

Maison Henry Bertrand (England) Ltd

52 Holmes Road, Camden

Revised Energy Statement

712445R(02)

12TH AUGUST 2016

RSK GENERAL NOTES

Project No.: 712445R(02)

Title: 52 Holmes Road, Camden – Revised Energy Statement

Client: Maison Henry Bertrand (England) Ltd

Date: 12th August 2016

Author	James Blake	Reviewer	David Lloyd
Date:	12 th August 2016	Date:	12 th August 2016

RSK Environment Ltd (RSK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and RSK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by RSK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.

No part of this report may be copied or duplicated without the express permission of RSK and the party for whom it was prepared.

This work has been undertaken in accordance with the quality management system of RSK Environment Ltd

CONTENTS

1	ΙΝΤΓ	RODUCTION	1
2	REC	QUEST FOR FURTHER INFORMATION	2
	2.1	Introduction	2
	2.2	Further Information Requests & Responses	2
3	PLA	NNING POLICY CONTEXT	5
	3.1	London Borough of Camden	5
4	APF	PROACH TO MODELLING	6
5	ENE	ERGY & CO₂ STRATEGY	7
	5.1	Energy Efficiency ("Be Lean")	7
	5.2	Supply Energy Efficiently ("Be Clean")	7
	5.3	Renewable Energy ("Be Green")	8
	5.4	Modelling Results	8
	5.5	Estimated Area of Solar PV Array	11
	5.6	Further Work	11

APPENDICES

Appendix 1	SAP 2012 Reports (Top floor unit & 3nd floor unit B)
Appendix 2	SBEM Report (Commercial Space)

1 INTRODUCTION

RSK Environment Ltd ("RSK") has been appointed by GML Architects, on behalf of Maison Henry Bertrand (England) Ltd (the applicant), to prepare this Revised Energy Statement in support of the planning application to the London Borough of Camden for the proposed development of 9 new residential apartments and 377 sqm light industrial space at 52 Holmes Road.

Chapter 2 of this Statement sets out requests for further information as received from the London Borough of Camden following submission of the original Energy Statement [RSK Ref. 712140R(02), 5th April 2016], together with responses to each request.

Chapter 3 sets out Camden's planning policies in relation to required energy and carbon dioxide (CO₂) standards. **Chapter 4** describes the approach taken to the energy assessment work, whilst **Chapter 5** reports the findings of energy modelling which establishes how the targeted energy / CO₂ standards can be achieved. SAP reports for selected apartments are presented at **Appendix 1**, whilst SBEM reports for the ground floor non-domestic space are presented at **Appendix 2**.

2 **REQUEST FOR FURTHER INFORMATION**

2.1 Introduction

The London Borough of Camden's Sustainability Officer has raised the following requests for further information based on the original Energy Statement [RSK Ref. 712140R(02), 5th April 2016]. Responses are provided below each item.

2.2 Further Information Requests & Responses

2.2.1 Applicant to seek further reductions with the aim of meeting/exceeding the London Plan 35% CO₂ reduction (beyond Part L 2013) target.

Further SAP and SBEM modelling has been undertaken to demonstrate how the development can achieve a 35% reduction in regulated CO_2 emissions below 2013 Building Regulations standards, as reported in **Chapter 5**. This performance is achieved through a range of energy efficiency measures including good u values, facade air tightness, 100% low energy lighting, high efficiency gas condensing boilers with 'gas saver' units (apartments) and ASHP (commercial) for space and water heating. A 9.9 kWp solar PV array is proposed to achieve the remaining CO_2 reduction necessary to achieve the 35% target in full on site.

2.2.2 Applicant to submit details of sampled apartments used in the energy assessment.

Two apartments (top floor unit and 2^{nd} floor unit 'B') have been selected for SAP modelling, as stated in **Chapter 5**, on the basis of having energy / CO₂ performance that is likely to be representative of the development as a whole given their relatives sizes and locations within the block, as determined by professional experience and judgement. The modelled units are presented in **Figures 1 & 2** below.

Figure 1. SAP Modelled 2nd Floor Unit 'B'

Figure 2. SAP Modelled Top Floor Unit

2.2.3 Applicant to confirm measures undertaken to reduce overheating

All living rooms have balconies above them, or projecting eaves / louvers on the top floor which are south facing. Only the south-facing bedrooms are unprotected, however these have smaller windows in order to minimise overheating risks. Indeed SAP reports only a 'slight' risk of overheating between June and August in the modelled apartments, with natural ventilation (dual aspect units), dark roller blinds and windows open half the time assumed.

2.2.4 Applicant to reconsider implementing a communal heating system and consider the feasibility of connecting to a future decentralized energy network

Paragraph 11.13 of the GLA's Energy Planning Guidance (March 2016) states that applicants must work on the assumption that a site heat network will be required unless it can be clearly demonstrated that it is not applicable due to local circumstances. Therefore, where multiple high density buildings are proposed and the development is located in an area that could be served by a district heating network in the future, a communal heating system must ordinarily be adopted with all apartments and non-domestic buildings/uses within the development connected into a single site wide heat network.

However the proposals do not comprise multiple high density buildings and nor is the site located within 1km of an existing or emerging local heat network according to Figure 4 of London Borough of Camden's Planning Guidance – Sustainability CGP3 (July 2015).

Additionally, paragraph 11.14 of the GLA guidance recognises that, where a development contains small commercial/retail units, i.e. total area less than 500 sqm, as is the case for the proposed development, it is not necessary to connect these to the site heat network. These units are often categorised as shell and core at the planning stage and, when built out, have very small heating demands which are usually met by air source heat pumps. Therefore, on balance, in these circumstances the small benefit in terms of carbon reduction and contribution to strategic heat network policy is not considered to outweigh the practical constraints involved in connecting to the site heat network.

Finally, specifying individual high efficiency gas condensing boilers for the 9 apartments allows the integration of 'gas saver' units which deliver CO_2 emission savings at the first stage of the energy hierarchy. We have modelled a communal gas boiler and can confirm this increases CO_2 emissions by around 4% relative to the proposed individual gas boiler plus gas saver scenario given its effect on both DER and TER values.

2.2.5 Applicant to seek to improve efficiency of ASHP further

A coefficient of performance (COP) of 3.0 has been assumed for the air source heat pump (ASHP) unit in the commercial space as part of the updated SBEM modelling reported in this Revised Energy Statement. This compares to a COP of 2.5 assumed in the original energy statement.

The Heat Pump Field Trial report published by the Energy Saving Trust (2010) concluded that heat pump performance is highly sensitive to installation and commissioning practices but that the highest measured system efficiencies for air source heat pumps was in excess of 3.0 therefore this increased COP assumption appears reasonable.

2.2.6 Applicant to submit details of the solar PV array and seek to expand further (considering combining with green roof spaces where feasible)

A 9.9 kWp solar PV array is proposed, with 8.2 kWp serving the apartments and 1.2 kWp serving the commercial use. A total PV array area of circa 74 sqm is estimated, which will be integrated in the roof of the development whilst allowing space between the arrays to avoid overshadowing, as well as space for the ASHP unit, lift and roof access for maintenance etc.

2.2.7 Should the proposals not meet the 35% CO₂ reduction target on-site, Camden may accept a financial contribution (charged at £90/tonne CO₂/yr over a 30 year period), which will be used to secure CO₂ reduction measures elsewhere in the Borough

The development can achieve the 35% CO₂ reduction target in full on-site and therefore offset payment is not required.

3 PLANNING POLICY CONTEXT

3.1 London Borough of Camden

3.1.1 Planning Guidance – Sustainability CGP3 (July 2015)

Developments providing 500 sqm or more of non-residential floorspace need to be designed in line with BREEAM. It should be noted that the proposed ground floor commercial uses fall below this threshold and therefore BREEAM certification is not required.

This guidance mirrors the requirements of London Plan Policy 5.2 'Minimising CO_2 Emissions' and the GLA's Energy Planning Guidance (March 2016) in requiring new developments to achieve a 35% reduction in CO_2 emissions below 2013 Building Regulations standards through application of the energy hierarchy, and including a 20% CO_2 reduction through on-site renewable energy. **Chapter 4** explains the approach taken to this assessment.

4 APPROACH TO MODELLING

In order to demonstrate how the development can achieve the targeted 35% reduction in CO_2 emissions below 2013 Building Regulation standards (including a 20% CO_2 reduction through on-site renewable energy), SAP 2012 modelling has been undertaken on 2 No. apartments (top floor unit and 2nd floor unit B), selected on the basis of having energy / CO_2 performance that is likely to be representative of the development as a whole given their relatives sizes and locations within the block, as determined by professional experience and judgement.

The SAP models were run initially to achieve a "baseline" performance (i.e. compliance with the 2013 Building Regulations only). Additional model iterations were then run to establish the CO_2 reduction effect of energy efficiency measures (e.g. enhanced U values, thermal bridging, air tightness, low energy lighting etc), followed by on-site renewable energy (solar PV) in accordance with the energy hierarchy.

SAP results from the modelled apartments are then extrapolated to all units on an areaweighted basis in order to estimate energy / CO_2 performance of the development as a whole. A similar approach to the above has been undertaken for the SBEM modelling of the commercial space. The results of the energy modelling work are presented in **Chapter 5**.

5 ENERGY & CO₂ STRATEGY

5.1 Energy Efficiency ("Be Lean")

The first stage of the energy hierarchy is to ensure energy demand and associated CO_2 emissions are minimised from the outset through good design and energy efficiency measures. A range of energy efficiency measures beyond the standard 'back stop' values permitted by 2013 Building Regulations are proposed, as presented in Table 1.

Parameter	Standard Value	Enhanced Value	
U values (W/m ² K)			
External wall	0.30	0.20	
Party wall	0.20	0.00	
Basement floor	0.25	0.25	
Ground floor	0.25	0.10	
Roof	0.20	0.15	
Glazing	2.00	1.10	
Door	2.00	1.00	
Air permeability (m ³ /m ² /hr)	10	5	
Thermal bridging (y value, W/m ² k)	0.05	0.1	
Low energy lighting	100%		
Lighting (commercial)	5W	/m ²	
Heating (residential)	Independent gas boilers	Independent gas boilers + Zenex Gas Savers	
Heating (commercial)	Independent gas boiler	Air Source Heat Pump (COP = 3.0)	
Ventilation	Natural V	entilation	

Table 1: 'Standard' & 'Enhanced' Energy Efficiency Specifications

Communal heating arrangements (e.g. gas boilers within a central plant room), as sought by London Plan Policy 5.6 as part of the energy hierarchy, are unlikely to be merited at the limited scale of development proposed here.

5.2 Supply Energy Efficiently ("Be Clean")

The second stage of the energy hierarchy is to ensure that energy demands following the implementation of energy efficiency measures are met as efficiently as possible. This can be achieved in appropriate developments by connecting them to local energy networks, or by providing on-site combined heat & power (CHP) which can generate both heat and power in a highly efficient manner on suitable applications.

5.2.1 Energy Networks

The London Plan seeks that new developments connect to an existing or approved decentralised energy network, safeguard potential network routes, and make provision to allow future connection to a network, where possible. However the limited scale of development that is proposed is considered unlikely to justify communal heating arrangements (with individual gas boilers for each apartment more likely to be preferred), and a result is unlikely to be either technically or commercially viable for the development to connect to a local heat network in the event that one is available.

5.2.2 Combined Heat & Power (CHP)

The GLA recognises that, for small to medium scale residential developments comprising less than 500 apartments, it is generally not economic to install on-site CHP as the lead heat source. This is particularly relevant to the development proposals given the limited amount of commercial floorspace that is proposed which otherwise may help to increase CHP feasibility by providing complementary heat demand e.g. daytime during week days when apartments are unoccupied. For these reasons on-site CHP is not proposed.

5.3 Renewable Energy ("Be Green")

The third and final stage of the energy hierarchy is to incorporate on-site renewable energy technology to address any residual energy demand or CO_2 emissions reduction that may be required to achieve planning policy targets following the two previous stages of the energy hierarchy. Preferred renewable energy technology options are discussed below.

5.3.1.1 Solar photovoltaics (PV)

Solar photovoltaic (PV) arrays generate zero carbon electricity from sunlight. They have a range of benefits over other renewable energy technologies which make them attractive to new developments, including:

- ease of building integration;
- a proven technology widely accepted by home owners;
- minimal maintenance requirements;
- minimal environmental or planning implications; and
- commercial benefits through the Feed In Tariff despite recent cuts.

5.3.1.2 Air Source Heat Pump

Air Source Heat Pump (COP = 3) is proposed to provide space and water heating demand in the commercial unit.

5.4 Modelling Results

Table 2 presents the SAP results for the apartments. It first presents CO_2 emissions estimated for all 9 apartments in the "baseline" (i.e. 2013 Building Regulations Part L compliant) scenario. It then shows the CO_2 reduction effect of the energy efficiency

measures set out in Table 1 ("Be Lean"), which includes the provision of "gas savers" for the apartment boilers. CO_2 emissions are then presented following the "Be Clean" stage of the energy hierarchy, for which no measures are proposed given the limited scale of development. Finally, a solar PV array of 8.2 kWp (kilowatt peak) is proposed as the final "Be Green" scenario for the apartments.

Seconaria	CO ₂ emissions (tonnes/year)		
Scenario	Regulated	Unregulated	
"Baseline" - 2013 Building Regulations compliance	13.6		
"Be Lean" - Energy efficiency measures (Table 1)	12.5	15.0	
" Be Clean " – CHP (not proposed)	12.5	15.0	
" Be Green" – 8.2 kWp solar PV	8.8		

Table 2. Apartments CO₂ Emissions at each stage of Energy Hierarchy

Table 3 presents regulated CO_2 emission savings at each stage of the energy hierarchy for the apartments from which it can be seen that the energy efficiency measures set out in Table 1 are together predicted to achieve a circa 7.9% CO_2 emissions reduction below 2013 Building Regulations standards ("Be Lean"). "Be Clean" measures (e.g. onsite CHP) are not proposed. An 8.2 kWp solar PV array is estimated to deliver the remaining CO_2 emissions reduction to achieve the 35% CO_2 reduction target. The SAP reports for the final "Be Green" scenario for the modelled apartments are presented at **Appendix 1**.

Scenario	CO ₂ emission saving (tonnes / year)	% Saving
"Baseline" - 2013 Building Regulations compliance		
"Be Lean" - Energy efficiency measures (Table 1)	1.1	7.9%
"Be Clean" – CHP (not proposed)		
" Be Green" – 8.2 kWp solar PV	3.7	27.1%
Total CO ₂ Savings	4.7	35.0%

Table 3. Apartments Regulated CO₂ Emissions Savings

Tables 4 and 5 presents the SBEM modelling results for the ground floor commercial space. It can be that the energy efficiency measures in Table 1 (which include Air Source Heat Pump) are predicted to achieve a 21.8% reduction in CO_2 emissions below 2013 Building Regulations standards. The SBEM reports are presented at **Appendix 2**.

Soonario	CO ₂ emissions (tonnes/year)		
	Regulated	Unregulated	
"Baseline" - 2013 Building Regulations compliance	7.7		
"Be Lean" - Energy efficiency measures (Table 1)	5.7		
"Be Clean" – CHP (not proposed)	5.7	9.7	
" Be Green" – 1.7 kWp solar PV	5.0		

Table 4. Commercial CO₂ Emissions at each stage of Energy Hierarchy

Table 5. Commercial Space Regulated CO2 Emissions Savings

Scenario	CO ₂ emission saving (tonnes / year)	% Saving
"Baseline" - 2013 Building Regulations compliance		
"Be Lean" - Energy efficiency measures (Table 1)	2.0	26.0%
"Be Clean" – CHP (not proposed)		
" Be Green" – 1.7 kWp solar PV	0.7	9.0%
Total CO ₂ Savings	2.7	35.0%

The SAP and SBEM results are combined on an area-weighted basis to provide the modelling results for the development as a whole in Tables 6 and 7. It can be seen that a 35.0% reduction in CO_2 emissions below 2013 Building Regulations standards is predicted for the development as whole (including a 20.5% CO_2 through on-site renewable energy) in accordance with Camden planning policy.

Table 6.	Develop	ment CO ₂	Emissions a	t each stad	e of Enerav	Hierarchy

Soonaria	CO ₂ emissions (tonnes/year)		
	Regulated	Unregulated	
"Baseline" - 2013 Building Regulations compliance	21.3		
"Be Lean" - Energy efficiency measures (Table 1)	18.2	04.7	
"Be Clean" – CHP (not proposed)	18.2	24.7	
" Be Green" – 9.9 kWp solar PV	13.8		

Because the 35% CO_2 reduction target is achieved in full on site, no cash payment to Camden for offsetting residual CO_2 emissions is required.

Scenario	CO ₂ emission saving (tonnes / year)	% Saving
"Baseline" - 2013 Building Regulations compliance		
"Be Lean" - Energy efficiency measures (Table 1)	3.1	14.5%
"Be Clean" – CHP (not proposed)		
" Be Green" – 9.9 kWp solar PV	4.4	20.5%
Total CO ₂ Savings	7.5	35.0%

Table 7. Development Regulated CO₂ Emissions Savings

5.5 Estimated Area of Solar PV Array

Each kWp of solar PV in the UK, assuming a suitable orientation (i.e. from south-east to south-west facing) and pitch (between 30 and 40 degrees) requires an area of approximately 7.5 sqm. On this basis, the 9.9 kWp PV array estimated for the development will require a total area of approximately 74 sqm relative to the development's useable roof area of circa 120 sqm.

5.6 **Further Work**

Further work will be required as part of detailed architectural and M&E design and to progress the energy / CO_2 strategy work reported here, including:

- SAP models and "as designed" and "as built" EPCs for all dwellings;
- SBEM model, "as designed" and "as built" EPC for the commercial unit; and
- Engagement with a solar PV and Air Source Heat Pump installation company.

