

Project No. 4580

Proposed Construction of a Single Level Basement and Alterations at;

59 Solent Road, London, NW6 1TY

Structural Design Calculations

S. R. MASTERS B.Sc.(Hons).,C.Eng.,M.I.Struct.E. March 2016

The Institution of Structural Engineers S.R. MASTERS. BSC (HONS)., C.ENG., M.I. STRUCT.E. P. SEASTRAM. BSC (HONS). EUR.ING. A.J.STONE. BSC (HONS)., C.ENG., M.I.C.E., MICHT. MMP DESIGN LIMITED. REGISTERED IN ENGLAND NO. 2292553 REGISTERED OFFICE: 35A HAZLEMERE ROAD, PENN, BUCKS. HP10 8AD

Contents

- 1. INTRODUCTION TO MMP DESIGN
- 2. MMP DESIGN DIRECTORS
- 3. **EVIDENCE OF COMPETENCE & RESOURCES** Details of Organisation Nature of Organisation Incident/Accident Record Membership of Professional Bodies Professional Indemnity/Liability Insurance Details of Persons to be Employed Familiarity with Construction Processes Awareness of Relevant Health & Safety and Fire Regulations Health & Safety Practices Management Systems Resources Technical Facilities to Support the Designer(s) Method of Communication Design Decisions **Remaining Risks**
- 4. THE SITE
- 5. EXISTING STRUCTURE
- 6. EXISTING STRUCTURAL LAYOUTS
- 7. PROPOSED DEVELOPMENT
- 8. STRUCTURAL STABILITY
- 9. SOIL CONDITIONS & FOUNDATIONS
- 10. WATER
- 11. HEAVE AND SETTLEMENT
- 12. SLOPE INSTABILITY
- 13. EFFECTS ON ADJACENT STRUCTURES
- 14. IMPACT ON DRAINAGE AND SURFACE WATER
- 15. DESIGN PRINCIPLES Ground Floor Structure Timber Concrete Basement Basement Floor Slab Lightwell Ground Water
- 16. DESIGN CRITERIA General Existing Brickwork Typical Underpinning Sequence Highway Loading Structural Steelwork Materials
- DESIGNERS RISK ASSESSMENT Excavations Suspended Floors Masonry Walls Steel Beams Hazards & Risks Which Cannot be Designed Out

INTRODUCTION TO MMP DESIGN

MMP Design Limited was formed as a private limited company in 1988 by one of the current Directors. Since then it has developed into it's present form as a firm of consulting engineers with expertise in Structural and Civil Engineering Services.

Within the Company experience has been gained in a range of projects from structural surveys through refurbishment to multi-million pound developments and the Directors have experience in residential, retail, commercial, community care and educational projects. The Company also has commitment to all types of work including Design and Construct projects.

The Company philosophy is to provide the fullest and most cost effective service to Clients. The Directors have a direct involvement with each project taking on the day to day control in order to provide the best possible service and the experience of the principals in the construction processes ensures that the objectives of buildability and cost effectiveness are met.

With regard to the Company's association with retro-fit basements, we have been working within this field since 1999 and during that time have had a direct involvement in the design of more than 700 such schemes.

MMP DESIGN DIRECTORS

Steven R. Masters - BSc(Hons).,C.Eng.,M.I.Struct.E.. Philip Seastram - BSc(Hons). Andrew J. Stone - BSc(Hons).,C.Eng.,M.I.C.E.,M.I.H.T.,Eur.Ing..

EVIDENCE OF COMPETENCE & RESOURCES

Details of Organisation

Name:	MMP Design
Address:	Second Floor Unit 5
	Brook Business Centre
	Cowley Mill Road
	Uxbridge UB8 2FX

Contact: S. R. Masters

Nature of Organisation

Consulting Civil, Structural and Highway Engineers

Incident/Accident Record

None recorded

Membership of Professional Bodies

S. R. Masters - BSc(Hons).,C.Eng.,M.I.Struct.E.. A. J. Stone - BSc(Hons).,C.Eng.,M.I.C.E.,M.I.H.T.,Eur.Ing..

Professional Indemnity/Liability Insurance

PI is in place to cover our duties under CDM with cover limited to £1,000,000 and the liability period limited to 6 years. Details are available upon request.

Details of Persons to be Employed

- S. R. Masters & A. J. Stone Chartered Engineers & Project Leaders
- P. Seastram Project Leader & Designer
- L. Gibson Designer
- L. Bedwell Technician
- N. King & R. Shapland CAD Operators

Familiarity with Construction Processes

The Directors have extensive experience in underpinning and retro-fit basement construction and have been instrumental in the development of some of the working practices adopted by the leading basement constructors.

Awareness of Relevant Health & Safety and Fire Regulations

Within the Company we have documentation relating to these matters which are regularly updated and circulated among the Directors and members of staff.

Health & Safety Practices

A copy of the Company's Health & Safety Policy is available upon request.

Management Systems

A Project Director is responsible for the design and resourcing of the project. Generally projects are undertaken in house with occasional external draughting only where necessary. Communications are by way of verbal and/or written instructions. All work is checked before leaving the office.

Resources

The Company comprises three working Directors together with full time and part time technical assistance sufficient to meet the design requirements for this project.

Technical Facilities to Support the Designer(s)

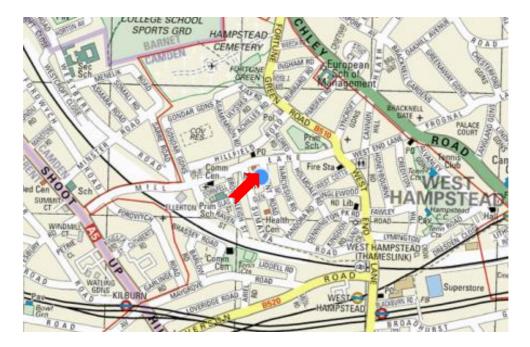
SCALE Structural Design suite Staad/QSE Structural Analysis suite Members of BSI Members of TRADA Members of BRE

Method of Communication Design Decisions

Design decisions are communicated verbally and confirmed in writing or by drawing revisions. All drawings are issued to relevant parties as required by the Lead Consultant and/or the Client.

Remaining Risks

Remaining risks will be communicated in writing to the appropriate Authority.

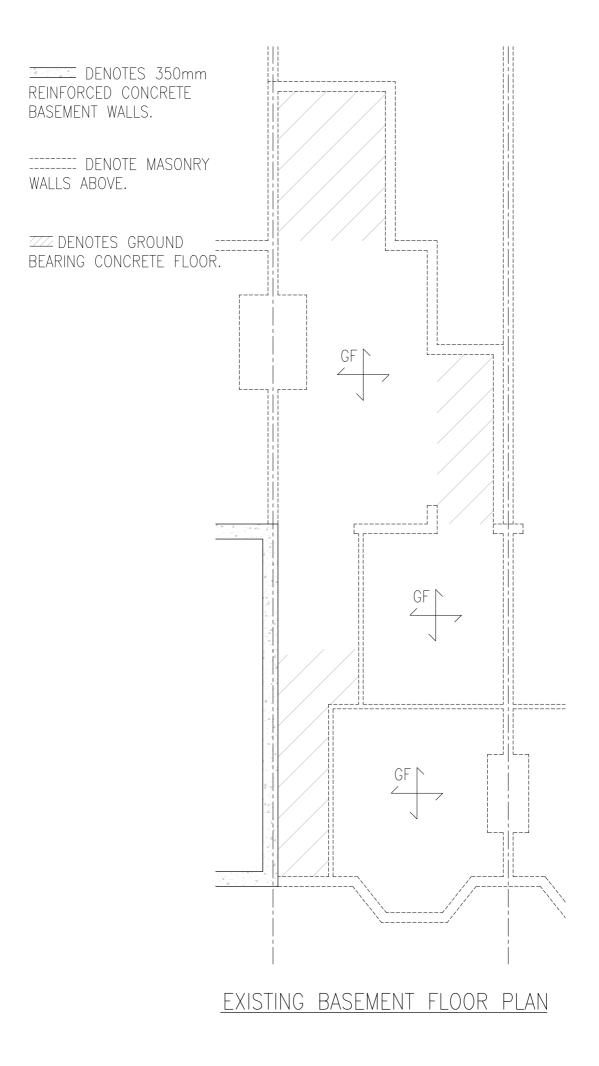

THE SITE

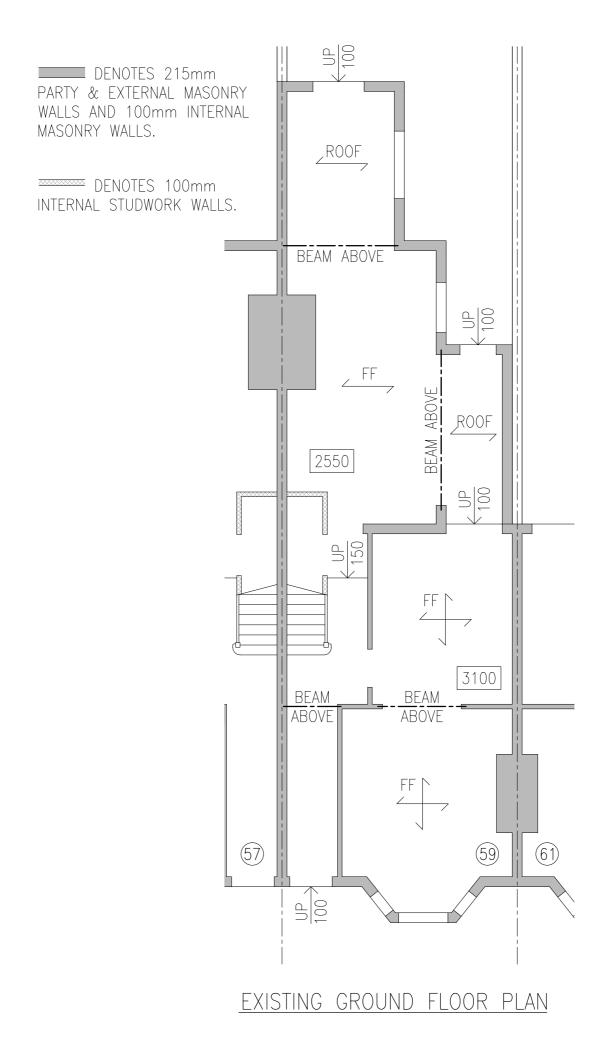
Solent Road runs approximately from north to south from Mill Lane and is to the west of the A41 Finchley Road. The site is on the west side of the road between Mill Lane and Glenbrook Road and is essentially level from front to back but with a side to side slope down toward Glenbrook Road. The existing ground floor is approximately 100mm above the adjacent pavement and road.

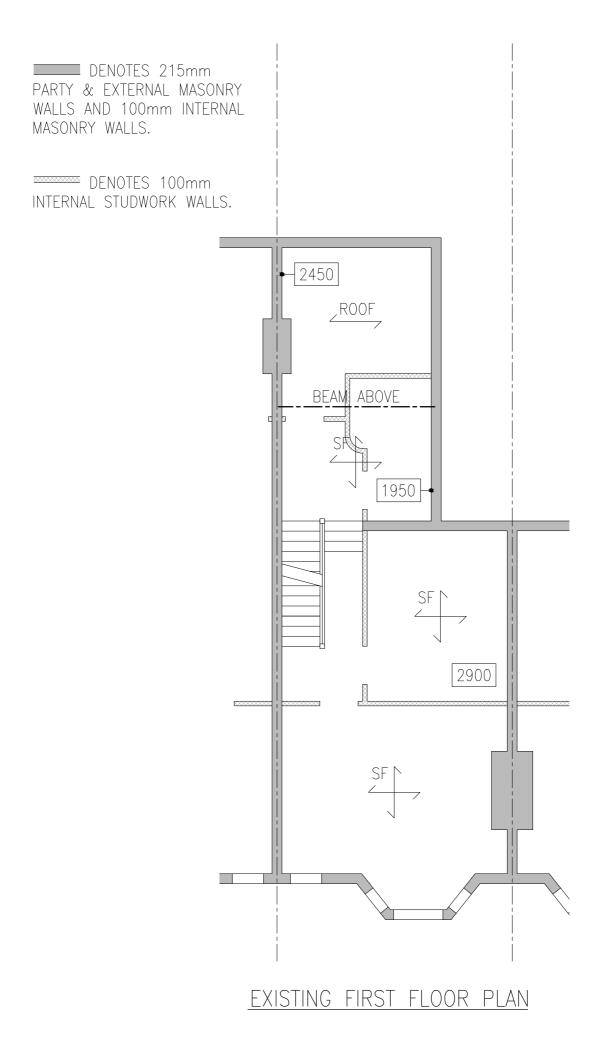
The surrounding area consists primarily of small to medium sized terraced residential properties of two storeys and most likely built during the latter part of the 19th century.

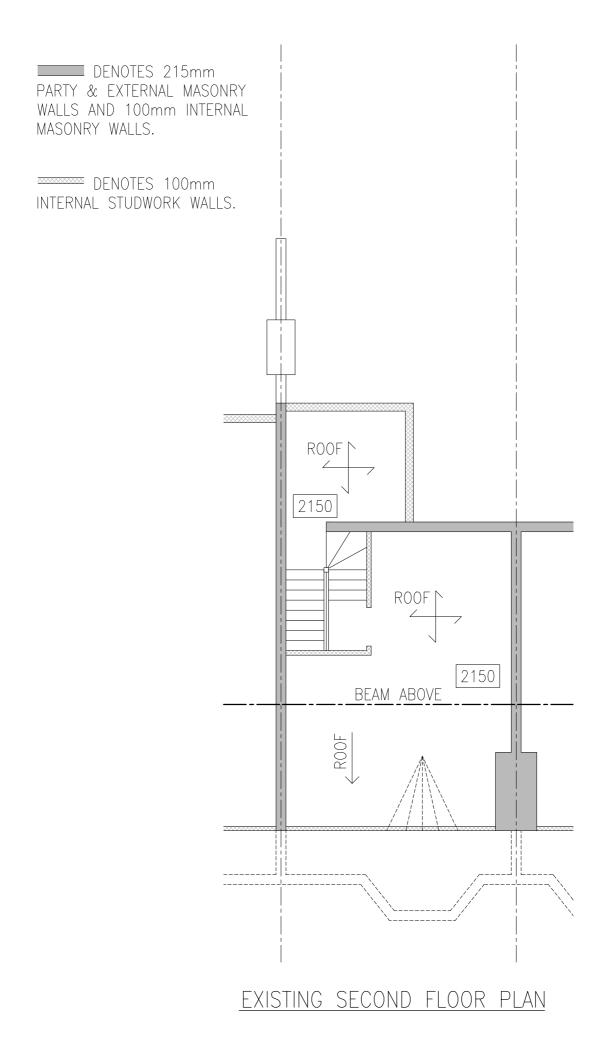
The property shares party walls with Nos. 57 and 61 Solent Road which are properties of similar age and general arrangement with No. 57 to the left when viewed from the road and approximately 400mm lower than No.59 whilst No.61 is at the same level.

The footprint of the existing ground floor is approximately 5.2m wide between the site boundaries by 18.3m long between the front bay and the rear extension.


EXISTING STRUCTURE


The existing structure is a late 19th century mid-terrace property originally comprising two storeys beneath a tile covered pitched roof and with a two storey annexe to the rear. To the side of the rear annexe the original courtyard has been covered over to form additional habitable space at ground floor level and a small single storey extension has been constructed at the rear of the annexe. The loft space has also been converted to form additional habitable space.


There is a typically small garden to the front.


The ground floor is approximately 100mm above the outside ground level and is a mix of suspended timber and ground bearing concrete construction. The upper floors and the roof are of suspended timber construction.

The external and party walls are of solid masonry which extend down to a concrete footing; the internal load bearing walls are also of masonry at ground floor level but at the upper levels they are of timber studwork. The property appears to be in good order structurally and apart from where described previously is generally in its original structural form. Plans showing the existing structural layout are attached.

PROPOSED DEVELOPMENT

It is proposed to extend the existing ground floor to the side and to carry out extensive internal structural alterations. A single level basement will also be constructed beneath the entire footprint the enlarged ground floor and extending a short distance beneath the rear garden terrace. The basement will extend to approximately 3.8m below ground level and the existing ground floor will be retained where possible.

There will be a small lightwell within the front garden which will provide light into the new basement and will also incorporate an escape staircase from the basement to street level.

The extent of the proposed basement is shown on the drawings prepared by Paul Archer Design.

Waterproofing of the basement will take the form of drained cavities with sumps and pumps within the basement area. The new drainage to the basement rooms will be pumped to the existing system.

STRUCTURAL STABILITY

Reinforced concrete underpinning is proposed for the new basement perimeter walls and they will be designed to support the lateral pressures resulting from the retained earth, transient water and any surcharge loads. These pressures will be calculated using parameters specified elsewhere in this document.

The retaining walls will be propped in the temporary condition using a system of props across the basement and in the permanent condition the basement floor slab will prevent any sliding of the walls.

SOIL CONDITIONS & FOUNDATIONS

Reference to the British Geological Survey indicates the presence of clay silt and sand of the London Clay Formation which is compatible with our experience of constructing other basements in the near vicinity. No significant ground water is anticipated.

The proposed basement will be founded in stiff clay at approximately 3.8 metres below ground level.

In the absence of a site specific site investigation we have looked to BS.8002, BS.8004 and the Reinforced Concrete Designers Handbook (by Charles E. Reynolds and James C. Steedman) for a suggested range of parameters to be adopted for the design. For the soil profile previously described the guidance suggests an Angle of Internal Friction of 20-40° and an allowable Net Bearing Pressure (with no addition for depth of embedment) of 75-150 kN/m².

Hence the following parameters will be adopted.

 ϕ = 28° (so Ka = 0.361) and δ = 18 kN/m³ Allowable bearing stress at GL = 75 kN/m² Allowable bearing at Basement Level = 75 + soil removed, say = 140 kN/m²

These parameters have been confirmed by previous testing regimes carried out over a period of more than 15 years and are accepted by the checking authorities of at least 13 London Boroughs. They represent the long term condition which when combined with the design being based on active earth pressures results in a much simplified but rather conservative approach.

It should be noted that the nature of the construction of a basement ensures that the front lightwell excavation is formed first in order to gain access to the working area; in effect a substantial and full depth trial pit is formed before any foundation works are commenced. Should the conditions encountered vary in any way from those described above then the design will be re-visited before any underpinning works are commenced.

WATER

Although no significant water presence is anticipated at the site, the provisions of clause 3.4 (BS.8102) are considered. Despite the Clay having a relatively low permeability there is always the possibility of faster flow through fissures or localised zones of more granular material which could cause an occasional build up against the new basement wall.

Hence the water will be assumed at a level of 0.75 x the retained depth or at 1m below GL, whichever generates the most onerous condition.

HEAVE & SETTLEMENT

London Clay is the shallowest strata at this site and it is likely to have a medium to high shrinkage potential; it is therefore prone to seasonal volume change which can result in subsidence and settlement of buildings. However there are no significant trees within influence of the site and an inspection of the existing building internally and externally, and of the adjoining buildings externally has not identified any signs of damage resulting from seasonal soil movement. It is therefore reasonable to assume that the risk of seasonal movement occurring in the future will not be increased by the formation of the basement.

The underpinning process involves transferring the foundation loads to a lower level and inevitably this leads to some settlement which is estimated to be less than 5mm. Some movement will also be caused by the sequential transfer of load between different parts of the structure but the careful control of the underpinning process and sequence will keep such movements to a practicable minimum. Particular care will be taken in the vicinity of the more vulnerable parts of the existing fabric.

The depth to the London Clay and the modest dimensions of the site are such that the heave of the Clay is unlikely to exceed 3mm and will have little discernible effect outside the site boundaries. Any movement that does occur will be further mitigated by the necessarily slow rate of the excavation and construction.

At the lower level the basement floor slab will be used to resist these heave forces and by supporting the slab with the deeper underpinning and the internal column foundations, the resulting upward movement effectively negates the settlements anticipated due to the increased dig depth.

SLOPE INSTABILITY

The slope across the site is relatively small making the ground essentially level and there are no plans to change the landscape of the site as part of the works.

Based upon our experience and observations we can confirm that slope instability will not be initiated due to these works.

EFFECTS ON ADJACENT STRUCTURES

Outside of the basement area the change of vertical stresses in the ground may result in limited upward movements but the underpinning of the party walls may also cause some very minor settlements and horizontal movements towards the new basement.

In addition the underpinning operations may cause localised settlements of the party walls which might result in cracks forming at the junctions of the walls of the adjacent properties where they abut the party walls. It should be stressed however that any anticipated movements are expected to be minimal as they are generally suppressed by the stiffness of the structures above and those adjoining.

It is our experience that the potential for damage will be limited to the party walls but this can be mitigated by appointing a suitably experience Contractor familiar with propping techniques and sequential operations and by the Designer giving the necessary consideration to the risk by specifying measures to ensure that significant damage is avoided. This would typically be in the form of transitional underpins where we consider the structure above to be particularly vulnerable but otherwise by ensuring that the foundation transitions occur at inherently strong intersections of the more robust load bearing walls.

As a result we anticipate that should any damage occur it will be classified as Category 0 in the Category of Damage Chart, CIRIA C580. Category 0 is Negligible; hairline cracks of less than 0.1mm.

IMPACT ON DRAINAGE AND SURFACE WATER

We understand that there is no statutory drainage within the area of influence of the proposed basement works. With regard to surface water, the proposed basement is below the existing building footprint and hard paving so no significant impact on the surface water courses is anticipated.

It is commonly accepted that constructing a small basement like the one proposed has little or no effect on the flow of local water in relation to adjoining properties. In fact even if mobile water was forced to find an alternative route as a consequence of the basement construction, any increase in the level of that water is likely to be significantly less than the natural variations associated with seasonal changes and rises in levels from extreme rainfall events. We concur with these views.

Ground Floor Structure

Where the existing internal below ground floor level load bearing structure is to be removed, replacement will be by the use of steel and/or timber beams supported by the existing load bearing walls or new load bearing brick piers and/or steel posts.

