeley Meadows, Huntingdon, Cambs. PE29 6DG.

Telephone (01480) 455579 Fax (01480) 453619 Email enquiries@soilpropertytesting.com

SAMPLES SUBMITTED BY:

Geosphere Environmental Ltd.

APPROVED SIGNATORIES:

J.C.GARNER B.Eng (Hons.) FGS
Technical Director

S.P.TOWNEND FGS
Quality Manager

M.JOHNSTONE
Materials Lab Manager

SAMPLES TESTED BETWEEN 27/04/16 and 19/05/16

SAMPLES LABELLED:

DATE RECEIVED:

Greenwood Centre, Greenwood Place, Camden, London

REMARKS: For the attention of Lianne Fountain

Your reference 1655,GI

27/04/16

Chemical tests subcontracted to Chemtest - results

included as Appendix A to this Test Report

- NOTES: 1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.
 - 2 (a) UKAS United Kingdom Accreditation Service.
 - (b) Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.
 - 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.
 - 4 This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 2 of 17

Contract Serial No.

Greenwood Centre, Greenwood S29994-3

Place, Camden, London

SCHEDULE OF LABORATORY TESTS

Bh./ Tp No.	Sample Ref	Depth (from)	/.	100:3	02:102:1	ate 19	i Moj	(2:1 1 80 1 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	water nicon nicon nicon	18:17 **	onio Deter	mate sunt epar evil	ation ation ation ation	onte onte	Limi at Dia	re le	813					Remarks
BH01	D3	4.00	*		*	*		*	*	*										-		
	D4	5.00	*	*	<u> </u> 	*			*	: *							i İ					
	D5	6.00		ļ		*	*										<u> </u> 					
	D6	7.00				*			:													
	UT 1	7.50									*											
	7	8.00	*	*		*			*	*												
	UT2	10.50									*											
	ит з	13.50									*											
	D13	14.00	*	*																		
	UT4	16.50									*											
	UTS	19.50								i	*											
	UTE	22.50									*											
	UT7	25.00							L.		*											
	-	-	4	4	ı	5	2	1	3_	3	7								<u> </u>			< Total Number of Tests
															:						·	
									L		L											
						· .							<u> </u>	,,	Ì							
			<u> </u>	ļ	ļ <u> </u>	ļ		ļ <u></u>	ļ	ļ			<u> </u>				<u> </u>	L .				
		 	<u> </u>	<u> </u>	<u> </u>				Į								-					
			<u> </u>	<u> </u>								<u> </u>										·
			ļ	-			<u> </u>						ļ			<u> </u>						
									ļ.	ļ	! 	<u></u> .									: 	
							L.	<u> </u>						<u> </u>	!		<u> </u>	<u> </u>	<u>_</u>			
								<u> </u>		ļ			<u> </u>					<u> </u>	ļ			
			igspace			1		<u> </u>		ļ	<u> </u>				<u>i</u>					L	<u>.</u>	
			$oxed{oxed}$		_						<u> </u>			ļ			!				_	
			\perp		!	_		<u> </u>	ļ										<u> </u> 			
		<u> </u>	\perp		1		<u> </u>	<u>.</u>	<u> </u>		- · - · · ·	Ļ										
		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		ļ.								<u> </u>		ļ	Ţ	ļ		
	l		L	į	<u></u>	<u>l</u>		l	<u> </u>	<u> </u>	<u> </u>									L <u>.</u>	<u></u>	
Sche	duled	bv: 0	Geo	gal	hei	re	En	vir	on	mer	ıta	1.	Ltd	ł.								Target Date: 12/05/1

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE J of 17

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

PLASTICITY INDEX AND LIQUIDITY INDEX

			Moisture	Liquid	Plastic	Plast-	Ligu-	;	SAMPLE PR	EPARATION	l		
Borehole/ Pit No.	Depth m.	Sample	Content (%)		Limit (%)	icity Index (%)	idity Index (%)	Method S/N	Ret'd 0.425mm (%)	Corr¹d N/C <0.425mm	Curing Time (hrs.)	Description	CLASS
вн01	4.00	D3	20	62	22	40	0.25*	S	37 (M)	32	28	Firm brown slightly sandy slightly gravelly CLAY. Gravel is black, brown and white fine to coarse angular to subrounded	CH
ВН01	5.00	D4	30	-	-	-			:			Stiff dark yellowish brown CLAY with occasional bluish grey mottling, rare selenite crystals and decayed roots.	-
вноі	6.00	DS	30	76	29	47	0.02	N	0 (A)		27	Stiff dark yellowish brown CLAY with rare bluish grey mottling, rare decayed roots and selenite crystals	CA
вн01	7.00	D6	29	-	-	-						Stiff dark yellowish brown CLAY with rare bluish grey mottling, selenite crystals and decayed roots.	-
BH01	8.00	D7	30									Stiff fissured dark yellowish brown CLAY	

