

Geological & Geotechnical Consultants

59 Redington Road, London NW3 7RP

Desk Study & Report on Ground Investigation (Aug 2016)

Prepared for SIAW

Geological & Geotechnical Consultants

Key GeoSolutions Ltd Nova House Audley Avenue Enterprise Park Newport Shropshire TF10 7DW Tel.01952 822960Fax.01952 822961

.....

.....

email info@keygs.com web www.keygs.com

Job Number:	16-248
Report Number:	16-248-R-001

SIAW

59 Redington Road

Desk Study & Report on Ground Investigation

Prepared by:

R Westnedge BSc (Hons) MSc FGS

Approved by:

B Duthie BEng CGeol FGS FIQ

Report Distribution List

Name	Copies	Rev.	Date	Copies	Rev.	Date	Copies	Rev.	Date
B Halevi	pdf	1	04/10/16						
KGS File	pdf	1	04/10/16						

This report has been prepared by Key GeoSolutions Limited with all reasonable skill, care and diligence, within the terms of the Contract with the Client. The report is confidential to the Client and Key GeoSolutions Limited accept no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this report may be reproduced without prior written approval of Key GeoSolutions Limited.

CONTENTS

Page Number

1.0	INTRODUCTION 2	
2.0	SITE OVERVIEW42.1Site Location42.2Land Use History42.3Geo-Environmental Setting52.4Other Significant Geo-Environmental Information62.5Review of Previous Reports / Investigations9	! ; ;
3.0	GROUND INVESTIGATION 1	0
4.0	LABORATORY TESTING 1	1
5.0	DISCUSSIONS ON GROUND CONDITIONS AND RECOMMENDATIONS	2
6.0	CONCLUSIONS AND RECOMMENDATIONS 1	4

Figures

Figure 1	Site Location Plan
Figure 2	Window Sample Holes Location Plan

Appendices

Appendix 1	Envirocheck Report
Appendix 2	Window Sample Logs
Appendix 3	Results of Chemical Analyses (Alcontrol Laboratories)
Appendix 4	Results of Physical & Chemical Analyses (Terra Tek Laboratories)

1.0 INTRODUCTION

Key GeoSolutions Ltd (KGS) have been commissioned by SIAW LTD to undertake a ground investigation at 59 Redington Road, London in order to ascertain the ground conditions for a proposed new swimming pool and erection of associated pitched roof single-storey enclosure with dressing room within the rear garden area.

As part of the planning application for the swimming pool a Basement Impact Assessment (BIA) was submitted and reviewed by the London Borough of Camden's Consultant's Campbell Reith and reported in their BIA Audit report, Project No 12336-55 revision – D1 dated May 2016. This audit highlighted the fact that the absence of a hidden watercourse supposedly running to the rear of the gardens had not been confirmed and no site specific ground investigation report submitted. Consequently, this investigation comprises;

- a Desk Study highlighting previous uses of the site
- exploratory holes using window sampling techniques;
- samples recovered for chemical and geotechnical testing; and
- groundwater monitoring installations.

The report comprises a desk study review of publicly available information related to the site and the surrounding area, an Envirocheck report, provided by the Landmark Information Group (a copy of which can found in Appendix 1), together with the results of the Ground Investigation.

The ground investigation comprised 2No. window sample holes sunk, with water monitoring standpipe installations, close to the proposed footprints of the new structures where access allowed, to define the ground conditions and provide samples for geotechnical testing and chemical analysis.

The comments given in this report and any opinions expressed are based on the ground conditions encountered during the site work, the results of tests made in the field and in the laboratory and on information made available by SIAW LTD and other Third Parties. KGS has proceeded in good faith on the assumption that this information is accurate and accepts no liability for any inaccurate conclusions, assumptions or actions taken resulting from any inaccurate information supplied. There may be, however, conditions pertaining to the site which have not been disclosed by the investigation and which therefore could not be taken into account in this report. In particular underground services may be present that could affect the proposed development.

It should also be noted that the effects of ground and water borne contamination on the environment are constantly under review, and authoritative guidance values are potentially subject to change.

The conclusions presented herein are based on the guidance available at the time this report was prepared, and no liability can be accepted for the retrospective effects of any changes or amendments to the legislation or guidance.

2.0 SITE OVERVIEW

2.1 Site Location and Description

The site may be located by National Grid Reference 525597mE, 185959mN, the location is shown on Figure 1.

The proposed structure is to be located to the west of the existing building in what is currently a garden area. The area is bounded by other gardens to the north and west, access to the site is via the existing building at 59 Redington road.

The current layout is shown on Figure 2. From the site topographic survey provided the site falls from the front of the property at approximately 97.5mAOD to 94.0mAOD at the end of the rear garden.

2.2 Land Use History

2.2.1 General

Landmark Information Group (Landmark) was commissioned to provide an Envirocheck® Report. This report, including the Historical Ordnance Survey Maps, is presented in its entirety, in Appendix 1. The maps have been reviewed to determine the historical on-site and off-site land use. Where appropriate these have been supplemented/correlated by other information from web-based sources.

2.2.2 Historical Land uses and features

The review focuses on the land use within the boundary and the land immediately adjacent to the sites. Additional comment on the land use further from the site is added if noteworthy from a geotechnical or land contamination context.

Site – fields from 1864 until 1896, on the 1896 map the site and surrounding area are marked as being fields with Redington Road being established, a covered Reservoir (Water Works) is also noted to the south west of the site. On the 1915 map, the site and surrounding area are no longer fields, with numerous roads being established around Redington Road.

Between 1915 and 2016 the site remains undeveloped as a domestic garden.

2.2.3 Contemporary Surrounding Land Use

There has been one contemporary trade located within the surrounding 250m of the site this is an inactive furniture manufacture and is located 247m from the site. The closest was Garage Services (24 Hour Euro Windscreen Ltd) at 571, Finchley Road approximately 443m to the south west of the site, this site is currently inactive. The closest active operation is a Packaging Materials Manufacturers & Supplies (Ravtex Uk Ltd) 95 Platts Lane, Hampstead approximately 368m to the north west of the site, although this operation does not require a Local Authority Pollution Prevention and Control permit. The closest company requiring such a permit is Esso Filling Station, which is 526m to the west.

The nearest obsolete fuel station was located 538m to the west of the site at 617, Finchley Road; the nearest open fuel station is located 526m to the west adjacent to the obsolete fuel station at 617, Finchley Road (Esso).

2.3 Geo-Environmental Setting

2.3.1 Geology

The site is covered by BGS 1: 50,000 Geological Sheet No. 256 (North London) Bedrock and Superficial Deposits Published 2006. This indicates the site to be underlain by strata of the Claygate Member (clay and silt) of the Palaeogene Period, which is in turn underlain by the London Clay Formation. Based on the BGS boreholes the London Clay is anticipated to be in the order of 60m thick in this area.

2.3.2 Hydrogeology and Groundwater Vulnerability

The hydrogeology and groundwater vulnerability at the site has been assessed and is summarised in the following sections.

2.3.3 Classification of Aquifer

The bedrock strata are identified as a Secondary A Aquifer, defined by the Environment Agency as:-

"Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers."

The Superficial deposits are identified as an Unproductive Strata.

2.3.4 Soil Vulnerability

The soils on site are classified as having a High leaching potential (U).

2.3.5 Groundwater

There is limited potential for groundwater flooding to occur on site or the surrounding area. It is estimated that the groundwater is between 15m AOD and 20mAOD this value is taken from monitoring undertaken in January 2016.

2.3.6 Source Protection Zone

The site is not within any source protection zones however 1.8Km to the south east of the site a Source Protection Zone Outer Zone (Zone 2) is visible.

2.3.7 Groundwater Abstraction

There are no recorded water abstraction points within 1000m of the site.

2.4 Other Significant Geo-environmental Information

2.4.1 Hydrology

The nearest surface water feature is a pond and river area, located approximately 617m north-east of the site.

