APPENDIX 5

Exploratory Hole Location Plan

100 100 100	++ 1855 100 14 14 14 14 14 14 14 14 14 14 14 14 14		+ + + + + + + + + + + + + + + + + + +	183300N + +	+ + + BS350N + + + + + + + + + + + + + + + + + + +	
EXPLORATORY HOLE Scale: 1:500@A1 Project No: PCI24991	Engineer: Rolton Group Ltd Client: Rolton Group Ltd Project: Bacton Low Rise, Gospe Drawing Title:	Head Office The Geotechnical Centre, 203 Torrington Avenue, Tile Hill, Coventry CV4 9AP				Key Bore
LOCATION PLAN Date: September 2012 File Name: Geo-PCI 24991-001(1)	el Oak, North London	Phone: 024 7669 4664 Fax: 024 7669 4664 E.mail mail@geotechnics.co.uk www.geotechnics.co.uk				ehole

APPENDIX 6

Monitoring Results

Project васто	Oject bacton low rise, gospel oak, north london								PC124991 BH1
Client ROLTO	N GROUP						Shee	et No.	1 (1 of 2)
Installation	Details								
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 10.00m 2.00 - 17 Aug	ipe 10.00m ust 2012			Diamete Cover T Ground	er ype Level	50mm Flush 42.45	lockable j m OD	protective cover
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:00 00:00:30 00:01:00	1.61	<0.1 <0.1 <0.1	<2 <2 <2 <2 <2 <2 2 </</th <th><0.1 0.2 0.2</th> <th>20.6 20.2 20.2</th> <th><1</th> <th><1</th> <th></th>	<0.1 0.2 0.2	20.6 20.2 20.2	<1	<1	
Remarks	Remarks المجاهرة								

Remarks	3
---------	---

Project bacto	ON LOW RISE,	GOSPEL OAK, NORT	H LONDON		Project No Borehole	PC124991 BH1
Client ROLTO	ON GROUP				Sheet No.	1 (2 of 2)
Installation Installation Ty Depth to Base Filter Zone Date Installed	Details /pe standp e 10.00m 2.00 - 17 Aug	ipe 10.00m ust 2012	[(Diameter Cover Type Ground Level	50mm Flush lockab 42.45 m OD	le protective cover
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks
13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:00 00:00:30 00:01:00	1012	8.80	+1.37	-0.0	
Remarks					[
					Į	لعسسيحمدجر

- Project bacton low rise, gospel oak, north london								Project No рс12499: Borehole вн2	
	Dotoilo						Shee	et ino.	1 (1 of 2)
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp = 10.00m 2.00 - 20 Aug	ipe 10.00m ust 2012			Diamete Cover T Ground	er ype Level	50mm Flush 43.45	lockable ; m OD	protective cover
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:00 00:00:30 00:01:00 00:02:00	9.55	<0.1 <0.1 <0.1	<0.2 <2 <2	<0.1 3.8 3.8 3.8	20.6 15.1 14.6 14.6	<1	<1	
Remarks	Remarks								

er	na	rk	s

Project Bacto	N LOW RISE, (GOSPEL OAK, NORT	TH LONDON		Project No Borehole Sheet No	PC124991 BH2
Installation	Details				Sheet No.	1 (2 01 2)
Installation Ty Depth to Base Filter Zone Date Installed	/pe Standp. = 10.00m 2.00 - 20 Aug	ipe 10.00m ust 2012	C C	Diameter Cover Type Ground Level	50mm Flush lockab 43.45 m OD	le protective cover
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks
		(mBars)	(DegC)	(mBars)	(l/hr)	
13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:05 00:00:30 00:01:00 00:02:00		9.10	+2.91	-0.0	
Remarks						
						<u>eajueanies</u>

Project bacto Client rolto	N LOW RISE, N GROUP	GOSPEL OAK,	, NORTH LO	NDON			Proje Bore Shee	ect No I hole et No.	PC124991 BH3 1 (1 of 2)
Installation	Details						0.101		
Installation Ty Depth to Base Filter Zone Date Installed	/pe Standp E 5.00m 1.00 - 17 Aug	ipe 5.00m ust 2012			Diamete Cover T Ground	er ype Level	50mm Flush 43.78	lockable m OD	protective cover
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:00 00:00:30 00:01:00 00:02:00 00:03:00	3.92	<0.1 <0.1 <0.1 <0.1	<2 <2 <2 <2	<0.1 0.9 0.6 0.4 0.4	20.6 18.1 18.8 19.5 19.5	<1	<1	
Remarks								 g	

Project bacto Client rolto	N LOW RISE, N GROUP	GOSPEL OAK, NOR	TH LONDON		Project No Borehole Sheet No.	PC124991 BH3 1 (2 of 2)
Installation	Details					
Installation Ty Depth to Base Filter Zone Date Installed	/PC Standp 2 5.00m 1.00 - 17 Aug	ipe 5.00m ust 2012	[(Diameter Cover Type Ground Level	50mm Flush lockak 43.78 m OD	ble protective cover
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks
		(mBars)	(DegC)	(mBars)	(l/hr)	
13-Sep-2012	00:00:00	1012	8.20	+0.04	-0.0	
13-Sep-2012	00:00:05					
13-Sep-2012	00:00:30					
13-Sep-2012	00:01:00					
13-Sep-2012	00:02:00					
13-Sep-2012	00:03:00					
Remarks				+	·	
						يتساعد

- Project bacton low rise, gospel oak, north london Client rolton group								ect No e hole	PC124991 BH4 1 (1 of 2)
							Shee	et ino.	1 (1 of 2)
Installation Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 5.00m 2.00 - 21 Aug	ipe 5.00m ust 2012			Diamete Cover T Ground	er ype Level	50mm Flush 41.65	lockable m OD	protective cover
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:00 00:00:30 00:01:00	DRY	<0.1 <0.1 <0.1	<2 <2 <2	<0.1 1.1 1.1	20.6 19.1 19.1	<1	<1	
Remarks	Remarks								

Remarks	3
---------	---

Project bacto Client rolto	ON LOW RISE, ON GROUP	GOSPEL OAK, NORT	H LONDON		Project No Borehole Sheet No.	PC124991 BH4 1 (2 of 2)			
Installation	Details								
Installation T Depth to Bas Filter Zone Date Installed	YPE Standp E 5.00m 2.00 - 21 Aug	ipe 5.00m ust 2012	C C	Diameter Cover Type Ground Level	50mm Flush lockable protective cover 41.65 m OD				
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks			
		(mBars)	(DegC)	(mBars)	(l/hr)				
13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:00 00:00:30 00:01:00	1012	8.70	+3.53	-0.0				
Remarks					L {				

Project bacto	N LOW RISE,	GOSPEL OAK	, NORTH LO	NDON			Proje Bore	ect No hole	PC124991 BH5
Client Rolto	N GROUP						Shee	et No.	1 (1 of 2)
Installation Installation Ty Depth to Base Filter Zone Date Installed	Details /Pe Standp 2.00 - 14 Aug	ipe 5.00m ust 2012	Diameter Cover Type Ground Level			er ype Level	50mm Flush 44.75	lockable m OD	protective cover
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:00 00:00:30 00:01:00	4.66	<0.1 <0.1 <0.1	<2 <2 <2	<0.1 2.0 2.0	20.6 19.2 19.2	<1	<1	
Remarks	<u> </u>	<u> </u>					<u> </u>		

Project Bacto Client BOLTO	N LOW RISE, (N GROUP	GOSPEL OAK, NORTH	I LONDON		Project No Borehole Sheet No	PC124991 BH5 1 (2 of 2)
Installation	Details					_ (_ 0)
Installation TypestandpipeDepth to Base5.00mFilter Zone2.00 - 5.00mDate Installed14 August 2012			D C G	Diameter Cover Type Ground Level	50mm Flush lockab 44.75 m OD	le protective cover
Date	Time	Barometric Pressure (mBars)	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks
13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:05 00:00:30 00:01:00	(mBars) 1012	(DegC) 8.00	(mBars) +0.34	(l/hr) -0.0	
Bemarks						

Project васто	CT BACTON LOW RISE, GOSPEL OAK, NORTH LONDON							ect No h ole	PC124991 BH7
Client ROLTO	N GROUP						Shee	et No.	1 (1 of 2)
Installation	Details								
Installation Ty Depth to Base Filter Zone Date Installed	/PC Standp 2 5.00m 2.00 - 15 Aug	ipe 5.00m ust 2012	Diameter Cover Type Ground Level			er ype Level	50mm Flush 42.10	lockable p m OD	protective cover
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:00 00:00:05 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00	(m bgl) 1.59	<pre>(% VOL) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </pre>	(% LEL) <2 <2 <2 <2 <2 <2	(% VOL) <0.1 1.0 1.0 0.9 0.9	(% VOL) 20.6 17.1 16.9 16.9 17.1 17.1	(ppm)	(ppm) <1 188 320 379 383 373 352	