Appendix 1 SAP 2012 Reports (Top Floor Unit & 2nd Floor Unit B)

Regulations Compliance Report Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.3.10 Printed on 09 August 2016 at 13:36:46 Project Information: Assessed By: David Lloyd (STRO006228) **Building Type:** Flat Dwelling Details: **NEW DWELLING DESIGN STAGE** Total Floor Area: 83.85m² Site Reference : **Plot Reference:** 52 Holmes Rd 2nd Floor B GS PV 2nd Floor B GS PV Address : Client Details: Name: Address : This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. 1a TER and DER Fuel for main heating system: Mains gas Fuel factor: 1.00 (mains gas) 16.35 kg/m² Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 10.62 kg/m² 1b TFEE and DFEE Target Fabric Energy Efficiency (TFEE) 41.4 kWh/m² Dwelling Fabric Energy Efficiency (DFEE) 37.1 kWh/m² 2 Fabric U-values Element Average Highest External wall 0.20 (max. 0.30) 0.20 (max. 0.70) Party wall 0.00 (max. 0.20) Floor (no floor)

Openings 2a Thermal bridging Thermal bridging ca

Roof

Thermal bridging calculated from linear thermal transmittances for each junction

None

(no roof)

1.09 (max. 2.00)

Air permeability at 50 pascals Maximum	5.00 (design value) 10.0	ок

4 Heating efficiency Main Heating system:

Database: (rev 396, product index 017556): Boiler systems with radiators or underfloor heating - mains gas Brand name: Worcester Model: Greenstar Model qualifier: 29CDi Classic ErP (Combi) Efficiency 89.1 % SEDBUK2009 Minimum 88.0 %

1.10 (max. 3.30)

ΟΚ

OK

OK

OK

OK

OK

Secondary heating system:

Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	No cylinder		
6 Controls			
Space heating controls	TTZC by plumbing and e	electrical services	ОК
Hot water controls:	No cylinder		
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights with	n low-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (Thames va	lley):	Slight	ОК
Based on:			
Overshading:		Average or unknown	
Windows facing: South		3.99m ²	
Windows facing: North		6.26m ²	
Windows facing: North		2.16m ²	
Ventilation rate:		3.00	
Blinds/curtains:		Dark-coloured curtain or roller blind	
		Closed 100% of daylight hours	
10 Key features			
Windows U-value		1.1 W/m²K	
Doors U-value		1 W/m²K	
Party Walls U-value		0 W/m²K	
Photovoltaic array			

2nd Floor B GS PV

Dwelling type: Date of assessment: Produced by: Total floor area: Mid floor Flat 09 August 2016 David Lloyd 83.85 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

					User [Details:						
Assessor Name:	David	d Lloyo	ł			Strom	a Num	ber:		STRO	006228	
Software Name:	Stron	na FS/	AP 201	2		Softwa	are Ver	sion:		Versio	n: 1.0.3.10	
				P	operty	Address	: 2nd Flo	or B GS	PV			
Address :	2nd F	loor B	GS PV									
1. Overall dwelling dim	ensions:					())					N I (D)	
Ground floor					Are	83.85	(1a) x	AV. He	l gnt(m) 2.5	(2a) =	209.62) (3a)
Total floor area TFA = (1	la)+(1b)+	+(1c)+(1d)+(1e)+(1n)	83.85	(4)					
Dwelling volume							(3a)+(3b))+(3c)+(3d)+(3e)+	.(3n) =	209.62	(5)
2. Ventilation rate:		-				4					<u> </u>	
Number of chimneys	m he	ain ating	se h □ + □	eating	у Л + Г	other	7 = Г		x 4	40 =	m ³ per hour	
Number of open flues		0	」 」	0	」 L コ + Г	0	」 L ヿ _ Γ	0	x 2	20 =	0	
Number of intermittent f		0		0] · L	0	JĽ	0			0	
	ans							3	^	10 =	30	(7a)
Number of passive vents	S							0	x ?	10 =	0	(7b)
Number of flueless gas t	fires							0	X 4	40 =	0	(7c)
										Air ch	anges per ho	ur
Infiltration due to chimne	eys, flues	s and fa	ins = (6	a)+(6b)+(7	a)+(7b)+	(7c) =	Γ	30	<u> </u>	÷ (5) =	0.14	(8)
If a pressurisation test has	been carrie	ed out or	is intende	ed, proceed	l to (17),	otherwise of	continue fro	om (9) to ((16)			_
Number of storeys in t	the dwell	ling (ns)								0	(9)
Additional infiltration) OF for a	tool or	timborf	romo or	0 25 fe	* ****	n / oo potr	uction	[(9)	-1]x0.1 =	0	
if both types of wall are p deducting areas of open	D.25 IOI S present, us inas): if eau	e the val	umber 1 ue corresj 0.35	ponding to	the grea	ter wall are	a (after	uction			0	_(11)
If suspended wooden	floor, en	ter 0.2	(unseal	ed) or 0.	1 (seal	ed), else	enter 0				0	(12)
If no draught lobby, er	nter 0.05	, else e	nter 0								0	(13)
Percentage of window	is and do	oors dra	aught st	ripped							0	(14)
Window infiltration						0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltration rate	-0					(8) + (10)	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)
Air permeability value	, q50, ex ility volue	presse	d in cub (18) – [(1)	(C metre)	s per h	our per se vise (18) – (quare m	etre of e	nvelope	area	5	= (17)
Air permeability value appli	es if a pres	surisatio	n test has	been don	e or a de	aree air pe	rmeabilitv	is beina us	sed		0.39	_(18)
Number of sides shelter	ed					5	,	J			2	(19)
Shelter factor						(20) = 1 -	[0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorpora	ting shel	lter fact	or			(21) = (18) x (20) =				0.33	(21)
Infiltration rate modified	for mont	hly win	d speed									
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind s	peed fror	m Table	e 7									
(22)m= 5.1 5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (2	22)m ÷ 4											
(22a)m= 1.27 1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allowi	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m				_	
	0.43	0.42	0.41	0.37	0.36	0.32	0.32	0.31	0.33	0.36	0.38	0.39		
Calcul If m	late effe echanic:	<i>ctive air</i> al ventila	change	rate for t	he appli	cable ca	se						0	(232)
lf exh	naust air h	eat pump	using App	endix N, (2	3b) = (23a	ı) × Fmv (e	equation (N5)) , othe	rwise (23b) = (23a)			0	(23b)
If bal	anced with	h heat reco	overy: effic	ciency in %	allowing f	or in-use fa	actor (fron	n Table 4h) =	, , ,			0	(23c)
a) If	balance	ed mecha	anical ve	entilation	with he	at recove	erv (MVI	HR) (24a	a)m = (22	2b)m + ()	23b) x [⁻	1 – (23c)	 → 100]	(200)
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If	balance	ed mecha	anical ve	entilation	without	heat rec	covery (N	u MV) (24b)m = (22	2b)m + (2	23b)	!	1	
, (24b)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24b)
c) If	whole h	iouse ex	tract ver	ntilation c	or positiv	ve input v	ventilatio	n from o	outside				1	
	if (22b)r	n < 0.5 ×	(23b), t	then (24o	c) = (23b); otherv	wise (24	c) = (22k	o) m + 0.	5 × (23b)		_	
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural if (22b)r	ventilation = 1, the	on or wh en (24d)	ole hous) m = (22)	e positiv b)m othe	ve input v erwise (2	ventilatio 4d)m =	on from l 0.5 + [(2	oft 2b)m² x	0.5]				
(24d)m=	0.59	0.59	0.58	0.57	0.56	0.55	0.55	0.55	0.56	0.56	0.57	0.58		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24t	o) or (240	c) or (24	d) in box	x (25)	-				
(25)m=	0.59	0.59	0.58	0.57	0.56	0.55	0.55	0.55	0.56	0.56	0.57	0.58]	(25)
3 He	at losse	s and he	eat loss	paramet	. .									
ELEN	MENT	Gros area	3S (m²)	Openin rr	gs 1 ²	Net Ar A ,r	ea n²	U-valı W/m2	ue :K	A X U (W/I	<)	k-value kJ/m²⋅l	e A K k	. X k J/K
Doors						1.91	x	1	=	1.91				(26)
Windo	ws Type	e 1				3.99	x1.	/[1/(1.1)+	0.04] =	4.2				(27)
Windo	ws Type	e 2				6.26	x1,	/[1/(1.1)+	0.04] =	6.6				(27)
Windo	ws Type	e 3				2.16		/[1/(1.1)+	0.04] =	2.28				(27)
Walls	Type1	73.	1	12.4	1	60.69) x	0.2	= [12.14				(29)
Walls	Type2	20.0)4	1.91		18.13	3 X	0.19		3.41	= i		\dashv	(29)
Total a	area of e	elements	, m²			93.14					L			(31)
Party	wall					32.61	x	0		0				(32)
* for win	ndows and de the area	l roof wind as on both	ows, use e sides of ii	effective wi	ndow U-va Is and pan	alue calcula titions	ated using	formula 1	 /[(1/U-valu	ıe)+0.04] a	ns given in	paragraph	1 3.2	
Fabric	heat los	ss, W/K :	= S (A x	U)				(26)(30)) + (32) =				30.54	(33)
Heat c	apacity	Cm = S((Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	17709.11	(34)
Therm	al mass	parame	ter (TMI	P = Cm ÷	- TFA) ir	n kJ/m²K			Indica	tive Value:	Medium		250	(35)
For des can be i	ign asses: used inste	sments wh ad of a de	ere the de tailed calc	atails of the	construct	ion are not	t known pr	recisely the	e indicative	e values of	TMP in T	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						9.65	(36)
<i>if details</i> Total f	s of therma abric he	al bridging at loss	are not kr	10wn (36) =	= 0.15 x (3	1)			(33) +	(36) =			40.19	(37)
Ventila	ation hea	at loss ca	alculated	d monthly	ý				(38)m	= 0.33 × (25)m x (5))		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(38)m=	40.87	40.62	40.38	39.26	39.05	38.07	38.07	37.89	38.45	39.05	39.48	39.92]	(38)
Heat t	ransfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	81.06	80.82	80.58	79.45	79.24	78.27	78.27	78.09	78.64	79.24	79.67	80.11		
										Average =	Sum(39)1	12 /12=	79.45	(39)

Heat Ic	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	0.97	0.96	0.96	0.95	0.95	0.93	0.93	0.93	0.94	0.95	0.95	0.96		_
Numbe	er of day	/s in mo	nth (Tab	le 1a)					,	Average =	Sum(40) ₁ .	12 /12=	0.95	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	iter hea	ting ene	rgy requ	irement:								kWh/ye	ear:	
Assum if TF if TF	ed occu A > 13. A £ 13.	upancy, 9, N = 1 9, N = 1	N + 1.76 x	[1 - exp	(-0.0003	349 x (TF	⁻ A -13.9)2)] + 0.(0013 x (⁻	ΓFA -13.	2. .9)	53		(42)
Annual Reduce not more	l averag the annua e that 125	je hot wa al average litres per j	ater usag hot water person pe	ge in litre usage by s r day (all w	es per da 5% if the a rater use, I	ay Vd,av Iwelling is hot and co	erage = designed : ld)	(25 x N) to achieve	+ 36 a water us	se target o	94 f	.33		(43)
	lan	Feb	Mar	Apr	May	lun	, Int	Δυσ	Sen	Oct	Nov	Dec		
Hot wate	er usage i	n litres per	r day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)	Ocp	001		Dee		
(44)m=	103.76	99.99	96.22	92.45	88.67	84.9	84.9	88.67	92.45	96.22	99.99	103.76		
		1	1						-	Total = Su	m(44) ₁₁₂ =		1131.98	(44)
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x E	DTm / 3600) kWh/mor	oth (see Ta	ables 1b, 1	c, 1d)	L	
(45)m=	153.88	134.58	138.88	121.08	116.18	100.25	92.9	106.6	107.88	125.72	137.23	149.02		-
lf instant	aneous v	/ater heati	ng at point	of use (no	hot water	r storage),	enter 0 in	boxes (46) to (61)	Fotal = Su	m(45) ₁₁₂ =	-	1484.21	(45)
(46)m=	23.08	20.19	20.83	18.16	17.43	15.04	13.93	15.99	16.18	18.86	20.58	22.35		(46)
Water	storage	loss:	includir		alar or M		storage	within or	amo vos	sol		0	l	(47)
If comr Otherw Water	nunity h vise if no storage	neating a postored loss:	and no ta	ink in dw er (this in	velling, e icludes i	nter 110 nstantar	litres in neous co	(47) ombi boil	ers) ente	er '0' in (47)	0		(47)
a) If m	anufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	rature f	actor fro	m Table	2b								0		(49)
Energy b) If m	/ lost fro anufact	om water urer's de	r storage eclared (e, kWh/ye cvlinder l	ear oss facto	or is not	known:	(48) x (49)) =			0		(50)
Hot wa	iter stor	age loss neating s	factor fi	om Tabl	e 2 (kW	h/litre/da	ıy)					0		(51)
Volume	e factor	from Ta	ble 2a									0		(52)
Tempe	rature f	actor fro	m Table	2b								0		(53)
Energy	lost fro	om water	r storage	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter	(50) or	(54) in (5	55)									0		(55)
Water	storage	loss cal	culated	for each	month	i	i	((56)m = (55) × (41)ı	n	i		L	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contain	s dedicate	a solar sto	rage, (57)i I	n = (56)m	x [(50) – (I	H11)] ÷ (5 I	0), eise (5 1	7)m = (56)	m wnere (H11) IS Tro	m Appena	IX H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar Primar	y circuit y circuit	loss (ar loss cal	nnual) fro	om Table for each	e 3 month (59)m = ((58) ÷ 36	65 × (41)	m			0		(58)
(moo	dified by	r factor f	rom Tab	le H5 if t	here is s	solar wat	er heati	ng and a	cylinde	r thermo	stat)		I	(==)
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)

Combi	loss ca	lculated	for eacl	n month ((61)m =	(60) ÷ 3	865 × (41)m							
(61)m=	38.44	34.72	38.44	37.2	38.44	37.2	38.44	38.4	14	37.2	38.44	37.2	38.44		(61)
Total h	eat req	uired for	water h	eating ca	alculated	d for eac	ch month	(62)r	n = 0).85 × ((45)m +	· (46)m +	(57)m +	(59)m + (61)m	
(62)m=	192.32	169.3	177.32	158.27	154.61	137.45	131.33	145.	04	145.07	164.15	174.43	187.46		(62)
Solar DH	HW input	calculated	using Ap	pendix G or	Appendi	k H (negat	tive quantit	y) (ente	er '0' if	f no sola	r contribu	ution to wate	er heating)	-	
(add a	dditiona	I lines if	FGHRS	and/or \	WWHRS	applies	s, see Ap	pend	ix G)			_			
(63)m=	0	0	0	0	0	0	0	0		0	0	0	0		(63)
FHRS	42.12	34.93	32.24	23.51	15.77	10.22	9.51	10.8	31	10.93	24.11	33.46	42.15		(63) (G2)
Output	from w	ater hea	ter												
(64)m=	150.2	134.37	145.07	134.76	138.84	127.23	121.83	134.	23	134.14	140.04	140.97	145.31		_
								(Outpu	t from wa	ater heat	er (annual)1	12	1647	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.85	5 × (45)m	n + (6 ⁻	1)m]	+ 0.8 ×	(46)n	n + (57)m	+ (59)m]	
(65)m=	60.77	53.43	55.79	49.56	48.24	42.63	40.5	45.0)5	45.17	51.41	54.93	59.16		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if a	cylinder	is in the	dwelli	ng o	r hot w	ater is	from com	munity h	eating	
5. Int	ternal g	ains (see	e Table	5 and 5a):										
Metab	olic gair	ns (Table	e 5), Wa	tts											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Au	ıg	Sep	Oct	Nov	Dec		
(66)m=	126.59	126.59	126.59	126.59	126.59	126.59	126.59	126.	59	126.59	126.59	126.59	126.59		(66)
Lightin	g gains	(calcula	ted in A	ppendix	L, equat	tion L9 c	or L9a), a	lso se	ee Ta	able 5		-			
(67)m=	21.48	19.08	15.52	11.75	8.78	7.41	8.01	10.4	11	13.98	17.74	20.71	22.08		(67)
Applia	nces ga	ins (calc	ulated i	n Append	dix L, eq	uation L	_13 or L1	3a), a	also s	see Tal	ble 5				
(68)m=	227.3	229.66	223.71	211.06	195.09	180.08	170.05	167.	69	173.63	186.28	202.26	217.27		(68)
Cookir	ng gains	(calcula	Ited in A	ppendix	L, equa	tion L15	or L15a), also	o see	e Table	5	•			
(69)m=	35.66	35.66	35.66	35.66	35.66	35.66	35.66	35.6	66	35.66	35.66	35.66	35.66		(69)
Pumps	and fa	ns gains	(Table	5a)			•					•			
(70)m=	3	3	3	3	3	3	3	3		3	3	3	3		(70)
Losses	s e.g. ev	, aporatio	n (nega	tive valu	es) (Tab	ole 5)	•					•			
(71)m=	-101.27	-101.27	-101.27	-101.27	-101.27	-101.27	-101.27	-101.	27 -	101.27	-101.27	-101.27	-101.27		(71)
Water	heating	gains (T	able 5)	•			1					•		1	
(72)m=	81.69	79.51	74.98	68.83	64.84	59.21	54.43	60.5	56	62.73	69.1	76.29	79.52		(72)
Total i	nternal	gains =	:	•		. (66	δ)m + (67)n	n + (68)m + ((69)m + ((70)m + (71)m + (72)	m		
(73)m=	394.44	392.22	378.19	355.62	332.68	310.68	296.47	302.	63	314.32	337.11	363.24	382.84		(73)
6. So	lar gain	s:					•								
Solar g	ains are	calculated	using sola	ar flux from	Table 6a	and asso	ciated equa	ations t	o con	vert to th	e applica	able orientat	ion.		
Orienta	ation:	Access F	actor	Area		Fl	ux		_ (g_	_	FF		Gains	
		i able 6d		m ²			able 6a	_	la	ble 6b		able 6c		(VV)	_
North	0.9x	0.77	x	6.2	26	x	10.63	x		0.72	x	0.7	=	23.25	(74)
North	0.9x	0.77	x	2.1	6	x	10.63] x [0.72	x	0.7	=	8.02	(74)
North	0.9x	0.77	x	6.2	26	x	20.32] × [0.72	× [0.7	=	44.43	(74)

x

2.16

20.32

x

0.72

x

0.7

=

x

North

0.9x

0.77

15.33

(74)

