

Tel: 01925 723333

PO Box 1030 Warrington Cheshire WA4 9FJ

Fax: 0845 833 0989

APF/ARR/C/AFA86

20th January 2012

GJP Architects Ltd

24 hour background noise assessment at 62 Avenue Road, St John's Wood, NW8.

Prepared for:-

GJP Architects Ltd 764 Finchley Road Temple Fortune London NW11 7TH

Prepared by:

Andrew Frisby

acoustic design & control limited adc acoustics is the trading name of acoustic design & control limited. registered office: 1210 centre park square warrington cheshire wa1 1ru registered in england no. 5117653

CONTENTS

1.0 SUMMARY

2.0 INTRODUCTION

3.0 ASSESSMENT STANDARDS

- 3.1 PPG24
- 3.2 BS8233
- 3.3 BS4142
- 3.4 Other criteria

4.0 POTENTIAL NEW NOISE SOURCES TO BE INTRODUCED

5.0 SURVEY DETAILS

- 5.1 Site times and Personnel
- 5.2 Instrumentation
- 5.3 Measurement Positions
- 5.4 Survey Conditions

6.0 RESULTS AND DISCUSSIONS

- 6.1 Basic Results
- 6.2 Discussion of Results, Feasibility and Mitigation
- 6.3 Vibration

7.0 CONCLUSIONS/RECOMMENDATIONS

Appendix 1: Definition of Acoustic Terms Appendix 2: Raw Data

1.0 SUMMARY

The general noise climate appeared to be normal and representative with the exception of the building works being carried out at the nearby BAM construction site approximately 50 metres from measurement position 1 (see 5.3 of this report). This was audible during anytime from (circa) 08:00 to 17:00 on Friday 6th January, and 08:00 to 12:30 on Saturday 7th January. However, this was not the dominant noise source and was relatively irregular and intermittent.

At measurement position 1 / façade facing Avenue Road the dominant noise source was road traffic traversing Avenue Road. This continued to be the case for the duration of the 24 hour survey.

Measurement position 2 was more significantly affected by the construction noise, however the dominant noise source during the day was still road traffic traversing Avenue Road. During the night (23:00 - 07:00) it became apparent that some form of mechanical plant is situated on the roof of the property immediately behind the existing building and it appears to run 24 hours. It was not possible to confirm this during the day due to the masking effect of the traffic noise.

In the absence of the technical data for the proposed car lift we have shown that a car lift noise level of up to $\underline{68dB \ L_{Aeq}}$ will mean that noise arriving at the nearest residential property due to the car lift's operation will not exceed the existing background noise levels monitored (L_{A90}).

A P Frisby

A R Raymond

2.0 INTRODUCTION

ADC was asked to carry out a 24 hour survey at 62 Avenue Road, St John's Wood to assess the affect of the proposed machinery due to be installed in a new build residential property at the referenced address.

This report begins by summarising assessment standards and, where appropriate, discusses alternative interpretations.

After a brief statement of survey details we discuss basic results and the resulting assessment. The feasibility of achieving the criteria is discussed along with any recommendations for mitigation.

3.0 ASSESSMENT STANDARDS

3.1 <u>PPG24</u>

The site is situated amongst an existing established residential area. We would therefore argue that the NEC categories of PPG24 do not really apply and, in this context, PPG 24 specifically cites BS4142 and BS8233.

3.2 <u>BS8233</u>

BS8233 is a wide-ranging document which covers many aspects of noise in buildings but includes recommended "Reasonable" and "Good" noise climates in its Table 5. Of most significance to environmental noise assessments are the levels given for living rooms and bedrooms.

The significant aspects are summarised below:

Environment	Criterion	Implied Limit					
Noise	Ontenon	L _{Aeq}	L _{Aeq}	L _{Amax}			
		(0700-2300)	(2300-0700)	(2300-0700)			
Living Rooms	Good Conditions	30dB					
	Reasonable Conditions	40dB					
Bedrooms	Good Conditions		30dB	45dB			
	Reasonable Conditions		35dB	45dB			

Note that the standard accepts the widely used rule of thumb that, for a partly open window, the levels just outside will be 15dB higher than those just inside. In other words the reasonable daytime conditions and good night time conditions are consistent with PPG24. The dB L_{Amax} condition is equivalent to a level of 60 dB L_{Amax} just outside.