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2 S = Wet Sieved Specimen

N = prepared from Natural

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter. A = Assumed, M = Measured

COMMENTS

REMARKS TO INCLUDE

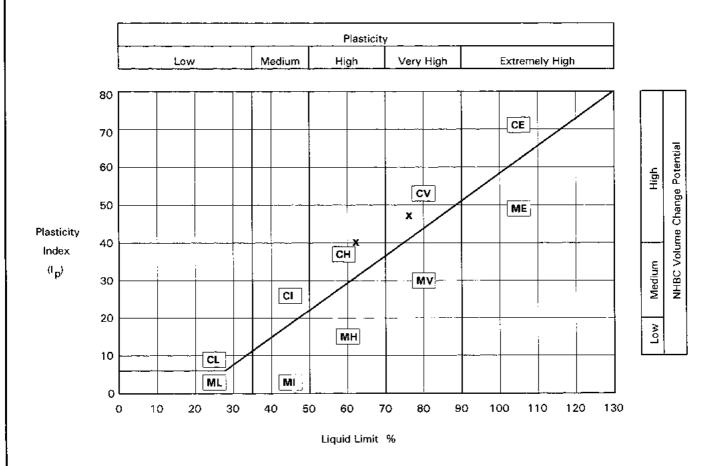
: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 4 of 1}

Contract


Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT **USING CASAGRANDE CLASSIFICATION CHART**

METHOD OF PREPARATION: 8S 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: VOLUME CHANGE POTENTIAL: NHEC Standards Chapter 4.2 Unmodified Plasticity Index

PLASTICITY CHART BS5930:1999:Figure 18

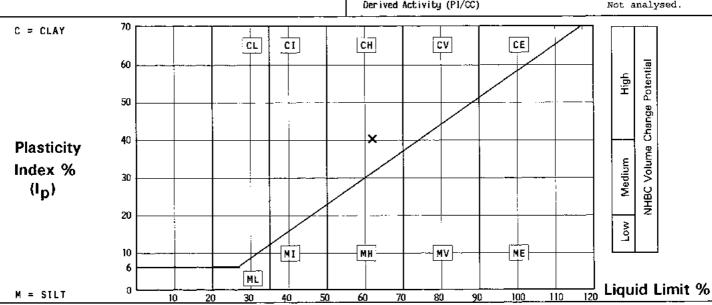
: SOIL PROPERTY TESTING LTD. ISSUED BY

DATE OF ISSUE : As page 1 PAGE 5 of (7

Contract

Greenwood Centre, Greenwood Place, Camden, London

Serial No. S29994-3


DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content:	Description	Remarks
BH01	4.00	D3		Firm brown slightly sandy slightly gravelly CLAY. Gravel is black, brown and white fine to coarse angular to subrounded	

PREPARATION			Liquid Limit	62 X
Method of Preparation Sieved Specimen			Plastic Limit	22 💃
Sample retained 0.425 sieve (Measured)	37	×	Plasticity Index	40 \$
Corrected moisture content for material passing 0.425mm	32	×	Liquidity Index	0.25
Curing Time	28	Hours	Clay Content	Not analysed. %
· · · · · · · · · · · · · · · · · · ·				

Derived Activity (PI/CC)

Not analysed.

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4 METHOD OF TEST

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS : PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHEC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

31% retained on 2mm sieve.