To ensure the continued stability of the structure without reliance from the adjoining properties, the existing and any new load bearing basement walls are strapped to the structural ground floor deck using 30mm x 5mm galvanised mild steel straps placed at 2m centres.

New beams are not considered 'restrained' unless there is a mechanical connection to the top flange (or within 75mm of it). Hence timber floor joists do not restrain the compression flange unless they are notched into the web or nailed/screwed to a timber flange plate.

In order to restrict any possible damage to the existing structure, the deflection in the new beams is restricted to 1/360th of the overall span, under the total characteristic load condition.

<u>Timber</u>

The exact structural layout of any existing ground floor joists is often unknown although sometimes the general direction of the span of the joists is. There will almost certainly be a foundation under each load bearing and/or masonry ground floor level wall; it also likely that there are numerous sleeper walls supporting nominal floor joists and experience would suggest that these are likely to be only 50mm x 100mm joists spaced at little more than 400mm centres. The spacing of the sleeper walls is also likely to be little more than 2.0m.

The new ground floor support structure will therefore need to replicate this arrangement. However, since the exact location of the sleeper walls is unknown, the main beam layout will be created first with a beam provided under each load bearing and/or masonry wall. It will then be necessary to provide additional beams to replace each sleeper wall. Hence sleeper wall beams will be designed to span up to various lengths and support at least 2.0m width of floor and ceiling. All main beams will then be designed assuming the worst ground floor loading case.

For DL of (2 x 0.6)+0.5 = 1.70 kN/m and IL of (2 x 1.5) = 3.00 kN/m,

Provide	152x152 UC.23 for spans up to 4.5m,
	152x152 UC.30 for spans up to 5.0m,

Concrete

The exact structural detail of any existing concrete ground bearing ground floor is also unknown although the thickness has been assumed as 200mm (plus 50mm finishes) and the non load bearing masonry walls will likely have been built off the slab.

In such cases it will necessary to provide beams to support the slab; these will be spaced at approximately 600mm centres hence several floor support beams will be designed to span up to various lengths and support at least 0.6m width of floor and new ceiling. All main beams will then be designed assuming the worst ground floor loading case.

For DL of (0.60 x 6.00)+0.50 = 4.10 kN/m and IL of (0.60 x 1.50) = 0.90 kN/m,

Provide 152x152 UC.23 for spans up to 4.0m 152x152 UC.30 for spans up to 4.5m

Basement

The remaining load bearing structure will be underpinned in a traditional 'hit and miss' method to achieve the increased headroom required. The underpins comprise a vertical stem which is immediately beneath the existing wall and a base which usually has a toe and a nominal heel. The heel size is determined by ignoring the earth pressure and considering the maximum vertical load on the wall only, using this to find a minimum foundation width based on the soil bearing capacity.

The toe of the base is then determined by considering the minimum vertical dead load on the wall along with the maximum pressure from the retained soil and with the wall assumed to be acting as a cantilever. In calculating the toe size, the maximum allowable bearing pressure is not exceeded and a minimum factor of safety against overturning of 2.5 is achieved.

The toe and/or stem will only be reinforced when the underpin stem is subjected to tensile stresses due to the pressures from the retained material. This usually only occurs where the London Clays are present or where the retained depth of soil is significant

To check the stresses in the underpin stem, the overturning moment taken about the basement slab is used. However, the design of the toe and the overall stability is based on the overturning moment taken about the underside of the underpin base.

We assume the soil/stem interface to be friction free as ultimately this provides the most onerous design.

Basement Floor Slab

The new basement floor will be a 200-250mm thick reinforced concrete semi-suspended slab cast onto a polystyrene void formed to reduce the effects of clay heave. The slab will span onto and connect with the perimeter underpins. Any upward water pressure on the basement will also be resisted by the basement slab and there is sufficient weight in the loading to the underpinned walls and the basement structure to resist any floatation effects.

Lightwell

The lightwell walls comprise a vertical stem and a base with a toe and occasionally a heel. The reinforced concrete stem provides the necessary resistance to the applied overturning forces and is cast against the soil. The size of the base toe is determined by considering only the self-weight of the wall along with the maximum pressure from the retained soil and any surcharge. In calculating the toe size, the maximum allowable bearing pressure is not exceeded and a minimum factor of safety against overturning of 1.5 is achieved. Since the base is usually cast up against the front wall of the basement, the design of the toe and the overall stability is based on the overturning moment taken about the top of the wall base.

Ground Water

Although no significant ground water is expected to be present during the construction, if any local water is found it will be locally removed from the excavations by pumping from the excavated area to a sump.

Water and moisture will generally be excluded from the permanent structure by the reinforced concrete walls/slab and the provision of an internal drained cavity system on the inside face of the walls/slab. Any water from the cavity system will drain to a sump in the basement and will be pumped into the house surface water drainage system. The concrete walls/slab will prevent the migration of large quantities of water or soil particles and therefore the drained cavity will only need to deal with a limited quantity of ground water.

<u>General</u>

The detailed structural design of the proposed works will be carried out in accordance with current British Standards, Building Regulations and appropriate Guidance Documents published by CIRIA, ICE, IStructE etc. The design and drawings will be submitted to the local Building Control for approval and the construction inspected by the Building Inspector on site.

Existing Brickwork

Assuming 7N bricks in lime mortar, from CP.111 the basic compressive strength = 0.49 N/mm^2 Hence under a concentrated load, bearing strength = 1.5×0.49 , say 0.7 N/mm^2

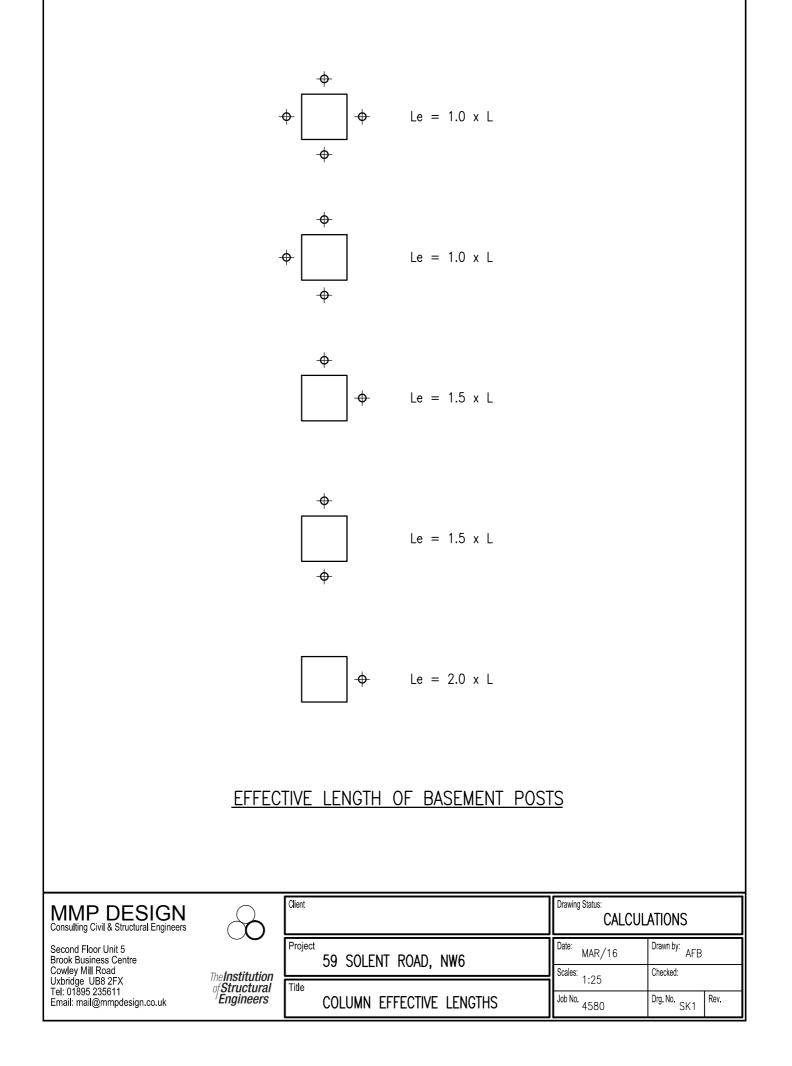
Typical Underpinning Sequence

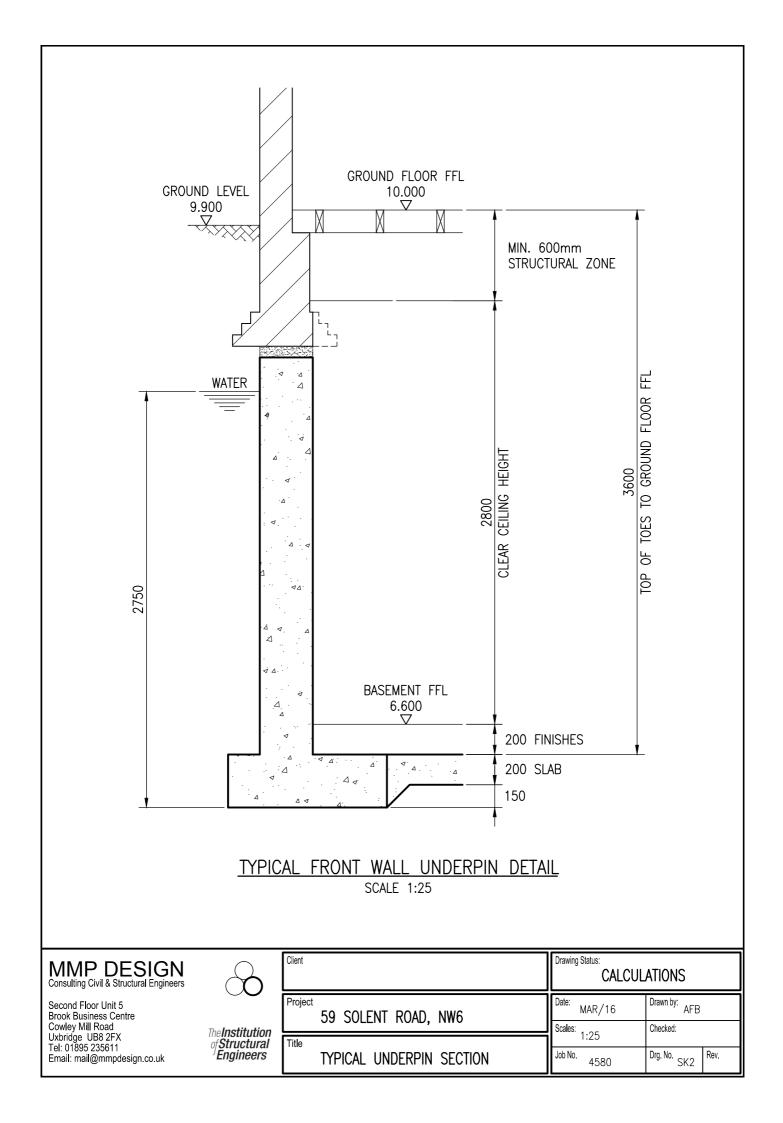
6	1	4	7	2	5	8	3	6	1	4	7
---	---	---	---	---	---	---	---	---	---	---	---

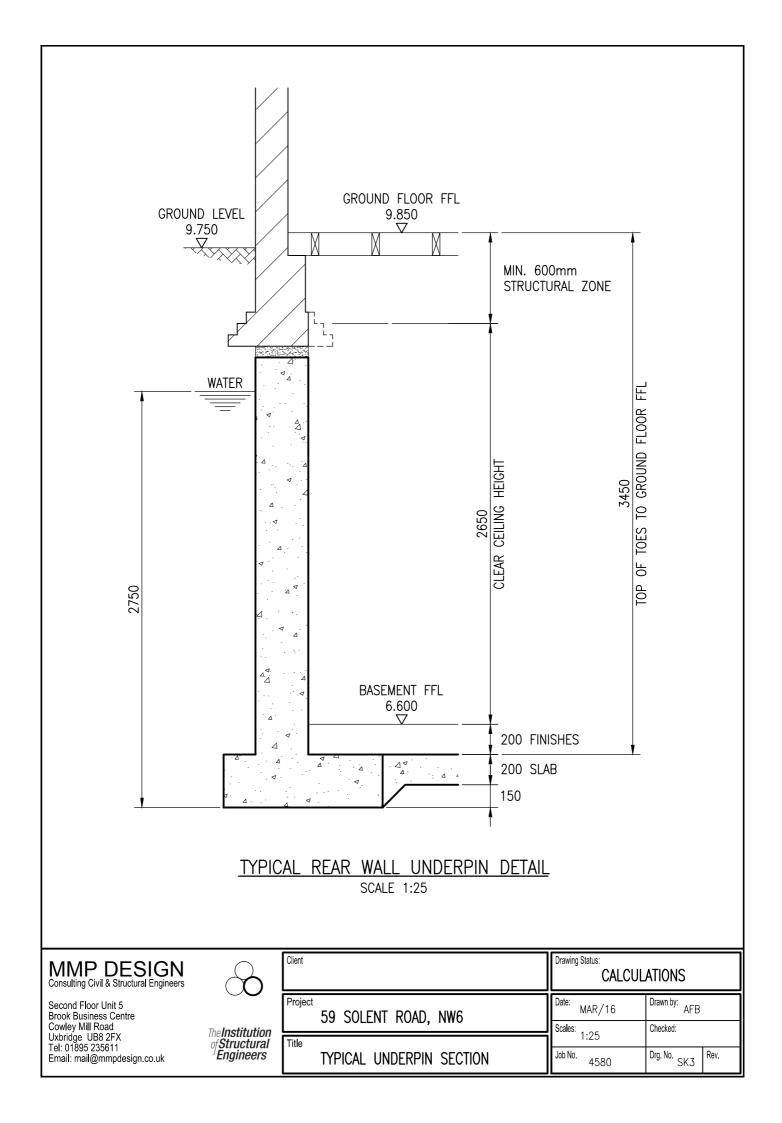
Highway Loading

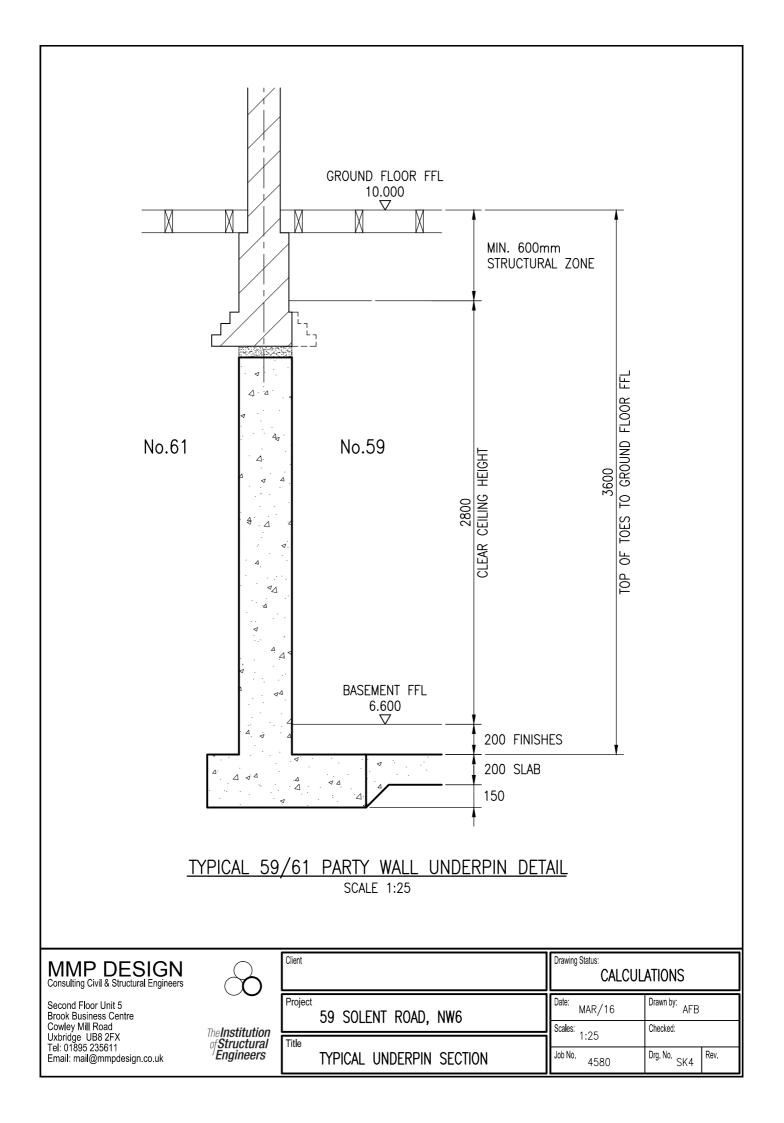
Where the basement is to be constructed adjacent to the public highway then additional surcharge loads are considered and are taken as either of the following, whichever produces the more onerous design conditions.

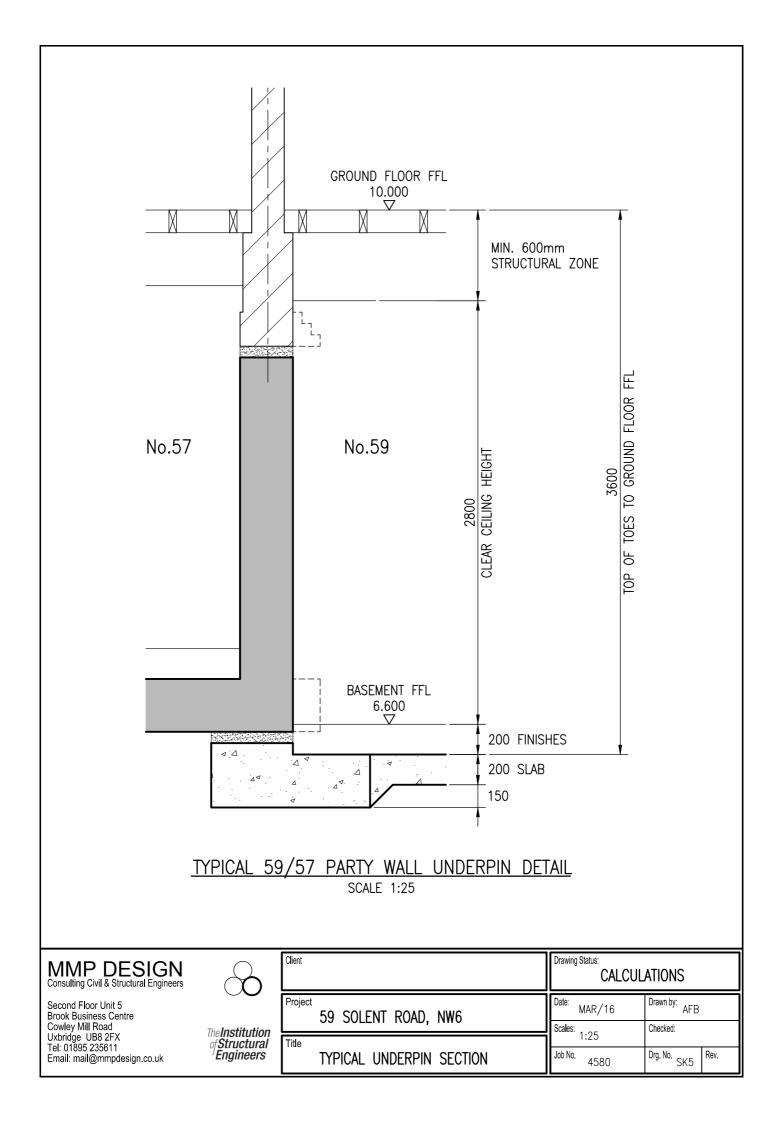
- a... a uniformly distributed load of 2.5 kN/m², applied from within the garden and assuming private vehicle parking is possible,
- b... a uniformly distributed load of 10 kN/m², applied from the highway and/or footpath,
- c... a point load of 40 kN (a typical wheel load), applied over an area 0.3m x 0.3m and assumed to act at a point 0.6m from the property boundary, out toward the highway.


Structural Steelwork


Unless noted otherwise this project shall be classified as Execution Class EXC2 for the structure, the components and all detail.


All fabricated steelwork delivered to the site shall be CE marked and the supplier/manufacturer shall have EXC2 capability or higher.


Materials


Concrete is grade C35 N/mm² using Sulphate Resisting cement unless otherwise directed. Reinforcement is grade 500 N/mm² Mortar is Class (iii).

DESIGNERS RISK ASSESSMENT

Excavations

Care must be taken to prevent sides of excavations from collapsing.

Suspended Floors

The use of suspended insitu reinforced concrete ground slabs is expensive and impractical due to the extent of formwork required and the thickness of slab required.

Precast beam and block floors provide reduced weight and quick installation with holes and cutting for designed services carried out on site at the time of installation. However, during installation, and indeed before the floor is screeded, safety netting or air bags shall be provided to prevent injury due to operatives falling between the joists.

In-situ concrete slabs cast onto a profiled steel permanent shuttering provides a suitable alternative to the beam and block and removes the need for the netting or air bags. However, the manufacturer should always be consulted about temporary span propping that may be required prior to the concrete achieving it's design strength.

Masonry Walls

A 150mm minimum thickness is required for design load resistance and height to thickness ratios. However the blocks tend to be too heavy to manhandle and so load bearing blockwork walls will be specified as 215mm thick and formed from 100mm thick blocks laid on their side.

Steel Beams

Where possible, large span beams will be spliced to minimise manhandling. Other ways of minimising the weight of steel sections is to specify two channels bolted back to back in lieu of a single UB or UC section. However, there will be occasions where neither option will be practical and/or possible and the Contractor will be made aware of such situations.

