DESIGN COVER SHEET

Design Ref	43648		Status	FOR APPROVAL	Category	2C					
Area / Rep	SE1/MP		Martin Smyrl / J	loe Waller	CRM Project Ref	138226					
Customer	HMR08	37, ROCHFORD (CONSTRUCTION LTE)							
Contact	Keith She	eehan	<ksheehan@< td=""><td>rochfordltd.co.uk> 075 8</td><td>3463 1722</td><td></td></ksheehan@<>	rochfordltd.co.uk> 075 8	3463 1722						
Site	192 Have	erstock Hill									
Scheme	Havestoo	lavestock Hill, Temporary Basement Propping									
Title	Capping	Capping Beam Propping Design Calculations									
				Comments							
Issue	Rev	Date	Designer (TWD) Checker (TWDC)	Comments							
Issue	Rev T1	Date 05.09.2016	•	Comments Internal Tender Issue							
Issue 1			Checker (TWDC)		,						
Issue 1			Checker (TWDC) Joe Waller	Internal Tender Issue Scheme design issue	ed for Approval. Connection						
1	T1	05.09.2016	Checker (TWDC) Joe Waller Stephen Barker	Internal Tender Issue Scheme design issue							
1	T1	05.09.2016	Checker (TWDC) Joe Waller Stephen Barker Joe Waller	Internal Tender Issue Scheme design issue follow upon confirma levels.	ed for Approval. Connection						

DESIGN SUMMARY

FXC	Δ\/Δ	TIOI	N DE.	ΤΔΙΙ	ς
$L \Lambda C$	m v r	11111	IN IJE	ГАП	٠.)

	EXCAVATION TYP	PE		Multiple	Sided Basement Excavation				
	PLAN DIMENSION	IS (m)		Approx 35 x 7	.5m				
	CLEARANCE (m)			n/a					
F	RAME LOAD SU	JMMARY	(
	FRAME LOAD REF	=		Central Piling	Central Piling Report Ref: 36678A1 – See Appendix A				
	FRAME(S)	1	Capping Beam Level	92	kN/m – SLS (Assumed @ Capping Beam Level as per report				
D	ESIGN SOLUTION	ON SUM	MARY						
	GROUND SUPPOI	RT SYSTE	M	Frame(s) & Pr	Frame(s) & Propping				
	FRAME(S)	1	Capping Beam Level	MGF 600 – 20	00 & 300 Series Struts				
	MAX. FRAME DEF		• •	n/a					
	FRAME SUPPORT			Post fixed chemical anchors to RC capping beam – details TBC					

DESIGN NOTES

- 1. This design has only considered the design of the temporary frames / props.
- Customer to provide suitable edge protection and provision for safe access and egress, as defined by Work at Height Regulation 2005 (+AMD 2007)
- 3. This design is offered based on information within the TWs Design Brief (Design Request Form). Prior to construction it is the Customer's responsibility to check that the Design Request Form is complete and accurate and that the installation proposed can be safely constructed. If the proposed works deviate from this design and / or site conditions vary, please seek a re-design. If in doubt, please contact MGF DSL (01942 420704).
- 4. Refer to the MGF Technical File and MGF Installation Guidelines for more detailed technical information.
- 5. References:
 - a. CIRIA Special Publication 95: The Design and Construction of Sheet Piled Cofferdams
 - b. BS EN 14653 (2005) Parts 1 & 2 Manually Operated Hydraulic Shoring Systems for Groundwork Support
 - c. BS 5975 (2008) Code of Practice for Temporary Works Procedures and the Permissible Stress Design of Falsework

SAFETY PRODUCTS

A number of safety products to ensure safe access and egress into the excavation are available to complement the equipment in this design:

We also have a comprehensive range of emergency escape breathing apparatus, gas detectors, fall arrest and rescue equipment and harnesses available. Please contact your local depot for more details.

For more information on our safety products, download our ancillaries booklet.

ADDITIONAL PRODUCTS

Temporary Works Design

APPENDX A – Design Information

- a) From CIRIA C580 (2003), Embedded Retaining Walls: Guidance to Economical Design, Table 5.6
- b) From Stroud & Butler (1975) The Standard Penetration Test and the Engineering Properties of Glacial Materials
- c) From Peck (1974) Foundation Engineering (2nd Ed.)

3.2 Ground Water Table

The ground investigation has found the two holes dry at completion, with small localized seepages at 7.3 and 6.3mbgl, due to local more permeable intercluded layers rather than to a real proper ground water table.

4 Design

4.1 Software

The Wallap software, Version 5 developed by Geosolve, has been used for the design of the wall. A bending moment and displacement analysis has been performed where the software follows stage by stage the development of forces and wall movements which are modelled as construction proceeds. The wall and soil are represented as a beam and springs, with a subgrade reaction analysis.

4.2 Pile Loads

The structural engineer has provided a full list of compression loads acting on each wall pile: they range between 100kN and 386kN.

There are no external tension or lateral loads on the wall piles.

4.3 Structural Dimensions

The retaining wall along the two long sides of the building's perimeter is designed as a contiguous piled wall formed of 450mm at 600mm with pile lengths of 11.0m.

4.4 Materials

The materials allowed for in the design are as follows:

- Concrete: C28/35 strength class and DC-2 ACEC concrete class according to the recommendations of the BRE Special Digest 1 and in accordance with the site investigation report conclusions
- Steel: yield resistance of 500N/mm².

4.5 Propping/Anchorage

A propping layout has been preliminarily agreed with elements at 5m spacing and capping beam level along the wall sides. Props are assumed at a level of 1m below the top of the wall.

4.6 Surcharges

For the calculations of the prop forces the worst situation in terms of surcharges has been considered: this one allows for a 240kPa surcharge at a depth of 1.5m, assuming that this very high value is due to the foundations of an adjacent building.

The surcharge width is assumed equal to 1.5m, an average dimension for a line foundation.

4.7 Overdig

An overdig of 200mm was allowed for in all the wall calculations.

4.8 Design Standards

The retaining wall piles have been designed in accordance with the Eurocodes. An ultimate limit state approach (ULS) has been utilised to assess the forces in the piled wall, and a serviceability limit state (SLS) has been utilised to assess the lateral displacements and the forces in the props. The ULS analysis involved the application of partial factors on the soil parameters, whilst the SLS analysis considered the unfactored, characteristic values of the soil parameters.

