GEO-ENVIRONMENTAL & GEOTECHNICAL ASSESSMENT (GROUND INVESTIGATION) REPORT

FOR

1A HIGHGATE ROAD LONDON NW5 1JY

Specialists in the investigation & reclamation of brownfield sites

Report Title:	Geo-environmental & Geotechnical Assessment Report for 1A Highgate Road, London			
Report Status:	Final v1.1			
Job No:	P9602J896			
Date:	25 August 2016			
Quality Contro	l: Previous Release			
Version		Date	Issued By	
V1.0		24 August 2016	RS	
Prepared by: JOMAS ASSOCIATES LTD For IDM LAND Prepared by Marc Williams BSc AIEMA Principal Geo-environmental Engineer				
Checked by Peter Swettenham BSc (hons) CEnv Principal Geotechnical Engineer				
Approved by Roni Savage BEng (Hons), MSc, SiLC, CGeol, MCIWM, FGS Technical Director				
	Should you have a	ny queries relating to this rep	ort, please contact	

Roni Savage

Jomas Associates Ltd

0843 289 2187

🖂 info@jomasassociates.com

CONTENTS

Page

EX	ECUTIVE SUMMARY1
1	INTRODUCTION
1.1	Terms of Reference4
1.2	Proposed Development4
1.3	Objectives4
1.4	Scope of Works5
1.5	Supplied Documentation5
1.6	Limitations5
2	SITE SETTING
2.1	Site Information7
2.2	Desk Study Overview7
3	GROUND INVESTIGATION
3.1	Rationale for Ground Investigation9
3.2	Scope of Ground Investigation9
3.3	Sampling Rationale10
3.4	Sampling Limitations11
3.5	Laboratory Analysis11
4	GROUND CONDITIONS
4.1	Soil
4.2	Hydrogeology13
4.3	Physical and Olfactory Evidence of Contamination14
5	RISK ASSESSMENT – ANALYTICAL FRAMEWORK
5.1	Context and Objectives15

5.2	Analytical Framework – Soils15
5.3	BRE16
5.4	Analytical Framework – Groundwater and Leachate16
5.5	Site Specific Criteria18
6	GENERIC QUANTITATIVE RISK ASSESSMENT19
6.1	Screening of Soil Chemical Analysis Results – Human Health Risk Assessment19
6.2	Statistical Analysis21
6.3	Asbestos in Soil21
6.4	Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth
6.5	Screening for Water Pipes22
6.6	Waste Disposal23
7	SOIL GAS RISK ASSESSMENT
7.1	Soil Gas Results24
7.2	Screening of Results24
8	SUMMARY OF RESULTS
8.1	Risk Assessment - Land Quality Impact Summary26
8.2	Review of Pollutant Linkages Following Site Investigation27
9	GEOTECHNICAL ENGINEERING RECOMMENDATIONS
9.1	Ground Investigation Summary29
9.2	Geotechnical Data Summary29
9.3	Geotechnical Data Summary31
9.4	Undrained Shear Strength31
9.5	Building Near Trees
9.6	Foundations
9.7	Concrete in the Ground

9.8	Ground Floor Slabs	33
9.9	Excavations	34
9.10	Groundwater Control	34
10	REFERENCES	.35

APPENDICES

APPENDIX 1 – FIGURES

- **APPENDIX 2 EXPLORATORY HOLE RECORDS**
- **APPENDIX 3 CHEMICAL LABORATORY TEST RESULTS**
- **APPENDIX 4 GEOTECHNICAL LABORATORY TEST RESULTS**
- **APPENDIX 5 STATISTICAL ANALYTICAL RESULTS**

APPENDIX 6 - SOIL GAS MONITORING TEST RESULTS

EXECUTIVE SUMMARY

IDM Land commissioned Jomas Associates Ltd ('JAL') to undertake a Geo-environmental and Geotechnical ground investigation at the site 1A Highgate Road, London.

The principle objectives of the study were as follows:

- To determine the nature and where possible, the extent of contaminants potentially present at the site;
- To establish the presence of significant pollutant linkages, in accordance with the procedures set out within the Environment Agency (EA) report R&D CLR11 and relevant guidance within the National Planning Policy Framework (NPPF);
- To assess whether the site is safe and suitable for the purpose for which it is intended, or can be made so by remedial action; and,
- To obtain geotechnical parameters to inform preliminary foundation design.

It should be noted that the table below is an executive summary of the findings of this report and is for briefing purposes only. Reference should be made to the main report for detailed information and analysis.

	Site History and Ground Investigation		
Desk Study Overview	A Desk Study report has been produced for the site by others (GeoSmart) and provided for information. A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.		
	A review of historical OS maps provided within the report indicates the presence of buildings (unidentified, possibly commercial) within the site from at least 1871. At this time a portion of the site is also comprised of garden areas from adjacent residential properties. By 1915 the site is reported to be occupied by a single building which occupies the majority of the site (including the former garden areas). This building is identified over subsequent mapping editions as a Welding Works, Engineering Works, and a Works, although no further changes in mapping data are noted.		
	The surrounding area is reported to have been utilised for a combination of residential and commercial land uses, with uses of note in the local area including a Chemical Warehouse and a Railway.		
	The report notes the site to be directly underlain by solid deposits of the London Clay Formation, which is identified as unproductive. There are also no source protection zones or groundwater abstractions reported within 500m of the site.		
	The report identifies no significant surface water features within 250m of the site, and considers controlled waters to represent only a minor receptor.		
	The report considers the site to present an overall low risk, in view of the proposed development (at the time of writing) which states the site to be overlain by hardstanding. The report recommends a watching brief be undertaken during construction works.		
Intrusive	The ground investigation was undertaken on 27 July, and consisted of the following:		
Investigation	• 4 No. window sampling boreholes, drilled up to 4m below ground level (bgl), with associated in situ testing and sampling;		
	• 3 No. monitoring wells to depths of up to 4m bgl to permit return monitoring;		
	• 5 No. hand excavated trial pits, undertaken to depths of up to 1.2m bgl;		
	Laboratory analysis for chemical and geotechnical purposes,		

	Site History and Ground Investigation		
Ground Conditions	The results of the ground investigation revealed a ground profile comprising Made Ground over deposits of clay.		
	Groundwater was not encountered during the intrusive works. During return monitoring, groundwater was reported at depths of between 3.29m to 3.89m bgl.		
Environmental Considerations	Following generic risk assessments and statistical analysis, individual elevated concentrations of Arsenic and Lead were reported.		
	The results of statistical analysis indicated the upper ninety fifth percentile value for arsenic to not exceed the respective criteria. Consequently, the concentrations of Arsenic are not considered to present a significant risk to human health.		
	While the upper ninety fifth percentile value for Lead was noted to exceed the criteria, this was indicated to be representative of an isolated hotspot within the site, as opposed to the underlying soil conditions within the site.		
	Formalised development proposals are currently unavailable. In view of the lack of significant controlled water receptors identified (with the site directly underlain by solid deposits of the London Clay), where the area of the hotspot (WS2 & 3) is to be overlain by building footprint or hardstanding, no formal remedial measures will be required, as the covering will act as a suitable barrier.		
	Should the area fall within an area of proposed soft landscaping, the use of a capping layer will be required, comprising a minimum 600mm imported clean topsoil, laid over a geotextile membrane. Alternatively, the samples in question may be submitted for bioavailbility testing to provide an indication of the substances ability to impact human health.		
	No other contaminants were reported above their respective criteria.		
	No asbestos fibres were detected in the samples analysed in the laboratory.		
	No significant controlled water receptors were identified from the desk study (undertaken by others).		
	The results of soil gas monitoring undertaken to date indicate no formal gas protection measures to be required.		
	As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.		
Geotechnical Considerations	Foundations should not be formed in either the Made Ground or the Topsoil due to the unacceptable risk of total and differential settlement.		
	It should be noted that the demolition and removal of existing structures, foundations and services may increase the depth of Made Ground on the site.		
	It is likely that traditional shallow foundations would be appropriate to support the proposed structure. However, the location of previous, existing and proposed trees must be taken into consideration in the design of foundations.		
	Using the geotechnical testing obtained (summarised in Table 9.1) and with reference to		

Site History and Ground Investigation				
	NHBC Chapter 4.2 it can be seen that a minimum founding depth of 1. 5m will be required.			
	Based on the findings of the investigation, it is considered that traditional strip footings, formed at a depth of 2m bgl within the underlying clay, could be designed with an allowable bearing pressure of 125kPa. This however does not take into account the distance to and species of any previous, existing and proposed trees, which must be considered.			
	The above comments are indicative only based on limited ground investigation data. Foundations should be designed by a suitably qualified Engineer. Once structural loads have been fully determined a full design check in accordance with BS EN 1997 should be undertaken to confirm suitability of foundation choice.			
	As Made Ground in excess of 600mm thickness has been reported, and to allow for potential volume change within the underlying clay, suspended floor slabs are recommended.			
	The loadings from the suspended floor slab will need to be carried by the foundations, which will need to be designed to not only carry the structural loadings but the additional floor loadings			
	Any groundwater encountered during construction works should be addressed by conventional pumping from a sump.			
	Excavations during the intrusive works, although open for a relatively short period of time remained reasonably stable. However it is recommended that the stability of all excavations should be assessed during construction.			
	Based on the results of chemical testing, the required concrete class for the site is DS-2 assuming an Aggressive Chemical Environment for Concrete classification of AC-1 in accordance with the procedures outlined in BRE Special Digest 1.			

1 INTRODUCTION

1.1 Terms of Reference

- 1.1.1 IDM Land ("The Client") has commissioned Jomas Associates Ltd, to assess the risk of contamination posed by the ground conditions at a site referred to as 1A Highgate Road, London and to provide indicative recommendations for foundation design prior to the redevelopment of the site.
- 1.1.2 A Desk Study has been produced for the site (EnviroSmart, December 2015) and provided for information, followed by an intrusive investigation (detailed in this report).
- 1.1.3 The intrusive investigation was undertaken in accordance with Jomas proposal dated 11 July 2016.

1.2 Proposed Development

- 1.2.1 The proposed development comprises the conversion of the existing warehouses to a residential usage. The ground floor will be predominantly residential, with a small portion remaining in warehouse use. No car parking is proposed.
- 1.2.2 For the purposes of the contamination risk assessment, the proposed development is classified as 'Residential without plant uptake'.
- 1.2.3 For the purpose of geotechnical assessment, it is considered that the project could be classified as a Geotechnical Category (GC) 1 site in accordance with BS EN 1997. GC 1 projects are defined as involving:
 - Small and simple structures.
 - Requiring qualitative investigation and analysis.
 - With negligible risk.
 - Straightforward ground conditions.
 - Routine design and construction methods.
 - No excavation below the water table (unless comparable local experience indicates it will be straightforward).

1.3 Objectives

- 1.3.1 The objectives of Jomas' investigation were as follows:
 - To present a description of the present site status, based upon the published geology, hydrogeology and hydrology of the site and surrounding area;;
 - To provide an assessment of the environmental sensitivity at the site and the surrounding area, in relation to any suspected or known contamination which may significantly affect the site and the proposed development;
 - To conduct an intrusive investigation, to determine the nature and extent of contaminants potentially present at the site;
 - To establish the presence of significant pollutant linkages, in accordance with the procedures set out within Part IIA of the Environmental Protection Act 1990,

associated statutory guidance and current best practice including the EA report R&D CLR 11; and,

• To obtain geotechnical parameters to inform preliminary foundation design.

1.4 Scope of Works

- 1.4.1 The following tasks were undertaken to achieve the objectives listed above:
 - Intrusive ground investigation to determine shallow ground conditions, and potential for contamination at the site;
 - Undertaking of laboratory chemical and geotechnical testing upon samples obtained;
 - The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions and recommendations.

1.5 Supplied Documentation

1.5.1 A number of reports previously prepared by third parties were supplied to Jomas Associates at the commencement of this investigation. Table 1.1 details the documents supplied:

Table 1.1: Supplied Reports

Title	Author	Reference	Date
EnviroSmart Report	Geosmart Information Ltd	64500R1	December 2015

1.6 Limitations

- 1.6.1 Jomas Associates Ltd has prepared this report for the sole use of IDM Land, in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of JAL. No other third party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.
- 1.6.2 The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless JAL has actual knowledge to the contrary, information obtained from public sources or provided to JAL by site personnel and other information sources, have been assumed to be correct. JAL does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.
- 1.6.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those

measured by the investigation. No liability can be accepted for any such variations in these conditions.

- 1.6.4 Any reports provided to JAL have been reviewed in good faith. JAL cannot be held liable for any errors or omissions in these reports, or for any incorrect interpretation contained within them.
- 1.6.5 This investigation and report has been carried out in accordance with the relevant standards and guidance in place at the time of the works. Future changes to these may require a re-assessment of the recommendations made within this report.
- 1.6.6 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

2 SITE SETTING

2.1 Site Information

2.1.1 The site location plan is appended to this report as Figure 1.

Name of Site	-
Address of Site	1A Highgate Road London N1 5AE
Approx. National Grid Ref.	528923, 185288
Site Area (Approx)	0.07ha
Site Ownership	Unknown
Site Occupation	Currently vacant
Local Authority	London Borough of Camden
Proposed Site Use	Conversion of the existing warehouses to a residential usage with the majority of the ground floor being residential, with a small portion remaining in warehouse use. No car parking is proposed.

Table 2.1: Site Information

2.2 Desk Study Overview

- 2.2.1 A Desk Study report has been produced for the site by others (GeoSmart) and provided for information. A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
- 2.2.2 A review of historical OS maps provided within the report indicates the presence of buildings (unidentified, possibly commercial) within the site from at least 1871. At this time a portion of the site is also comprised of garden areas from adjacent residential properties. By 1915, the site is reported to be occupied by a single building which occupies the majority of the site (including the former garden areas). This building is identified over subsequent mapping editions as a Welding Works, Engineering Works, and a Works, although no further changes in mapping data are noted.
- 2.2.3 The surrounding area is reported to have been utilised for a combination of residential and commercial land uses, with uses of note in the local area including a Chemical Warehouse and a Railway.
- 2.2.4 The report notes the site to be directly underlain by solid deposits of the London Clay Formation, which is identified as unproductive. There are also no source protection zones or groundwater abstractions reported within 500m of the site.
- 2.2.5 The report identifies no significant surface water features within 250m of the site, and considers controlled waters to represent only a minor receptor.
- 2.2.6 The report considers the site to present an overall low risk, in view of the proposed development (at the time of writing) which states the site to be overlain by hardstanding. The report recommends a watching brief be undertaken during construction works.
- 2.2.7 The conceptual site model provided within the report identifies the following potential sources of contamination:

- Potential for inorganic and low volatility organic contaminants to be present within the subsurface soils
- Potential for volatile organic contaminants to be present within the subsurface soils
- · Potential for asbestos containing materials within the subsurface soils
- Potential for dissolved phase contaminants to be present within the shallow groundwater
- Potential for elevated methane to be present within the subsurface soils
- Potential for elevated carbon dioxide to be present within the subsurface soils
- Potential for radon within the subsurface
- Railway line

3 **GROUND INVESTIGATION**

3.1 Rationale for Ground Investigation

- 3.1.1 The site investigation has been undertaken generally in accordance with Contaminated Land Report 11, BS10175, NHBC Standards Chapter 4.1, and other associated Statutory Guidance. If required, further targeted investigations and remedial option appraisal would be dependent on the findings of this site investigation.
- 3.1.2 The soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.1.3 The sampling proposal was designed in order to gather data representative of the site conditions.

3.2 Scope of Ground Investigation

- 3.2.1 The ground investigation was undertaken in part by Jomas, and in part by others. Jomas' element of the investigation was undertaken on 27th July 2016.
- 3.2.2 The work was undertaken in accordance with BS5930 'Code of Practice for Site Investigation' and BS10175 'Investigation of Potentially Contaminated Sites'. All works were completed without incident.
- 3.2.3 The investigation focused on collecting data on the following:
 - Quality of Made Ground/ natural ground within the site boundaries;
 - Presence of groundwater beneath the site (if any), perched or otherwise;
 - Determination of the presence or absence of hazardous ground gases
 - Obtaining geotechnical parameters to allow initial design to take place.
- 3.2.4 A summary of the fieldwork carried out at the site, with justifications for exploratory hole positions, are offered in Table 3.1 below.