Note that BS8233 followed on from the World Health Organisation Guide to Community Noise (WHO Guide) with near-identical criteria presented. BS8233 does not explicitly specify the time period for the criteria but they are often taken as being 0700 to 2300 for daytime and 2300 to 0700 for night time

In quiet environments it will tend to be too lenient and in noisy environments it will tend to be too harsh. It is a useful indicator, however, of the basic character of the existing noise climate.

3.3 <u>BS4142</u>

BS 4142 was updated in 1997. The standard is very complicated but, basically, it describes methods for determining;

a) external noise level 'from factories, industrial premises or fixed installations and sources of an industrial nature in commercial premises'.

b) the background noise level, measured in the absence of any noise from the source in question, etc.

An involved method of comparing a) and b) is then described, the results of which lead to conclusions as to the likelihood of complaints.

First the measured noise level is corrected for the effect of the residual noise (a slightly different index to the background noise but still a descriptor of the noise which exists without the source in question). Secondly, and where applicable it is corrected for its duration, and any difference between measurement position and receiver position. This leads us to the specific noise level.

Where the noise source produces a tonal element, i.e. whines, hisses, hums, etc. then for assessment purposes, BS:4142 recommends that 5 dB(A) is added to the measured (or calculated) noise level. Similarly, where the noise source produces impulsive noises, for example bangs, clicks, clatters, etc. or where the noise is intermittent, BS:4142 recommends that 5 dB(A) is added. If both characteristics are present, only one adjustment is made and this is called the feature correction.

The Specific Noise Level and the feature correction leads us to the Rating Level. It is this that we compare with the background noise level.

According to BS: 4142, a Rating Level of:

a) 10 dB(A) or more above background is a positive indication that complaints are likely.

b) 5 dB(A) above background is of marginal significance.

c) 10 dB(A) below background is a positive indication that complaints are unlikely.

3.4 Other Criteria

We are not aware of any other criteria associated with this project.

4.0 POTENTIAL NEW NOISE SOURCES TO BE INTRODUCED

It is understood that the only equipment to be installed within the new development that is of any significance from a noise perspective is a car lift ("4 column high rise car parking platform").

This car lift is to be situated on the front façade of the development facing Avenue Road close to where the garage in the existing building is situated.

Noise data for this specific model of lift has not been made available as of yet and we will discuss this in more detail further on in the report.

Also proposed is an internal lift, but due to its location within the dwelling, this will not affect the external noise climate.

We have been informed that other than this, no further external noise sources are proposed, other than standard residential appliances such as boiler flues, and kitchen and bathroom extracts that you would find in any standard household

5.0 SURVEY DETAILS

5.1 Site times and Personnel

The survey was conducted during a continuous 24 hour period from 12:00pm Friday 6th January to 12:00pm Saturday 7th January by Andrew Frisby of ADC Acoustics Ltd.

5.2 Instrumentation

Instrumentation used was a Norsonic Nor-140. This is a precision grade sound level meter which holds a current calibration certificate and which was field-calibrated as necessary. The meter was set up to measure samples of varying duration in terms of dB L_{eq} , dB L_{max} and dB L_{90} in overall A-weighted terms, and in octave bands across the frequency range. See Definition of Acoustic Terms in the attached appendix.

5.3 Measurement Positions

The measurements are shown on the plan below.

The microphone was 1.5 m above ground and well away from other reflecting surfaces.

Measurement position 1 was approximately 6m from the front façade of the existing building at 62 Avenue Road. We will use this position to represent the noise levels at the nearest residential properties (both right and left from 62 Avenue Road).

Measurement position 2 was in the back garden of the existing building to monitor any unknown noise sources to which the rear façade may be exposed to.

5.4 Survey Conditions

Daytime weather conditions were as follows :-

:	none, dry roads
:	50% moderate
:	8 -10 Celsius
:	less than 5m/s, plus occasional gusts above this.
	:

Evening weather conditions were as follows :-

Rain	:	none, dry roads
Cloud	:	50% moderate
Temperature	:	8 - 10 Celsius
Wind	:	less than 5m/s, plus occasional gusts above this.

Night time weather conditions were as follows :-

Rain	:	none, dry roads
Cloud	:	50% moderate
Temperature	:	7 - 9 Celsius
Wind	:	less than 5m/s, plus occasional gusts above this.