North	0.9x	0.77		x	6.	26	x	3	4.53	×		0.72	x	0.7	=	75.5	(74)
North	0.9x	0.77		x	2.	16	x	3	4.53	x		0.72	×	0.7	=	26.05	(74)
North	0.9x	0.77		x	6.	26	x	5	5.46	x		0.72	x	0.7	=	121.27	(74)
North	0.9x	0.77		x	2.	16	x	5	5.46	x		0.72	×	0.7	=	41.84	(74)
North	0.9x	0.77		x	6.	26	x	7	4.72	x		0.72	x	0.7	=	163.36	(74)
North	0.9x	0.77		x	2.	16	x	7	4.72	x		0.72	×	0.7	=	56.37	(74)
North	0.9x	0.77		x	6.	26	x	7	'9.99	x		0.72	x	0.7	=	174.88	(74)
North	0.9x	0.77		x	2.	16	x	7	'9.99	x		0.72	×	0.7	=	60.34	(74)
North	0.9x	0.77		x	6.	26	x	7	4.68	x		0.72	×	0.7	=	163.28	(74)
North	0.9x	0.77		x	2.	16	x	7	4.68	x		0.72	x	0.7	=	56.34	(74)
North	0.9x	0.77		x	6.	26	x	5	9.25	x		0.72	×	0.7	=	129.54	(74)
North	0.9x	0.77		x	2.	16	x	5	9.25	x		0.72	x	0.7	=	44.7	(74)
North	0.9x	0.77		x	6.	26	x	4	1.52	x		0.72	×	0.7	=	90.77	(74)
North	0.9x	0.77		x	2.	16	x	4	1.52	x		0.72	x	0.7	=	31.32	(74)
North	0.9x	0.77		x	6.	26	x	2	4.19	x		0.72	x	0.7	=	52.89	(74)
North	0.9x	0.77		x	2.	16	x	2	4.19	x		0.72	×	0.7	=	18.25	(74)
North	0.9x	0.77		x	6.	26	x	1	3.12	x		0.72	×	0.7	=	28.68	(74)
North	0.9x	0.77		x	2.	16	x	1	3.12	x		0.72	×	0.7	=	9.9	(74)
North	0.9x	0.77		x	6.	26	x		8.86	x		0.72	_ x [0.7	=	19.38	(74)
North	0.9x	0.77		x	2.	16	x	1	8.86	x		0.72	×	0.7	=	6.69	(74)
South	0.9x	0.77		x	3.	99	x	4	6.75	x		0.72	x	0.7	=	65.15	(78)
South	0.9x	0.77		x	3.	99	x	7	6.57	x		0.72	x	0.7	=	106.7	(78)
South	0.9x	0.77		x	3.	99	x	g	7.53	x		0.72	x	0.7	=	135.92	(78)
South	0.9x	0.77		x	3.	99	x	1	10.23	x		0.72	x	0.7	=	153.62	(78)
South	0.9x	0.77		x	3.	99	x	1	14.87	x		0.72	×	0.7	=	160.08	(78)
South	0.9x	0.77		x	3.	99	x	1	10.55	x		0.72	x	0.7	=	154.06	(78)
South	0.9x	0.77		x	3.	99	x	1	08.01	x		0.72	x	0.7	=	150.52	(78)
South	0.9x	0.77		x	3.	99	x	1	04.89	x		0.72	×	0.7	=	146.18	(78)
South	0.9x	0.77		x	3.	99	x	1	01.89	x		0.72	×	0.7	=	141.99	(78)
South	0.9x	0.77		x	3.	99	x	8	2.59	x		0.72	x	0.7	=	115.09	(78)
South	0.9x	0.77		x	3.	99	x	5	5.42	x		0.72	x	0.7	=	77.23	(78)
South	0.9x	0.77		x	3.	99	x		40.4	x		0.72	×	0.7	=	56.3	(78)
Solar g	pains in	watts, ca	alcula	ated	for eac	h mont	h		r	(83)m	ו = Sו	um(74)m	(82)m		r	-	
(83)m=	96.42	166.47	237.	.47	316.74	379.8	1	389.29	370.14	320	.42	264.08	186.23	115.81	82.37		(83)
l otal g	jains – II	nternal a	and s	olar	(84)m :	= (73)n T	ר ו ר	(83)m	, watts					1 .== 0		1	(0.4)
(84)m=	490.87	558.69	615.	.66	672.35	712.5		699.96	666.61	623	.05	578.4	523.34	479.04	465.21		(84)
7. Me	an inter	nal temp	perat	ure	(heating	j seasc	on)									F	
Temp	erature	during h	neatir	ng p	eriods i	n the liv	ving	g area t	from Tal	ble 9	, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains I	for I	iving ar	ea, h1,	m (:	see Ta	ble 9a)	-				<u> </u>	_	1	
(00)	Jan	Feb	M	ar	Apr	May	/	Jun	Jul		ug	Sep	Oct	Nov	Dec	4	(00)
(86)m=	1	1	0.9	9	0.96	0.87		0.68	0.51	0.5	57	0.83	0.97	1	1]	(86)

Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)					
(87)m=	20	20.14	20.35	20.63	20.86	20.97	21	20.99	20.93	20.63	20.27	19.98		(87)
Temp	erature	during h	neating p	periods ir	n rest of	dwelling	from Ta	able 9, Tl	h2 (°C)					
(88)m=	20.11	20.11	20.12	20.13	20.13	20.14	20.14	20.14	20.14	20.13	20.13	20.12		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	1	0.99	0.98	0.95	0.83	0.61	0.41	0.47	0.76	0.96	0.99	1		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (fe	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	18.77	18.97	19.28	19.69	19.99	20.12	20.14	20.14	20.08	19.7	19.17	18.74		(90)
									f	LA = Livin	g area ÷ (4	4) =	0.39	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	_A × T1	+ (1 – fL	.A) × T2					
(92)m=	19.25	19.43	19.7	20.06	20.34	20.46	20.48	20.47	20.41	20.07	19.6	19.23		(92)
Apply	adjustn	nent to t	he mear	n internal	l temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	19.25	19.43	19.7	20.06	20.34	20.46	20.48	20.47	20.41	20.07	19.6	19.23		(93)
8. Sp	ace hea	ting requ	uirement	t										
Set T the ut	i to the r ilisation	mean int factor fo	ternal ter or gains	mperatui using Ta	re obtair able 9a	ned at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	1 <u></u> 1:										
(94)m=	1	0.99	0.98	0.94	0.84	0.64	0.45	0.51	0.78	0.96	0.99	1		(94)
Usefu	ıl gains,	hmGm	, W = (9	4)m x (84	4)m									
(95)m=	489.31	554.73	604.63	634.91	596.55	445.07	301.81	315.33	452.85	502.71	475.64	464.11		(95)
Month	nly aver	age exte	ernal terr	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an interr	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=	1212	1174.13	1063.8	886.82	684.35	458.48	303.33	318.17	496.21	750.26	995.97	1203.89		(97)
Space	e heatin	g require	ement fo	or each n	nonth, k\ I	Wh/mont	h = 0.02	24 x [(97])m – (95)m] x (4′	1)m			
(98)m=	537.68	416.24	341.62	181.37	65.33	0	0	0	0	184.18	374.64	550.4		-
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	2651.46	(98)
Space	e heatin	g require	ement in	kWh/m²	/year								31.62	(99)
9a. En	ergy rec	luiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Spac	e heatir	ng:												
Fracti	on of sp	ace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	ion of sp	ace hea	at from n	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1								90	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heatin	g system	n, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
Space	e heatin	g require	ement (c	alculate	d above)								
	537.68	416.24	341.62	181.37	65.33	0	0	0	0	184.18	374.64	550.4		
(211)m	n = {[(98)m x (20	04)] } x 1	00 ÷ (20)6)									(211)
	597.43	462.49	379.58	201.52	72.59	0	0	0	0	204.64	416.27	611.56		
								Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	=	2946.07	(211)

Space heating fuel (secondary), kWh/month

opuo				y), ite viii/	monun									
= {[(98)m x (20)1)]}x1	00 ÷ (20	(8)									I	
(215)m=	0	0	0	0	0	0	0	U Tota		0	215)	0		7(215)
Matar	heating							1010			210) _{15,10} 1	<u>-</u>	0	(215)
Output	from w) ater hea	iter (calc	ulated al	hove)									
Carpa	150.2	134.37	145.07	134.76	138.84	127.23	121.83	134.23	134.14	140.04	140.97	145.31		
Efficier	ncy of w	ater hea	ater										86.7	(216)
(217)m=	89.26	89.17	88.99	88.56	87.73	86.7	86.7	86.7	86.7	88.54	89.07	89.29		(217)
Fuel fo	or water a = (64)	heating	, kWh/mo	onth							-			
(219)m=	168.27	150.69	163.02	152.16	158.26	146.75	140.52	154.82	154.72	158.16	158.26	162.74		
			1					Tota	I = Sum(2	19a) ₁₁₂ =	1		1868.38	(219)
Annua	al totals									k	Wh/yea		kWh/year	
Space	heating	fuel use	ed, main	system	1								2946.07	
Water	heating	fuel use	ed										1868.38	
Electri	city for p	oumps, f	ans and	electric	keep-ho	t								_
centra	al heatir	ng pump	:									30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e
Total e	electricity	y for the	above, l	kWh/yea	r			sum	of (230a)	(230g) =			75	(231)
Electri	city for I	ighting											379.37	(232)
Electri	city gen	erated b	y PVs										-742.71	(233)
12a. (CO2 em	issions	– Individ	ual heati	ing syste	ems inclu	uding mi	icro-CHF)					
						En	orav			Emice	ion fac	tor	Emissions	•
						k٧	/h/year			kg CO	2/kWh		kg CO2/ye	ar
Space	heating	(main s	system 1)		(21	1) x			0.2	16	=	636.35	(261)
Space	heating	(secon	dary)			(21	5) x			0.5	19	=	0	(263)
Water	heating					(219	9) x			0.2	16	=	403.57	(264)
Space	and wa	ter heat	ing			(26	1) + (262)	+ (263) + ((264) =				1039.92	(265)
Electri	city for p	oumps, f	ans and	electric	keep-ho	t (23 ⁻	1) x			0.5	19	=	38.93	(267)
Electri	city for I	ighting				(232	2) x			0.5	19	=	196.89	(268)
Energy Item 1	/ saving	/genera	tion tech	nologies	i					0.5	19	=	-385.47	(269)
Total C	CO2, kg/	/year							sum c	of (265)(2	271) =		890.27	(272)
Dwelli	ng CO2	Emissi	ion Rate	•					(272)	÷ (4) =			10.62](273)
EI ratir	ng (secti	ion 14)											91	(274)

			User E	Details:						
Assessor Name:	David Lloy	d		Strom	a Num	ber:		STRO	006228	
Software Name:	Stroma FS	AP 2012		Softwa	are Ver	sion:		Versio	on: 1.0.3.10	
	2nd Eloor B	CS DV	Property	Address	: 2nd Flo	or B GS	S PV			
1. Overall dwelling dime	nsions:	03 F V								
			Are	a(m²)		Av. He	ight(m)		Volume(m ³	[;])
Ground floor			8	33.85	(1a) x	2	2.5	(2a) =	209.62	(3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+	(1d)+(1e)+	(1n) 👔	33.85	(4)					
Dwelling volume					(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	209.62	(5)
2. Ventilation rate:										
	main heating	seconc heatin	lary g	other		total			m ³ per hou	r
Number of chimneys	0	+ 0	+	0	=	0	X 4	40 =	0	(6a)
Number of open flues	0	+ 0	+	0		0	x 2	20 =	0	(6b)
Number of intermittent fai	าร				- Ē	3	x ′	10 =	30	(7a)
Number of passive vents						0	x	10 =	0	(7b)
Number of flueless gas fin	res				Γ	0	x 4	40 =	0	(7c)
								Air ob		
Infiltration due to chimme	a fluce and f		u (Zo) u (Zb) u	(70) -	F			Air Ch	langes per no	ur To
Inflitration due to chimney	/s, flues and fa	ans = $(6a) + (6b)$ r is intended. proc	+(7a)+(7b)+((10) = otherwise (continue fro	30 om (9) to ((16)	÷ (5) =	0.14	(8)
Number of storeys in th	e dwelling (ne	6)					,		0	(9)
Additional infiltration							[(9)-	-1]x0.1 =	0	(10)
Structural infiltration: 0.	25 for steel or	r timber frame	or 0.35 fo	r masoni	ry constr	uction			0	(11)
if both types of wall are pr	esent, use the va	lue corresponding	g to the grea	ter wall are	a (after					
If suspended wooden f	loor, enter 0.2	(unsealed) or	0.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ent	er 0.05, else e	enter 0							0	(13)
Percentage of windows	and doors dr	aught stripped	I					·	0	(14)
Window infiltration				0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value,	q50, expresse	ed in cubic me	tres per ho	our per s	quare m	etre of e	nvelope	area	5	(17)
If based on air permeabili	ty value, then	(18) = [(17) ÷ 20	+(8), otherw	ise (18) = ((16)				0.39	(18)
Air permeability value applies	s if a pressurisation	on test has been o	lone or a de	gree air pe	rmeability	is being us	sed			
Shelter factor	u			(20) = 1 -	[0.075 x (1	9)] =			0.85	(19)
Infiltration rate incorporat	ing shelter fac	tor		(21) = (18) x (20) =				0.33	- (21)
Infiltration rate modified for	or monthly wir	nd speed						I		
Jan Feb	Mar Apr	May Jur	n Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Tabl	e 7								
(22)m= 5.1 5	4.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Eactor $(22a)m = (22a)m $	2)m $\div 4$								-	
(22a)m= 1.27 1.25	1.23 1.1	1.08 0.95	0.95	0.92	1	1.08	1.12	1.18		
	I			1	I	L	I		I	

Adjust	ed infiltr	ation rat	e (allow	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m				_	
	0.43	0.42	0.41	0.37	0.36	0.32	0.32	0.31	0.33	0.36	0.38	0.39		
Calcul If m	late etter	ctive air	change	rate for t	he appli	cable ca	se							(220)
lf exh	haust air h	eat pump	using App	endix N. (2	² 3b) = (23a	a) x Fmv (e	equation (N	N5)), othe	rwise (23b) = (23a)			0	(23a)
lf bal	anced with	h heat reco	overv: effic	iencv in %	allowing f	or in-use f	actor (from	n Table 4h) =) (200)			0	
a) If	halance	nd mech	anicalv	antilation	with he	at recove	arv (MI\/F	HR) (24a	$^{\prime}$	2b)m + ('	23h) v [·	1 _ (23c)	<u> </u>	(230)
(24a)m=]	(24a)
() If	halance	d mech	anical ve		without	heat rec	noverv (N	1 /1\/) (24h	1 - (22)	2b)m + (ʻ	23h)]	
(24b)m=									0		0	0	1	(24b)
c) If	whole h		tract ver	L tilation (l	l input y	l	n from c	L				J	
0) 11	if (22b)r	n < 0.5 >	< (23b), †	then (24	c) = (23b); otherv	vise (24	c) = (22k	o) m + 0.	.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
d) If	natural if (22b)r	ventilation ventilation	on or wh en (24d)	ole hous m = (221	se positiv b)m othe	ve input v erwise (2	ventilatio 4d)m =	on from l 0.5 + [(2	oft 2b)m² x	0.5]				
(24d)m=	0.59	0.59	0.58	0.57	0.56	0.55	0.55	0.55	0.56	0.56	0.57	0.58]	(24d)
Effe	ctive air	change	rate - er	nter (24a	u) or (24t	b) or (24	c) or (24	d) in bo	(25)				1	
(25)m=	0.59	0.59	0.58	0.57	0.56	0.55	0.55	0.55	0.56	0.56	0.57	0.58]	(25)
2 1 10	otlassa							1				•	1	
ELEN		Gros	SS (m ²)	Openin	IGS	Net Ar	ea n²	U-valı W/m2	ne	A X U	<)	k-value	e A	Xk
Doors		alea	(111-)	11	I	1.01				1.01		NJ/111-1		(26)
Windo		1				1.91		/[1/(1 4)+	0.041 - [T.91				(20)
Windo						3.99		/[1/(1.4))	0.041	5.29				(27)
Windo	ws Type	- 2				6.26		/[1/(1.4)+	0.04] =	8.3				(27)
windo	ws type Ture 4	: 				2.16	X	/[1/(1.4)+	0.04] =	2.86	╡╷			(27)
vvalis	турет	73.	1	12.4	1	60.69) ×	0.18	= [10.92			\dashv	(29)
Walls	Type2	20.0)4	1.91		18.13	3 X	0.18	=	3.26				(29)
l otal a	area of e	elements	, m²			93.14	<u> </u>							(31)
Party	wall					32.61	X	0	=	0				(32)
* for win	ndows and de the area	l roof wind as on both	ows, use e sides of in	βfective wi αternal wal	indow U-va Is and par	alue calcul titions	ated using	g formula 1	/[(1/U-valı	ıe)+0.04] a	is given in	paragraph	ז 3.2	
Fabric	heat los	ss, W/K	= S (A x	U)	io ana pan			(26)(30)) + (32) =				32.55	(33)
Heat c	apacity	Cm = S((Axk)	,					((28)	(30) + (32	2) + (32a).	(32e) =	17709.11	(34)
Therm	al mass	parame	eter (TMI	P = Cm -	+ TFA) ir	n kJ/m²K			Indica	tive Value:	Medium		250	(35)
For des can be t	ign asses: used inste	sments wh ad of a de	ere the de tailed calc	atails of the	construct	ion are not	t known pr	recisely the	e indicative	e values of	TMP in T	able 1f		
Therm	al bridg	es : S (L	. x Y) cal	culated	using Ap	pendix ł	<						6.14	(36)
<i>if details</i> Total f	s of therma abric he	al bridging at loss	are not kr	10wn (36) =	= 0.15 x (3	1)			(33) +	(36) =			38.69	(37)
Ventila	ation hea	at loss ca	alculated	d monthly	y				(38)m	= 0.33 × (25)m x (5))		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(38)m=	40.87	40.62	40.38	39.26	39.05	38.07	38.07	37.89	38.45	39.05	39.48	39.92	1	(38)
Heat t	ransfer o	coefficie	nt, W/K					•	(39)m	= (37) + (3	38)m	•	•	
(39)m=	79.55	79.31	79.07	77.95	77.74	76.76	76.76	76.58	77.14	77.74	78.16	78.61		
	•	-	•	•	•	•	•	-	•	Average =	Sum(39)1		77.95	(39)

Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	0.95	0.95	0.94	0.93	0.93	0.92	0.92	0.91	0.92	0.93	0.93	0.94		_
Numbe	er of day	vs in mo	nth (Tab	le 1a)					,	Average =	Sum(40) ₁ .	12 /12=	0.93	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
Assum if TF	ied occu	ipancy, 9, N = 1	N + 1.76 x	: [1 - exp	(-0.0003	349 x (TF	-A -13.9)2)] + 0.(0013 x (⁻	TFA -13.	2. .9)	53		(42)
Annua Reduce	l averag	e hot wa al average	ater usa hot water	ge in litre usage by	es per da 5% if the d	ay Vd,av Iwelling is	erage = designed	(25 x N) to achieve	+ 36 a water us	se target o	94 f	.33		(43)
normore								A	0.00	Ort	Neu	Dee	l	
Hot wate	Jan er usage ii	⊢eb n litres per	dav for ea	Apr ach month	Vd.m = fa	Jun ctor from 7	JUI Table 1c x	Aug (43)	Sep	Oct	NOV	Dec		
(44)m-	103.76	99 99	96.22	92.45	88.67	84.9	84.9	88.67	92.45	96.22	99 99	103 76		
(++)	100.70	00.00	50.22	52.45	00.07	04.0	04.5	00.07	52.45	Total = Su	m(44)1_12 =	100.70	1131.98	(44)
Energy o	content of	hot water	used - cal	culated m	onthly = 4.	190 x Vd,r	n x nm x D	OTm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	153.88	134.58	138.88	121.08	116.18	100.25	92.9	106.6	107.88	125.72	137.23	149.02		
lf instan	taneous w	ater heati	ng at point	of use (no	o hot water	r storage),	enter 0 in	boxes (46) to (61)	Total = Su	m(45) ₁₁₂ =	-	1484.21	(45)
(46)m=	23.08	20.19	20.83	18.16	17.43	15.04	13.93	15.99	16.18	18.86	20.58	22.35		(46)
Water	storage	loss:												
Storag	e volum	e (litres)		ng any se	Diar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If comi Otherw	munity n vise if no	eating a	nd no ta hot wate	INK IN AW Pr (this in	/elling, e ocludes i	nter 110 nstantar	Iltres in	(47) Imbi boil	ers) ente	r '0' in <i>(</i>	(47)			
Water	storage	loss:	not wate			notantai								
a) If m	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature fa	actor fro	m Table	2b								0		(49)
Energy	/ lost fro	m water	· storage	, kWh/ye	ear			(48) x (49)) =			0		(50)
b) If m	nanufact	urer's de	eclared of the second s	cylinder	loss fact	or is not	known:					_	I	(54)
	munity h	age loss leating s	ee secti	on 4.3	ie z (kvv	n/iitre/ua	iy)					0		(51)
Volum	e factor	from Ta	ble 2a	011 1.0								0		(52)
Tempe	erature fa	actor fro	m Table	2b								0		(53)
Energy	/ lost fro	m water	· storage	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter	(50) or ((54) in (5	55)									0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	nual) fro	om Table	e 3		-	-	-			0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m				-	
(moo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	er heati	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)

Combi	loss ca	lculated	for eac	ch month	(61)m =	(60) ÷	365 × (41)m							
(61)m=	50.96	46.02	49.03	45.59	45.19	41.87	7 43.26	45.	19	45.59	49.03	49.31	50.96]	(61)
Total h	eat req	uired for	water	heating c	alculate	d for ea	ach month	(62)	m =	0.85 × ((45)m +	- (46)m +	(57)m ·	– + (59)m + (61)m	
(62)m=	204.84	180.61	187.91	166.67	161.36	142.1	2 136.16	151	.79	153.47	174.75	186.54	199.98]	(62)
Solar DH	W input	calculated	using Ap	opendix G o	r Appendi	x H (neg	ative quantit	y) (ent	ter '0'	if no sola	r contribu	ution to wate	er heating)	
(add ad	dditiona	I lines if	FGHR	S and/or	WWHR	S applie	es, see Ap	penc	dix G	6)	-			_	
(63)m=	0	0	0	0	0	0	0	0)	0	0	0	0		(63)
FHRS	0	0	0	0	0	0	0	0)	0	0	0	0		(63) (G2)
Output	from w	ater hea	ter												
(64)m=	204.84	180.61	187.91	166.67	161.36	142.1	2 136.16	151	.79	153.47	174.75	186.54	199.98		_
									Outp	ut from wa	ater heat	er (annual)	112	2046.2	(64)
Heat g	ains fro	m water	heatin	g, kWh/m	onth 0.2	25 ´ [0.8	35 × (45)m	n + (6	61)m] + 0.8 ×	(46)n	n + (57)m	ı + (59)r	n]	
(65)m=	63.9	56.26	58.44	51.66	49.93	43.8	41.7	46.	74	47.27	54.06	57.96	62.29		(65)
inclu	de (57)	m in calo	culatior	n of (65)m	only if	cylinde	r is in the	dwell	ling	or hot w	ater is	from com	munity	– heating	
5. Int	ernal g	ains (see	e Table	5 and 5a):										
Metabo	olic gair	ns (Table	e 5). Wa	atts											
	Jan	Feb	Mar	Apr	May	Jur	n Jul	A	ug	Sep	Oct	Nov	Dec	7	
(66)m=	126.59	126.59	126.59) 126.59	126.59	126.5	9 126.59	126	.59	126.59	126.59	126.59	126.59	1	(66)
Lightin	g gains	(calcula	ted in <i>i</i>	Appendix	L, equa	tion L9	or L9a), a	lso s	iee T	Table 5		-		-	
(67)m=	21.48	19.08	15.52	11.75	8.78	7.41	8.01	10.4	41	13.98	17.74	20.71	22.08	7	(67)
Appliar	nces ga	ins (calc	ulated	in Appen	dix L, ec	, quation	L13 or L1	3a), a	also	see Ta	ble 5			-	
(68)m=	227.3	229.66	223.71	1 211.06	195.09	180.0	8 170.05	167	.69	173.63	186.28	202.26	217.27	7	(68)
Cookin	ig gains	(calcula	ted in	 Appendix	L, equa	tion L1	5 or L15a), als	o se	e Table	5	- I	1	_	
(69)m=	35.66	35.66	35.66	35.66	35.66	35.66	35.66	35.	66	35.66	35.66	35.66	35.66	7	(69)
Pumps	and fa	ns gains	(Table	9 5a)		1						- I			
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3	3	7	(70)
Losses	s e.a. ev	ı /aporatio	n (nea	ative valu	es) (Tal	ole 5)	- 1						1		
(71)m=	-101.27	-101.27	-101.2	7 -101.27	-101.27	-101.2	.7 -101.27	-101	.27	-101.27	-101.27	-101.27	-101.27	7	(71)
Water	heating	u dains (T	i able 5)			!							_	
(72)m=	85.89	83.71	78.54	71.74	67.1	60.83	3 56.05	62.	83	65.65	72.66	80.5	83.72	7	(72)
Total i	nternal	aains =	I				 66)m + (67)n	ן 1 + (68	3)m +	(69)m + ((70)m + (71)m + (72)m		
(73)m=	398.65	396.43	381.75	5 358.53	334.95	312.3	3 298.09	304	1.9	317.23	340.67	367.44	387.05	7	(73)
6. Sol	ar dain	s:	<u> </u>			1		I							
Solar g	ains are	calculated	using so	lar flux from	Table 6a	and ass	ociated equa	ations	to co	nvert to th	e applica	able orienta	tion.		
Orienta	ation:	Access F	actor	Area	l	F	lux			g_		FF		Gains	
	-	Table 6d		m²		Т	able 6a		Та	able 6b	-	Table 6c		(W)	
North	0.9x	0.77		× 6.:	26	x	10.63	x		0.63	x	0.7	=	20.34	(74)
North	0.9x	0.77		x 2.	16	×	10.63	x		0.63	 	0.7	=	7.02	(74)
North	0.9x	0.77		× 6.:	26	x 🗌	20.32	x		0.63	× [0.7	=	38.88	(74)

x

0.63

x

0.7

x

2.16

x

20.32

North

0.9x

0.77

13.41

(74)

North	0.9x	0.77		x	6.2	6	x	3	4.53] x		0.63	×	0.7	=	66.06	(74)
North	0.9x	0.77		x	2.1	6	x	3	4.53] x		0.63	×	0.7	=	22.79	(74)
North	0.9x	0.77		x	6.2	6	x	5	5.46] x		0.63	×	0.7	= =	106.11	(74)
North	0.9x	0.77		x	2.1	6	x	5	5.46	x		0.63	×	0.7	= =	36.61	(74)
North	0.9x	0.77		x	6.2	6	x	7	4.72] x		0.63	×	0.7	=	142.94	(74)
North	0.9x	0.77		x	2.1	6	x	7	4.72	×		0.63	×	0.7	=	49.32	(74)
North	0.9x	0.77		x	6.2	6	x	7	9.99	x		0.63	x	0.7	=	153.02	(74)
North	0.9x	0.77		x	2.1	6	x	7	9.99	x		0.63	×	0.7	=	52.8	(74)
North	0.9x	0.77		x	6.2	6	x	7	4.68	x		0.63	x	0.7	=	142.87	(74)
North	0.9x	0.77		x	2.1	6	x	7	4.68	x		0.63	×	0.7	=	49.3	(74)
North	0.9x	0.77		x	6.2	6	x	5	9.25	x		0.63	x	0.7	=	113.35	(74)
North	0.9x	0.77		x	2.1	6	x	5	9.25	x		0.63	x	0.7	=	39.11	(74)
North	0.9x	0.77		x	6.2	6	x	4	1.52	x		0.63	x	0.7	=	79.43	(74)
North	0.9x	0.77		x	2.1	6	x	4	1.52	x		0.63	x	0.7	=	27.41	(74)
North	0.9x	0.77		x	6.2	6	x	2	4.19	x		0.63	x	0.7	=	46.28	(74)
North	0.9x	0.77		x	2.1	6	x	2	4.19	x		0.63	x	0.7	=	15.97	(74)
North	0.9x	0.77		x	6.2	6	x	1	3.12	x		0.63	x	0.7	=	25.1	(74)
North	0.9x	0.77		x	2.1	6	x	1	3.12	x		0.63	x	0.7	=	8.66	(74)
North	0.9x	0.77		x	6.2	6	x	8	3.86	x		0.63	x	0.7	=	16.96	(74)
North	0.9x	0.77		x	2.1	6	x	8	3.86	x		0.63	x	0.7	=	5.85	(74)
South	0.9x	0.77		x	3.9	9	x	4	6.75	x		0.63	x	0.7	=	57.01	(78)
South	0.9x	0.77		x	3.9	9	x	7	6.57	x		0.63	x	0.7	=	93.37	(78)
South	0.9x	0.77		x	3.9	9	x	9	7.53	x		0.63	x	0.7	=	118.93	(78)
South	0.9x	0.77		x	3.9	9	x	1	10.23	x		0.63	×	0.7	=	134.42	(78)
South	0.9x	0.77		x	3.9	9	x	1	14.87	x		0.63	x	0.7	=	140.07	(78)
South	0.9x	0.77		x	3.9	9	x	1	10.55	x		0.63	×	0.7	=	134.8	(78)
South	0.9x	0.77		x	3.9	9	x	10	08.01	x		0.63	×	0.7	=	131.71	(78)
South	0.9x	0.77		x	3.9	9	x	10	04.89	x		0.63	×	0.7	=	127.91	(78)
South	0.9x	0.77		x	3.9	9	x	1	01.89	x		0.63	×	0.7	=	124.24	(78)
South	0.9x	0.77		x	3.9	9	x	8	2.59	x		0.63	×	0.7	=	100.7	(78)
South	0.9x	0.77		x	3.9	9	x	5	5.42	×		0.63	×	0.7	=	67.58	(78)
South	0.9x	0.77		x	3.9	9	x	4	40.4	x		0.63	x	0.7	=	49.26	(78)
Solar (gains in	watts, ca	alculat	ted	for each	1 mont	h 1 a	840.62	323.87	(83)m	1 = Sl	um(74)m 231.07	(82)m	101 33	72.07	1	(83)
Total c	ains - i	nternal a	nd so	" Jar	(84)m =	: (73)n	<u>† </u>	(83)m	watts	200	.30	231.07	102.90	101.33	12.01		(00)
(84)m=	483.02	542.09	589.5	54 T	635.67	667.29		600)m	621.96	585	.27	548.3	503.62	468.77	459.12	1	(84)
7 140			orotu	ro (booting					1					[J	
Temr	erature	during b		re (n ne	eriods ir	the liv	/ind	area	from Tak	ole Q	Th	1 (°C)				21	(85)
Utilis	ation fac	ctor for a	ains fo	or li	vina are	a. h1	m (s	see Ta	ble 9a)		,						
2	Jan	Feb	Ma	ır T	Apr	May	/	Jun	Jul	A	ug I	Sep	Oct	Nov	Dec]	
(86)m=	1	1	0.99	,	0.97	0.89		0.71	0.54	0.5	59	0.84	0.98	1	1	4	(86)
	L		l						l	I				1	I	_	

Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Tabl	e 9c)					
(87)m=	20.02	20.14	20.35	20.62	20.85	20.97	21	20.99	20.92	20.63	20.28	20		(87)
Temp	erature	during h	neating p	periods ir	n rest of	dwelling	from Ta	ble 9, Tl	h2 (°C)					
(88)m=	20.13	20.13	20.13	20.14	20.14	20.15	20.15	20.16	20.15	20.14	20.14	20.14		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	1	1	0.99	0.95	0.85	0.63	0.44	0.49	0.78	0.97	0.99	1		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (fo	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	18.8	18.99	19.29	19.68	19.99	20.13	20.15	20.15	20.08	19.71	19.2	18.78		(90)
									f	LA = Livin	g area ÷ (4	4) =	0.39	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	_A × T1	+ (1 – fL	.A) × T2					
(92)m=	19.28	19.44	19.7	20.05	20.33	20.46	20.48	20.48	20.41	20.07	19.62	19.26		(92)
Apply	adjustn	nent to t	he mear	n internal	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	19.28	19.44	19.7	20.05	20.33	20.46	20.48	20.48	20.41	20.07	19.62	19.26		(93)
8. Spa	ace hea	ting req	uirement	t										
Set T	i to the r ilisation	nean int	ternal ter	mperatui	re obtair	ned at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Αυα	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm):										
(94)m=	1	0.99	0.98	0.95	0.86	0.67	0.48	0.53	0.8	0.97	0.99	1		(94)
Usefu	I gains,	hmGm	, W = (9	4)m x (84	4)m									
(95)m=	481.6	538.72	580.6	606.03	573.37	434.24	296.34	309.4	439.89	486.04	465.73	458.11		(95)
Month	nly avera	age exte	ernal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for me	an interr	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=	1191.73	1153.44	1043.93	869.11	670.79	450.07	298.16	312.69	486.95	736.25	978.7	1183.7		(97)
Space	e heatin	g requir	ement fo	r each n	nonth, k	Wh/mont	h = 0.02	24 x [(97])m – (95)m] x (4	1)m			
(98)m=	528.33	413.1	344.71	189.42	72.49	0	0	0	0	186.16	369.34	539.84		_
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	2643.38	(98)
Space	e heatin	g requir	ement in	kWh/m²	²/year								31.53	(99)
9a. En	erav rec	luiremer	nts – Ind	ividual h	eatina s	vstems i	ncludina	micro-C	CHP)					
Spac	e heatir	ng:			<u> </u>				/					
Fracti	on of sp	ace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	on of sp	ace hea	at from n	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1								93.4	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heatin	g system	n, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
Space	e heatin	g requir	ement (c	alculate	d above)								
	528.33	413.1	344.71	189.42	72.49	0	0	0	0	186.16	369.34	539.84		
(211)m	n = {[(98)m x (20	04)] } x 1	00 ÷ (20)6)									(211)
	565.67	442.29	369.07	202.8	77.61	0	0	0	0	199.31	395.44	577.99		
			_					Tota	l (kWh/yea	ar) = Sum(2)	211) _{15,1012}	-	2830.17	(211)