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
Window Sample Boreholes	4	WS1 – 4	Up to 4mbgl	Obtain shallow samples for contamination testing. WS1-WS4 positioned for general site coverage. To allow in-situ geotechnical testing.
Monitoring Wells	3	WS1, WS3, WS4	Up to 4mbgl	Combined soil gas and groundwater monitoring wells. WS1 - response zone in Made Ground / Clay

Table 3.1: Scope of Intrusive Investigation

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
				WS3 - response zone in Made Ground / Clay WS4 - response zone in Clay.
Hand dug Trial Pits	≥5	HTP1 - 5	Up to 1.2mbgl	Expose foundations of existing structures. These were undertaken by a third party. With Jomas carrying out an inspection of the pits. At time of inspection 4No.inspection pits had been completed and a fifth was being started.

- 3.2.5 The exploratory holes were completed to allow soil samples to be taken in the areas of interest identified in Table 3.1 above. In all cases, all holes were logged in accordance with BS5930:2015.
- 3.2.6 Exploratory hole positions were measured in using tape and reel, as shown in the exploratory hole location plan presented in Appendix 1. The exploratory hole records are included in Appendix 2.
- 3.2.7 The boreholes were backfilled with the arisings (in the reverse order in which they were drilled) and the ground surface was reinstated so that no depression was left.

3.3 Sampling Rationale

- 3.3.1 Our soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.3.2 The exploratory holes were positioned by applying a combined non-targeted sampling strategy, as well as sample locations positioned with reference to sources identified from the desk study.
- 3.3.3 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs.
- 3.3.4 JAL's engineers normally collect samples at appropriate depths based on field observations such as:
 - appearance, colour and odour of the strata and other materials, and changes in these;
 - the presence or otherwise of sub-surface features such as pipework, tanks, foundations and walls; and,
 - areas of obvious damage, e.g. to the building fabric.

- 3.3.5 A number of the samples were taken from the top 0-1m to aid in the assessment of the pollutant linkages identified at the site. In addition, some deeper samples were taken to aid in the interpretation of fate and transport of any contamination identified.
- 3.3.6 Where groundwater samples are taken, all boreholes were purged of three well volumes prior to obtaining the sample for testing. This removes stagnant groundwater from the monitoring well.
- 3.3.7 Samples were stored in cool boxes (<4°C) and preserved in accordance with laboratory guidance.
- 3.3.8 Disturbed samples were collected for geotechnical analysis.
- 3.3.9 Groundwater strikes noted during drilling, are recorded within the exploratory hole records in Appendix 2.

3.4 Sampling Limitations

3.4.1 All exploratory holes were completed as planned.

3.5 Laboratory Analysis

3.5.1 A programme of chemical laboratory testing, scheduled by JAL, was carried out on selected samples of Made Ground and natural strata.

Chemical Testing

- 3.5.2 Soil samples were submitted to The Environmental Laboratory Ltd, East Sussex (a UKAS and MCerts accredited laboratory), for analysis.
- 3.5.3 The samples were analysed for a wide range of contaminants as shown in Table 3.2 below:

	No. of tests			
Test Suite	Made Ground / Topsoil	Natural		
Basic Suite 3	5	1		
Total Organic Carbon	3	-		
Water Soluble Sulphate	-	1		
Concrete Suite	3	2		
Asbestos Identification	6			

Table 3.2: Chemical Tests Scheduled

3.5.4

The determinands contained in the basic suite are as detailed in Table 3.3 below:

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE
Arsenic	1	Y (MCERTS)	ICPMS
Cadmium	0.5	Y (MCERTS)	ICPMS
Chromium	5	Y (MCERTS)	ICPMS
Chromium (Hexavalent)	0.02	Ν	Colorimetry
Lead	5	Y (MCERTS)	ICPMS
Mercury	0.5	Y (MCERTS)	ICPMS
Nickel	5	Y (MCERTS)	ICPMS
Selenium	1	PENDING	ICPMS
Copper	5	Y (MCERTS)	ICPMS
Zinc	45	Y (MCERTS)	ICPMS
Boron (Water Soluble)	0.5	Ν	ICPMS
pH Value	0.1 units	Y (MCERTS)	Electrometric
Sulphate (Water Soluble)	0.02g/l	Y (MCERTS)	Ion Chromatography
Total Cyanide	1	Y (MCERTS)	Colorimetry
Speciated/Total PAH	0.1/0.4	Y (MCERTS)	GCFID
Phenols	5	Y (MCERTS)	HPLC
Total Petroleum Hydrocarbons (banded)	1	Ν	Gas Chromatography

Table 3.3: Basic Suite of Determinands

3.5.5 To support the derivation of appropriate tier 1 screening values, 3No. samples were also analysed for total organic carbon.

Laboratory test results are summarised in Section 6, with raw laboratory data included in Appendix 3.

Geotechnical Laboratory Testing

- 3.5.6 In addition to the contamination assessment, soil samples were submitted to the UKAS Accredited laboratory of PSL for the following assessment.
 - 8No. Atterberg Limit determinations;
 - 8No. Particle Size Distributions;
- 3.5.7 All testing was in accordance with BS 1377.
- 3.5.8 In addition, the pH and Sulphate results from the chemical suite were used for concrete classification purposes.
- 3.5.9 In-situ geotechnical testing included Standard Penetration Test (SPT) to determine a 'N' value
- 3.5.10 The results of the geotechnical laboratory testing are presented as Appendix 4 and discussed in Section 8 of this report. In-situ test results are included on the exploratory hole logs.

12

4 **GROUND CONDITIONS**

4.1 Soil

4.1.1 Ground conditions were logged in accordance with the requirements of BS5930:2015. Detailed exploratory hole logs are provided in Appendix 2. The ground conditions encountered are summarised in Table 4.1 below, based on the strata observed during the investigation.

Stratum and Description	Encountered from (m bgl)	Base of strata (m bgl)	Thickness range (m)
Screed, brick paving, weak concrete, sandy gravel consisting of brick, flint and concrete. (MADE GROUND).	GL	1.2-1.3	1.2-1.3
Light orange-brown CLAY with flints present at some positions - band of flint in WS1. Mudstone patches in WS4. (LONDON CLAY)	1.0-1.3	1.8-2.5	0.6-1.5
Grey-brown veined blue CLAY. Some fine crystals and orange sandy lenses. (LONDON CLAY)	1.8-2.5	>4.0	>1.5->2.2

 Table 4.1: Ground Conditions Encountered

4.1.2 The BGS indicates that the site is directly underlain by solid deposits of the London Clay. The London Clay is defined by the BGS as comprising of:

"bioturbated or poorly laminated, blue-grey or grey-brown, slightly calcareous, silty to very silty clay, clayey silt and sometimes silt, with some layers of sandy clay"

4.1.3 Consequently the Clay deposits encountered below 1.2m bgl are considered to be London Clay. The colour difference considered to be due to weathering of the upper materials

4.2 Hydrogeology

- 4.2.1 Groundwater was not reported in any of the window sampler holes during the drilling.
- 4.2.2 Groundwater measurements obtained during return monitoring are shown within Table 4.2 below:

Exploratory Hole ID	Depth Encountered (mbgl)	Stratum within which water was observed	Depth of Response Zone (m bgl)	Response Zone Strata
WS1	3.29 – 3.64	London Clay	1.00 - 3.96	Made Ground and London Clay
WS3	3.45 – 3.83	London Clay	1.00 - 3.92	Made Ground and London Clay
WS4	3.61 – 3.89	London Clay	1.00 - 3.94	London Clay

 Table 4.2: Water Monitoring Records

4.2.3 Given that no groundwater was observed during the drilling works, the observed groundwater levels are considered to potentially represent percolated rainwater that has infiltrated into the Made Ground and is then draining into the well which is then not draining through the London Clay. It is noted that the water is at the base of the wells, with the level gradually increasing with each monitoring visit, further evidencing that these results represent infiltration of rainwater as opposed to the natural groundwater level.

4.3 Physical and Olfactory Evidence of Contamination

4.3.1 Visual or olfactory evidence of contamination was not observed during the course of the investigation.

5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

5.1 Context and Objectives

- 5.1.1 This section seeks to evaluate the level of risk pertaining to human health and the environment which may result from both the existing use and proposed future use of the site. It makes use of the site investigation findings, as described in the previous sections, to evaluate further the potential pollutant linkages identified in the desk study. A combination of qualitative and quantitative techniques is used, as described below.
- 5.1.2 The purpose of generic quantitative risk assessment is to compare concentrations of contaminants found on site against screening level generic assessment criteria (GAC) to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed assessment is required. The approaches detailed all broadly fit within a tiered assessment structure in line with the framework set out in the Department of Environment, Food and Rural Affairs (DEFRA), EA and Institute for Environment and Health Publication, Guidelines for Environmental Risk Assessment and Management.
- 5.1.3 It should be noted that the statistical tests carried out in this report in accordance with CL:AIRE and CIEH (2008) recommendations, are for guidance purposes only and the conclusions of this report should be approved by the local authority prior to any redevelopment works being undertaken.

5.2 Analytical Framework – Soils

- 5.2.1 There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source – Pathway – Receptor linkages.
- 5.2.2 The CLEA model provides a methodology for quantitative assessment of the long term risks posed to human health by exposure to contaminated soils. Toxicological data have been used to calculate Soil Guideline Values (SGV) for individual contaminants, based on the proposed site use; these represent minimal risk concentrations and may be used as screening values.
- 5.2.3 In the absence of any published SGVs for certain substances, or where the assumptions made in generating the SGVs do not apply to the site, JAL have obtained Tier 1 screening values for initial assessment of the soil, based on available current UK guidance including the LQM/CIEH S4ULs and DEFRA C4SL. Site-specific assessments are undertaken wherever possible and/or applicable. All assessments are carried out in accordance with the CLEA protocol.
- 5.2.4 CLEA requires a statistical treatment of the test results to take into account the normal variations in concentration of potential contaminants in the soil and allow comparisons to be made with published guidance.
- 5.2.5 The assessment criteria used for the screening of determinands within soils are identified within Table 5.1.

Table 5.1:	Selected	Assessment	Criteria -	Contaminants	in	Soils
------------	----------	------------	------------	---------------------	----	-------

Substance Group	Determinand(s)	Assessment Criteria Selected
Organic Substances		
Non-halogenated Hydrocarbons	Total Petroleum Hydrocarbons (TPHCWG banded)	LQM/CIEH
	Total Phenols	CLEA v1.06
Polycyclic Aromatic Hydrocarbons (PAH-16)	Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(ghi)perylene	LQM/CIEH
Volatile Organic Compounds	Toluene, Ethylbenzene	LQM/CIEH
(1003/31003).	Benzene, Xylenes	LQM/CIEH
Inorganic Substances		
Heavy Metals and Metalloids	Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium	LQM/CIEH/C4SL
	Copper, Zinc	LQM/CIEH
Cyanides	Free Cyanide	CLEA v1.06
Sulphates	Water Soluble Sulphate	BRE Special Digest 1:2005

5.3 BRE

5.3.1 The BRE Special Digest 1:2005, 'Concrete in Aggressive Ground' is used with soluble sulphate and pH results to assess the aggressive chemical environment of future underground concrete structures at the site.

5.4 Analytical Framework – Groundwater and Leachate

- 5.4.1 The requirement to protect groundwater from pollution is outlined in Groundwater protection: Principles and practice (GP3, EA, August 2013, v1.1).
- 5.4.2 Where undertaken, the groundwater quality analysis comprises a Level 1 assessment in accordance with the EA Remedial Targets Methodology Document (EA, 2006).
- 5.4.3 The criteria used by Jomas' in the Level 1 assessment of groundwater and leachate quality are shown in Table 5.2.

Substance Group	Determinand(s)	Assessment Criteria Selected
Metals	Arsenic, Copper, Cyanide, Mercury, Nickel, Lead, Zinc, Chromium	EQS/DWS
	Selenium	DWS
PAHs	Sum of Four – benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, indeno(1,2,3- c,d)pyrene	DWS
PAHs	Benzo(a)pyrene,	DWS
PAHs	Remainder	LEC
Total Petroleum Hydrocarbons	Aliphatic C5-C6, Aliphatic >C6-C8, Aliphatic >C8-C10. Aliphatic >C10-C12, Aliphatic >C12-C16, Aliphatic >C16-C21, Aromatic C5-C7, Aromatic >C7-C8, Aromatic >C8-C10, Aromatic >C10-C12, Aromatic >C12-C16, Aromatic >C16-C21, Aromatic >C16-C21, Aromatic >C12-C35	DWS/WHO
Benzene	Benzene	DWS
Toluene	Toluene	EQS
Ethylbenzene	Ethylbenzene	EQS
Xylene	Xylene	EQS
Oxygen Demand	Chemical Oxygen Demand and Biological Oxygen Demand	Urban Waste Water Treatment (England and Wales) Regulations

Table 5.2: Selected Assessment Criteria – Contaminants in Water

Environmental Quality Standards EQS

Environmental Quality Standards (EQS) have been released by the EA for dangerous substances, as identified by the EC Dangerous Substances Directive. EQS can vary for each substance, for the hardness of the water and can be different for fresh, estuarine or coastal waters.

Lowest Effect Concentration (LEC)

These criteria relate to the concentration of PAHs in groundwater. They are taken from the EA R&D Technical Report P45 – Polycyclic Aromatic Hydrocarbons (PAH): Priorities for Environmental Quality Standard Development (2001).

WHO Health

These screening criteria have been taken from the World Health Organisation Guidelines for Drinking Water Quality (1984). The health value is a guideline value representing the concentration of a contaminant that does not result in any significant risk to the receptor over a lifetime of exposure.

Further criteria have been obtained from 'Petroleum Products in Drinking-water' -Background document for development of WHO Guidelines for Drinking-water Quality (2005).

17

UK Drinking Water Standards (DWS)

These comprise screening criteria provided by the Drinking Water Inspectorate (DWI) in the Water Supply (Water Quality) Regulations 2006,

<u>Urban Waste Water Treatment (England and Wales) Regulations - UWWT Regs</u> The Urban Waste Water Treatment (England and Wales) Regulations SI/1994/2841 as amended by SI/2003/1788 sets down minimum standards for the discharge of treated effluent from waste water treatment works to inland surface waters, groundwater, estuaries or coastal waters. Standards of (125mg/L) COD and (25mg/L) BOD have been set.

5.5 Site Specific Criteria

5.5.1 The criteria adopted in the selection of correct screening criteria from published reports as previously described, are provided within Tables 5.3.

Input Details	Value
Land Use	Residential without plant uptake
Soil Type	Clay
pH	8
Soil Organic Matter	1%

Table 5.3: Site Specific Data

- 5.5.2 A pH value of '8' has been used for the derivation of generic screening criteria as 8.38 was the mean pH value of samples analysed.
- 5.5.3 As the published reports only offer the option of selecting an SOM value of 1%, 2.5% or 6%, an SOM value of 1% has been used for the generation of generic assessment criteria, as 1.23% was the mean value obtained from laboratory analysis.
- 5.5.4 It is understood that the proposed development comprises the conversion of the existing warehouses to a residential usage. The ground floor will be predominantly residential, with a small portion remaining in warehouse use. No car parking is proposed. As a result the site has been assessed as 'Residential without Plant Uptake'.

6 GENERIC QUANTITATIVE RISK ASSESSMENT

6.1 Screening of Soil Chemical Analysis Results – Human Health Risk Assessment

- 6.1.1 To focus on the contaminants of potential concern (COPC), the results have been compared with the respective SGV/GAC. Those contaminants which exceed the SGV/GAC are considered to be the COPC. Those which do not exceed the respective SGV/GAC are not considered to be COPC and as such do not require further assessment in relation to the proposed development of the site.
- 6.1.2 Laboratory analysis for soils are summarised in Tables 6.1 to 6.3. Raw laboratory data is included in Appendix 7.