4.9 Retaining Wall Construction Sequence

For propped wall sections, the following construction sequence was considered in the design:

- 1. Execution of piling platform
- 2. Construction of the piles
- 3. Trimming of the piles down to the cut-off level
- 4. Construction of the capping beam
- 5. Excavation to 1.0m below the ground level
- Prop installation at -0.5mbgl
- 7. Excavation to the formation level of -3.9m, including a 200mm overdig.

Excavation cannot go further than 1.5m deep if the capping beam has not been previously constructed and the prop level put in place.

Props shall be used to retain the wall at the level of the capping beam, until the basement slab and lining wall are cast and cured.

4.10 Retaining Wall Results

Envelopes of the maximum bending moments and shear forces were utilized for the structural design of the wall piles. Tables 4 and 5 give the summarised displacement, prop force, moment, and shear results of the retaining wall analyses for a wall height of 3.7m. The full retaining wall calculations are given in Appendix 1.

	Table 4 – Summary of Results for S	LS (3.7m Height)				
	Serviceability Limit State (SLS)					
Design Section	Displacement	Strut Force				
	(mm)	(kN/m)				
3.7m height	9	92				

	Ultimate Limit State (ULS)							
Design Section	Bending mo		Shear Force					
	per metre (kN-m/m)	per pile (kN-m)	per metre (kN/m)	per pile (kN/m)				
3.7m height	143	85.8	135	81				

In the absence of a more sophisticated numerical model the deflection estimate is a complicated matter that deserves few comments.

This estimate is strongly influenced – in a case like this one - by the presence of the high surcharge: in fact, the Wallap code creates in a first initial stage the natural ground stress conditions (total or effective natural stresses according to the presence or not of the groundwater) necessary for the following calculations.

When the external surcharge is applied, and this happens before any excavation takes place, the software already computes a deflection due to the presence of the new (horizontal) stress state in the soil from the existing foundation. In this case this deflection is in the order of 15mm, a very high value.

If this surcharge is important, like in this specific case, the resulting deflection, that has nothing to do with the excavation process, can be relevant, even if in (design) practice has scarce physical meaning.

To overcome this a supplementary stage has been added in the design model, where the deflection due to the initial application of the surcharge is set back to zero before any excavation activity takes place: in fact if the surcharge application time is in the order of years this effect is fully terminated and has no more influence on the new construction.

The resulting calculated final value with this procedure is the real value due to the construction process and excavation for the wall.

The estimate presented is even more prudential due to the fact that having a surcharge at a certain depth, 1.5m in this case, means that the original vertical stress at that depth is decreased by the excavated material, by an amount equal to 1.5 * 18 = 27kPa, so that the real surcharge to be applied in the calculation model should be equal in this case to 240 - 27 = 213kPa, a value which would of course bring to a lower deflection estimate. In any case this has been neglected.

The maximum calculated lateral displacement is thus 9mm, a value generally considered to be within the allowable range.

To fully ascertain the acceptability of this value with respect to the presence of buildings near the wall the following information will have to be made available to the structural engineer:

kind of superstructure of the adjacent building (i.e. reinforced concrete, steel frame, wood, etc.)
 to allow for a proper structural engineering judgement on the capacity of the existing structure

Temporary Works Design

APPENDX B – Design Calculations

		Customer	Job No
	sign Services Ltd	Rochford Construction Ltd	43648
Ashton In Make	rfield, Wigan, WN4 8DE 04 F: 01942 402 766	Scheme Title	Date
E: <u>design@mgf.</u>		Havestock Hill	28/09/2016
ared By	Checked By	Calculation Title	Sheet of
JCW	SB	Propping - Summary	1 2
DESIGN ASSUMPTION	ONS & PARAMETERS		
Design Code	BS 5950-1:2000		
Accidental Load	10 kN		
Level of site control	High !Residual Risk! - Wa	alers and props to be clear of loose material	<u> </u>
Load Factors	1.50 Prop Load		
	1.40 Self-weight Dead Lo	ad	
-	1.60 Imposed Load 1.05 Accidental Load		
_	Tioo Proordomai 2000		_
Number of sides	4 Walers to be suppor	ted vertically. See Waler Design for max. centres.]
Number of props	5 Props to be supporte	ed vertically at each end.	」
Powerpack warnings	Off !Residual Risk! - Det	tail scheme to avoid excessive loads in powerpacks	<u> </u>
Joint warnings	Off Residual Risk! - Pos	sition joints to avoid capacity being exceeded	<u> </u>
Lateral shear restraint	No Axial loads in walers	are cumulative	」

				Customer	Job No			
MGF Design Services Ltd Grant House, Lockett Road Ashton In Makerfield, Wigan, WN4 8DE				Rochford Construction Ltd		43648		
				Scheme Title	Date			
T: 01942 402 704 F: 01942 402 766 E: design@mgf.ltd.uk			Havestock Hill		42641			
I	Prepared By Checked By		Checked By	Calculation Title	Sheet	of		1
JCW SB		SB	Propping - Summary	2	2	2		

RESULTS SUMMARY

Waler	Length	Size / Type	Ulitisation
Ref.	(m)	Size / Type	Untisation
W1	30.92	CAPPING BEAM	n/a
W2	7.13	CAPPING BEAM	n/a
W3	30.22	CAPPING BEAM	n/a
W4	4.17	CAPPING BEAM	n/a

Prop	Length	Size / Type	Ulitisation
Ref.	(m)	Size / Type	UnitiSation
P1	6.75	MGF 300 Series	0.848
P2	6.75	MGF 200 Series	0.916
P3	6.75	MGF 200 Series	0.813
P4	6.75	MGF 200 Series	0.925
P5	6.75	MGF 200 Series	0.928

WALER ANALYSIS (Effects are unfactored)

Waler	L (m)	Spans		End A		Intermediate Supports						End B			
			X (m)	0.00	6.03	11.03	16.03	21.03	26.03						30.92
			Prop	W8	P1	P2	P3	P4	P5						W2
W1	30.92	6	R (kN)	288	508	446	464	460	456						223
			Angle (°)	0	3	3	7	7	7						0
			F (kN)	288	509	446	467	464	459						223
			X (m)	0.00											7.13
			Prop	W1											W3
W2	7.13	1	R (kN)	328											328
			Angle (°)	0											0
			F (kN)	328											328
			X (m)	0.00	5.05	10.05	15.05	20.05	25.05						30.22
			Prop	W2	P5	P4	P3	P2	P1						W4
W3	W3 30.22	6	R (kN)	233	462	459	461	458	467						240
			Angle (°)	0	7	7	7	3	3						0
			F (kN)	233	466	463	464	459	468						240
			X (m)	0.00											4.17
			Prop	W3											W1
W4	4.17	1	R (kN)	192											192
			Angle (°)	0											0
			F (kN)	192											192

