

28 Charlotte Street, London

Impact Assessment for Proposed Underpinning Works

For: Anderson Consulting Engineers

Job No: 1013857

Doc Ref: 1013857.RPT.GL.001

Latest Revision: -

Date: 19/08/2016

Project Name:	28 Charlotte Street, London
Client:	Anderson Consulting Engineers
Report Title:	Impact Assessment for Proposed Underpinning Works
Job Number:	1013857

Document Revision History

Revision Ref	Issue Date	Purpose of issue / description of revision

Document Validation (latest issue)

22/08/2016

22/08/2016

Recoverable Signature

MU Verified by

Principal author

Signed by: Schoor, Jesse

Signed by: Spears, James

Checked by

Signed by: k.mcgee@cundall.com

© This report is the copyright of Cundall Johnston & Partners LLP. The report is for the sole and confidential use of Anderson Consulting Engineers. It must not be reproduced in whole or in part without the express written authorisation of Cundall Johnston & Partners LLP. Parties other than those specifically named in this disclaimer must not rely upon this report. Any third party relying on this report does so at their own risk. Cundall accepts no duty or responsibility (including in negligence) to any such third party.

Contents

1.	Introduction	1
1.1	Context	1
1.2	Objectives and Scope of Assessment	1
1.3	References	1
2.	The Site	2
2.1	Site Location	2
2.2	Site Description	2
2.3	Ground Conditions	3
3.	Assumed Construction Sequence	5
4.	Method of Analysis	7
4.1	Ground Movement	7
4.2	Impacts to Existing Structures	B
5.	Analysis Results	9
6.	Conclusions and Recommendations10	D
6.1	Conclusions10	D
6.2	Recommendations	0

Figures

Figure 1 – Site Location Plan	2
Figure 2 – Rear View of Site Looking West	. 3
Figure 3 – Extract of BGS Sheet 256	. 4
Figure 4 – Cross Section through Proposed Basement	5
Figure 5 – Indicative Underpinning Detail	6

<u>Tables</u>

Table 1 – Ground Investigation Results	4
Table 2 – Burland Damage Classification	8
Table 3 – Analysis Results	9
Table 4 – Trigger Levels and Contingency Actions for Foundation Movement Monitoring	10

Appendices

Appendix A - Calculations

1. Introduction

1.1 Context

Cundall Johnston & Partners LLP (Cundall) has been appointed by Anderson Consulting Engineers (ACE) to provide geotechnical engineering advice relating to the formation of a single level of basement at 28 Charlotte Street, London. The development site forms part of a terraced apartment block and impacts to adjoining structures will need to be evaluated in accordance with Camden Planning Guidance on Basements and Lightwells (CPG4).

1.2 Objectives and Scope of Assessment

The report summarises potential ground movements resulting from the formation of a single level of basement at 28 Charlotte Street and evaluates the impact of these movements on adjacent structures at 30 and 32 Charlotte Street.

It should be noted that the Local Authority may require submission of a 'basement impact assessment' in connection with the proposed development, and that this report, in itself, will be insufficient for satisfying this requirement.

This report does not consider the stability of existing foundations during the excavation and underpinning works.

1.3 References

This report has been prepared (in part) using information from the following sources:

- ACE (2016) Construction Method Statement for 28 Charlotte Street, Fitzrovia, London, WIT 2NF.
- Burland (1996) Prediction of ground movements and assessment of risk of building damage due to bored tunnelling, Geotechnical Aspects of Underground Construction in Soft Ground, ISBN 9054108568.
- Chelmer (2016) Factual Report on Ground Investigation at 28 Charlotte Street, London, Report Reference FACT/6262-REV1.
- ITA/AITES (2007) Settlement Induced by Tunnelling in Soft Ground, Tunnelling and Underground Space Technology, Volume 22, Pages 119-149.

2. The Site

2.1 Site Location

The site is located at the rear of 28 Charlotte Street, London. A site location plan is presented as Figure 1.

Figure 1 – Site Location Plan

2.2 Site Description

The site comprises a two-storey apartment at the rear of a terraced apartment block. The building measures approximately 7m x 10m in plan and is approximately 6.8m in height. The building is adjoined to two similar structures at 30 and 32 Charlotte Street.