Hazards & Risks Which Cannot be Designed Out

Potential Hazards	Action Required	Risk Assessment
Falls from Height	Works being carried out - provide hand rails and access scaffolding to all openings.	Medium
Falling Debris	Works carried out above public access - provide toe boards, netting and protection fans.	High
Materials Storage	Existing roofs and floors are not to be used for storage of materials without reference to the Engineer or for supporting access scaffolding.	High

Potential Hazards	Action Required	Risk Assessment
Lifting of Steelwork	Steel sections to be lifted using mechanical means where unable to be manually lifted.	High
Erection of Steelwork	Contractor responsible for providing method statement for erection procedure, including any temporary bracing.	Medium
Lifting of Timber	Timber rafters and joists to be lifted using mechanical means where unable to be manually lifted.	High
Fixing of Timber	Timbers to be fixed in accordance with good building practice.	Medium
Reinstate Existing Roof Finishes	Method statement to allow for temporary waterproofing if required.	Low
Use of Cutting Equipment – Flame or Disc.	Fire risk - use suitable protective methods – remove inflammable materials.	High
Painting	Touch up steelwork with primer – take precautions against vapour inhalation, eye and skin contact and fire. Wear protective clothing.	Low
Excavation	Take precaution against collapse of excavation and hazards of persons falling in.	High
Precast Concrete units	Lift into position using mechanical assistance. Storage at ground level in a safe manner.	Medium
Insitu Concrete Construction	Take precautions to prevent skin/eye contact. Protect public and site staff from falling objects and spillage. Ensure adequate care when fixing reinforcement.	Medium

Potential Hazards	Action Required	Risk Assessment
Formwork/Falsework	Design temporary works in a manner that makes allowances for all loadings, including accidental loads. Ensure adequate vertical and diagonal bracing. Supports not to be removed until period specified.	Medium
Forming new Openings in Walls	Provide temporary works to support wall and loads above opening. Install new support lintel and reinstate prior to removal of temporary supports.	Medium

				P DESIGN ril & Structural Engineers		Brook Bus Cowley Uxbridg	7loor Unit 5 siness Centre Mill Road ge UB8 2FX 895 235611
CALC	ULATION SHEET	Project Title By	59 SOLENT RO BASEMENT SM	OAD, LONDON NW6	Job No. Date Sheet No.	MA	580 AR/16 .D/1
	UNIT LOADS in k	<u>:N/m²</u>				DEAD	IMPOSED
	Pitched Roofs						
	Pitched roof with t Pitched roof with ti	tiles and ba les and batt	a <mark>ttens over felt, u</mark> tens over felt, line	inlined but including ceiling beh inlined but excluding ceiling bel id and including ceiling below id but excluding ceiling below		1.35 1.05 1.50 1.20	0.90 0.65 0.90 0.65
	Flat Roofs						
ž	Flat roof of three lay Flat roof of lead, a Flat roof of three lay Flat roof of lead and	ccess for m yer felt and	naintenance only I full access	•		0.75 1.00 0.75 1.50	0.75 0.75 1.50 1.50
	Suspended floors						
	150mm Concrete in	oor includin n-situ grou n-situ groun ound floor	ng services and s und floor includin nd floor including including services	ng services and suspended ceilin services and suspended ceiling s and suspended ceiling	ıg	0.50 1.00 6.00 4.80 5.00 0.00	1.50 1.50 1.50 1.50 1.50 1.00
	<u>External walls</u>						
	215 mm solid mass 330 mm solid mass 440 mm solid mass Timber studwork, t 250 mm cavity mass	onry, plast onry, plaster ile hung wi	t <mark>ered one side</mark> red one side ith plasterboard ar	nd skim internally		4.80 7.20 9.50 1.00 4.80	0.00 0.00 0.00 0.00 0.00
	Internal walls						
	100 mm solid mase 215 mm solid mase 330 mm solid mase 100 mm timber sta 100 mm timber sta	onry, plaste onry, plaste udwork, la	red both sides red both sides t he and plaster h			2.60 5.00 7.50 0.60 0.60	0.00 0.00 0.00 0.00 0.00

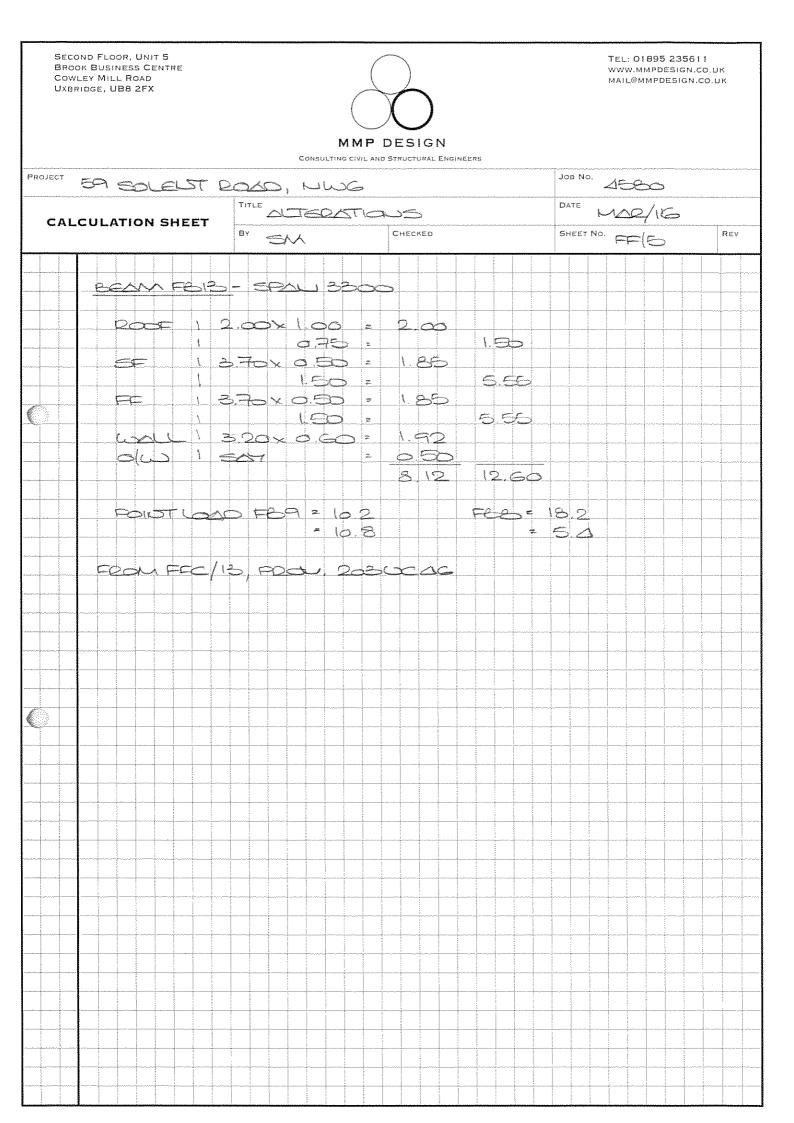
Project: 59 Solent Road London NW6 Client:		Page: Made by: Date:	
Title: Alterations		Ref No:	
		Office:	5831
Location: WIND LOADING			
WIND LOADS: in accordance w		: Part 2 : 1972	2
Basic wind speed Topography factor to clause	V=38 m/sec 5.4 S1=1		
The average slope of the gr		0.05 within a	
kilometre radius of the sit			
topography factor S1 is tak Ground roughness to clause		nce with clause	e 5.4.
Greater horiz dimens of bui			
Lesser horiz dimens of bui	lding w=5.2 m		
Height above ground	H=10.0 m		
Cladding and building size: All buildings and structure		areatest horizo	ontal
dimension nor the greatest	vertical dimension e	exceeds 50m.	
Roughness, size & height fa		or H=10, column=	=8
Statistical factor	≈0.74 S3=1		
Directional factor	55 1 S4=1		
Design wind speed @ height		8*54=38*1*0.74*	1*1
Dynamic pressure @ height	=28.1 m/sec	: ′1000=0.613*28.1	1^2/1000
plumero bronnero (uciduo	$=0.485 \text{ kN/m}^2$		/
		ground 10 g	m
DESIGN	Topography fac		*
SUMMARY	Grd roughness Statistical fa	factor S2 0.7 actor S3 1	4
	Directional fa		
	Dynamic wind p	pressure g 0.4	85 kN/m ²
Dynamic pressure & pressure	coeffs on walls of	rectangular bu	ildings
	h=6.5 m	0	
Dynamic pressure based on h	eight above ground 1	LO m ec	
Dynamic pressure based on h Design wind speed @ eaves		ЭC	
Dynamic pressure based on h Design wind speed @ eaves Dynamic pressure @ eaves	eight above ground 1 Vse=28.1 m/se qe=0.485 kN/r	ec n ²	
Dynamic pressure based on h Design wind speed @ eaves Dynamic pressure @ eaves Building height ratio	eight above ground 1 Vse=28.1 m/se	ec n ² 5.2=1.25	
Dynamic pressure based on h Design wind speed @ eaves Dynamic pressure @ eaves Building height ratio	eight above ground 1 Vse=28.1 m/se qe=0.485 kN/r bhr=h/w=6.5/5	ec n ² 5.2=1.25	
Dynamic pressure based on h Design wind speed @ eaves Dynamic pressure @ eaves Building height ratio Building plan ratio	eight above ground 1 Vse=28.1 m/se qe=0.485 kN/r bhr=h/w=6.5/5 bpr=1/w=17/5	ec n ² 5.2=1.25	
Height to eaves Dynamic pressure based on h Design wind speed @ eaves Dynamic pressure @ eaves Building height ratio Building plan ratio	eight above ground 1 Vse=28.1 m/se qe=0.485 kN/r bhr=h/w=6.5/5 bpr=1/w=17/5	ec n ² 5.2=1.25	
Dynamic pressure based on h Design wind speed @ eaves Dynamic pressure @ eaves Building height ratio Building plan ratio	eight above ground 1 Vse=28.1 m/se qe=0.485 kN/r bhr=h/w=6.5/5 bpr=1/w=17/5	ec n ² 5.2=1.25	
Dynamic pressure based on h Design wind speed @ eaves Dynamic pressure @ eaves Building height ratio Building plan ratio	eight above ground 1 Vse=28.1 m/se qe=0.485 kN/r bhr=h/w=6.5/5 bpr=1/w=17/5 C	$\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$	
Dynamic pressure based on h Design wind speed @ eaves Dynamic pressure @ eaves Building height ratio Building plan ratio	eight above ground 1 Vse=28.1 m/se qe=0.485 kN/r bhr=h/w=6.5/5 bpr=1/w=17/5 C	$\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$	
Dynamic pressure based on h Design wind speed @ eaves Dynamic pressure @ eaves Building height ratio Building plan ratio	eight above ground 1 Vse=28.1 m/se qe=0.485 kN/r bhr=h/w=6.5/5 bpr=1/w=17/5 C	$\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$	
Dynamic pressure based on h Design wind speed @ eaves Dynamic pressure @ eaves Building height ratio Building plan ratio	eight above ground 1 Vse=28.1 m/se qe=0.485 kN/r bhr=h/w=6.5/5 bpr=1/w=17/5 C	$\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$	

Ô

Project: Client:	59 Solent H London NW6	Road	\sim	\mathbf{c}	Made	ge: LD/3 by: SM te: Mar/16
	Alterations	S	MMP DI	ESIGN		No: 4580
Wind ang	le:	Cpe f	or surface		Offi	ce: 5831 Local Cpe
alpha (de	grees)	Ă	В	C	D	
0 90		0.7 -0.5	-0.3 -0.5	-0.7 0.7	-0.7 -0.1	-1.1 -1.1

 \bigcirc

٢


No700

SECOND FLOOR, UNIT 5 TEL: 01895 235611 BROOK BUSINESS CENTRE WWW.MMPDESIGN.CO.UK COWLEY MILL ROAD MAIL@MMPDESIGN.CO.UK UXBRIDGE, UB8 2FX MMP DESIGN CONSULTING CIVIL AND STRUCTURAL ENGINEERS JOB NO. PROJECT 59 SOLAST ROAD, NWG 4580 TITLE ALTERATIONS DATE MOO/16 CALCULATION SHEET BY SA SHEET NO. Снескер ₽EV FF/1 BEAULES AT FIRST FIGSE L <u>a</u> BEANN FEIL- EPALLIDO 0202100 <u>= 0.30</u> t i Q-T-S-<u>0 25</u> 0.95 -0.25 GUD 181.-"www 0.50 0.25 FROM FEC/1, FOOL. 245 50x 200 621 2015TS BOLTED TOSETHER ROTE JOISTES - EPAL 4650 = lookapp12 2 IL + 0 75 K3/M FROM PROFE FROM POOL SOL 200 C21 JOISTES AT 200 MM CAUSTORES BEANN FEEL - SPAL 2200, CAUSTILELEE 500 ROCEL 2.40+1.00 = 2.40 0.75 1.80 1 6 25 olus. ţ 967 260 1.80 FRAIL ST LOOD FEFT = (au caustrues KER <u>= 0.500</u> FRAM FEC 3, FRAU 178×162 UB19 REAM FREE - SPALLALOO ROOFL 6.60x1.00 - 0.60 0754 0.45 1 0.05 L. 54 34 0.45 0.65 FROM FEC/4 FROM 178 102 UE19

SECOND FLOOR, UNIT 5 BROOK BUSINESS CENTRE COWLEY MILL ROAD UXBRIDGE, UB8 2FX			TEL: 01895 235611 WWW.MMPDESIGN.CO. MAIL@MMPDESIGN.CO	
		P DESIGN		
PROJECT SA SOLENT		++++++++++++++++++++++++++++++++++++++	JOB NO. 1580	
	TITLE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DATE MOR/IC	*******
CALCULATION SHEET	BY SM		DATE MOR/16 SHEET NO. FF(2	REV
BEAN FEAL	- 584 1805			
CHIMME 1	5.10x 2.60	18.26		
		<u>- 0.25</u> <u>U.ad</u> 255		
FRANFEC/E	, 1997. 152	. <u>vc</u> 23		
BEAM FEES-				
	s cC3-0 x cc	0.25		
		0.75		, prosta a de la constanción de la const
	<u>S</u>	0.25		
		0.50 0.75		
FOUST LOC	······	······		
	2	en		
FROM FROM		JC23		
BEAM FBG -				
Laq pas		1.00 = 2.40		
		0.75 2 1.	80	
		1 En a	.40	
		4.60 = 14.00		
		<u>* 100</u> 18.60 Z		
		1.50 = 2 1.50 = <u>1.65</u>	40	
		4.85	2.20	
FRAM FRC 7	, PDD1, 251	40.107		
				1 1

SECOND FLOOR, UNIT 5 TEL: 01895 235611 BROOK BUSINESS CENTRE WWW.MMPDESIGN.CO.UK COWLEY MILL ROAD MAIL@MMPDESIGN.CO.UK UXBRIDGE, UB8 2FX MMP DESIGN CONSULTING CIVIL AND STRUCTURAL ENGINEERS PROJECT JOB NO. 59 SOLELST DODD, NWG 4580 TITLE DATE ALTERATIONS MOR/16 CALCULATION SHEET SHEET NO. FF B۲ CHECKED REV SM BEANN FEBT - SEALL AGED 120 Util - Rote V 120100 = 0,75 = 090 050x050 = 025 [...... 075 290,400=13,92 1. my X ملالك 0,50 \leq 15.67 las 4002 -ROFF 1.20x 1.00 = 120 L 075 æ 090 * 050 ow Ù \leq 170 0.90 Parts Labor FED = 2 aFEGEG17 = 20 = 10.0 FRAN FECT B, POQU, 25/10273 BEAM FRESH STRALL 2800 1 hox o Eco = des <u>r</u> 285 150 -0.50 alub. SAL NAS 2.85 E1 SA1 7 03x 26 = 18 20 CLINA FRAM FRC 9, RODV 20200000 BEAN FEAL SAU 2300 250 2504100 -ROOF 1 0.75 + 1.60 125 S 25040,000+ 1001 375 1.25 2540501 1.50 + 375 5.60.0.60 3.26 Y II 0.90 حلالم $rac{1}{2}$ 9.33 6.86

SECOND FLOOR, UNIT 5 TEL: 01895 235611 BROOK BUSINESS CENTRE WWW.MMPDESIGN.CO.UK COWLEY MILL ROAD MAIL@MMPDESIGN.CO.UK UXBRIDGE, UB8 2FX MMP DESIGN CONSULTING CIVIL AND STRUCTURAL ENGINEERS PROJECT JOB NO. 59 SOLAST ROAD, NWS 2580 TITLE DATE ALTERATIONS MOR/16 CALCULATION SHEET ΒY SHEET NO. CHECKED REV FF 10 5A REANN FREN - CONST FROM FFC/10, FOODV. 152 UC 23 Bedm Feblo - BRAL 1600 8.86 9.20 2 BY INSPECTION, POON IER INC 23 DEACTIONS OL - 7.1, IL = 7.5 BEAM FEDIL - SPAL 900 250x050=125 **C** 1.95 275 mittone. 0.25 150 375 FOILST LOAD FEDICI = 7.1 = 75 FRAN FRA/11, PODAL. 152 LAC 23 BEAM FE'12 - SPAIL 2050 200 200×100= PODE 150 075 = 190x050 = 0.95 =285 POSILST LOAD 0,96 14010,50 = FRA = 76.1 TTT-= 18 1 285 150 = 3 201 1 80 2 15 36 JALL USALL 2601.50 2 3.90 æ 0.50 557 \sim 23.66 726 FED FFC/12 POD, 2030026