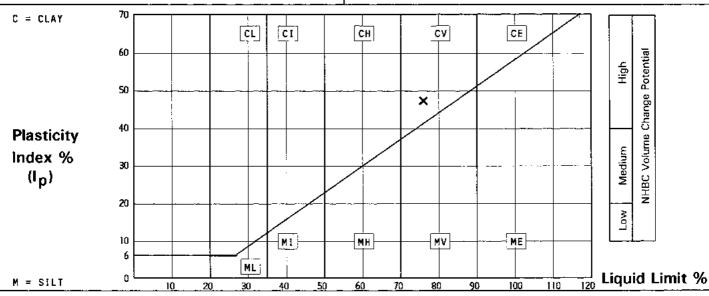
Corrected moisture content and calculated liquidity index assume material greater than 0.425mm

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 6 of 17

Contract Serial No.

Greenwood Centre, Greenwood S29994-3 Place, Camden, London


DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit Mo.	Depth m.	Sample	Moisture Content X	Description	Remarks
BH01	6.00	D5		•	Oven dried at a maximum of 80°C due to the presence of selenite

PREPARATION		Liquid Limit	76 🕏
Method of Preparation Specimen from Natural Soil		Plastic Limit	29 🔏
Sample retained 0.425 sieve (Assumed)	0 %	Plasticity Index	47 🛣
Corrected moisture content for material passing 0.425mm	*	Liquidity Index	0.02
Curing Time	27 Hours	Clay Content	Not analysed. %
	··· ·		

Derived Activity (PI/CC)

Not analysed.

METHOD OF PREPARATION: BS 1377; PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST : BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS : PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 7 of 17

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

DETERMINATION OF DENSITY, MOISTURE CONTENT AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Bonehole/	Depth	Sample	Moisture Content	Bulk	Dry	1	Deviator Stress	Shear		CIRCLE YSIS	Di-bio-
Pit No.	Π.	Sampre	(%)	Density (Mg/m ³)	Density (Mg/m ³)	(kPa)	(kPa)	Stress (kPa)	Cu (kPa)	Ø (degrees)	Description
BH01	7.50	UT1	30	1.97	1.52	149	205	103			Stiff (High strength) fissured yellowish brown CLAY with occasional greyish brown and grey mottling and selenite crystals
BH01	10.50	UT2	28	1.99	1.55	209	287	144			Stiff (High strength) fissured yellowish brown and brown CLAY with occasional dark grey mottling and selenite crystals
вно1	13.50	UT3	29	1.98	1.53	272	291	145			Stiff (High strength) fissured dark greyish brown CLAY with occasional dark grey mottling and rare orange staining
BH01	16.50	UT4	29	1.99	1.54	332	249	125			Stiff (High strength) fissured dark greyish brown CLAY with occasional dark grey mottling
вноі	19.50	UT5	28	1.98	1.55	392	323	161		:	very stiff (Very high strength fissured dark greyish brown CI with occasional dark grey mottling and rare shell fragments
вН01	22.50	UT6	28	2.00	1.56	452	522	261			Very stiff (Very high strength fissured dark greyish brown CI with occasional dark grey mottling
BH01	25.00	UT7	27	2.00	1.57	500	509	255			Very stiff (Very high strength fissured dark greyish brown CI with occasional dark grey mottling

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4.2 & 8 PART 2:1990:7.2 PART 7:1990:8.3

METHOD OF TEST

: BS 1377:PART 2:1990:3 Determination of Moisture Content 1990:7 Determination of Density :PART 7:1990:8 Undrained Shear Strength 1990:9 Multi-stage test

TYPE OF SAMPLE KEY

Note Multi-stage test used when specimen has granular content / behaviour and length of specimen precludes the taking of 3 x 100mm dia by 200mm long specimens.

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample. Oven drying temperature if not 105-110 deg C.

Depth below ground level (m.)

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 8 of 17

Contract Serial No.

Greenwood Centre, Greenwood S29994-3 Place, Camden, London

Cohesion (kPa) vs Depth below ground level (m.).

Cohesion (kPa) 140 200 220 240 260 280 300 20 40 60 80 100 120 160 180 0.0 1.0 2.0 3.0 . 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0. 21.0 22.0 . 23.0 24.0 25.0. 26.0