Form 003/

Remarks

Project bacto Client rolto	ON LOW RISE,	GOSPEL OAK, NORI	TH LONDON		Project No Borehole Sheet No.	PC124991 BH7 1 (2 of 2)
Installation	Details					
Installation T Depth to Bas Filter Zone Date Installed	ype standp E 5.00m 2.00 -] 15 Aug	ipe 5.00m ust 2012	C C	Diameter Cover Type Ground Level	50mm Flush lockab 42.10 m OD	le protective cover
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks
		(mBars)	(DegC)	(mBars)	(l/hr)	
13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:05 00:00:30 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00	1012	8.10	+3.31	-0.0	
Remarks						
					{	<u>sejuted mise</u>

				5					
Project васто	ON LOW RISE,	GOSPEL OAK	, NORTH LO	NDON			Proje Bore	ect No hole	PC124991 BH9
Client ROLTO	ON GROUP						Shee	et No.	1 (1 of 2)
Installation	Details								
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 5.00m - 16 Aug	ipe ust 2012	Diameter Cover Type Ground Level			er ype Level	- Flush 42.09	protective cover	
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:00 00:00:30 00:01:00 00:02:00	4.76	<0.1 <0.1 <0.1	<2 <2 <2	<0.1 0.2 0.2	20.6 20.3 20.1 20.1	<1	<1	
Remarks									
								þ	eelinteelee

Project BACTO	N LOW RISE, (GOSPEL OAK, NORTH		Project No PC124991 Borehole BH9 Sheet No. 1 (2 of 2)				
Installation	Details					1 (2 02 2)		
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp: 5.00m - 16 Aug	ipe ust 2012	C G	Diameter Cover Type Ground Level	- Flush lockab 42.09 m OD	le protective cover		
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks		
		(mBars)	(DegC)	(mBars)	(l/hr)			
13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012	00:00:00 00:00:30 00:01:00 00:02:00	1012	8.00	+0.01	-0.0			
Remarks]			
					{			

APPENDIX 7

Laboratory Test Results - Geotechnical

DATA SHEET - Laboratory Test Symbols

Classification and Strength

Symbol	C - (0 - co Plastic	Clay ontaining of tity	M rgar L I H V E	- - - - - -	Silt natter) Low Interm High Very H Extrer	nediate High nely Hig	şh				
lp	Plastic	ity Index									
%	% Ret value	ained on 4	25	μm	sieve,	shown	under Ip				
wL	Liquid	Limit									
w _P	Plastic	: Limit									
NP	Non-F	Plastic									
NAT	Sampl	e tested in	nat	ura	state						
w	Moist	ure Conter	nt								
Pa	Partic	Particle Density									
Test	Quict SS S3 MS D HV PP	k undrain Single stag Single stag 38mm dia Multistage Drained 1 Hand Van Pocket Pe	ed ge - ge - me e - est enet	tria 102 set ter. 02r	xial te 2mm di of 3 nm dian neter (l	es ts ameter. meter. (g/cm²)					
	NST	Not suita	ble	for	test						
γ_{b}	Bulk [Density									
σ_3	Triaxi	al Cell Pres	sur	е							
σ_1 - σ_3	Devia	tor Stress									
##	Exces	sive Strain									
C _u	Undra	ined Cohe	sio	n							
с	Cohe	sion Interce	ept								
φ	Angle	of Shearing	g Re	esist	ance						
Linear Shrink	Linear	[•] Shrinkage									

Consolidation

m _v	Coefficient of Volume Compressibility
c _{v50}	Coefficient of Consolidation - Log t
c _{v90}	Coefficient of Consolidation - \sqrt{t}

Rock

UF Unacceptable Failure

Chemical Analysis

Acid Soluble	Total sulphate in specimen, expressed as SO_3 %, value in brackets expressed as SO_4 %								
Water Soluble	Soluble sulphate in 2:1 water : soil extract, expressed as SO ₃ g/l, value in brackets expressed as SO ₄ g/l								
In Water	Sulphate content of groundwater, expressed as SO ₃ g/l, value in brackets expressed as SO ₄ g/l								
pН	pH value								
Organic content	Organic content expressed as a percentage of dry weight								
Chloride	Chloride Ion content expressed as a percentage of dry weight								

MCV, Compaction, CBR

,		, , .							
MCV	Moist	ure Condition Value at natural							
	moist	ure content							
MCC	Moist	ure Condition Calibration							
CCV	Chalk	Crushing Value							
Compa	ction								
Туре	2.5 4.5 V	BS 2.5 kg RammerBS 4.5 kg RammerBS Vibrating Hammer							
$\gamma_{\rm b}$	Bulk D	Density							
γ_{d}	Dry D	Dry Density							
CBR Ca	lifornia	a Bearing Ratio							
Туре	2.5	= Test on Specimen Recompacted using BS 2.5 kg Rammer							
	4.5	= As above but using							
	V	BS 4.5 kg Rammer = As above but using BS Vibrating Hammer							
	Μ	 Test on open drive mould specimen cut in field 							
	S	= Soaked Specimen							
Тор	CBR a	it top of mould							
Bottom	CBR a	it bottom of mould							
ND	None	Detected							

All tests performed in accordance with BS 1377 : Parts 1-9 : 1990 incorporating amendments where appropriate.

LABORATORY RESULTS - Classification and Strength

Project BACTON LOW RISE, GOSPEL OAK, NORTH LONDON

Samp	le				Cla	ssific	atior	า		Sti	rength				
Hole	Depth (Specimen Depth) m	Туре	Sample Ref	Description	Symbol	Iр (>425) %	w _L %	₩p %	w (p _d) %	Test	$\begin{array}{c} \gamma_b \ (\gamma_d) \end{array} Mg/m^3$	σ ₃ kN/m	σ ₁ −σ ₃ kN/m ²	с _и kN/m	C _{Avg} kN/m
BH1	2.20- 2.65 (2.20)	U	C68047	Brown slightly gravelly CLAY					23 23 23	MS	2.02 2.02 2.02	100 200 400	99 111 111	50 56 55 ##	54
BH1	8.20- 8.65 (8.20)	UT	C68050	Brown grey fissured CLAY					30 30 30	MS	1.94 1.94 1.94	100 200 400	210 233 247	105 117 123	115
BH1	11.30- 11.75 (11.30)	U	C68048	Brown grey fissured CLAY					28 28 28	MS	1.96 1.96 1.96	100 200 400	281 317 341	141 158 171	157
BH1	14.30- 14.75 (14.30)	U	C68049	Brown grey fissured CLAY with occasional shell fragments					26 26 26	MS	1.98 1.98 1.98	100 200 400	193 231 264	97 115 132	115
BH1	21.20- 21.65 (21.20)	U	C68145	Brown grey fissured CLAY					28 28 28	MS	1.92 1.92 1.92	100 200 400	179 241 326	90 121 163	125
BH1	27.40- 27.85 (27.40)	UT	C68148	Brown grey fissured CLAY					26 26 26	MS	1.99 1.99 1.99	100 200 400	303 320 364	152 160 182	165
BH2	2.70- 3.15 (2.70)	U	C68151	Brown mottled bluish grey slightly sandy CLAY					33 33 33	MS	1.90 1.90 1.90	100 200 400	109 111 111	55 55 55	55
BH2	5.70- 6.15 (5.70)	U	C68152	Brown mottled bluish grey fissured CLAY					31 31 31	MS	1.90 1.90 1.90	100 200 400	185 193 199	93 96 99	96
ВНЗ	2.70- 3.15 (2.70)	U	C68051	Brown mottled bluish grey fissured CLAY					31 31 31	MS	1.95 1.95 1.95	100 200 400	143 143	72 72	72
BH4	2.70- 3.15 (2.70)	U	C68164	Brown mottled bluish grey CLAY					34 34 34	MS	1.89 1.89 1.89	100 200 400	136 135 135	68 67 67	67
BH5	8.40- 8.70 (8.40)	UT	C68060	Dark greyish brown fissured CLAY					30 30 30	MS	1.94 1.94 1.94	100 200 400	164 124 166	82 62 83	76
BH5	11.40- 11.85 (11.40)	U	C68053	Dark greyish brown fissured CLAY					24 24 24	MS	2.00 2.00 2.00	100 200 400	258 323 358	129 161 179	156
BH5	17.50- 17.80 (17.50)	UT	C68061	Dark greyish brown laminated fissured CLAY					27 27 27	MS	2.02 2.02 2.02	100 200 400	320 305 281	160 152 141	151
BH5	23.50- 23.95 (23.50)	U	C68058	Greyish brown fissured CLAY (Strength possibly affected by fissuring in test specimen)					28 28 28	MS	1.90 1.90 1.90	100 200 400	166 163 193	83 81 96	87
Rema	rks AGS	Tests NST -	performe Not suita	d in accordance with BS 1377: 1990 ble for Test	-					-	[[920	læ		33