The information contained within the Envirocheck® Report (Appendix 1) indicates that the site and surrounding area is an area with "Limited Potential for Groundwater Flooding to Occur". The pond and river, located approximately 617m to the north-east of the site, is an area marked as a "Limited Potential for Groundwater Flooding to Occur".

The 1879 OS 1: 2500 map shows a minor watercourse running to the west of the site boundary in a north - south direction. This is likely to be the tributary of the Westbourne River previously identified in the BIA.

2.4.2 Surfacewater Abstraction

There are no recorded surface water abstraction points within 1000m of the site.

2.4.3 Radon

With reference to Annex A and B of *Radon: Protective Measures for New Dwellings (BR211, 2007)*, the site is located in an area where basic radon protection is not required. The information contained within the Envirocheck® Report (Appendix 1) also confirms this assessment concluding that *'no radon protective measures are necessary in the construction of new dwellings or extensions'*.

2.4.4 BGS Estimated Soil Chemistry

The table below lists the BGS Estimated Soil Chemistry Values for arsenic, cadmium, chromium, lead and nickel; these are assumed to represent the background concentrations for the soil chemistry. The high values for Lead concentrations is confined to a small location north of the site and does not represent the surrounding values of lead concentration.

	Minimum Concentration (for London)	1.00 mg/kg
Areania	Average Concentration (for London)	17.00 mg/kg
Arsenic	Maximum Concentration (for London)	161.00 mg/kg
	Measured Values (local to site)	8.5-23 mg/kg
	Minimum Concentration (for London)	0.10 mg/kg
Codmium	Average Concentration (for London)	0.90 mg/kg
Cadmium	Maximum Concentration (for London)	165.20 mg/kg
	Measured Values (local to site)	<1.5 mg/kg
	Minimum Concentration (for London)	13.00 mg/kg
Chromium	Average Concentration (for London)	79.00 mg/kg
Chronnum	Maximum Concentration (for London)	2094.00 mg/kg
	Measured Values (local to site)	50-160 mg/kg
	Minimum Concentration (for London)	11.00 mg/kg
Lood	Average Concentration (for London)	280.00 mg/kg
Leau	Maximum Concentration (for London)	10000.00 mg/kg
	Measured Values (local to site)	99-1130 mg/kg
	Minimum Concentration (for London)	2.00 mg/kg
Nickol	Average Concentration (for London)	28.00 mg/kg
NICKEI	Maximum Concentration (for London)	506.00 mg/kg
	Measured Values (local to site)	7-50 mg/kg

7

Table 2.4.4 - BGS Measured Urban Soil Chemistry

2.4.5 Waste

Based on the Envirocheck report there is no Historical Landfill Sites located within 1000m of the site, however Potentially Infilled Land (Non – Water and Water) have been noted.

There is a record of Potentially Infilled Land (Non-Water) located 297m to west of the site; and is described as Unknown Filled Ground (Pit quarry etc.). The historical maps for the Potentially Infilled Land show houses occupying the site from 1915 to the present day with only minor changes relating to the width of the main road. The Envirocheck® report indicates that the date the fill was mapped was 1996 but buildings have occupied this site since 1896. There is also three other Potentially infilled Land (Water) described as Unknown Filled Ground (Pond, marsh, river, stream, dock etc) located 356m south of the site, 841m and 886m to the north of the site. The two sites to the north were filled in in 1896 with the infilled land to the south being infilled in 1996.

2.4.6 Ground Stability, Mineral Workings and Coal Mining

As would be expected based on the published geology the site is noted as being in an area *'that might not be affected by coal mining'.*

The Envirocheck report indicates that there is no hazard associated with non-coal mining activity.

There are no BGS recorded Mineral Sites within 250m of the site,

The Envirocheck® Report indicates the soils found on site are classified as being 'No Hazard' or having 'very low hazard potential' for the following:

- Potential for collapsible ground
- Potential for ground dissolution
- Potential for landslide
- Potential for running sand

The Envirocheck® Report indicates the soils found on site are classified as having 'moderate hazard potential' for the potential for shrinking or swelling clay ground.

2.4.7 Environmentally Sensitive Land Uses

There is an Ancient Woodland and a Site of Special Scientific Interest located, approximately 900m to the north west of the site.

2.5 Review of Previous Reports / Investigations

2.5.1 BGS Records

A search for any available reports, which may provide relevant information with regards to the site development, has been undertaken. This includes the borehole records kept at the British Geological Survey (BGS).

The BGS has records of a number of boreholes within 1000m of the site. The nearest of these, which is not confidential, (located approximately 340m to the north west of the site) encountered 0.90m of topsoil, below which stiff brown silty clays were encountered.

The thickness of the London Clay and the depth of the underlying Lambeth Group and Chalk were approximated using the deep wells around the site approximately; two located approximately 742m and 740m the north-east of the site drilled in 1985, one located approximately 225m to the southwest of the site drilled in 1872.

3.0 GROUND INVESTIGATION

The site work was carried out on the 4th August 2016 and generally in accordance with the guidelines laid down in BS EN 1997-2:2007 (1).

Two window sample holes (WS01 to WS02) were sunk, one in the vicinity of the footprint of the proposed new building and one close to the existing building to investigate the ground conditions and provide samples for geotechnical testing and chemical analysis. Due to access restrictions it was not possible to investigate the full extent of the proposed build area. All exploratory holes were located based on geotechnical requirements as other than a general risk of contamination being present on site the Desk Study had not identified any specific targets.

The holes were sunk using a window sampling rig provided by Dynamic Sampling UK. The approximate locations of the boreholes are shown on Figure 2. The depths of the boreholes and descriptions of the soils encountered are given in the borehole records (Appendix 2).

Disturbed samples and SPT's (Standard Penetration Tests) were taken at the depths shown on the borehole record. The results are provided on the borehole logs. The results are provided within Appendix 2.

Samples taken for contamination purposes were recovered in labelled 250g amber jars, 60g amber jars and 1kg plastic tubs. The samples were then stored in cool boxes prior to being delivered to ALcontrol Laboratories in Hawarden. Samples were delivered, and scheduled using Sample Custody forms provided by ALcontrol.

Gas standpipes were installed in WS01 and WS02 details of installations are on the borehole logs (see Appendix 2).

4.0 LABORATORY TESTING

Samples were selected and scheduled for chemical analysis by KeyGS: the analysis was carried out by ALcontrol Laboratories, a UKAS accredited laboratory with MCERTs accreditation for the majority of test scheduled. The range of chemical analyses was based on the known previous land use history of the site and include asbestos screen, total cyanide, water soluble sulphate, polyaromatic hydrocarbons (PAH), soil organic matter (SOM), Total Petroleum Hydrocarbons Criteria Working Group (TPH CWG) banded aliphatics and aromatics hydrocarbons, waste acceptance Criteria (WAC) (complete & leachate suite), and metals (Arsenic, Barium, Beryllium, Boron, water soluble, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Vanadium, Zinc).

Whilst every effort has been made to schedule tests suitable for the known previous land use, there is no guarantee that other contaminants are not present on site for which analyses have not been carried out or which were not sampled in the programme of exploratory holes.

Given the relatively thin veneer of made ground the chemical testing was limited to two but generally representative samples of the ground encountered in WS01 and WS02, the results are given in Appendix 3.

In addition, three samples was also submitted to TerraTek Ltd for Atterberg testing, water soluble sulphate and pH value analyses.

5.0 DISCUSSIONS ON GROUND CONDITIONS AND RECOMMENDATIONS

5.1 Ground Conditions

The following strata were encountered during the investigation:-

- Made Ground
- Clay (thought to be the Claygate Member)

Made ground was encountered in borehole WS01 to a depth of 1.50m, it contained very occasional pieces of brick and concrete in a clay matrix.