6.0 RESULTS AND DISCUSSIONS

6.1 Basic Results

The general noise climate appeared to be normal and representative with the exception of the building works being carried out at the nearby BAM construction site approximately 50 metres from measurement position 1. This was audible during anytime from (circa) 08:00 to 17:00 on Friday, and 08:00 to 12:30 on Saturday. However, this was not the dominant noise source and was relatively irregular and intermittent. It had no impact on the L_{A90} index which is the main one used in the calculations. See Definition of Acoustic Terms in Appendix 1.

At measurement position 1 / Façade facing Avenue Road the dominant noise source was road traffic traversing Avenue Road. This continued to be the case for the duration of the 24 hour survey.

Measurement position 2 was more significantly affected by the construction noise, however the dominant noise source during the day was still road traffic traversing Avenue Road. During the night (23:00 - 07:00) it became apparent that some form of mechanical plant is situated on the roof of the property immediately behind the existing building and it appears to run 24 hours. It was not possible to confirm this during the day due to the masking effect of the traffic noise. The L_{A90} readings from 23:00 to 07:00 are likely to be indicative of the noise levels affecting the rear façade due to this machinery, although due to the inner-city location of the site the background noise will also be made up of a significant proportion of distant traffic noise.

In both positions, emergency sirens severely affected the Lmax levels, and in some instances, the meter had to be moved slightly to allow residents of the existing building to enter/exit with their vehicles, which also had a similar effect. To combat this, we have calculated a logarithmic average of the L_{Amax} levels monitored.

Basic results for background/ambient noise were as follows:-

Measurement Position 1:

Time:	Comments:	Index	dB(A)
07:00 - 23:00		Leq	62
	Daytime Average	Lmax	84
		L90	52
23:00 - 07:00		Leq	57
	Nighttime Average	Lmax	84
		L90	44

Measurement Position 2:

Time:	Comments:	Index	dB(A)
07:00 - 23:00		Leq	48
	Daytime Average	Lmax	64
		L90	45
23:00 - 07:00		Leq	45
	Nightime Average	Lmax	62
		L90	42

As discussed in 4.0 we do not have the noise data for the specific lift type proposed.

Instead, we will look at the existing background noise levels (L_{A90}) at the nearest neighbour's location (measurement position 1) and work backwards to set allowable levels of noise that will not exceed these background levels at the nearest residential property.

Car Lift Assessment:

Car-Lift Daytime Assessment (07:00 - 23:00)								
Allowable increase on background noise at nearest residential property	0 dB(A)							
Lowest recorded L90 (Background noise) at nearest residential property	46 dB L _{A90}							
Approximate distance of proposed car lift to nearest residential property façade	10 m							
Distance correction	20 dB							
Distance correction + L90	66 dB L _{A90}							
Assumed running time duration of car lift per single cycle	20 sec							
Assumed number of operations per hour	4							
Allowable noise level of car-lift @1m after distance correction and time weighting	82 dB L _{Aeq}							
Is noise source intermittent/tonal?	Yes							
Feature correction for intermittant source	5 dB							
Allowable noise level of car lift @ 1m (time weighted, feature & distance corrected)	77 dB L _{Aeq}							

Car-Lift Nighttime Assessment (23:00 - 07:00)								
Allowable increase on background noise at	0 dB(A)							
nearest residential property	0 00(//)							
Lowest recorded L90 (Background noise)	41 dB L							
at nearest residential property								
Approximate distance of proposed car lift to	10 m							
nearest residential property façade	TO III							
Distance correction	20 dB							
Distance correction + L90	61 dB L _{A90}							
Assumed running time duration of car lift	20,000							
per single cycle	20 560							
Assumed number of operations per 5	1							
minutes	Ι							
Allowable noise level of car-lift @1m after	72 dB L .							
distance correction and time weighting	75 UD L _{Aeq}							
Is noise source intermittent/tonal?	Yes							
Feature correction for intermittant source	5 dB							
Allowable noise level of car lift @ 1m (time	68 dB l							
weighted, feature & distance corrected)	00 UD LAeq							

6.2 Discussion of Results, Feasibility and Mitigation

As can be seen from the above tables, the lowest allowable noise level for the proposed car lift occurs during the 23:00 to 07:00 period; therefore this becomes the figure we shall use: $68 \text{ dB } L_{Aeq}$ at 1m.