A rear view of the site and adjoining apartments is presented as Figure 2.

Figure 2 – Rear View of Site Looking West

2.3 Ground Conditions

Sheet 256 of the British Geological Survey (England & Wales, Solid & Drift Edition) indicates the site to be underlain by a downward sequence comprising:

- Lynch Hill Gravel.
- London Clay (LC).
- Lambeth Group (LMB).
- Thanet Sand (T).
- White Chalk Subgroup (WhCk)

An extract of the BGS map is presented as Figure 3.

Figure 3 – Extract of BGS Sheet 256

A ground investigation was undertaken in connection with the proposed development in January 2016. These works are reported in Chelmer (2016) and confirm the published geology to be accurate. Further details of the precise soil stratigraphy encountered during the works are presented as Table 1.

Chelmer (2016) suggests groundwater to be located at 5.3m depth. This depth coincides with the top of the locally occurring Lynch Hill Gravel and is below the anticipated depth of basement excavation

Stratum	Description	Depth to Top of Stratum (m)	Stratum Thickness (m)
Made Ground	Variable silty gravelly SAND to sandy gravelly SILT containing frequent to occasional brick, slate, and concrete fragments	0.0	5.3
Lynch Hill Gravel	Silty gravelly SAND	5.3	2.4
London Clay	Very stiff, silty CLAY	7.7	Not proven

3. Assumed Construction Sequence

Details of the proposed basement construction sequence are provided in ACE (2016) and summarised as follows:

Stage 1: Break out existing ground floor slab and install load bearing piles from working platform level of +9.93m Site Datum (SD). Stage 2: Excavate down to +7.3m SD at centre of basement area. Earthen berms are to be left in place at basement perimeter. Stage 3: Cast ground floor slab at centre of basement area. Stage 4: Partially remove earthen berms from basement perimeter and form underpinning to existing footings using a one-metre bay width. Propping to be applied to excavated face, as required. Stage 5: Apply dry packing to underpinnings and extend ground floor slab to basement perimeter. Repeat Stages 4 through 5 for each bay width. It is assumed that bays will be underpinned Stage 6: in a "1, 3, 5, 2, 4," sequence.

Indicative details of the basement extent and underpinning are presented as Figures 4 and 5, respectively.

Figure 4 – Cross Section through Proposed Basement

Figure 5 – Indicative Underpinning Detail

4. Method of Analysis

4.1 Ground Movement

In the absence of published case histories, it is assumed that the underpinning works will be similar to tunnelling, in that some soil volume loss will be experienced within the zone of excavation, and that this volume loss will result in horizontal and vertical movement of the overlying soils. It is assumed that the soil volume loss will be limited to 1 %, which is in keeping with the maximum allowable soil volume loss typically specified for tunnelling in granular soil. Refer to ITA/AITES (2007) for further details.

4.2 Impacts to Existing Structures

Impacts of ground movement on existing structures have been evaluated in accordance with Burland (1996). This methodology likens masonry structures to an equivalent beam and classifies damage according to limiting tensile strain (see Table 2).

Damage Category	Normal Degree of Severity	Limiting Tensile Strain (%)	Typical Damage Manifestation
0	Negligible	0.05	Hairline cracks less than about 0.1mm
1	Very slight	0.075	Fine cracks which are easily treated during normal decoration works. Crack widths are typically between 0.1 and 1.0mm
2	Slight	0.15	Cracks easily filled, with redecoration likely to be required. Exterior cracking may be visible, with doors and windows sticking slightly. Crack widths are typically between 1 and 5mm
3	Moderate	0.3	Cracks may require cutting out and replacement. Doors and windows likely to stick and site services likely to be interrupted. Crack widths typically between 5 and 15mm
4	Severe to very severe	>0.3	Extensive repairs required, with crack widths in excess of 15mm

5. Analysis Results

The analysis results are presented as Appendix A and summarised as Table 3.

Parameter	Result
Vertical ground movement	6mm
Horizontal ground movement	2mm
Limiting tensile strain in 'sagging' zone	0.057 %
Limiting tensile strain in 'hogging' zone	0.051 %

Table 3 – Analysis Results

Based upon the above, the underpinning works are anticipated to result in Category 1 damage to the adjoining buildings. This damage classification is described as being 'very slight' in nature and typically results in crack widths of up to 1.0mm.