	X : BH01		·		
Key to				 	
Data Points				 	
			-		

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

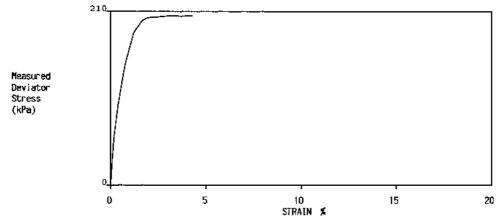
PAGE 9 of 17

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3


Place, Camden, London

DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Pit No.	Depth m.	Sample			Description		Remar	rks
вно1	7.50	UT1		(High strength) fonal greyish brownls	Strong solvent/hydrocarbon odour. Oven dried at a maximum of 80°C due to the presence of selenite			
Initial Specimen Depth of Top of Specimen (m)		Height mm		Diameter mm	Weight 9	Moisture Content %	Wet Density Mg/m ³	Dry Density M g/m ³
	7.54	199.9		103.6	3317	30	1,97	1.52
TEST INFORMAT	ION		Rate of	Strain 1.0	per Min Rubber M	lembrane Thickness	<u> </u>	0.3 mm

	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysi Deviator Stress Cu	s
Specimen at Failure	σ3 (kPa)	(X)	Rubber Membrane	Piston Friction	の 1 - ク3 ½(ク 1 - ク3)g (kPa) (kPa) Cu (kPa) Pi	17 "
	149	3.3	0.2	/	205 103	

METHOD OF PREPARATION: BS 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

:SOIL PROPERTY TESTING LTD.

PAGE (O of) DATE OF ISSUE : As page 1

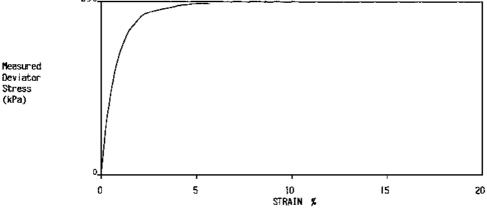
Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London



DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Pit No.	Depth m.	Sample		Remarks Oven dried at a maximum of 80°C due to the presence of selenite			
вно1	10.50	UT2	High strength) for the occasional day				
Initial	Initial Specimen Depth of Top of Specimen (m)		Diameter mm	Weight 9	Moisture Content %	Wet Density Mg/m ³	Dry Density Mg/m ³
<u> </u>	10.54	184.6	103.6	3091	28	1.99	1.55

Rate of Strain 0.9 メ per Min Rubber Membrane Thickness 0.3 σm 290

	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Cu
Specimen at Failure	∂ 3 (kPa)	(%)	Rubber Nembrane	Piston Friction	(KPa) (KPa) Cu (KPa) PHI °
	209	5.5	0.4	/	287 144

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE (of)

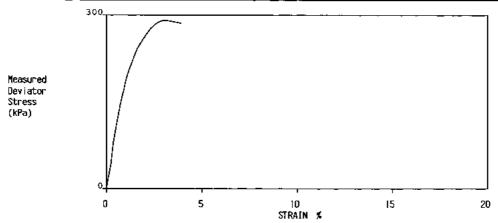
Contract

Serial No.

Greenwood Centre, Greenwood

Place, Camden, London

S29994-3



DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

orehole/ it No.	Depth m.	Sample		Description		Remark	`ks
вноі	13.50	UT3	Stiff (High strength) with occasional dark grant staining				
Initial	Specimen Depth of Top of Specimen (m)	Height mm	Diameter mm	Weight 9	Moisture Content	Wet Density Mg/m 3	Dry Density Mg/m ³
	13.56	199.9	103.4	3330	29	1,98	1.53

TEST INFORMATION Rate of Strain 0.9 术 per Min | Rubber Membrane Thickness 0.3 mm

	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max	Shear Stress Gu	Mohrs Circle Analysis
Specimen at Failure	ecimen at Failure 03 (kPa)	(%)	Rubber Membrane	Piston Friction	<i>O</i> 1 − <i>O</i> 3 (kPa)	%(σ1 − σ3) _# (kPa)	Cu (KPa) PHI
	272	3.1	0.2	/	291	****	

METHOD OF PREPARATION: BS 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

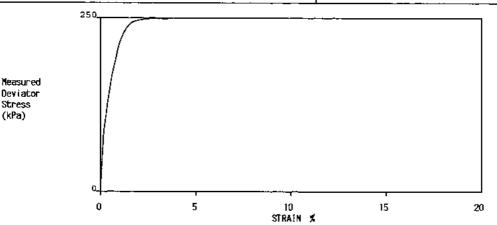
PAGE 12 of ()