Beneath the made ground, all boreholes encountered a generally soft to firm brown sandy clay with gravel; this was thought to represent superficial Head Deposits. Below the Head Deposits a firm grey sandy clay was encountered (Claygate Member).

- WS01 was terminated in the clay at a depth of 6.45m below ground level (bgl),
- WS02 was terminated in the clay at a depth of 6.45m bgl,

Water was encountered at approximately 4.5m bgl in both WS01 and WS02 during the drilling program. It should be noted that this report does not include post fieldwork groundwater monitoring. Given the depth of the proposed development it is considered unlikely that significant groundwater volumes will be encountered during the construction works. The exact location of the buried river channel, shown on the old OS maps as being directly to the west of the proposed development, was not identified by the site investigation it is recommended that allowance be made for the excavation of a trial trench on the site boundary at the commencement of the construction works.

With regard to foundations the made ground will be an unsuitable founding strata. If traditional foundations are to be employed then a bearing capacity of 60kN/m² should be employed for design purposes.

The Atterberg Limits tests carried out show that the ground may be classified as clay of intermediate to high plasticity and therefore will be have a medium volume change potential. The foundation designs should account for this and the location of trees on and adjacent to the site whether they are retained or removed.

Visual and olfactory evidence where present is recorded on the exploratory hole logs within the relevant soil descriptions. Anthropogenic material recorded within the made ground included brick and concrete.

5.2 Chemical Considerations

5.2.1 Human health

The results of the chemical analysis are presented in full in Appendix 3. Given the proposed development which is a building to house a swimming pool with associated paved areas around the building it is considered that none of the results present a concern with regard to human health in relation to the end users of the development.

With regard to the short term exposure to construction workers the use of the correct PPE and provision of appropriate welfare facilities should mitigate any risk presented.

5.2.2 Potable Water Supply Pipes

Plastic pipes can be affected by the presence of contamination leading to stress cracking and or permeation. Following an initial screen as set out in the table below the results indicate the near surface soils are suitable for plastic water supply pipes. If water supply pipes are required as part of the works early consultation with the local water supplier is recommended in order to confirm their acceptance of these findings.

5.2.3 Buried Concrete

The presence of sulphate can have a deleterious effect on concrete. Given the results of the pH tests (6.58 to 8.6) and sulphate tests (<0.01 - 0.0549 g/l), the soils tested in WS01 and WS02 are classified as DS-1 for concrete design.

5.2.4 Classification of Arising's for Disposal to Landfill

The two waste acceptance criteria (WAC) tests undertaken on samples indicate that the arisings from the excavation works will be suitable for disposal to an inert landfill. Similarly, natural soils free from the impact of the overlying made ground or from historic spillages of contaminants should classify as listed inert. The results of the WAC tests should be made available to all interested parties.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

- It is proposed to construct an indoor swimming pool at the end of the rear garden 59 Redington Road.
- The site is underlain by Head Deposits overlying the Claygate Member (clay and silt), with 1.50m of made ground being encountered in borehole WS01.
- For foundation design purposes a bearing capacity of 60kN/m² should be employed, assuming traditional foundations within the Head Deposits.
- Further assessment should be undertaken on the risks the trees pose to foundation depths due to the plastic nature of the clays.
- Groundwater is not expected to be encountered within the excavation works, however further investigation of the location of the buried river channel close to the western boundary of the site is recommended.
- There are no significant concerns with regard to ground contamination and the proposed development.
- It is recommended that the water supply company is contacted to confirm acceptance that plastic pipes are suitable.
- Vigilance should be maintained during groundworks in case different ground conditions from those anticipated are encountered.

FIGURES

APPENDICES

Envirocheck Report

Window Sample Logs

Results of Chemical Analyses (Undertaken by Alcontrol Laboratories)

Key Geosolutions Limited Nova House Audley Avenue Newport Shropshire TF10 7DW

Attention:

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 22 August 2016 H_KEYGEO_NPT 160810-122

Redington Road 374532

We received 3 samples on Wednesday August 10, 2016 and 2 of these samples were scheduled for analysis which was completed on Monday August 22, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

Validated

SDG:	160810-122	Location:	Redington Road	Order Number:	
Job:	H_KEYGEO_NPT-118	Customer:	Key Geosolutions Limited	Report Number:	374532
Client Reference:		Attention:		Superseded Report:	

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
13942271	WS01		0.10 - 0.30	04/08/2016
13942272	WS01		0.20 - 0.40	04/08/2016
13942273	WS02		0.10 - 0.30	04/08/2016

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG:	160810-122	Location:		F	Red	ling	gto	n Ro	oad	Order Number:
Job: Client Reference:	H_KEYGEO_NPT-118	Custome Attention	r: :	k	(ey	G	eos	solu	tions Limited	Report Number: Superseded Report:
SOLID										· · ·
Results Legend	Lab Sample	No(s)			0	1394			1394	
						02722			12273	
X Test						-				
No Determinat	tion									
	Custom	er			:	٤		:	<	
	Sample Refe	erence			-	SO1			S02	
			-			_			-	
	AGS Refer	onco								
	A00 Nelei	ence								
						-			0	
	Denth (r	n)			i	20			. 10 -	
	Deptil (i	,			0.10	0 40			0.30	
				25	40	2	C Z	24	6	
			≓	0g Ar			Ug Ar	log Ti		
	Contain	er	Ω UT	nber	JP (V		nber	Jb (A	C (AI	
			Φ	Jar (/		F21	Jar (/	LE21	_E210	
ANC at pH4 and ANC at pH	16 All	NDPs: 0	-	ŕ	ĐS	<u>,</u>	ŕ	- ± :	5	
		Tests: 2	_	v				,	_	
Anions by Kone (soil)	All		_	^		_	^	`	_	
	7.01	Tests: 2	_	v					_	
Aniono hy Kono (u)				X			,	•	_	
Anions by Kone (w)	All	Tests: 2							_	
			X			2	x			
Asbestos ID in Solid Samp	les All	NDPs: 0 Tests: 2								
					x			x		
Boron Water Soluble	All	NDPs: 0 Tests: 2								
				X			>	(
CEN Readings	All	NDPs: 0 Tests: 2								
		10010.2	X			2	x			
Cyanide Comp/Free/Total/Thiocyan	All	NDPs: 0								
		Tests. 2			x			x		
Dissolved Metals by ICP-M	S All	NDPs: 0							-	
		lests: 2	x			2	x			
Dissolved Organic/Inorgani	c All	NDPs: 0							-	
Carbon		Tests: 2	х			2	x		-	
EPH CWG (Aliphatic) GC (S) All	NDPs: 0							-	
		Tests: 2		x			>	(-	
EPH CWG (Aromatic) GC ((S) All	NDPs: 0	-						-	
		Tests: 2	-	x			>	<mark>(</mark>	-	
Fluoride	All	NDPs: 0	-						-	
		Tests: 2	¥			,	x		_	
GRO by GC-FID (S)	All	NDPs: 0	Ê			_	^		_	
		Tests: 2	_		,	~			v	
Loss on Ignition in soils	ΔΙΙ	NDDer 0	_		-	^			<u>^</u>	
		Tests: 2					_		_	
Manua				X			`	•	_	
wercury Dissolved	All	NDPs: 0 Tests: 2								
			X			2	X			