		Customer	Rochiora Construct	tion Ltd		Date:	42641					
		Scheme Title	Havestock Hill			Prepared By	JCW				Data from Waler An	nalysis sheet
		Calculation Title	Waler W1 Analysis			Checked By	SB				Input data	
		Job No.	43648			Page No.	W1				Results	
nput Variables:		•										
Total Length of Beam (m)	30.92											
Type of end supports	Fixed at both ends			-								
No. of intermediate Supports	5	Right end free	? No					•			•	
Location of intermediate Supports (m)	6.03	11.03	16.03	21.03	26.03						<u> </u>	
oad Information:			Value of UDL (kN/m)	92.0								
No. of Uniform Distributed Loads	1		Start of UDL (m)	0.00	/							
No. of Point Loads	0		End of UDL (m)	30.92								
Load (kN) (+ve downwards)												
Location of Load (m)												
No. of Moments	0											
Moment (kNm) (+ve anti-clockwise)												
Location of Moment (m)												
Reaction forces (kN) (+ve upwards)	288.0	508.0	445.8	463.5	460.2	455.7	223.5					
Location of Support (m)	0.00	6.03	11.03	16.03	21.03	26.03	30.92					
Reaction Moments (kNm)	300.1	-180.9										
Location of Support (m)	0.00	30.92										
									<u>Load Diagram</u>			

PROP ANALYSIS (Effects are unfactored)

Prop	Length (m)	Axial (kN)	Prop Size / Type	Adjustable Unit	Utilis	ation	Prop Weight (kg)
P1	6.750	509	MGF 300 Series	600kN Hydraulic	0.848	ОК	964
P2	6.750	459	MGF 200 Series	600kN Hydraulic	0.916	ОК	593
P3	6.750	467	MGF 200 Series	600kN Hydraulic	0.813	ОК	593
P4	6.750	464	MGF 200 Series	600kN Hydraulic	0.925	OK	593
P5	6.750	466	MGF 200 Series	600kN Hydraulic	0.928	OK	593

Member Selection

MGF proprietary equipment? Yes SHS Type Cold Rolling Process 300 x 300 x 12.5 SHS Section Size **S355** Steel Grade 130 Self-weight kg/m 600kN Hydraulic Adjustable Unit CHECK (Adjustable Capacity) 0.848

MGF Tank Brace	Section Size		Steel Grade	Rolling Process	S/Wt (kg/m)
200 Series	200 x 200 x 8	SHS	S355	Cold	60
300 Series	300 x 300 x 12.5	SHS	S355	Cold	130
400 Series	400 x 400 x 16	SHS	S355	Hot	215
600 Series	610 x 12.5	CHS	S355	Cold	240
660 Series	660 x 20.6	CHS	S355	Cold	360
1000 Series	1067 x 14.3	CHS	X65	Cold	370
1000 Series +	1067 x 19.1	CHS	S355	Hot	520

		Customer		Job No
MGF Design S	ervices Ltd	Rochford Co	nstruction Ltd	43648
Grant House, Lockett Road Ashton In Makerfield, Wigar		Scheme Title		Date
T: 01942 402 704 F: 01942		Havestock H	1311	42641
E: design@mgf.ltd.uk			IIII	
epared By Checked B		Calculation Title		Sheet of
JCW	SB	Propping - P	rop P1 Design	2 3
Local Capacity Check				cl 4.2.3
Shear area	A _v =	6850 mm ²		
Shear capacity	P _v =		-	
CHECK	$F_{vx}/P_{vx} =$	0.012 OK		
Shear condition Moment Capacity	M _c =	Low Shear 515 kNm		014252425
СНЕСК	$M_x/M_c =$		1	cl 4.2.5.2-4.2.5. cl 4.3.6.2
Moment Capacity (y-y)	$M_{cy} =$			cl 4.3.5.2
CHECK	N A /N A	0.00 OK		cl 4.2.5.2
OFFECK	y	0.00	•	01 1.2.0.2
Resistance to Lateral Torsional E				cl 4.3.6
Buckling resistance moment	$M_b =$	010		cl 4.3.6.4
Equivalent uniform moment fact	or $m_{LT} =$	0.925	Specific case	cl 4.3.6.6
Members with combined mome	ent and avial force			cl 4.8
Effective length	L _E =	6750 mm		cl 4.7.3
Slenderness	λ =	F.0		cl 4.7.3
Strut curve	=	_		4.7.5, Table 23
Compression resistance	P _c =	3450 kN		cl 4.7.4
Cross section capacity				
Simplified method				cl 4.8.3.2
$F_{c} = M_{x} = M_{y}$			_	
$\frac{F_c}{Ap_y} + \frac{M_x}{M_{cx}} + \frac{M_y}{M_{cy}} \le 1$		0.223 OK		
Note: For Class 1, Class 2 and Class	3 sections, $A = A_g$. For	Class 4 sections, A =	A_{eff} .	
More exact method (for Class 1	and Class 2 sections			cl 4.8.2.3
Method appropriate?		Yes		COL DOGG
Axial force ratio	n =			SCI P202 SCI P202
Reduced plastic modulus Reduced moment capacity	$S_r = M_r =$	1404 cm ³ kNm		Annex I.2.1
, ,	···r =	470 KIVIII		7.11.110.11.12.11
$\left(\frac{M_x}{M_{rx}}\right)^{z_1} + \left(\frac{M_y}{M_{ry}}\right)^{z_2} \le 1$		0.005 OK		
Mombar bushing resistance				014022
Member buckling resistance Simplified method				cl 4.8.3.3 cl 4.8.3.3.1
Equivalent uniform moment fact	$or(x-x)$ $m_x =$	0.95	Specific case	cl 4.8.3.3.4
Equivalent uniform moment fact		0.90	Specific case	cl 4.8.3.3.4
·	()		-p	5. 1.5.5.6.1
$\frac{F_c}{P_c} + \frac{m_x M_x}{p_y Z_x} + \frac{m_y M_y}{p_y Z_y} \le 1$		0.296 OK		cl 4.8.3.3.1
Max. moment in segment govern	M_{b} $M_{LT} =$	34 kNm		cl 4.8.3.3.1
	J D 2		_	
$\frac{F_c}{P_{cv}} + \frac{m_{LT} M_{LT}}{M_b} + \frac{m_{v} M_{v}}{p_{v} Z_{v}} \le 1$		0.283 OK		cl 4.8.3.3.1
μ_{Cy} μ_b $\mu_y \mu_y \mu_y$				
				i e