Provided the specific model of car lift to be installed does not exceed 68 dB L_{Aeq} at 1m this will mean that noise arriving at the nearest residential property due to the car lift's operation <u>will not</u> exceed the existing background noise levels monitored (The general noise climate appeared to be normal and representative with the exception of the building works being carried out at the nearby BAM construction site approximately 50 metres from measurement position 1 (see 5.3 of this report). This was audible during anytime from (circa) 08:00 to 17:00 on Friday 6th January, and 08:00 to 12:30 on Saturday 7th January. However, this was not the dominant noise source and was relatively irregular and intermittent.

At measurement position 1 / façade facing Avenue Road the dominant noise source was road traffic traversing Avenue Road. This continued to be the case for the duration of the 24 hour survey.

Measurement position 2 was more significantly affected by the construction noise, however the dominant noise source during the day was still road traffic traversing Avenue Road. During the night (23:00 - 07:00) it became apparent that some form of mechanical plant is situated on the roof of the property immediately behind the existing building and it appears to run 24 hours. It was not possible to confirm this during the day due to the masking effect of the traffic noise.

In the absence of the technical data for the proposed car lift we have shown that a car lift noise level of up to $\underline{68dB \ L_{Aeq}}$ will mean that noise arriving at the nearest residential property due to the car lift's operation will not exceed the existing background noise levels monitored (L_{A90}).

6.3 Vibration

During the 24 hour survey there were no instances where vibration from nearby tube/train lines was noted. We therefore assume that vibration from external sources need not be considered.

With regards to the introduction of new vibration sources we recommend that the proposed car-lift is properly fitted with anti-vibration mounts to minimise the risk of any transference of vibrational energy to the surrounding structure / existing noise climate.

7.0 CONCLUSIONS/RECOMMENDATIONS

At measurement position 1 / façade facing Avenue Road the dominant noise source was road traffic traversing Avenue Road. This continued to be the case for the duration of the 24 hour survey.

Measurement position 2 was more significantly affected by the construction noise, however the dominant noise source during the day was still road traffic traversing Avenue Road. During the night (23:00 - 07:00) it became apparent that some form of mechanical plant is situated on the roof of the property immediately behind the existing building and it appears to run 24 hours. It was not possible to confirm this during the day due to the masking effect of the traffic noise.

In the absence of the technical data for the proposed car lift we have shown that a car lift noise level of up to $\underline{68dB} L_{Aeq}$ will mean that noise arriving at the nearest residential property due to the car lift's operation will not exceed the existing background noise levels monitored (L_{A90}).

It is also important to note that the calculations were based on the quietest period of the entire night and as such represent a worst-case scenario which is unlikely.

We would suggest that a planning condition along the lines of "...noise impact of any proposed mechanical equipment should be submitted and approved..." would be more than adequate.

Appendix 1

Definition of Acoustic Terms

The Decibel

The decibel is the basic unit of noise measurement and is denoted dB. Technically, it is a means of expressing the difference in noise level between the measured noise and a standard level of noise. Most often the threshold of human hearing is used as the standard reference but is really should be stated. The threshold of human hearing is a sound pressure of 20μ Pa or a sound power of 1pW.

A sound pressure level or SPL should be expressed in dB(re. 20μ Pa). A sound power level or SWL should be expressed in dB(re. 1pW). If the reference levels are omitted, it will often (but not always) be safe to assume that they are referenced to the threshold of human hearing.

A-Weighting and dB(A)

The human hearing system responds differently to different frequencies. The A-weighting system takes account of this by emphasising mid and high frequencies more than low frequencies to give an overall level. An A-Weighted noise level, therefore, reflects the way normal, healthy hearing would perceive the overall level of the noise. The basic unit is dB(A), although other systems of expressing an A-weighted levels are discussed below.

Other weighting systems, such as C-Weighting, denoted dB(C), reflect the human hearing system's response at higher noise levels.

NR and NC Levels

NR curves and NC curves are a series of curves representing noise levels across the frequency range. A given noise climate has an NR level or NC level if it equals a point on the curve at any frequency. They are particularly, although by no means exclusively, used as a means of specifying noise limits in an indoor environment, for instance from mechanical services or traffic noise break-in from the outside. They are typically expressed as NR or NC followed by a number, e.g. NR40, NC55, etc.