LABORATORY RESULTS - Classification and Strength

Project BACTON LOW RISE, GOSPEL OAK, NORTH LONDON

Samp	Sample						Classification					Strength					
Hole	Depth (Specimer Depth) m	Туре	Sample Ref	Description	Symbol	lp (>425)	w _L	wp	w (p _d) %	Test	γ_{b} (γ_{d}) Mg/m ³	σ ₃ kN/m ²	σ₁−σ₃ kN/m²	C _u kN/m	C _{Avg}		
BH5	29.50- 29.95 (29.50)	·U	C68054	Greyish brown laminated fissured CLAY (Measured strength possibly affected by fissuring in test specimen and disturbance during sampling)					28 28 28	MS	1.88 1.68 1.68	100 200 400	81 8 11	41 4 5	17		
BH6	2.70- 3.15 (2.70)	U	C68174	Brown mottled bluish grey CLAY					32 32 32	MS	1.89 1.89 1.89	100 200 400	163 164 164	82 82 82	82		
BH7	2.80- 3.25 (2.80)	U	C68064	Brown mottled bluish grey fissured CLAY					32 32 32	MS	1.87 1.87 1.87	100 200 400	183 201 206	91 101 103	98		
BH7	8.80- 9.25 (8.80)	UT	C68062	Dark greyish brown fissured CLAY					29 29 29	MS	1.98 1.98 1.98	100 200 400	216 220 223	108 110 112	110		
BH7	11.80- 12.25 (11.80)	U	C68067	Dark greyish brown fissured CLAY					28 28 28	MS	1.99 1.99 1.99	100 200 400	253 274 288	127 137 144	136		
BH7	18.00- 18.45 (18.00)	UT	C68063	Dark greyish brown fissured CLAY					28 28 28	MS	1.97 1.97 1.97	100 200 400	221 217 245	110 109 123	114		
BH8	2.20- 2.65 (2.20)	U	C68070	Brown mottled bluish grey fissured CLAY					33 33 33	MS	1.88 1.88 1.88	100 200 400	89 117 123	44 59 62	55		
BH8	5.30- 5.75 (5.30)	U	C68071	Dark greyish brown fissured CLAY					30 30 30	MS	1.87 1.87 1.87	100 200 400	156 177 190	78 88 95	87		
BH9	2.70- 3.15 (2.70)	U	C68083	Orangish brown slightly sandy CLAY					35 35 35	MS	1.87 1.87 1.87	100 200 400	123 130 133	62 65 67	65		
BH9	8.70- 9.15 (8.70)	U	C68082	Dark greyish brown fissured CLAY					29 29 29	MS	1.98 1.98 1.98	100 200 400	174 125 181	87 62 90	80		
BH9	14.70- 15.15 (14.70)	U	C68081	Dark greyish brown fissured CLAY					29 29 29	MS	1.97 1.97 1.97	100 200 400	229 225 224	115 112 112	113		
BH9	20.70- 21.15 (20.70)	·U	C68079	Dark greyish brown fissured CLAY (Measured strength possibly affected by fissuring in test specimen)					26 26 26	MS	1.98 1.98 1.98	100 200 400	245 161 258	122 81 129 ##	111		
BH9	26.70- 27.15 (26.70)	U	C68078	Dark greyish brown fissured CLAY (Measured strength possibly affected by fissuring in test specimen)					26 26 26	MS	1.84 1.84 1.84	100 200 400	173 252	87 126	107		
Rema	rks	Tests NST -	L performe Not suita	L d in accordance with BS 1377: 1990 able for Test	I	<u> </u>	<u> </u>	I			[[[lee	٢	æ		

LABORATORY RESULTS - Chemical Analysis

Project BACTON LOW RISE, GOSPEL OAK, NORTH LONDON

Sample)				S	Sulphat	е					Chlorid	le
Hole	Depth (Specimen Depth) M	Туре	Sample Ref	Description	In Acid Soluble %	Soil Water Soluble g/l	In Water g/l	pН	Organic Content %	Loss on Ignition %	In Acid Soluble %	Soil Water Soluble g/l	In Water g/l
BH1	3.90- 4.35 (3.90- 4.35)	D	C67263	Brown mottled grey fissured CLAY		2.119 (2.54)		7.72					
BH1	8.20- 8.65 (8.20- 8.65)	UT	C68050	Brown grey fissured CLAY		0.705 (0.85)		8.07					
BH1	11.30- 11.75 (11.30- 11.75)	U	C68048	Brown grey fissured CLAY		0.544 (0.65)		8.30					
BH1	14.30- 14.75 (14.30- 14.75)	U	C68049	Brown grey fissured CLAY with occasional shell fragments		0.494 (0.59)		8.53					
BH1	21.20- 21.65 (21.20- 21.65)	U	C68145	Brown grey fissured CLAY		0.425 (0.51)		8.38					
BH1	27.40- 27.85 (27.40- 27.85)	UT	C68148	Brown grey fissured CLAY		0.456 (0.55)		8.56					
ВНЗ	4.20- 4.65 (4.20- 4.65)	D	C67042	Brown mottled bluish grey fissured CLAY		2.483 (2.98)		7.69					
ВНЗ	7.20- 7.65 (7.20- 7.65)	D	C67039	Brown mottled bluish grey fissured CLAY		1.060 (1.27)		7.91					
ВНЗ	10.20- 10.65 (10.20- 10.65)	D	C67318	Greyish brown fissured CLAY		0.666 (0.80)		8.14					
BH3	13.20- 13.65 (13.20- 13.65)	D	C67313	Dark grey fissured CLAY with occasional silt partings		0.820 (0.98)		8.07					
Remar	Remarks R Tests performed in accordance with BS 1377: Part 3: 1990 Sulphate reported as SO3, results in brackets reported as SO4												

LABORATORY RESULTS - Chemical Analysis

Project BACTON LOW RISE, GOSPEL OAK, NORTH LONDON

Sample	;				Sulphate						C	Chlorid	le
Hole	Depth (Specimen Depth) M	Туре	Sample Ref	Description	In Acid Soluble %	Soil Water Soluble g/l	In Water g/l	pН	Organic Content %	Loss on Ignition %	In Soluble %	Soil Water Soluble g/l	In Water g/l
ВНЗ	16.20- 16.65 (16.20- 16.65)	D	C67314	Dark grey fissured CLAY		0.287 (0.34)		8.41					
ВНЗ	19.20- 19.65 (19.20- 19.65)	D	C67311	Dark grey fissured CLAY		0.363 (0.44)		8.56					
BH5	3.90- 4.35 (3.90- 4.35)	D	C67120	Greyish brown mottled orange brown fissured CLAY		2.365 (2.84)		7.76					
BH5	6.90- 7.35 (6.90- 7.35)	D	C67106	Greyish brown fissured CLAY		2.225 (2.67)		7.98					
BH5	11.40- 11.85 (11.40- 11.85)	U	C68053	Dark greyish brown fissured CLAY		0.632 (0.76)		8.19					
BH5	17.50- 17.80 (17.50- 17.80)	UT	C68061	Dark greyish brown laminated fissured CLAY		0.441 (0.53)		8.60					
BH5	23.50- 23.95 (23.50- 23.95)	U	C68058	Greyish brown fissured CLAY (Strength possibly affected by fissuring in test specimen)		0.398 (0.48)		8.64					
BH5	29.50- 29.95 (29.50- 29.95)	U	C68054	Greyish brown laminated fissured CLAY (Measured strength possibly affected by fissuring in test specimen and disturbance during sampling)		0.696 (0.84)		8.29					
BH7	2.80- 3.25 (2.80- 3.25)	U	C68064	Brown mottled bluish grey fissured CLAY		1.627 (1.95)		7.84					
BH7	6.25 (6.25)	D	C67099	Dark greyish brown fissured CLAY		0.714 (0.86)		8.14					
BH7	8.80- 9.25 (8.80- 9.25)	UT	C68062	Dark greyish brown fissured CLAY		0.453 (0.54)		8.31					
Remarl	Hemarks I lests performed in accordance with BS 1377: Part 3: 1990 Sulphate reported as SO3, results in brackets reported as SO4												

LABORATORY RESULTS - Chemical Analysis

Project BACTON LOW RISE, GOSPEL OAK, NORTH LONDON

Sample)				5	Sulphat	е				0	Chlorid	le
Hole	Depth (Specimen Depth) M	Туре	Sample Ref	Description	In Acid Soluble %	Soil Water Soluble g/l	In Water g/l	pН	Organic Content %	Loss on Ignition %	In Acid Soluble %	Soil Water Soluble g/l	In Water g/l
BH7	11.80- 12.25 (11.80- 12.25)	U	C68067	Dark greyish brown fissured CLAY		0.711 (0.85)		8.31					
BH7	15.25 (15.25)	D	C67104	Dark greyish brown fissured CLAY		0.289 (0.35)		8.31					
BH7	18.00- 18.45 (18.00- 18.45)	UT	C68063	Dark greyish brown fissured CLAY		0.321 (0.39)		8.78					
BH9	4.20- 4.65 (4.20- 4.65)	D	C67050	Bluish grey mottled orange brown fissured CLAY		1.713 (2.06)		7.78					
BH9	8.70- 9.15 (8.70- 9.15)	U	C68082	Dark greyish brown fissured CLAY		0.767 (0.92)		8.26					
BH9	12.20 (12.20)	D	C67057	Dark greyish brown fissured CLAY		0.565 (0.68)		8.27					
BH9	14.70- 15.15 (14.70- 15.15)	U	C68081	Dark greyish brown fissured CLAY		0.350 (0.42)		8.76					
BH9	19.20- 19.65 (19.20- 19.65)	D	C67061	Dark greyish brown fissured CLAY		0.299 (0.36)		8.25					
BH9	21.20 (21.20)	D	C67062	Dark greyish brown fissured CLAY		0.491 (0.59)		8.36					
BH9	26.50 (26.50)	D	C67046	Light brown slightly clayey gravel of CLAYSTONE		0.246 (0.30)		8.26					
Hemar	Sulphate reported as SO3, results in brackets reported as SO4												