Determinand	Unit	No. samples tested	Scre Cri	ening teria	Min	Max	No. Exceeding
Arsenic	mg/kg	6	40	S4UL	8.6	45.0	1 (WS2 @0.4m)
Cadmium	mg/kg	6	85	S4UL	<0.2	0.9	0
Chromium	mg/kg	6	910	S4UL	27	64	0
Lead	mg/kg	6	310	C4SL	13	1700	2 (WS2 @0.4m, WS3 @0.7m)
Mercury	mg/kg	6	56	S4UL	<0.3	3.0	0
Nickel	mg/kg	6	180	S4UL	24	54	0
Copper	mg/kg	6	7100	S4UL	34	180	0
Zinc	mg/kg	6	40000	S4UL	81	400	0
Total Cyanide ^A	mg/kg	6	33	CLEA v 1.06	<1	5	0
Selenium	mg/kg	6	430	S4UL	<1.0	1.2	0
Boron Water Soluble	mg/kg	6	11000	S4UL	1.8	8.5	0
Phenols	mg/kg	6	750	S4UL	<1	<1	0

Table 6.1: Soil Laboratory Analysis Results – Metals, Metalloids, Phenol, Cyanide

Notes:

^A Generic assessment criteria derived for free inorganic cyanide.

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Naphthalene	mg/kg	6	S4UL	2.3	<0.05	0.27	0
Acenaphthylene	mg/kg	6	S4UL	2900	<0.10	<0.10	0
Acenaphthene	mg/kg	6	S4UL	3000	<0.10	<0.10	0
Fluorene	mg/kg	6	S4UL	2800	<0.10	<0.10	0
Phenanthrene	mg/kg	6	S4UL	1300	<0.10	0.85	0
Anthracene	mg/kg	6	S4UL	2300	<0.10	0.14	0
Fluoranthene	mg/kg	6	S4UL	1500	<0.10	1.7	0
Pyrene	mg/kg	6	S4UL	3700	<0.10	1.4	0
Benzo(a)anthracene	mg/kg	6	S4UL	11.0	<0.10	0.94	0
Chrysene	mg/kg	6	S4UL	30	<0.05	0.82	0
Benzo(b)fluoranthene	mg/kg	6	S4UL	3.9	<0.10	1.3	0
Benzo(k)fluoranthene	mg/kg	6	S4UL	110	<0.10	0.53	0
Benzo(a)pyrene	mg/kg	6	S4UL	3.2	<0.10	0.86	0
Indeno(123-cd)pyrene	mg/kg	6	S4UL	45	<0.10	0.44	0
Dibenzo(ah)anthracene	mg/kg	6	S4UL	0.31	<0.10	<0.10	0
Benzo(ghi)perylene	mg/kg	6	S4UL	360	<0.05	0.48	0
Total PAH	mg/kg	6	-		<1.60	9.7	-

Table 6.2: Soil Laboratory Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Table 6.3: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPH)

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
C ₈ -C ₁₀	mg/kg	6	S4UL	27	<0.1	<1	0
>C ₁₀ -C ₁₂	mg/kg	6	S4UL	130	<2.0	<1	0
>C ₁₂ -C ₁₆	mg/kg	6	S4UL	1100	<4.0	13	0
>C ₁₆ -C ₂₁	mg/kg	6	S4UL	1900	<1.0	56	0
>C ₂₁ -C ₃₅	mg/kg	6	S4UL	1900	<10	1100	0
Total TPH	mg/kg	6	-	-	<10	1156.5	-

Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected

6.2 Statistical Analysis

- 6.2.1 Where samples tested exceeded the selected screening criteria, and the minimum numbers of samples were more than six, statistical analyses of the dataset are undertaken.
- 6.2.2 The CL:AIRE/CIEH Guidance 'Guidance on Comparing Soil Contamination Data with a Critical Concentration' (2008) describes the new approach to statistical analysis of datasets generated through the investigation of contaminated land. This includes differing statistical methodologies for the analysis of normally and non-normally distributed data. Different approaches to datasets being analysed under Part IIA and under the planning regime are also presented.
- 6.2.3 Chemical data from the laboratory testing has been assessed in accordance with the CL:AIRE/CIEH Guidance under a planning scenario. The purpose of the assessment is to determine if the land is suitable for the proposed development. Under the planning scenario, the key question is 'is there sufficient evidence that the true mean concentration of the contaminant within the data set (μ) is less than the critical concentration (Cc, in this instance the derived GAC). This is assessed by calculation of the upper confidence limit (UCL). The statistical test assesses the 95th percentile of contaminant populations across a site, and compares this value against the relevant GAC. Furthermore, the test determines statistically whether contaminant values which indicate a localised area of contamination or error in sampling, and may not be a member of the underlying population.
- 6.2.4 The statistical tests were run for:
 - Arsenic
 - Lead
- 6.2.5 The results of statistical tests are presented in Appendix 5. Table 6.4 below provides the summary of statistical tests.

Determinand	95% UCL	Cc/GAC	GAC Exceeded
Arsenic	31.73	40	Ν
Lead	930.1	310	Y

Table: 6.4 Statistical Test Results

- 6.2.6 The results of statistical tests indicate the upper ninety fifth percentile value for Arsenic to be below the respective assessment criteria. Consequently the concentrations of Arsenic identified during this investigation are not considered to pose a significant risk to human health.
- 6.2.7 The upper ninety fifth percentile value for Lead was noted to exceed the respective criteria. Further statistical analysis indicated the most significantly elevated concentration of Lead to represent an isolated hotspot.

6.3 Asbestos in Soil

6.3.1 6 No. samples of the made ground were screened in the laboratory for the presence of asbestos. These comprised samples taken from;

- WS1-0.8m
- WS2 0.4m
- WS2 0.7m
- WS3 0.4m
- WS3 1.0m
- WS4 0.6m
- 6.3.2 No asbestos fibres were detected.

6.4 Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth

- 6.4.1 Zinc, copper and nickel are phytotoxins and could therefore inhibit plant growth in soft landscaped areas. Concentrations measured in soil for these determinands have been compared with the pH dependent values given in BS3882:2007.
- 6.4.2 Adopting a pH value of greater than 7, as indicated by the results of the laboratory analysis, the following is noted;

Table 6.5: Soil Laboratory Analysis Results – Phytotoxic Determinands

Determinand	Threshold level (mg/kg)	Min (mgkg)	Max (mg/kg)	No. Exceeding
Zinc	300	81	400	1 (WS2 @0.4m)
Copper	200	34	180	0
Nickel	110	24	54	0

6.5 Screening for Water Pipes

6.5.1 The results of the analysis have been assessed for potential impact upon water supply pipes. Table 6.6 below summarises the findings of the assessment:

Determinand	Threshold adopted for PE (mg/kg)	Min Value for site data	Max Value from site data
Total VOCs	0.5	-	-
BTEX	0.1	-	-
MTBE	0.1	-	-
EC5-EC10	1	<0.1	<0.1
EC10-EC16	10	<4	13
EC16-EC40	500	<10	1148
Naphthalene	5	<0.05	0.27
Phenols	2	<1	<1

Table 6.6: Screening Guide for Water Pipes

6.5.2 The above results indicate that upgraded pipework may be required.

6.5.3 The water supply pipe requirements for this site should be discussed at an early stage with the relevant Utility provider.

6.6 Waste Disposal

6.6.1 The classification of materials for waste disposal purposes was outside the scope of this report. Should quantities of material require off-site disposal, Waste Acceptance Criteria testing will be required.

7 SOIL GAS RISK ASSESSMENT

7.1 Soil Gas Results

- 7.1.1 Three return monitoring visits were undertaken between the 10/08/16 and 22/08/16 to monitor wells installed within boreholes at the site for soil gas concentrations and groundwater levels.
- 7.1.2 The results of the monitoring undertaken are summarised in Table 7.1 below, with the monitoring records presented in Appendix 6.

Hole No.	CH₄ (%)	CO ₂ (%)	O ₂ (%)	H₂S (ppm)	Peak Flow Rate (I/hr)	Depth to water (mbgl)	Depth of installation (mbgl)
WS1	0.1	0.1 – 0.3	20.3 – 20.6	0	0.2 – 0.3	3.29 – 3.64	3.94
WS3	0.1	0.4 - 0.6	19.9 - 20.1	0	0.2	3.45 – 3.84	3.92
WS4	0.1	0.2 – 0.6	20.1 – 20.5	0	0.2 – 0.3	3.61 – 3.89	3.96

Table 7.1:	Summary	y of Gas	Monitoring	Data

7.2 Screening of Results

- 7.2.1 As shown in Table 7.1, methane and carbon dioxide have been reported to maximum concentrations of 0.1% and 0.6% v/v respectively. A maximum flow rate of 0.3l/hr has been reported.
- 7.2.2 In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, BS84985 (2015) identifies four types of development, termed Type A to Type D.
- 7.2.3 Type B buildings are defined as

" private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small to medium size rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels."

- 7.2.4 Type B has been adopted as the relevant category for the proposed development.
- 7.2.5 The soil gas assessment method is based on that proposed by Wilson & Card (1999), which was a development of a method proposed in CIRIA publication R149 (CIRIA, 1995). The method uses both gas concentrations and borehole flow rates to define a characteristic situation based on the limiting borehole gas volume flow for methane and carbon dioxide. In both these methods, the limiting borehole gas volume flow is renamed as the Gas Screening Value (GSV).
- 7.2.6 The Gas Screening Value (litres of gas per hour) is calculated by using the following equation

GSV = (Concentration/100) X Flow rate

Where concentration is measured in percent (%) and flow rate is measured in litres per hour (I/hr)

- 7.2.7 The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.8 To accord with C665, worst case conditions are used in the calculation of GSVs for the site.
- 7.2.9 A worst case flow rate of 0.3l/hr (maximum reported) will be used in the calculation of GSVs for the site. The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.10 To accord with C665, worst case conditions are used in the calculation of GSVs for the site. These have been summarised below in Table 7.2

Gas	Concentration (v/v %)	Peak Flow Rate (I/hr)	GSV (l/hr)	Characteristic Situation (after CIRIA C665)
CO ₂	0.6	0.3	0.0018	1
CH₄	0.1	0.3	0.0003	1

Table 7.2: Summary of Gas Monitoring Data

- 7.2.11 The methodology set out in BS 8485 (2015) has been used for determining the required gas protection measures.
- 7.2.12 The results of the monitoring undertaken to date would indicate Characteristic Situation 1 to be appropriate, where no formal gas protection measures are required.

8 SUMMARY OF RESULTS

8.1 Risk Assessment - Land Quality Impact Summary

- 8.1.1 Following the site investigation, the following is noted:
 - It is understood that the proposed development will comprise the demolition of the existing buildings for the construction of a new mixed use development. The majority of the site is anticipated to be covered by a combination of building footprint and hardstanding.
 - Following generic risk assessments and statistical analysis, individual elevated concentrations of Arsenic and Lead were reported.
 - The results of statistical analysis indicated the upper ninety fifth percentile value for arsenic does not exceed the respective criteria. Consequently, the concentrations of Arsenic are not considered to present a significant risk to human health.
 - While the upper ninety fifth percentile value for Lead was noted to exceed the criteria, this was indicated to be representative of an isolated hotspot within the site, as opposed to the underlying soil conditions within the site.
 - Formalised development proposals are currently unavailable. In view of the lack of significant controlled water receptors identified (with the site directly underlain by solid deposits of the London Clay), where the area of the hotspot (WS2 & 3) is to be overlain by building footprint or hardstanding, no formal remedial measures are considered necessary, as the covering should act as a suitable barrier.
 - Should the area fall within an area of proposed soft landscaping, the use of a capping layer will be required, comprising a minimum 600mm imported clean topsoil, laid over a geotextile membrane. Alternatively, the samples in question may be submitted for bioavailbility testing to provide an indication of the substances ability to impact human health when ingested.
 - No other contaminants were reported above their respective criteria.
 - No asbestos fibres were detected in the samples analysed in the laboratory.
 - No significant controlled water receptors were identified from the desk study (undertaken by others).
 - The results of soil gas monitoring undertaken to date indicate no formal gas protection measures to be required.
 - As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.
- 8.1.2 The above conclusions are made subject to approval by the statutory regulatory bodies.

8.2 Review of Pollutant Linkages Following Site Investigation

8.2.1 The site CSM has been revised and updated from that suggested in the desk study in view of the ground investigation data, including soil laboratory analysis results. Table 8.1 highlights whether pollutant linkages identified in the original CSM are still relevant following the risk assessment, or whether pollutant linkages, not previously identified, exist.

Potential Source (from desk study)	Pathway	Receptor	Relevant Pollutant Linkage?	Comment
 Potential for inorganic and low volatility organic contaminants to be present within the subsurface soils Potential for volatile organic contaminants to be present within the subsurface soils Potential for asbestos containing materials within the subsurface soils 	 Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6) 	 Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	Y	see 9.1 above The findings of this report should be included in the construction health and safety file, with adequate measures put in place for the protection of construction and maintenance workers.
 the subsurface soils Potential for dissolved phase contaminants to be present within the shallow groundwater Potential for elevated methane to be present within the subsurface soils Potential for elevated carbon dioxide to be present within the subsurface soils Potential for radon within the subsurface Railway line 	 Accumulation and migration of soil gases (P5) 		X	Results of gas monitoring undertaken to date indicate no formal gas protection measures to be required
	 Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3) Horizontal and vertical migration of contaminants within groundwater (P4) 	 Neighbouring site users (R3) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	X	No significant controlled water receptors identified from previous desk study Contact should be made with relevant utility providers to confirm if upgraded materials are required.

9 **GEOTECHNICAL ENGINEERING RECOMMENDATIONS**

9.1 Ground Investigation Summary

- 9.1.1 No detailed structural engineering design information, with respect to the type of construction and associated structural loadings, was provided at the time of preparing this report. Consequently, a detailed discussion of all the problems that may arise during the proposed redevelopment scheme is beyond the scope of this report.
- 9.1.2 Practical solutions to the difficulties encountered, both prior to, and during construction, are frequently decided by structural constraints or economic factors. For these reasons, this discussion is predominantly confined to remarks of a general nature, which are based on site conditions encountered during the intrusive investigations.
- 9.1.3 It is understood that the proposed development comprises the conversion of the existing warehouses to a residential usage. The ground floor will be predominantly residential, with a small portion remaining in warehouse use. No car parking is proposed.

9.2 Geotechnical Data Summary

- 9.2.1 The results of the ground investigation revealed a ground profile comprising a variable thickness of Made Ground (between 1.2 and 1.3m bgl depth), overlying a light orange brown becoming grey silty Clay (considered to represent the London Clay), encountered to the base of the boreholes (up to 4m bgl).
- 9.2.2 A summary of ground conditions obtained from the ground investigation and subsequent laboratory testing, is provided in Table 9.1 below.

Strata	Depth Encountered (from-to)	SPT 'N' Value	Shear Strength (kPa)	Moisture content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (plasticity term)	NHBC Volume Change Classification
MADE GROUND	GL to 1.2 – 1.3	4	-	-	-	-	-	-
Light orange brown becoming grey brown with depth, sandy silty CLAY with some bands of flint	1.2 – 1.3 to >4.0	10 - 16	45 - 72	28 - 33	67 - 76	27 - 30	40 - 46	High
(LONDON CLAY)								

Table 9.1: Summary of Ground Conditions And Subsequent Laboratory Testing

9.3 Geotechnical Data Summary

- 9.3.1 Standard Penetration Tests were undertaken at regular intervals throughout the window sampler holes and cable percussive borehole. The results of the SPTs are plotted against depth in Figure 9.1 below.
- 9.3.2 Due to the observational differences, the strata have been grouped into "Made Ground" and "London Clay"
- 9.3.3 N_{equi} results have been calculated for both stratum where SPT's crossed strata.