ALcontrol Laboratories

374532

SDG: 160810- Job: H_KEY0 Client Reference:	160810-122 H_KEYGEO_NPT-118 t Reference:					ingt Ge	ton	Roa olutio
SOLID			Γ					
Results Legend	Lab Sample	No(s)			1394	1001		1394
V Test		- (-)			2177	2242		2273
Test								
No Determination Possible								
	Custom	ier			VV			X
	Sample Refe	erence			00	3		602
			┢					
	AGS Refer	rence						
					0.2	2		.0
	Depth (r	m)			- 0	5		10 - 0.
					Ę	5		30
				2500	400	802	2500	400g
			1kg	g Amt	g Tub		g Amt	g Tub
	Contain	ier	TUB	er Ja	ALE	a TB	ber Ja	ALE
				ır (AL	-214)	1420	ır (AL	<u>:215)</u> :214)
Metals in solid samples by OES	All	NDPs: 0						
		lests: 2		x			x	
Mineral Oil	All	NDPs: 0						
		Tests: 2	F	x			x	
NO3, NO2 and TON by KONE (s)	All	NDPs: 0	╞					
		Tests: 2	F	x			x	
PAH by GCMS	All	NDPs: 0	╞					
		Tests: 2	F	x			x	
PAH Value of soil	All	NDPs: 0	-	~				
		Tests: 2	ŀ	v			v	
PCBs by GCMS	All		-	^			^	
		Tests: 2		×			v	
nH		NDD-		*			×	
pri	All	Tests: 2						
					X			X
Phenols by HPLC (W)	All	NDPs: 0 Tests: 2						
			X			X		
Sample description	All	NDPs: 0 Tests: 2						
		100101 E		X			X	
Total Dissolved Solids	All	NDPs: 0						
		10313. 2	X			X		
Total Organic Carbon	All	NDPs: 0	ſ					
		Tests: 2		x			X	
TPH CWG GC (S)	All	NDPs: 0	╞					
		Tests: 2	\vdash	x			X	
				^			^	

ALcontrol Laboratories

374532

CERTIFICATE OF ANALYSIS

Validated

SDG: 160810-122 Job: H_KEYGEO_NPT-118 Client Reference:	Location: Redington Road Customer: Key Geosolutions Limited Attention:	Order Number: Report Number: 374532 Superseded Report:
---	--	--

Sample Descriptions

	Grain Sizes																	
very fine <0.0		063mm	fine	0.06	63mm - 0.1mm	me	edium	0.1mm	- 2mm	coarse 2mm - 10		0mm very coars		rse	>10mm	ı		
Lab Sample No(s)		Custom	er Sample R	ef.	Depth (m)		Col	lour	Description		Grain size		size Inclu		Inc	lusions 2		
	1394227	2		WS01		0.20 - 0.40 Dark Brown		Sandy Clay		0.063	- 2.00 mm	Sto	ones	Ve	getation			
13942273			WS02		0.10 - 0.30		Dark Brown L		Loamy Sand		nd 0.063 - 2.00 mm		Stones		l	Fibres		

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

Validated

** % recovery of the surrogate standa	rd to		Sample Time						
check the efficiency of the method.	The		Date Received	10/08/2016		10/08/2016			
results of individual compounds wi samples aren't corrected for the rec	thin covery		SDG Ref	160810-122		160810-122			
(F) Trigger breach confirmed		La	b Sample No.(s)	13942272		13942273			
1-5&+§@ Sample deviation (see appendix)			AGS Reference						
Component	LOD/U	nits	Method				_		
Moisture Content Ratio (% of as received sample)	%		PM024	15		12			
Loss on ignition	<0.7	%	TM018	5.25	м	7.43	м		
Mineral oil >C10-C40	<1 mg	g/kg	TM061	38.6		29.8			
Mineral Oil Surrogate % recovery**	%		TM061	88.9		98.8			
Organic Carbon, Total	<0.2	%	TM132	2.14	м	1.02	м		
Soil Organic Matter (SOM)	<0.35	5 %	TM132	3.69	#	1.76	#		
рН	1 pł Unit	⊣ s	TM133	6.58	м	7.31	м		
Cyanide, Total	<1 mợ	g/kg	TM153	<1	м	<1	м		
PCB congener 28	<3 µg	J/kg	TM168	<3	м	<3	м		
PCB congener 52	<3 µg	j/kg	TM168	<3	м	<3	м		
PCB congener 101	<3 µg	J/kg	TM168	<3	м	<3	м		
PCB congener 118	<3 µg	J/kg	TM168	<3	м	<3	м		
PCB congener 138	<3 µg	J/kg	TM168	<3	м	<3	м		
PCB congener 153	<3 µg	J/kg	TM168	<3	м	<3	м		
PCB congener 180	<3 µg	J/kg	TM168	<3	м	<3	м		
Sum of detected PCB 7 Congeners	<21 µ	g/kg	TM168	<21		<21			
Arsenic	<0.0 mg/k	6 .g	TM181	10.2	м	10.3	м		
Barium	<0.0 mg/k	6 (g	TM181	151	#	38.3	#		
Beryllium	<0.0 mg/k)1 (g	TM181	0.818	м	0.563	м		
Cadmium	<0.0 mg/k)2 .g	TM181	0.281	м	0.279	м		
Chromium	<0.9 mg/k	9 .g	TM181	29.9	м	25.5	м		
Copper	<1.4 mg/k	4 .g	TM181	24.3	м	22.4	м		
Lead	<0.1 mg/k	7 .g	TM181	130	м	80.3	м		
Mercury	<0.1 mg/k	4 .g	TM181	<0.14	м	<0.14	м		
Nickel	<0.2 mg/k	2 2 3g	TM181	15.2	м	12.5	м		
Selenium	<1 mg	g/kg	TM181	<1	#	<1	#		
Vanadium	<0.2 mg/k	2 .g	TM181	46.4	#	40.5	#		
Zinc	<1.9 mg/k	9 .g	TM181	72.3	м	56.8	м		
ANC @ pH 4	<0.0 mol/k)3 (g	TM182	0.0916		0.115			
ANC @ pH 6	<0.0 mol/k)3 (g	TM182	0.0398		0.0413			
Polyaromatic hydrocarbons, Total 17	<1(mg/k) ig	TM213	21.1		<10			
Boron, water soluble	<1 mg	g/kg	TM222	<1	м	<1	м		
							_	 	

C

CERTIFICATE OF ANALYSIS

Validated

Results Legend	Cu	stomer Sample R	WS01	WS02		
M mCERTS accredited.						
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.20 - 0.40	0.10 - 0.30		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	04/08/2016	04/08/2016		
** % recovery of the surrogate standar check the efficiency of the method.	rd to The	Sample Time	10/08/2016	10/08/2016		
results of individual compounds wit	thin	SDG Ref	160810-122	160810-122		
(F) Trigger breach confirmed	L	ab Sample No.(s)	13942272	13942273		
Component	LOD/Units	Method				
Water Soluble Sulphate as SO4 2:1 Extract	<0.004 g/l	TM243	0.0451 M	0.0549 M		
Chloride 2:1 water/soil extract BRE	<0.0025 g/l	TM243	0.0086 M	0.0074 M		
Nitrate as NO3, 2:1 water soluble (BRE)	<0.0003 g/l	TM243	0.00244	0.00785		
		1				