APPENDIX 8

Laboratory Test Results - Contamination (Soil)

2139

Certificate of Analysis

Certificate Number: 12-68079

Date: 10/09/2012

Client:	Geotechnics LTD 203 Torrington Avenue Tile Hill Coventry CV4 9AP
Our Reference:	12-68079
Client Reference:	PC124991
Contract Title:	Bacton Low Rise, Gospel Oak, North London
Description:	17 soil samples
Date Received:	30 August 2012
Date Started:	30 August 2012
Date Completed:	10 September 2012
Test Procedures:	Identified by prefix DETSn, details available upon request.
Notes:	Observations and interpretations are outside the scope of UKAS accreditation
Approved By:	(TP) D

1

Rob Brown, Business Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Information in Support of the Analytical Results

<u>Analysis</u>

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425um sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample.

Key

- * Denotes test not included in laboratory scope of accreditation
- # Denotes test that holds MCERTS accreditation, however, MCERTS accreditation is only implied if the report carries the MCERTS logo
- \$ Denotes tests completed by an approved subcontractor
- I/S Denotes insufficient sample to carry out test
- U/S Denotes that the sample is not suitable for testing

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month

Liquids - 2 weeks

Asbestos (test portion) - 6 months

Summary of Chemical Analysis Soil Samples

Our Ref:	12-68079
Client Ref:	PC124991
Contract Title:	Bacton Low Rise, Gospel Oak, North London

			Lab No.	440995	440996	440997	440998
		S	ample ID	BH2	BH2	BH2	BH4
			Depth	0.30	1.00	2.00	0.30
		Sa	mple Ref				
		Sam	ple Type				
		Samp	ling Date	20/08/2012	20/08/2012	20/08/2012	20/08/2012
		Sampl	ing Time				
Test	Units	DETSxx	LOD				
Arsenic	mg/kg	DETS 042#	0.2	12	12	10	9.7
Cadmium	mg/kg	DETS 042#	0.1	0.2	0.4	0.5	0.5
Chromium	mg/kg	DETS 042#	0.15	24	30	52	53
Hexavalent Chromium	mg/kg	DETSC 2204*	1	< 1.0	< 1.0	< 1.0	< 1.0
Соррег	mg/kg	DETS 042#	0.2	28	19	24	19
Lead	mg/kg	DETS 042#	0.3	130	180	20	15
Mercury	mg/kg	DETSC 2325#	0.05	0.18	0.23	< 0.05	< 0.05
Nickel	mg/kg	DETS 042#	1	17	19	43	26
Selenium	mg/kg	DETS 042#	0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	mg/kg	DETS 042#	1	74	77	72	56
Boron (water soluble)	mg/kg	DETS 020#	0.2	1.5	1.6	0.7	0.5
Cyanide total	mg/kg	DETSC 2130#	0.1	0.1	0.2	< 0.1	< 0.1
Organic matter	%	DETSC 2002#	0.1	1.1	1.2	0.5	0.5
Sulphate Aqueous Extract as SO4	mg/l	DETSC 2076#	10	450	1100	400	180
pН		DETSC 2008#		11.5	9.6	9.0	9.1
Acenaphthene	mg/kg	DETSC 3301	0.1	0.1	0.3	< 0.1	< 0.1
Acenaphthylene	mg/kg	DETSC 3301	0.1	< 0.1	0.5	< 0.1	< 0.1
Anthracene	mg/kg	DETSC 3301	0.1	0.3	1.9	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	DETSC 3301	0.1	0.9	6.3	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	DETSC 3301	0.1	1.0	5.9	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	DETSC 3301	0.1	0.8	4.6	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	DETSC 3301	0.1	0.5	2.6	< 0.1	< 0.1
Benzo(g,h,i)perylene	mg/kg	DETSC 3301	0.1	0.7	3.9	< 0.1	< 0.1
Chrysene	mg/kg	DETSC 3301	0.1	0.9	6.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	mg/kg	DESTC 3301	0.1	< 0.1	0.5	< 0.1	< 0.1
Fluoranthene	mg/kg	DETSC 3301	0.1	2.2	16	< 0.1	< 0.1
Fluorene	mg/kg	DETSC 3301	0.1	0.1	0.4	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETSC 3301	0.1	0.8	3.7	< 0.1	< 0.1
Naphthalene	mg/kg	DETSC 3301	0.1	< 0.1	0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	DETSC 3301	0.1	1.2	5.7	< 0.1	< 0.1
Pyrene	mg/kg	DETSC 3301	0.1	2.0	13	< 0.1	< 0.1
PAH	mg/kg	DETSC 3301	1.6	12	71	< 1.6	< 1.6
EPH (C10-C40)	mg/kg	DETSC 3311#	10	67	290	< 10	< 10
Phenol - Monohydric	mg/kg	DETSC 2130#	0.3	< 0.3	< 0.3	< 0.3	0.6

Summary of Chemical Analysis Soil Samples

Our Ref:	12-68079
Client Ref:	PC124991
Contract Title:	Bacton Low Rise, Gospel Oak, North London

			Lab No.	440999	441000	441001	441002
		s	ample ID	BH4	BH6	BH6	BH1
			Depth	1.00	0.30	1.00	1.00
		Sa	mple Ref				
		San	ple Type				
		Samp	ling Date	20/08/2012	20/08/2012	20/08/2012	20/08/2012
		Samp	ling Time				
Test	Units	DETSxx	LÓD				
Arsenic	mg/kg	DETS 042#	0.2	8.3	12	9.6	11
Cadmium	mg/kg	DETS 042#	0.1	0.4	0.4	0.5	0.4
Chromium	mg/kg	DETS 042#	0.15	35	31	46	32
Hexavalent Chromium	mg/kg	DETSC 2204*	1	< 1.0	< 1.0	< 1.0	< 1.0
Copper	mg/kg	DETS 042#	0.2	15	19	25	35
Lead	mg/kg	DETS 042#	0.3	10	84	18	140
Mercury	mg/kg	DETSC 2325#	0.05	< 0.05	0.05	< 0.05	0.67
Nickel	mg/kg	DETS 042#	1	27	28	43	21
Selenium	mg/kg	DETS 042#	0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	mg/kg	DETS 042#	1	42	89	70	61
Boron (water soluble)	mg/kg	DET\$ 020#	0.2	0.7	0.8	0.9	2.1
Cyanide total	mg/kg	DETSC 2130#	0.1	< 0.1	< 0.1	< 0.1	0.2
Organic matter	%	DETSC 2002#	0.1	0.3	0.6	0.4	3.6
Sulphate Aqueous Extract as SO4	mg/l	DETSC 2076#	10	150	200	140	57
рН		DETSC 2008#		9.7	11.3	9.3	8.6
Acenaphthene	mg/kg	DETSC 3301	0.1	< 0.1	0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	DETSC 3301	0.1	< 0.1	0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	mg/kg	DETSC 3301	0.1	< 0.1	0.1	< 0.1	< 0.1
Chrysene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	mg/kg	DESTC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	DETSC 3301	0.1	< 0.1	0.3	< 0.1	< 0.1
Fluorene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Naphthalene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	mg/kg	DETSC 3301	0.1	< 0.1	0.2	< 0.1	< 0.1
PAH	mg/kg	DETSC 3301	1.6	< 1.6	< 1.6	< 1.6	< 1.6
EPH (C10-C40)	mg/kg	DETSC 3311#	10	< 10	< 10	< 10	< 10
Phenol - Monohydric	mg/kg	DETSC 2130#	0.3	< 0.3	< 0.3	< 0.3	< 0.3

Summary of Chemical Analysis Soil Samples

Our Ref:	12-68079
Client Ref:	PC124991
Contract Title:	Bacton Low Rise, Gospel Oak, North London