		Customer	Job No
MGF	Design Services Ltd	Rochford Construction Ltd	43648
Ashton In	use, Lockett Road Makerfield, Wigan, WN4 8DE	Scheme Title	Date
	402 704 <mark>F:</mark> 01942 402 766 @mgf.ltd.uk	Havestock Hill	42641
Prepared By	Checked By	Calculation Title	Sheet of
JCW	SB	Propping - Prop P1 Design	3 3
More exact method Equivalent uniform - for major axis but $\frac{F_c}{P_{cx}} + \frac{m_x M_x}{M_{cx}} \left(1 - \text{for minor axis but} \right)$ $\frac{F_c}{P_{cy}} + 0.5 \frac{m_{LT} M_{cx}}{M_{cx}}$	od (for CHS, RHS or box sections with moment factor (yx) $m_{yx} = 1 + 0.5 \frac{F_c}{P_{cx}}$) ≤ 1 sinckling (no lateral torsional buckling $\frac{M_{LT}}{R} \leq 1$ and (for Stocky Class 1 & 2 Sections) actions $85.8\epsilon = 1$ sinckling	ith equal flanges) 0.90 Specific case 0.291 OK ng check needed): 0.252 OK	cl 4.8.3.3.3 cl 4.8.3.3.4
OVERALL	Maximum utilisation =	0.848 OK	

MGF proprietary equipment? Yes Type SHS Rolling Process Cold Section Size 200 x 200 x 8 SHS

Steel Grade\$355Self-weight60kg/mAdjustable Unit600kN HydraulicCHECK (Adjustable Capacity)0.764OK

MGF Tank Brace	Section Size		Steel Grade	Rolling Process	S/Wt (kg/m)
200 Series	200 x 200 x 8	SHS	S355	Cold	60
300 Series	300 x 300 x 12.5	SHS	S355	Cold	130
400 Series	400 x 400 x 16	SHS	S355	Hot	215
600 Series	610 x 12.5	CHS	S355	Cold	240
660 Series	660 x 20.6	CHS	S355	Cold	360
1000 Series	1067 x 14.3	CHS	X65	Cold	370
1000 Series +	1067 x 19.1	CHS	S355	Hot	520

		Customer		Job No
MGF Design Sei	rvices Ltd	Rochford C	onstruction Ltd	43648
Grant House, Lockett Road Ashton In Makerfield, Wigan, V		Scheme Title		Date
T: 01942 402 704 F: 01942 402 E: design@mgf.ltd.uk		Havestock I	⊔ill	42641
			11111	
epared By Checked By		Calculation Title		Sheet of
JCW	SB	Propping - F	Prop P2 Design	2 3
Local Capacity Check				cl 4.2.3
Shear area	A _v =	2960 mm ²		
Shear capacity	$P_{v} =$		_	
CHECK	$F_{vx}/P_{vx} =$	0.022 OK		
Shear condition Moment Capacity	M _c =	Low Shear		14050405
CHECK	$M_x/M_c =$			cl 4.2.5.2-4.2.5. cl 4.3.6.2
Спеск Moment Capacity (y-y)	$M_{cy} =$			cl 4.3.6.2 cl 4.2.5.1
CHECK	N A /N A	0.00 OK		cl 4.2.5.1
CHECK	yc _	0.00		01 4.2.3.2
Resistance to Lateral Torsional Bud				cl 4.3.6
Buckling resistance moment	M _b =	117		cl 4.3.6.4
Equivalent uniform moment factor	m _{LT} =	0.925	Specific case	cl 4.3.6.6
Members with combined moment	and axial force			cl 4.8
Effective length	L _E =	6750 mm		cl 4.7.3
Slenderness	λ =	07		cl 4.7.2
Strut curve	=	С		4.7.5, Table 23
Compression resistance	P _c =	1007 kN		cl 4.7.4
Cross section capacity				
Simplified method				cl 4.8.3.2
$F_c = M_x = M_y$			_	
$\frac{F_c}{Ap_y} + \frac{M_x}{M_{cx}} + \frac{M_y}{M_{cy}} \le 1$		0.535 OK		
<u>Note:</u> For Class 1, Class 2 and Class 3 s	ections, $A = A_g$. For	Class 4 sections, A	$=$ A_{eff} .	
More exact method (for Class 1 an	d Class 2 sections	<u>)</u>		cl 4.8.2.3
Method appropriate?		Yes		
Axial force ratio	n =			SCI P202
Reduced plastic modulus	$S_r = M_r =$	362 cm ³		SCI P202 Annex I.2.1
Reduced moment capacity	ivi _r =	129 kNm		Allilex 1.2.1
$\left(\frac{M_x}{M_{rx}}\right)^{z_1} + \left(\frac{M_y}{M_{ry}}\right)^{z_2} \le 1$		0.058 OK		
(11) (11)				
Member buckling resistance				cl 4.8.3.3
Simplified method				cl 4.8.3.3.1
Equivalent uniform moment factor			Specific case	cl 4.8.3.3.4
Equivalent uniform moment factor	$(x-x)$ $m_y =$	0.90	Specific case	cl 4.8.3.3.4
$\frac{F_c}{P_c} + \frac{m_x M_x}{p_y Z_x} + \frac{m_y M_y}{p_y Z_y} \le 1$		0.916 OK		cl 4.8.3.3.1
Max. moment in segment governin	gM_b $M_{LT} =$	31 kNm		cl 4.8.3.3.1
			<u>_</u>	
$\frac{F_c}{P_{cv}} + \frac{m_{LT}M_{LT}}{M_b} + \frac{m_yM_y}{p_vZ_v} \le 1$		0.875 OK		cl 4.8.3.3.1
cy v iyy				