Figure 9.1: SPT 'N' vs Depth

9.4 Undrained Shear Strength

9.4.1 As discussed above, the N values recorded in the clay varies with depth, this infers that the undrained shear strength of the clay is similarly variable. Figure 9.2 below shows the undrained shear strength inferred by the correlation suggested by Stroud (1974),

 $c_u = f1 \times N$ can be applied,

in which c_u = mass shear strength (kN) f1 = constant (usually taken as 4.5 for London Clay Formation)

N = SPT Value achieved during boring operations

9.4.2 The graph below shows the shear strength profile of the London Clay Formation encountered at the site, based on the SPT to shear strength correlation described above, as well as the results of undrained triaxial tests on undisturbed samples taken from the boreholes.

Figure 9.2: Undrained Shear Strength (kPa) vs Depth

9.5 Building Near Trees

- 9.5.1 Reference to NHBC Chapter 4 indicates that the cohesive strata beneath the site are a high volume change potential as defined within Chapter 4.2 NHBC guidelines.
- 9.5.2 NHBC Chapter 4 guidance specifies a minimum 1.5m foundation depth due to the underlying clay being identified as high volume change.
- 9.5.3 The final depths of the foundations should be determined in accordance with NHBC guidance taking into account nearby trees..

9.6 Foundations

9.6.1 Foundations should not be formed in either the Made Ground or the Topsoil due to the unacceptable risk of total and differential settlement. It should be noted that the demolition and removal of existing structures, foundations and services may increase the depth of Made Ground on the site.

- 9.6.2 It is likely that traditional shallow foundations would be appropriate to support the proposed structure. However, the location of previous, existing and proposed trees must be taken into consideration in the design of foundations.
- 9.6.3 Using the geotechnical testing obtained (summarised in Table 9.1) and with reference to NHBC Chapter 4.2 it can be seen that a minimum founding depth of 1. 5m will be required.
- 9.6.4 Based on the findings of the investigation, it is considered that traditional strip footings, formed at a depth of 2m bgl within the underlying clay, could be designed with an allowable bearing pressure of 125kPa. This however does not take into account the distance to and species of any previous, existing and proposed trees, which must be considered.
- 9.6.5 The above comments are indicative only based on limited ground investigation data. Foundations should be designed by a suitably qualified Engineer. Once structural loads have been fully determined a full design check in accordance with BS EN 1997 should be undertaken to confirm suitability of foundation choice.

9.7 Concrete in the Ground

- 9.7.1 Sulphate attack on building foundations occurs where sulphate solutions react with the various products of hydration in Ordinary Portland Cement (OPC) or converted High-Alumina Cement (HAC). The reaction is expansive, and therefore disruptive, not only due to the formation of minute cracks, but also due to loss of cohesion in the matrix.
- 9.7.2 In accordance with BRE Special Digest 1, as there are less than 10 results in the data set the highest value has been taken.
- 9.7.3 Table 9.2 summarises the analysis of the aggressive nature of the ground for each of the strata encountered within the ground investigation.

Stratum	No. Samples	pH range	WS Sulphate (ave 20% / highest)	Design Sulphate Class	ACEC Class
Made Ground	9	7.4 – 9.7	1.4	DS2	AC1
London Clay	2	8.4	0.41	DS1	AC1

Table 9.2: Concrete in the Ground Classes

9.8 Ground Floor Slabs

- 9.8.1 As Made Ground in excess of 600mm thickness has been reported, and to allow for potential volume change within the underlying clay, suspended floor slabs are recommended.
- 9.8.2 The loadings from the suspended floor slab will need to be carried by the foundations, which will need to be designed to not only carry the structural loadings but the additional floor loadings.

9.9 Excavations

- 9.9.1 It is likely that some shallow excavations will be required at the site for services etc, in addition to larger excavations during the remediation and construction works. These are anticipated to remain stable for the short term only.
- 9.9.2 It is recommended that the stability of all excavations should be assessed during construction. The sides of any excavations into which personnel are required to enter, should be assessed and where necessary fully supported or battered back to a safe angle.

9.10 Groundwater Control

- 9.10.1 During the investigation groundwater was not reported.
- 9.10.2 During return monitoring groundwater was reported at depths of between 3.29m and 3.89m bgl, with the base of the monitoring well at between 3.92m and 3.96m bgl. The depth to groundwater was also noted to decrease slightly with each monitoring visit, suggesting slow rise in the groundwater level. As a result, and in view of the underlying ground (clay) it is considered that these results likely represent gradual infilling of the monitoring well by rainwater as opposed to the natural groundwater level.
- 9.10.3 Subject to seasonal variations, any groundwater / surface water or rainfall ingress encountered during site works could be readily dealt with by conventional pumping from a sump.

10 REFERENCES

BRE Report BR211: Radon: Protective measures for new dwellings, 2007

BRE Special Digest 1: Concrete in Aggressive Ground, 2005

British Standards Institution (2007) BS 3882:2007 Specification for topsoil and requirements for use. Milton Keynes: BSI

British Standards Institution (2011) BS 10175:2011 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI

British Standards Institution (2015) BS 5930:2015 Code of practice for site investigations. Milton Keynes: BSI

CIEH & CL:AIRE (2008) Guidance on comparing soil contamination data with a critical concentration. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

Environment Agency (2004) *Model procedures for the management of land contamination*. CLR11. Bristol: Environment Agency

Environment Agency, NHBC & CIEH (2008) *Guidance for the safe development of housing on land affected by contamination.* R & D Publication 66. London: Environment Agency

Environment Agency (2006) Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination Environment Agency

LQM/CIEH S4ULs. LQM, 2014

National Planning Policy Framework. Department for Communities and Local Government, March 2012

APPENDICES

APPENDIX 1 – FIGURES

Title Proposed Exploratory Holes Project No. P9602J896
BILLS BILLS

Project Name	1a Highgate Road	Client	Barrett Mahony
Title	Proposed Exploratory Holes	Project No.	P9602J896
Date	25/07/2016	Prepared By	TME

APPENDIX 2 – EXPLORATORY HOLE RECORDS

									=			M	WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD						
]	e]	ŧĒ					Explora	tory Hole No:	WS1					
Site Address:			1A	Highga	ite Roa	d, Lond	don					Project	No:	P9602J89	5				
Client:			IDN	/ HDF I	LLP							Ground	Level:						
Logged By:			JE									Date Co	mmenced:	27/07/201	6				
Checked By:			MW	/								Date Co	mpleted:	27/07/201	2016				
Type and diame	ter of equipr	ment:	Dar	ndo Ter	rier Ri	g						Sheet N	lo:	1 Of 1					
Water levels re	ecorded du	ring b	oring,	m									I						
Date:																			
Hole depth:																			
Casing depth:							_												
Level water on s	trike:						_												
Water Level afte	r 20mins:																		
2.																			
3:																			
4:																			
		Sampl	e or T	ests							Strata								
	Denth				Dereil				1		Denth	Water	- Churche D						
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N	-	Legend	Depth (mbgl)	Strikes (mbgl)	Strata D	escription	Insta	llatior			
									0.00 —	*****			MADE GROUND - Screed	over brick paving blocks					
				1					_		0.10		MADE GROUND - CONCRI	ETE	-1-2-3				
				1					_		0.30					1655			
				1					_				MADE GROUND - Dark br gravel. Gravel is of brick	own grey silty sandy concrete and flint	133				
J+P	0.50			1					0.50 —						FEE				
				1					-						E===	旧王			
															EEEE	183			
Р	0.80										0.90				====	153			
									-	*******	0.90		MADE GROUND - Dark ye	llow brown clay with		1533			
S	1.00	1	1	1	1	1	1	4	1.00 —				occasional flint	,					
Р										******	1.20					8			
													Medium Strength light or	ange brown CLAY - Band		0			
													of flint at 1.6m-1.7m			8			
									1 50 -							8			
									_							Ø			
									_							0			
									_										
									-		1.90					0			
S	2.00	1	2	2	2	3	3	10	2.00 —				High strength grey brown	veined blue CLAY		8			
D									-							0			
																0			
									-							8			
									-							Ø			
									2.50 —							0			
																8			
																8			
c c	2.00	1	1	2	1	2	4	12	2 00										
5	3.00	'	'	3	2	3	4	12	3.00 -										
D									_							8			
				1					_							Ø			
				1					_										
				1					3.50 —										
				1					-										
							1		–							8			
									-										
									-		4.00								
S+D	4.00	2	2	3	3	4	5	15	4.00 —		4.00					0			
							1		-										
							1		-										
									4.50										
									4.50										
				1					_										
				1					_										
				1															
									5.00 -										
				1															
		1					· · ·												
			Sampli	ng Cod	ie: U- l Ior	Jndistu nas Ass	rbed	в-Lar sItd-	ge Disturt	ed D-Sma House 1 Furza	an Disturbed	W - Water	(U*) Non recovery of Sar ark. UB11 1BD	npie					
					501	T: 084	13 289	2187	E: info@jo	masassociates	s.com W: ww	w.jomasasso	pciates.com						

(121133											V	WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD					
]	•Į	¥ F					Explora	itory Hole No:	WS2			
Site Address:			1A	Highga	ite Roa	d, Lon	don					Project	No:	P9602J896			
Client:			IDN	/ HDF L	LLP							Ground	Level:				
Logged By:			JE									Date Co	ommenced:	27/07/2010	ò		
Checked By:			MW	/									ompleted:	27/07/2010	5		
Type and diame	eter of equipr	ment:	Dar	ndo Ter	rier Rig	g						Sheet N	lo:	1 Of 1			
Water levels r	ecorded du	ring bo	oring,	m													
Date:																	
Hole depth:																	
Casing depth:	atull co.						-										
Water Level after	strike:						-										
Remarks	20111113.						_										
1:																	
2:																	
3:																	
4:																	
		Sampl	e or T	ests							Strata						
	Depth				Result	t					Depth	Water	Strata D	escription	Installation		
Туре	(mbgl)									Legend	(mbgl)	Strikes (mbal)			Instantio		
	-	75	75	75 75 75 75 75								(mbgi)					
									0.00 -	******			MADE GROUND - Screed	over brick cobble paving	******		
P	0.00								_		0.10			ГТГ			
P	0.20									******			MADE GROUND - CONCR				
р	0.40								_		0.37			own black, sandy silty			
	0.40								0.50 -		0.50		gravelly clay. Gravel is of	f brick and flint			
									-				MADE GROUND - Brown	patched grey dark orange			
Р	0.70									******			silty clay with frequent b	rick and flint fragments			

S	1.00	0	2	1	2	1	1	5	1.00 —								
									-		1.00						
D	1.20								-		1.20		Medium strenath stiff lia	nt orange brown CLAY -			
									-				occasional fine roots and	flints			
									-								
									1.50 —								
											1.80						
													High strength grey brown	veined blue grey CLAY -			
s	2.00	2	2	2	2	2	4	12	2 00 -	3333			some fine crystals and sa	indy orange lenses			
5 D	2.00	2	2				4	13	2.00								
D D									_								
									-								
									-								
									2.50 —								
									-								
									-								
									-								
									-								
S	3.00	2	3	3	3	3	3	12	3.00 -								
D																	
									-								
									3 50 -								
									3.50 -								
									-								
									-								
									-								
s	4.00	1	1	3	3	5	5	16	4.00 —		4.00						
D									-								
									-								
									-								
									-								
									4.50 —								
									-								
							1		-								
									-								
									5.00 -								
							L		l								
		ç	Sampli	ng Cod	le: U- l	Jndistu	rbed	B - Lar	ge Disturl	d D - Sma	II Disturbed	W - Water	(U*) Non recovery of Sa	mple			
					Jon	nas As	sociate	s Ltd -	Lakeside	ouse, 1 Furze	eground Way	y, Stockley P	ark, UB11 1BD ociates com				
						1. 004	.5 207	21071					00.0000				

	(101111)											W	WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD						
					J	9]	è È					Explorat	tory Hole No:	WS3					
Site Address:			1A	Highga	ite Roa	id, Lon	don					Project	No:	P960)2J896				
Client:			IDN	л HDF I	LLP							Ground	Level:						
Logged By:			JE									Date Co	mmenced:	27/07/2016					
Checked By:			MW	/								Date Co	mpleted:	27/0	7/2016				
Type and diame	ter of equip	ment:	Dar	ndo Ter	rier Ri	g						Sheet N	0:	1	Of 1				
Water levels re	ecorded du	ring bo	oring,	m															
Date:																			
Hole depth:																			
Casing depth:																			
Level water on s	strike:																		
Water Level afte	er 20mins:																		
Remarks																			
1:																			
2:																			
3:																			
4:																			
		Sampl	e or T	ests							Strata								
									Legend (mbal)			Water							
Туре	Depth (mbgl)				Resul	t						Strikes	Strata Description			Insta	llation		
	(inbgi)	75	75	75 75 75 75 75 N						Ŭ	(Inbgi)	(mbgl)							
									0.00 -	XXXXXXXXX)					
				1			1		-		0.08		MADE CROUND - SCREEL	, ETE		-F====	1		
				1			1		-				WADE GROUND - CONCR			FI	1		
				1			1		-		0.30			own grou clours and	dy.	-F====	1		
Р	0.40			1			1		-				gravel. Gravel is of brick	and flint	чу	FI	1		
				1			1		0.50 —							FI	1		
				1			1		-							FI	1		
Р	0.70									******						F===			
										******						F===			
									-	********						F===	1		
S	1.00	1	1	1	1	1	1	4	1.00 —	********									
Р										********									
									-	********									
									-		1.30		Modium strongth light or				0		
													inediditi strengtri light ora	inge brown CLAT					
									1.50 —										
																	8		
									-								8		
																	0		
S	2.00	1	1	2	3	3	4	12	2.00 —								0		
D									_								0		
											2.20		L Park a transmithe annual framework				0		
													with occasional crystals	veinea blue grey C	LAY		0:::		
D	2.50								2.50 —										
									_								0		
									_								0		
									_								0		
S	3.00	2	2	2	3	4	3	12	3.00 —								0		
D																	0		
																	0		
				1															
				1															
				1					3.50 —										
				1															
				1					-										
				1															
S	4.00	2	2	2	3	4	4	13	4.00 —		4.00						0		
D		2	2	2	3	4	4	13	_										
									_										
									_										
				1					4.50 -										
									4.50										
				1															
									-										
				1					-										
									5.00 -										
				1					5.00 -										
				1															
		ç	Sampli	ng Cod	le: U- l	Undistu	irbed	B - Lai	rge Disturi	ed D - Sma	all Disturbed	W - Water	(U*) Non recovery of Sar	nple					
					Jor	mas As	sociate	s Ltd -	Lakeside	House, 1 Furz	eground Way	, Stockley Pa	ark, UB11 1BD						
						I: 084	43 289	2187	E: info@jo	masassociates	s.com W: ww	/w.jomasasso	ociates.com						

										WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD							
					J	•]	è E					Explorat	ory Hole No:	WS4			
Site Address:			1A	Highga	ite Roa	d, Lond	don					Project	No:	P9602J896			
Client:			IDN	и HDF L	_LP							Ground	Level:				
Logged By:			JE									Date Co	mmenced:	27/07/2016			
Checked By:	tor of oquipr	nont.	MW	/	rior Di	~						Date Co	mpleted:	27/07/201	2016		
Water levels re	ecorded du	rina ba	pring.	m		9						Sheet N	0.	1011			
Date:																	
Hole depth:																	
Casing depth:																	
Water Level after	r 20mins																
Remarks	2011110		_														
1:																	
2:																	
3:																	
	:	Sampl	e or T	ests							Strata						
	Denth				Result	t			1		Depth	Water	Strata D	escription	Insta	llation	
Туре	(mbgl)	75	75	75	75	75	75	N		Legend	(mbgl)	Strikes (mbgl)				inatio	
									0.00 —	******	0.12		MADE GROUND - Concret	e slab over DPM		1	
											5.12		MADE GROUND / SUBBAS	SE - Sandy gravel. Gravel	-633	123	
											0.19		IS OF TIINT MADE GROUND - CONCRE	ETE	-1333		
									0.50 —		0.30		MADE GROUND - CONCR	ETE	-6-3-3	33	
5											0.52		MADE GROUND - Dark br	own patched orange	-33		
Р	0.60												gravellly clay. Gravel is o	. Gravel is of flint			
															1333		
											1.00					===	
S	1.00	1	0	1	1	1	2	5	1.00 —		1.00		Medium strength orange	brown mottled grey CLAY			
Р													with occasional buff mude	stone patches			
																Ø:::	
									-								
									1.50 —								
									-								
S	2.00	2	1	2	3	3	3	11	2.00 —								
D																	
																§:::	
									2.50 —		2.50		Stiff arey brown veined b	lue arev CLAY	-		
									-								
									_								
									_								
S	3.00	2	2	3	3	3	4	13	3.00 —								
D									-								
									3.50 —								
									-								
									-								
s	4.00	2	2	2	4	3	4	13	4.00 —		4.00						
D									-								
									-								
									4.50 —								
									-								
									-								
									-								
									5.00 -								
			Samuli	na Cod	e·]_ !	Indictu	irbed	- B - I >*	ne Disturk	ed D. Sm	all Disturbed	W - Water	(U*) Non recovery of Sa	mple	-1		
			-ampil		Jon	nas Ass	sociate	s Ltd -	Lakeside I	House, 1 Furz	eground Way	, Stockley Pa	irk, UB11 1BD				
						T: 084	13 289	2187	E: info@jo	masassociate	s.com W: ww	w.jomasasso	ciates.com				
L																	

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: eh@jomasassociates.com

Analytical Report Number : 16-24320

Project / Site name:	1A Highgate Road, London, NW5 1JY	Samples received on:	02/08/2016
Your job number:	J896	Samples instructed on:	02/08/2016
Your order number:	P9602J896.2	Analysis completed by:	09/08/2016
Report Issue Number:	1	Report issued on:	09/08/2016
Samples Analysed:	15 soil samples		

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

	all
Signed:	all a start

Emma Winter Assistant Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

l ab Sample Number				610729	610730	610731	610732	610733
Sample Reference				WS1	WS1	WS1	WS1	WS1
Sample Number				1	P	P	P	D
Depth (m)				0.50	0.50	0.80	1.00	3.00
Date Sampled				27/07/2016	27/07/2016	27/07/2016	27/07/2016	27/07/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	-	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	6.7	8.3	-	16	18
Total mass of sample received	kg	0.001	NONE	0.47	0.72	-	0.60	0.68
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	Not-detected	-	-
General Inorganics								
рН	pH Units	N/A	MCERTS	9.7	9.3	-	8.0	8.4
Total Cyanide	mg/kg	1	MCERTS	< 1	-	-	-	-
Notal Sulphate as SO ₄	mg/kg	50	MCERTS	3500	-	-	350	790
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	1.25	MCERTS	0.54	1.4	-	0.073	0.18
Total Sulphur	mg/l	1.25	NONE	545	-	-	- 140	- 260
Total Organic Carbon (TOC)	тту/ку %	0.1	MCERTS		0.8		-	
	70	0.1	PICERTS	_	0.0	_	_	_
Total Phenols								
Total Phenols (monohydric)	ma/ka	1	MCERTS	< 1.0	-	-	-	-
	J, J			-				
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	-	-	-	-
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	-	-	-	-
Fluorene	mg/kg	0.1	MCERTS	< 0.10	-	-	-	-
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	-	-	-	-
Anthracene	mg/kg	0.1	MCERTS	< 0.10	-	-	-	-
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	-	-	-	-
Pyrene Ronzo(2)2nthrocono	mg/kg	0.1	MCERTS	< 0.10	-	-	-	-
Chrysona	mg/kg	0.1	MCEDIC	< 0.10	-	-	-	-
Benzo(h)fluoranthene	mg/kg	0.03	MCERTS	< 0.03	-	-	-	
Benzo(k)fluoranthene	ma/ka	0.1	MCERTS	< 0.10	-	-	-	-
Benzo(a)pyrene	ma/ka	0.1	MCERTS	< 0.10	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Total PAH	·	·						
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	-	-	-	-
Heavy Metals / Metalloids		1	MOEDTO	0.0				
Aiseilic (aqua regia extractable) Boron (water soluble)	mg/kg	1	MCEDIC	δ.0 2 7	-	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCEDTS	2.7	_		_	-
Chromium (hexavalent)	ma/ka	4	MCERTS	< 4.0	_	_	_	_
Chromium (aqua regia extractable)	ma/ka	1	MCERTS	27	_	-	-	-
Copper (aqua regia extractable)	mg/kq	1	MCERTS	37	-	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	84	-	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.5	-	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	-	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	86	-	-	-	-
Petroleum Hydrocarbons		<u> </u>				[]		
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	NONE	< 0.1	-	-	-	-

Petroleum Range Organics (C6 - C10)	mg/kg	0.1	NONE	< 0.1	-	-	-	-	
TPH (C10 - C12)	mg/kg	2	NONE	< 2.0	-	-	-	-	
TPH (C12 - C16)	mg/kg	4	NONE	8.5	-	-	-	-	
TPH (C16 - C21)	mg/kg	1	NONE	48	-	-	-	-	
TPH (C21 - C40)	mg/kg	10	NONE	1100	-	-	-	-	

Iss No 16-24320-1 1A Highgate Road, London, NW5 1JY J896

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number	610729	610730	610731	610732	610733			
Sample Reference	WS1	WS1	WS1	WS1	WS1			
Sample Number	J	Р	Р	Р	D			
Depth (m)	0.50	0.50	0.80	1.00	3.00			
Date Sampled	27/07/2016	27/07/2016	27/07/2016	27/07/2016	27/07/2016			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Iss No 16-24320-1 1A Highgate Road, London, NW5 1JY J896

Lah Sample Number				610724	610725	610726	610727	610729
Sample Reference				WC2	W(\$2	W/C2	W(C2	W(C2
Sample Number				VV32	P 1032	P	P	P
Denth (m)				0.40	0.70	0.40	0.70	1.00
Date Sampled				27/07/2016	27/07/2016	27/07/2016	27/07/2016	27/07/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stopa Contant	0/-	0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	70	0.1 N/A	NONE	10	12	17	21	21
Total mass of sample received	70 ka	0.001	NONE	0.29	0.50	0.86	0.75	0.65
	ĸġ	0.001	NONE	0.25	0.50	0.00	0.75	0.05
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	-	Not-detected
General Inorganics	-	-			-		-	
рН	pH Units	N/A	MCERTS	7.8	8.0	-	8.1	-
Total Cyanide	mg/kg	1	MCERTS	5	-	-	< 1	-
Total Sulphate as SO ₄	mg/kg	50	MCERTS	3200	700	-	740	-
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.61	0.12	-	0.088	-
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	606	-	-	88.0	-
Total Sulphur	mg/kg	50	NONE	-	350	-	-	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-	1.8	-	1.1
Total Phonois								
Total Phenois	ma/ka	1	MCEDTC	< 1.0	-	_	< 1.0	_
	тіў/ку	1	PICERTS	< 1.0	-	-	< 1.0	-
Speciated PAHs								
Nanhthalene	ma/ka	0.05	MCERTS	0.27	-	-	< 0.05	-
Acenaphthylene	ma/ka	0.05	MCERTS	< 0.10	-	-	< 0.10	-
Acenaphthene	ma/ka	0.1	MCERTS	< 0.10	-	-	< 0.10	-
Fluorene	ma/ka	0.1	MCERTS	< 0.10	-	-	< 0.10	-
Phenanthrene	mg/kg	0.1	MCERTS	0.85	-	-	< 0.10	-
Anthracene	mg/kg	0.1	MCERTS	0.14	-	-	< 0.10	-
Fluoranthene	mg/kg	0.1	MCERTS	1.7	-	-	< 0.10	-
Pyrene	mg/kg	0.1	MCERTS	1.4	-	-	< 0.10	-
Benzo(a)anthracene	mg/kg	0.1	MCERTS	0.94	-	-	< 0.10	-
Chrysene	mg/kg	0.05	MCERTS	0.82	-	-	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	1.3	-	-	< 0.10	-
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	0.53	-	-	< 0.10	-
Benzo(a)pyrene	mg/kg	0.1	MCERTS	0.86	-	-	< 0.10	-
Dibenz(2,b)2ptbr2cone	mg/kg	0.1	MCERTS	0.44	-	-	< 0.10	-
Didenz(a,n)anufracene	mg/kg	0.1	MCEDITS	< 0.10	-	-	< 0.10	-
benzo(gni)perviene	тту/ку	0.05	PICERTS	0.40	-	-	< 0.05	-
Total PAH								
Speciated Total EPA-16 PAHs	ma/ka	1.6	MCERTS	9.70	-	-	< 1.60	-
	0, 0							
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	45	-	-	28	-
Boron (water soluble)	mg/kg	0.2	MCERTS	8.5	-	-	3.1	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	-	0.2	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	-	< 4.0	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	41	-	-	27	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	180	-	-	160	-
	mg/kg		MCERTS	1/00	-	-	400	-
mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	3.0	-	-	1.8	-
nickei (dyud regia extractable)	mg/kg	1	MCEDIC	39 ~ 1 0	-	-	29	-
Zinc (aqua regia extractable)	mg/kg	1	MCEDTC	400	-	-	160	-
בוויב (מקוגם וכקום כגנו מנומטול)	тту/ку	1	PICERTS	-10U	-	-	100	-
Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	NONE	< 0.1	-	-	< 0.1	-

Petroleum Range Organics (C6 - C10)	mg/kg	0.1	NONE	< 0.1	-	-	< 0.1	-
TPH (C10 - C12)	mg/kg	2	NONE	< 2.0	-	-	< 2.0	-
TPH (C12 - C16)	mg/kg	4	NONE	13	-	-	< 4.0	-
TPH (C16 - C21)	mg/kg	1	NONE	56	-	-	< 1.0	-
TPH (C21 - C40)	mg/kg	10	NONE	610	-	-	< 10	-

Iss No 16-24320-1 1A Highgate Road, London, NW5 1JY J896

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number		610734	610735	610736	610737	610738		
Sample Reference		WS2	WS2	WS3	WS3	WS3		
Sample Number					Р	Р	Р	Р
Depth (m)					0.70	0.40	0.70	1.00
Date Sampled	27/07/2016	27/07/2016	27/07/2016	27/07/2016	27/07/2016			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Iss No 16-24320-1 1A Highgate Road, London, NW5 1JY J896

Lab Sample Number				610739	610740	610741	610742	610743
Sample Reference				WS3	WS3	WS4	WS4	WS4
Sample Number				D	D	Р	Р	D
Depth (m)				2.00	3.00	0.60	1.00	2.00
Date Sampled				27/07/2016	27/07/2016	27/07/2016	27/07/2016	27/07/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	19	20	17	19	19
Total mass of sample received	kg	0.001	NONE	0.74	1.0	0.83	0.63	0.30
	-	-			-		-	
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	Not-detected	-	-
General Inorganics								
рН	pH Units	N/A	MCERTS	8.4	8.4	8.1	7.7	8.6
Total Cyanide	mg/kg	1	MCERTS	< 1	-	< 1	< 1	-
Iotal Sulphate as SO ₄	mg/kg	50	MCERTS	600	1100	1300	/70	/50
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.16	0.41	0.31	0.23	0.11
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	159	-	306	229	-
Total Sulphur	mg/kg	50	NONE	-	370	-	-	250
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-	-	-	-
Total Phonois								
Total Phenols (manabudric)	m a // . a	1	MCEDIC	< 1.0		< 1.0	< 1.0	
	тіў/ку	1	PICERTS	< 1.0	-	< 1.0	< 1.0	-
Speciated PAHs								
Naphthalene	ma/ka	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Acenanhthylene	ma/ka	0.05	MCERTS	< 0.10	-	< 0.10	< 0.05	-
Acenaphthene	ma/ka	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Fluorene	ma/ka	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Phenanthrene	ma/ka	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Anthracene	mg/kg	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Pyrene	mg/kg	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	-	< 0.10	< 0.10	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
				1.00		1.60	1.60	
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	-	< 1.60	< 1.60	-
Hanny Matala / Matallaida								
Arconic (agua rogia extractable)	malka	1	MCEDTC	12	_	14	15	_
Boron (water soluble)	mg/kg	0.2	MCERTS	1.8	-	39	26	-
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	_	< 0.2	< 0.2	-
Chromium (bexavalent)	mg/kg	4	MCERTS	< 4.0	-	< 4.0	< 4.0	-
Chromium (aqua regia extractable)	ma/ka	1	MCERTS	64	-	37	50	-
Copper (aqua regia extractable)	ma/ka	1	MCERTS	35	-	150	34	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	13	-	94	48	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	0.7	0.4	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	45	-	54	25	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.2	-	< 1.0	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	84	-	91	81	-
Petroleum Hydrocarbons	-	-	a					
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	NONE	< 0.1	-	< 0.1	< 0.1	-

Petroleum Range Organics (C6 - C10)	mg/kg	0.1	NONE	< 0.1	-	< 0.1	< 0.1	-
TPH (C10 - C12)	mg/kg	2	NONE	< 2.0	-	< 2.0	< 2.0	-
TPH (C12 - C16)	mg/kg	4	NONE	< 4.0	-	< 4.0	< 4.0	-
TPH (C16 - C21)	mg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	-
TPH (C21 - C40)	mg/kg	10	NONE	< 10	-	< 10	< 10	-

Iss No 16-24320-1 1A Highgate Road, London, NW5 1JY J896

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number		610739	610740	610741	610742	610743		
Sample Reference		WS3	WS3	WS4	WS4	WS4		
Sample Number	D	D	Р	Р	D			
Depth (m)	2.00	3.00	0.60	1.00	2.00			
Date Sampled		27/07/2016	27/07/2016	27/07/2016	27/07/2016	27/07/2016		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Iss No 16-24320-1 1A Highgate Road, London, NW5 1JY J896

Analytical Report Number : 16-24320

Project / Site name: 1A Highgate Road, London, NW5 1JY

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
610729	WS1	J	0.50	Brown loam and sand with gravel and rubble.
610730	WS1	Р	0.50	Brown loam and sand with gravel and rubble.
610731	WS1	Р	0.80	-
610732	WS1	Р	1.00	Brown clay and sand with gravel.
610733	WS1	D	3.00	Brown clay and sand.
610734	WS2	Р	0.40	Brown clay and sand with gravel and rubble.
610735	WS2	Р	0.70	Brown clay and sand with gravel.
610736	WS3	Р	0.40	Brown clay and sand with gravel.
610737	WS3	Р	0.70	Brown clay and sand with gravel and brick.
610738	WS3	Р	1.00	Brown clay and sand with gravel and brick.
610739	WS3	D	2.00	Brown clay and sand.
610740	WS3	D	3.00	Brown clay and sand.
610741	WS4	Р	0.60	Brown clay and sand with gravel.
610742	WS4	Р	1.00	Brown clay and sand.
610743	WS4	D	2.00	Brown clay and sand.