			Lab No.	441003	441004	441005	441006
		S	ample ID	BH1	BH5	BH5	BH7
			Depth	2.00	0.30	0.90	0.30
		Sa	mple Ref				
		Sam	ple Type				
		Samp	ling Date	20/08/2012	20/08/2012	20/08/2012	20/08/2012
		Sampl	ing Time				
Test	Units	DETSxx	LOD				
Arsenic	mg/kg	DETS 042#	0.2	7.9	20	11	13
Cadmium	mg/kg	DETS 042#	0.1	0.6	0.3	0.3	0.1
Chromium	mg/kg	DETS 042#	0.15	48	34	45	21
Hexavalent Chromium	mg/kg	DETSC 2204*	1	< 1.0	< 1.0	< 1.0	< 1.0
Copper	mg/kg	DETS 042#	0.2	22	88	31	51
Lead	mg/kg	DETS 042#	0.3	15	400	100	640
Mercury	mg/kg	DETSC 2325#	0.05	< 0.05	0.39	0.53	0.19
Nickel	mg/kg	DETS 042#	1	35	26	20	18
Selenium	mg/kg	DETS 042#	0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	mg/kg	DETS 042#	1	63	180	69	86
Boron (water soluble)	mg/kg	DETS 020#	0.2	0.7	1.8	1.0	1.6
Cyanide total	mg/kg	DETSC 2130#	0.1	< 0.1	< 0.1	0.2	< 0.1
Organic matter	%	DETSC 2002#	0.1	0.4	2.2	2.9	3.4
Sulphate Aqueous Extract as SO4	mg/l	DETSC 2076#	10	240	140	37	180
pН		DETSC 2008#		8.9	9.5	8.8	10.7
Acenaphthene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	DETSC 3301	0.1	< 0.1	0.3	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	DETSC 3301	0.1	< 0.1	0.2	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	DETSC 3301	0.1	< 0.1	0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	mg/kg	DETSC 3301	0.1	< 0.1	0.2	< 0.1	< 0.1
Chrysene	mg/kg	DETSC 3301	0.1	< 0.1	0.3	< 0.1	< 0.1
Dibenzo(a,h)anthracene	mg/kg	DESTC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	DETSC 3301	0.1	< 0.1	0.4	< 0.1	0.1
Fluorene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETSC 3301	0.1	< 0.1	0.1	< 0.1	< 0.1
Naphthalene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	DETSC 3301	0.1	< 0.1	0.3	< 0.1	< 0.1
Pyrene	mg/kg	DETSC 3301	0.1	< 0.1	0.4	< 0.1	< 0.1
PAH	mg/kg	DETSC 3301	1.6	< 1.6	2.4	< 1.6	< 1.6
EPH (C10-C40)	mg/kg	DETSC 3311#	10	< 10	< 10	< 10	< 10
Phenol - Monohydric	mg/kg	DETSC 2130#	0.3	< 0.3	< 0.3	< 0.3	< 0.3

Summary of Chemical Analysis Soil Samples

Our Ref:	12-68079
Client Ref:	PC124991
Contract Title:	Bacton Low Rise, Gospel Oak, North London

			Lab No.	441007	441008	441009	441010
		S	ample ID	BH7	BH3	BH9	BH8
			Depth	1.00	1.00	0.30	0.30
		Sa	mple Ref				
		Sam	ple Type				
		Samp	ling Date	20/08/2012	20/08/2012	20/08/2012	20/08/2012
		Sampl	ing Time				
Test	Units	DETSxx	LOD				
Arsenic	mg/kg	DETS 042#	0.2	11	9.7	10	14
Cadmium	mg/kg	DETS 042#	0.1	0.1	0.2	0.2	0.3
Chromium	mg/kg	DETS 042#	0.15	19	30	18	22
Hexavalent Chromium	mg/kg	DETSC 2204*	1	< 1.0	< 1.0	< 1.0	< 1.0
Copper	mg/kg	DETS 042#	0.2	24	17	28	35
Lead	mg/kg	DETS 042#	0.3	160	33	240	770
Mercury	mg/kg	DETSC 2325#	0.05	0.13	0.14	0.14	0.24
Nickel	mg/kg	DETS 042#	1	15	22	16	18
Selenium	mg/kg	DETS 042#	0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	mg/kg	DETS 042#	1	200	54	150	190
Boron (water soluble)	mg/kg	DETS 020#	0.2	1.3	1.4	1.6	1.5
Cyanide total	mg/kg	DETSC 2130#	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Organic matter	%	DETSC 2002#	0.1	0.8	0.6	0.7	0.9
Sulphate Aqueous Extract as SO4	mg/l	DETSC 2076#	10	320	110	240	720
pН		DET\$C 2008#		10.5	9.3	11.3	11.0
Acenaphthene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	DETSC 3301	0.1	0.1	< 0.1	< 0.1	0.3
Benzo(a)pyrene	mg/kg	DETSC 3301	0.1	0.2	< 0.1	0.1	0.3
Benzo(b)fluoranthene	mg/kg	DETSC 3301	0.1	0.1	< 0.1	< 0.1	0.2
Benzo(k)fluoranthene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	0.1
Benzo(g,h,i)perylene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	0.2
Chrysene	mg/kg	DETSC 3301	0.1	0.2	< 0.1	< 0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	DESTC 3301	0.1	0.3	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	DETSC 3301	0.1	0.5	< 0.1	0.1	0.6
Fluorene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETSC 3301	0.1	0.3	< 0.1	0.4	0.4
Naphthalene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	DETSC 3301	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	mg/kg	DETSC 3301	0.1	0.3	< 0.1	0.2	0.4
PAH	mg/kg	DETSC 3301	1.6	2.4	< 1.6	< 1.6	3.2
EPH (C10-C40)	mg/kg	DETSC 3311#	10	< 10	31	17	68
Phenol - Monohydric	mg/kg	DETSC 2130#	0.3	< 0.3	< 0.3	< 0.3	< 0.3

Summary of Chemical Analysis Soil Samples

Our Ref:	12-68079
Client Ref:	PC124991
Contract Title:	Bacton Low Rise, Gospel Oak, North London

			Lab No.	441011
		S	ample ID	BH8
			Depth	1.00
		Sa	mple Ref	
		San	nple Type	
		Samp	ling Date	20/08/2012
		Samp	ling Time	
Test	Units	DETSxx	LÓD	
Arsenic	mg/kg	DETS 042#	0.2	13
Cadmium	mg/kg	DETS 042#	0.1	0.8
Chromium	mg/kg	DETS 042#	0.15	50
Hexavalent Chromium	mg/kg	DETSC 2204*	1	< 1.0
Copper	mg/kg	DETS 042#	0.2	43
Lead	mg/kg	DETS 042#	0.3	230
Mercury	mg/kg	DETSC 2325#	0.05	0.13
Nickel	mg/kg	DETS 042#	1	37
Selenium	mg/kg	DETS 042#	0.5	1.2
Zinc	mg/kg	DETS 042#	1	150
Boron (water soluble)	mg/kg	DETS 020#	0.2	3.7
Cyanide total	mg/kg	DETSC 2130#	0.1	0.1
Organic matter	%	DETSC 2002#	0.1	2.0
Sulphate Aqueous Extract as SO4	mg/l	DETSC 2076#	10	620
pН		DETSC 2008#		9.7
Acenaphthene	mg/kg	DETSC 3301	0.1	< 0.1
Acenaphthylene	mg/kg	DETSC 3301	0.1	< 0.1
Anthracene	mg/kg	DETSC 3301	0.1	< 0.1
Benzo(a)anthracene	mg/kg	DETSC 3301	0.1	< 0.1
Benzo(a)pyrene	mg/kg	DETSC 3301	0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	DETSC 3301	0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	DETSC 3301	0.1	< 0.1
Benzo(g,h,i)perylene	mg/kg	DETSC 3301	0.1	< 0.1
Chrysene	mg/kg	DETSC 3301	0.1	< 0.1
Dibenzo(a,h)anthracene	mg/kg	DESTC 3301	0.1	0.2
Fluoranthene	mg/kg	DETSC 3301	0.1	0.3
Fluorene	mg/kg	DETSC 3301	0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	DETSC 3301	0.1	< 0.1
Naphthalene	mg/kg	DETSC 3301	0.1	< 0.1
Phenanthrene	mg/kg	DETSC 3301	0.1	< 0.1
Pyrene	mg/kg	DETSC 3301	0.1	0.2
PAH	mg/kg	DETSC 3301	1.6	< 1.6
EPH (C10-C40)	mg/kg	DETSC 3311#	10	58
Phenol - Monohydric	mg/kg	DETSC 2130#	0.3	< 0.3

construction Developmentation construction Construction constrention Construction <	Deriventsione Linition in the UKAS net "Guidance on beviating Samples received may be deviating. and laboratory trials in conjunction with the UKAS net "Guidance on beviating Samples". es that have additional comments in relation to hold time and/or inappropriate containers are typis is accredited where applicable, but results may be compromised due to sample deviations. pileid then samples are deviating. However, if you are able to supply a sampled date (and time ating where specific hold times are not exceeded and where the container supplied is suitable. Deviating due to holding time being Deviating due to holding time being Deviating due to inappropriate containes: alar 250ml or less, Glass Plastic Tub 1 litre alar 250ml or less, Glass Plastic Tub 1 litre 3 Jar 250ml or less, Glass Plastic Tub 1 litre 3 Jar 250ml or less, Glass Plastic Tub 1 litre 3 Jar 250ml or less, Glass Plastic Tub 1 litre 2 Jar 250ml or less, Glass Plastic Tub 1 litre 3 Jar 250ml or less, Glass Plastic Tub 1 litre 2 Jar 250ml or less, Glass	, Plastic Tub 1 litre ss Jar 250ml or less, Glass , Plastic Tub 1 litre	ilass Jar 250ml or less, Glass ial, Plastic Tub 1 litre ilass Jar 250ml or less, Glass ial, Plastic Tub 1 litre	Alass Jar 250ml or less, Glass Alass Jar 250ml or less, Glass Blass Jar 250ml or less, Glass Alal, Plastic Tub 1 litre
--	--	---	--	---

Derwentside Environmental Testing Ltd

441009

441010

441011

APPENDIX 9

Investigation Techniques and General Notes

INTRODUCTION

The following brief review of Ground Investigation techniques, generally used as part of most Site Investigations in the UK, summarises their methodology, advantages and limitations. Detailed descriptions of the techniques are available and can be provided on request. This review should be read in conjunction with the accompanying General Notes.