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3


Place, Camden, London

DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

rehale/ t No.	Depth m.	Sample		Remarks			
BH01	16.50	UT4	Stiff (High strength) with occasional dark gr	Eissured dark grey rey mottling	rish brown CLAY		· · · · · · · · · · · · · · · · · · ·
Initial	Specimen Depth of Top of Specimen (m)	Height ma	Diameter mm	Weight 9	Moisture Content	Wet Density Mg/m ³	Dry Density Mg∕m ³
	16.56	170.2	103.6	2849	29	1.99	1.54

	Measured Cell Pressure	Strain at Failure	Stress Corr	ections (kPa)	Corrected Max. Sheer Stress Mohrs Circle Analysis Deviator Stress Cu
Specimen at Failure	σ 3 (kPa)	σ_3	Rubber Membrane	Piston Friction	01-03 (kPa) Cu (kPa) PHI °
	332	2.5	0.2	/	249 125

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990;8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation,

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE () of ()

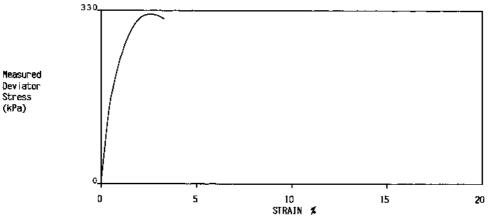
Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London



DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Pit No.	Depth m.	Sample		Description					
BHO1	19.50	UT5	Very stiff (Very hig brown CLAY with occa shell fragments						
Initial	Specimen Depth of Top of Specimen (m)	Height.	Diameter mm	Weight 9	Moisture Content	Wet Density Mg/m ³	Ory Density Mg∕m ³		
	Specimen (iii)	199.8	103.7	3347	28	1.98	1,55		

TEST INFORMATION

	Measured Cell Pressure	Strain at Failure	Stress Corr	ections (kPa)	Corrected Max. Si Deviator Stress	- Shear Stress Cu	Mohrs Circle Analysis
Specimen at Failure	ecimen at Failure	(%)	Rubber Membrane	Piston Friction	(kPa) (kPa)	₂(<i>O</i> 1 - <i>O</i> 3) (kPa)	f Cu (kPa) PHI °
	392	2.7	0.2	/	323	161	

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

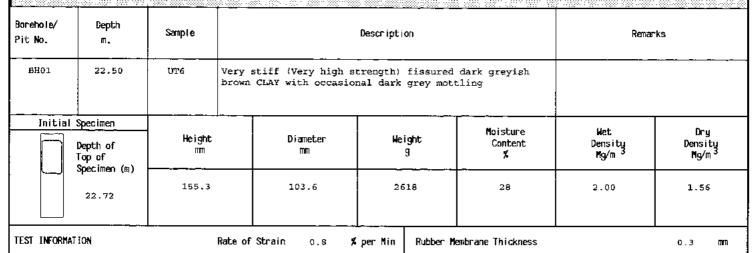
ISSUED BY

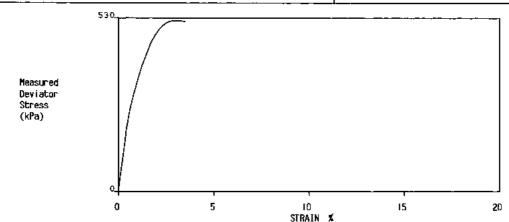
: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE (4 of ()

Contract


Serial No.


Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Sheer Stress Mohrs Circle Analysis Deviator Stress Cu
pecimen at Failure	(%)	Rubber Membrane	Piston Friction	(π) - (π) (π) (π) (π) (π) (π) (π) (π) (π) (π)	
	452	2.9	0.2	/	522 261

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page ! PAGE (of ()

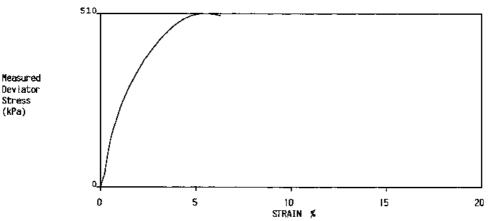
Contract

Serial No.