		Customer	Job No
MGF Des	sign Services Ltd	Rochford Construction Ltd	43648
	eld, Wigan, WN4 8DE	Scheme Title	Date
T: 01942 402 704 E: design@mgf.lt	F: 01942 402 766 d.uk	Havestock Hill	42641
Prepared By	Checked By	Calculation Title	Sheet of
JCW	SB	Propping - Prop P2 Design	3 3
$\frac{\text{More exact method (for}}{\textit{Equivalent uniform mom}} \\ - \text{ for major axis buckling} \\ \frac{F_c}{P_{cx}} + \frac{m_x M_x}{M_{cx}} \bigg(1 + 0.5 \\ - \text{ for minor axis buckling} \\ \frac{F_c}{P_{cy}} + 0.5 \frac{m_{LT} M_{LT}}{M_{cx}} \leq$	CHS, RHS or box sections with the section P_{cx} is P_{cx} P	ith equal flanges) 0.90 Specific case 0.948 OK ag check needed): 0.779 OK	cl 4.8.3.3.3 cl 4.8.3.3.4
OVERALL	Maximum utilisation =	0.916 OK	

Member Selection

MGF proprietary equipment? Yes CHS Type Cold Rolling Process 200 x 200 x 8 CHS Section Size X65 Steel Grade 60 Self-weight kg/m 600kN Hydraulic Adjustable Unit 0.778 CHECK (Adjustable Capacity)

MGF Tank Brace	Section Size		Steel Grade	Rolling Process	S/Wt (kg/m)
200 Series	200 x 200 x 8	SHS	S355	Cold	60
300 Series	300 x 300 x 12.5	SHS	S355	Cold	130
400 Series	400 x 400 x 16	SHS	S355	Hot	215
600 Series	610 x 12.5	CHS	S355	Cold	240
660 Series	660 x 25.4	CHS	S355	Cold	360
1000 Series	1067 x 14.3	CHS	X65	Cold	370
1000 Series +	1067 x 19.1	CHS	S355	Hot	520

		Customer		Job No
MGF De	esign Services Ltd	Rochford Co	nstruction Ltd	43648
Grant House, I	_ockett Road erfield, Wigan, WN4 8DE	Scheme Title		Date
1 101110111	704 F : 01942 402 766	Havestock H	iii	42641
	·		IIII	
epared By	Checked By	Calculation Title		Sheet of
JCW	SB	Propping - P	rop P3 Design	2 3
Local Capacity Check				cl 4.2.3
Shear area	A _v =	= 3552 mm ²		
Shear capacity	P_{v} = F_{vx}/P_{vx} =	= 955 kN	•	
CHECK Shear condition	Ι _{VX} /Γ _{VX} =	= 0.014 OK Low Shear		
Moment Capacity	M _c	= 189 kNm		cl 4.2.5.2-4.2.5.
CHECK	M_x/M_c		1	cl 4.3.6.2
Moment Capacity (y-y				cl 4.2.5.1
CHECK	N A /N A	0.00 OK		cl 4.2.5.2
Resistance to Lateral	Torsional Buckling			cl 4.3.6
Buckling resistance mo		= <mark>189</mark> kNm		cl 4.3.6.4
Equivalent uniform mo		0.925	Specific case	cl 4.3.6.6
Members with combin	ned moment and axial force			cl 4.8
Effective length		= 6750 mm		cl 4.7.3
Slenderness	_	= 87		cl 4.7.2
Strut curve		= C		4.7.5, Table 23
Compression resistance	re P _c =	= 1117 kN		cl 4.7.4
Cross section capacity	<u>.</u>			
Simplified method				cl 4.8.3.2
$\frac{F_c}{Ap_y} + \frac{M_x}{M_{cx}} + \frac{M_y}{M_{cy}} \le$. 1	0.430 OK	1	
			•	
<u>Note:</u> For Class 1, Class 2	2 and Class 3 sections, $A = A_g$. For	r Class 4 sections, A =	A _{eff} .	
<u> </u>	or Class 1 and Class 2 sections			cl 4.8.2.3
Method appropriate?	_	Yes		CCLDOOO
Axial force ratio Reduced plastic modul		= 0.26 = 385 cm ³		SCI P202 SCI P202
Reduced moment capa		= 173 kNm		Annex I.2.1
•	· · · J	- 175 KWIII	_	
$\left(\frac{M_x}{M_{rx}}\right)^{z_1} + \left(\frac{M_y}{M_{ry}}\right)^{z_2}$	≤ 1	0.033 OK		
Member buckling resi	stance			cl 4.8.3.3
Simplified method	<u> Jiuiloo</u>			cl 4.8.3.3.1
Equivalent uniform mo	oment factor $(x-x)$ $m_x =$	= 0.95	Specific case	cl 4.8.3.3.4
Equivalent uniform mo		= 0.90	Specific case	cl 4.8.3.3.4
$\frac{F_c}{P_c} + \frac{m_x M_x}{p_y Z_x} + \frac{m_y M_x}{p_y Z_x}$	_	0.813 OK	_	cl 4.8.3.3.1
	,		•	
Max. moment in segm	nent governing M _b M _{LT}	= <mark>31</mark> kNm		cl 4.8.3.3.1
$\frac{F_c}{P_{cv}} + \frac{m_{LT}M_{LT}}{M_b} + \frac{m}{p}$				

	Customer	Job No
sign Services Ltd	Rochford Construction Ltd	43648
field, Wigan, WN4 8DE	Scheme Title	Date
	Havestock Hill	42641
Checked By	Calculation Title	Sheet of
SB	Propping - Prop P3 Design	3 3
The CHS, RHS or box sections when the factor $f(yx)$ is the property of $f(x)$ and $f(x)$ is the factor $f(yx)$ and $f(x)$ is the factor $f(yx)$ and $f(x)$ is the factor $f(x)$ and $f(x)$ i	ith equal flanges) 0.90 Specific case 0.834 OK ng check needed): 0.704 OK	cl 4.8.3.3.3 cl 4.8.3.3.4
Maximum utilisation =	O.813 OK	
	SB The CHS, RHS or box sections we then factor (yx) $m_{yx} = 3$: The section of the sectio	Rochford Construction Ltd ckett Road ield, Wigan, WN4 8DE 4 F: 01942 402 766 tduk Checked By SB CHS, RHS or box sections with equal flanges) ment factor (yx) $m_{yx} = 0.90$ Specific case Specific case