TRIAL PITS

The trial pit is amongst the most simple yet effective means of identifying shallow ground conditions on a site. Its advantages include simplicity, speed, potential accuracy and cost-effectiveness. The trial pit is most commonly formed using a backacting excavator which can typically determine ground conditions to some 4 metres below ground level. Hand excavation is often used to locate, expose and detail existing foundations, features or services. In general, it is difficult to extend pits significantly below the water table in predominantly granular soils, where flows can cause instability. Unless otherwise stated, the trial pits will not have been provided with temporary side support during their construction. Under such circumstances ground conditions to some 1.20 metres can be closely inspected, subject to stability assessment, but below this depth, entrance into the pit is not permitted in the absence of shoring and hence observations will have been made from ground surface and samples taken from the excavator bucket.

Trends in strata type, level and thickness can be determined, shear surfaces identified and the behaviour of plant, excavation sides and excavated materials can be related to the construction process. They are particularly valuable in land slip investigations. Some types of insitu test can be undertaken in such pits and large disturbed or block samples obtained.

CABLE PERCUSSION BORING

The light Cable Percussion technique of soft ground boring, typically at a diameter of 150mm, is a well established simple and flexible method of boring vertical holes and generally allows data to be obtained in respect of strata conditions other than rock. A tubular cutter (for cohesive soils) or shell with a flap valve (for granular soils) is repeatedly lifted and dropped using a winch and rope operating from an "A" frame. Soil which enters these tools is regularly removed and either sampled for subsequent examination or test, or laid to one side for backfilling. Steel casing will have been used to prevent collapse of the borehole sides where necessary. A degree of disturbance of soil and mixing of layers is inevitable and the presence of very thin layers of different soils within a particular stratum may not be identified. Changes in strata type can only be detected on recognition of a change in soil samples at surface, after the interface has been passed. For the foregoing reasons, depth measurements should not be considered to be more accurate than 0.10 metre.

In cohesive soils cylindrical samples are retrieved by driving or pushing in 100mm nominal diameter tubes. In soft soils, piston sampling or vane testing may be undertaken. In granular soils and often in cohesive materials, insitu Standard Penetration Tests (SPT's) are performed. The SPT records the number of standard blows required to drive a 50mm diameter open or cone ended probe for 300mm after an initial 150mm penetration. A modified method of recording is used in more dense strata. Small disturbed samples are obtained throughout.

The technique can determine ground conditions to depths in excess of 30 metres under suitable circumstances and usually causes less surface disturbance than trial pitting.

ROTARY DRILLING

Rotary Drilling to produce cores by rotating an annular diamond-impregnated tube or barrel into the ground is the technique most appropriate to the forming of site investigation boreholes through rock or other hard strata. It has the advantage of being able to be used vertically or at an angle. Core diameters of less than 100mm are most common for site investigation purposes. Core is normally retrieved in plastic lining tubes. A flushing fluid such as air, water or foam is used to cool the bit and carry cuttings to the surface.

Examination of cores allows detailed rock description and generally enables angled discontinuity surfaces to be observed. However, vertical holes do not necessarily reveal the presence of vertical or near-vertical fissures or joint discontinuities. The core type and/or techniques used. Where open hole rotary drilling is employed, descriptions of strata result from examination at surface of small particles ejected from the borehole in the flushing medium. In consequence, no indication of fissuring, bedding, consistency or degree of weathering can be obtained. Small scale plant can be used for auger drilling to limited depths where access is constrained.

Depths in excess of 60 metres can be achieved under suitable circumstances using rotary techniques, with minimal surface disturbance.

WINDOW SAMPLING

This technique involves the driving of an open-ended tube into the ground and retrieval of the soil which enters the tube. The term "window sample" arose from the original device which had a "window" or slot cut into the side of the tube through which samples were taken. This has now been superseded by the use of a thin-walled plastic liner within a sampler which has a solid wall. Diameters range from 36 to 86mm. Such samples can be used for qualitative logging, selection of samples for classification and chemical analysis and for obtaining a rudimentary assessment of strength.

Driving devices can be hand-held or machine mounted and the drive tubes are typically in 1m lengths. The hole formed is not cased, however, and hence the success of this technique is limited when soils and groundwater conditions are such that the sides of the hole collapse on withdrawal of the sampler. Obstructions within the ground, the density of the material or its strength can also limit the depth and rate of penetration of this light-weight investigation technique. Nevertheless, it is a valuable tool where access is constrained such as within buildings or on embankments. Depths of up to 8m can be achieved in suitable circumstances but depths of 4m to 6m are more common.

EXPLORATORY HOLE RECORDS

The data obtained by these techniques are generally presented on Trial Pit, Borehole, Drillhole or Window Sample Records. The descriptions of strata result from information gathered from a number of sources which may include published geological data, preliminary field observations and descriptions, insitu test results, laboratory test results and specimen descriptions. A key to the symbols and abbreviations used accompanies the records. The descriptions on the exploratory hole records accommodate but may not necessarily be identical to those on any preliminary records or the laboratory summaries.

The records show ground conditions at the exploratory hole locations. The degree to which they can be used to represent conditions between or beyond such holes, however, is a matter for geological interpretation rather than factual reporting and the associated uncertainties must be recognised.

DYNAMIC PROBING

This technique typically measures the number of blows of a standard weight falling over a standard height to advance a cone-ended rod over sequential standard distances (typically 100mm). Some devices measure the penetration of the probe per standard blow. It is essentially a profiling tool and is best used in conjunction with other investigation techniques where site-specific correlation can be used to delineate the distribution of soft or losse soils or the upper horizon of a dense or strong layer such as rock.

Both machine-driven and hand-driven equipment is available, the selection depending upon access restrictions and the depth of penetration required. It is particularly useful where access for larger equipment is not available, disturbance is to be minimised or where there are cost constraints. No samples are recovered and some techniques leave a sacrificial cone head in the ground. As with other lightweight techniques, progress is limited in strong or dense soils. The results are presented both numerically and graphically. Depths of up to 10m are commonly achieved in suitable circumstances.

The hand-driven DCP probing device has been calibrated by the TRL to provide a profile of CBR values over a range of depths of up to 1.50m.

INSTRUMENTATION

The most common form of instrument used in site investigation is either the standpipe or else the standpipe piezometer which can be installed in investigation holes. They are used to facilitate monitoring of groundwater levels and water sampling over a period of time following site work. Normally a standpipe would be formed using rigid plastic tubing which has been perforated or slotted over much of its length whilst a standpipe piezometer would have a filter tip which would be placed at a selected level and the hole sealed above and sometimes below to isolate the zone of interest. Groundwater levels are determined using an electronic "dipmeter" to measure the depth to the water surface from ground level. Piezometers can also be used to measure permeability. They are simple and inexpensive instruments for long term monitoring but response times can limit their use in tidal areas and access to the ground surface at each instrument is necessary. Remote reading requires more sophisticated hydraulic, electronic or pneumatic equipment.

Settlement can be monitored using surface or buried target plates whilst lateral movement over a range of depths is monitored using slip indicator or inclinometer equipment.

Geotechnics Limited © The Geotechnical Centre, 203 Torrington Avenue, Tile Hill, Coventry. CV4 9AP

- 1. The report is prepared for the exclusive use of the Client named in the document and copyright subsists with Geotechnics Limited. Prior written permission must be obtained to reproduce all or part of the report. It is prepared on the understanding that its contents are only disclosed to parties directly involved in the current investigation, preparation and development of the site.
- Further copies may be obtained with the Client's written permission, from Geotechnics Limited with whom the master copy of the document will be retained.
- 3. The report and/or opinion is prepared for the specific purpose stated in the document and in relation to the nature and extent of proposals made available to Geotechnics Limited at that time. Re-consideration will be necessary should those details change. The recommendations should not be used for other schemes on or adjacent to the site without further reference to Geotechnics Limited.
- 4. The assessment of the significance of the factual data, where called for, is provided to assist the Client and his Engineer and/or Advisers in the preparation of their designs.
- 5. The report is based on the ground conditions encountered in the exploratory holes together with the results of field and laboratory testing in the context of the proposed development. The data from any commissioned desk study and site reconnaissance are also drawn upon. There may be special conditions appertaining to the site, however, which are not revealed by the investigation and which may not be taken into account in the report.
- 6. Methods of construction and/or design other than those proposed by the designers or referred to in the report may require consideration during the evolution of the proposals and further assessment of the geotechnical and any geoenvironmental data would be required to provide discussion and evaluations appropriate to these methods.
- 7. The accuracy of results reported depends upon the technique of measurement, investigation and test used and these values should not be regarded necessarily as characteristics of the strata as a whole (see accompanying notes on Investigation Techniques). Where such measurements are critical, the technique of investigation will need to be reviewed and supplementary investigation undertaken in accordance with the advice of the Company where necessary.
- 8. The samples selected for laboratory test are prepared and tested in accordance with the relevant Clauses of BS 1377 Parts 1 to 8, where appropriate, in Geotechnics Limited's UKAS accredited Laboratory, where possible. A list of tests is given.
- 9. Tests requiring the use of another laboratory having UKAS accreditation where possible are identified.
- Any unavoidable variations from specified procedures are identified in the report.
- Specimens are cut vertically, where this is relevant and can be identified, unless otherwise stated.