Space heating fuel (secondary), kWh/month

(215)m 0 </th <th>= {[(98</th> <th>)m x (20</th> <th>)1)]}x1</th> <th>00 ÷ (20</th> <th>8)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th>	= {[(98)m x (20)1)]}x1	00 ÷ (20	8)									_	
Water heating 0 (215) Water heating 204.24 150.01 167.91 166.67 161.36 142.12 136.16 151.79 153.47 174.75 186.54 199.98 Efficiency of water heater 80.3 80.3 80.3 80.3 80.3 85.21 86.74 87.43 (217) Fuel for water heating, kWh/month (219)m (240)m x 100.2 (217)m 73.3 27.07 85.52 85.37 83.18 80.3 191.11 205.08 215.06 228.74 (219)m (240)m x 100.2 (217)m (217)m 73.3 27.07 85.22 193.99 176.99 169.57 189.03 191.11 205.08 215.06 228.74 (219)m (243.87 (219)m (243.87 (219)m (2423.87 (219)m 2423.87 (219)m (2423.87 (219)m (230.0)(230g)m (230.0) (230	(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
Water heating Output from water heater (calculated above). 204.84 180.61 187.91 166.67 161.36 142.12 136.16 151.79 153.47 174.75 186.54 199.98 Efficiency of water heater 90.3 80.3 80.3 80.3 80.3 86.21 86.74 87.43 (217) Fuel for water heating, kWh/month (219)m 234.55 207.43 217.08 195.22 193.99 176.99 169.03 191.11 205.08 215.06 228.74 Calculated with out option of the store with a fan-assisted fue Calculate with with year Space heating fuel used KWh/year 2423.87 Calculate with a fan-assisted flue Calculate with a fan-assisted flue Calculate with year Calculate with a fan-assisted flue Space heating (main system 1) (211) x 0.216 75 (231) Calculate with year Sum of (230a)(230g) = Total electricity for tighting Calculate with water									Tota	l (kWh/yea	ar) =Sum(2	2 15) _{15,1012}	2	0	(215)
Output from water heater (calculated above) Image: calculated above)	Water	heating	J												
Lotase Totol Tots/s1	Output	from wa	ater hea	ter (calc	ulated a	bove)	142.42	126.16	454 70	452.47	474 75	196 54	100.00	1	
Lincterly of water heating $1 = 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	Efficier	204.64	ater hea	107.91	100.07	101.30	142.12	130.10	151.79	153.47	174.75	160.04	199.96	00.2	7(216)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(217)m-	87.33	87.07	86 56	85 37	83.18	80.3	80.3	80.3	80.3	85.21	86 74	87.43	60.3	(217)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Eucl fo	r water	heating	k\//b/m		05.10	00.0	00.0	00.0	00.0	00.21	00.74	07.45		(217)
(219)me 234.55 207.43 217.09 195.22 193.99 176.99 169.07 189.03 191.11 205.08 215.06 228.74 (219) Total = Sum(219a)	(219)m	יישמופו <u>1 = (64)</u>	m x 100) ÷ (217)	m										
Total = Sum(219a)_{L_{12}} = 2423.87 (219) Annual totals kWh/year 2230.17 Space heating fuel used, main system 1 2423.87 (219) Water heating fuel used 2423.87 (219) Electricity for pumps, fans and electric keep-hot 20 (230e) central heating pump: 30 (230e) boiler with a fan-assisted flue 45 (230) Total = Sum of (230a)(230g) = 75 (231) Electricity for the above, kWh/year sum of (230a)(230g) = 75 (231) Electricity for lighting Total = Serregy Emission factor Emissions KWh/year 0.216 = 611.32 (261) Space heating (main system 1) (211) x 0.216 = 611.32 (261) Space heating (secondary) (215) x 0.519 = 0 (263) Water heating (261) + (262) + (263) + (264) = = 1134.87 (264) Space and water heating (261) + (262) + (263) + (264) = = 1134.87 (265) Electricity for pumps, fans and electric keep-hot (231) x 0.519<	(219)m=	234.55	207.43	217.09	195.22	193.99	176.99	169.57	189.03	191.11	205.08	215.06	228.74		_
Annual totals kWh/year kWh/year Space heating fuel used, main system 1 2830.17 Water heating fuel used 2423.87 Electricity for pumps, fans and electric keep-hot 30 (230e) boiler with a fan-assisted flue 45 (230e) Total electricity for the above, kWh/year sum of (230a)(230g) = 75 (231) Electricity for lighting 379.37 (232) Lectricity for lighting Emergy kWh/year Emission factor Emissions kg CO2/kWh Space heating (main system 1) (211) x 0.216 = 611.32 (261) Space heating (secondary) (215) x 0.519 = 0 (263) Water heating (261) + (262) + (263) + (264) = 1134.87 (264) Space and water heating (261) + (262) + (263) + (264) = 1134.87 (265) Electricity for pumps, fans and electric keep-hot (231) x 0.519 = 136.83 (267) Electricity for jughting (232) x 0.519 = 1134.87 (265) (267) Electricity for jughting (232) x									Tota	I = Sum(2	19a) ₁₁₂ =			2423.87	(219)
Space heating fuel used, main system 12830.17Water heating fuel used2423.87Electricity for pumps, fans and electric keep-hotcentral heating pump:30(230e)boiler with a fan-assisted flue45(230e)Total electricity for the above, kWh/yearsum of (230a)(230g) =75(231)Electricity for lighting379.37(232) 12a. CO2 emissions – Individual heating systems including micro-CHP Emission factorEmissions kg CO2/kWhkg CO2/kWhSpace heating (main system 1)(211) x0(261)Space heating (secondary)(215) x0.5190(263)Water heating(211) x0.5190(264)Space and water heating(261) + (262) + (263) + (264) =1134.87(264)Space and water heating(261) + (262) + (263) + (264) =1134.87(264)Space and water heating(261) + (262) + (263) + (264) =1134.87(264)Space heating (secondary)(261) + (262) + (263) + (264) =1134.87(264)Space heating (Annua	al totals									k	Wh/year	•	kWh/year	-
Water heating fuel used2423.87Electricity for pumps, fans and electric keep-hot 30 (230c)boiler with a fan-assisted flue 45 (230e)Total electricity for the above, kWh/yearsum of (230a)(230g) =Total electricity for lighting 75 (231)Electricity for lighting 379.37 (232) 12a. CO2 emissions – Individual heating systems including micro-CHPEmergy kWh/yearEmission factor kg CO2/kWhEmissions kg CO2/yearSpace heating (main system 1)(211) x 0.216 = 611.32 (261)Space heating (secondary)(215) x 0.519 = 0 (263)Water heating(219) x 0.216 = 523.56 (264)Space and water heating(261) + (262) + (263) + (264) = 1134.87 (265)Electricity for pumps, fans and electric keep-hot(231) x 0.519 = 38.93 (267)Electricity for lighting(232) x 0.519 = 196.89 (268)Total CO2, kg/yearsum of (265)(271) = 1370.69 (272)	Space	heating	fuel use	ed, main	system	1								2830.17	
Electricity for pumps, fans and electric keep-hotcentral heating pump: 30 (230c)boiler with a fan-assisted flue 45 (230e)Total electricity for the above, kWh/yearsum of (230a)(230g) = 75 (231)Electricity for lighting 379.37 (232)12a. CO2 emissions – Individual heating systems including micro-CHPEmergy kWh/yearEmission factor kg CO2/kWhEmissions kg CO2/yearSpace heating (main system 1)(211) x 0.216 = 611.32 (261)Space heating (secondary)(215) x 0.519 = 0 (263)Water heating(219) x 0.216 = 523.56 (264)Space and water heating(261) + (262) + (263) + (264) = 1134.87 (265)Electricity for pumps, fans and electric keep-hot(231) x 0.519 = 38.93 (267)Electricity for lighting(232) x 0.519 = 196.89 (268)Total CO2, kg/yearsum of (265)(271) = 1370.69 (272)	Water	heating	fuel use	d										2423.87	
central heating pump:30(230c)boiler with a fan-assisted flue45(230c)Total electricity for the above, kWh/yearsum of (230a)(230g) =75(231)Clectricity for lighting75(231)Clectricity for lightingEmergy kWh/yearEmission factor kg CO2/kWhEmissions kg CO2/yearSpace heating (main system 1)(211) x0.2166611.32(261)Space heating (secondary)(215) x0.216523.56(264)Space and water heating(261) + (262) + (263) + (264)=1134.87(265)Electricity for pumps, fans and electric keep-hot(231) x0.519=133.93(267)Electricity for lighting(232) x0.519=133.68Colspan="2">Colspan="2">2023.2523.25Colspan="2">Colspan="2">2.216=2.2162.2162.2162.2162.23.25Colspan="2">2.2162.2162.23.252.22.252.	Electri	city for p	oumps, f	ans and	electric	keep-ho	t								
boiler with a fan-assisted flue 45 (230e) Total electricity for the above, kWh/year sum of (230a)(230g) = 75 (231) Electricity for lighting 379.37 (232) 12a. CO2 emissions – Individual heating systems including micro-CHP Energy Emission factor Emissions kWh/year kg CO2/kWh kg CO2/year Space heating (main system 1) (211) \times 0.216 = 611.32 (261) Space heating (secondary) (215) \times 0.519 = 0 (263) Water heating (219) \times 0.216 = 523.56 (264) Space and water heating (261) + (262) + (263) + (264) = 1134.87 (265) Electricity for pumps, fans and electric keep-hot (231) \times 0.519 = 38.93 (267) Electricity for lighting (232) \times 0.519 = 196.89 (268) Total CO2, kg/year	centra	al heatin	ig pump	:									30]	(230c)
Total electricity for the above, kWh/yearsum of $(230a)(230g) =$ 75(231)Electricity for lighting379.37(232) 12a. CO2 emissions – Individual heating systems including micro-CHP Energy kWh/yearEmission factor kg CO2/kWhEmissions kg CO2/yearSpace heating (main system 1)(211) \times 0.216=611.32(261)Space heating (secondary)(215) \times 0.519=0(263)Water heating(219) \times 0.216=523.56(264)Space and water heating(261) + (262) + (263) + (264) =1134.87(265)Electricity for pumps, fans and electric keep-hot(231) \times 0.519=38.93(267)Electricity for lighting(232) \times 0.519=196.89(268)Total CO2, kg/yearsum of (265)(271) =1370.69(272)	boiler	with a f	an-assis	sted flue									45		(230e)
Electricity for lighting 379.37 (232) 12a. CO2 emissions – Individual heating systems including micro-CHP Energy kWh/yearEmission factor kg CO2/kWhEmissions kg CO2/kWhSpace heating (main system 1) $(211) \times$ 0.216 $=$ Space heating (secondary) $(215) \times$ 0.519 $=$ Water heating $(219) \times$ 0.216 $=$ 523.56 Space and water heating $(261) + (262) + (263) + (264) =$ 1134.87 (265) Electricity for pumps, fans and electric keep-hot $(231) \times$ 0.519 $=$ 38.93 (267) Electricity for lighting $(232) \times$ 0.519 $=$ 196.89 (268) Total CO2, kg/yearsum of $(265)(271) =$ 1370.69 (272)	Total e	electricity	/ for the	above, ł	(Wh/yea	r			sum	of (230a).	(230g) =			75	(231)
12a. CO2 emissions – Individual heating systems including micro-CHPEnergy kWh/yearEmission factor kg CO2/kWhEmissions kg CO2/yearSpace heating (main system 1) $(211) \times $ $0.216 =$ 611.32 (261)Space heating (secondary) $(215) \times $ $0.519 =$ 0 (263)Water heating $(219) \times $ $0.216 =$ 523.56 (264)Space and water heating $(261) + (262) + (263) + (264) =$ 1134.87 (265)Electricity for pumps, fans and electric keep-hot $(231) \times $ $0.519 =$ 38.93 (267)Electricity for lighting $(232) \times $ $0.519 =$ 196.89 (268)Total CO2, kg/yearsum of (265)(271) = 1370.69 (272)	Electri	city for li	ghting											379.37	(232)
Energy kWh/yearEmission factor kg CO2/kWhEmissions kg CO2/kearSpace heating (main system 1) $(211) \times$ 0.216 = 611.32 (261) Space heating (secondary) $(215) \times$ 0.519 = 0 (263) Water heating $(219) \times$ 0.216 = 523.56 (264) Space and water heating $(261) + (262) + (263) + (264) =$ 1134.87 (265) Electricity for pumps, fans and electric keep-hot $(231) \times$ 0.519 = 38.93 (267) Electricity for lighting $(232) \times$ 0.519 = 196.89 (268) Total CO2, kg/yearsum of $(265)(271) =$ 1370.69 (272)	12a. (CO2 em	issions -	– Individ	ual heat	ing syste	ems inclu	uding mi	cro-CHP)					
Space heating (main system 1) $(211) \times$ 0.216 = 611.32 (261) Space heating (secondary) $(215) \times$ 0.519 = 0 (263) Water heating $(219) \times$ 0.216 = 523.56 (264) Space and water heating $(261) + (262) + (263) + (264) =$ 1134.87 (265) Electricity for pumps, fans and electric keep-hot $(231) \times$ 0.519 = 38.93 (267) Electricity for lighting $(232) \times$ 0.519 = 196.89 (268) Total CO2, kg/yearsum of $(265)(271) =$ 1370.69 (272)							En kW	ergy /h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	ar
Space heating (secondary) $(215) \times$ 0.519 = 0 (263) Water heating $(219) \times$ 0.216 = 523.56 (264) Space and water heating $(261) + (262) + (263) + (264) =$ 1134.87 (265) Electricity for pumps, fans and electric keep-hot $(231) \times$ 0.519 = 38.93 (267) Electricity for lighting $(232) \times$ 0.519 = 196.89 (268) Total CO2, kg/yearsum of $(265)(271) =$ 1370.69 (272)	Space	heating	(main s	ystem 1))		(217	l) x			0.2	16	=	611.32	(261)
Water heating $(219) \times$ 0.216 = 523.56 (264) Space and water heating $(261) + (262) + (263) + (264) =$ 1134.87 (265) Electricity for pumps, fans and electric keep-hot $(231) \times$ 0.519 = 38.93 (267) Electricity for lighting $(232) \times$ 0.519 = 196.89 (268) Total CO2, kg/yearsum of $(265)(271) =$ 1370.69 (272)	Space	heating	(second	dary)			(21	5) x			0.5	19	=	0	(263)
Space and water heating (261) + (262) + (263) + (264) = 1134.87 (265) Electricity for pumps, fans and electric keep-hot (231) x 0.519 = 38.93 (267) Electricity for lighting (232) x 0.519 = 196.89 (268) Total CO2, kg/year sum of (265)(271) = 1370.69 (272)	Water	heating					(219	9) x			0.2	16	=	523.56	(264)
Electricity for pumps, fans and electric keep-hot (231) x 0.519 = 38.93 (267) Electricity for lighting (232) x 0.519 = 196.89 (268) Total CO2, kg/year sum of (265)(271) = 1370.69 (272)	Space	and wa	ter heati	ng			(26	I) + (262)	+ (263) + (264) =				1134.87	(265)
Electricity for lighting (232) x 0.519 = 196.89 (268) Total CO2, kg/year sum of (265)(271) = 1370.69 (272)	Electri	city for p	oumps, f	ans and	electric	keep-ho	t (23 ⁻	I) x			0.5	19	=	38.93	(267)
Total CO2, kg/year sum of (265)(271) = 1370.69 (272)	Electri	city for li	ghting				(232	2) x			0.5	19	=	196.89	(268)
	Total C	CO2, kg/	year							sum o	of (265)(2	271) =		1370.69	(272)

TER =

16.35 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 09 August 2016

Property Details: 2nd Floor B GS PV

Dwelling type: Located in: Region: Cross ventilation p Number of storeys: Front of dwelling fa Overshading: Overhangs: Thermal mass para Night ventilation: Blinds, curtains, sh Ventilation rate dur	ossible: aces: meter: nutters: ring hot wa	eather (a	ich):	Flat England Thames v Yes 1 West Average o as detaile Indicative False Dark-colo 3 (Windo	valley or unknown od below e Value Medium oured curtain or r ows open half the	oller blind e time)		
Overneating Detail	э.							
Summer ventilation Transmission heat Summer heat loss	n heat loss loss coeff coefficien	s coeffic ficient: t:	ient:	207.53 40.2 247.72				(P1) (P2)
Overhangs:								
Orientation:	Ratio	:	Z_overhangs:					
South (South) North (North 1) North (North 2)	1.19 0.71 0.71		0.48 0.87 0.87					
Solar shading:								
Orientation:	Z blin	ds:	Solar access:	Ove	erhangs:	Z summer:		
South (South) North (North 1) North (North 2)	0.85 0.85 0.85		1 1 1	0.48 0.87 0.87	3 7 7	0.41 0.74 0.74		(P8) (P8) (P8)
Solar gains:								
Orientation South (South) North (North 1) North (North 2)	1 x 1 x 1 x	Area 3.99 6.26 2.16	Flux 112.21 81.19 81.19	g _ 0.72 0.72 0.72	FF 0.7 0.7 0.7	Shading 0.41 0.74 0.74 Total	Gains 82.94 170.2 58.73 311.86	(P3/P4)
Internal gains:								
Internal gains Total summer gains Summer gain/loss ra Mean summer extern Thermal mass temper Threshold temperatu Likelihood of high	itio nal tempera erature inci ure internal te	ature (T rement mperatu	hames valley) I re	J 4 7 3 1 0 1 1 N	une 49.23 82.86 .16 6 .25 9.41 lot significant	July 430.92 742.78 3 17.9 0.25 21.15 Slight	August 439.31 707.28 2.86 17.8 0.25 20.91 Slight	(P5) (P6) (P7)
Assessment of like	lihood of	high inte	ernal temperatu	re: <u>S</u>	liaht			

Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.3.10 *Printed on 09 August 2016 at 13:36:38*

Project Information	h:				
Assessed By:	David Lloyd (STRO	006228)	Building T	Type: Flat	
Dwelling Details:					
NEW DWELLING	DESIGN STAGE		Total Floor	r Area: 116.37ı	m²
Site Reference :	52 Holmes Rd		Plot Refer	rence: Top	Floor GS PV
Address :	Top Floor GS PV				
Client Details:					
Name: Address :					
This report covers It is not a complete	items included wit e report of regulation	hin the SAP calculation ons compliance.	IS.		
1a TER and DER					
Fuel for main heatin	ng system: Mains gas	6			
Fuel factor: 1.00 (m	ains gas) (ido Emission Poto (17 60 kg	n/m2	
Dwelling Carbon Di	oxide Emission Rate (11.47 kg	μ/m²	ОК
1b TFEE and DFE	E			,	
Target Fabric Energ	gy Efficiency (TFEE)		58.7 kW	h/m²	
Dwelling Fabric Ene	ergy Efficiency (DFE	E)	48.2 kW	h/m²	
					OK
2 Fabric U-values	5	Averege	Lighoot		
Element External w	all	$0.20 (max_0.30)$	0.20 (max	0.70)	ОК
Floor		(no floor)	0.20 (110).	0.10)	ÖK
Roof		0.15 (max. 0.20)	0.15 (max.	. 0.35)	ОК
Openings		1.09 (max. 2.00)	1.10 (max.	3.30)	ОК
2a Thermal bridg	ing				
Thermal b	ridging calculated fro	m linear thermal transmi	ttances for each junctio	'n	
3 Air permeability	/				
Air permeabi Maximum	lity at 50 pascals		5.00 (de 10.0	sign value)	ОК
4 Heating efficien)cv				
Main Heating	i system:	Database: (rev 396, pro	duct index 017556):		
	, -,	Boiler systems with radi Brand name: Worcester Model: Greenstar Model qualifier: 29CDi ((Combi) Efficiency 89.1 % SEDB Minimum 88.0 %	ators or underfloor hea Classic ErP 3UK2009	ting - mains ga	is OK
Secondary h	eating system:	None			

Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	No cylinder		
6 Controls			
Space heating controls	TTZC by plumbing and e	lectrical services	ОК
Hot water controls:	No cylinder		
Boiler interlock:	Yes		ОК
7 Low energy lights			
Percentage of fixed lights with	n low-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (Thames va	lley):	Not significant	ОК
Based on:		-	
Overshading:		Average or unknown	
Windows facing: South		5.8m ²	
Windows facing: North		6.26m ²	
Windows facing: North		2.16m ²	
Windows facing: North		6.2m ²	
Windows facing: South		6.22m ²	
Windows facing: South		1.58m ²	
Ventilation rate:		6.00	
Blinds/curtains:		Dark-coloured curtain or roller blind	b
		Closed 100% of daylight hours	
10 Key features			
Windows U-value		1 1 W/m²K	
Doors U-value		1 W/m²K	
Photovoltaic array			

Top Floor GS PV

Dwelling type: Date of assessment: Produced by: Total floor area: Top floor Flat 09 August 2016 David Lloyd 116.37 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