SHS

MGF proprietary equipment? Yes Type SHS Rolling Process Cold Section Size 200 x 200 x 8 Steel Grade S355

Self-weight 60 kg/m
Adjustable Unit 600kN Hydraulic
CHECK (Adjustable Capacity) 0.773 OK

MGF Tank Brace	Section Size		Steel Grade	Rolling Process	S/Wt (kg/m)
200 Series	200 x 200 x 8	SHS	S355	Cold	60
300 Series	300 x 300 x 12.5	SHS	S355	Cold	130
400 Series	400 x 400 x 16	SHS	S355	Hot	215
600 Series	610 x 12.5	CHS	S355	Cold	240
660 Series	660 x 25.4	CHS	S355	Cold	360
1000 Series	1067 x 14.3	CHS	X65	Cold	370
1000 Series +	1067 x 19.1	CHS	S355	Hot	520

0	Job N		Customer				
43648		struction Ltd	Rochford Co	es Ltd	sign Service	MGF Des	
	Date		Scheme Title		kett Road ield, Wigan, WN4 8D	Grant House, Loc	MGF
42641	Date	I	Havestock F	_	F: 01942 402 766	T: 01942 402 704	
		I			-	E: design@mgf.lt	
	Shee		Calculation Title		Checked By		epared By
2 3		op P4 Design	Propping - F	В	SI	CW	J
2.3	cl 4.					acity Check	<u>Local Car</u>
			2960 mm ²	A _v =			Shear are
				$P_{v} = F_{vx}/P_{vx} = F_{vx}$		oacity	Shear cap
			0.022 OK Low Shear	1 VX/ F VX =		adition	CHECK Shear co
2.5.2-4.2.5.	cl 4		4.45	M _c =			Moment
2.5.2-4.2.5. 3.6.2				$M_x/M_c =$		capacity	CHECK
2.5.1				$M_{cy} =$		Capacity (y-y)	
2.5.2				M_y/M_c =			CHECK
3.6	cl 4.				rsional Buckling	ce to Lateral To	Resistan
3.6.4			149 kNm	$M_b =$		resistance mom	
3.6.6	cl 4.	Specific case	0.925	m_{LT} =		nt uniform mom	
8	cl 4.			vial force	d moment and a	s with combine	Member
	cl 4.		6750 mm	L _E =	a moment and a		Effective
	cl 4.		87	λ =			Slendern
5, Table 23			С	=			Strut cur
	cl 4.		1007 kN	P _c =		sion resistance	Compres
						tion capacity	Cross sec
8.3.2	cl 4.					<u>d method</u>	<u>Simplifie</u>
			0.540 OK			$\frac{M_x}{M_y} + \frac{M_y}{M_y} < 1$	F_c
			0.540 OK			$\frac{M_x}{M_{cx}} + \frac{M_y}{M_{cy}} \le 1$	$\overline{Ap_y}^{+}$
		l _{eff} .	Class 4 sections, A =	$S, A = A_g$. For	nd Class 3 sections	Class 1, Class 2 a	<u>Note:</u> For
8.2.3	cl 4.			s 2 sections)	Class 1 and Clas		
ກາດາ	CCL		Yes	_		appropriate?	
P202 P202			0.33 361 cm ³	n = S		e ratio plastic modulus	Axial ford
ex 1.2.1			128 kNm	$S_r = M_r =$		moment capaci	
			120 KIVIII	, –	•	•	
			0.059 OK		≤ 1	$+ \left(\frac{M_{y}}{M_{ry}}\right)^{z_2} \le$	$\left(\frac{M_x}{M_{rx}}\right)$
8.3.3	cl 4				ance	buckling resista	Member
8.3.3.1					ui ioo	<u>d method</u>	
8.3.3.4		Specific case	0.95	$m_x =$	nent factor (x-x)		•
8.3.3.4		Specific case	0.90	m_y =	nent factor (x-x)		•
8.3.3.1		•	0.925 OK	-		$\frac{n_x M_x}{p_y Z_x} + \frac{m_y M_y}{p_y Z_y}$	·_
						<i>y</i>	
8.3.3.1	cl 4.		31 kNm	M _{LT} =	nt governing M _b	ment in segmer	Max. mo
8.3.3.1	cl 4.		0.884 OK		$\frac{M_y}{N} \leq 1$	$\frac{m_{LT}M_{LT}}{M_{\star}} + \frac{m_{y}N_{t}}{m_{z}}$	$\frac{F_c}{D}$ +
				M _{LT} =		ment in segment $\frac{m_{LT}M_{LT}}{M_b} + \frac{m_yN}{p_yZ}$	_