Equivalent Continuous Sound Level, Leq

This can be simplistically described as a way of expressing the average noise level.

The unit is dB L_{eq} . For A-weighted levels the unit is dB(A) L_{eq} or, in more modern units, dB L_{Aeq} .

Maximum Level, Lmax

This is the maximum level reached (usually for a fraction of a second) in the measurement period.

The unit is dB L_{max} . For A-weighted levels the unit is dB(A) L_{max} or, in more modern units, dB L_{Amax} .

Statistical (Percentile) Levels, Ln

During a measurement of fluctuating noise, it is often useful to establish the levels exceed for a percentage of the time. L_n is the index representing the level exceeded for n% of the measurement period.

The unit is dB L_n . For A-weighted levels, the unit is dB(A) L_n or, in more modern units, dB L_{An} .

Common examples are as follows :-

dB L_{A90} is the A-weighted level exceeded for 90% of the time and is often used to describe the underlying background noise.

dB L_{A50} is the A-weighted level exceed for 50% of the time. Mathematically, it is the median, another kind of average.

dB L_{A10} is the A-weighted level exceeded for 10% of the time and has traditionally been used to describe the intermittent highs in the noise climate such as passing cars or aircraft.

Frequency Analysis

Here the audible frequency range is divided up into bands and the noise level is expressed in each frequency band from low pitches to high pitches.

Octave Band analysis is where the frequency range is divided into 8 bands from 63 Hz to 8kHz, or sometimes into 10 bands from 31.5 Hz to 16kHz.

1/3 Octave Band analysis provides more detailed subdivision into 24 bands from 50 Hz to 10kHz, or sometimes into 30 bands from 20Hz to 20kHz.

Narrow Band analysis takes this further with the possibility of many thousands of bands, possibly only 1Hz wide, or even less.

In all types of frequency analysis, the level in each band can be expressed in terms of L_{eq} , L_{max} , L_n , etc. as defined above.

Sound Insulation

Sound insulation is best expressed across the frequency range in octave bands or third octave bands. Often, however, in known environments such as domestic sound insulation and speech privacy, it is simpler to express the sound insulation as a single figure. A higher value means better sound insulation.

The most common ways are dB D_{nTw} , dB R_w and dB_(mean 100-3150Hz). The first two are ways of expressing average sound insulation, weighted to account for speech frequencies. The third is simply an un-weighted mean value.

The Building Regulations Approved Document E (ADE) routinely refer to D_{nTw} + C_{Tr} . The C_{Tr} term is a negative number which is used to modify the D_{nTw} value for the insulation properties at lower frequencies.

ADE also uses the L_{nTw} index for impact sound transmission. It is a measure of the level of noise in the room below a room in which a standard tapping machine is being used. It represents the impact sound transfer such as footfall noise, scraping chairs, washing machines, etc. A lower value means better insulation.

Reverberation Time

The most common measure of Reverberation Time is, effectively the time taken for sound from a steady source to decay by 60 dB after it has been abruptly cut off. In practice it is often difficult to measure a 60 dB decay and so decays of 30 dB, 20 dB, or even 10 dB are often used and adjusted pro rata, although the exact measure is not quite the same.

Reverberation Time is generally expressed as RT in seconds. We may, if we are being precise, add subscripts 60, 30, etc to show whether the basis of the measure is 60 dB decay, 30 dB decay, etc. E.g. the $RT_{60} = 0.52s$, the $RT_{30} = 0.49s$, etc.

RT can be expressed in octave bands or 1/3 octave bands across the frequency range, or at central frequencies such as 500 Hz or 1kHz.