					User [Details:						
Assessor Name:	Dav	id Lloy	b			Strom	a Num	ber:		STRO	006228	
Software Name:	Stro	ma FS	AP 201	2		Softwa	are Ver	sion:		Versio	on: 1.0.3.10	
				P	roperty	Address	: Top Flo	or GS F	٧٧			
Address :	Тор	Floor G	S PV									
1. Overall dwelling dim	ensions				۸ro	a(m²)			iaht(m)		Volume(m ³)	
Ground floor						a(III-) 16.37	(1a) x	2	2.5	(2a) =	290.93	(3a)
Total floor area TFA = (1a)+(1b))+(1c)+(1d)+(1e)+(1n) 1	16.37	(4)					
Dwelling volume							(3a)+(3b))+(3c)+(3d)+(3e)+	.(3n) =	290.93	(5)
2. Ventilation rate:		-		•							<u> </u>	
Number of chimneys	n h	nain eating	se h □ + □	eating	у Л + Г	other	7 = Г		x 4	40 =	m³ per houi	<u>,</u> 1(6a)
Number of open flues		0		0	」 L コ + ୮	0	」 L ヿ _ Γ	0	x 2	20 =	0	
Number of intermittent f		0		0] L	0		0		10 -	0	
	ans						Ļ	4		10 =	40	(/a)
Number of passive vent	S						Ĺ	0	X '	10 =	0	(7b)
Number of flueless gas	fires							0	X 4	40 =	0	(7c)
										Air ch	anges per ho	ur
Infiltration due to chimne	eys, flue	es and fa	ans = (6	a)+(6b)+(7	a)+(7b)+	(7c) =		40		÷ (5) =	0.14	(8)
If a pressurisation test has	been carr	ried out or	is intende	ed, proceed	d to (17),	otherwise o	continue fro	om (9) to ((16)			_
Number of storeys in	the dwe	lling (ns	5)								0	(9)
Additional infiltration	0 25 for	stool or	timbord	romo or	0 25 fo	r macan	av constr	uction	[(9)-	-1]x0.1 =	0	$\begin{bmatrix} (10) \\ \hline (11) \end{bmatrix}$
if both types of wall are deducting areas of oper	present, u	steer of se the val qual user	umber i lue corres _i 0.35	ponding to	the grea	ter wall are	a (after	uction			0	
If suspended wooden	floor, ei	nter 0.2	(unseal	ed) or 0.	1 (seal	ed), else	enter 0				0	(12)
If no draught lobby, e	nter 0.08	5, else e	enter 0								0	(13)
Percentage of windov	vs and d	loors dr	aught st	ripped							0	(14)
Window infiltration						0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate						(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value	, q50, e: ility volu	xpresse	d in cub (18) - [(1)]	(C metre)	s per he	our per s vise (18) – (quare m	etre of e	nvelope	area	5	$= \begin{pmatrix} (17) \\ (10) \end{pmatrix}$
Air permeability value appl	inty valu	essurisatio	on test has	s been don	e or a de	aree air pe	rmeability	is beina us	sed		0.39	(18)
Number of sides shelter	ed					5 · · · /· ·	,	J			2	(19)
Shelter factor						(20) = 1 -	[0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorpora	ating she	elter fac	tor			(21) = (18) x (20) =				0.33	(21)
Infiltration rate modified	for mon	thly win	d speed								1	
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind s	peed fro	om Tabl	e 7									
(22)m= 5.1 5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (2	22)m ÷ 4	1										
(22a)m= 1.27 1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltr	ation rat	e (allowi	ing for sh	elter an	d wind s	peed) =	(21a) x	(22a)m					
	0.42	0.41	0.4	0.36	0.35	0.31	0.31	0.3	0.33	0.35	0.37	0.39		
Calcula If me	ate ette echanic:	<i>ctive air</i> al ventila	cnange i ition:	rate for ti	ne applik	cable ca	se						0	(23a)
lf exh	aust air h	eat pump	using Appe	endix N, (2	3b) = (23a) × Fmv (e	equation (N	N5)), othe	rwise (23b) = (23a)			0	(23b)
lf bala	anced wit	h heat reco	overy: effic	iency in %	allowing for	or in-use f	actor (from	n Table 4h) =	, , ,			0	(23c)
a) If	balance	ed mech:	, anical ve	entilation	with her	at recove	erv (MVF	HR) (24a	n)m = (22)	2b)m + (23b) x [′	l – (23c)	 ∸ 1001	(200)
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If	balance	ed mecha	I anical ve	entilation	without	heat rec	L coverv (N	L /IV) (24b)m = (22	L 2b)m + (;	1 23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	i ouse ex	ract ver	ntilation c	or positiv	re input v	ventilatio	n from c	outside					
i	if (22b)r	n < 0.5 ×	(23b), t	then (24c	c) = (23b); otherv	wise (24	c) = (22b	o) m + 0.	5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	e positiv	ve input	ventilatio	on from I	oft	•	•			
i	if (22b)r	n = 1, th	en (24d)	m = (22t)m othe	rwise (2	4d)m = (0.5 + [(2	2b)m² x	0.5]	r		l	
(24d)m=	0.59	0.58	0.58	0.57	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.57		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in boy	(25)	i	i		I	
(25)m=	0.59	0.58	0.58	0.57	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.57		(25)
3. He	at losse	s and he	eat loss p	paramete	er:									
ELEN	IENT	Gros area	ss (m²)	Openin m	gs ²	Net Ar A ,r	ea n²	U-valı W/m2	le K	A X U (W/I	<)	k-value kJ/m²⋅ł	e ≺	A X k kJ/K
Doors						1.91	x	1	=	1.91				(26)
Windo	ws Type	e 1				5.8	x1/	/[1/(1.1)+	0.04] =	6.11	_			(27)
Window	ws Type	e 2				6.26	x1/	/[1/(1.1)+	0.04] =	6.6	=			(27)
Windov	ws Type	e 3				2.16	x1/	/[1/(1.1)+	0.04] =	2.28				(27)
Windo	ws Type	e 4				6.2		/[1/(1.1)+	0.04] =	6.53	=			(27)
Windo	ws Type	e 5				6.22		/[1/(1.1)+	0.04] =	6.55	=			(27)
Windov	ws Type	e 6				1.58		/[1/(1.1)+	0.04] =	1.66	=			(27)
Walls ⁻		133	89	28.22	>	105.6	7 X	0.2		21 13			-	(29)
Walls ⁻	Tvpe2	43.1	7	1 91		41.26		0.10		7 77	╡┟		\dashv	(29)
Roof	.,,,,,,	116	27	1.01		116.20		0.15		17.46	╡┟		\dashv	(30)
Total a	irea of e					202.4	2	0.10	[17.40				(31)
* for win	dows and	l roof wind as on both	, ows, use e sides of ir	effective wil	ndow U-va is and part	alue calcul	ated using	formula 1	/[(1/U-valu	ie)+0.04] a	ns given in	paragraph	3.2	
Fabric	heat los	ss. W/K :	= S (A x	U)	o ana part			(26)(30)	+ (32) =				78	(33)
Heat c	apacity	Cm = S((Axk)	- /					((28)	.(30) + (32	2) + (32a).	(32e) =	21826.0	5 (34)
Therm	al mass	parame	ter (TMF	⁻ = Cm ÷	TFA) in	ı kJ/m²K			Indica	tive Value	Medium		250	(35)
For desi	gn asses used inste	sments wh	ere the de	tails of the	, constructi	on are not	t known pr	ecisely the	indicative	values of	TMP in Ta	able 1f		(```'
Therm	al brida	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						14.04	(36)
if details	of therma	al bridging	, are not kn	own (36) =	: 0.15 x (3	1)								` ´
Total fa	abric he	at loss							(33) +	(36) =			92.05	(37)

Ventila	ation hea	at loss ca	alculated	monthl	у				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	56.47	56.14	55.82	54.3	54.02	52.7	52.7	52.46	53.21	54.02	54.59	55.19		(38)
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	148.51	148.19	147.86	146.35	146.07	144.75	144.75	144.5	145.26	146.07	146.64	147.24		
										Average =	Sum(39)1	12 /12=	146.35	(39)
Heat lo	oss para	meter (I	HLP), W	/m²K					(40)m	= (39)m ÷	(4)			
(40)m=	1.28	1.27	1.27	1.26	1.26	1.24	1.24	1.24	1.25	1.26	1.26	1.27	4.00	(40)
Numb	er of day	/s in mo	nth (Tab	le 1a)					,	Average =	Sum(40)1.	12 / 12=	1.20	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			-		-	-		-	-	-	-			
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
Assum if TF	A > 13	ipancy, 9 N = 1	N + 1 76 x	[1 - exp	(-0 0003	349 x (TF	- A -13 9)2)] + 0 ()013 x (⁻	TFA -13	2.	85		(42)
if TF	A £ 13.9	9, N = 1			(0.0000)_)] · •••			•)			
Annua	l averag	e hot wa	ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36	a targat a	10 ⁻	1.84		(43)
not mor	e that 125	litres per	person pe	r day (all w	ater use, l	hot and co	ld)	o acriieve	a waler us	se largel u	I			
	lan	Feb	Mar	Anr	May	lun	lul	Διια	Sen	Oct	Nov	Dec		
Hot wat	er usage i	n litres per	r day for ea	ach month	Vd,m = fa	ctor from 1	Table 1c x	(43)	0ep		NOV	Dec		
(44)m=	112.03	107.95	103.88	99.81	95.73	91.66	91.66	95.73	99.81	103.88	107.95	112.03		
()			100100			01100	0.000			Total = Su	m(44) ₁₁₂ =		1222.12	(44)
Energy	content of	hot water	used - ca	culated me	onthly $= 4$.	190 x Vd,r	n x nm x D	0Tm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	166.13	145.3	149.94	130.72	125.43	108.24	100.3	115.09	116.47	135.73	148.16	160.89		
										Total = Su	m(45) ₁₁₂ =	=	1602.39	(45)
lf instan	taneous w	ater heati	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46) to (61)					
(46)m=	24.92	21.8	22.49	19.61	18.81	16.24	15.04	17.26	17.47	20.36	22.22	24.13		(46)
Storag	storage	1055. 10 (litros)) includir	na anv si	olar or M	////HRS	storane	within s	ame ves	ما		0		(47)
If com	munity h	eating a	and no te	nk in dw	velling e	nter 110	litres in	(47)		001		0		(47)
Otherv	vise if no	o stored	hot wate	er (this in	ncludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water	storage	loss:		,					,	,	,			
a) If n	nanufact	urer's d	eclared l	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
Energ	y lost fro	m water	storage	e, kWh/ye	ear			(48) x (49) =			0		(50)
b) If m	nanufact	urer's de	eclared (cylinder com Tobl	loss fact	or is not	known:							(54)
If com	munity h	age ioss leating s	see secti	on 4.3		n/nne/ua	iy)					0		(51)
Volum	e factor	from Ta	ble 2a									0		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)
Energy	y lost fro	m watei	r storage	, kWh/ye	ear			(47) x (51) x (52) x (53) =		0		(54)
Enter	(50) or ((54) in (5	55)	-								0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
			•	•	•	•		•	•	•	•	·		

If cylinde	er contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	nual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m				I	
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	er heati	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41)m						
(61)m=	38.44	34.72	38.44	37.2	38.44	37.2	38.44	38.44	37.2	38.44	37.2	38.44		(61)
Total h	eat requ	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	204.57	180.02	188.37	167.92	163.86	145.43	138.73	153.53	153.66	174.17	185.36	199.33		(62)
Solar Dł	-IW input of	calculated	using App	endix G or	· Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contribut	on to wate	er heating)	J	
(add a	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix C	S)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
FHRS	64.23	51	45.11	31.01	20.66	10.96	10.22	11.58	11.7	32.18	49.15	64.3	'	(63) (G2)
Output	from w	ater hea	ter											
(64)m=	140.34	129.02	143.26	136.91	143.2	134.47	128.51	141.95	141.96	141.98	136.2	135.02		
								Outp	out from wa	ater heate	r (annual)₁	12	1652.83	(64)
Heat g	ains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 >	(46)m	+ (57)m	+ (59)m]	_
(65)m=	64.85	56.99	59.46	52.76	51.31	45.29	42.96	47.88	48.02	54.74	58.56	63.11		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	olic gain	s (Table	5) Wat	ts										
motab	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	142.41	142.41	142.41	142.41	142.41	142.41	142.41	142.41	142.41	142.41	142.41	142.41		(66)
Lightin	g gains	(calcula	ted in Ap	pendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5				I	
(67)m=	25	22.2	18.06	13.67	10.22	8.63	9.32	12.12	16.26	20.65	24.1	25.69		(67)
Applia	nces ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5]	
(68)m=	280.41	283.32	275.99	260.38	240.67	222.15	209.78	206.87	214.2	229.81	249.52	268.04		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a), also se	e Table	5			1	
(69)m=	37.24	37.24	37.24	37.24	37.24	37.24	37.24	37.24	37.24	37.24	37.24	37.24		(69)
Pumps	and fai	ns gains	(Table {	ь									1	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	se.a. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)	<u> </u>			<u> </u>			1	
(71)m=	-113.93	-113.93	-113.93	-113.93	-113.93	-113.93	-113.93	-113.93	-113.93	-113.93	-113.93	-113.93		(71)
Water	heating	gains (T	able 5)	I	I	I	I			1			1	
(72)m=	87.16	84.81	79.92	73.28	68.97	62.9	57.74	64.35	66.7	73.57	81.34	84.82		(72)
Total i	nternal	gains =		ļ	ļ	(66)	u m + (67)m	ı + (68)m +	- (69)m + (ı (70)m + (7	1)m + (72)	m	1	
(73)m=	461.29	459.05	442.69	416.05	388.58	362.4	345.56	352.06	365.89	392.76	423.68	447.27		(73)
6 50	lar gains									I				

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orienta	ition:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.77	x	6.26	×	10.63) x	0.72	x	0.7] =	23.25	(74)
North	0.9x	0.77	x	2.16	x	10.63	x	0.72	x	0.7	=	8.02	(74)
North	0.9x	0.77	x	6.2	x	10.63	x	0.72	x	0.7	=	23.03	(74)
North	0.9x	0.77	x	6.26	×	20.32	x	0.72	×	0.7	=	44.43	(74)
North	0.9x	0.77	x	2.16	×	20.32	x	0.72	×	0.7] =	15.33	(74)
North	0.9x	0.77	x	6.2	×	20.32	x	0.72	×	0.7] =	44	(74)
North	0.9x	0.77	x	6.26	x	34.53	x	0.72	x	0.7] =	75.5	(74)
North	0.9x	0.77	x	2.16	x	34.53	x	0.72	x	0.7] =	26.05	(74)
North	0.9x	0.77	x	6.2	×	34.53	x	0.72	x	0.7] =	74.77	(74)
North	0.9x	0.77	x	6.26	×	55.46	x	0.72	×	0.7] =	121.27	(74)
North	0.9x	0.77	x	2.16	×	55.46	x	0.72	×	0.7] =	41.84	(74)
North	0.9x	0.77	x	6.2	×	55.46	x	0.72	×	0.7	=	120.11	(74)
North	0.9x	0.77	x	6.26	×	74.72	x	0.72	×	0.7	=	163.36	(74)
North	0.9x	0.77	x	2.16	x	74.72	x	0.72	x	0.7	=	56.37	(74)
North	0.9x	0.77	x	6.2	×	74.72	x	0.72	×	0.7] =	161.8	(74)
North	0.9x	0.77	x	6.26	×	79.99	x	0.72	×	0.7	=	174.88	(74)
North	0.9x	0.77	x	2.16	×	79.99	x	0.72	x	0.7] =	60.34	(74)
North	0.9x	0.77	x	6.2	×	79.99	x	0.72	×	0.7] =	173.21	(74)
North	0.9x	0.77	x	6.26	×	74.68	x	0.72	x	0.7	j =	163.28	(74)
North	0.9x	0.77	x	2.16	x	74.68	x	0.72	x	0.7	=	56.34	(74)
North	0.9x	0.77	x	6.2	×	74.68	x	0.72	×	0.7] =	161.71	(74)
North	0.9x	0.77	x	6.26	x	59.25	x	0.72	x	0.7] =	129.54	(74)
North	0.9x	0.77	x	2.16	x	59.25	x	0.72	x	0.7] =	44.7	(74)
North	0.9x	0.77	x	6.2	x	59.25	x	0.72	x	0.7] =	128.3	(74)
North	0.9x	0.77	x	6.26	x	41.52	x	0.72	x	0.7	=	90.77	(74)
North	0.9x	0.77	x	2.16	x	41.52	x	0.72	x	0.7] =	31.32	(74)
North	0.9x	0.77	x	6.2	x	41.52	x	0.72	x	0.7] =	89.9	(74)
North	0.9x	0.77	x	6.26	x	24.19	x	0.72	x	0.7	=	52.89	(74)
North	0.9x	0.77	x	2.16	x	24.19	x	0.72	x	0.7	=	18.25	(74)
North	0.9x	0.77	x	6.2	x	24.19	x	0.72	x	0.7	=	52.38	(74)
North	0.9x	0.77	x	6.26	x	13.12	x	0.72	x	0.7	=	28.68	(74)
North	0.9x	0.77	x	2.16	x	13.12	x	0.72	x	0.7	=	9.9	(74)
North	0.9x	0.77	x	6.2	x	13.12	x	0.72	x	0.7	=	28.41	(74)
North	0.9x	0.77	x	6.26	x	8.86	x	0.72	x	0.7	=	19.38	(74)
North	0.9x	0.77	x	2.16	x	8.86	x	0.72	x	0.7] =	6.69	(74)
North	0.9x	0.77	x	6.2	×	8.86	x	0.72	×	0.7] =	19.2	(74)
South	0.9x	0.77	x	5.8	×	46.75	x	0.72	×	0.7	=	94.71	(78)
South	0.9x	0.77	x	6.22	×	46.75	x	0.72	×	0.7] =	101.57	(78)
South	0.9x	0.77	x	1.58	x	46.75	x	0.72	x	0.7] =	25.8	(78)