6. Conclusions and Recommendations

6.1 Conclusions

The proposed underpinning works are likely to result in 6mm of vertical movement and 2mm of horizontal movement at existing foundation level. This movement is likely to result in Category 1 damage to adjacent structures. This damage classification is described as being 'very slight' in nature and typically results in crack widths of less than 1.0mm. This category of damage is expected to be easily repaired during the course of normal re-decoration works.

6.2 Recommendations

It is recommended that adjacent buildings be subject to visual inspection surveys immediately prior to and upon completion of works and that vertical movement of existing foundations be monitored on a routine basis. Suggested trigger levels and contingency actions for the vertical movement monitoring are presented as Table 4.

Trigger Level	Vertical Movement Corresponding to Trigger Level	Contingency Actions	
Amber	6mm	 Review method of working and assess possibility of further movement occurring Increase frequency of monitoring Undertake visual condition survey of affected area 	
Red	10mm	Stop work in affected areaUndertake visual condition survey of affected area	

Table 4 – Trigger Levels and Contingency Actions for Foundation Movement Monitoring

Notwithstanding the analysis results described herein, it is suggested that the following maximum damage criteria be incorporated into the underpinning works contract:

- Settlement of any adjacent foundation shall be limited to 10mm; and
- Damage to any adjacent structure shall be limited to Burland Category 1. This damage classification is described as 'very slight' and is typically associated with crack widths of between 0.1 and 1.0mm.

APPENDIX A

CALCULATIONS

CUNDALL	1013857	CALCULATION NUMBER DE	RAWING REFERENCE
28 CHARIOTTE STREFT		DATE CHECKED BY.	VERIFIED BY
CALCULATION	1		
MOVEMENT	1D 2		
CALCULATION DETAIL:			
ESTIMATE VERTICAL FOUNDATIN	on MOVEN	IENT DUE TO	
UNDERPINNING WORKS			
x + 9,93m SD			
	- EY Fanna	2.02.1	
	LA JOUNDA		
x + 8.4	SD (ASSUMET	27	
400	omy cassume	D)	
PROPOSED BASEMENT	-PROPOSED	MDERPIN	
F 5.			
+ 400mm + 7.3 20			
t promote to describe	UE THAT IM	INER PININING	(1)181
RESUL	T 1N 1% 11	NUME LOSS	00,30
X UNDER	RPINHING W	11774/= 400	
KE AX X UNDER	ANNING HE	76HT = 1100mm	1
: h=2.	75 W		
$(\omega)($	2(75) = (0, 9)	9)(1100)(400)	
2,75	$\omega^2 = 43$	5,600	
	$\omega = 398 \lambda$	112	
	1100-17.20V	2971	1,10

		UMBER / FILE	CALCULATION NUMBER		DRAWING REFERENCE	
CUNDALL		13857	-		-	
JOE TITLE 10 MILANIATA STREET	REV	CALCULATION BY	DATE	CHECKED BY		VERIFIED BY
AS UTTAKLOTTE STREET	0					
CALCULATION	1					
IMPACT ASSESSMENT FOR GROUND MOUEMENT	2					

DRAWING REFERENCE CALCULATION NUMBER CUNDALL 1013857 REV CALCULATION 6 CHECKED B 28 CHARLOITE STREET 0 1 IMPACT ASSESSMENT FOR GRAND 2 MOVEMENT CALCULATION DETAIL WHERE : H = BURDING HEIGHT = 6.8m IN SAGGING ZONE = 5.9m IN HOGEING LONE 1 = BUILDING LENGAH = 10.5m FOR BOTH SAGGING + 40661206 E= 2.6 (CONS?ANT) han I = SECOND MOMENT OF INERTIA · Mª IN SAGGING ZONE = H3 IN MOGGING ZONE E = FURTHEST DISTAINCE FROM HEATHER ANIS TO EDGE OF EQUINALEAN BEAM = H IN STAGING TONE H IN HOSGING LONE