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Grant House, Lockett Road Ashton in Makerfield, Wigan, WN4 8DE T. 01942 402 706 F. 101942 402 706 F.			Customer	Job No
Ashton in Makerfield, Wigan, WN4 aDE T: 0.1942 402 766 E: design@mgf.ltd.uk	MGF De	sign Services Ltd	Rochford Construction Ltd	43648
E: design@mgf.ltd.uk Havestock Hill 42641 JCW SB Calculation Title Sheet of JCW SB Propping - Prop P4 Design 3 3 More exact method (for CHS, RHS or box sections with equal flanges) Equivalent uniform moment factor (yx) $m_{yx} = 0.90$ Specific case cl 4.8.3.3.3 For major axis buckling: $\frac{F_c}{P_{cx}} + \frac{m_x M_x}{m_{cx}} \left(1 + 0.5 \frac{F_c}{P_{cx}}\right) \le 1 0.957 OK For minor axis buckling (no lateral torsional buckling check needed): F_c + 0.5 \frac{m_{LT} M_{LT}}{M_{cx}} \leq 1 0.787 OK Alternative method (for Stocky Class 1 & 2 Sections) Limit for stocky sections 85.8\varepsilon = \frac{75.5}{No} No For major axis buckling \frac{m_x M_x}{M_{ax}} \leq 1 0.863 N/A For lateral torsional buckling: \frac{m_{LT} M_{LT}}{M_{ab}} \leq 1 0.624 N/A N/A$	Ashton In Maker	field, Wigan, WN4 8DE	Scheme Title	Date
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		Havestock Hill	42641
More exact method (for CHS, RHS or box sections with equal flanges) Equivalent uniform moment factor (yx) $m_{yx} = 0.90$ Specific case of major axis buckling: $\frac{F_c}{P_{cx}} + \frac{m_x M_x}{M_{cx}} \left(1 + 0.5 \frac{F_c}{P_{cx}} \right) \le 1$ of minor axis buckling (no lateral torsional buckling check needed): $\frac{F_c}{P_{cy}} + 0.5 \frac{m_{LT} M_{LT}}{M_{cx}} \le 1$ Alternative method (for Stocky Class 1 & 2 Sections) Limit for stocky sections Annex I.1 appropriate? for major axis buckling $\frac{m_x M_x}{M_{ax}} \le 1$ oo.863 N/A for lateral torsional buckling: $\frac{m_{LT} M_{LT}}{M_{ab}} \le 1$ oo.624 N/A	Prepared By	Checked By	Calculation Title	Sheet of
Equivalent uniform moment factor (yx) $m_{yx} = 0.90$ Specific case cl $4.8.3.3.4$ - for major axis buckling: $\frac{F_c}{P_{ex}} + \frac{m_x M_x}{M_{ex}} \left(1 + 0.5 \frac{F_c}{P_{ex}}\right) \leq 1$ 0.957 OK - for minor axis buckling (no lateral torsional buckling check needed): $\frac{F_c}{P_{cy}} + 0.5 \frac{m_{LT} M_{LT}}{M_{cx}} \leq 1$ 0.787 OK Alternative method (for Stocky Class 1 & 2 Sections) Limit for stocky sections 85.8 ϵ = 75.5 Annex I.1 appropriate? - for major axis buckling $\frac{m_x M_x}{M_{ax}} \leq 1$ 0.863 N/A - for lateral torsional buckling: $\frac{m_{LT} M_{LT}}{M_{ab}} \leq 1$ 0.624 N/A	JCW	SB	Propping - Prop P4 Design	3 3
OVERALL Maximum utilisation = 0.925 OK	Equivalent uniform more for major axis buckling $\frac{F_c}{P_{cx}} + \frac{m_x M_x}{M_{cx}} \left(1 + 0.0\right)$ - for minor axis buckling $\frac{F_c}{P_{cy}} + 0.5 \frac{m_{LT} M_{LT}}{M_{cx}} \leq \frac{M_{LT} M_{cx}}{M_{cx}} \leq \frac{M_{LT} $	ment factor (yx) $m_{yx} = g$: $5\frac{F_c}{P_{cx}}$ ≤ 1 g (no lateral torsional buckling 1 The Stocky Class 1 & 2 Sections) 85.8 ϵ = ϵ	ith equal flanges) 0.90 Specific case 0.957 OK ag check needed): 0.787 OK 75.5 No 0.863 N/A	cl 4.8.3.3.4 Annex I.1
	<u>OVERALL</u>	Maximum utilisation =	0.925 OK	

Member Selection

MGF proprietary equipment?		Yes		
Туре		SHS		
Rolling Process		Cold		
Section Size	200 x 200 x 8 SHS		SHS	
Steel Grade		S355		_
Self-weight	60 kg/m		<u>'m</u>	
Adjustable Unit	600kN Hydraulic			
CHECK (Adjustable Capa	acity) 0.776 OK		OK	

MGF Tank Brace	Section Size		Steel Grade	Rolling Process	S/Wt (kg/m)
200 Series	200 x 200 x 8	SHS	S355	Cold	60
300 Series	300 x 300 x 12.5	SHS	S355	Cold	130
400 Series	400 x 400 x 16	SHS	S355	Hot	215
600 Series	610 x 12.5	CHS	S355	Cold	240
660 Series	660 x 25.4	CHS	S355	Cold	360
1000 Series	1067 x 14.3	CHS	X65	Cold	370
1000 Series +	1067 x 19.1	CHS	S355	Hot	520
	•		·		·