ALcontrol Labor	atories		CER		F ANALYSI	6		Validated
SDG: 1608 Job: H_KI Client Reference: 1608	10-122 EYGEO_NF	PT-118	Location: Customer: Attention:	Redington Road Key Geosolutions	Limited	Order Number: Report Number: Superseded Repor	374532 t:	
PAH by GCMS								
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample. tot.unfitt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate stand check the efficiency of the methoc results of individual compounds was samples aren't corrected for the re (F) Tigger breach confirmed 1-5&\$\$ Sample deviation (see appendix)	lard to 1. The vithin scovery	Customer Sample R Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	WS01 0.20 - 0.40 Soli/Solid 04/08/2016 10/08/2016 160810-122 13942272	WS02 0.10 - 0.30 Soil/Soild 04/08/2016 10/08/2016 160810-122 13942273				
Component Nanhthalene-d8 %	LOD/Unit	s Method TM218	88.3	00				
recovery**	70	1101210	00.0	55				
Acenaphthene-d10 % recovery**	%	TM218	91.7	102				
Phenanthrene-d10 % recovery**	%	TM218	92.5	102				
Chrysene-d12 % recovery**	%	TM218	85.2	93.1				
Perylene-d12 % recovery**	%	TM218	94.4	106				
Naphthalene	<9 µg/k	g TM218	321	15 M	М			
Acenaphthylene	<12 µg/ł	(g TM218	325	20.9 M	м			
Acenaphthene	<8 µg/k	g TM218	699	9.61 M	М			
Fluorene	<10 µg/k	(g) TM218	797	<10 M	М			
Phenanthrene	<15 µg/k	<g td="" tm218<=""><td>8800</td><td>170 M</td><td>М</td><td></td><td></td><td></td></g>	8800	170 M	М			
Anthracene	<16 µg/ŀ	<g td="" tm218<=""><td>2480</td><td>41 M</td><td>М</td><td></td><td></td><td></td></g>	2480	41 M	М			
Fluoranthene	<17 µg/ŀ	<g td="" tm218<=""><td>11500</td><td>438 M</td><td>М</td><td></td><td></td><td></td></g>	11500	438 M	М			
Pyrene	<15 µg/ł	<g td="" tm218<=""><td>8760</td><td>379 M</td><td>М</td><td></td><td></td><td></td></g>	8760	379 M	М			
Benz(a)anthracene	<14 µg/ŀ	kg TM218	4550	209 M	М			
Chrysene	<10 µg/ł	kg TM218	3640	210 M	М			
Benzo(b)fluoranthene	<15 µg/ł	kg TM218	5180	369 M	м			
Benzo(k)fluoranthene	<14 µg/k	<g td="" tm218<=""><td>1970</td><td>136 M</td><td>М</td><td></td><td></td><td></td></g>	1970	136 M	М			
Benzo(a)pyrene	<15 µg/k	kg TM218	4340	250 M	м			
Indeno(1,2,3-cd)pyrene	<18 µg/ł	kg TM218	2150	158 M	М			
Dibenzo(a,h)anthracene	<23 µg/ł	kg TM218	647	42.4 M	м			
Benzo(g,h,i)perylene	<24 µg/ł	kg TM218	2430	206 M	м			
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	58600	2650				
	1			1	1			1

Γ

ALcontrol Labor	atories	6	CER	эт							Validated
SDG: 1608 Job: H_KE	SDG: 160810-122 Job: H_KEYGEO_NPT-118 Client Reference: Client Reference:			R	edington Road ey Geosolutions	s Lim	ited	Order Number: Report Numbe	r:	374532	
			Attention.					oupersedent			
Results Legend		Customer Sample	R WS01		WS02						
H ISUT/U2 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.fiit Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcortexted text		Depth (r Sample Ty Date Sample	m) 0.20 - 0.40 pe Soil/Solid		0.10 - 0.30 Soil/Solid 04/08/2016						
 ** % recovery of the surrogate stands check the efficiency of the method results of individual compounds w samples aren't corrected for the re (E) Trigger broach confirmed. 	ard to I. The rithin covery	Sample Tir Date Receive SDG R	ed 10/08/2016 tef 160810-122 (s) 13942272		10/08/2016 160810-122 13942273						
1-5&+§@ Sample deviation (see appendix)		AGS Referen	ce.								
GRO Surrogate %	LOD/01 %	TM089	110		88						
recovery**											
GRO TOT (Moisture Corrected)	<44 µç	g/kg TM089	<44	М	<44	М					
Methyl tertiary butyl ether (MTBE)	<5 µg	/kg TM089	<5	#	<5	#					
Benzene	<10 µថ្	g/kg TM089	<10	М	<10	М					
Toluene	<2 µg	/kg TM089	<2	М	<2	М					
Ethylbenzene	<3 µg	/kg TM089	3.51	М	<3	М					
m,p-Xylene	<6 µg	/kg TM089	<6	М	<6	М					
o-Xylene	<3 µg	/kg TM089	<3	М	<3	М					
sum of detected mpo xylene by GC	<9 µg	/kg TM089	<9		<9						
sum of detected BTEX by GC	<24 µç	g/kg TM089	<24		<24						
Aliphatics >C5-C6	<10 µç	g/kg TM089	<10		<10						
Aliphatics >C6-C8	<10 µç	g/kg TM089	<10		<10						
Aliphatics >C8-C10	<10 µç	g/kg TM089	<10		<10						
Aliphatics >C10-C12	<10 µថ	g/kg TM089	<10		<10						
Aliphatics >C12-C16	<10 µg/k	0 TM173	<100		<100						
Aliphatics >C16-C21	<10 µg/k	0 TM173	<100		353						
Aliphatics >C21-C35	<10 µg/kg	0 TM173	2940		6320						
Aliphatics >C35-C44	<10 µg/kg	0 TM173	<100		263						
Total Aliphatics >C12-C44	<10 µg/kg	0 TM173	2940		6930						
Aromatics >EC5-EC7	<10 µç	g/kg TM089	<10		<10						
Aromatics >EC7-EC8	<10 µç	g/kg TM089	<10		<10						
Aromatics >EC8-EC10	<10 µç	g/kg TM089	<10		<10						
Aromatics >EC10-EC12	<10 µç	g/kg TM089	<10		<10						
Aromatics >EC12-EC16	<10 µg/k	0 TM173	266		377						
Aromatics >EC16-EC21	<10 µg/kg	0 TM173	4710		1950						
Aromatics >EC21-EC35	<10 µg/k	0 TM173	15800		18700						
Aromatics >EC35-EC44	<10 µg/k	0 TM173	4240		4520						
Aromatics >EC40-EC44	<10 µg/k	0 TM173	1510		1600						
Total Aromatics >EC12-EC44	<10 µg/k	0 TM173	25100		25500						
Total Aliphatics & Aromatics >C5-C44	<10 µg/k	0 TM173	28000		32400						

C

CERTIFICATE OF ANALYSIS

 SDG:
 160810-122
 Location:
 Redington Road
 Order Number:

 Job:
 H_KEYGEO_NPT-118
 Customer:
 Key Geosolutions Limited
 Report Number:
 374532

 Client Reference:
 Attention:
 Superseded Report:
 Superseded Report:

Asbestos Identification - Solid Samples

		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS01 0.20 - 0.40 SOLID 04/08/2016 00:00:00 13/08/2016 11:05:40 160810-122 13942272 TM048	18/08/16	Lauren Sargeant	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS02 0.10 - 0.30 SOLID 04/08/2016 00:00:00 13/08/2016 11:09:09 160810-122 13942273 TM048	18/08/16	Lauren Sargeant	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

160810-122

H_KEYGEO_NPT-118

SDG:

Job:

Client Reference:

ANC to pH 4 (mol/kg)

CERTIFICATE OF ANALYSIS

Location: Redington Road Customer: Key Geosolutions Limited Attention:

Order Number: Report Number: 374532 Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

WAC ANALYTICAL RES	REF : BS EN 12457/2		
Client Reference		Site Location	Redington Road
Mass Sample taken (kg)	0.105	Natural Moisture Content (%)	17.6
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	85
Particle Size <4mm	>95%		

Case		
SDG	160810-122	
Lab Sample Number(s)	13942272	
Sampled Date	04-Aug-2016	
Customer Sample Ref.	WS01	
Depth (m)	0.20 - 0.40	
Solid Waste Analysis	lid Waste Analysis Result	
Total Organic Carbon (%)	2.14	
Loss on Ignition (%)	5.25	
Sum of BTEX (mg/kg)	<0.024	
Sum of 7 PCBs (mg/kg)	<0.021	
Mineral Oil (mg/kg)	38.6	
PAH Sum of 17 (mg/kg)	21.1	
pH (pH Units)	6.58	
ANC to pH 6 (mol/kg)	0.0398	

Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	A2 10:1 conc ¹	leached (mg/kg)	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection	_	-	
Arsenic	0.00106	<0.00051	0.0106	<0.0051	0.5	2	25
Barium	0.0139	<0.0002	0.139	<0.002	20	100	300
Cadmium	<0.0008	<0.0008	<0.0008	<0.0008	0.04	1	5
Chromium	0.00259	<0.0012	0.0259	<0.012	0.5	10	70
Copper	0.00362	<0.00085	0.0362	<0.0085	2	50	100
Mercury Dissolved (CVAF)	0.0000129	<0.00001	0.000129	<0.0001	0.01	0.2	2
Molybdenum	<0.00062	<0.00062	<0.0062	<0.0062	0.5	10	30
Nickel	0.0013	<0.00044	0.013	<0.0044	0.4	10	40
Lead	0.00238	<0.0001	0.0238	<0.001	0.5	10	50
Antimony	0.000296	<0.00016	0.00296	<0.0016	0.06	0.7	5
Selenium	<0.00081	<0.00081	<0.0081	<0.0081	0.1	0.5	7
Zinc	0.00428	<0.0013	0.0428	<0.013	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	15.5	<5	155	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	4.22	<3	42.2	<30	500	800	1000

Leach Test Information

Date Prepared	15-Aug-2016
pH (pH Units)	7.98
Conductivity (µS/cm)	17.00
Temperature (°C)	18.30
Volume Leachant (Litres)	0.884

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

0.0916

Mcerts Certification does not apply to leachates

22/08/2016 16:22:22

160810-122

H_KEYGEO_NPT-118

SDG:

Job:

pH (pH Units)

Client Reference:

CERTIFICATE OF ANALYSIS

Location: Redington Road Customer: Key Geosolutions Limited Attention: Order Number: Report Number: 374532 Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

REF : BS EN 12457/2

Client Reference		Site Location	Redington Road
Mass Sample taken (kg)	0.102	Natural Moisture Content (%)	13.6
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	88
Particle Size <4mm	>95%		

Case Landfill Waste Acceptance **Criteria Limits** SDG 160810-122 13942273 Lab Sample Number(s) Stable Sampled Date 04-Aug-2016 Non-reactive Inert Waste Hazardous **Customer Sample Ref.** WS02 Hazardous Waste Landfill Waste Landfill in Non-Depth (m) 0.10 - 0.30 Hazardous Landfill Result **Solid Waste Analysis** 1.02 3 5 Total Organic Carbon (%) 7.43 Loss on Ignition (%) 10 Sum of BTEX (mg/kg) <0.024 6 Sum of 7 PCBs (mg/kg) <0.021 1 Mineral Oil (mg/kg) 29.8 500 -PAH Sum of 17 (mg/kg) <10 100

ANC to pH 6 (mol/kg)	0.0413				-	-	-
ANC to pH 4 (mol/kg)	0.115				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in	10:1 eluate (mg/l)	A 2 10:1 conc	ⁿ leached (mg/kg)	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	0.000747	<0.00051	0.00747	<0.0051	0.5	2	25
Barium	0.00336	<0.0002	0.0336	<0.002	20	100	300
Cadmium	<0.0008	<0.0008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.0012	<0.0012	<0.012	<0.012	0.5	10	70
Copper	0.0051	<0.00085	0.051	<0.0085	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.000885	<0.00062	0.00885	<0.0062	0.5	10	30
Nickel	0.00105	<0.00044	0.0105	<0.0044	0.4	10	40
Lead	0.00113	<0.0001	0.0113	<0.001	0.5	10	50
Antimony	0.000622	<0.00016	0.00622	<0.0016	0.06	0.7	5
Selenium	<0.00081	<0.00081	<0.0081	<0.0081	0.1	0.5	7
Zinc	0.00295	<0.0013	0.0295	<0.013	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	30	<5	300	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	8.45	<3	84.5	<30	500	800	1000

Leach Test Information

Date Prepared	15-Aug-2016
pH (pH Units)	7.68
Conductivity (µS/cm)	34.40
Temperature (°C)	18.70
Volume Leachant (Litres)	0.888

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

7.31

Mcerts Certification does not apply to leachates

Validated

SDG:	160810-122	Location:	Redington Road	Order Number:	
Job:	H_KEYGEO_NPT-118	Customer:	Key Geosolutions Limited	Report Number:	374532
Client Reference:		Attention:		Superseded Report:	

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
PM001		Preparation of Samples for Metals Analysis		
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step		
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition		
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID		
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546		
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer		
TM243		Mixed Anions In Soils By Kone		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

C

CERTIFICATE OF ANALYSIS

374532 Superseded Report:

Test Completion Dates

Lab Sample No(s)	13942272	13942273
Customer Sample Ref.	WS01	WS02
AGS Ref.		
Depth	0.20 - 0.40	0.10 - 0.30
Туре	SOLID	SOLID
ANC at pH4 and ANC at pH 6	18-Aug-2016	18-Aug-2016
Anions by Kone (soil)	19-Aug-2016	19-Aug-2016
Anions by Kone (w)	17-Aug-2016	17-Aug-2016
Asbestos ID in Solid Samples	19-Aug-2016	19-Aug-2016
Boron Water Soluble	19-Aug-2016	19-Aug-2016
CEN 10:1 Leachate (1 Stage)	15-Aug-2016	15-Aug-2016
CEN Readings	17-Aug-2016	17-Aug-2016
Cyanide Comp/Free/Total/Thiocyanate	17-Aug-2016	17-Aug-2016
Dissolved Metals by ICP-MS	18-Aug-2016	18-Aug-2016
Dissolved Organic/Inorganic Carbon	18-Aug-2016	18-Aug-2016
EPH CWG (Aliphatic) GC (S)	19-Aug-2016	19-Aug-2016
EPH CWG (Aromatic) GC (S)	19-Aug-2016	19-Aug-2016
Fluoride	18-Aug-2016	18-Aug-2016
GRO by GC-FID (S)	18-Aug-2016	18-Aug-2016
Loss on Ignition in soils	22-Aug-2016	22-Aug-2016
Mercury Dissolved	18-Aug-2016	18-Aug-2016
Metals in solid samples by OES	18-Aug-2016	18-Aug-2016
Mineral Oil	18-Aug-2016	18-Aug-2016
NO3, NO2 and TON by KONE (s)	19-Aug-2016	19-Aug-2016
PAH by GCMS	19-Aug-2016	19-Aug-2016
PAH Value of soil	16-Aug-2016	16-Aug-2016
PCBs by GCMS	18-Aug-2016	18-Aug-2016
рН	18-Aug-2016	18-Aug-2016
Phenols by HPLC (W)	18-Aug-2016	18-Aug-2016
Sample description	13-Aug-2016	13-Aug-2016
Total Dissolved Solids	17-Aug-2016	17-Aug-2016
Total Organic Carbon	19-Aug-2016	19-Aug-2016
TPH CWG GC (S)	19-Aug-2016	19-Aug-2016

SDG:	160810-122	Location:	Redington Road	Order Number:	
Job:	H_KEYGEO_NPT-118	Customer:	Key Geosolutions Limited	Report Number:	374532
Client Reference:		Attention:	Ruby	Superseded Report:	

Appendix

ALcontrol Laboratories

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained will be retained of 6 months after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect .

14. **Product analyses** - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill /made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.
	4

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Anoste	BrownAsbestos
Oroádate	Blue Asbestos
Fibrous Adindite	-
Fibrous Anthophylite	-
Fibrous Trendile	-

Visual Estimation Of Fibre Content

 $\mbox{Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.$

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Results of Physical & Chemical Analyses (Undertaken by Terra Tek Laboratories)

Key GeoSolutions Limited

Г

Suite 6 Nova House Audley Avenue Enterprise Park Newport Shropshire, TF10 7DW For the attention of Ruby Westnedge

> Report No: B20218 Issue No 01

> > Т

LABORATORY TEST REPORT

Project Nam	ie	REDINGTON ROAD							
Project Num	ber	B20218		Date samples received		10/08/2016			
Your Ref				Date written instructions rece	ived	10/08/2016			
Purchase O	rder	16-59		Date testing commenced		10/08/2016			
		Please find er	nclosed the res	sults as summarised be	low				
Figure / Table	Test Quantity		ſ	Description		ISO 17025 Accredited			
1	~	Summary of Geoteo	hnical Tests			See Table			
2	3	BRE Suite - Soil				See Report			
3 - 5	3	Atterberg Limit				Yes			
Арр Х Арр Ү	App X ~ Sample Descriptions - Soil								
Remarks :									
Issued by :	Stephen Land	gman	Date of Issue :	24/08/2016	Key to symbols u	sed in this report			
5		51			S/C : Testing wa	s sub-contracted			
Approved Signat	ories :	24/08/2016							
G Wilson (JMD/Laboratories Director), S Langman (Laboratory Coordinator)									
Unless we are notified to the contrary, samples will be disposed after a period of one month from this date. The results reported relate to samples received in the laboratory only. All results contained in this report are provisional unless signed by an approved signatory This report should not be reproduced except in full without the written approval of the laboratory. Under multisite accreditation the testing contained in this report may have been performed at another Terra Tek laboratory. The enclosed results remain the property of Terra Tek Limited and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation. Feedback on the this report may be left via our website www.terratek.co.uk/contact-us									

Moor Lane, Witton, Birmingham, B6 7HG Tel: +44 (0)121 344 4838 Fax: +44 (0)121 356 3599 birmingham@terratek.co.uk

www.terratek.co.uk Terra Tek Ltd is registered in Scotland No. 121594 Offices in Airdrie, Birmingham, Belfast and Chesham

TERF		EK ^s	ite REDINGTON ROAD												Co	ntract N	• B20218	
SITE INV	ESTIGATION AND LABORATO	RY SERVICES C	lient		Key GeoSolutions Limited													
		E	ngineer															
5	Sample Identifi	cation						Atte	erberg li	mits			Der	nsity	T	otal Stre	SS	
Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Engineering Sample Description	Moisture Content	Liquid Limit	Plastic Limit	Plasticity Index	Percentage retained 425µm	Atterberg Classification	Particle Density	Bulk	Dry	Shear Strength	Apparent Cohesion C	Angle of Shearing Resistance Phi	Other Tests
14/004	4 00 4 00			000040	Drawn silts OAND	%	%	%	0.4	%	011	Mg/m³	Mg/m³	Mg/m³	kPa	kPa		
WS01	5.90-6.00		D	298211	Brown sandy CLAY with occasional	28	47	21	26	0	CI							BRE SD1 Suite
WS02	1.00-1.50		т	298212	Brown SAND	26	60	22	38	0	СН							BRE SD1 Suite
Natas				 				Toot -	ataila arr	aiyan ca	the Nict		aroton / Dr		laboat			
of	UKAS accreditat	ion	ire outside t	ne scope	UKAS Accredited Test Y/N	Y	Y	Y	Y	yiven on Y		Y	Y	Y	Y	Y	Y	sheets
Originator	Approve 5. Langue 24/08/20	ed 16	SUMMARY OF GEOTECHNICAL TESTS									T	Figure 1 Sheet 1 of 1					

1121 - Geotechnical Test Summary - B20218.xls Version 074 - 14/11/2013

Lab Project No B20218 : 24/08/2016 17:59:13 Moor Lane, Witton, Birmingham, B6 7HG

	TERR	RA TI	EK ^s	ite	REDINGTON ROAD													Co	ntract No	• B2	20218
1 5 :	SITE INVE	ESTIGATION AND LABORATOR	RY SERVICES C	lient		Key Ge	eoSolutio	ns Limi	ted												
-			E	ngineer															1		
	S	Sample Identifi	cation	1		e as	ole in		le)	luble	(as										
	Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Sulphate (acid soluble SO4)	Sulphate (water solub 2:1 extract) as SO4	Hd	Chloride (water solub	Magnesium (water so in 2:1 extract)	Ammoniacal Nitrogen N)	Nitrate	Total Sulphur								
						%	g/l		%	mg/l	mg/kg	mg/kg	%								
	WS01	1.00-1.20		Т	298210	<0.02	<0.01	8.6	<0.01	25	<1.0	<1	<0.05								
	WS01	5.90-6.00		D	298211	0.08	0.02	8.4	<0.01	23	<1.0	<1	<0.05								
	WS02	1.00-1.50		т	298212	0.10	<0.01	8.6	<0.01	19	<1.0	<1	<0.05								
			Terr	Limits of	f Detection	0.02 TP029	0.01 TP043	~ TP019	0.01 TP134	1	<1.0 TP072	1	0.05 S/C								
	Accreditation M=Mcerts U=UKAS N=No accreditation M M M M N N N N N																				
_	Originator	Checked Approve	& d							BRE	SD1	SUI	TE - SOIL						T	(Figure 2
	TGH	GH 5. Largan 24/08/2016												-	Sheet 1 of 1						

Lab Project No B20218 : 24/08/2016 18:01:28 Moor Lane, Witton, Birmingham, B6 7HG

Version 051 - 08/11/2013 0 - 11 PI WS01 01 00 T - B20218-298210 xls · Samula ID 298210

Version 051 - 08/11/2013

Version 051 - 08/11/2013

218 01.xls	TERF	RA TI	EK	Site	REDING	GTON ROA	D		Contract No	B20218
- B20	SITE INVE	ESTIGATION AND LABORATO	RY SERVICES	Client	Key Geo	Solutions Lir	nited			
ptions				Engineer						
8050 - Descri	Exploratory Hole	Depth m	Samp Ref	le Sample Type	Lab Sample ID	Date Sampled	Temperature of cool box on receipt °C	Des	cription	
	WS01	1.00-1.20		т	298210	04/08/16	10.2	Brown silty SAND		
	WS01	5.90-6.00		D	298211	04/08/16	10.2	Brown sandy CLAY with occasi	onal fine gravel.	
016 17:59:38	WS02	1.00-1.50 1. Where a date 2. Temperatures 3. Samples area	of samp	T Juing is not pro	298212	04/08/16	10.2	Brown SAND	rried out.	
B20218:24/0		4. Results repor		ampies classif	ileu as devi	aung may be o	comprom	ISEU.		
Project No	Originator	Checked Approve	& ed		LABC	RATOR	Y DE	SCRIPTIONS	T _k	Appendix X
Lab	IGH	> Langue 24/08/201	6							Sheet 1 of 1