4041 MA Analytical Report Number :

Project / Site name: 1A Highgate Road, London, NW5 1JY

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	NONE
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L076-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Iss No 16-24320-1 1A Highgate Road, London, NW5 1JY J896

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
WS1	J	S	16-24320	610729	b	PRO (Soil)	L073B-PL	b
WS2	Р	S	16-24320	610734	b	Monohydric phenols in soil	L080-PL	b
WS2	Р	S	16-24320	610734	b	PRO (Soil)	L073B-PL	b
WS2	Р	S	16-24320	610734	b	Speciated EPA-16 PAHs in soil	L064-PL	b
WS2	Р	S	16-24320	610734	b	TPH in (Soil)	L076-PL	b
WS3	D	S	16-24320	610739	b	Monohydric phenols in soil	L080-PL	b
WS3	D	S	16-24320	610739	b	PRO (Soil)	L073B-PL	b
WS3	D	S	16-24320	610739	b	Speciated EPA-16 PAHs in soil	L064-PL	b
WS3	D	S	16-24320	610739	b	TPH in (Soil)	L076-PL	b
WS3	Р	S	16-24320	610737	b	Monohydric phenols in soil	L080-PL	b
WS3	Р	S	16-24320	610737	b	PRO (Soil)	L073B-PL	b
WS3	Р	S	16-24320	610737	b	Speciated EPA-16 PAHs in soil	L064-PL	b
WS3	Р	S	16-24320	610737	b	TPH in (Soil)	L076-PL	b
WS4	Р	S	16-24320	610741	b	Monohydric phenols in soil	L080-PL	b
WS4	Р	S	16-24320	610741	b	PRO (Soil)	L073B-PL	b
WS4	Р	S	16-24320	610741	b	Speciated EPA-16 PAHs in soil	L064-PL	b
WS4	Р	S	16-24320	610741	b	TPH in (Soil)	L076-PL	b
WS4	Р	S	16-24320	610742	b	Monohydric phenols in soil	L080-PL	b
WS4	Р	S	16-24320	610742	b	PRO (Soil)	L073B-PL	b
WS4	Р	S	16-24320	610742	b	Speciated EPA-16 PAHs in soil	L064-PL	b
WS4	Р	S	16-24320	610742	b	TPH in (Soil)	L076-PL	b

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

TEST CERTIFICATE

Determination of Moisture Content

Tested in Accordance with BS 1377-2:1990: Clause 3.2

Client: Client Address:	Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD
Contact:	Emma Hucker
Site Name:	1A Highgate Road, London, NW5 1JY
Site Address:	1A Highgate Road, London, NW5 1JY

Test results

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference:	J896
Job Number:	16-24379
Date Sampled:	27/07/2016
Date Received:	02/08/2016
Date Tested:	09/08/2016
Sampled By:	Not Given

Laboratory Reference	Sample Reference	Location	Depth Top [m]	Depth Base [m]	Sample Type	Description	Moisture Content [%]
611064	D	WS1	2	Not Given	D	Yellowish brown CLAY with pocket of light brown clay	30
611065	D	WS1	3	Not Given	D	Yellowish brown CLAY with thin laminae of grey clay	29
611066	D	WS2	2	Not Given	D	Yellowish brown CLAY with thin laminae of clay and rootlets	31
611067	D	WS2	4	Not Given	D	Yellowish brown CLAY with thin laminae of light grey clay	31
611068	D	WS3	2.5	Not Given	D	Yellowish brown CLAY with thin laminae of grey clay	28
611069	D	WS3	4	Not Given	D	Yellowish brown CLAY with thin laminae of grey clay and gypsum crystals	31
611070	D	WS4	2	Not Given	D	Yellowish brown CLAY with thin laminae of light grey clay and light brown clay	30
611071	D	WS4	3	Not Given	D	Yellowish brown CLAY with thin laminae of light grey clay	33

Comments:

Approved:

Minonawa Mytis

Signed:

Ŧ.

Terry Stafford Geotechnical Manager

Mirosława Pytlik PL Head of Geotechnical section Date Reported: 16/08/2016

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Detern	TEST CERTI	FICATE and Plastic Limit	i2 Analytical Ltd 7 Woodshots Mea Croxley Green Bus Watford Herts WD	dow siness Park 18 8YS				
Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method4041Client:Jomas Associates LtdClient Reference:J896Client Address:Lakeside HouseJob Number:16-243791 Furzeground WayDate Sampled:27/07/2016Stockley ParkDate Received:02/08/2016Contact:Emma HuckerDate Tested:09/08/2016Site Name:1A Highgate Road, London, NW5 1JYSampled By:Not Given								
TEST RESULTS Laboratory Reference: 611064 Sample Reference: D Description: Yellowish brown CLAY with pocket of light brown clay Sample Type: D Location: WS1 Depth Top [m]: 2 Sample Preparation: Tested in natural condition Depth Base [m]: Not Given								
As Received Moisture Content [%]	Liquid Limit [%]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425µm BS Test Sieve				
30	73	29	44	100				
	C Clay M Silt	CV 611064 CH MV MH 60 70 80 90 LIQUID LIMIT A2: 2010 Code of practice for site Plasticity L Low I Medium H High V Very high	CE ME 0 100 110 120 investigations Liquid Limit below 35 35 to 50 50 to 70 70 to 90	A line				

Approved:		Signed:
 Mirosława Pytlik	Minomawa nythis	Terry Stafford
PL Head of Geotec	hnical section	Geotechnical Manager
Date Reported:	16/08/2016	·
		for and on behalf of i2 Analytical Ltd

$ \begin{array}{c} $	TEST CERTI	FICATE and Plastic Limit	i2 Analytical Ltd 7 Woodshots Mea Croxley Green Bus Watford Herts WD	dow siness Park 18 8YS				
Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method4041Client Reference:J896Client Address:Lakeside HouseJob Number:16-243791 Furzeground Way Stockley Park UB11 1BDDate Sampled:27/07/2016Contact:Emma HuckerDate Tested:09/08/2016Site Name:1A Highgate Road, London, NW5 1JYSampled By:Not Given								
Site Address. TA Highgate Road, London, NWS 131 TEST RESULTS Laboratory Reference: 611065 Sample Reference: D Description: Yellowish brown CLAY with thin laminae of grey clay Sample Type: D Location: WS1 Depth Top [m]: 3 Sample Preparation: Tested in natural condition Depth Base [m]: Not Given								
As Received Moisture Content [%]	Eiquid Limit	Plastic Limit [%]	Plasticity Index [%]	% Passing 425µm BS Test Sieve				
29	69	28	41	100				
100 90 80 70 60 50 40 30 20 10 0 0 10	C Clay M Silt	CV 511065 CH MV MH 60 70 80 90 LIQUID LIMIT A2: 2010 Code of practice for site Plasticity L Low I Medium H High V Very high E E Etemeth kich	CE ME 0 100 110 120 investigations Liquid Limit below 35 35 to 50 50 to 70 70 to 90	A line				

Approved:		Signed:
Mirosława Pytlik	Minomawa Rythis	Terry Stafford
PL Head of Geotec	hnical section	Geotechnical Manager
Date Reported:	16/08/2016	·
		for and on behalf of i2 Analytical Ltd

	Deterr	<u>TES</u> nination	OT CER	<u>E</u> astic Lin	nits	i2 Analytic 7 Woodsh Croxley G Watford H	i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS			
UKAS TESTING	Tested in A	Accordance wi	th BS1377-2:	1990: Clause	4.4 & 5: One P	oint Meth	od			Environmental Science
4041ClientJomas Associates LtdClient Reference:J896Client Address:Lakeside HouseJob Number:16-243791 Furzeground WayDate Sampled:27/07/2016Stockley ParkDate Received:02/08/2016UB11 1BDDate Received:02/08/2016										79 016 016
Contact: Emma Hucker Date Tested: 09/08/2016 Site Name: 1A Highgate Road, London, NW5 1JY Sampled By: Not Given Site Address: 1A Highgate Road, London, NW5 1JY Sampled By: Not Given										016 en
TEST RESUL	.TS	La	boratory Re	ference:	611066					
Description: Location: Sample Prepar	Yellow WS2 ation:	ish brown Cl Tested in n	Sample Re _AY with thin atural cond	ference: n laminae of o ition	D clay and rootle	ets		Sam Depth Depth	ple Type: i Top [m]: Base [m]:	D 2 Not Given
As Received	Moisture	Liqu	id Limit	Plas	stic Limit	Р	lasticity In	dex	% Pas	sing 425µm
31	L [70]		73		28		45		53	100
100										
- 100										ne
80 -										
70 -								\nearrow		
60 -										
X D 50 -				61106	cv	\square				
∠ ∠ 40 -				сн						
21 C 30 -					MV	_				
M 20 -				MH		_				
10 -		CL								
0 -	•••••	ML	MI							
(0 10	20 30	40 5	60 60	70 80 OUID UMIT	90 1	.00 110	120	130 14	0 150
		Legend, based	on BS 5930:19	99 +A2: 2010 Co	de of practice for s	site investig	ations			
		C Clay M Silt		Plasticity L Low I Mediu H High V Very E Extre	ım nigh nely high		Liquid Limit below 35 35 to 50 50 to 70 70 to 90 exceeding 90			
		Organi	c	O apper	nd to classification	for organi	c material (eg (CHO)		
Comments:										

Approved:		Signed:
Mirosława Pytlik	Minomawa Rythis	Terry Stafford
PL Head of Geotec	hnical section	Geotechnical Manager
Date Reported:	16/08/2016	·
		for and on behalf of i2 Analytical Ltd

	Detern	<u>TES</u> nination	T CER	<u>ts</u>	i2 Analytic 7 Woodsh Croxley G Watford H	cal Ltd nots Meac reen Bus lerts WD ²	low iness Par 18 8YS	rk		
	Tested in A	ccordance wi	th BS1377-2:	1990: Clause 4.	nt Method	thod				
4041ClientJomas Associates LtdClient Reference:J896Client Address:Lakeside HouseJob Number:16-243791 Furzeground WayDate Sampled:27/07/2016Stockley ParkDate Received:02/08/2016										79 2016 2016
Contact:Emma HuckerDate Tested:09/08/2016Site Name:1A Highgate Road, London, NW5 1JYSampled By:Not GivenSite Address:1A Highgate Road, London, NW5 1JYSampled By:Not Given										016 ven
TEST RESUL	тѕ	Lal	poratory Ref	erence: 6	11067					
Description: Location: Sample Prepara	Yellowi WS2 ation:	sh brown CL Tested in n	Sample Ref AY with thin atural condit	erence: [laminae of lig ion) ht grey clay			Sam Depth Depth	ple Type: n Top [m]: Base [m]:	D 4 Not Given
As Received	Moisture	Liqui	d Limit	Plast	ic Limit	Pla	sticity Ir	ndex	% Pas	sing 425µm
31	[70]	I	73		30		43		D3	100
100 -										
90 - 80 -									Ali	ine
70 - 60 -						С				
50 - 50 - 10 - 10 - 10 - 10 - 10 - 10 -				611067	cv	M	E			
1 05 -			СІ	CH	MV					
- 20 - 10 -	••••••	CL	MI	MH						
0 - () 10	20 30	40 50	D 60 7 LIQ	0 80 9 UID LIMIT	90 10	0 110	120	130 14	10 150
		Legend, based of C Clay M Silt	on BS 5930:199	9 +A2: 2010 Code Plasticity L Low I Medium H High V Very hig E Extreme	of practice for site	e investiga Lid 35 50 70 ex	tions quid Limit elow 35 to 50 to 70 to 90 ceeding 90			
Comments:		Organio	2	O append	to classification fo	or organic	naterial (eg	CHO)		

Approved:	Signed:
Minonawa hytis	Torri Stafford
Mirosława Pytlik	Terry Station
PL Head of Geotechnical section	Geotechnical Manager
Date Reported: 16/08/2016	
	for and on behalf of i2 Analytical Ltd

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method Client: Jomas Associates Ltd Client Address: Lakeside House Joh Number: 16-24379 Joh Number: 16-24379 Date Sampled: 27/07/2016 Stockley Park Date Sampled: 27/07/2016 UB11 18D Date Tested: 09/08/2016 Contact: Emme Hucker Dist Address: 1A Highgate Road, London, NW5 1JY Sample Reference:: 0 Description: Yellowish brown CLAY with thin laminae of grey clay Sample Type: D Contact: Yellowish brown CLAY with thin laminae of grey clay Sample Type: D Sample Preparation: Tested in natural condition Depth Top [m]: 2.5 Sample Reference: D Sample Moisture Liquid Limit Plastic Limit Yel Moisture Yelowing for the sample of the sample of the sample of the		Detern	TES	T CERT of Liquid	IFICATE	i2 7 <u>ts</u> v	2 Analytical L Woodshots croxley Green Vatford Herts	td Meado Busii WD1	ow ness Park 8 8YS	Analytical			
044 Client: Jomas Associates Ltd Client Reference: J896 Client Address: Lakeside House Job Number: 16-24379 1 Furzeground Way Date Sampled: 27/07/2016 Stockley Park UB11 18D Date Received: 09/08/2016 Contact: Emma Hucker Date Tested: 09/08/2016 Stockley Park UB11 18D Date Received: 09/08/2016 Contact: Enma Hucker Date Tested: 09/08/2016 Ste Address: 1 A Highgate Road, London, NW5 1JY Sample Reference: D Description: Yellowish brown CLAY with thin laminae of grey clay Sample Type: D Location: WS3 Depth Top [m]: 2.5 Sample Preparation: Tested in natural condition Depth Base [m]: Not Given As Received Moisture Liquid Limit Plastic Limit Plasticity Index % Passing 425µm 28 67 27 40 100 100 100 0 0 0 0 0 0 0 100 0 0 0 0 0 0	UKAS TESTING	Tested in A	Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method										
Contact: Lemma Hucker Date Tested: 09/09/2016 Site Name: 1A Highgate Road, London, NW5 1JY Site Address: 1A Highgate Road, London, NW5 1JY TEST RESULTS Laboratory Reference: 611068 Sample Reference: D Description: Yellowish brown CLAY with thin laminae of grey clay Depth Top [m]: 2.5 Sample Preparation: Tested in natural condition Depth Base [m]: Not Given A Received Moisture Liquid Limit [%] Plastic Limit [%] Plasticity Index % Passing 425µm BS Test Sieve 28 67 27 40 100 100 100 100 100 100 100 100	4041 Client: Client Address:	Jomas Associates Ltd Client Reference: J896 Idress: Lakeside House Job Number: 16-24379 1 Furzeground Way Date Sampled: 27/07/2016 Stockley Park Date Received: 02/08/2016									6		
TEST RESULTS Laboratory Reference: 611068 Sample Reference: D D Sample Strence: D Description: Vellowish brown CLAY with thin laminae of grey clay Sample Type: D D Location: WS3 Depth Top [m]: 2.5 Sample Preparation: Tested in natural condition Depth Base [m]: Not Given As Received Moisture Liquid Limit Plastic Limit Plasticity Index % Passing 425µm 28 67 27 40 100 Outent [%] Liquid Limit Plastic Limit Plastic Limit Plastic Limit Mathematical Strence 28 67 27 40 100 100 100 100 100 Outent [%] CLiquid Limit Plastic Limit Plastic Limit Plastic Limit Mathematical Strence 28 67 27 40 100 100 100 100 100 100 100 40 0 0 0 0 0 0 0 100 100 100 100 100	Site Name: Site Address:	ontact: Emma Hucker Date Tested: 09/08/2016 te Name: 1A Highgate Road, London, NW5 1JY Sampled By: Not Given te Address: 1A Highgate Road, London, NW5 1JY Sampled By: Not Given											
Sample Reference: D Description: Yellowish brown CLAY with thin laminae of grey clay Location: WS3 Sample Preparation: Tested in natural condition A Received Moisture Liquid Limit [%] Plastic Limit [%] Plasticity Index [%] BS Test Sieve 28 67 27 40 100 A line f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TEST RESUL	TS	Lab	oratory Refe	erence: 6	11068							
As Received Moisture Content [%] Liquid Limit [%] Plastic Limit [%] Plasticity Index [%] % Passing 425µm BS Test Sieve 28 67 27 40 100 90 67 27 40 100 90 67 67 27 40 100 90 60 611068 CV ME 60 60 611068 ME 611068 ME 60 90 611068 ME 611068 ME 60 611068 10 <t< td=""><td colspan="9">Sample Reference: D Description: Yellowish brown CLAY with thin laminae of grey clay Sample Type: D Location: WS3 Depth Top [m]: 2.5 Sample Preparation: Tested in natural condition Depth Base [m]: Not Given</td></t<>	Sample Reference: D Description: Yellowish brown CLAY with thin laminae of grey clay Sample Type: D Location: WS3 Depth Top [m]: 2.5 Sample Preparation: Tested in natural condition Depth Base [m]: Not Given												
Content [76] [76] [76] [76] [76] D3 rest dieve 28 67 27 40 100 90 90 90 90 90 100 90 90 90 90 90 100 90 90 90 90 90 100 90 90 90 90 90 100 100 90 90 90 100 100 100 100 100	As Received	Moisture	Liquic rº	Limit	Plasti	c Limit	Plas	ticity Index	(% Passi	ng 425µm st Siovo		
$ \begin{array}{c} 100 \\ 90 \\ 90 \\ 70 \\ 70 \\ 60 \\ 70 \\ 60 \\ 70 \\ 60 \\ 70 \\ 60 \\ 70 \\ 60 \\ 70 \\ 60 \\ 70 \\ 60 \\ 70 \\ 60 \\ 70 \\ 60 \\ 70 \\ 61 \\ 1068 \\ CV \\ ME \\ ME \\ ME \\ ME \\ 0 \\ 0 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 100 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	28	. [/0]	6	67		27		40		1	00		
LIQUID LIMIT Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations Plasticity Liquid Limit C Clay L Low below 35 M Silt I Medium 35 to 50 H High 50 to 70 V Very high 70 to 90 E Extremely high exceeding 90 Plastication for organic material (eg CHO)	 100 90 80 70 60 50 50 40 40 30 20 10 10 0 0 0 	D 10	CL 20 30 Clay M Silt	CI MI 40 50 n BS 5930:1995	611068 CH CH 0 60 70 LIQU 0+A2: 2010 Code Plasticity L Low I Medium H High V Very hig E Extreme O append	CV MV MV 0 80 S JID LIMIT of practice for site	CE ME ME 00 100 e investigation belo 35 t 50 t 70 t exco	110 12 0 00 0 00 0 0 00 0	.0 1	A line	150		