CALCULATION	SHEF
CALGOLAHON	OT IL L

			CALC	ULATION SHE
CUNDALL	JOE NUMBER FILE	CALCULATION NUM	IER DRA	WING REFERENCE
28 CHARLOTTE STREET	REV CALCULATION BY	DATE	CHECKED BY	VERIFIED BY
MPACT ASSESMENT FOR GROWD	1 2			
To Detail:	4),			
TROM BUILLANGA WROTH CITY	τ):			
LIMITING TENSILE STRAIN !!	S THE GR	EATES	T of	;
0 Ebt = Eh + Eb ; 1	4000			
OEII - DRESI +	$(01051)^2$	+ 5 12	ang a start st	
e dt - cius ch N	10.03 46)	-0		
ASSUME THAT HORIZONITAL	STRAIN(E,) =	Ax	
		~	7.0m	
		=	2mm	
			7,000	MM
		-	0,000	29
			0.02	9 %
So SAGGING ZODIE		-	0,00	1 10
T 113 - 11013 - 212 3				
$f = \frac{H}{12} = \frac{(6.8)}{12} = 26.2 \text{ M}$				
E= H = 6.8 = 3.7m				
2 2				
l = 10.5m				
A = ZMM				
· 0.002 - § 10.5 + 3(2	6.2)(2,6)	_ ?	EL	
10.5 (12(3.4) 2(3	.4)(10.5)(6.8)		0	
(2002)	2			
12,5 = 20,257+0,421	5.86			
Cb= 0.00028				
= 0,028%				

CUNDALL JOHNSTON PARTNERS LLP CONSULTING ENGINEERS

LUNJALL	K	173857	CALCULATION NU	MBER: DRA	AWINIG REFEREN
JOETITLE:	REV	CALCULATION BY	DATE	CHECKED BY	VERIFIED
CACULATION:	1				
IMPACT ASSESSMENT FOR GROW	D 2				
MOVEMENT					
CALCULATION DETAIL:					
0,002 SILLOVIDES2		>			
10.5 = 7 7 4 (0.0 (10.5)		5Ed			
/8(26,2)(2,6)) -				
0.002 = 5 1 0 1 1 2 0 1					
10.5 CI + 0,61 SEd					
SA- 0 222/2					
Ed					
= 0, 012 %					
C bt Ch + Cb					
= 0.029 + 0.028		_			
= 0,057%					
Edt= 0.35Ey + N (0.65Ey)	+ 8	2 22			
2 0.35 (0.029) + (Calasca mos	72	0.002	-,		
N(0.65)(0.029)	<u>j</u> +	0,012			
Edt = 0.032%					
A LINETING TO PLUS STRAIN	- 7	2521	7140	ADDES	0000
00 LINII ILAG IELOSILE STITU	- 0	1057 10		Control S	rors
The state of a second state of the second stat					

CUNDALL	10	013857			
6 TITLE:	REV	CALCULATION BY	DATE	CHECKED BY	VERIFIED BY:
28 CHARLOTTE STREET	0				
CULATION:	1				
MPART A SECOMENT FOR GRAN	2				

CALCULATION DETAIL: FOR HOGGING FONE H= 5.9m l= 10.5 m A = 2.0 Mm $\frac{20}{10.5} = \frac{5}{12(5.9)} + \frac{3(68.5)(2.6)}{2(5.9)(10.5)(5.9)} = \frac{5}{5}$ 0.002 = { 0.148 + 0.731} E E = 0.000 ZZ = 0.022 % $\frac{0.002}{10.5} = \frac{1}{2} \left[\frac{1}{4} \frac{(5.9)(10.5)^2}{10(63.5)(2.6)} \right] \in \mathbb{Z}$ 0.002 - 31+0,203 Ed 10.5 Ed= 0,00016 2 0.016 %

	7
CALCULATION SHEET	+

JOE TITLE			1	
28 (HARLOTTE STREET	REV CALCULA	JION BY DATE	CHECKED BY	VERIFIE
IMPACI ASSESSMENT FOR GROUP MODEMENT	1 2			
CALCULATION DETAIL:			1 1 1 1 1	
E = Eh + Eb				
= 0.029 + 0,022				
= 0,05/ %				
Edt = 0.35 EL + N(0.65EW) + 8	- d			
= 0.35(0.029) + 1 [0.65(0.0	29172+0	0/62		
Edt = 0,035%				
20NE IS O.0511/1 THI CLASS I DAMAGE	AIN FO S COFE	ESPONDS	1NG 70	