Version 017 - 22/01/2015

8 01.xls	TEDE) A TEV	Site	REDING	GTON ROAD	Contract N	• B202	218
B2021		ESTIGATION AND LABORATORY SERVICE	^s Client	Kev Geo	Solutions Limited			
Soil -			Engineer					
Fest Methods	Method Code	Ref	erence		Description of Method	ISO17025 Accredited	MCERTS Accredited	Wet/Dry Sample Tested
8100 - 7	GP001	BS1377, Part 3, 1990: 5 Purposes.	Soils for Civil E	ngineering	Preparation of soil samples for chemical analysis	Yes	Yes	N/A
	GP012	BS EN 12457-3: Chara Compliance test for lear materials and sludges (cterisation of W ching of granula two-stage batc	/aste - ar waste h test)	Preparation of soil samples for two-stage leachate test			Dry
	TP019	BS1377, Part 3, 1990: 9 Purposes.	Soils for Civil E	ngineering	Determination of pH in 2.5:1 water/soil extract using pH meter.	Yes	Yes	Dry
	TP029	BS1377, Part 3, 1990: \$ Purposes.	Soils for Civil E	ngineering	Determination of acid soluble sulfate by gravimetry.	Yes	Yes	Dry
	TP032	MAFF Book 427: The A Materials: Method 8	Analysis of Agri	cultural	Determination of water soluble boron by colorimetry	Yes		Dry
	TP033	APHA/AWWA, 19th ed	ition: Method 5	520E	Determination of Toluene Extractable Matter by soxhlet extraction.	Yes		Dry
	TP040	APHA/AWWA, 19th ed	ition: Method 3	500Cr-D	Determination of hexavalent chromium by colorimetry.	Yes		Dry
	TP041	BS1377, Part 3, 1990: \$ Purposes.	Soils for Civil E	ngineering	Determination of organic matter by titrimetry.	Yes		Dry
	TP042	BS1377, Part 3, 1990: 5 Purposes.	Soils for Civil E	ngineering	Determination of loss on ignition at 50-440°C by gravimetry	Yes	Yes	Dry
	TP043	BS1377, Part 3, 1990: \$ Purposes.	Soils for Civil E	ngineering	Determination of water soluble sulfate in 2:1 water/soil extract	Yes	Yes	Dry
	TP045	GACHAMJA A.M. Chro 1992 9-11 (modified)	matography an	d Analysis:	Determination of polyaromatic hydrocarbons extractable in dichloromethane, by GC/MS	Yes	Yes	Dry
	TP046	MEWAM method: Pher 4-aminoantipyrine meth	nols in water an nod	d Effluents:	Determination of monohydric phenols by steam distillation/colorimetry	Yes	Yes	Dry
	TP047	MEWAM method: Cyar	ide in Waters e	etc	Determination of Free Cyanide by steam distillation/colorimetry	Yes		Dry
	TP048	MEWAM method: Cyar	ide in Waters e	etc	Determination of total cyanide by steam distillation/colorimetry.	Yes	Yes	Wet
	TP049	MEWAM method: Cyar	ide in Waters e	etc	Determination of complex cyanide by calculation	Yes		Dry
	TP050	MEWAM method: Dete ,1985	rmination of Th	iocyanate	Determination of thiocyanate by colorimetry	Yes	Yes	Dry
	TP051	USEPA Method 9030B			Determination of acid soluble sulfides by steam distillation/colorimetry.	Yes	Yes	Dry
	TP052	BS1881: Part 324, 1988	8: Testing Cond	crete	Determination of elemental sulfur by soxhlet extraction and titrimetry.	Yes		Dry
	TP067	TNRCC Method 1005: 2	2001 (modified))	Determination of pentane/acetone extractable petroleum hydrocarbons (C8 - C40) by GC/FID	Yes	Yes	Wet
59:42	TP072	In-house documented n	nethod		Determination of ammoniacal nitrogen by colorimetry.			Dry
320218 : 24/08/2016 17:	Notes 1. 7 8. 7 7 req 4. 7 5. V the liste	Terra Tek (Birmingham) are terials, ie gravel, are not ac Results are expressed on a The laboratory removes any juest. The laboratory records the Where a parameter cannot quality of subcontracted te ed within the Terra Tek App	MCERTS accred coredited where th dry-weight basis y material >2mm date of analysis o be determined in sts and the perfo proved Subcontra	dited for clay, ley comprise i (samples drie prior to analys f each param house it is ou rmance of the ctors list, which	sand & loam matrix types only, where they constitute the major comp the major component of the sample. ed at 30°C ± 5°C) except where stated. sis. The quantity and nature of any material removed from samples is eter. This information is available on request. Ir policy to use a UKAS/MCERTS accredited laboratory wherever pos subcontractor chosen. Where there is no known UKAS/MCERTS lat ch is subject to performance assessment, will be selected.	onent of the sam recorded and th sible. Terra Tek roratory for a par	ple. Other coars e information is a will assume res ticular paramete	e granular available on ponsibility for er, a laboratory
roject No E	Originator Checked & Approved SUMMARY OF				N-HOUSE ANALYTICAL TEST METHOD	s T	Арр	endix Y
ab Pi	N/A	N/A			(30IL)		Sho	et 1 of 2

Sheet 1 of 2

01.xls			Site RE	DING	GTON ROAD	Contract N	• B20 2	218
20218	TERE	RA TEK						
Soil - B			Client Key	' Geo	Solutions Limited			
thods :	Mathad		Lingineer			18017025	MCEDTS	Wet/Dry
Test Me	Code	Ref	erence		Description of Method	Accredited	Accredited	Sample Tested
8100 -	TP073	In-house documented n	nethod		Determination of anionic detergent (MBAS) by colorimetry			Dry
	TP074	In-house documented n	nethod		Determination of water soluble fluoride by ion selective electrode			Dry
	TP098	BS1377, Part 3, 1990: \$ Purposes.	Soils for Civil Engine	ering	Determination of acid soluble chloride by titrimetry			Dry
	TP099	9 BS1377, Part 3, 1990: Soils for Civil Engineering Purposes.		ering	Determination of water soluble chloride by titrimetry	Yes	Yes	Dry
	TP100	Wisconsin DNR Modifie for Determining Gasolin	ed GRO method, Met le Range Organics	thod	Determination of Volatile Petroleum Hydrocarbons/GRO.	Yes	Yes	Wet
	TP110	USEPA Methods 8082A	A & 3665A		Determination of Total & Speciated 7 PCB Congeners by GC/MS SIM	Yes	Yes	Wet
	TP114	BS1377, Part 3, 1990: S Purposes.	Soils for Civil Engine	ering	Determination of carbonate in soil (rapid titration method)			Dry
	TP126	TNRCC Method 1006 (r	modified)		Extracted petroleum hydrocarbons from TP067 split into aromatic and aliphatic fractions. Analysed by GC/FID.	Yes		Wet
	TP134	In-house documented n	nethod		Determination of water soluble chloride by titrimetry	Yes	Yes	Dry
	TP135	USEPA Methods 8100 In-house method TP045	& 8270D. 5		Determination of polyaromatic hydrocarbons extractable in dichloromethane, by GC/MS (with concentration stage)			Dry
	TP145	USEPA Methods 35500	C & 8270D		Determination of Semi-Volatile Organic Compounds by GC/MS	Yes	Yes	Wet
	TP147	USEPA Methods 8082A	A & 3665A		Determination of total & speciated WHO 12 PCB Congeners by GC/MS SIM.			Wet
	TP150	USEPA Methods 8081E	3 & 8141B		Determination of pesticides and herbicides in soil by GC/MS SIM			Dry
	TP152	USEPA Method 556			Determination of carbonyls in soil by GC/MS.			Wet
	TP154	USEPA Method 5021. V GRO method	Wisconsin DNR mod	ified	Determination of volatiles in soil by GC/MS headspace	Yes	Selected	Wet
	TP158	USEPA Method 1671			Determination of glycols in soil by GC/FID DI			Wet
59:42								
16 17:5	Notes 1.	Terra Tek (Birmingham) are aterials, ie gravel, are not ac	MCERTS accredited fo credited where they con	or clay, nprise	 sand & loam matrix types only, where they constitute the major comp the major component of the sample. 	onent of the sam	ple. Other coars	se granular
/08/20	 Results are expressed on a dry-weight basis (samples dr 3. The laboratory removes any material >2mm prior to analy request. The laboratory records the date of analysis of each parar 5. Where a parameter cannot be determined in house it is of the quality of subcontracted tests and the performance of the listed within the Terra Tek Approved Subcontractors list, who 				ad at 30° C \pm 5°C) except where stated. sis. The quantity and nature of any material removed from samples is	recorded and th	e information is a	available on
320218:24					eter. This information is available on request. Ir policy to use a UKAS/MCERTS accredited laboratory wherever pos subcontractor chosen. Where there is no known UKAS/MCERTS lab ch is subject to performance assessment, will be selected.	sible. Terra Tek oratory for a par	will assume res ticular paramete	ponsibility for er, a laboratory
oject No I	Originator Checked & Approved SUMMARY OF IN			N-HOUSE ANALYTICAL TEST METHOD	s T	Арр	endix Y	
ab Pı	N/A N/A				(50IL)		Sho	et 2 of 2