- 12. All the data required by the test procedures are recorded on individual test sheets but the results in the report are presented in summary form to aid understanding and assimilation for design purposes. Where all details are required, these can be made available.
- 13. Whilst the report may express an opinion on possible configurations of strata between or beyond exploratory holes, or on the possible presence of features based on either visual, verbal, written, cartographical, photographic or published evidence, this is for guidance only and no liability can be accepted for its accuracy.
- 14. Classification of materials as Made Ground is based on the inspection of retrieved samples or exposed excavations. Where it is obvious that foreign matter such as paper, plastic or metal is present, classification is clear. Frequently, however, for fill materials that arise from the adjacent ground or from the backfilling of excavations, their visual characteristics can closely resemble those of undisturbed ground. Other evidence such as site history, exploratory hole location or other tests may need to be drawn upon to provide clarification. For these reasons, classification of soils on the exploratory hole records as either Made Ground or naturally occurring strata, the boundary between them and any interpretation that this gives rise to should be regarded as provisional and subject to re-evaluation in the light of further data.
- 15. The classification of materials as Topsoil is generally based on visual description and should not be interpreted to mean that the material so described complies with the criteria for Topsoil used in BS 3882 (2007). Specific testing would be necessary where such definition is a requirement.
- 16. Ground conditions should be monitored during the construction of the works and the report should be re-evaluated in the light of these data by the supervising geotechnical engineers.
- 17. Any comments on groundwater conditions are based on observations made at the time of the investigation, unless specifically stated otherwise. It should be noted, however, that the observations are subject to the method and speed of boring, drilling or excavation and that groundwater levels will vary due to seasonal or other effects.
- 18. Any bearing capacities for conventional spread foundations which are given in the report and interpreted from the investigation are for bases at a minimum depth of 1 m below finished ground level in naturally occurring strata and at broadly similar levels throughout individual structures, unless otherwise stated. The foundations should be designed in accordance with the good practice embodied in BS 8004:1986 - Foundations, supplemented for housing by NHBC Standards. Foundation design is an iterative process and bearing pressures may need adjustment or other measures may need to be taken in the context of final layouts and levels prior to finalisation of proposals.
- 19. Unless specifically stated, the investigation does not take account of the possible effects of mineral extraction or of gases from fill or natural sources within, below or outside the site.
- 20. The costs or economic viability of the proposals referred to in the report, or of the solutions put forward to any problems encountered, will depend on very many factors in addition to geotechnical or geoenvironmental considerations and hence their evaluation is outside the scope of the report.

ANNEX C GAS MONITORING RESULTS (ROUND 2)

Project васто	N LOW RISE,	GOSPEL OAK	, NORTH LO	NDON			Proje Bore	ect No I hole	PC124991 BH1
Client ROLTO	N GROUP						Shee	et No.	1 (1 of 2)
Installation	Details								
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 10.00m 2.00 - 17 Aug	ipe 10.00m ust 2012			Diamete Cover T Ground	er ype Level	50mm Flush 42.45	lockable j m OD	protective cover
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
12 6-2 2012	00.00.00	1.61	()	()	(/=)	(),	(PP)	(PP)	
13-Sep-2012	00:00:00	1.61	<0.1	<2	<0.1	20.6	1>	<1	
- 13-Sep-2012	00:00:30		<0.1	<2	0.2	20.2			
13-Sep-2012	00:01:00		<0.1	<2	0.2	20.2			
3-0ct-2012	00:00:00	1.47					<1	<1	
3-0ct-2012	00:00:05		<0.1	<2	<0.1	20.6			
3-0ct-2012	00:00:30		<0.1	<2	0.2	20.3			
3-0ct-2012	00:01:00		<0.1	<2	0.2	20.3			
Remarks		<u> </u>							
								<u>و</u>	eeleelmies

Form 003

Project bacto Client rolto	N LOW RISE, (GOSPEL OAK, NORTH	I LONDON		Project No Borehole Sheet No.	PC124991 BH1 1 (2 of 2)
Installation	Details					
Installation Ty Depth to Base Filter Zone Date Installed	/pe Standp: ∋ 10.00m 2.00 - 17 Aug	ipe 10.00m ust 2012	D C G	Diameter Cover Type Ground Level	50mm Flush lockab 42.45 m OD)le protective cover
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks
		(mBars)	(DegC)	(mBars)	(l/hr)	
13-Sep-2012	00:00:00	1012	8.80	+1.37	-0.0	
13-Sep-2012	00:00:05					
13 - Sep - 2012	00:00:30					
3-0ct-2012	00:01:00	008	10.00	+0.25	-0.0	
3 = 0 + 2012	00:00:05	550	10.00	+0.23	-0.0	
3-0ct-2012	00:00:30					
3-0ct-2012	00:01:00					
Bemarks			<u> </u>		<u>ا</u> ــــــــــــــــــــــــــــــــــــ	
nemaiks					ļ	

Project bacto	N LOW RISE,	GOSPEL OAK	, NORTH LO	NDON			Proje Bore Shoo	ect No h ole	PC124991 BH2
							SHEE	el NO.	1 (1 01 2)
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp = 10.00m 2.00 - 20 Aug	ipe 10.00m ust 2012			Diamete Cover T Ground	er ype Level	50mm Flush 43.45	lockable ; m OD	protective cover
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
13-Sep-2012 13-Sep-2012 13-Sep-2012 13-Sep-2012 3-Oct-2012 3-Oct-2012 3-Oct-2012 3-Oct-2012 3-Oct-2012	00:00:00 00:00:05 00:01:00 00:02:00 00:00:05 00:00:30 00:01:00 00:02:00	9.55	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<2 <2 <2 <2 <2 <2 <2	<0.1 3.8 3.8 3.8 <0.1 4.5 4.5 4.5	20.6 15.1 14.6 14.6 12.3 12.1 12.1	<1	<1	
Remarks									

Project васто Client гоlто	N LOW RISE, (GOSPEL OAK, NORTH	LONDON		Project No Borehole Sheet No.	PC124991 BH2 1 (2 of 2)		
Installation	Details							
Installation Ty Depth to Base Filter Zone Date Installed	/pe Standp: = 10.00m 2.00 - 20 Aug	ipe 10.00m ust 2012	D C G	Diameter Cover Type Ground Level	50mm Flush lockab 43.45 m OD	able protective cover		
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks		
		(mBars)	(DegC)	(mBars)	(l/hr)			
13-Sep-2012	00:00:00	1013	9.10	+2.91	-0.0			
13-Sep-2012	00:00:05							
13-Sep-2012	00:00:30							
13-Sep-2012	00:01:00							
13-Sep-2012	00:02:00							
3-0ct-2012	00:00:00	998	10.00	+4.37	+0.3			
3-0ct-2012	00:00:05			+0.72	-0.0			
3-0ct-2012	00:00:30							
3-0ct-2012	00:01:00							
Remarks					L			
					Į	<u>EEIMEERE</u>		

Project bacto	N LOW RISE,	GOSPEL OAK	, NORTH LO	NDON			Proje Bore	ect No h ole	PC124991 BH3
Client Rolto	N GROUP						Shee	et No.	1 (1 of 2)
Installation	Details								
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 5.00m 1.00 - 17 Aug	ipe 5.00m ust 2012			Diamete Cover T Ground	er ype Level	50mm Flush 43.78	lockable ; m OD	protective cover
Date	Time	Depth to Water (m bal)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
10 0 0010		(()	(//	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	() ()	(PP)	(PP)	
13-Sep-2012	00:00:00	3.92	-0.1	- 2	-0.1	20 6	<1	<1	
13-Sep-2012	00:00:05		<0.1	<2	<0.1	20.6			
13 - Sep - 2012	00:00:30		<0.1	~2	0.9	10.1			
13 - Sep - 2012	00+02+00		<0.1	~2	0.8	10.0			
13-Sep-2012	00:03:00		<0.1	<2	0.4	19.5			
3-0ct-2012	00:00:00	3.30	-0.1	-2	0.1		<1	<1	
3-0ct-2012	00:00:05	2.35	<0.1	<2	1.3	17.2	` 1	·1	
3-0ct-2012	00:00:30		<0.1	<2	0.9	18.1			
3-0ct-2012	00:02:00		<0.1	<2	0.4	19.7			
3-0ct-2012	00:03:00		<0.1	<2	0.3	20.2			
3-0ct-2012	00:04:00		<0.1	<2	0.3	20.2			
Remarks	<u> </u>	<u> </u>					ļ	 	