Approved:		Signed:
Mirosława Pytlik	Minomawa Rythis	Terry Stafford
PL Head of Geotec	hnical section	Geotechnical Manager
Date Reported:	16/08/2016	·
		for and on behalf of i2 Analytical Ltd

		TES	T CER	TIFIC	CATE			i2 / 7 V	Analytic Voodsh	al Ltd ots Mea	dow		alytical
	<u>Detern</u>	<u>nination</u>	of Liqu	<u>iid an</u>	d Pla	<u>stic L</u>	<u>imits</u>	Watford Herts WD18 8YS					
UKAS TESTING 4041	Tested in A	ccordance wit	Nethod										
Client: Client Address:	t: Jomas Associates Ltd Client Reference: J896 t Address: Lakeside House Job Number: 16-24379 1 Furzeground Way Date Sampled: 27/07/2016 Stockley Park UB11 1BD Date Received: 02/08/2016												
Contact:Emma HuckerDate Tested:09/08/2016Site Name:1A Highgate Road, London, NW5 1JYSampled By:Not GivenSite Address:1A Highgate Road, London, NW5 1JYSampled By:Not Given													
TEST RESUL	TS Yellowi	Lat sh brown CL	ooratory Re Sample Re AY with thi	eference eference in lamina	: 6 : D ae of gre	11069) ey clay a	and gyps	sum cryst	tals	San	nple Typ	be:	D
Location: Sample Prepara	WS3 ation:	Tested in n	atural cond	lition						Dept Depth	h Top [r Base [r	n]: n]: Noi	4 : Given
As Received	Moisture	Liqui r	d Limit %1		Plast	ic Limi %1	t	Plasti	city In	dex	% Pa	assing	g 425µm Sieve
31	[/0]	L	76	+		30			46			10	0
100 -												_	
90 -												line	
80 -													_
/0 -								CE	\nearrow				
X INDEX					61106	9 CV	'	ME					_
<u>40</u> -				c	Н	M	,						_
- 30 -			CI										_
- 20 -		CL		M	Н								
- 10	•••••	<u>ML</u>	MI										
) 10	20 30	40	50 6	0 70 LIQ) 80 UID LIM	90 IT	100	110	120	130	140	150
		Legend, based o	on BS 5930:19	999 +A2: 2	010 Code	of practice	e for site in	vestigations	5				
		C Clay M Silt		Plast L I H V	Low Medium High Very hig	h		Liquid below 35 to 5 50 to 7 70 to 9	Limit 35 70 90				
		Organic	;	E O	Extreme	ery high to classific	ation for o	exceed rganic mate	aing 90 erial (eg (CHO)			
Comments:													

Approved:		Signed:
Mirosława Pytlik	Minomawa Rythis	Terry Stafford
PL Head of Geotec	nnical section	Geotechnical Manager
Date Reported:	16/08/2016	5
		for and on behalf of i2 Analytical Ltd

						·•• • • • • •				
		<u>TE</u> \$	<u>ST CER</u>		1 1 •	i2 Analytical 7 Woodshots	Ltd s Mead	wob	Atical	
(≱≮)	Determination of Liquid and Plastic Limits				ts Croxley Gree Watford Her	Croxley Green Business Park Watford Herts WD18 8YS				
	Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method							ironmental Science		
4041 Client:	Jomas Associates Ltd C					Client Refer	Client Reference: J896			
Client Address:	Lakesi 1 Furze	de House eground Wa	V			Job Nu Date San	mber:	16-24379 27/07/2016		
	Stockle	ey Park				Date Reco	eived:	02/08/2016		
Contact:	Emma Hucker Date Tested: 09/08/2016									
Site Name: Site Address:	1A Highgate Road, London, NW5 1JY Sampled By: Not Given 1A Highgate Road, London, NW5 1JY									
TEST RESUL	TS	La	boratory Re	eference: 6	11070					
	Yellowi	sh brown C	Sample Re I AY with thi	eference: D) ht grev clav ai	nd light brown			_	
Description:	clay				it groy only a		Sam	ple Type:	D	
Location:	WS4	Tested in r	natural cond	lition			Depth Donth	n Top [m]: Raaa [m]: Not	2 Civon	
							Depth	Dase [III]. Not	Given	
As Received	As Received Moisture Liquid Limit Plastic Limit					Plasticity Inde	Plasticity Index		% Passing 425µm BS Test Sieve	
30	. [/0]		70	29		41	41		100	
100 -							1	1 1		
90 -										
80 -										
70 -										
60 -							_			
60 - 50 -					cv					
60 - 50 - 14 40 -				611070	cv	ME			_	
60 - 50 - 40 - 30 -				611070 CH	CV MV	ME				
60 - 50 - 40 - 30 - 20 - 20 -			CI	611070 CH	CV MV	ME			_	
60 - 50 - 40 - 30 - 20 - 10 -		CL	CI	611070 CH MH	CV MV	ME				
60 - 50 - 40 - 30 - 20 - 10 -		CL	CI	611070 CH MH	CV MV	ME				
60 - 50 - 40 - 30 - 20 - 10 - 0 - 0 -	D 10	CL 20 30	CI MI 40	611070 CH MH 50 60 70		ME	.20	130 140	150	
60 - 50 - 40 - 30 - 20 - 10 - 0 - 0 -) 10	CL 	CI MI 40 9	611070 CH MH 50 60 70 LIQ 199 +A2: 2010 Code	CV MV 0 80 9 UID LIMIT of practice for site	ME 0 100 110 1 e investigations	.20	130 140	150	
60 - 50 - 40 - 30 - 20 - 10 - 0 - 0 -) 10	CL CL 20 30 Legend, based C Clay	CI MI 40	611070 CH MH 50 60 70 LIQ 199 +A2: 2010 Code Plasticity L Low	CV MV 0 80 9 UID LIMIT of practice for site	ME 00 100 110 1 e investigations Liquid Limit below 35	.20	130 140	150	
60 - 50 - 40 - 30 - 20 - 10 - 0 - 0 -) 10	CL CL 20 30 Legend, based C Clay M Silt	CI MI 40	611070 CH MH 50 60 70 LIQU 999 +A2: 2010 Code Plasticity L Low I Medium H High	CV MV 0 80 9 UID LIMIT of practice for site	ME 0 100 110 1 e investigations Liquid Limit below 35 35 to 50 50 to 70	.20	130 140	150	
60 - 50 - 40 - 30 - 20 - 10 - 0 - 0 -) 10	CL CL 20 30 Legend, based C Clay M Silt	CI MI 40	611070 CH MH 50 60 70 LIQU 99 +A2: 2010 Code Plasticity L Low I Medium H High V Very hig E Evtreme	CV MV 0 80 9 UID LIMIT of practice for site	ME 0 100 110 1 e investigations Liquid Limit below 35 35 to 50 50 to 70 70 to 90 exceeding 90	.20	130 140	150	
60 - 50 - 40 - 30 - 20 - 10 - 0 - 0 -) 10	CL CL 20 30 Legend, based C Clay M Silt	CI MI 40 9 on BS 5930:19	611070 CH MH 50 60 70 LIQU 99 +A2: 2010 Code Plasticity L Low I Medium H High V Very hig E Extreme O append	CV MV 0 80 9 UID LIMIT of practice for site	ME 00 100 110 1 e investigations Liquid Limit below 35 35 to 50 50 to 70 70 to 90 exceeding 90 or organic material (eg CH0	L20	130 140	150	

Approved:

Mirosława Pytlik

Date Reported:

Minonawa Mythis

Signed:

PL Head of Geotechnical section 16/08/2016 Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

TEST CERTIFICATE						i2 7	i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park				
							Watford Herts WD18 8YS				
TESTING 4041	Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method										
Client: Client Address:	Jomas Associates Ltd ss: Lakeside House 1 Furzeground Way Stockley Park UB11 1BD						Client Reference: J896 Job Number: 16-24379 Date Sampled: 27/07/2016 Date Received: 02/08/2016				
Contact: Site Name: Site Address:	Emma HuckerDate Tested:09/08/20161A Highgate Road, London, NW5 1JYSampled By:Not Givenss:1A Highgate Road, London, NW5 1JYSampled By:Not Given										
TEST RESUL	TS	La	boratory Ref	erence: 6	511071						
Sample Reference: D Description: Yellowish brown CLAY with thin laminae of light grey clay Sample Type: D Location: WS4 Depth Top [m]: 3 Sample Preparation: Tested in natural condition Depth Base [m]: Not Given) 3 Given				
As Received Moisture Liquid Limit			id Limit	Plast	ic Limit	Plas	Plasticity Index		% Passing 425µm		
33	33 74		74		30		44		100		
100 -					I		1 1	_			
90 -									A line		
80 -								\checkmark		_	
70 -						CE				-	
60 -							$ \land \downarrow $			-	
A A 50 -				611071	cv					_	
II 40 -				— <u>С</u> Н						_	
- 05 STIC					MV					_	
4 20 -		CI								_	
10 -		CL								_	
0 -	•••••	ML	мі								
() 10	20 30	40 5	0 60 7 LIQ	0 80 9 UID LIMIT	90 100	110 120	130	140 1	50	
		Legend, based	on BS 5930:199	99 +A2: 2010 Code	of practice for sit	e investigatio	ons				
C Clay M Silt				Frasticity L Low I Medium H High V Very high E Extremely high			Liquid Limit below 35 35 to 50 50 to 70 70 to 90 exceeding 90				

Approved:		Signed:
Mirosława Pytlik	Minonawa Mythis	Terry Stafford
PL Head of Geotec	nnical section	Geotechnical Manager
Date Reported:	16/08/2016	U
		for and on behalf of i2 Analytical Ltd

Client Addres

Contact: Site Name: Site Address:

TEST CERTIFICATE

Summary of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clauses 4.4 & 5: One Point Method

	Jomas Associates Ltd	Client Reference:	J896
S:	Lakeside House	Job Number:	16-24379
	1 Furzeground Way	Date Sampled:	27/07/2016
	Stockley Park	Date Received:	02/08/2016
	Emma Hucker	Date Tested:	09/08/2016
	1A Highgate Road, London, NW5 1JY 1A Highgate Road, London, NW5 1JY	Sampled By:	Not Given

TEST RESULTS

Location	Depth [m]	As Received Moisture Content [%]	Liquid Limit [%]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425µm BS Test Sieve
WS1	2	30	73	29	44	100
WS1	3	29	69	28	41	100
WS2	2	31	73	28	45	100
WS2	4	31	73	30	43	100
WS3	2.5	28	67	27	40	100

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Client Address:

Contact: Site Name: Site Address:

TEST CERTIFICATE

Summary of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clauses 4.4 & 5: One Point Method

Jomas Associates Ltd	Client Reference:	J896
Lakeside House	Job Number:	16-24379
1 Furzeground Way	Date Sampled:	27/07/2016
Stockley Park	Date Received:	02/08/2016
Emma Hucker	Date Tested:	09/08/2016
1A Highgate Road, London, NW5 1JY	Sampled By:	Not Given
A highgate road, condon, inviso 131		

TEST RESULTS

Location	Depth [m]	As Received Moisture Content [%]	Liquid Limit [%]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425µm BS Test Sieve
WS3	4	31	76	30	46	100
WS4	2	30	70	29	41	100
WS4	3	33	74	30	44	100

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

APPENDIX 5 – STATISTICAL ANALYTICAL RESULTS

	Α	В	С	D	E	F	G	Н	I	J	K	L
1					Outlier Test	s for Selecte	ed Uncensor	ed Variables	;			
			User Selec	ted Options								
	Dat	te/Time of Co	omputation	19/08/2016	11:12:20							
3			, paration	From Eilo		for state vie						
4			F . 1			, 101 31013.815						
5			Full	Precision	OFF							
6												
7												
8		Dixon's C	Outlier Test fo	or Arsenic								
0												
9	Number of (Observations	= 6									
10	10% critical	value: 0.482)									
11			•									
12	5% critical v	/alue: 0.56										
13	1% critical v	/alue: 0.698										
14												
15	1. Observa	tion Value 4	5 is a Potent	ial Outlier (L	Jpper Tail)?							
16												
17	Test Statisti	ic: 0.467										
10												
18	For 10% sig	Inificance lev	rel. 45 is not a	an outlier								
19	Eor 5% air	vificance lave	1 /5 in not	a outlior								
20	וייט ס% sign		a, 45 is not ar	outlier.								
21	⊢or 1% sign	nificance leve	el, 45 is not ar	n outlier.								
22												
23	2. Observat	tion Value 8.	6 is a Potent	ial Outlier (L	ower Tail)?							
24												
25	Test Statisti	ic: 0.093										
20												
26	For 10% sig	inificance lev	rel 86 is not	an outlier								
27	For F ⁰ / sign			n outlier								
28				n outlier.								
29	For 1% sign	lificance leve	el, 8.6 is not a	n outlier.								
30												
31												
32		Dixon's	Outlier Test	for Lead								
22												
33	Number of (Observations	= 6									
34	10% critical	value: 0.482										
35	5% oritical	value: 0.402										
36												
37	1% critical v	/alue: 0.698										
38												
39	1. Observa	tion Value 1	700 is a Pote	ential Outlier	(Upper Tail							
40												
11	Test Statisti	ic: 0.771										
41												
42	For 10% sig	Inificance lev	rel, 1700 is ar	1 outlier								
43	Eor 5% cia-	hificance law										
44	For 10											
45	⊢or 1% sign	inticance leve	ei, 1700 is an	outlier.								
46												
47	2. Observat	tion Value 13	3 is a Potenti	al Outlier (Lo	ower Tail)?							
48												
10	Test Statisti	ic: 0.021										
- 1 3												
50	For 10% sig	inificance lev	rel. 13 is not a	an outlier								
51	For 5% airs	hificance love	13 is not or	a outlior								
52	For 10/											
53	⊢or 1% sign	nificance leve	el, 13 is not ar	n outlier.								
54												