Appendix 2

Raw Data

Position 1											
Time:	Comments:	Index	dB(A)	63	125	250	500	1k	2k	4k	8k
		Lea	62	70	61	57	57	59	54	45	37
12.30 - 13.00		Imax	79	93	86	83	69	70	70	71	67
12.00 10.00		1 90	52	61	52	10	47	/8	/3	3/	22
			52	71	52	+J F7	=7 57	+0 E0	40 EE	45	22
10.00 10.00		Leq	02	/1	04	57	37	59	55 70	45	30
13:00 - 13:30		Lmax	81	89	86	76	11	76	72	70	63
		L90	53	62	53	50	49	50	46	36	23
	duration 10 minutes measured lovel	Leq	63	71	66	58	58	60	56	47	37
13:30 - 14:00	accumed to be consistent for 20	Lmax	77	89	87	75	73	71	68	61	55
	assumed to be consistent for 50	L90	54	63	54	51	50	51	47	37	24
		Lea	62	70	62	57	57	59	55	46	37
14:00 - 14:30		Lmax	80	89	81	77	78	72	74	67	61
		190	53	62	54	50	49	50	45	35	23
			62	71	65	59	57	50	55	47	20
15.00 15.00		Ley	70	71	00	00	75	39	55	47	59
15.00 - 15.30		Lmax	79	94	89	80	/5	12	67	64	64
		L90	53	62	54	51	49	49	44	35	21
		Leq	62	71	62	58	57	59	55	47	40
15:30 - 16:00		Lmax	80	91	83	86	78	72	65	65	66
		L90	53	63	55	51	49	50	46	36	24
	1 omorgonov vohiolo siron along read	Leq	62	70	63	57	58	59	54	46	37
16:00 - 16:30	r emergency venicle siren along road	Lmax	89	86	87	79	88	86	72	67	66
	during measurement duration	L90	52	62	54	50	48	49	44	34	22
		Lea	61	69	61	58	57	58	53	44	35
17.00 - 17.30		Imax	79	88	81	78	78	71	69	65	58
17.00 17.00		1 90	52	62	53	51	10	/18	43	32	21
		L90	52	70	55	51	43	40 50	43	32	21
17.00 10.00		Leq	02	70	03	60	57	59	54	45	37
17.30 - 18.00		Lmax	81	8/	84	86	11	/1	68	68	59
		L90	52	62	53	49	48	49	43	33	21
	1 emergency vehicle siren along road	Leq	66	71	67	60	58	63	60	48	37
18:00 - 18:30	during measurement duration	Lmax	94	90	93	88	79	93	88	77	57
	daning mododromont datation	L90	52	63	52	49	48	49	44	32	21
		Leq	62	70	65	60	58	59	54	46	37
19:00 - 19:30		Lmax	81	92	89	84	79	73	71	65	58
		L90	52	59	51	48	47	49	43	32	20
		Lea	61	67	62	58	56	59	54	45	35
19.30 - 20.00		Imay	78	83	84	78	74	73	66	66	57
10.00 20.00			50	50	50 50	40	10	10	40	20	20
		190	52	09	52	49	40	49	43	32	20
		Leq	01	00	60 70	30	00	20	53	43	30
20:00 - 20:30		Lmax	/4	86	/8	/1	69	70	64	61	67
		L90	49	58	50	47	46	46	40	28	17
		Leq	60	67	59	54	54	57	52	42	33
21:00 - 21:30		Lmax	76	88	79	76	74	72	65	64	58
		L90	49	56	48	46	45	46	40	27	16
		Leq	63	68	63	62	60	59	54	47	40
21:30 - 22:00	User generated Lmax. Disregard.	Lmax	94	99	92	95	92	89	83	80	74
		L90	48	55	48	46	44	45	39	27	18
		Lea	62	67	60	55	58	60	53	43	34
22.00 - 22.30	1 emergency vehicle siren along road	Imay	01	87	86	77	88	an	77	66	50
22.00 - 22.00	during measurement duration		/0	56	40	17	15	10	20	27	10
		1.90	49	00	49	4/	40	40	59	40	10
00.00 00.00	1 emergency vehicle siren along road	Leq	03	10	58	53 70	55	10	55	43	32
23:00 - 23:30	during measurement duration	Lmax	92	91	85	/3	86	91	84	68	55
	,	L90	47	55	47	45	44	44	38	26	18
		Leq	58	65	56	53	53	56	51	40	31
23:30 - 00:00		Lmax	76	85	81	82	71	68	64	54	57
		L90	47	54	47	44	43	44	37	25	18
		Leq	59	64	55	52	54	56	52	40	31
00:00 - 00:30	User generated Lmax. Disregard.	Lmax	88	81	74	70	87	84	79	61	64
	5	L90	46	53	47	44	43	43	37	24	18
	n						-				-