59 SOLENT ROAD, LONDON NW6

6

BEAM REACTIONS - FIRST FLOOR LEVEL

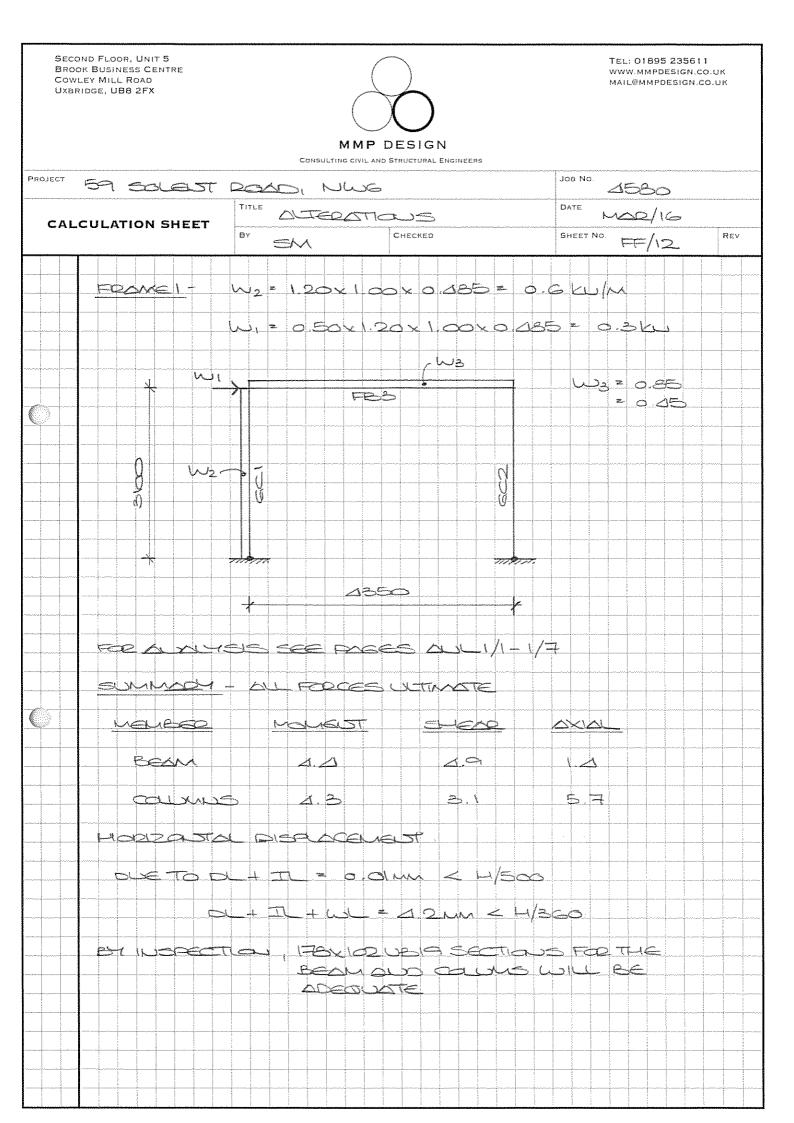
PAGE No. FF/6

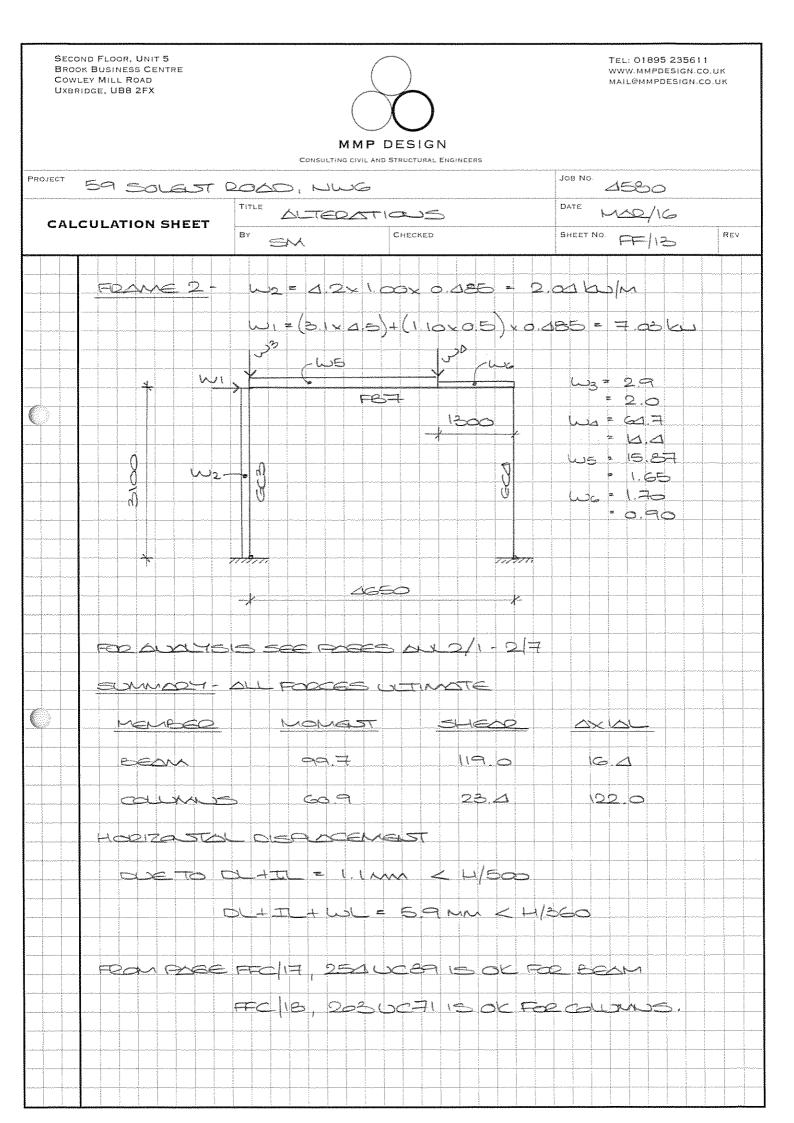
BEAM				RHS	T		BEAM	hand a contraction of the second s	·····		RHS		
REF.	DL	L	ULT	DL	IL	ULT	REF.	DL	To a second	ULT	DL	IL	ULT
A,.,,,					3								
B1	1.1	0,5	2.3	1.1	0.5	2.3							*****
		energen ander ander ander			J								
								1					
=B2	2.9	2.0	7.3	5.3	3.4	12.9							
				1		4	L			,,,, , ,,,,,,,,,,,,,,,,,,,,,,,,		<u>. i</u>	
				[<u> </u>							1	
FB3	1.9	1.0	4.3	1.9	1.0	4.3	*****						
****	i		Ļ	<u>.</u>	1	4					~~~		
FB4	12.9	2.3	21.7	12.9	2.3	21.7	androf a sandrod yn ynn yn	**************************************	190000 (1990) (1		**************************************	,,)=;))======,,,===,r,(=)=,==,r,=)==	(
	:2.3	Z .J	Z 1.1	12.3	£.9	41.1	**************************************						
			Y		7						·····		
FB5	18.7	3.2	31.3	3.8	1.7	8.0							
		*****									*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,, (a, a, a, a, b, a, a, a, a, b,
	Ī		<u> </u>	T	1	1	ľ	1					1
FB6	70.1	18.1	127.1	64.7	14.4	113.6							
	L	*****		<u> </u>	4	4		<u>]</u>					
		~ -						1					
FB7	55.2	9.7	92.8	67.8	13.4	116.4							
							L			······		k	
FB8	18.2	5.4	34.1	18.2	5.4	34.1							
	10.2	J.7	J++, 1		J.+	J4.1	*****	· · · · · · · · · · · · · · · · · · ·	^-;=;=; , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······································			
	·{····································	****	·····			~••·····							
FB9	10.2	10.8	31.6	10.2	10.8	31.6							
			hanne (sentres) - () (s (sens) - s (sens)		******								
	T	[1	1	1	1				<u></u>	1		·····
FB10	7.1	7.5	21.9	7.1	7.5	21.9							
	<u></u>	L	1	4	4			<u></u>		l			
		- <i>i</i>					p						
FB11	2.2	3.4	8.5	6.4	7.9	21.6	4.44 4.1						
	4	L		******									
FB12	68.7	19.0	126.6	54.7	15.3	101.1							
	00.7	13.0	120.0	J#.1	:0.0	101.1							
=(M+h=)=/+h+h+y)==h+h++=)=	······································	ş	· · · · · · · · · · · · · · · · · · ·										
FB13	24.6	31.4	84.7	30.6	26.4	85.1							
]		1									
	1	[1	1	1	11	[Ĩ				Ī	1
		A A S A S A S A S A S A S A S A S A S A									A COMPANY A MARY		
****		<u> </u>	. <u> </u>		1		L	+				<u></u>	
****************							1.17+30-0.07+30-0.07+30-0.000			nda () da 7 (7 nda maganita da majarita da		**************************************	., (
	****		****		1								
				-									
1,91) (1,91),92 (1,000) (1,000) (1,000)													
		1		1			r						
								****	SAME AND A REAL PROPERTY OF THE PROPERTY OF TH		A8-4		
******			1	L				1					
	1	1										1	1
	VANALATIVA							A	1 ******************************	VANORALIN VI N. BY		*******	
	L	Ļ	1				<u> </u>			1			

							1		1		Į.		

					MMP DESIGN ng Civil & Structural Engineers	Br t	econd Floor Unit 5 pok Business Centre Cowley Mill Road Exbridge UB8 2FX Tel: 01895 235611
			Project	59 SOLEN	T ROAD, LONDON NW6	Job No.	4580
CALCULATION SHEET		IEET	Title	ALTERAT	IONS	Date	MAR/16
			Ву	SM	Checked	Sheet No.	FF/7 Rev
	<u>FIRST FI</u>	LOOR LE	VEL BEA	M BEARIY	NGS		
	Allowable	For existin For new 5	ng brickwo 0N brickw	rk, 0.7 N/m ork, 3.1 N/i	rated loads such as beam bearings a m ² (EXB) m ² (NWB)	ıre;	
	CD - C-		5N concret				
		are un-facto		ingle Engi	neering Brick; BC = Bearing onto C	oncrete.	
	BEAM	END	<u>LOAD</u>	<u>TYPE</u>	BEARING		
	FB2	RH	8.7	EXB	EB		
	FB5	LH	21.9	EXB	400x100x150 CP		
	FB8	LH	23.6	EXB	400x100x150 CP		
	FB11	LH	5.6	EXB	EB		
		RH	14.3	EXB	300x100x150 CP		
	1						

		Con	MMP DH asulting Civil & Sta		Bro C	cond Floor Unit 5 ok Business Centr 'owley Mill Road xbridge UB8 2FX Tel. 01895 235611
	,	Project 59 SOL	LENT ROAD,	LONDON NW	6 Job No.	4580
ULATION S	HEFT	Fítla	RATIONS		Date	MAR/16
ULATION BI	17	^{3y} SM	Viinono	Checked	Sheet No.	FF/8
BENDIN	<u>G MOMENT</u> :	S IN NEW COI	LUMNS GC1	<u>& GC2</u>		
Enter the	following:	Beam Ref;	Char. DL	Char. LL	Γ	<u>x 3</u>
	at x1				x 1	x
	at x2	FB3	1.90	1.00	L	
	at x3					x 4
	at x4		1.90	1.00		
			1.70	1.00		
	Total Load =	an 1	2.90	kN	Enter Column Height =	3.20
	Total Ultima		4.26	kN	Liner Commit Proight	J,29 :
				'		
	Total Ultimate Sway (x1-x2) say		-x2) say =	0.07	kN (say 2.5% of Dead Load	l)
	Total Ult	timate Sway (x3	-x4) say =	0.00	kN	
			,			
	Net DL (1.90	kN	Max. LL (x1-x2) =	1.00
	Net DL (v2 v4) ~~	0.00			ñ nn 1
		ate Moment (x1	0.00 -x2) say =	kN 0.64	Max. LL (x3-x4) =	0.00
<u>BENDIN</u>	Total Ultim Total Ultim	-	-x2) say = 3-x4) say =	0.64 0.00	· · · · · · ·	
	Total Ultim Total Ultim	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u>	-x2) say = 5-x4) say = LUMNS GC3	0.64 0.00	kN.m kN.m	x 3
	Total Ultim Total Ultim	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u> Beam Ref;	-x2) say = 5-x4) say = LUMNS GC3 Char. DL	0.64 0.00 <u>& GC4</u> Char. LL	kN.m kN.m	<u>x 3</u>
	Total Ultim Total Ultim <u>G MOMENT</u> e following:	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u>	-x2) say = 5-x4) say = LUMNS GC3	0.64 0.00	kN.m kN.m	
	Total Ultima Total Ultima G MOMENT e following: at x1	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u> Beam Ref;	-x2) say = 5-x4) say = LUMNS GC3 Char. DL	0.64 0.00 <u>& GC4</u> Char. LL	kN.m kN.m	<u>x 3</u>
	Total Ultim Total Ultim G MOMENT e following: at x1 at x2	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u> Beam Ref;	-x2) say = -x4) say = LUMNS GC3 Char. DL 67.80	0.64 0.00 <u>& GC4</u> Char. LL	kN.m kN.m	<u>x 3</u>
	Total Ultima Total Ultima (G MOMENT) e following: at x1 at x2 at x3	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u> Beam Ref;	-x2) say = 5-x4) say = LUMNS GC3 Char. DL	0.64 0.00 <u>& GC4</u> Char. LL	kN.m kN.m	<u>x 3</u>
	Total Ultima Total Ultima G MOMENT e following: at x1 at x2 at x3 at x4	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u> <u>Beam Ref;</u> FB7	-x2) say = -x4) say = LUMNS GC3 Char. DL 67.80 67.80	0.64 0.00 <u>& GC4</u> Char. LL 13.40	kN.m kN.m	x 3 , , ,
	Total Ultima Total Ultima (G MOMENT) e following: at x1 at x2 at x3	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u> Beam Ref; FB7	-x2) say = -x4) say = LUMNS GC3 Char. DL 67.80 67.80 81.20	0.64 0.00 & GC4 Char. LL 13.40 13.40 kN	kN.m kN.m	<u>x 3</u>
	Total Ultim Total Ultim Total Ultim (G MOMENT) e following: at x1 at x2 at x3 at x4 Total Load	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u> Beam Ref; FB7	-x2) say = -x4) say = LUMNS GC3 Char. DL 67.80 67.80	0.64 0.00 & GC4 Char. LL 13.40 13.40 kN	kN.m kN.m	x 3 , , ,
	Total Ultima Total Ultima Total Ultima (G MOMENT) e following: at x1 at x2 at x3 at x4 Total Load Total Ultim	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u> Beam Ref; FB7	-x2) say = -x4) say = LUMNS GC3 Char. DL 67.80 67.80 81.20 116.36	0.64 0.00 & GC4 Char. LL 13.40 13.40 kN	kN.m kN.m	x 3 , , , ,
	Total Ultim Total Ultim Total Ultim (G MOMENT) e following: at x1 at x2 at x3 at x4 Total Load Total Ultim Total Ul	ate Moment (x1 ate Moment (x3 S IN NEW CO Beam Ref; FB7 = ate Load =	-x2) say = -x4) say = LUMNS GC3 Char. DL 67.80 67.80 81.20 116.36 1-x2) say =	0.64 0.00 & GC4 Char. LL 13.40 13.40 kN kN	kN.m kN.m x 1 Column Height ≠	x 3 , , , ,
	Total Ultima Total Ultima Total Ultima (G MOMENT) e following: at x1 at x2 at x3 at x4 Total Load Total Ultima Total Ultima Total Ultima	ate Moment (x1 ate Moment (x3 S IN NEW CO Beam Ref; FB7 = ate Load = timate Sway (x3	-x2) say = -x4) say = LUMNS GC3 Char. DL 67.80 67.80 81.20 116.36 1-x2) say = 3-x4) say =	0.64 0.00 & GC4 Char. LL 13.40 13.40 kN kN kN	kN.m kN.m x 1 Column Height = kN (say 2.5% of Dead Load kN	x 3 x 4 3.20
	Total Ultima Total Ultima Total Ultima (G MOMENT) e following: at x1 at x2 at x3 at x3 at x4 Total Load Total Ultima Total Ultima Total Ultima Total Ultima Total Ultima	ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u> Beam Ref; FB7 = ate Load = timate Sway (x1 timate Sway (x2 (x1-x2) =	-x2) say = -x4) say = LUMNS GC3 Char. DL 67.80 67.80 81.20 116.36 1-x2) say = 3-x4) say = 67.80	0.64 0.00 & GC4 Char. LL 13.40 13.40 kN kN kN kN kN kN	kN.m kN.m x 1 Column Height = kN (say 2.5% of Dead Load kN Max. LL (x1-x2) =	x 3 x 4 3.20
	Total Ultima Total Ultima Total Ultima (G MOMENT) e following: at x1 at x2 at x3 at x3 at x4 Total Load Total Ultima Total Ultima Total Ultima Total Ultima Total Ultima	ate Moment (x1 ate Moment (x3 S IN NEW CO Beam Ref; FB7 = ate Load = timate Sway (x3	-x2) say = -x4) say = LUMNS GC3 Char. DL 67.80 67.80 81.20 116.36 1-x2) say = 3-x4) say =	0.64 0.00 & GC4 Char. LL 13.40 13.40 kN kN kN	kN.m kN.m x 1 Column Height = kN (say 2.5% of Dead Load kN	x 3 x 4 3.20
	Total Ultima Total Ultima Total Ultima (G MOMENT) e following: at x1 at x2 at x3 at x4 Total Load Total Ultima Total Ultima Total Ultima Total Ultima Net DL (Net DL (ate Moment (x1 ate Moment (x3 <u>S IN NEW CO</u> Beam Ref; FB7 = ate Load = timate Sway (x1 timate Sway (x2 (x1-x2) =	-x2) say = -x4) say = LUMNS GC3 Char. DL 67.80 67.80 81.20 116.36 1-x2) say = 3-x4) say = 67.80 0.00	0.64 0.00 & GC4 Char. LL 13.40 13.40 kN kN kN kN kN kN	kN.m kN.m x 1 Column Height = kN (say 2.5% of Dead Load kN Max. LL (x1-x2) =	x 3 x 4 3.20

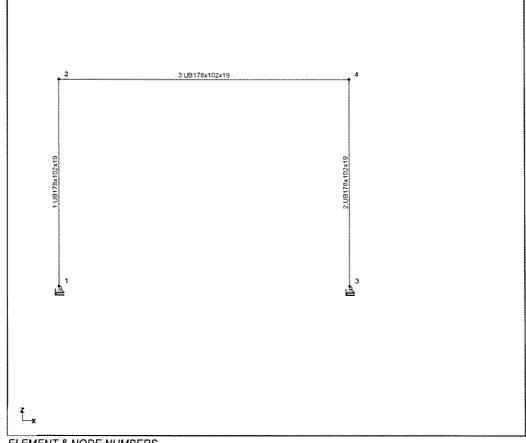

		Cc	MMP DI onsulting Civil & St		Bro C	cond Floor Unit 5 ok Business Centre owley Mill Road (bridge UB8 2FX Tel: 01895 23561)
		Project 59 SO	LENT ROAD,	LONDON NW	6 Job No.	4580
CALC	ULATION SHEET	Title ALTE	RATIONS		Date	MAR/16
		^{By} SM		Checked	Sheet No.	FF/9 Rev
	BENDING MOMEN	NTS IN NEW CO	LUMNS GC5	<u>& GC6</u>	ar Alan an Maralan Maralan Alan Alan Alan Maralan Maralan Maralan Alan Alan Alan Alan Alan Alan Alan	in an
	Enter the following:	Beam Ref;	Char. DL	Char. LL	Г	<u>x 3</u>
	at x1				x 1	x 2
	at x2	FB12	68.70	19.00		
	at x3					x 4
	at x4					
			68.70	19.00		
		1	05 50			2 44
1	Total Los		87.70	kN	Enter Column Height =	3.20 m
	Total Ult	imate Load =	126.58	kN		
	Tetel	Illtimoto Europ (u	1	2 10	IN (any 2.50/ of Deed Lend	
		Ultimate Sway (x	· •	2.40	kN (say 2.5% of Dead Load)
	Totar	Ultimate Sway (x	(3-x4) say =	0.00	kN	
	Net D	L(x1-x2) =	68.70	kN	Max. LL (x1-x2) =	19.00 kN
		L(x3-x4) =	0.00	kN	Max. LL $(x3-x4) =$	0.00 k
	, tet D	L (AD AT)	0.00			0.00 Ai
	- 1 + TI-					
	Lotal Ult	imate Moment (x	$1-x^2$ sav =	20.35	kN m	
		imate Moment (x imate Moment (x		20.35 0.00	kN.m kN.m	
		imate Moment (x	3-x4) say ==			
	Total Ult	imate Moment (x NTS IN NEW CC	3-x4) say ==	0.00	kN.m	<u>x 3</u>
	Total Ult <u>BENDING MOMEI</u>	imate Moment (x NTS IN NEW CC	3-x4) say == DLUMN GC7	0.00	kN.m	
	Total Ult <u>BENDING MOME</u> Enter the following	imate Moment (x NTS IN NEW CC	3-x4) say == DLUMN GC7	0.00	kN.m	
	Total Ult <u>BENDING MOME</u> Enter the following: at x1	imate Moment (x NTS IN NEW CC	3-x4) say == DLUMN GC7	0.00	kN.m	
	Total Ult <u>BENDING MOME</u> Enter the following at x1 at x2	imate Moment (x <u>NTS IN NEW CC</u> Beam Ref;	3-x4) say == <u>DLUMN GC7</u> Char. DL	0.00 Char. LL	kN.m	x 2
	Total Ult <u>BENDING MOME</u> Enter the following: at x1 at x2 at x3	imate Moment (x NTS IN NEW CC Beam Ref; FB10	3-x4) say == <u>DLUMN GC7</u> <u>Char. DL</u> 7.10	0.00 Char. LL 7.50	kN.m	x 2
	Total Ult <u>BENDING MOME</u> Enter the following: at x1 at x2 at x3 at x4	imate Moment (x NTS IN NEW CC Beam Ref; FB10 FB9	3-x4) say = <u>DLUMN GC7</u> <u>Char. DL</u> 7.10 10.20 17.30	0.00 Char. LL 7.50 10.80 18.30	kN.m x 1	x 2
	Total Ult <u>BENDING MOME</u> Enter the following: at x1 at x2 at x3 at x4 Total Lo	imate Moment (x NTS IN NEW CC Beam Ref; FB10 FB9 ad =	3-x4) say = <u>DLUMN GC7</u> <u>Char. DL</u> 7.10 10.20 17.30 35.60	0.00 Char. LL 7.50 10.80 18.30 kN	kN.m	x 2
	Total Ult <u>BENDING MOME</u> Enter the following: at x1 at x2 at x3 at x4 Total Lo	imate Moment (x NTS IN NEW CC Beam Ref; FB10 FB9	3-x4) say = <u>DLUMN GC7</u> <u>Char. DL</u> 7.10 10.20 17.30	0.00 Char. LL 7.50 10.80 18.30	kN.m x 1	x 2
	Total Ult <u>BENDING MOME</u> Enter the following: at x1 at x2 at x3 at x4 Total Lo Total Ult	imate Moment (x NTS IN NEW CC Beam Ref; FB10 FB9 ad =	3-x4) say = <u>DLUMN GC7</u> <u>Char. DL</u> 7.10 10.20 17.30 <u>35.60</u> 53.50	0.00 Char. LL 7.50 10.80 18.30 kN	kN.m x 1	x 4
	Total Ult <u>BENDING MOME</u> Enter the following: at x1 at x2 at x3 at x4 Total Lo Total Ul Total	imate Moment (x NTS IN NEW CC Beam Ref; FB10 FB9 ad = timate Load =	3-x4) say = <u>DLUMN GC7</u> <u>Char. DL</u> 7.10 10.20 17.30 <u>35.60</u> 53.50 (1-x2) say =	0.00 Char. LL 7.50 10.80 18.30 kN kN	kN.m x 1 Column Height =	x 2 x 4 3.20 m
	Total Ult BENDING MOMEN Enter the following: at x1 at x2 at x3 at x4 Total Lo Total Ul Total Total Total	imate Moment (x NTS IN NEW CC Beam Ref; FB10 FB9 ad = timate Load = Ultimate Sway (x Ultimate Sway (x)	3-x4) say = <u>DLUMN GC7</u> <u>Char. DL</u> 7.10 10.20 17.30 <u>35.60</u> 53.50 (1-x2) say = (3-x4) say =	0.00 Char. LL 7.50 10.80 18.30 kN kN kN 0.00 0.61	kN.m x 1 Column Height = kN (say 2.5% of Dead Load kN	x 2 x 4 3.20 m
	Total Ult BENDING MOMEN Enter the following: at x1 at x2 at x3 at x4 Total Lo Total Ult Total Total Total Net E	imate Moment (x NTS IN NEW CC Beam Ref; FB10 FB9 ad = timate Load = Ultimate Sway (x Ultimate Sway (x) DL (x1-x2) =	3-x4) say = DLUMN GC7 Char. DL 7.10 10.20 17.30 35.60 53.50 (1-x2) say = (3-x4) say = 0.00	0.00 Char. LL 7.50 10.80 18.30 kN kN kN kN kN kN	kN.m x 1 Column Height = kN (say 2.5% of Dead Load kN Max. LL (x1-x2) =	x 2 x 4 3.20 m 1) 0.00 k
	Total Ult BENDING MOMEN Enter the following: at x1 at x2 at x3 at x4 Total Lo Total Ult Total Total Total Net E	imate Moment (x NTS IN NEW CC Beam Ref; FB10 FB9 ad = timate Load = Ultimate Sway (x Ultimate Sway (x)	3-x4) say = <u>DLUMN GC7</u> <u>Char. DL</u> 7.10 10.20 17.30 <u>35.60</u> 53.50 (1-x2) say = (3-x4) say =	0.00 Char. LL 7.50 10.80 18.30 kN kN kN 0.00 0.61	kN.m x 1 Column Height = kN (say 2.5% of Dead Load kN	x 2 x 4 3.20 m 1) 0.00 k
	Total Ult BENDING MOMEN Enter the following: at x1 at x2 at x3 at x4 Total Lo Total UL Total UL Total Net E Net E	imate Moment (x <u>NTS IN NEW CC</u> Beam Ref; FB10 FB9 ad = timate Load = Ultimate Sway (x Ultimate Sway (x Ultimate Sway (x) DL (x1-x2) = DL (x3-x4) =	3-x4) say = DLUMN GC7 Char. DL 7.10 10.20 17.30 35.60 53.50 (1-x2) say = (3-x4) say = 0.00 3.10	0.00 Char. LL 7.50 10.80 18.30 kN kN kN 0.00 0.61 kN kN	kN.m $x \mid \begin{bmatrix} x \mid x \end{bmatrix}$ Column Height = kN (say 2.5% of Dead Load kN Max. LL (x1-x2) = Max. LL (x3-x4) =	x 2 x 4 3.20 m 1) 0.00 k
	Total Ult BENDING MOME Enter the following: at x1 at x2 at x3 at x4 Total Lo Total Ul Total Net E Net E Net E	imate Moment (x NTS IN NEW CC Beam Ref; FB10 FB9 ad = timate Load = Ultimate Sway (x Ultimate Sway (x) DL (x1-x2) =	3-x4) say = DLUMN GC7 Char. DL 7.10 10.20 17.30 35.60 53.50 (1-x2) say = (3-x4) say = 0.00 3.10 (1-x2) say =	0.00 Char. LL 7.50 10.80 18.30 kN kN kN kN kN kN	kN.m x 1 Column Height = kN (say 2.5% of Dead Load kN Max. LL (x1-x2) =	x 2 x 4 3.20 m 1) 0.00 kl