	A	В	С	D	E	F	G	Н		J	K	L
1					UCL Statis	stics for Unc	ensored Full	Data Sets				
2												
3		User Sele	cted Options	i								
4	Da	te/Time of Co	omputation	19/08/2016	11:06:07							
5			From File	J896 results	for stats.xls							
6		Fu	Il Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap	Operations	2000								
9												
10	<u> </u>											
11	Arsenic											
12							<u>.</u>					
13						General	Statistics			() : :		
14			l otal	Number of C	bservations	6			Numbe	r of Distinct C	bservations	6
15									Numbe	r of Missing C	bservations	0
16					Minimum	8.6					Mean	20.43
17					Maximum	45					Median	14.5
18				0	SD	13.73				Std. E	rror of Mean	5.606
19				Coefficient	of Variation	0.672					Skewness	1.457
20						0) (6 d a ba		1014				
21				pie size is sn	nall (e.g., < 1	0), ir data ar		using ISM ap	oproacn, you	snould use		
22			guidance pr			g Guide on i		(12) to com		S OF INTEREST.	•	
23				example, you		o use Cheby	snev UCL to		PC (ITRC, 2	$\frac{1}{2}$		
24			Chebyshe		computed	using the No	nparameurc		. Options of	PIOUCE 5.0		
25						Normal (
26			c	Shanira Wilk T	oct Statistia				Shanira W			
27			5%_S		ritical Value	0.001		Data ann		t 5% Signific	anco Lovol	
28					Act Statistic	0.700						
29			<u>_</u>		ritical Value	0.32		Data ann	ar Normal a	t 5% Signific	ance Level	
30					Data anne	ar Normal a	5% Signific			t 5 % Signine		
31					Data appe							
32					As	suming Nor	mal Distribut	ion				
33			95% N	ormal UCI	,			95%	UCI s (Adii	isted for Ske	wness)	
34				95% Stu	lent's-t UCI	31 73			95% Adjuste		(Chen-1995)	33 22
35						01.70			95% Modifi	ed-tUCL (Joh	hnson-1978)	32 29
36												02.20
37						Gamma	GOF Test					
38				A-D T	est Statistic	0.408		Ande	rson-Darling	Gamma GO	F Test	
39				5% A-D C	ritical Value	0.701	Detecte	d data appea	ar Gamma D	istributed at 5	5% Significand	ce Level
40				K-S T	est Statistic	0.298		Kolmo	grov-Smirno	ff Gamma G	OF Test	
41				5% K-S C	ritical Value	0.334	Detecte	d data appea	ar Gamma D	istributed at 5	5% Significand	ce Level
42				Detected	data appea	r Gamma Di	stributed at {	5% Significa	nce Level		_	
43												
44						Gamma	Statistics					
45					k hat (MLE)	3.217			k	star (bias cor	rected MLE)	1.72
47				The	a hat (MLE)	6.351			Theta	star (bias cor	rected MLE)	11.88
47 48				n	u hat (MLE)	38.61				nu star (bia	is corrected)	20.64
40			М	LE Mean (bia	s corrected)	20.43				MLE Sd (bia	is corrected)	15.58
50						1			Approximate	Chi Square	Value (0.05)	11.32
51			Adju	sted Level of	Significance	0.0122			A	djusted Chi S	quare Value	8.938
52						1						
53					As	suming Gam	ma Distribu	tion				
54	ç	95% Approxir	mate Gamma	a UCL (use w	hen n>=50))	37.24		95% Ac	ljusted Gam	na UCL (use	when n<50)	47.18
0-1						I	1					

	A	В	С	D	E	F	G	Н	l		J	K	L	
55														
56						Lognorma	GOF Test							
57			S	hapiro Wilk 1	Fest Statistic	0.933		Shap	oiro Wilk	(Log	normal GOF	Test		
58			5% Sł	napiro Wilk C	Critical Value	0.788		Data appea	r Lognor	rmal	at 5% Signif	icance Level		
50				Lilliefors	Fest Statistic	0.262		Lil	liefors L	ogno	ormal GOF T	est		
59			5	% Lilliefors C	Critical Value	0.362		Data appea	r Lognor	rmal	at 5% Signif	icance Level		
00					Data appear	· Lognormal	at 5% Signif	icance Leve			-			
61					••	•	0							
62						Lognorma	Statistics							
63				Minimum of I	ogged Data	2 152					Mean of	logged Data	2 854	
64						2.102						logged Data	0.605	
65			N			5.007					30 01	loggeu Dala	0.005	
66					A	uning Logno	um al Diatuik							
67					Ass		ormai Distrid	ution			<u></u>		05.00	
68					95% H-UCL	45.8			9	90% (Chebyshev (MVUE) UCL	35.06	
69			95% (Chebyshev (MVUE) UCL	41.81			97.	.5% (Chebyshev (MVUE) UCL	51.18	
70			99% (Chebyshev (MVUE) UCL	69.58								
71														
72					Nonparame	etric Distribu	tion Free UC	CL Statistics						
73				Data appea	r to follow a	Discernible I	Distribution	at 5% Signifi	cance L	.evel				
74														
75					Nonpa	rametric Dist	tribution Fre	e UCLs						
76				95	% CLT UCL	29.65					95% Ja	ckknife UCL	31.73	
70			95%	Standard Bo	otstrap UCL	29.02					95% Boo	tstrap-t UCL	62.84	
70			9	5% Hall's Bo	otstrap UCL	103.4			9	5% F	Percentile Bo	otstrap UCL	29.5	
70			(95% BCA Bo	otstrap UCL	31.5	5							
79	9 90% Chebyshev(Mean_Sd) UCL 37.25 95% Chebyshev(Mean_Sd) UCL									44.87				
80	0 97.5% Chebyshev(Mean, Sd) UCL 55.44 99% Chebyshev(Mean, Sd) UCL									76.21				
81			07.070 011	ebyonev(me		00.11					ebyonev(ivie		70.21	
82						Suggested								
83				05% Stu	dont's t UCI	21 72								
84				95 % 310		31.73		1	1		[1		
85									+ 4					
86		Note: Sugges	stions regard	ing the selec	:tion of a 95%	o UCL are pro		ip the user to		ne m	lost appropri			
87		I hese reco	ommendation	is are based	upon the res	sults of the si	mulation stu	dies summar	ized in S	Singh	n, Singh, and	laci (2002)		
88			and Singh	and Singh (2	2003). Howe	ver, simulatio	ons results w	ill not cover a	all Real V	World	d data sets.			
89				For ad	ditional insig	ht the user m	hay want to c	onsult a stat	stician.					
90														
91														
92	Lead													
93														
94						General	Statistics							
95			Total	Number of C	Observations	6			Nur	mber	of Distinct C	Observations	6	
96									Nur	mber	of Missing C	bservations	0	
97					Minimum	13						Mean	389.8	
98					Maximum	1700						Median	89	
90					SD	656.7					Std. E	rror of Mean	268.1	
100				Coefficient	of Variation	1.685						Skewness	2.225	
101						<u> </u>	1							
101			Note: Sam	ole size is sr	nall (e.g <1	0), if data ar	e collected u	using ISM ar	proach.	you	should use			
102			quidance pr	ovided in ITF	RC Tech Rec	Guide on Is	SM (ITRC. 2	012) to com	oute stat	tistic	s of interest			
103			For	example voi	I may want t	o use Chehv	shev UCL to) estimate F		RC 2	012)			
104			Chebyeboy			ising the No	nnarametrio			e of I				
105			Chebyshev				nparameuric			3 01 1	10001 0.0			
106						Noursel								
107							JUF LEST		<u>.</u>					
108			S	hapiro Wilk T	est Statistic	0.651			Shapiro	o Wil	IK GOF Test			

	A	В	С	D	E	F	G	Н	I	J K	L
109		<u> </u>	5% Sh	apiro Wilk C	ritical Value	0.788		Data No	t Normal at 5	% Significance Level	
110				Lilliefors T	est Statistic	0.34			Lilliefors	GOF Test	
111			59	% Lilliefors C	ritical Value	0.362		Data appe	ear Normal at	5% Significance Level	
112				Data	appear App	roximate No	rmal at 5% S	Significance	Level		
113											
114					As	suming Nori	mal Distribut	ion			
115			95% No	rmal UCL				95%	UCLs (Adju	sted for Skewness)	
116				95% Stuc	dent's-t UCL	930.1			95% Adjuste	d-CLT UCL (Chen-1995)	1091
117									95% Modifie	ed-t UCL (Johnson-1978)	970.7
118											
119						Gamma	GOF Test				
120				A-D T	est Statistic	0.446		Ander	son-Darling	Gamma GOF Test	
121				5% A-D C	ritical Value	0.733	Detected	d data appea	ır Gamma Di	stributed at 5% Significan	ce Level
122				K-S T	est Statistic	0.309		Kolmog	grov-Smirnof	f Gamma GOF Test	
123				5% K-S C	ritical Value	0.348	Detected	d data appea	ır Gamma Di	stributed at 5% Significan	ce Level
124				Detected	data appear	r Gamma Di	stributed at §	5% Significa	nce Level		
125											
126						Gamma	Statistics				
127					k hat (MLE)	0.541			ks	star (bias corrected MLE)	0.382
128				Thet	ta hat (MLE)	720.1			Theta s	star (bias corrected MLE)	1021
129				n	u hat (MLE)	6.496				nu star (bias corrected)	4.582
130			ML	E Mean (bia	s corrected)	389.8				MLE Sd (bias corrected)	630.9
131									Approximate	Chi Square Value (0.05)	0.964
132			Adjust	ted Level of S	Significance	0.0122			Ac	ljusted Chi Square Value	0.499
133						-					
134					As	suming Garr	nma Distribut	tion	-		I
135	9	5% Approxir	nate Gamma	UCL (use wh	nen n>=50))	1853		95% Ad	justed Gamn	na UCL (use when n<50)	3582
136											
137				hanira Wille T	Cost Statistic	Lognorma	IGOF Test	Char			
138			50/ CF			0.900				at E% Significance Lovel	
139			5% 31			0.766					
140			50	% Lilliefors C	ritical Value	0.362		Data annea		at 5% Significance Level	
141					Data annear		at 5% Signif				
142						Lognonnar					
143						Lognorma	Statistics				
144				Minimum of L	ogged Data	2.565				Mean of logged Data	4.807
145			N	Aaximum of L	ogged Data	7.438				SD of logged Data	1.699
140											
147					Assi	uming Logno	ormal Distrib	ution			
140					95% H-UCL	78279			90%	Chebyshev (MVUE) UCL	1016
149			95% (Chebyshev (I	MVUE) UCL	1317			97.5%	Chebyshev (MVUE) UCL	1736
151			99% (Chebyshev (I	MVUE) UCL	2560					
152											
153					Nonparame	etric Distribu	tion Free UC	L Statistics			
154				Data appear	r to follow a	Discernible	Distribution a	at 5% Signifi	cance Level		
155											
156					Nonpa	rametric Dis	tribution Fre	e UCLs			
157				95	% CLT UCL	830.8				95% Jackknife UCL	930.1
158			95%	Standard Bo	otstrap UCL	785.9				95% Bootstrap-t UCL	6921
159			9!	5% Hall's Bo	otstrap UCL	4328			95% F	Percentile Bootstrap UCL	875.8
160			ç	35% BCA Bo	otstrap UCL	997.3					
161			90% Ch	ebyshev(Mea	an, Sd) UCL	1194			95% Ch	ebyshev(Mean, Sd) UCL	1559
162			97.5% Cho	ebyshev(Mea	an, Sd) UCL	2064			99% Ch	ebyshev(Mean, Sd) UCL	3058

	А	В	С	D	Е	F	G	Н		J	K	L	
163													
164		Suggested UCL to Use											
165				95% Stu	dent's-t UCL	930.1							
166													
167		Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	iost appropria	ate 95% UCL		
168		These rec	ommendation	ns are based	upon the res	sults of the si	imulation stud	dies summar	ized in Singł	n, Singh, and	laci (2002)		
169			and Singh	and Singh (2	2003). Howe	ver, simulatio	ons results wi	ill not cover a	all Real Worl	d data sets.			
170				For ad	ditional insig	ht the user m	nay want to c	onsult a stati	stician.				
171													

APPENDIX 6 – SOIL GAS MONITORING TEST RESULTS

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: Highgate Road	Operative(s): SRC	Date: 10/08/16	Time: 12:30		Round: 1		Page:					
MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated												
Analox	GA5000				19/11/2015							
PID	Phocheck tiger				26/08/2015							
Dip Meter	GeoTech											
		MONITORING CO	NDITIONS		-							
Weather Conditions: Cloudy Ground Conditions: Dry (Inside) Temperature: °C												
Barometric Pressure (mbar):	1016	Barometric Pressure Trend (24hr):		Ambien	t Concentration:	0.1%CH ₄ ,	0.1%CO ₂ ,	20.9%O ₂				

	MONITORING RESULTS												
Monitoring		Flow	Atmospheric	Methane	Methane	Carbon	Oxygen	vo	C (ppm)	Hydrogen	Carbon	Depth to	Depth to Base
Location	Peak	Average	(mbar)	%	% LEL	Dioxide %	%	Peak	Average	(ppm)	(ppm)	water (mbgl)	of well (mbgl)
WS1	-	+0.3	1018	0.1	-	0.2	20.8	-	-	0	0	3.64	3.94
WS3	-	+0.2	1016	0.1	-	0.5	20.1	-	-	0	0	3.83	3.92
WS4	-	+0.3	1016	0.1	-	0.6	20.1	-	-	0	0	3.89	3.96

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: Highgate Road	Operative(s): SRC	Date: 17/08/16	Time: 14:00		Round: 2		Page:					
MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated												
Analox	GA5000		19/11/2015									
PID	Phocheck tiger				26/08/2015							
Dip Meter	GeoTech											
		MONITORING CO	NDITIONS		-							
Weather Conditions: Sunny	Weather Conditions: Sunny Ground Conditions: Dry (Inside) Temperature: °C											
Barometric Pressure (mbar):	1009	Barometric Pressure Trend (24hr):		Ambien	t Concentration:	0.1%CH ₄ ,	0.1%CO ₂ ,	20.7%O ₂				

MONITORING RESULTS													
Monitoring Point Location	Flow		Atmospheric	Methane	Methane	Carbon	Oxygen	VOC (ppm)		Hydrogen	Carbon	Depth to	Depth to Base
	Peak	Average	(mbar)	%	% LEL	Dioxide %	%	Peak	Average	(ppm)	(ppm)	water (mbgl)	of well (mbgl)
WS1	-	+0.2	1009	0.1	-	0.1	20.6	-	-	0	0	3.38	3.96
WS3	-	+0.2	1009	0.1	-	0.4	20.1	-	-	0	1	3.62	3.92
WS4	-	+0.2	1009	0.1	-	0.3	20.3	-	-	0	1	3.73	3.94

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET										
Site: Highgate Road	Operative(s): SRC	Time: 14:15		Round: 3		Page:				
MONITORING EQUIPMENT										
Instrument Type	Serial No.		Date Last Calibrated							
Analox	GA5000				19/11/2015					
PID	Phocheck tiger				26/08/2015					
Dip Meter	GeoTech									
MONITORING CONDITIONS										
Weather Conditions: Sunny		Ground Conditions: Dry (Inside)	Temper		erature: 24 °C					
Barometric Pressure (mbar):	1019	Barometric Pressure Trend (24hr): Rising		Ambient Concentration: 0.1%CH ₄ , 0.1%CO ₂ , 20.7%O ₂				20.7%O ₂		

MONITORING RESULTS													
Monitoring Point Location	Flow		Atmospheric	Methane	Methane	Carbon	Oxygen	VOC (ppm)		Hydrogen	Carbon	Depth to	Depth to Base
	Peak	Average	(mbar)	%	% LEL	Dioxide %	%	Peak	Average	(ppm)	(ppm)	water (mbgl)	of well (mbgl)
WS1	-	+0.3	1020	0.1	-	0.3	20.3	-	-	0	0	3.29	3.96
WS3	-	+0.2	1020	0.1	-	0.6	19.9	-	-	0	1	3.45	3.92
WS4	-	+0.2	1019	0.1	-	0.2	20.5	-	-	0	0	3.61	3.94