		Leq	55	60	53	49	50	52	48	38	28
01:00 - 01:30		Lmax	74	81	77	70	72	69	65	62	57
		L90	47	51	51	45	43	41	42	34	23
		Leq	55	62	53	50	50	52	47	43	35
01:30 - 02:00		Lmax	78	83	78	73	75	69	71	70	64
		L90	44	51	44	42	40	40	34	25	17
		Lea	54	61	50	48	49	52	47	41	30
02:00 - 02:30		Lmax	72	81	67	63	68	68	63	59	51
		L90	44	50	44	42	40	40	34	26	16
		Leq	-	-	-	-	-	-	-	-	-
03:00 - 03:30	Corrupted Measurement - Leq and	Lmax	-	-	-	-	-	-	-	-	-
	Lmax	L90	43	50	44	42	40	39	32	24	16
		Lea	54	58	50	47	48	50	45	46	35
03:30 - 04:00		Lmax	73	75	70	65	68	67	63	69	57
		L90	42	49	43	41	39	39	32	24	16
		Lea	53	60	51	47	47	50	46	44	33
04:00 - 04:30		Lmax	71	80	74	68	67	67	62	62	53
		L90	42	49	44	41	39	39	32	24	17
		Lea	54	62	53	48	48	51	46	38	29
05:00 - 05:30		Lmax	71	80	77	69	69	66	63	60	56
		L90	41	49	43	40	38	37	30	22	16
		Lea	52	61	49	46	47	49	45	37	27
05:30 - 06:00		Lmax	69	80	67	61	62	66	62	56	47
00.00 00.00		1.90	42	49	43	41	39	38	31	22	16
		Lea	57	64	55	51	51	54	49	41	33
06:00 - 06:30		Imax	76	85	78	75	71	70	69	65	59
		1.90	43	50	44	42	40	39	33	25	17
		Lea	58	64	57	53	53	55	50	41	32
07:00 - 07:30		Imax	76	85	80	79	75	68	66	59	52
		1.90	46	52	46	44	43	42	36	27	18
		Lea	60	71	61	56	55	57	53	44	34
07:30 - 08:00	Construction work	Imax	73	88	76	69	72	66	63	64	58
		1.90	53	61	55	52	49	49	45	37	24
		Lea	61	69	61	58	56	57	54	46	37
08:00 - 08:30	Construction work	Imax	77	88	85	78	67	68	71	67	58
		L90	53	60	53	52	49	48	44	36	22
		Lea	61	70	62	58	56	58	54	46	37
09:00 - 09:30	Construction work	Lmax	78	91	90	81	68	68	67	66	64
		L90	52	60	53	51	48	49	44	36	22
		Lea	61	70	62	56	55	58	53	45	35
09:30 - 10:00	Construction work	Lmax	75	86	84	74	69	68	66	67	56
		L90	52	62	54	51	48	48	44	36	24
	Battery change - measurement	Lea	61	69	61	56	56	58	53	45	37
10:00 - 10:30	duration 10 minutes - measured level	Imax	72	84	76	70	69	67	62	62	60
	assumed to be consistent for 30	1.90	52	61	53	49	48	49	44	36	25
	minutoc	Lea	61	69	60	56	56	58	53	44	34
11:00 - 11:30	Construction work	1 max	78	79	75	69	69	73	74	64	56
		L90	52	61	54	52	48	49	43	37	21
		Lea	62	70	63	57	56	59	54	45	35
11:30 - 12:00	Construction work	Imax	74	85	85	68	67	68	64	66	57
1.1.00		1.90	53	63	54	51	49	50	45	35	23
			-		-	-	-	-	-		
12.00 - 12.30	Battery change - measurement	L may		-			-	-			<u> </u>
12.00 - 12.00	corrupted	1 90						-			+
L		L90	-	-	-	-	-	-	-	-	