		Co	MMP DI		Broc Ce Ux	ond Floor Unit 5 ok Business Centre owley Mill Road bridge UB8 2FN Tek 01895 235611
		Project 59 SO	DLENT ROAD,	LONDON NW	6 Jab No.	4580
CAL	CULATION SHEET	Title ALTE	RATIONS		Date	MAR/16
		^{By} SM		Checked	Sheet No.	FF/10
	BENDING MOME	ENTS IN NEW CO	DLUMN GC8			99994444444454970999972999999999999999999999999999999
	Enter the following	g: Beam Ref;	Char. DL	Char. LL	Г	x 3
	at x1	5. Deam Rei,		CHAIT EE	x 1	x 2
	at x2	FB13	24.60	31.40		^ -
	at x2	10.5		51.10		x 4
	at x4					7.4
			24.60	31.40		

	Total L	oad =	56.00	kN	Enter Column Height =	3.20 m
	1	Itimate Load =	84.68	kN		J.#0 11
	104410	Timute Doug	01.00	(311 1		
	Tota	al Ultimate Sway (x	$(1-x^2)$ sav =	0.86	kN (say 2.5% of Dead Load)
	1	al Ultimate Sway (x		0.00	kN	,
				II		
	Net	DL(x1-x2) =	24.60	kN	Max. LL $(x1-x2) =$	31.4 0 k
		DL(x3-x4) =	0.00	kN	Max. LL $(x3-x4) =$	0.00 k
			5,	.:	· · · · · · · · · · · · · · · · · · ·	
	Total U	Iltimate Moment (x	:1-x2) say =	11.22	kN.m	
		Itimate Moment (x	•	0.00	kN.m	
	BENDING MOMI	<u>ENTS IN NEW CC</u>	DLUMN GC9			x 3
	<u>BENDING MOM</u> Enter the followin			Char. LL		x 3
				Char. LL 26.40	x 1	
	Enter the followin	g: Beam Ref;	Char. DL	1 		
	Enter the followin at x1	g: Beam Ref;	Char. DL	1 		
	Enter the followin at x1 at x2	g: Beam Ref;	Char. DL	1 		x :
	Enter the followin at x1 at x2 at x3	g: Beam Ref;	Char. DL	1 	-	x 2
	Enter the followin at x1 at x2 at x3 at x4	g: Beam Ref; FB13	Char. DL 30.60	26.40	x 1	x 4
	Enter the followin at x1 at x2 at x3 at x4 Total L	g: Beam Ref; FB13	Char. DL 30.60 30.60 57.00	26.40 	-	x 4
	Enter the followin at x1 at x2 at x3 at x4 Total L	g: Beam Ref; FB13	Char. DL 30.60	26.40	x 1	x 4
	Enter the followin at x1 at x2 at x3 at x4 Total L Total L	g: Beam Ref; FB13	Char. DL 30.60 30.60 57.00 85.08	26.40 26.40 kN kN	x 1	x 4
	Enter the followin at x1 at x2 at x3 at x4 Total L Total L Total L	g: Beam Ref; FB13 Load = Jltimate Load = al Ultimate Sway (x	Char. DL 30.60 30.60 57.00 85.08 x1-x2) say =	26.40 26.40 kN kN 1.07	x 1 Column Height =	x 4
	Enter the followin at x1 at x2 at x3 at x4 Total L Total L Total L	g: Beam Ref; FB13	Char. DL 30.60 30.60 57.00 85.08 x1-x2) say =	26.40 26.40 kN kN	x 1 Column Height =	x 4
	Enter the followin at x1 at x2 at x3 at x4 Total L Total L Total U Tota Tota	g: Beam Ref; FB13	Char. DL 30.60 30.60 57.00 85.08 x1-x2) say = x3-x4) say =	26.40 26.40 kN kN 1.07 0.00	x 1 Column Height =	x 4
	Enter the followin at x1 at x2 at x3 at x4 Total L Total L Total L Tota Net	g: Beam Ref; FB13	Char. DL 30.60 30.60 57.00 85.08 x1-x2) say = x3-x4) say = 30.60	26.40 26.40 kN kN 1.07 0.00 kN	x 1 Column Height = kN (say 2.5% of Dead Load kN Max. LL (x1-x2) =	x 4 3.20 r) 26.40 k
	Enter the followin at x1 at x2 at x3 at x4 Total L Total L Total L Tota Net	g: Beam Ref; FB13	Char. DL 30.60 30.60 57.00 85.08 x1-x2) say = x3-x4) say =	26.40 26.40 kN kN 1.07 0.00	x 1 Column Height =	x 4 3.20 m
	Enter the followin at x1 at x2 at x3 at x4 Total L Total L Total L Tota Net Net	g: Beam Ref; FB13 Load = Jltimate Load = al Ultimate Sway (x al Ultimate Sway (x DL (x1-x2) = DL (x3-x4) =	Char. DL 30.60 30.60 57.00 85.08 x1-x2) say = x3-x4) say = 30.60 0.00	26.40 26.40 kN kN 1.07 0.00 kN kN kN	x 1 Column Height = $kN (say 2.5% of Dead Load$ kN Max. LL (x1-x2) = Max. LL (x3-x4) =	x 4 3.20 m
	Enter the followin at x1 at x2 at x3 at x4 Total L Total L Total U Tota Net Net Net	g: Beam Ref; FB13	Char. DL 30.60 30.60 57.00 85.08 x1-x2) say = x3-x4) say = 30.60 0.00 x1-x2) say =	26.40 26.40 kN kN 1.07 0.00 kN	x 1 Column Height = kN (say 2.5% of Dead Load kN Max. LL (x1-x2) =	x 4 x 4 3.20 n

ALT		VS	{T		and a start of the	1		[**************************************	PA	GE No.	FF/11
	TYPE REMARKS	178×102 UB19	178×102 UB19	203x203 UC71	203×203 UC71	203x203 UC46	203x203 UC46	150x100x8 RHS	300x100x10 RHS	203x203 UC86			
	TYPE	A	۲	æ	£	υ	υ	۵	ш	LL,			
	OFFSET YES/NO	7	~	≻	>	*	≻	Z	Ζ	~			
	INOR AXIS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
E)	SHEAR FORCES MAJOR AXIS N	0.1	0.1	2.4	2.4	2.4	2.4	0.6	6.0	1.1			
CES (ULTIMATI	AENTS MINOR AXIS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
COLUMN FOR	BENDING MOMENTS MAJOR AXIS MINOR AXIS	0.6	0.6	19.2	19.2	20.4	20.4	4.1	1.2	11.9			
GROUND FLOOR LEVEL COLUMN FORCES (ULTIMATE)	AXIAL LOAD	4.3	4,3	116.4	116.4	126.6	126.6	53.5	84.7	85.1			
GROUND	COL REF.	GC1	CC2	GC3	GC4	GC5	GC6	GC7	6.8	600			

59 SOLENT ROAD, LONDON NW6


 \bigcirc

SECOND FLOOR, UNIT 5 TEL: 01895 235611 BROOK BUSINESS CENTRE WWW.MMPDESIGN.CO.UK COWLEY MILL ROAD MAIL@MMPDESIGN.CO.UK UXBRIDGE, UB8 2FX MMP DESIGN CONSULTING CIVIL AND STRUCTURAL ENGINEERS JOB NO. ASSO PROJECT 59 SOLEST ROOD, NWG TITLE DATE MARING ALTERATIONS CALCULATION SHEET ΒY CHECKED SHEET NO. REV FFILS SM W2 = 3, 5x 1, dok 0, 085 = 1, 61 FRAME 3 1 = 3, 6x7 0x 1.00x 0.165 = 12,90 50 ,00 145 14 Feles $n_3 = 10.2$ = 10.8 - 18 2 8 = 5.4 u_2 d T 35=8.12 5 (0 = 126 - (Ŭ 77777 2300 ¥ L. 3/-37 KLA re o -SUMBOLT - DI Faddels with ste 101/GUST eleca <u>AXA</u> Mennese 212 60 5 5.6 BEAN dds112 88.0 ~ E.D. LE.A AI & <u>ca</u> 93 5.0 the state bis a laberta st DIE TO OT EN ****** OBM 24/600 DL + II + UH = 7 2MM × H1/360 20300000 15 OK FOR BEEN Feat Prise FEC/197, AC120 2030CBG IS OK FER COUNNISCE FRC 21 300X100X10045 15 DK FOR COL GCB

MMP Design Ltd	Job No 4580 Sheet No ANL 1 / 1			
Software licensed to MMP Design Ltd	Part Alterations			
Job Title 59 Solent Road, NW6	Ref Frame GF1			
	^{By} SM	Date Mar/16 Cr	nd	
Client	File 4580 GF Fran	ne 1.psa Date/Time 14	-Mar-2016 10:27	

ELEMENT & NODE NUMBERS

Nodes

 \bigcirc

	Node	ie X Y		Z
_		(m)	(m)	(m)
	1	0.000		0.000
	2	0.000		3.100
	3	4.350		0.000
	4	4.350		3.100

Elements

Emt	Node A	Node B	Length	Prop A	Prop B	β
			(m)			degrees
1	1	2	3.100	1		0
2	3	4	3.100	1	-	0
3	2	4	4.350	1	-	0

Section Properties

Prop	Section	Area	l _{yy}	l _{zz}	J	Material
		(cm²)	(cm⁴)	(cm ⁴)	(cm ⁴)	
1	UB178x102x19	24.300	1.36E 3	137.000		1

MMP Design Ltd	Job No 4580 Sheet No ANI	_ 1 / 2
Software licensed to MMP Design Ltd	Part Alterations	
Job Title 59 Solent Road, NW6	Ref Frame GF1	
	By SM Date Mar/16	Chd
Client	^{File} 4580 GF Frame 1.psa	ate/Time 14-Mar-2016 10:27

Materials

Mat	Name	E (kN/mm²)	G (kN/mm²)	v	Density (kg/m³)	α (1/K)	Design Type
1	Steel	205.000			7.85E 3	12E -6	Steel
2	Concrete	10.000			2.4E 3	10E -6	Concrete

Supports

Node	х	Y	z	rX	rY	rZ
	(kN/mm)	(kN/mm)	(kN/mm)	(kNm/rad)	(kNm/rad)	(kNm/rad)
1	Fixed		Fixed		-	
3	Fixed		Fixed		-	

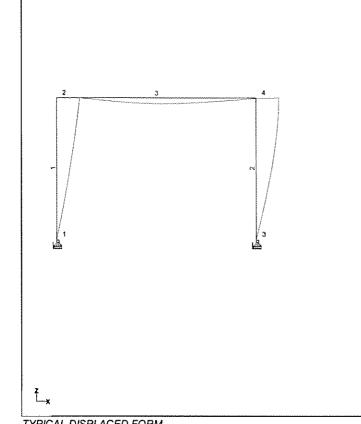
Basic Load Cases

Туре	Basic		Name	
Dead	DL1	Dead Load		
Live	LL1	Live Load		
Wind	WL1	wind load		
Self Wt.	SW1	s.wt		

Combination Load Cases

Name	Combination L/C Name	Basic	Basic L/C Name	Factor
C1	Ultimate DL + LL	DL1	Dead Load	1.40
		LL1	Live Load	1.60
		SW1	s.wt	1.40
C2	Ultimate DL + LL + WL	DL1	Dead Load	1.20
		LL1	Live Load	1.20
		WL1	wind load	1.20
		SW1	s.wt	1.20
C3	Unfactored DL + LL	DL1	Dead Load	1.00
		LL1	Live Load	1.00
		SW1	s.wt	1.00
C4	Unfactored DI + LL + WL	DL1	Dead Load	1.00
		LL1	Live Load	1.00
		WL1	wind load	1.00
		SW1	s.wt	1.00
C5	Unfactored DL + WL	DL1	Dead Load	1.00
		WL1	wind load	1.00
		SW1	s.wt	1.00

MMP Design Ltd	Job No 4580	Sheet No ANL 1 /	3 Rev		
Software licensed to MMP Design Ltd	Part Alterations		-		
Job Title 59 Solent Road, NW6	Ref Frame GF1				
	^{By} SM	Date Mar/16	Chd		
Client	File 4580 GF Fra	me 1.psa Date/Time	14-Mar-2016 10:27		


Loadings

 \bigcirc

For Temp Diff loads: D= distance to neutral axis (mm).

L/C	N/E	Ref	Туре		Axis	FA	D _A (m)	FB	D ₈ (m [*])
DL1	E	3	Distributed	kN/m	Global Z	-0.850		-0.850	
LL1	Е	3	Distributed	kN/m	Global Z	-0.450		-0.450	
WL1	Ν	2	Point	kN	Global X	0.300			
	E	1	Distributed	kN/m	Global X	0.600		0.600	
SW1	E	1	Distributed	kN/m	Global Z	-0.187		-0.187	
	Е	2	Distributed	kN/m	Global Z	-0.187		-0.187	
	E	3	Distributed	kN/m	Global Z	-0.187		-0.187	

MMP Design Ltd	4580 Sheet No ANL 1 / 4				
Software licensed to MMP Design Ltd	Part Alteration	S			
Job Title 59 Solent Road, NW6	Ref Frame GI	F1			
	^{By} SM	Date Mar	/16	Chd	
Client	^{File} 4580 GF	Frame 1.psa	Date/Time	14-Mar-2016 10:27	

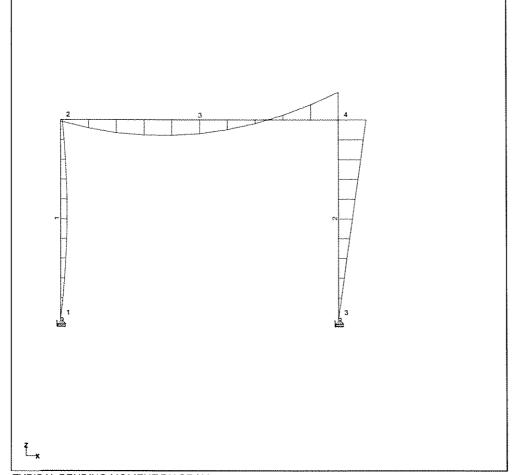
TYPICAL DISPLACED FORM

 \bigcirc

Node Displacements

Node	L/C	х	Y	z	Resultant	rX	rY	٢Z
		(mm)	(mm)	(mm)	(mm)	(rad)	(rad)	(rad)
1	C3	0.000		0.000	0.000		-0.00029	
	C4	0.000		0.000	0.000		0.00165	
	C5	0.000		0.000	0.000		0.00174	
2	C3	0.002		-0.022	0.022		0.00059	
	C4	4.167		-0.016	4.167		0.00100	
	C5	4.166		-0.010	4.166		0.00082	
3	C3	0.000		0.000	0.000		0.00029	
	C4	0.000		0.000	0.000		0.00201	
	C5	0.000		0.000	0.000		0.00192	
4	C3	-0.002		-0.022	0.022		-0.00059	
	C4	4.156		-0.027	4.156		-0.00000	
	C5	4.157		-0.021	4.157		0.00018	

MMP Design Ltd	Job No Sheet No ANL 1 / 5				
Software licensed to MMP Design Ltd	Part Alteration	ons			
Job Title 59 Solent Road, NW6	Ref Frame	GF1			
	^{By} SM	Date Mar/	16 Chd		
Client	File 4580 G	F Frame 1.psa	Date/Time 14-N	lar-2016 10:27	


Reactions

 \bigcirc

 \bigcirc

		Horiza	Horizontal			Moment		
Node	L/C	FX	FY	FZ	MX	MY	MZ	
		(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)	
1	C3	0.513		3.815		-0.000		
	C4	-0.995		2.938		-0.000		
	C5	-1.150		1.959		-0.000		
3	C3	-0.513		3.815		0.000		
	C4	-1.165		4.691		-0.000		
	C5	-1.010		3.712		-0.000		

MMP Design Ltd	Job No 4580 Sheet No ANL 1/6			
Software licensed to MMP Design Ltd	Part Alterations			
Job Title 59 Solent Road, NW6	Ref Frame GF1			
	^{By} SM	Date Mar/16	Chd	
Client	File 4580 GF Fran	me 1.psa 🏻 🕻	Date/Time 14-Mar-	2016 10:27

TYPICAL BENDING MOMENT DIAGRAM

 \bigcirc

 \bigcirc

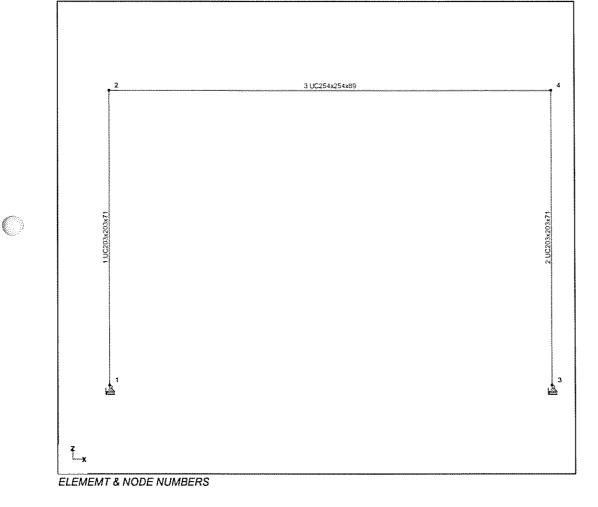
Element Maximum Moments

Distances to maxima are given from element end A.

					Ma	jor	M	inor
Emt	Node A	Length	L/C		d	Max My	d	Max Mz
		(m)			(m)	(kNm)	(m)	(kNm)
1	1	3.100	C1	Max +ve	3.100	2.321		
				Max -ve	0.000	-0.000		
			C2	Max +ve				
				Max -ve	1.659	-0.990		
2	3	3.100	C1	Max +ve	0.000	0.000		
				Max -ve	3.100	-2.321		
			C2	Max +ve	0.000	0.000		
				Max -ve	3.100	-4.333		
3	2	4.350	C1	Max +ve	0.000	2.321		
				Max -ve	2.175	-2.816		
			C2	Max +ve	4.350	4.333		
				Max -ve	1.586	-2.486		

MMP Design Ltd	Job No 4580 Sheet No ANL 1 / 7				
Software licensed to MMP Design Ltd	Part Alterations				
Job Title 59 Solent Road, NW6	Ref Frame GF1				
	^{By} SM	Date Mar/	16 Chd		
Client	File 4580 GF Fran	ne 1.psa	Date/Time 14-Ma	ar-2016 10:27	

Element Maximum Shear Forces


Distances to maxima are given from element end A.