Project bacto Client rolto	N LOW RISE, (GOSPEL OAK, NORTH	i london		Project No Borehole Sheet No.	PC124991 BH3 1 (2 of 2)		
Installation	Details							
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp: E 5.00m 1.00 - 17 Augu	ipe 5.00m ust 2012	D C G	Diameter Cover Type Ground Level	50mm Flush lockab 43.78 m OD	able protective cover		
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks		
		(mBars)	(DegC)	(mBars)	(l/hr)			
13-Sep-2012	00:00:00	1012	8.20	+0.04	-0.0			
13-Sep-2012	00:00:05							
13-Sep-2012	00:00:30							
13-Sep-2012	00:01:00							
13-Sep-2012	00:02:00							
13-Sep-2012	00:03:00							
3-0ct-2012	00:00:00	997	9.80	+1.67	-0.0			
3-0ct-2012	00:00:05			-0.97	-0.0			
3-0ct-2012	00:00:30							
3-0ct-2012	00:02:00							
3-0ct-2012	00:03:00							
3-0ct-2012	00:04:00							
Remarks			,		[
						<u>esentespece</u>		

Project bacto	N LOW RISE, (GOSPEL OAK	, NORTH LO	NDON			Proje Bore	ect No h ole	PC124991 BH4
Client Rolto	N GROUP						Shee	et No.	1 (1 of 2)
Installation	Details								
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp 5.00m 2.00 - 21 Aug	ipe 5.00m ust 2012			Diamete Cover T Ground	er ype Level	50mm Flush 41.65	lockable ; m OD	protective cover
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
13-Sep-2012	00:00:00	DRY					<1	<1	
13-Sep-2012	00:00:05		<0.1	<2	<0.1	20.6	_	_	
13-Sep-2012	00:00:30		<0.1	<2	1.1	19.1			
13-Sep-2012	00:01:00		<0.1	<2	1.1	19.1			
3-0ct-2012	00:00:00	DRY					<1	<1	
3-0ct-2012	00:00:05		<0.1	<2	<0.1	20.6			
3-0ct-2012	00:00:30		<0.1	<2	0.7	18.7			
3-0ct-2012	00:01:00		<0.1	<2	0.4	19.5			
3-0ct-2012	00:02:00		<0.1	<2	0.3	20.1			
3-0ct-2012	00:03:00		<0.1	<2	0.3	20.1			
Remarks		<u> </u>							
								Ø	

Form 003

Project bacto Client rolto	N LOW RISE, O	GOSPEL OAK, NORTH	i london		Project No Borehole Sheet No.	PC124991 BH4 1 (2 of 2)	
Installation	Details						
Installation Ty Depth to Base Filter Zone Date Installed	/PC Standp 5.00m 2.00 - 21 Aug	50mm Flush lockab 41.65 m OD	le protective cover				
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks	
		(mBars)	(DegC)	(mBars)	(l/hr)		
13-Sep-2012	00:00:00	1012	8.70	+3.53	-0.0		
13-Sep-2012	00:00:05						
13-Sep-2012	00:00:30						
13-Sep-2012	00:01:00						
3-0ct-2012	00:00:00	997	9.50	+2.11	-0.0		
3-0ct-2012	00:00:05			+0.05	-0.0		
3-0ct-2012	00:00:30						
3-Oct-2012	00:01:00						
3-0ct-2012	00:02:00						
3-0ct-2012	00:03:00						
		l	<u> </u>		 		
						ित्तित्तवर्णाख्य	

Project bacto	N LOW RISE,	GOSPEL OAK	, NORTH LO	NDON			Proje Bore	ect No ehole	PC124991 BH5
Client Rolto	IN GROUP						Shee	et No.	1 (1 of 2)
Installation Details									
Installation Type standpipe Depth to Base 5.00m Filter Zone 2.00 - 5.00m					Diameter Cover Type Ground Level		50mm Flush 44.75	50mm Flush lockable protective co 44.75 m OD	
Date Installed	14 Aug	ust 2012				_			
Date	Time	Depth to Water	Methane CH4	Methane CH4	Carbon Dioxide CO2	Oxygen O2	Hydrogen Sulphide H2S	Carbon Monoxide CO	Remarks
		(m bgl)	(% VOL)	(% LEL)	(% VOL)	(% VOL)	(ppm)	(ppm)	
13-Sep-2012	00:00:00	4.66					<1	<1	
13-Sep-2012	00:00:05		<0.1	<2	<0.1	20.6			
13-Sep-2012	00:00:30		<0.1	<2	2.0	19.2			
13-Sep-2012	00:01:00	4 25	<0.1	<2	2.0	19.2			
3-0ct-2012	00:00:00	4.35	~0.1	~2	~0.1	20 E	<1	<1	
3-0ct-2012	00+00+30		<0.1 <0.1	~2	3 E	20.0 17 6			
30-0ct-2012	00:01:00		<0.1	<2	3.6	17.6			
Remarks									
<u>eaded</u>									

Project bacto Client rolto	N LOW RISE, (GOSPEL OAK, NORTH	i london		Project No Borehole Sheet No.	PC124991 BH5 1 (2 of 2)	
Installation	Details						
Installation Ty Depth to Base Filter Zone Date Installed	/PC Standp 9 5.00m 2.00 - 14 Aug	50mm Flush lockab 44.75 m OD	le protective cover				
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks	
		(mBars)	(DegC)	(mBars)	(l/hr)		
13-Sep-2012	00:00:00	1012	8.00	+0.34	-0.0		
13-Sep-2012	00:00:05						
13-Sep-2012	00:00:30						
13-Sep-2012	00:01:00						
3-Oct-2012	00:00:00	997	9.60	+2.16	+0.1		
3-0ct-2012	00:00:05			+0.07	-0.0		
30-0ct-2012	00:01:00						
						E	

Project bacton low rise, gospel oak, north london							Project No Borehole		PC124991 BH7
Client ROLTO	N GROUP						Shee	et No.	1 (1 of 2)
Installation Details									
Installation Ty Depth to Base Filter Zone Date Installed	/PC Standp 2 5.00m 2.00 - 15 Aug	ipe 5.00m ust 2012			Diamete Cover T Ground	er Type Level	50mm Flush 42.10	lockable j m OD	protective cover
Date	Time	Depth to Water (m bgl)	Methane CH4 (% VOL)	Methane CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Hydrogen Sulphide H2S (ppm)	Carbon Monoxide CO (ppm)	Remarks
13-Sep-2012	00:00:00	1.59							
13-Sep-2012	00:00:05		<0.1	<2	<0.1	20.6	<1	<1	
13-Sep-2012	00:00:30		<0.1	<2	1.0	17.1	<1	188	
13-Sep-2012	00:01:00		<0.1	<2	1.0	16.9	<1	320	
13-Sep-2012	00:02:00		<0.1	<2	1.0	16.9	<1	379	
13-Sep-2012	00:03:00		<0.1	<2	1.0	16.9	<1	383	
13-Sep-2012	00:04:00		<0.1	<2	0.9	17.1	<1	373	
13-Sep-2012	00:05:00	1 05	<0.1	<2	0.9	17.1	<1	352	
3-0ct-2012	00:00:00	1.25	<0.1	- 2	<0.1	20.6	<1	<1	
3 - 0ct - 2012	00:00:05		<0.1	<2	2.5	20.0			
3 = 0 + 2012	00:01:00		<0.1	<2	1.2	17.8			
3-0ct-2012	00:02:00		<0.1	<2	0.1	20.3			
3-0ct-2012	00:03:00		<0.1	<2	0.1	20.3			

Form 003/

Project Bacto Client Rolito	N LOW RISE, (GOSPEL OAK, NORTH	H LONDON		Project No Borehole Sheet No.	PC124991 BH7 1 (2 of 2)				
Installation Details										
Installation Ty Depth to Base Filter Zone Date Installed	/pe Standp: ∋ 5.00m 2.00 - 15 Aug	ipe 5.00m ust 2012	50mm Flush lockable protective cover 42.10 m OD							
Date	Time	Barometric Pressure	Air Temp.	Diff. Pressure	Flow Rate (Peak/Stable)	Remarks				
		(mBars)	(DegC)	(mBars)	(l/hr)					
13-Sep-2012	00:00:00	1012	8.10	+3.31	-0.0					
13-Sep-2012	00:00:05									
13-Sep-2012	00:00:30									
13-Sep-2012	00:01:00									
13-Sep-2012	00:02:00									
13-Sep-2012	00:03:00									
13-Sep-2012	00:04:00									
13-Sep-2012	00:05:00									
3-0ct-2012	00:00:00	999	10.50	+3.97	+0.4					
3-0ct-2012	00:00:05			+0.69	-0.0					
3-0ct-2012	00:00:30									
3-0ct-2012	00:01:00									
3-0ct-2012	00:02:00									
3-0ct-2012	00:03:00									
Remarks					[
					!	geolecimies				