South	0.9x	0.77		x	5.8		x	76.57] x	0	.72	א ר <mark>א ר</mark>	0.7		155.11	(78)
South	0.9x	0.77		x	6.22		x	76.57	」 】 x	0	0.72	ı x Г	0.7	=	166.34	(78)
South	0.9x	0.77		x	1.58		x	76.57	」 】 x	0	.72	ı L TxT	0.7	=	42.25	(78)
South	0.9x	0.77		x	5.8		x	97.53	」 】 ×	0	0.72	ı x I	0.7	=	197.58	(78)
South	0.9x	0.77		x	6.22		x	97.53	」 】 x	0	0.72	ı x Г	0.7	=	211.89	(78)
South	0.9x	0.77		x	1.58		x	97.53	」 】 ×	0	.72	ı L Ix C	0.7		53.82	(78)
South	0.9x	0.77		x	5.8		x	110.23	」 】 × 【	0	.72	ı L X	0.7	=	223.31	(78)
South	0.9x	0.77		x	6.22		x	110.23	」 】 ×	0	0.72	ı x I	0.7	=	239.48	(78)
South	0.9x	0.77		x	1.58		x	110.23	」 】 x	0	.72		0.7	=	60.83	(78)
South	0.9x	0.77		x	5.8		x	114.87] x	0	.72	i x l	0.7	=	232.7	(78)
South	0.9x	0.77		x	6.22		x	114.87] x	0	.72	i x i	0.7	=	249.55	(78)
South	0.9x	0.77		x	1.58		x	114.87] x	0	.72	i x l	0.7	=	63.39	(78)
South	0.9x	0.77		x	5.8		x	110.55] x	0	.72	i x i	0.7	=	223.95	(78)
South	0.9x	0.77		x	6.22		x	110.55] x	0	.72	i x i	0.7		240.16	(78)
South	0.9x	0.77	=	x	1.58		x	110.55] x	0).72		0.7	=	61.01	(78)
South	0.9x	0.77		x	5.8		x	108.01] ×	0).72	i × i	0.7		218.81	(78)
South	0.9x	0.77		x	6.22		x	108.01] x	0).72	i × i	0.7	= =	234.65	(78)
South	0.9x	0.77		x	1.58		x	108.01] x	0	.72	i × i	0.7	=	59.61	(78)
South	0.9x	0.77		x	5.8		x	104.89] ×	0	.72	ī × i	0.7	=	212.49	(78)
South	0.9x	0.77		x	6.22		x	104.89	x	0	.72	i × i	0.7	=	227.88	(78)
South	0.9x	0.77		x	1.58		x	104.89	x	0	.72	- ×	0.7	=	57.89	(78)
South	0.9x	0.77		x	5.8		x	101.89] ×	0	.72	ī × Ī	0.7	=	206.4	(78)
South	0.9x	0.77		x	6.22		x	101.89	x	0	.72	×	0.7	=	221.34	(78)
South	0.9x	0.77		x	1.58		x	101.89	x	0	.72	- ×	0.7	=	56.23	(78)
South	0.9x	0.77		x	5.8		x	82.59	x	0	.72	×	0.7	=	167.3	(78)
South	0.9x	0.77		x	6.22		x	82.59	x	0	.72	×	0.7	=	179.41	(78)
South	0.9x	0.77		x	1.58		x	82.59	_ ×	0	.72	x	0.7	=	45.57	(78)
South	0.9x	0.77		x	5.8		x	55.42	x	0	.72	×	0.7	=	112.26	(78)
South	0.9x	0.77		x	6.22		x	55.42	x	0	.72	×	0.7	=	120.39	(78)
South	0.9x	0.77		x	1.58		x	55.42	x	0	.72	×	0.7	=	30.58	(78)
South	0.9x	0.77		x	5.8		x	40.4	x	0).72	×	0.7	=	81.84	(78)
South	0.9x	0.77		x	6.22		x	40.4	x	0	.72	×	0.7	=	87.76	(78)
South	0.9x	0.77		x	1.58		x	40.4	x	0).72	×	0.7	=	22.29	(78)
Solar	gains in	watts, ca	lculate	ed	for each	month	۱ 		(83)m	ı = Sum	(74)m	.(82)m	· · · ·		1	
(83)m=	276.37	467.47	639.62	2	806.85	927.17	9	33.55 894.39	800	.79 6	95.97	515.81	330.22	237.16	J	(83)
rotal	gains – i	Internal ar	nd sol	ar	(84)m = ((73)m	+ (83)m , watts	i						1	
(84)m=	737.67	926.52	1082.3	1	1222.9 1	315.76	12	295.95 1239.95	1152	2.85 10	061.85	908.57	753.9	684.43		(84)
7 14	a a la ta			~ 1												

Temperature during heating periods in the living area from Table 9, Th1 (°C)

Utilisation factor for gains for living area, h1,m (see Table 9a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

21

(85)

(86)m=	1	0.99	0.98	0.94	0.84	0.67	0.5	0.56	0.8	0.96	0.99	1		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	7 in Tabl	e 9c)					
(87)m=	19.62	19.84	20.14	20.51	20.8	20.95	20.99	20.98	20.88	20.49	19.98	19.58		(87)
Temp	erature	during h	neating p	beriods ir	n rest of	dwelling	from Ta	able 9, Tl	h2 (°C)					
(88)m=	19.86	19.86	19.86	19.87	19.88	19.89	19.89	19.89	19.88	19.88	19.87	19.87		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	1	0.99	0.97	0.92	0.78	0.57	0.38	0.43	0.72	0.94	0.99	1		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ng T2 (f	ollow ste	eps 3 to 7	7 in Tabl	le 9c)				
(90)m=	18.04	18.36	18.79	19.31	19.68	19.85	19.88	19.88	19.79	, 19.3	18.57	17.99		(90)
									f	fLA = Livin	g area ÷ (4	4) =	0.28	(91)
Mean	interna	l temper	ature (fc	or the wh	ole dwe	llina) = fl	LA × T1	+ (1 – fL	A) × T2			•		_
(92)m=	18.49	18.78	19.18	19.65	20	20.16	20.2	20.19	20.1	19.64	18.97	18.44		(92)
Apply	adjustn	nent to t	he mear	n internal	l temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	18.49	18.78	19.18	19.65	20	20.16	20.2	20.19	20.1	19.64	18.97	18.44		(93)
8. Sp	ace hea	ting requ	uirement											
Set T	i to the r	nean int	ernal ter	mperatui	re obtair	ned at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	llisation	Tactor to	or gains			luna	11	A	Can	Ort	Nov	Dee		
Litilior	Jan Jan	Feb	iviar	Apr	iviay	Jun	Jui	Aug	Sep	Oct	INOV	Dec	i -	
(94)m=	0.99	0.99	0.97	0.91	0.79	0.59	0.42	0.47	0.73	0.94	0.99	1		(94)
Usefu	l gains.	hmGm	W = (94	4)m x (84	4)m	0.00	0112	••••	0.1.0	0.01	0.00			
(95)m=	733.93	913.75	1044.92	1112.83	1037.95	770.88	515.4	539.4	780.3	852.74	745.26	681.92		(95)
Month	nly avera	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an interr	al tempe	erature,	Lm , W =	- =[(39)m	x [(93)m	– (96)m]				
(97)m=	2107.16	2056.74	1874.46	1573.14	1212.32	805.41	520.45	548.07	871.37	1319.92	1740.39	2096.76		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	Wh/mon	th = 0.02	24 x [(97)m – (95)m] x (4	1)m			
(98)m=	1021.68	768.09	617.17	331.42	129.73	0	0	0	0	347.59	716.49	1052.64		_
								Tota	l per year	(kWh/year	[.]) = Sum(9	8)15,912 =	4984.82	(98)
Space	e heatin	g require	ement in	kWh/m ²	/year								42.84	(99)
9a. En	ergy rec	uiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	g micro-C	CHP)			-		
Spac	e heatir	ng:												
Fracti	on of sp	ace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	ion of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	– (201) =				1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1								90	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heatin	g systen	ו, %						0	(208)
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Αυα	Sep	Oct	Nov	Dec	kWh/ve	l ar
Space	e heatin	a require	ement (c	alculate	d above)	- Cui	, lug	000			200		
•	1021.68	768.09	617.17	331.42	129.73	0	0	0	0	347.59	716.49	1052.64		
(211)m	n = {[(98)m x (20	4)]}x1	00 ÷ (20)6)									(211)
. ,	1135.2	853.43	685.75	368.25	, 144.15	0	0	0	0	386.21	796.1	1169.6		
								Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	=	5538.69	(211)

Space heating fuel (secondary), kWh/month

= {[(98])m x (2()1)] } x 1	$00 \div (20)$	8)	montin									
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
								Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	<i>;</i> =	0	(215)
Water	heating	9												_
Output	from w	ater hea	$\frac{\text{ter}(\text{calc})}{143.26}$	ulated a	bove)	124 47	129.51	141.05	141.06	1/1 08	126.2	125.02	1	
Efficier	140.34	ater hea		130.91	143.2	134.47	120.51	141.95	141.90	141.90	130.2	133.02	86.7	7(216)
(217)m=	89.59	89.51	89.36	89.01	88.24	86.7	86.7	86.7	86.7	89.02	89.46	89.61		(217)
Fuel fo	or water	heating,	kWh/mo	onth									1	
(219)m	1 = (64)	m x 100	$) \div (217)$	m	162.20	155 1	149.22	162 72	162 74	150.5	152.26	150.69	1	
(219)11=	150.04	144.14	100.32	155.01	102.29	155.1	140.23	Tota	I = Sum(2)	19a), ₄₂ =	152.20	150.00	1870 43	7(219)
Annua	I totals									k'	Wh/year		kWh/year	
Space	heating	fuel use	ed, main	system	1						,		5538.69]
Water	heating	fuel use	ed										1870.43	Ī
Electric	city for p	oumps, f	ans and	electric	keep-ho	t								
centra	al heatin	ig pump	:									30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e)
Total e	electricity	y for the	above, l	(Wh/yea	r			sum	of (230a).	(230g) =			75	(231)
Electric	city for li	ighting											441.48	(232)
Electric	city gene	erated b	y PVs										-1027.71	(233)
12a. (CO2 em	issions	– Individ	ual heat	ing syste	ems inclu	uding mi	cro-CHF)					
						En kW	e rgy /h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	ar
Space	heating	(main s	ystem 1)		(21	1) x			0.2	16	=	1196.36	(261)
Space	heating	(secon	dary)			(21	5) x			0.5	19	=	0	(263)
Water	heating					(219	9) x			0.2	16	=	404.01	(264)
Space	and wa	ter heat	ng			(26	1) + (262)	+ (263) + (264) =				1600.37	(265)
Electric	city for p	oumps, f	ans and	electric	keep-ho	t (23 ⁻	1) x			0.5	19	=	38.93	(267)
Electric	city for li	ighting				(232	2) x			0.5	19	=	229.13	(268)
Energy Item 1	/ saving	/genera	tion tech	nologies	i					0.5	19	=	-533.38	(269)
Total C	CO2, kg/	/year							sum o	of (265)(2	271) =		1335.05	(272)
Dwelli	ng CO2	Emissi	on Rate						(272)	÷ (4) =			11.47	(273)
EI ratir	ng (secti	on 14)											89	(274)

					User D	Details:						
Assessor Name:	David	l			Strom	a Num	ber:		STRO	006228		
Software Name:	Strom	na FSA	AP 201	2		Softwa	are Ver	sion:		Versio	n: 1.0.3.10	
				P	roperty	Address	: Top Flo	or GS F	٧٧			
Address :	Top Fl	loor GS	SPV									
1. Overall dwelling dim	ensions:				۸ro	a(m²)			iaht(m)		Volume(m ³)	
Ground floor					1	16.37	(1a) x	2	2.5	(2a) =	290.93	(3a)
Total floor area TFA = (1	la)+(1b)+	(1c)+(1	1d)+(1e)+(1n) 1	16.37	(4)					
Dwelling volume					L		(3a)+(3b))+(3c)+(3d)+(3e)+	.(3n) =	290.93	(5)
2. Ventilation rate:		_				_						
Number of chimpeys	ma hea	ain ating	se h]+ [eating	у ヿ + Г	other	┑_┌	total	× 4	40 =	m ³ per hou	– –
Number of open flues		0		0		0		0		20 -	0	
Number of open lives		0		0	JĽ	0	」⁻└	0			0	(60)
Number of intermittent fa	ans							4	X 1	0 =	40	(7a)
Number of passive vents	S							0	x 1	0 =	0	(7b)
Number of flueless gas f	fires							0	x 4	40 =	0	(7c)
										Air ch	anges per ho	ur
Infiltration due to chimne	eys, flues	and fa	ns = <mark>(6</mark> 8	a)+(6b)+(7	a)+(7b)+((7c) =	Γ	40		÷ (5) =	0.14	(8)
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)												_
Number of storeys in t	the dwelli	ng (ns))								0	(9)
Additional infiltration) 25 for ot	tool or	timbor f	romo or	0.25 fo	r maaan	a constr	uction	[(9)-	1]x0.1 =	0	
if both types of wall are p	D.25 IOI St present, use ings): if equ	e the valu	umber i Je corresj	ponding to	the grea	ter wall are	y constr a (after	uction			0	_(¹¹⁾
If suspended wooden	floor, ent	er 0.2 (unseal	ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, er	nter 0.05,	else e	nter 0								0	(13)
Percentage of window	s and do	ors dra	aught st	ripped							0	(14)
Window infiltration						0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate						(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value	, q50, exp	pressed	d in cub	ic metre	s per ho	our per se	quare m	etre of e	nvelope	area	5	(17)
If based on air permeabl	ility value	, then	(18) = [(1)]	7) ÷ 20]+(8	s), otherw	ise (18) = (groo air po	(16) rmoobility	is hoing u	od		0.39	(18)
Number of sides shelter	es il a piess ed	sunsauor	1 1631 1183	been uun	eoraue	yree all pei	ineability	is being us	seu		2] (19)
Shelter factor						(20) = 1 -	[0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorpora		$(21) = (18) \times (20) = 0.33$						(21)				
Infiltration rate modified	for month	nly wind	d speed			-						_
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind s	peed from	n Table	e 7				-		-			
(22)m= 5.1 5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (2	22)m ÷ 4											
(22a)m= 1.27 1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltra	ation rat	e (allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m	_				
~	0.42	0.41	0.4	0.36	0.35	0.31	0.31	0.3	0.33	0.35	0.37	0.39		
Calcula If me	ate ettec chanica	tive air	change i ition:	rate for t	he appli	cable ca	se						0	(23a)
lf exh	aust air he	eat pump	usina Appe	endix N. (2	3b) = (23a	i) x Fmv (e	equation (N	15)) . othe	rwise (23b) = (23a)			0	(23a)
lf bala	anced with	heat reco	overv: effic	iencv in %	allowing f	or in-use fa	actor (from	n Table 4h) =	, (,			0	(230)
a) If	halanco	d mach	anicalve		with hor	at recove	anu (MA)/F		(2)	2b)m ± ('	23h) v [[,]	1 _ (23c)	· 1001	(230)
(24a)m=					0	0		0			0	1 - (200)	÷ 100]	(24a)
(,	halanco	d mech	anical ve		without	heat rec		 1\/) (21h	$\int_{-\infty}^{\infty}$	$\frac{1}{2}$	23h)	Ů		
(24b)m=					0			0			0	0	l	(24b)
(2 is)iii-			tract ver				ventilatio	n from c		Ů		Ŭ		
i c)	f (22b)n	1 < 0.5	(23b), t	hen (240	c) = (23b); otherv	vise (24	c) = (22k	b) m + 0.	.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	e positiv	/e input v	ventilatio	n from l	oft			Į		
í	f (22b)n	n = 1, th	en (24d)	m = (22k)m othe	rwise (2	4d)m = (0.5 + [(2	2b)m² x	0.5]				
(24d)m=	0.59	0.58	0.58	0.57	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.57		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in boy	(25)	-		-		
(25)m=	0.59	0.58	0.58	0.57	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.57		(25)
3. He	at losse	s and he	eat loss r	paramete	er:									
ELEN	IENT	Gros	SS	Openin	gs	Net Ar	ea	U-valı	Je	AXU		k-value	9	AXk
		area	(m²)	. m	2	A ,n	n²	W/m2	K	(W/I	<)	kJ/m²∙ł	<	kJ/K
Doors						1.91	x	1	=	1.91				(26)
Window	ws Type	1				5.59	x1/	/[1/(1.4)+	0.04] =	7.41				(27)
Window	ws Type	2				6.03	x1/	/[1/(1.4)+	0.04] =	7.99				(27)
Windov	ws Type	3				2.08	x1/	/[1/(1.4)+	0.04] =	2.76				(27)
Window	ws Type	4				5.97	x1/	/[1/(1.4)+	0.04] =	7.91				(27)
Window	ws Type	5				5.99	x1/	/[1/(1.4)+	0.04] =	7.94				(27)
Window	ws Type	6				1.52	x1/	/[1/(1.4)+	0.04] =	2.02				(27)
Walls -	Гуре1	133.	89	27.18	3	106.7	1 X	0.18		19.21	Ξ r			(29)
Walls -	Гуре2	43.1	7	1.91		41.26	; x	0.18	= [7.43	ה ה		i F	(29)
Roof		116.	37	0		116.3	7 X	0.13	= 	15.13	5		\dashv	(30)
Total a	rea of e	lements	, m²	L		293.4	3		(L			(31)
* for win ** includ	dows and e the area	roof wind s on both	ows, use e sides of in	effective wil nternal wall	ndow U-va 's and part	alue calculations	ated using	formula 1	/[(1/U-valı	ıe)+0.04] a	ns given in	paragraph	3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30)	+ (32) =				79.7	1 (33)
Heat c	apacity	Cm = S	(Axk)	,					((28)	(30) + (32	2) + (32a).	(32e) =	22023.	.65 (34)
Therm	al mass	parame	ter (TMF	⁻ = Cm ÷	- TFA) in	n kJ/m²K			Indica	tive Value:	Medium		250	(35)
For desi can be u	gn assess ised instea	ments wh ad of a de	ere the de	tails of the	constructi	ion are not	t known pr	ecisely the	e indicative	values of	TMP in Ta	able 1f		
Therm	al bridae	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						13.6	6 (36)
if details	of therma	l bridging	are not kn	own (36) =	= 0.15 x (3	1)							10.00	()
Total fa	abric he	at loss		. ,	·			93.3	7 (37)					