					Ma	jor	M	inor
Emt	Node A	Length	L/C		d	Max Fz	d	Max Fy
		(m)			(m)	(kN)	(m)	(kN)
1	1	3.100	C1	Max +ve	0.000	0.749		
				Max -ve				
			C2	Max +ve	3.100	1.038		
				Max -ve	0.000	-1.194		
2	3	3.100	C1	Max +ve				
				Max -ve	0.000	-0.749		
			C2	Max +ve				
				Max -ve	0.000	-1.398		
3	2	4.350	C1	Max +ve	4.350	4.724		
				Max -ve	0.000	-4.724		
			C2	Max +ve	4.350	4.933		
				Max -ve	0.000	-2.830		

Element Maximum Axial Forces

Distances to maxima are given from element end A. Emt Node A Length L/C d Max Fx (kN) (m) (m) 1 1 3.100 C1 0.000 5.536 Max +ve Max -ve C2 0.000 3.526 Max +ve Max -ve 2 3 3.100 C1 Max +ve 0.000 5.536 Max -ve C2 Max +ve 0.000 5.629 Max -ve 4.350 3 2 C1 0.000 0.749 Max +ve Max-ve C2 Max +ve 0.000 1.398 Max -ve

MMP Design Ltd	Job No 4580 Sheet No ANL 2 / 1				
Software licensed to MMP Design Ltd	Par	t Alterations	-		
Job Title 59 Solent Road, NW6	Rel	Frame GF2			
	Ву	SM	Date Mar/1	6	Chd
Client	File	4580 GF Frame	e 2.psa	Date/Time	14-Mar-2016 10:54

Nodes

Node	X	Y	Z
	(m)	(m)	(m)
1	0.000		0.000
2	0.000		3.100
3	4.650		0.000
4	4.650		3.100

Elements

Emt	Node A	Node B	Length	Prop A	Prop B	β
			(m)			degrees
1	1	2	3.100	1	-	0
2	3	4	3.100	1	-	0
3	2	4	4.650	2	-	0

Section Properties

Prop	Section	Area (cm²)	l _{yy} (cm⁴)	l _{zz} (cm ⁴)	J (cm⁴)	Material
1	UC203x203x71	90.400	7.62E 3	2.54E 3		1
2	UC254x254x89	113.000	14.3E 3	4.86E 3		1

MMP Design Ltd	Job No 4580 Sheet No ANL 2 / 2					
Software licensed to MMP Design Ltd	Part Alterations					
Job Title 59 Solent Road, NW6	Ref Frame GF2					
	^{By} SM	Date Mar/	16 ^{Cho}	l		
Client	File 4580 GF Fran	ne 2.psa	Date/Time 14-	Mar-2016 10:54		

Materials

Mat	Name	E (kN/mm²)	G (kN/mm ²)	v	Density (kg/m ³)	α (1/K)	Design Type
1	Steel	205.000			7.85E 3	12E -6	Steel
2	Concrete	10.000			2.4E 3	10E -6	Concrete

Supports

Node	х	Y	z	rX	rY	٢Z
	(kN/mm)	(kN/mm)	(kN/mm)	(kNm/rad)	(kNm/rad)	(kNm/rad)
1	Fixed		Fixed		-	
3	Fixed		Fixed		-	

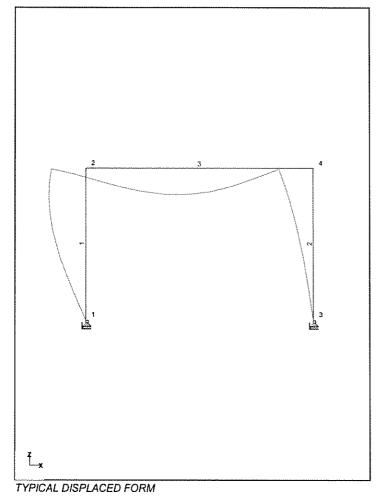
Basic Load Cases

	Туре	Basic	Name	
-	Dead	DL1	Dead Load	
	Live	LL1	Live Load	
	Wind	WL1	wind load	
	Self Wt.	SW1	s.wt	

Combination Load Cases

Name	Combination L/C Name	Basic	Basic L/C Name	Factor
C1	Ultimate DL + LL	DL1	Dead Load	1.40
		LL1	Live Load	1.60
		SW1	s.wt	1.40
C2	Ultimate DL + LL + WL	DL1	Dead Load	1.20
		LL1	Live Load	1.20
		WL1	wind load	1.20
		SW1	s.wt	1.20
C3	Unfactored DL + LL	DL1	Dead Load	1.00
		LL1	Live Load	1.00
		SW1	s.wt	1.00
C4	Unfactored DI + LL + WL	DL1	Dead Load	1.00
		LL1	Live Load	1.00
		WL1	wind load	1.00
		SW1	s.wt	1.00
C5	Unfactored DL + WL	DL1	Dead Load	1.00
		WL1	wind load	1.00
		SW1	s.wt	1.00

MMP Design Ltd	Job No A580 Sheet No ANL 2 / 3					
Software licensed to MMP Design Ltd	Par	^t Alterations				
Job Title 59 Solent Road, NW6	Ref	Frame GF2				
	Ву	SM	Date Mar/1	6	Chd	
Client	File	4580 GF Frame	2.psa	Date/Time	14-Mar-2	016 10:54


Loadings

 \bigcirc

For Temp Diff loads: D= distance to neutral axis (mm).

L/C	N/E	Ref	Туре		Axis	F _A	D _A	FB	D _B
							(m)		(m [*])
DL1	N	2	Point	kN	Global Z	-2.900			
	Ε	3	Point	kN	Global Z	-64.700	3.350		
			Patch	kN/m	Global Z	-15.870	0.000	-15.870	3.350
			Patch	kN/m	Global Z	-1.700	3.350	-1.700	4.650
LL1	N	2	Point	kN	Global Z	-2.000			
	E	3	Point	kN	Global Z	-14.400	3.350		
			Patch	kN/m	Global Z	-1.650	0.000	-1.650	3.350
			Patch	kN/m	Global Z	-0.900	3.350	-0.900	4.650
WL1	N	2	Point	kN	Global X	-7.030			
	Ε	1	Distributed	kN/m	Global X	-2.040		-2.040	
SW1	E	1	Distributed	kN/m	Global Z	-0.696		-0.696	
	E	2	Distributed	kN/m	Global Z	-0.696		-0.696	
	Е	3	Distributed	kN/m	Global Z	-0.870		-0.870	

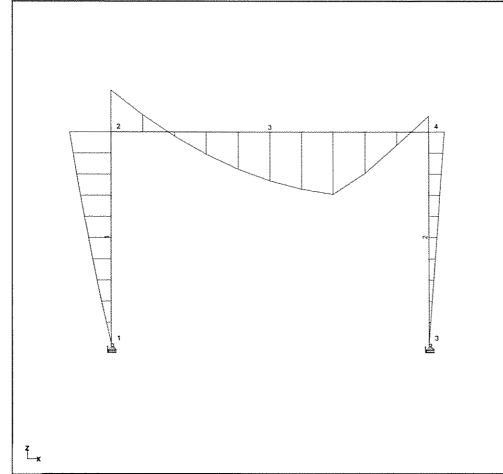
MMP Design Ltd	Job No 4580	Sheet No	IL 2 / 4	Rev
Job Title 59 Solent Road, NW6	Part Alterations Ref Frame GF2			······································
	By SM	Date Mar/1	6 Chd	······
Client	File 4580 GF Fram	ie 2.psa	Date/Time 14-Mar-	2016 10:54

Ô

Node Displacements Node L/C X Y

Node	L/C	x	Y	Z	Resultant	rX	rY	٢Z
		(mm)	(mm)	(mm)	(mm)	(rad)	(rad)	(rad)
1	C3	0.000		0.000	0.000		-0.00151	
	C4	0.000		0.000	0.000		-0.00373	
	C5	0.000		0.000	0.000		-0.00349	
2	C3	-1.043		-0.114	1.049		0.00201	
	C4	-5.853		-0.125	5.854		0.00163	
	C5	-5.628		-0.109	5.629		0.00136	
3	C3	0.000		0.000	0.000		0.00083	
	C4	0.000		0.000	0.000		-0.00126	
	C5	0.000		0.000	0.000		-0.00136	
4	C3	-1.066		-0.141	1.075		-0.00269	
	C4	-5.865		-0.129	5.866		-0.00316	
	C5	-5.637		-0.107	5.638		-0.00274	

MMP Design Ltd	Job No 4580 Sheet No ANL 2 / 5					
Software licensed to MMP Design Ltd	Part Alterations					
Job Title 59 Solent Road, NW6	Ref Frame GF2					
	By SM Date Mar/16 Chd					
Client	File 4580 GF Frame 2.psa Date/Time 14-Mar-2016 1	10:54				


Reactions

 \bigcirc

 \bigcirc

		Horizo	ontal	Vertical		Moment	
Node	L/C	FX	FY	FZ	MX	MY	MZ
		(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
1	C3	11.442		69.218		-0.000	
	C4	19.525		76.013		-0.000	
	C5	17.861		66.287		-0.000	
3	C3	-11.442		85.217		0.000	
	C4	-6,171		78.422		0.000	
	C5	-4.507		65.050		0.000	

MMP Design Ltd	Job No 4580	Sheet No ANL 2 / 6	Rev
Software licensed to MMP Design Ltd	Part Alterations		
Job Title 59 Solent Road, NW6	Ref Frame GF2		
	^{By} SM	Date Mar/16 Cho	ł
Client	File 4580 GF Fram	e 2.psa Date/Time 14-	Mar-2016 10:54

TYPICAL BENDING MOMENT DIAGRAM

Element Maximum Moments

Distances to maxima are given from element end A.

					Ma	jor	M	linor
Emt	Node A	Length	L/C		d	Max My	d	Max Mz
		(m)			(m)	(kNm)	(m)	(kNm)
1	1	3.100	C1	Max +ve	3.100	50.691		
				Max -ve				
			C2	Max +ve	3.100	60.869		
				Max -ve				
2	3	3.100	C1	Max +ve				
				Max -ve	3.100	-50.691		
			C2	Max +ve				
				Max -ve	3.100	-22.955		
3	2	4.650	C1	Max +ve	4.650	50.691		
				Max -ve	3.350	-99.694		
			C2	Max +ve	0.000	60.869		
				Max -ve	3.350	-92.498		

MMP Design Ltd	Job No 4580 Sheet No ANL 2 / 7
Software licensed to MMP Design Ltd	Part Alterations
Job Title 59 Solent Road, NW6	Ref Frame GF2
	By SM Date Mar/16 Chd
Client	File 4580 GF Frame 2.psa Date/Time 14-Mar-2016 10:

Max Fx (kN)

98.850

91.215

121.978

94.106

16.352

7.405

0.000

0.000

0.000

Element Maximum Shear Forces

Distances to maxima are given from element end A.

					Ma	or	M	inor
Emt	Node A	Length	L/C		d	Max Fz	d	Max Fy
		(m)			(m)	(kN)	(m)	(kN)
1	1	3.100	C1	Max +ve	0.000	16.352		
				Max -ve				
			C2	Max +ve	0.000	23.429		
				Max -ve				
2	3	3.100	C1	Max +ve				
				Max -ve	0.000	-16.352		
			C2	Max +ve				
				Max -ve	0.000	-7.405		
3	2	4.650	C1	Max +ve	4.650	118.956		
				Max -ve	0.000	-88.569		
			C2	Max +ve	4.650	91.517		
				Max -ve	0.000	-82.745		

Max -ve

Max +ve

Max -ve

Max +ve

Max -ve

Max +ve

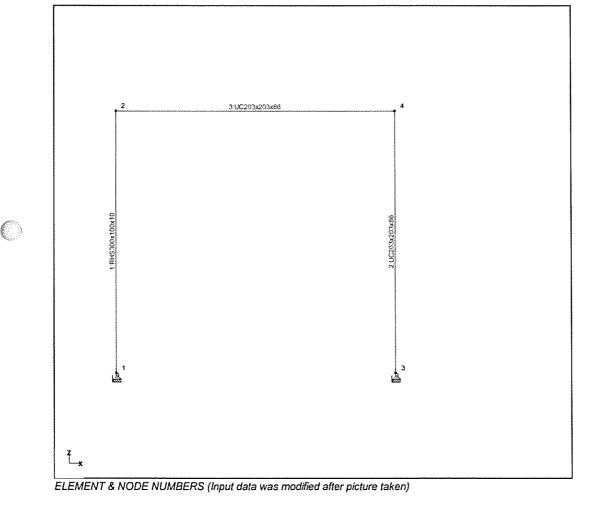
Max -ve

Element Maximum Axial Forces

4.650

Distances to maxima are given from element end A. Emt Node A Length L/C d (m) (m) 1 1 3.100 C1 Max +ve 0.000 Max -ve C2 Max +ve 0.000 Max -ve 2 3 3.100 C1 Max +ve 0.000

C2


C1

C2

3

2

MMP Design Ltd	Job	No 4580	Sheet No	NL 3 / '	Rev 1
Software licensed to MMP Design Ltd	Par	t Alterations			
Job Title 59 Solent Road, NW6	Ref	Frame GF3			
	By	SM	Date Mar/1	6	Chd
Client	File	4580 GF Frame	e 3.psa	Date/Time	14-Mar-2016 11:52

Nodes

Node	Х	Y	Z
	(m)	(m)	(m)
1	0.000		0.000
2	0.000		3.100
3	3.300		0.000
4	3.300		3.100

Elements

Emt	Node A	Node B	Length	Prop A	Prop B	β
			(m)			degrees
1	1	2	3.100	2	-	0
2	3	4	3.100	1	-	0
3	2	4	3,300	1	-	0

Section Properties

Prop	Section	Area	l _{yy}	l _{zz}	J	Material
		(cm²)	(cm ⁴)	(cm⁴)	(cm ⁴)	
1	UC203x203x86	110.000	9.45E 3	3.13E 3		1
2	RHS300x100x10	74.900	7.61E 3	1.28E 3		1

MMP Design Ltd	Jot	4580	Sheet No	NL 3/2		Rev
Software licensed to MMP Design Ltd	Pai	^t Alterations				
Job Title 59 Solent Road, NW6	Re	Frame GF3				
	Ву	SM	Date Mar/1	16	Chd	
Client	File	4580 GF Frame	e 3.psa	Date/Time	14-Mar-2	016 11:52

Materials

Mat	Name	E (kN/mm²)	G (kN/mm²)	v	Density (kg/m³)	α (1/K)	Design Type
1	Steel	205.000			7.85E 3	12E -6	Steel
2	Concrete	10.000			2.4E 3	10E -6	Concrete

Supports

Node	Х	Y	z	rХ	rY	rZ
	(kN/mm)	(kN/mm)	(kN/mm)	(kNm/rad)	(kNm/rad)	(kNm/rad)
1	Fixed		Fixed		-	
3	Fixed		Fixed		-	

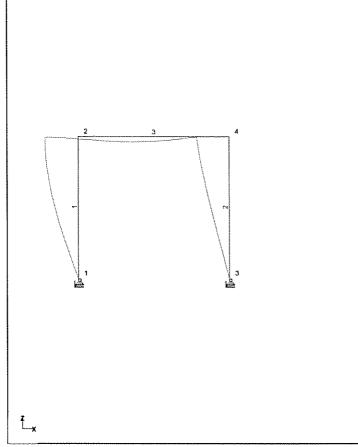
Basic Load Cases

Туре	Basic	Name
Dead	DL1	Dead Load
Live	LL1	Live Load
Wind	WL1	wind load
Self Wt.	SW1	s.wt

Combination Load Cases

Name	Combination L/C Name	Basic	Basic L/C Name	Factor
	Ultimate DL + LL	DL1	Dead Load	1.40
		LL1	Live Load	1.60
		SW1	s.wt	1.40
C2	Ultimate DL + LL + WL	DL1	Dead Load	1.20
		LL1	Live Load	1.20
		WL1	wind load	1.20
		SW1	s.wt	1.20
C3	Unfactored DL + LL	DL1	Dead Load	1.00
		LL1	Live Load	1.00
		SW1	s.wt	1.00
C4	Unfactored DI + LL + WL	DL1	Dead Load	1.00
		LL1	Live Load	1.00
		WL1	wind load	1.00
		SW1	s.wt	1.00
C5	Unfactored DL + WL	DL1	Dead Load	1.00
		WL1	wind load	1.00
		SW1	s.wt	1.00

MMP Design Ltd	Job	No 4580	Sheet No AN	NL 3/3		Rev
Software licensed to MMP Design Ltd	Par	t Alterations				
Job Title 59 Solent Road, NW6	Ref	Frame GF3				
	By	SM	Date Mar/1	6	Chd	
Client	File	4580 GF Frame	3.psa	Date/Time	14-Mar-2	2016 11:52


Loadings

 \bigcirc

For Temp Diff loads: D= distance to neutral axis (mm).

L/C	N/E	Ref	Туре		Axis	FA	D _A (m)	FB	D _B (m`)
DL1	N	2	Point	kN	Global Z	-10.200			
	N	4	Point	kN	Global Z	-18.200			
	Е	3	Distributed	kN/m	Global Z	-8.120		-8.120	
LL1	N	2	Point	kN	Global Z	-10.800			
	N	4	Point	kN	Globai Z	-5.400			
	Е	3	Distributed	kN/m	Global Z	-12.600		-12.600	
WL1	N	2	Point	kN	Global X	-12.900			
	Е	1	Distributed	kN/m	Global X	-1.840		-1.840	
SW1	Е	1	Distributed	kN/m	Global Z	-0.577		-0.577	
	Е	2	Distributed	kN/m	Global Z	-0.847		-0.847	
	Е	3	Distributed	kN/m	Global Z	-0.847		-0.847	

MMP Design Ltd	Job No 4580	Sheet No	NL 3 / 4	Rev
Software licensed to MMP Design Ltd	Part Alterations			
Job Title 59 Solent Road, NW6	Ref Frame GF3			
	^{By} SM	^{Date} Mar/	16 Chd	
Client	File 4580 GF Fra	ame 3.psa	Date/Time 14-Ma	ar-2016 11:52

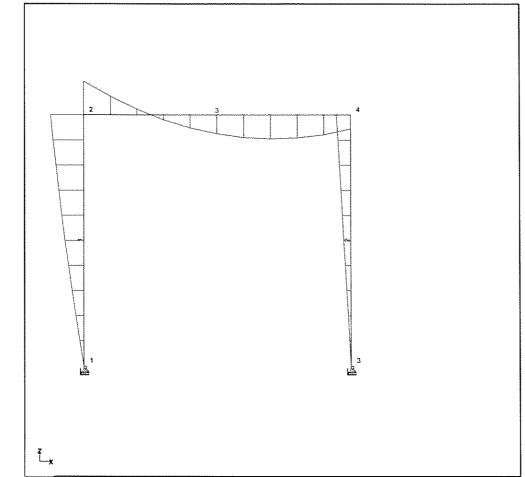
TYPICAL DISPLACED FORM

 \bigcirc

Node Displacements

Node	L/C	х	Y	z	Resultant	тХ	rY	٢Z
		(mm)	(mm)	(mm)	(mm)	(rad)	(rad)	(rad)
1	C3	0.000		0.000	0.000		-0.00046	
	C4	0.000		0.000	0.000		-0.00360	
	C5	0.000		0.000	0.000		-0.00333	
2	C3	-0.258		-0.116	0.283		0.00068	
	C4	-7.181		-0.146	7.183		0.00010	
	C5	-7.022		-0.082	7.023		-0.00029	
3	C3	0.000		0.000	0.000		0.00022	
	C4	0.000		0.000	0.000		-0.00270	
	C5	0.000		0.000	0.000		-0.00283	
4	C3	-0.263		-0.083	0.276		-0.00070	
	C4	-7.174		-0.063	7.175		-0.00154	
	C5	-7.012		-0.027	7.013		-0.00113	

MMP Design Ltd	Job No 4580 Sheet No ANL 3 / 5			
Software licensed to MMP Design Ltd	Part Alterations			
Job Title 59 Solent Road, NW6	Ref Frame GF3			
	^{By} SM	^{Date} Mar/	16 Chd	
Client	File 4580 GF Fran	ne 3.psa	Date/Time 14-N	/ar-2016 11:52


Reactions

 \bigcirc

Ô

		Horizo	ontal	Vertical		Moment	
Node	L/C	FX	FY	FZ	MX	MY	MZ
		(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
1	C3	3.708		58.374		-0.000	
	C4	13.927		73.171		-0.000	
	C5	11.761		41.581		-0.000	
3	C3	-3.708		61.812		0.000	
	C4	4.677		47.014		0.000	
	C5	6.843		20.824		0.000	

MMP Design Ltd	Job No Sheet No ANL 3 / 6	
Software licensed to MMP Design Ltd	Part Alterations	
Job Title 59 Solent Road, NW6	Ref Frame GF3	
	By SM Date Mar/16 Chd	
Client	File 4580 GF Frame 3.psa Date/Time 14-Mar-2016	11:52

TYPICAL BENDING MOMENT DIAGRAM

Ô

Element Maximum Moments

Distances to maxima are given from element end A.

					Ma	jor	M	inor
Emt	Node A	Length	L/C		d	Max My	d	Max Mz
		(m)			(m)	(kNm)	(m)	(kNm)
1	1	3.100	C1	Max +ve	3.100	17.434		
				Max -ve	0.000	-0.000		
			C2	Max +ve	3.100	41.199		
				Max -ve	0.000	-0.000		
2	3	3.100	C1	Max +ve	0.000	0.000		
				Max -ve	3.100	-17.434		
			C2	Max +ve	3.100	17.398		
				Max -ve				
3	2	3.300	C1	Max +ve	3.300	17.434		
				Max -ve	1.650	-27.097		
			C2	Max +ve	0.000	41.199		
				Max -ve	2.336	-29.421		

MMP Design Ltd	Job	No 4580	Sheet No	NL 3/7		Rev
Software licensed to MMP Design Ltd	Par	t Alterations				
Job Title 59 Solent Road, NW6	Ref	Frame GF3				
	Ву	SM	Date Mar/1	6	Chd	
Client	File	4580 GF Frame	3.psa	Date/Time	14-Mar-2	2016 11:52

Element Maximum Shear Forces

Distances to maxima are given from element end A.

					Maj	or	M	inor
Emt	Node A	Length	L/C		d	Max Fz	d	Max Fy
		(m)			(m)	(kN)	(m)	(kN)
1	1	3.100	C1	Max +ve	0.000	5.624		
				Max -ve				
			C2	Max +ve	0.000	16.712		
				Max -ve				
2	3	3.100	C1	Max +ve				
				Max -ve	0.000	-5.624		
			C2	Max +ve	0.000	5.612		
				Max -ve				
3	2	3.300	C1	Max +ve	3.300	53.978		
				Max -ve	0.000	-53.978		
			C2	Max +ve	3.300	24.946		
				Max -ve	0.000	-60.460		

Element Maximum Axial Forces

Distances to maxima are given from element end A.