		Customer		Job No
MGF Design Se	ervices Ltd	Rochford C	onstruction Ltd	43648
Grant House, Lockett Road Ashton In Makerfield, Wigan		Scheme Title		Date
T: 01942 402 704 F: 01942 4 E: design@mgf.ltd.uk		Havestock I	⊔ill	42641
			11111	
epared By Checked By		Calculation Title		Sheet of
JCW	SB	Propping - F	Prop P5 Design	2 3
Local Capacity Check				cl 4.2.3
Shear area	A _v =	2960 mm ²		
Shear capacity	P _v =		_	
CHECK	$F_{vx}/P_{vx} =$	0.022 OK		
Shear condition Moment Capacity	M _c =	Low Shear		-14252425
СНЕСК	$M_x/M_c =$			cl 4.2.5.2-4.2.5. cl 4.3.6.2
инеск Moment Capacity (y-y)	$M_{cy} =$			cl 4.3.6.2 cl 4.2.5.1
CHECK	N A /N A	0.00 OK		cl 4.2.5.1
CHECK	yc _	0.00		01 4.2.3.2
Resistance to Lateral Torsional B				cl 4.3.6
Buckling resistance moment	M _b =	117		cl 4.3.6.4
Equivalent uniform moment factor	$m_{LT} =$	0.925	Specific case	cl 4.3.6.6
Members with combined mome	nt and axial force			cl 4.8
Effective length	L _E =	6750 mm		cl 4.7.3
Slenderness	λ =	07		cl 4.7.2
Strut curve	=	С		4.7.5, Table 23
Compression resistance	P _c =	1007 kN		cl 4.7.4
Cross section capacity				
Simplified method				cl 4.8.3.2
$F_c M_x M_y$				
$\frac{F_c}{Ap_y} + \frac{M_x}{M_{cx}} + \frac{M_y}{M_{cy}} \le 1$		0.542 OK		
Note: For Class 1, Class 2 and Class 3	sections, $A = A_g$. For	Class 4 sections, A	$=$ A_{eff} .	
More exact method (for Class 1 a	and Class 2 sections	<u>) </u>		cl 4.8.2.3
Method appropriate?		Yes		
Axial force ratio	n =			SCI P202
Reduced plastic modulus	$S_r = M_r =$	360 cm ³		SCI P202 Annex I.2.1
Reduced moment capacity	ivi _r =	128 kNm		ATTITICA 1.2. I
$\left(\frac{M_x}{M_{rx}}\right)^{z_1} + \left(\frac{M_y}{M_{ry}}\right)^{z_2} \le 1$		0.060 OK		
(127)				
Member buckling resistance				cl 4.8.3.3
Simplified method	/ \ m		0 10	cl 4.8.3.3.1
Equivalent uniform moment factor			Specific case	cl 4.8.3.3.4
Equivalent uniform moment factor	$or(x-x)$ $m_y =$	0.90	Specific case	cl 4.8.3.3.4
$\frac{F_c}{P_c} + \frac{m_x M_x}{p_y Z_x} + \frac{m_y M_y}{p_y Z_y} \le 1$		0.928 OK		cl 4.8.3.3.1
Max. moment in segment govern	$ing M_b$ $M_{LT} =$	31 kNm		cl 4.8.3.3.1
	<i>J D</i>		<u>_</u>	
$\frac{F_c}{P_{cv}} + \frac{m_{LT}M_{LT}}{M_b} + \frac{m_v M_v}{p_v Z_v} \le 1$		0.887 OK		cl 4.8.3.3.1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Grant House, Lockett Road Ashton in Makerfield, Wigan, WN4 8DE T. 01942 402 706 F. 101942 402 706 F.			Customer	Job No
Ashton in Makerfield, Wigan, WN4 aDE T: 0.1942 402 766 E: design@mgf.ltd.uk	MGF [Design Services Ltd	Rochford Construction Ltd	43648
E: design@mgf.ltd.uk Havestock Hill 42641 JCW SB Calculation Title Sheet of JCW SB Propping - Prop P5 Design 3 3 More exact method (for CHS, RHS or box sections with equal flanges) Equivalent uniform moment factor (yx) $m_{yx} = 0.90$ Specific case cl 4.8.3.3.3 For major axis buckling: $\frac{F_c}{P_{cx}} + \frac{m_x M_x}{m_{cx}} \left(1 + 0.5 \frac{F_c}{P_{cx}}\right) \le 1 0.961 OK For minor axis buckling (no lateral torsional buckling check needed): F_c + 0.5 \frac{m_{LT} M_{LT}}{M_{cx}} \leq 1 0.790 OK Alternative method (for Stocky Class 1 & 2 Sections) Limit for stocky sections 85.8\varepsilon = \frac{75.5}{No} No For major axis buckling \frac{m_x M_x}{M_{ax}} \leq 1 0.874 N/A For lateral torsional buckling: \frac{m_{LT} M_{LT}}{M_{ab}} \leq 1 0.632 N/A N/A$	Ashton In Ma	akerfield, Wigan, WN4 8DE	Scheme Title	Date
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Havestock Hill	42641
More exact method (for CHS, RHS or box sections with equal flanges) Equivalent uniform moment factor (yx) $m_{yx} = 0.90$ Specific case of major axis buckling: $\frac{F_c}{P_{cx}} + \frac{m_x M_x}{M_{cx}} \left(1 + 0.5 \frac{F_c}{P_{cx}} \right) \le 1$ of minor axis buckling (no lateral torsional buckling check needed): $\frac{F_c}{P_{cy}} + 0.5 \frac{m_{LT} M_{LT}}{M_{cx}} \le 1$ Alternative method (for Stocky Class 1 & 2 Sections) Limit for stocky sections Annex I.1 appropriate? for major axis buckling $\frac{m_x M_x}{M_{ax}} \le 1$ of or lateral torsional buckling: $\frac{m_{LT} M_{LT}}{M_{ab}} \le 1$ of old an initial factor in the equal flanges) of the equal flanges) Specific case cl 4.8.3.3.3 cl 4.8.3.3.3 cl 4.8.3.3.3 cl 4.8.3.3.3 cl 4.8.3.3.3 cl 4.8.3.3.3 cl 4.8.3.3.4 cl 4.8.3.3.3 cl 4.8.3.3.4 cl 4.8.3.3.4 cl 4.8.3.3.3 cl 4.8.3.3.4 cl 4.8.3.3.3 cl 4.8.3.3.4 cl 4.8.3.3.3 cl 4.8.3.3.4 cl 4.8	Prepared By	Checked By	Calculation Title	Sheet of
Equivalent uniform moment factor (yx) $m_{yx} = 0.90$ Specific case cl 4.8.3.3.4 - for major axis buckling: $ \frac{F_c}{P_{ex}} + \frac{m_x M_x}{M_{ex}} \left(1 + 0.5 \frac{F_c}{P_{ex}} \right) \leq 1 $ 0.961 OK - for minor axis buckling (no lateral torsional buckling check needed): $ \frac{F_c}{P_{cy}} + 0.5 \frac{m_{LT} M_{LT}}{M_{cx}} \leq 1 $ 0.790 OK - Alternative method (for Stocky Class 1 & 2 Sections) Limit for stocky sections 85.8 $\epsilon = \frac{75.5}{N_0} $ Annex I.1 SCI AD 301 Annex I.1 appropriate? - for major axis buckling $ \frac{m_x M_x}{M_{ax}} \leq 1 $ 0.874 N/A - for lateral torsional buckling: $ \frac{m_{LT} M_{LT}}{M_{ab}} \leq 1 $ 0.632 N/A	JCW	SB	Propping - Prop P5 Design	3 3
OVERALL Maximum utilisation = 0.928 OK	Equivalent uniform r for major axis buck $\frac{F_c}{P_{cx}} + \frac{m_x M_x}{M_{cx}} \left(1 + \frac{F_c}{P_{cy}} + 0.5 \frac{m_{LT} M_{LT}}{M_{cx}} \right)$ - for minor axis buck $\frac{F_c}{P_{cy}} + 0.5 \frac{m_{LT} M_{LT}}{M_{cx}}$ - Alternative method Limit for stocky section L for major axis buck $\frac{m_x M_x}{M_{ax}} \leq 1$ - for lateral torsional	moment factor (yx) $m_{yx} = 0.5 \frac{F_c}{P_{cx}}$ ≤ 1 kling (no lateral torsional buckling) $\frac{T}{r} \leq 1$ $\frac{\text{(for Stocky Class 1 & 2 Sections)}}{100000000000000000000000000000000000$	th equal flanges) 0.90 Specific case 0.961 OK g check needed): 0.790 OK 75.5 No 0.874 N/A	cl 4.8.3.3.4 Annex I.1
	<u>OVERALL</u>	Maximum utilisation =	0.928 OK	