Greenwood Centre, Greenwood

Place, Camden, London

S29994-3



DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Pit No.	Depth	Sample		Remarks			
BH01	25.00		Very stiff (Very high s prown CLAY with occasion				
Initial	Specimen Depth of Top of Specimen (m)	Height mm	Diameter mm	Weight 9	Moisture Content	Wet Density Mg/m ³	Dry Density Mg/m ³
	25.02	199.6	103.6	3355	27	2.00	1.57

% per Min TEST INFORMATION Rate of Strain Rubber Membrane Thickness 0.3 ПIП

	Measured Cell Pressure O 3 (kPa)	Strain at Failure (%)	Stress Corrections (kPa)		Corrected Max. Deviator Stress	(
Specimen at Failure			Rubber Membrane	Piston Friction	Ø1 - Ø3 (kPa)	た(の『- の3) _f (kPa)	Cu (kPa) PHI "	
	500	5.3	0.4	/	\$09	255		

METHOD OF PREPARATION: BS 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 16 of 17

Contract Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

DETERMINATION OF THE SULPHATE CONTENT OF SOIL AND GROUNDWATER

Borehole/	Depth	Sample	Concentration of Soluble Suiphate Soil Groundwater			≯ of sample	Description		
Pit No.	1					passing	best (peron	Remarks	
			Acid Soluble S03.1	Mater Soluble 2:1 SD3 g/	9/1	2mm sieve			
ВН01	14.00	D13		0.72		100	Very stiff dark grey CLAY		
į									
Ì									
i									
ļ									
}									
ļ]					
,									

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.5 BS1377:PART 3:1990:5.2 Acid Soluble, 5.3 Soil/Water Extract

METHOD OF TEST : BS 1377:PART 3:1990:5.5 :5.4 Groundwater

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS : Test not UKAS accredited.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE (Fof)?

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

DETERMINATION OF THE pH VALUE

Borehole/ Pit No.				Description	Remarks		
BH01	14.00	D13	a.0	Very stiff dark grey CLAY			
	:						
				,			

METHOD OF PREPARATION: BS 1377:PART 1:1990:7 BS 1377:PART 3:1990:9.4

METHOD OF TEST

: BS 1377:PART 3:1990:9.5

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Test not UKAS accredited.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

SPT Test Report No.: S29994-3 Appendix A

Chemtest Ltd. Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.co.uk

Final Report

Report No.:

16-10383-1

Initial Date of Issue:

10-May-2016

Client

Soil Property Testing

Client Address:

18 Halycon Court St Margarets Way

Stukeley Meadows

Huntingdon Cambridgeshire PE29 6DG

Contact(s):

Jon Garner

Project

S29994-3 Greenwood Centre,

Greenwood Place

Quotation No.:

Q16-06170

Date Received:

05-May-2016

Order No.:

S29994-3

Date Instructed:

05-May-2016

No. of Samples:

3

Turnaround (Wkdays):

Results Due:

11-May-2016

Date Approved:

10-May-2016

Approved By:

Details:

Martin Dyer, Laboratory Manager

Project: S29994-3 Greenwood Centre, Greenwood Place

Client: Soil Property Testing		Cha	ntest d	SO NOXI	16-10383	16-10888	116-110883
Quotation No.: Q16-06170	(Chemtest Sample ID.:				289701	289702
Order No.: S29994-3		Clie	nt Samp	le Ref.:	BH01	BH01	BH01
		Clie	ent Sam	ple ID.:	D3	D4	D7
			Sampl	e Type:	SOIL	SOIL	\$OIL
			Top De	oth (m):	4.00	5.00	8,00
Determinant of the law is a second	Acores	SOP	1900	BOOK !			
Moisture	N	2030	%	0.020	15	22	22
pH	U	2010		N/A	8.2	7.9	8.0
Sulphate (2:1 Water Soluble) as SO4	Ų	2120	g/t	0.010	0.35	1,4	0,51
Total Sulphur	U	2175	%	0.010	0.080	0.85	0.060
Sulphate (Acid Soluble)	U	2430	%	0.010	0.24	1.5	0.14
Organic Matter BS1377	N	2930	%	0.10	0.90		

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "tess than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenois

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

Photograph 7

Ground conditions encountered within WS101 (position CBR1)

Photograph 8

Ground conditions encountered within WS102

Photograph 9

Foundation Inspection Pit 1 (FIP1)

Ground conditions within FIP1, continued backfill of material

Photograph 11

Photograph 10

encountered

Foundation Inspection Pit 2 (FIP2)

Photograph 12

Foundation Inspection Pit 3 (FIP3)

REPORT NO.

1655,GI