Emt	Node A	Length (m)	L/C		d (m)	Max Fx (kN)
1	1	3.100	C1	Max +ve	0.000	88.041
				Max -ve		
			C2	Max +ve	0.000	87.805
				Max -ve		
2	3	3.100	C1	Max +ve	0.000	91.774
				Max -ve		
			C2	Max +ve	0.000	56.417
				Max -ve		
3	2	3.300	C1	Max +ve	0.000	5.624
				Max -ve		
			C2	Max +ve		
				Max -ve	0.000	-5.612

Client:	59 Solent Road London NW6 Alterations		Page: FFC/1 Made by: SM Date: Mar/16 Ref No: 4580
			Office: 5831
	: FIRST FLOOR LE beam to BS5268-2:		
▲ 7/7			Simply supported beam subjected to vertical loads.
Beam spa	L=4.1		
Dístance Dead loa Imposed Maximum			kN/m
Section	design parameter	:s	
		x - ·	
		L	у. ->
Depth of Width of Eff leng Eff leng Length of From BSE Bearing Strength Timber s Duration Depth fa Load-sha	Modification fac n class C24 to Ta service class add stress grades and n of loading actor	d=195 mm $b=94 mm$ $about xx Lex=4100 mm$ $about yy Ley=4100 mm$ $bearing is < 75 mm fr$	ble 16. .11=1.0485
DESIG SUMMAH		Member: 195 mm x 94 mm Strength class C24 to Moisture service class Bending stress Permissible bending Deflection Limiting deflection Shear stress Permissible shear Bearing stress Permissible bearing	Table 8 3 2.8218 N/mm2 8.6503 N/mm2 7.9858 mm 12.3 mm 0.13421 N/mm2 0.87863 N/mm2 0.34894 N/mm2

Ô

	Solent Road ndon NW6 terations		Page: FFC/2 Made by: SM Date: Mar/16 Ref No: 4580
<u></u>			Office: 5831
Location: EX	XTENSION ROOF J	OISTS	
			Domestic floor joist
dead+impo		A-A T	These calculations follow The domestic floor joists example by V C Johnson in TRADA Design Aid DA1 and 0355268-2:2002.
]		
 that class the load the 	t the timber ha ss l or 2 (i.e. floor can adec d to at least t centres of joi	uately distribute a	nt of service any concentrated point 510 mm
Centres of Dead load is Imposed udl Imposed pois Depth of se Width of se Bearing len Strength cl Duration of Depth facto Load sharin	ncluding self w load (on floor nt load (on one ction ction gth ass C24 to Tabl loading r g (Clause 2.9)	e joist) PL=0.9 kN d=195 mm b=47 mm lb=50 mm e 8 K3=1.25 K7=(300/d)^	N/m ² 0.11=1.0485
	ification facto	br K4=1.0 Joists: 195 mm x Strength class C Bending stress Permissible bend Deflection Limiting deflect Shear stress	k 47 mm @ 300 mm crs 224 to Table 8 6.2347 N/mm ² ding 10.813 N/mm ² 11.991 mm
SUMMARY			ar 0.97625 N/mm ² 0.67979 N/mm ² ring 3.3 N/mm ²

Client: Fitle: Alterations		Made by: Date: Ref No:	Mar/16			
		Office:	5831			
Location: FIRST FLOOR LEVEN	BEAM FB2					
	Simply supported	Simply supported steel beam				
	Calculations are with BS5950-1:200		e			
7/7 00	down-t-	0.				
L						
Beam span	L=2.2 m					
178 x 102 x 19 UB.						
Young's Modulus	E=205 kN/mm ²					
Dead load factor Imposed load factor	gamd=1.4 gami=1.6					
	-					
Dist. from left support to Distance from left support						
Dead load (unfactored) Imposed load (unfactored)	Gku(1)=2.65 kN/m Qku(1)=1.8 kN/m					
Maximum span bending moment	3.987 kNm					
Design shear force Bending strength	Fv=7.249 kN pb=(pey)/(phiLT+	/ (nhit @^2-ne	N 0 511			
bending brengen	=130.18 N/mm ²	(piitut z pe	sy, 0.3//			
UNIVERSAL BEAM	178 x 102 x 19 t	B Grade S 2	75			
DESIGN SUMMARY	Maximum shear fo					
	Shear capacity Max. applied mom					
	Moment capacity	47.025	5 kNm			
	Buckling resista Moment factor (m		l kNm			
	Resistance (Mb/m	LT) = 22.261	l kNm			
	Resistance (Mb/π Unfactored DL de	fln 0.2899	92 mm			
	Unfactored LL de	efin 0.1969	93 mm			
	Limiting deflect r DL shear at LHE	ion 6.1111 2.915				
Unfac	tored LL shear at LHE					
	and a construction of the second s	~•~··				
end si		2.915	kN			

٢

Project: 59 Solent Roa London NW6 Client: Title: Alterations	d MMP DESIGN	Made by:	Mar/16
		Office:	5831
Location: FIRST FLOOR	LEVEL BEAM FB3		
	Simply suppor	cted steel beam	
 	Calculations Calculations with BS5950-1 000	are in accordanc 1:2000.	e
I			
Beam span	1=4.4 m		
178 x 102 x 19 UB. Young's Modulus	E=205 kN/mm ²	2	
Dead load factor Imposed load factor	gamd=1.4 gami=1.6		
	ed) Qku(1)=0.45 oment 4.6222 kNm Fv=4.202 kN	kN/m kN/m hiLT+((phiLT^2-pe	ey)^0.5))
	178 x 102 x Maximum shea Shear capac: Max. applied Moment capac Buckling res Moment factor Resistance Unfactored I Unfactored I Limiting des DL shear at DL shear at DL shear at	ity 140.82 d moment 4.6222 city 47.025 sistance 12.353 or (mLT) 1 (Mb/mLT) 12.353 DL defln 1.4879 LL defln 0.7877 flection 12.222 LHE 1.87 1 LHE 0.99 1	kN 2 kN 2 kNm 5 kNm 3 kNm 3 kNm 3 kNm 7 mm 7 mm 2 mm 2 mm <n< td=""></n<>

O

No408

Project: 59 Solent Road London NW6 Client: Title: Alterations	\bigcirc	Page: FFC/5 de by: SM Date: Mar/16 def No: 4580
	C	office: 5831
Location: FIRST FLOOR LEVEL BEAM	I FB4	
	Simply supported steel	beam
▲ 7/7/ 000	Calculations are in ac with BS5950-1:2000.	cordance
├ L		
Beam span	L=1.8 m	
152 x 152 x 23 UC. Young's Modulus	E=205 kN/mm ²	
Dead load factor Imposed load factor	gamd=1.4 gami=1.6	
Dist. from left support to start Distance from left support to er Dead load (unfactored) Imposed load (unfactored) Maximum span bending moment Design shear force Bending strength		LT^2-pey)^0.5))
UNIVERSAL COLUMN DESIGN SUMMARY Unfactored end shears	Max. applied moment Moment capacity Buckling resistance Moment factor (mLT) Resistance (Mb/mLT) Unfactored DL defln Unfactored LL defln Limiting deflection T DL shear at LHE	21.766 kN 145.85 kN 9.7945 kNm 45.112 kNm 37.638 kNm 1 37.638 kNm 0.76598 mm

 \bigcirc

Project: 59 Solent Road London NW6 Client: Title: Alterations		Page: Made by: Date: Ref No:	Mar/16
		Office:	5831
Location: FIRST FLOOR LEVEL BEAM	FB5		
	Simply supported s	teel beam	
	Calculations are i with BS5950-1:2000		e
L			
Beam span	L=3.4 m		
152 x 152 x 23 UC. Young's Modulus	E=205 kN/mm ²		
Dead load factor Imposed load factor	gamd=1.4 gami=1.6		
Dead load (unfactored) Imposed load (unfactored) Dist. from left support to start Distance from left support to end Dead load (unfactored)	l Lbu(1)=3.4 m Gku(1)=0.50 kN/m Qku(1)=0.75 kN/m Lau(2)=0 m		ey)^0.5))
UNIVERSAL COLUMN DESIGN SUMMARY Unfactored end shears	152 x 152 x 23 UC Maximum shear for Shear capacity Max. applied mome Moment capacity Buckling resistar Moment factor (ml Resistance (Mb/ml Unfactored DL de: Unfactored DL de: Limiting deflect: DL shear at LHE LL shear at LHE LL shear at RHE LL shear at RHE	rce 31.289 145.89 145.81 45.112 12 12 12 12 12 12 12 12 12 12 12 12	<pre>> kN > kN 5 kNm 2 kNm 4 kNm 2 mm 2 mm 2 mm 4 mm 3 kN 1 kN 5 kN</pre>

O

Client:	59 Solent Road London NW6 Alterations		Page: Made by: Date: Ref No:	
<u></u>			Office:	5831
Location	: FIRST FLOOR LEVEL BEAM	FB6		
		Simply supported st	eel beam	
 		Calculations are in with BS5950-1:2000.	accordanc	e
	<u>1</u> ,			
Beam spar	n	L=6.2 m		
254 x 254 Young's N	4 x 107 UC. Modulus	E=205 kN/mm ²		
Dead load Imposed 1	d factor load factor	gamd=1.4 gami=1.6		
Dead load Imposed I Distance Dead load Dist. fre Distance Dead load Imposed I Dist. fre Distance Dead load Imposed I Distance Dead load Imposed I Maximum	<pre>from left support d (unfactored) load (unfactored) from left support d (unfactored) load (unfactored) om left support to start from left support to start d (unfactored) load (unfactored) om left support to start from left support to end d (unfactored) load (unfactored) load (unfactored) span bending moment hear force strength</pre>	l Lbu(1)=6.2 m Gku(1)=18.6 kN/m Qku(1)=4.2 kN/m Lau(2)=0 m	phiLT^2-pe	ey)^0.5);
	SAL COLUMN SUMMARY Unfactored end shears	254 x 254 x 107 UC Maximum shear ford Shear capacity Max. applied momen Moment capacity Buckling resistand Moment factor (mLT Resistance (Mb/mLT Unfactored DL defl Unfactored LL defl Limiting deflectio DL shear at LHE LL shear at LHE LL shear at RHE	<pre>127.11 542.79 186.51 392.2 265.56 1 2) 265.56 1 2) 265.56 11.706 2.7643 11.706 2.7643 17.222 70.123 18.089 64.692</pre>	- kN - kNm - kNm - kNm - kNm - kNm - mm - mm - mm - mm - mm - kN - kN - kN - kN

Ô

Ô

Client:	59 Solent Road London NW6 Alterations		Made by:	Mar/16
			Office:	5831
Location	: FIRST FLOOR LEVEL BEAM	FB7		
		Simply supported ste	el beam	
7/7	 	Calculations are in with BS5950-1:2000.	accordanc	e
	I			
Beam spa	n	L=4.65 m		
254 x 25 Young's 1	4 x 73 UC. Modulus	E=205 kN/mm ²		
	d factor load factor	gamd=1.4 gami=1.6		
Dead loa Imposed Distance Dead loa Imposed Dist. fr Distance Dead loa Imposed Dist. fr Distance Dead loa Imposed Maximum Design s Length o	<pre>from left support d (unfactored) load (unfactored) from left support d (unfactored) load (unfactored) om left support to start from left support to start from left support to start from left support to start from left support to end d (unfactored) load (unfactored) load (unfactored) span bending moment hear force f beam between restraints strength</pre>	<pre>d Lbu(1)=3.35 m Gku(1)=15.87 kN/m Qku(1)=1.65 kN/m Lau(2)=3.35 m d Lbu(2)=4.65 m Gku(2)=1.7 kN/m Qku(2)=0.9 kN/m 147.71 kNm Fv=116.36 kN</pre>	phiLT^2-pe	≥y)^0.5))
	SAL COLUMN SUMMARY Unfactored end shears	254 x 254 x 73 UC (Maximum shear force Shear capacity Max. applied moment Moment capacity Buckling resistance Moment factor (mLT Resistance (Mb/mLT Unfactored DL defl: Unfactored LL defl: Limiting deflection DL shear at LHE LL shear at LHE DL shear at RHE	e 116.36 360.5 t 147.7 272.8 e 231.8) 1) 231.8 n 7.859 n 1.382 n 12.91 55.21 9.661	5 kN 7 kN 1 kNm 1 kNm 1 kNm 7 mm 1 mm 7 mm 7 kN 3 kN

Ô

Ô

1 FB8 Simply suppo Calculations with BS5950- L=3.8 m	orted steel		
Simply suppo Calculations with BS5950-	are in acc		e
Calculations with BS5950-	are in acc		e
with BS5950-		cordanc	e
L=3.8 m			
L=3.8 m			
E=205 kN/mm	12		
gamd=1.4 gami=1.6			
Gku(1)=1.45 Qku(1)=2.85 Lau(2)=1.05 Gku(2)=2.75 Gku(2)=18.2 Qku(2)=0 kN 43.841 kNm Fv=34.179 k pb=(pey)/(p	5 kN/m 5 kN/m 5 m 5 m 2 kN/m 2 kN/m 1/m 4N	LT^2-pe	•y)^0.5)
Maximum she Shear capao Max. applie Moment capa Buckling re Moment fact Resistance Unfactored Unfactored Limiting de LL shear at DL shear at	ear force city ed moment acity esistance tor (mLT) (Mb/mLT) DL defln LL defln eflection t LHE t LHE t RHE	34.179 213.58 43.841 84.975 53.713 1 53.713 7.9821 1.7079 10.556 18.225 5.415 18.225	kN kNm kNm kNm kNm kNm mm mm mm mm kN kN kN
	gami=1.6 t Lau(1)=0 m hd Lbu(1)=3.8 Gku(1)=1.45 Qku(1)=2.85 t Lau(2)=1.05 hd Lbu(2)=2.75 Gku(2)=18.2 Qku(2)=0 kN 43.841 kNm Fv=34.179 P pb=(pey)/(F =173.83 N 152 x 152 x Maximum she Shear capac Max. applic Moment capac Buckling re Moment fact Resistance Unfactored Limiting de DL shear at DL shear at DL shear at	<pre>gami=1.6 t Lau(1)=0 m nd Lbu(1)=3.8 m Gku(1)=1.45 kN/m Qku(1)=2.85 kN/m t Lau(2)=1.05 m nd Lbu(2)=2.75 m Gku(2)=0 kN/m 43.841 kNm Fv=34.179 kN pb=(pey)/(phiLT+((phi =173.83 N/mm²) 152 x 152 x 37 UC Gra Maximum shear force Shear capacity Max. applied moment Moment capacity Buckling resistance Moment factor (mLT) Resistance (Mb/mLT) Unfactored LL defln Limiting deflection DL shear at LHE LL shear at LHE</pre>	<pre>gami=1.6 t Lau(1)=0 m hd Lbu(1)=3.8 m Gku(1)=1.45 kN/m Qku(1)=2.85 kN/m t Lau(2)=1.05 m hd Lbu(2)=2.75 m Gku(2)=18.2 kN/m Qku(2)=0 kN/m 43.841 kNm Fv=34.179 kN pb=(pey)/(phiLT+((phiLT^2-pe =173.83 N/mm²) 152 x 152 x 37 UC Grade S 27 Maximum shear force 34.179 Shear capacity 213.58 Max. applied moment 43.841 Moment capacity 84.975 Buckling resistance 53.713 Moment factor (mLT) 1 Resistance (Mb/mLT) 53.713 Unfactored DL defln 7.9821 Unfactored LL defln 1.7079 Limiting deflection 10.556 DL shear at LHE 18.225 LL shear at LHE 5.415 DL shear at RHE 18.225</pre>

િ

 \bigcirc

Project: 59 Solent Road London NW6 Client: Title: Alterations		Page: Made by: Date: Ref No:	Mar/16
	ti gi mi to anno a canto ta casi a tront ta Annon	Office:	5831
Location: FIRST FLOOR LEVEL BEAM	FB9		
	Simply supported st	eel beam	
▲ ▲ ○ ○ ○ ○	Calculations are in with BS5950-1:2000.	accordanc	e
[] I			
Beam span	L=2.3 m		
152 x 152 x 23 UC. Young's Modulus	E=205 kN/mm ²		
Dead load factor Imposed load factor	gamd=1.4 gami=1.6		
Dist. from left support to start Distance from left support to end Dead load (unfactored) Imposed load (unfactored) Maximum span bending moment Design shear force Bending strength		phiLT^2-pe	ey)^0.5))
UNIVERSAL COLUMN DESIGN SUMMARY Unfactored end shears	Max. applied momen	e 31.524 145.85 45.112 e 33.575 1 2) 33.575 n 1.2599 n 1.3338 n 6.3889 10.189 10.787	kN kNm kNm kNm kNm kNm kNm mm mm mm kN kN kN kN

 \bigcirc

No408

*

Project: 59 Solent Road London NW6 Client: Title: Alterations		Page: Made by: Date: Ref No:	Mar/16
		Office:	5831
Location: FIRST FLOOR LEVEL BEAM	FB11		
	Simply supported st	eel beam	
 7/7	Calculations are in with BS5950-1:2000.		e
Beam span	L=1.0 m		
152 x 152 x 23 UC. Young's Modulus	E=205 kN/mm ²		
Dead load factor Imposed load factor	gamd=1.4 gami=1.6		
Distance from left support Dead load (unfactored) Imposed load (unfactored) Dist. from left support to start Distance from left support to end Dead load (unfactored) Imposed load (unfactored) Maximum span bending moment Design shear force Bending strength		phiLT^2-pe	ey)^0.5))
UNIVERSAL COLUMN DESIGN SUMMARY Unfactored end shears	152 x 152 x 23 UC Maximum shear ford Shear capacity Max. applied moment Moment capacity Buckling resistand Moment factor (mLT Resistance (Mb/mLT Unfactored DL defl Unfactored LL defl Limiting deflection DL shear at LHE LL shear at LHE LL shear at RHE	21.602 145.85 4.1584 45.112 44.94 7) 1 7) 44.94 10 0.0404 10 0.0536 2.17 4 3.375 6.43 1	2 kN 5 kN 1 kNm 2 kNm kNm 409 mm 589 mm 589 mm 3 mm cN kN

 \bigcirc

Project: 59 Solent Road London NW6 Client: Title: Alterations		Page: Made by: Date: Ref No:	Mar/16
		Office:	5831
Location: FIRST FLOOR LEVEL BEAM	FB12		
	Simply supported st	eel beam	
 7/7	Calculations are in with BS5950-1:2000.		e
L			
Beam span	L=2.25 m		
203 x 203 x 46 UC. Young's Modulus	E=205 kN/mm ²		
Dead load factor Imposed load factor	gamd=1.4 gami=1.6		
Distance from left support Dead load (unfactored) Imposed load (unfactored) Dist. from left support to start Distance from left support to en Dead load (unfactored) Imposed load (unfactored) Maximum span bending moment Design shear force Bending strength		phiLT^2-pe	ey)^0.5)
UNIVERSAL COLUMN DESIGN SUMMARY Unfactored end shears	203 x 203 x 46 UC Maximum shear ford Shear capacity Max. applied momen Moment capacity Buckling resistand Moment factor (mLT Resistance (Mb/mLT Unfactored DL defl Unfactored DL defl Limiting deflectio DL shear at LHE LL shear at LHE LL shear at RHE	<pre>126.48 241.4 95.755 136.68 117.29 1 117.29 1 117.29 1 117.29 1 0.6892 0 0.6892 0 6.25 m 68.678 18.96 54.658</pre>	8 kN kN 5 kNm 8 kNm 9 kNm 9 kNm mm 27 mm 27 mm 127 mm 13 kN 8 kN 8 kN

Project: 59 Solent Road London NW6 Client: Title: Alterations		Made by:	Mar/16
		Office:	5831
Location: FIRST FLOOR LEVEL	BEAM FB13		
	Simply supported	d steel beam	
▲ 7//7	Calculations are with BS5950-1:20		ce
Beam span	L=3.3 m		
203 x 203 x 46 UC. Young's Modulus	E=205 kN/mm ²		
Dead load factor Imposed load factor	gamd=1.4 gami=1.6		
Distance from left support Dead load (unfactored) Imposed load (unfactored) Distance from left support Dead load (unfactored) Imposed load (unfactored) Dist. from left support to Distance from left support Dead load (unfactored) Imposed load (unfactored) Maximum span bending moment Design shear force Bending strength	$\begin{array}{c} Gkc(1)=10.2 \ kN\\ Qkc(1)=10.8 \ kN\\ Lc(2)=3.0 \ m\\ Gkc(2)=18.2 \ kN\\ Qkc(2)=5.4 \ kN\\ start \ Lau(1)=0 \ m\\ to \ end \ Lbu(1)=3.3 \ m\\ Gku(1)=8.12 \ kN\\ Qku(1)=12.6 \ kN\\ \end{array}$	/m /m T+((phiLT^2-pe	ey)^0.5))
UNIVERSAL COLUMN DESIGN SUMMARY Unfact	1	force 84.952 241.4 oment 51.192 y 136.65 tance 98.972 (mLT) 1 /mLT) 98.97 defln 1.8782 defln 2.349 ction 9.166 E 24.63 E 31.42	2 kN kN 1 kNm 8 kNm 5 kNm 5 kNm 2 mm 4 mm 7 mm 4 kN 6 kN
end sh	nears DL shear at RH		

O

Client:	59 Solent Road London NW6 Alterations		Page: Made by: Date: Ref No:	Mar/16
<u>e. i i i in an</u>			Office:	5831
Location	: GROUND FLOOR LEVEL COLU	MNS GC1 & GC2		
	Mx	I column in	'simple' constru	iction
		BS5950-1:200	are in accordan 0 and 'Steelwork 950' published b	: Design
	$ \begin{array}{c cccc} $	are assumed ² Based on Cla	pported by the c to be fully loac use 4.7.7 it is consider the ef pading.	led. not
Factored Factored	axial compressive load BM about major axis x-x BM about minor axis y-y etween restraints			
178 x 10 Young's	2 x 19 UB. Modulus	E=205 kN/mm ²		
	e length factor ive strength	ef=2 pc=pe*py/(ph =25.351 N/3	i+(phi^2-pe*py)′ mm²	°0.5)
Bending	strength		iLT+((phiLT^2-pe	ey)^0.5))
SECTION		178 x 102 x Design stren	19 UKB Grade S 2 gth 275 N/r	
DESIGN SUMMARY		Compressive Buckling str Buckling che Section is s	strength 25.351 ength 194.84 ck 0.08783 atisfactory for and overall buck	N/mm ² N/mm ² 11 < 1 bending,

Ô

Client:	: 59 Solent Road London NW6 Alterations	Page: FFC/ Made by: SM Date: Mar/ MMP DESIGN Ref No: 4580	16
Location	n: GROUND FLOOR LEVEL COLU	Office: 5831 MNS GC3-GC6 & GC9	
V V	Mx	I column in 'simple' construction	
		Calculations are in accordance wi BS5950-1:2000 and 'Steelwork Desi Guide to BS5950' published by SCI	gn
	$ \begin{array}{c c} $	All beams supported by the column are assumed to be fully loaded. Based on Clause 4.7.7 it is not necessary to consider the effect of pattern loading.	
Factored Factored	d axial compressive load d BM about major axis x-x d BM about minor axis y-y between restraints		
	03 x 46 UC. Modulus	E=205 kN/mm ²	
	ve length factor sive strength	ef=2 pc=pe*py/(phi+(phi^2-pe*py)^0.5) =91.817 N/mm ²	
SECTION DESIGN SUMMARY		203 x 203 x 46 UKC Grade S 275 Design strength 275 N/mm ² Compressive strength 91.817 N/mm ² Buckling strength 275 N/mm ² Buckling check 0.38415 < 1 Section is satisfactory for bendi axial load, and overall buckling.	.ng