Position 2											
Time: Comments: Index dB(A) 63 125 250 500 1k 2k	4k 8k										
Leq 49 57 54 47 46 44 40	32 20										
14:30 - 14:40 Lmax 61 68 68 63 58 51 53	51 34										
L90 46 53 51 44 43 42 37	29 17										
Leq 48 58 54 46 44 43 39	32 21										
14:40 - 14:50 Lmax 49 61 56 48 45 44 40	33 23										
L90 47 57 52 45 43 43 38	31 19										
Leq 49 58 53 47 45 44 40	41 38										
16:30 - 16:40 1 emergency venicle siren along road Lmax 69 71 67 65 55 56 57	66 62										
L90 46 54 50 45 43 42 36	28 19										
Leq 49 58 52 46 46 44 41	32 21										
16:40 - 16:50 Lmax 61 73 60 55 60 55 55	47 34										
L90 46 54 50 44 43 42 36	28 19										
Leq 47 57 52 45 44 44 38	30 22										
18:30 - 18:40 Lmax 57 71 63 55 53 51 50	42 35										
L90 45 53 49 43 42 41 35	27 18										
Leg 49 57 51 45 46 39	30 23										
18:40 - 18:50 1 emergency vehicle siren along road Lmax 68 73 62 55 64 67 57	57 47										
during measurement duration L90 45 52 49 43 41 41 35	27 17										
Leg 46 54 49 44 43 42 37	29 20										
20:30 - 20:40 Lmax 57 66 57 60 52 51 50	44 41										
L90 44 51 46 42 41 40 34	26 16										
Leg 47 57 50 44 43 43 38	29 22										
20:40 - 20:50 Lmax 58 74 63 54 56 53 48	39 34										
	26 17										
Leg 52 57 52 53 51 47 39	28 21										
22:30 - 22:40 Lmax 70 73 68 73 70 64 55	43 48										
	26 19										
Leg 45 53 51 44 42 42 36	28 20										
22:40 - 22:50 Lmax 55 64 61 52 49 48 47	49 40										
L90 43 49 48 42 40 39 34	26 19										
Leg 48 55 50 46 46 44 37	29 23										
00:30 - 00:40 1 emergency vehicle siren along road Lmax 70 71 63 66 69 67 53	49 39										
during measurement duration L90 43 49 47 43 40 38 34	27 19										
Leg 44 54 49 43 41 40 35	28 21										
00:40 - 00:50 Lmax 56 77 64 52 49 50 42	39 37										
	27 18										
Leg 45 53 50 45 42 40 36	30 23										
02:30 - 02:40 Lmax 56 77 65 51 47 49 44	40 34										
	27 19										
	30 23										
02:40 - 02:50	47 44										
	27 19										

		Leq	45	51	49	47	42	39	35	29	21
04:30 - 04:40		Lmax	62	70	56	60	62	56	49	41	38
		L90	43	47	46	45	40	37	33	27	19
		Leq	43	51	48	45	40	37	34	29	21
04:40 - 04:50		Lmax	49	67	55	49	43	44	39	34	30
		L90	42	46	46	44	39	36	33	27	19
		Leq	45	53	49	47	43	38	34	28	20
06:30 - 06:40		Lmax	58	72	62	61	59	47	41	36	35
		L90	42	47	46	43	39	36	32	27	19
		Leq	44	51	49	45	42	39	36	29	21
06:40 - 06:50		Lmax	56	65	58	57	48	48	51	39	36
		L90	42	46	46	43	39	36	32	27	19
		Leq	48	60	52	46	45	43	39	33	28
08:30 - 08:40	Construction work	Lmax	60	69	65	56	50	53	53	51	49
		L90	46	54	51	45	44	41	37	29	19
		Leq	49	58	52	46	45	45	43	33	25
08:40 - 08:50	Construction work	Lmax	63	69	58	54	50	59	59	48	38
		L90	46	54	50	45	44	41	37	30	18
		Leq	48	57	51	46	45	43	41	36	28
10:30 - 10:40	Construction work	Lmax	62	71	62	53	53	51	56	56	50
		L90	45	53	49	45	43	41	36	27	18
		Leq	48	58	52	47	45	43	39	31	22
10:40 - 10:50	Construction work	Lmax	58	71	64	55	53	52	52	48	37
		L90	45	54	49	45	43	41	36	28	18
		Leq	48	58	52	47	45	43	39	32	25
11:00 - 11:10	Construction work	Lmax	63	80	64	60	61	54	55	51	43
		L90	45	54	50	45	43	40	36	27	18
		Leq	50	59	54	52	48	44	39	32	25
11:10 - 11:20	Construction work	Lmax	66	77	66	70	65	56	54	50	45
		L90	46	54	50	46	44	41	36	28	18