(

	Client:	59 Solent Road London NW6 Alterations		Page: Made by: Date: Ref No:	SM Mar/16
	Location	: GROUND FLOOR LEVEL COLU	MNS GC7 & GC8	Office:	5831
		F kN	SHS column in 's	simple' const	ruction
	V		Calculations are BS5950 and 'SHS BS5950' publishe British Steel Ge	Design Examp ed by	les to
			The column is pa -uction and in a it is not necess effect of patter supported by the to be fully load	accordance wi sary to consi rn loading. A e column are	th 4.7.7 der the 11 beams
			It is assumed the column remains		
	Factored Factored	axial compressive load BM about major axis x-x BM about minor axis y-y etween restraints	Mx=11.2 kNm		
Maria		e length factor ive strength	ef=2 pc=pe*py/(phi+() =69.19 N/mm ²	phi^2-pe*py)^	°0.5)
		Y	In accordance with 150 x 100 x 8 RH Section is satis load, buckling re overall buckling Axial compressive Compressive resi Moment about maj Buckling resistan Overall buckling	S Grade S 27 factory for a esistance and check. e load 84.7 stance 254. or axis 11.2 nce 49.5	axial 4 62 kN 62 kN 2 kNm 5 kNm

(

	Project: 59 Solent Road London NW6 Client: Title: Alterations	Page: FFC/17 Made by: SM Date: Mar/16 MMP DESIGN Ref No: 4580
		Office: 5831
	Location: GROUND FLOOR FRAME 2 -	BEAM SECTION
		I section beam
	z z D	Calculations in accordance with BS5950-1:2000.
		All loads and moments are factored.
\bigcirc	У В	
	Design moment about z-z axis Design shear force Design axial load (+ve comp) Length of member	Mz=99.7 kNm Fv=119.0 kN F=16.4 kN L=4.65 m
	254 x 254 x 89 UC. Young's Modulus	E=205 kN/mm ²
	Buckling about major axis Buckling about minor axis Compressive strength	Lz=4650 mm Ly=4650 mm pcy=pe*py/(phi+(phi^2-pe*py)^0.5) =174.48 N/mm ²
	Compressive strength	pcz=pe*py/(phi+(phi^2-pe*py)^0.5) =227.95 N/mm ²
\mathbf{C}	Length between restraints Buckling parameter	LT=4.65 m u=(4*Sz^2*(1-Iy/Iz)/(A^2*((D-T))/10)^2))^0.25 =0.84969
	Bending strength	<pre>pb=(pey)/(phiLT+((phiLT^2-pey)^0.5)) =194.34 N/mm²</pre>
	UNIVERSAL COLUMN SECTION SUMMARY	254 x 254 x 89 UKC Grade S 275 Section is satisfactory for axial, bending, shear, and local capacity, and overall buckling checks. Factored shear force 119 kN
	DESIGN SUMMARY	Shear capacity 426.29 kN Factored moment 99.7 kNm Moment capacity 323.3 kNm Compressive axial load 16.4 kN Compressive resistance 1971.6 kN Local capacity check $0.31386 \le 1$ Overall buckling check $0.35074 \le 1$ $0.42883 \le 1$ $N0410$

(Project: 59 Solent Road London NW6 Client: Fitle: Alterations		Page: Made by: Date: Ref No:	Mar/16
~			Office:	5831
	Location: GROUND FLOOR FRAME 2 -	- COLUMN SECTION		
	у Т	I section beam		
	z z D	Calculations in with BS5950-1:2		
	TICII	All loads and m factored.	noments are	
	У В			
	Design moment about z-z axis Design shear force Design axial load (+ve comp) Length of member	Mz=60.9 kNm Fv=23.4 kN F=122.0 kN L=3.1 m		
	203 x 203 x 71 UC. Young's Modulus	E=205 kN/mm ²		
	Buckling about major axis Buckling about minor axis Compressive strength	Lz=3100 mm Ly=3100 mm pcy=pe*py/(phi+ =197.92 N/mm		^0.5)
	Compressive strength	pcz=pe*py/(phi+ =240.12 N/mn	+(phi^2-pe*py)	^0.5)
	Length between restraints Buckling parameter	LT=3.1 m u=(4*Sz^2*(1-I) /10)^2))^0.25		D-T)
	Bending strength	pb=(pey)/(phiL1 =219.69 N/mm ²	F+((phiLT^2-pe	ey)^0.5)
	UNIVERSAL COLUMN SECTION SUMMARY	203 x 203 x 71 t Section is satis bending, shear, and overall buck Factored shear f	sfactory for a and local car kling checks.	axial, bacity,
	DESIGN SUMMARY	Shear capacity Factored moment Moment capacity Compressive axia Compressive resi Local capacity o Overall buckling	343.12 60.9 } 211.74 al load 122 kM istance 1789.2 check 0.3385 g check 0.3936	$\begin{array}{l} 2 \text{kN} \\ \text{cNm} \\ 1 \text{kNm} \\ N \\ 2 \text{kN} \\ 55 \leq 1 \end{array}$

	Client:	59 Solent Road London NW6 Alterations		Page: Made by: Date: Ref No:	
				Office:	5831
	Location	: GROUND FLOOR FRAME 3	- BEAM SECTION		
		у Т	I section beam	1	
			Calculations i with BS5950-1:		
	z – T I	> t < D	All loads and factored.	moments are	
C		BB			
	Design s Design a	oment about z-z axis hear force xial load (+ve comp) f member	Mz=41.2 kNm Fv=60.5 kN F=5.6 kN L=3.3 m		
	203 x 20 Young's	3 x 86 UC. Modulus	E=205 kN/mm ²		
	Buckling	about major axis about minor axis ive strength	Lz=3300 mm Ly=3300 mm pcy=pe*py/(phi =191.62 N/m	.+(phi^2-pe*py)	^0.5)
	Compress	ive strength		+(phi^2-pe*py)	^0.5)
Ô		etween restraints parameter	LT=3.3 m	[y/Iz)/(A^2*(([)-T)

Bending strength

UNIVERSAL COLUMN SECTION SUMMARY

DESIGN SUMMARY

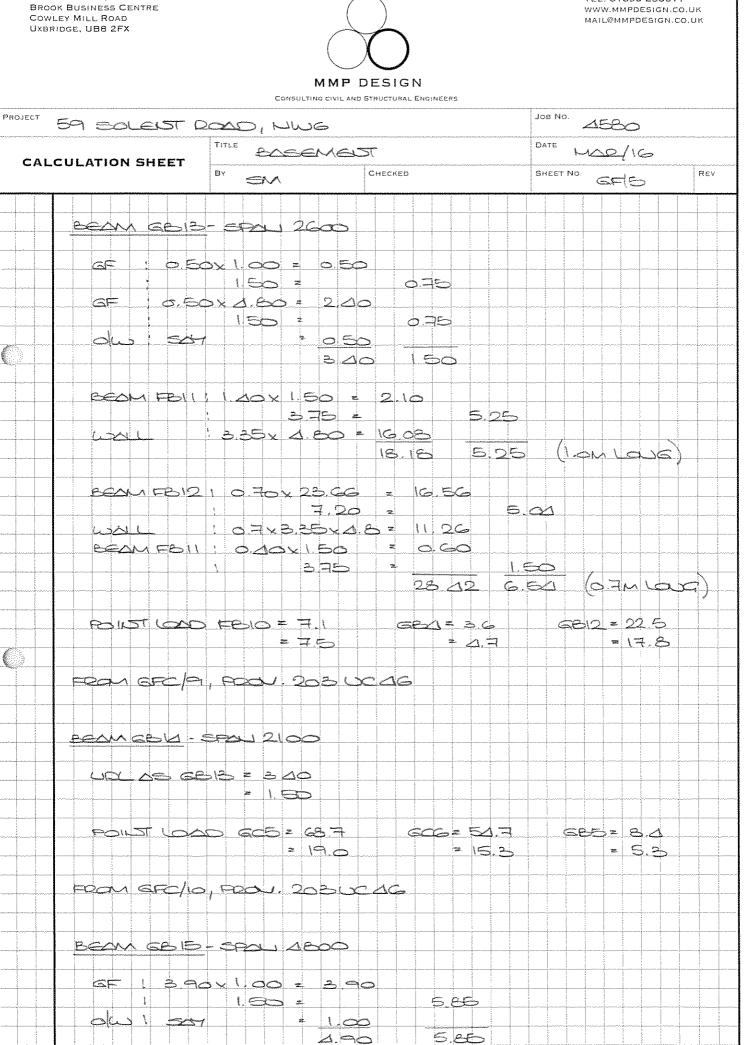
/10)^2))^0.25 =U.040t pb=(pey) / (phiLT+((phiLT^2-pey)^0.5)) =223.74 N/mm² 203 x 203 x 86 UKC Grade S 275 Section is satisfactory for axial, bending, shear, and local capacity, and overall buckling checks. Factored shear force 60.5 kN Shear capacity 448.69 kN Factored moment 41.2 kNm Moment capacity 258.9 kNm Compressive axial load 5.6 kN Compressive resistance 2107.8 kN Local capacity check $0.16105 \leq 1$ Overall buckling check $0.18544 \leq 1$ $0.19113 \leq 1$

Project: 59 Solent Road London NW6 Client: Title: Alterations		Page: Made by: Date: Ref No:	Mar/16
Location: GROUND FLOOR FRAME 3 -	- OT ENN CROPTON	Office:	5831
BUCALION, GROUND FLOOR FRAME 5 -	COLOMN SECTION		
	I section beam	1	
z z D	Calculations i with BS5950-1:		
	All loads and factored.	moments are	
y			
B			
Design moment about z-z axis Design shear force Design axial load (+ve comp) Length of member	Mz=17.4 kNm Fv=5.6 kN F=91.8 kN L=3.1 m		
203 x 203 x 86 UC. Young's Modulus	E=205 kN/mm ²		
Buckling about major axis Buckling about minor axis Compressive strength	Lz=3100 mm Ly=3100 mm pcy=pe*py/(phi =198.6 N/mn)^0.5)
Compressive strength	pcz=pe*py/(phi =240.62 N/m	+(phi^2-pe*py)^0.5)
Length between restraints Buckling parameter	LT=3.1 m u=(4*Sz^2*(1-1 /10)^2))^0.2	[y/lz)/(A^2*(()	D-T)
Bending strength	pb=(pey)/(phil =227.9 N/mm ²	T+((phiLT^2-p	ey)^0.5))
UNIVERSAL COLUMN SECTION SUMMARY	203 x 203 x 86 Section is sati bending, shear, and overall buc Factored shear	UKC Grade S 2 Isfactory for , and local cap ckling checks.	axial, pacity,
DESIGN SUMMARY	Shear capacity Factored moment Moment capacity Compressive axi Compressive res Local capacity Overall bucklin	448.6 17.4 258.9 ial load 91.8 sistance 2184. check 0.098 ng check 0.119	9 kN kNm kNm kN 6 kN 698 ≤ 1

	Project: 59 Solent Road London NW6 Client: Title: Alterations	Made Da	age: FFC/21 by: SM ate: Mar/16 No: 4580
		Offi	.ce: 5831
	Location: GROUND FLOOR FRAME 3 -	COLUMN CHECK	
	z - z D $T I y$	Structural Hollow Section Calculations in accordant with BS5950-1:2000 Section 4.7 and 4.8. All loads and moments and factored.	lce
	B		
αμ <u>ο</u> ριτι ^ο	Factored bending moment axis zz Factored SF in y direction Axial load (+ve compression) Length of member	Fv=16.7 kN	
	300 x 100 x 10 RHS - Hot finished Properties (cm): A=74.9 rx=10.1 Z J=3680 C=458 Zy= Length between restraints z axis Length between restraints y axis Young's Modulus	x=508 Sx=666 Ix=7610 255 Sy=296 Iy=1280 ry=4.1 Lz=3100 mm	13
	Compressive strength	pcy=pe*py/(phi+(phi^2-pe =213.81 N/mm ²	≥*py)^0.5)
	Compressive strength	=213.01 N/Rm2 pcz=pe*py/(phi+(phi^2-pe =266.75 N/mm ²	≥*py)^0.5)
\langle	Dist. betwn torsional restraints		
	HOT FINISHED RECTANGULAR HOLLOW SECTION SECTION SUMMARY	In accordance with EN 19 300 x 100 x 10 RHS Grad Section is satisfactory load, and overall buckl Axial load Compression resistance Maximum moment z axis Moment capacity Local capacity check Overall buckling checks	de S 275 for axial ing check. 88 kN 1601.4 kN 41.2 kNm 183.15 kNm 0.26768 ≤ 1

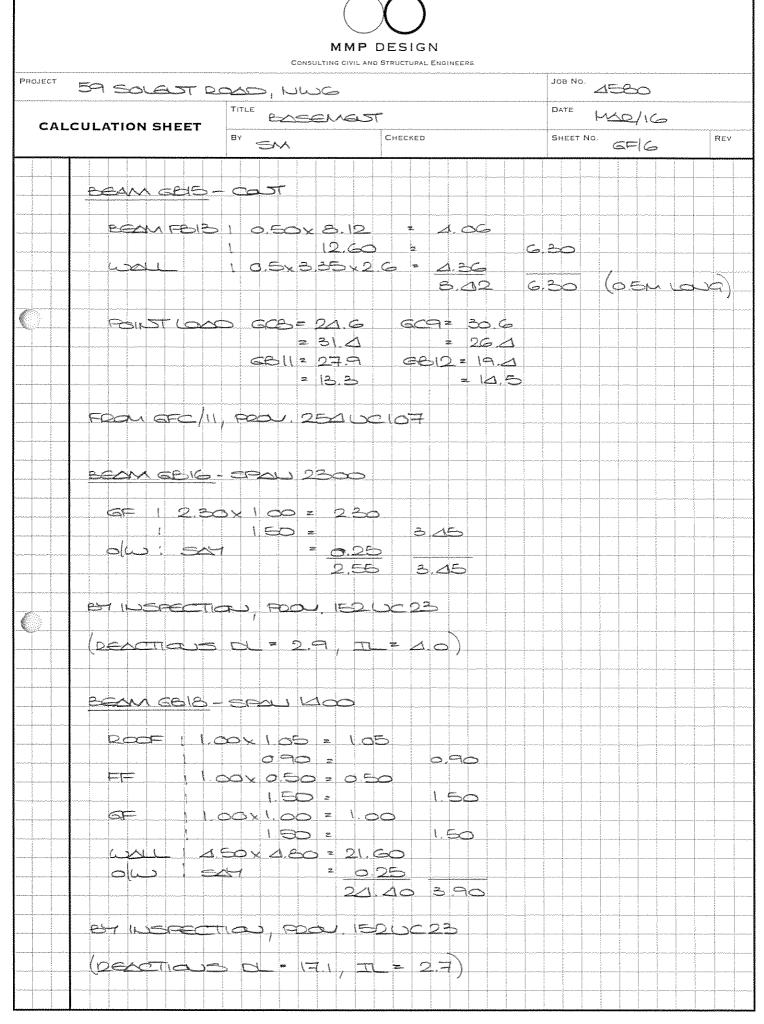
SECOND FLOOR, UNIT 5 BROOK BUSINESS CENTRE COWLEY MILL ROAD UXBRIDGE, UB8 2FX									TEL: 01895 235611 WWW.MMPDESIGN.CO.UK MAIL@MMPDESIGN.CO.UK							
MMP DESIGN Consulting civil and Structural Engineers																
PROJECT 59 SOLGUT RODO, NWG										JOB NO.						
TITLE EXCEPTED ST										DATE MARING						
CALCULATION SHEET			[₿] Y €\		CHECKED				SHEE	JOB NO. 2580 DATE MOR/16 SHEET NO. GF/1			REV			
	eans	AT SC	2022		2		<u>e</u>	_								
		381-	5924		5											
												-				
	- F	<u> </u>			21			à								
C	SF	<u>0.</u> 50			05											
		531			65	25			2							
					28	35		13								
,	57 USE	207	(Δ)	<u>eco</u> .	10	رهم	<\Q2	25	02							
					T		5									
				·····			- <u>-</u>									
	EANE				$\overline{}$											
														, m , m , m , m , m , m , m , m , m , m		
				8									1.000,000,000,000,000,000,000,000,000,00			
	<u> PONST</u>	4945				2=	2			4 1	1 3	0,=		0.3	-	
			ų			. o,		< I	3¥3,5	1 1	1 1	Sector Contraction and the sector of the sec	4			
												4. E	\sim	02	4	
	sear as		700		sk 10	e 4	- 22	>								
	<u>serve</u>	<u>B</u> z-	sex-	<u> </u>			,,,									
		020	ska.	20 z	3.34											
			1.5	×0 =			0.0	-0	, ITT, 1994, INT, 1994						· · · · · ·	
							1.6	6								
	alu I				0.6	and an	2	~ r_								
					e	50										
	- S SILST		s ce		<u>}</u>			Se	52 <u>e</u>	P F						
	Par di	= <u>c</u> /2	- FCC		عمام	240	>									

SECOND FLOOR, UNIT 5 BROOK BUSINESS CENTRE COWLEY MILL ROAD UXBRIDGE, UB8 2FX TEL: 01895 235611 WWW.MMPDESIGN.CO.UK MAIL@MMPDESIGN.CO.UK


MMP DESIGN CONSULTING CIVIL AND STRUCTURAL ENGINEERS JOB NO. PROJECT 59 SOLAST RAND, NWG TITLE DATE MOR/16 BASEMOST CALCULATION SHEET SHEET NO. ΒY CHECKED REV 2 A ≈ 12 BEAM GELS- SPAL 3900 1.60x 1.00 = 1.60 1.50 = 220 = 0.05 ≥ 0 b SX1 1 es 200 estimate that the second is the second 10 Ed. - 36, TU - 2.7 lectric BEAN 685 - 5PAL 2900 1 Lox Los -120 C..... 1.80 1.50 0,60×1.60=2.86 SF 1 i. 1.50 0.90 <u>, and</u> 0.25 $\alpha \omega$ 4.33 2.70 er merection, poor 152 uc 22 ____ - 5.3 Deatha REAN SEG-SPAL 2300 12,20×1.00 R., 2.20 65 1.90 z. 122 <u>es</u> \$ 0 25 380 2 45 BY WSRECTION, POON 152423 DEACTIONED U = 2,8, TL = 3,8

SECOND FLOOR, UNIT 5 TEL: 01895 235611 BROOK BUSINESS CENTRE WWW.MMPDESIGN.CO.UK COWLEY MILL ROAD MAIL@MMPDESIGN.CO.UK UXBRIDGE, UB8 2FX MMP DESIGN CONSULTING CIVIL AND STRUCTURAL ENGINEERS JOB NO. PROJECT 4580 59 SOLEIST ROAD, NWG TITLE BASSEMEIST DATE MARING CALCULATION SHEET SHEET NO. ΒY CHECKED REV ŝ SE/2 REAN GREY - 5PAL 2200 2,20, 4,80 = 16.56 1 Cartin 1.50 **3**2... 330 1 0.50 olu Ì 5/51 11,06 3,30 FROM GEC /3, POOL, 15210023 BEAN 688 - SPON AGED 0.50×120 = 2.00 65 ţ 1.60 -075 11021.00 = 1.10 \sim 1.655 = 1.65 6.50 22 04 SX1 1 00 2.20 1110x72 = 8.14 SE 11 3.3013.5 = MES POILST LOAD FRO = 5 B acte 1.9 602 = 1.9 = 34 = 1.0 1.0 680220 GE7=122 = 31 Cest. 1.2 • 15 36 1. 203 chade FRAM GEC/2, PRA BEAM GEA- EESALI 1650 2.20 GF. 1.50 = 0.75 0.50 the second 0.75 150 = -035 a | L \mathbf{h} 51 365 155 POINT LOAD GC3 = 55.2 GC1 = 67.8GR6-28 667=12.2 = 13.0 = 9,1 = 3.8 <u>**---</u> 36 1 GFC 5, FOOL 203UC AG FOON

SECOND FLOOR, UNIT 5 TEL: 01895 235611 BROOK BUSINESS CENTRE WWW.MMPDESIGN.CO.UK COWLEY MILL ROAD MAIL@MMPDESIGN.CO.UK UXBRIDGE, UB8 2FX MMP DESIGN CONSULTING CIVIL AND STRUCTURAL ENGINEERS JOB NO. PROJECT 4580 59 SOLAST ROKO, LUNG TITLE DATE Mae/16 EASEMENT CALCULATION SHEET SHEET NO. CEU ΒY CHECKED REV SM. BEAM EBID - SPALINGED $-\infty \sqrt{-50} = \sqrt{-50}$ 65 1 1.50 = 1.50 - 0.50 $\Box \cup$ ~ enning 150 150 GF 1 150× 100 + 150 225 193 -GE 1 0 E0 x 3 ED = 1 90 Ge6 = 28 665=84 FOUST LOAD GRA = 3,G = 47 = 3.8 FRAMERIC 6, PDDJ. 203 UC 46 BEAM GROUT STOOL 2.40,050 = 120 [-----1.90 = 360 6.604 4.80 = 2.88 0.90 LEGY LOO lleo 40.5 (593)... S 190 3 294 علاطات 2.60 29E. 5.85× 8.71 405k 6244 du <u>d.</u> SO and the second s 15. ba 720 FROM GEC 7, FOOU. 203 UCAG BEAN 6812 - 3904 2900 6.90× 4.80 = 1.32 BONST LOOG GE 1,50 1.35 SCH = 173 222 1.50x 1.50 - 18,3 GE $1.\infty$ 150 = 225 $\leq \Delta 1$ ا_د_ 0.50 6.32 360 FEDN GECIB, FDD. 203 UCAG


SECOND FLOOR, UNIT 5

TEL: 01895 235611

SECOND FLOOR, UNIT 5 BROOK BUSINESS CENTRE COWLEY MILL ROAD UXBRIDGE, UB8 2FX

TEL: 01895 235611 WWW.MMPDESIGN.CO.UK MAIL@MMPDESIGN.CO.UK