Ventila	ation hea	at loss ca	alculated	d monthly	y				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	56.47	56.14	55.82	54.3	54.02	52.7	52.7	52.46	53.21	54.02	54.59	55.19		(38)
Heat ti	ransfer c	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	149.84	149.51	149.19	147.67	147.39	146.07	146.07	145.83	146.58	147.39	147.96	148.56		
							-			Average =	Sum(39)1.	12 /12=	147.67	(39)
Heat lo	oss para	meter (H	HLP), W	/m²K	4.07	4.00	4.00	4.05	(40)m	= (39)m ÷	(4)			
(40)m=	1.29	1.28	1.28	1.27	1.27	1.26	1.26	1.25	1.26	1.27	1.27	1.28	1.07	
Numbe	er of day	vs in mo	nth (Tab	le 1a)					,	Average =	Sum(40)1.	12 / 12=	1.27	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			!											
4. Wa	ater heat	ting ene	ray reau	irement:								kWh/yea	ar:	
		Ŭ												
Assum if TF	A > 13	ipancy, 9 N = 1	N + 1 76 x	[1 - exp	(-0.0003	349 x (TF	- A -13 9)2)] + 0 ()013 x (⁻	ΓFA -13	<u>2.</u> 9)	85		(42)
if TF	A £ 13.9	9, N = 1		i onp	(0.0000	, io x (ii		/_/] · on			0)			
Annua	l averag	e hot wa	ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36	o torgot o	10 ⁻	1.84		(43)
not more	e that 125	litres per	person pe	r day (all w	ater use, l	hot and co	ld)	lo acriieve	a waler us	e largel u	1			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Αυσ	Sen	Oct	Nov	Dec		
Hot wate	er usage ii	n litres per	r day for ea	ach month	Vd,m = fa	ctor from 1	Table 1c x	(43)		001	1107	000		
(44)m=	112.03	107.95	103.88	99.81	95.73	91.66	91.66	95.73	99.81	103.88	107.95	112.03		
				ļ					-	Fotal = Su	m(44) ₁₁₂ =	=	1222.12	(44)
Energy	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D	0Tm / 3600) kWh/mor	oth (see Ta	bles 1b, 1	c, 1d)		
(45)m=	166.13	145.3	149.94	130.72	125.43	108.24	100.3	115.09	116.47	135.73	148.16	160.89		
lf instan	tanoous u	ator hooti	ng at pain	f uso (no	hot wata	r storago)	ontor 0 in	hovos (16) to (61)	Total = Su	m(45) ₁₁₂ =	-	1602.39	(45)
						siorage),					00.00			(40)
(46)m= Water	storage	21.8 loss:	22.49	19.61	18.81	16.24	15.04	17.26	17.47	20.36	22.22	24.13		(46)
Storag	e volum	e (litres)) includir	ng any so	olar or W	WHRS	storage	within sa	ame ves	sel		0		(47)
If com	munity h	eating a	and no ta	ink in dw	velling, e	enter 110	litres in	(47)						
Otherv	vise if no	stored	hot wate	er (this ir	ncludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)			
Water	storage	loss:		<i>.</i>		(1) • (1	(1)							
a) If m 	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kvvr	n/day):					0		(48)
i empe	erature ta	actor fro	m Table	20				(10) (10)				0		(49)
Energy b) If m	/ lost fro hanufact	m watei urer's di	r storage eclared (e, KVVh/ye cylinder l	ear loss fact	or is not	known.	(48) X (49) =			0		(50)
Hot wa	ater stora	age loss	factor fi	om Tabl	e 2 (kW	h/litre/da	iy)					0		(51)
If com	munity h	eating s	see secti	on 4.3										
Volum -	e factor	from Ta	ble 2a									0		(52)
Tempe	erature fa	actor fro	m Table	20								0		(53)
Energy	/ lost fro	m water	r storage	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
		(04) IN (8	oulotod :	for oach	month			((EG)~~ (EE) ~ (44)	~		U		(55)
vvaler	Siorage							((00)11) = (ວວງ x (41)I					
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)

If cylinde	er contains	s dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	inual) fro	om Table	e 3	-	-					0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	om Tab	le H5 if t	here is s	solar wat	er heati	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	50.96	46.03	50.96	49.22	48.78	45.2	46.71	48.78	49.22	50.96	49.32	50.96		(61)
Total h	eat requ	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	217.09	191.33	200.9	179.94	174.21	153.44	147	163.88	165.68	186.69	197.47	211.85		(62)
Solar DI	-IW input of	calculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contributi	on to wate	er heating)	I	
(add a	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (G)				_	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
FHRS	0	0	0	0	0	0	0	0	0	0	0	0		(63) (G2)
Output	t from w	ater hea	ter											
(64)m=	217.09	191.33	200.9	179.94	174.21	153.44	147	163.88	165.68	186.69	197.47	211.85		
				-				Outp	out from w	ater heater	. (annual)₁	12	2189.48	(64)
Heat g	ains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m=	67.98	59.82	62.59	55.77	53.9	47.29	45.03	50.46	51.03	57.87	61.59	66.24		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	Table 5	5 and 5a):									
Metab	olic gain	s (Table	5). Wat	ts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	142.41	142.41	142.41	142.41	142.41	142.41	142.41	142.41	142.41	142.41	142.41	142.41		(66)
Lightin	g gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	25	22.2	18.06	13.67	10.22	8.63	9.32	12.12	16.26	20.65	24.1	25.69		(67)
Applia	nces ga	ins (calc	ulated ir	n Append	dix L, eq	uation L	13 or L1	3a), alsc	see Ta	ble 5				
(68)m=	280.41	283.32	275.99	260.38	240.67	222.15	209.78	206.87	214.2	229.81	249.52	268.04		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a), also se	e Table	5			I	
(69)m=	37.24	37.24	37.24	37.24	37.24	37.24	37.24	37.24	37.24	37.24	37.24	37.24		(69)
Pumps	s and fai	ns gains	(Table 5	5a)									I	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3	1	(70)
Losses	s e.g. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)							I	
(71)m=	-113.93	-113.93	-113.93	-113.93	-113.93	, -113.93	-113.93	-113.93	-113.93	-113.93	-113.93	-113.93		(71)
Water	heating	gains (T	able 5)										I	
(72)m=	91.37	89.02	84.13	77.46	72.45	65.68	60.52	67.83	70.87	77.78	85.54	89.03		(72)
Total i	nternal	gains =				(66)	m + (67)m	n + (68)m +	+ (69)m +	(70)m + (7	1)m + (72)	m	I	
(73)m=	465.5	463.26	446.9	420.23	392.06	365.18	348.34	355.54	370.06	396.97	427.88	451.48		(73)
6. So	lar gains	s:												

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orienta	tion:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.77	x	6.03	×	10.63	×	0.63	×	0.7	=	19.6	(74)
North	0.9x	0.77	x	2.08	×	10.63	×	0.63	×	0.7	i =	6.76	(74)
North	0.9x	0.77	x	5.97	×	10.63	×	0.63	×	0.7	=	19.4	(74)
North	0.9x	0.77	x	6.03	×	20.32	×	0.63	×	0.7	=	37.45	(74)
North	0.9x	0.77	x	2.08	×	20.32	x	0.63	×	0.7	=	12.92	(74)
North	0.9x	0.77	x	5.97	×	20.32	×	0.63	×	0.7	=	37.08	(74)
North	0.9x	0.77	x	6.03	x	34.53	×	0.63	x	0.7	=	63.63	(74)
North	0.9x	0.77	x	2.08	x	34.53	x	0.63	x	0.7	=	21.95	(74)
North	0.9x	0.77	x	5.97	x	34.53	×	0.63	x	0.7	=	63	(74)
North	0.9x	0.77	x	6.03	x	55.46	x	0.63	x	0.7	=	102.21	(74)
North	0.9x	0.77	x	2.08	x	55.46	x	0.63	x	0.7	=	35.26	(74)
North	0.9x	0.77	x	5.97	×	55.46	x	0.63	×	0.7	=	101.2	(74)
North	0.9x	0.77	x	6.03	x	74.72	x	0.63	x	0.7	=	137.69	(74)
North	0.9x	0.77	x	2.08	x	74.72	x	0.63	x	0.7	=	47.49	(74)
North	0.9x	0.77	x	5.97	x	74.72	×	0.63	x	0.7	=	136.32	(74)
North	0.9x	0.77	x	6.03	x	79.99	x	0.63	x	0.7	=	147.4	(74)
North	0.9x	0.77	x	2.08	x	79.99	x	0.63	x	0.7	=	50.84	(74)
North	0.9x	0.77	x	5.97	x	79.99	×	0.63	x	0.7	=	145.93	(74)
North	0.9x	0.77	x	6.03	x	74.68	x	0.63	x	0.7	=	137.62	(74)
North	0.9x	0.77	x	2.08	×	74.68	×	0.63	×	0.7	=	47.47	(74)
North	0.9x	0.77	x	5.97	x	74.68	x	0.63	x	0.7	=	136.25	(74)
North	0.9x	0.77	x	6.03	x	59.25	x	0.63	x	0.7	=	109.18	(74)
North	0.9x	0.77	x	2.08	x	59.25	x	0.63	x	0.7	=	37.66	(74)
North	0.9x	0.77	x	5.97	x	59.25	x	0.63	x	0.7	=	108.1	(74)
North	0.9x	0.77	x	6.03	x	41.52	x	0.63	x	0.7	=	76.51	(74)
North	0.9x	0.77	x	2.08	x	41.52	x	0.63	x	0.7	=	26.39	(74)
North	0.9x	0.77	x	5.97	x	41.52	x	0.63	x	0.7	=	75.75	(74)
North	0.9x	0.77	x	6.03	x	24.19	x	0.63	x	0.7	=	44.58	(74)
North	0.9x	0.77	x	2.08	x	24.19	x	0.63	x	0.7	=	15.38	(74)
North	0.9x	0.77	x	5.97	x	24.19	x	0.63	x	0.7	=	44.13	(74)
North	0.9x	0.77	x	6.03	x	13.12	x	0.63	x	0.7	=	24.17	(74)
North	0.9x	0.77	x	2.08	x	13.12	x	0.63	x	0.7	=	8.34	(74)
North	0.9x	0.77	x	5.97	x	13.12	x	0.63	x	0.7	=	23.93	(74)
North	0.9x	0.77	x	6.03	×	8.86	×	0.63	x	0.7	=	16.34	(74)
North	0.9x	0.77	x	2.08	x	8.86	x	0.63	x	0.7	=	5.63	(74)
North	0.9x	0.77	x	5.97	×	8.86	×	0.63	×	0.7] =	16.17	(74)
South	0.9x	0.77	x	5.59	×	46.75	×	0.63	×	0.7] =	79.87	(78)
South	0.9x	0.77	x	5.99	x	46.75	×	0.63	×	0.7	=	85.59	(78)
South	0.9x	0.77	x	1.52	x	46.75	x	0.63	x	0.7	=	21.72	(78)

South	0.9x	0.77	x	5.59	x	76.57	x	0.63	x	0.7	=	130.81	(78)
South	0.9x	0.77	x	5.99	x	76.57	x	0.63	x	0.7	=	140.17	(78)
South	0.9x	0.77	x	1.52	x	76.57	x	0.63	x	0.7	=	35.57	(78)
South	0.9x	0.77	x	5.59	x	97.53) x	0.63	x	0.7	=	166.62	(78)
South	0.9x	0.77	x	5.99	x	97.53	x	0.63	x	0.7	=	178.55	(78)
South	0.9x	0.77	x	1.52	x	97.53	x	0.63	x	0.7	=	45.31	(78)
South	0.9x	0.77	x	5.59	x	110.23	x	0.63	x	0.7	=	188.32	(78)
South	0.9x	0.77	x	5.99	x	110.23	x	0.63	x	0.7	=	201.8	(78)
South	0.9x	0.77	x	1.52	x	110.23	x	0.63	x	0.7	=	51.21	(78)
South	0.9x	0.77	x	5.59	x	114.87	x	0.63	x	0.7	=	196.24	(78)
South	0.9x	0.77	x	5.99	x	114.87	x	0.63	x	0.7	=	210.29	(78)
South	0.9x	0.77	x	1.52	x	114.87	x	0.63	x	0.7	=	53.36	(78)
South	0.9x	0.77	x	5.59	x	110.55	x	0.63	x	0.7	=	188.86	(78)
South	0.9x	0.77	x	5.99	x	110.55	x	0.63	x	0.7	=	202.37	(78)
South	0.9x	0.77	x	1.52	x	110.55	x	0.63	x	0.7	=	51.35	(78)
South	0.9x	0.77	x	5.59	x	108.01	x	0.63	x	0.7	=	184.53	(78)
South	0.9x	0.77	x	5.99	×	108.01	x	0.63	x	0.7	=	197.73	(78)
South	0.9x	0.77	x	1.52	x	108.01	x	0.63	x	0.7	=	50.17	(78)
South	0.9x	0.77	x	5.59	x	104.89	x	0.63	x	0.7	=	179.2	(78)
South	0.9x	0.77	x	5.99	x	104.89	x	0.63	x	0.7	=	192.02	(78)
South	0.9x	0.77	x	1.52	x	104.89	x	0.63	x	0.7	=	48.73	(78)
South	0.9x	0.77	x	5.59	x	101.89	x	0.63	x	0.7	=	174.06	(78)
South	0.9x	0.77	x	5.99	x	101.89	x	0.63	x	0.7	=	186.51	(78)
South	0.9x	0.77	x	1.52	x	101.89	x	0.63	×	0.7	=	47.33	(78)
South	0.9x	0.77	x	5.59	x	82.59	x	0.63	x	0.7	=	141.09	(78)
South	0.9x	0.77	x	5.99	x	82.59	x	0.63	x	0.7	=	151.18	(78)
South	0.9x	0.77	x	1.52	x	82.59	x	0.63	×	0.7	=	38.36	(78)
South	0.9x	0.77	x	5.59	x	55.42	x	0.63	x	0.7	=	94.67	(78)
South	0.9x	0.77	x	5.99	x	55.42	x	0.63	x	0.7	=	101.45	(78)
South	0.9x	0.77	x	1.52	x	55.42	x	0.63	x	0.7	=	25.74	(78)
South	0.9x	0.77	x	5.59	x	40.4	x	0.63	x	0.7	=	69.02	(78)
South	0.9x	0.77	x	5.99	x	40.4	x	0.63	x	0.7	=	73.95	(78)
South	0.9x	0.77	x	1.52	x	40.4	x	0.63	×	0.7	=	18.77	(78)
Solar ((83)m= Total (gains in 232.93 gains – i	watts, calc 393.98 5 internal and	ulated ^{39.06}	for each mon 679.99 781.33 (84)m = (73)n	th 9 7 n + (86.76 753.76 83)m , watts	<mark>(83)</mark> m 674	a = Sum(74)m .89 586.55	. <mark>(82)m</mark> 434.72	2 278.31	199.88		(83)
(84)m=	698.43	857.24 9	85.96	1100.22 1173.4	15 1 <i>°</i>	151.94 1102.11	1030	0.42 956.61	831.69	9 706.19	651.36		(84)
7. Me	ean intei	rnal temper	ature (heating seaso	on)								
Temp	perature	during hea	ating pe	eriods in the li	ving	area from Tab	ole 9	, Th1 (°C)			[21	(85)

Utilisation factor for gains for living area, h1,m (see Table 9a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(86)m=	1	0.99	0.99	0.96	0.88	0.73	0.56	0.62	0.85	0.97	1	1		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	7 in Table	e 9c)					
(87)m=	19.58	19.78	20.06	20.42	20.73	20.92	20.98	20.97	20.84	20.43	19.93	19.54		(87)
Temp	erature	during h	eating p	beriods ir	n rest of	dwelling	from Ta	able 9, Tl	h2 (°C)					
(88)m=	19.85	19.85	19.85	19.87	19.87	19.88	19.88	19.88	19.87	19.87	19.86	19.86		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	1	0.99	0.98	0.94	0.83	0.63	0.43	0.48	0.77	0.96	0.99	1		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ina T2 (fe	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	17.97	18.26	18.67	19.19	19.61	19.83	19.87	19.87	19.75	19.21	18.49	17.92		(90)
									f	iLA = Livin	g area ÷ (4	4) =	0.28	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	llina) = fl	A x T1	+ (1 – fl	A) x T2			I		
(92)m=	18.42	18.69	19.06	19.54	19.93	20.14	20.19	20.18	20.06	19.55	18.9	18.38		(92)
Apply	adjustn	nent to t	he mear	n internal	temper	ature fro	n Table	4e, whe	ere appro	opriate				
(93)m=	18.42	18.69	19.06	19.54	19.93	20.14	20.19	20.18	20.06	19.55	18.9	18.38		(93)
8. Sp	ace hea	ting requ	uirement	t										
Set T	i to the r	mean int	ernal tei	mperatur	re obtair	ned at ste	ep 11 of	Table 9t	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	ilisation	factor fo	or gains	using la	ble 9a				0		NL.			
Litilior	Jan	Feb	iviar	Apr	May	Jun	Jui	Aug	Sep	Oct	NOV	Dec		
(94)m=	1	0.99	0.97	0.93	0.84	0.66	0 47	0.52	0.78	0.95	0.99	1		(94)
Usefu	l gains	hmGm	W = (94)	4)m x (84	4)m	0.00	0.47	0.02	0.70	0.00	0.00	'		()
(95)m=	695.55	848.36	961.13	1027.53	981.4	755.88	515.18	537.3	750.14	793.01	699.85	649.39		(95)
Month	nly avera	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an interr	al tempe	erature,	Lm , W =	- =[(39)m	x [(93)m	– (96)m]				
(97)m=	2116.31	2061.19	1874.5	1570.92	1212.39	808.89	523.7	551.3	873.01	1319.84	1745.85	2106.97		(97)
Space	e heatin	g require	ement fo	or each m	nonth, k	Wh/mon	th = 0.02	24 x [(97))m – (95)m] x (4	1)m			
(98)m=	1057.05	815.02	679.55	391.24	171.86	0	0	0	0	391.96	753.12	1084.44		_
								Tota	l per year	(kWh/year	r) = Sum(9	8)15,912 =	5344.23	(98)
Space	e heatin	g require	ement in	kWh/m²	/year								45.92	(99)
9a. En	ergy rec	luiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	ı micro-C	CHP)			-		_
Spac	e heatir	ng:												_
Fracti	on of sp	ace hea	at from s	econdar	y/supple	ementary	system						0	(201)
Fracti	on of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heatii	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1							İ	93.4	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heatin	g system	ז, %						0	(208)
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Αυα	Sep	Oct	Nov	Dec	kWh/ve	_l ar
Space	e heatin	g require	ement (c	alculate	d above)	••••		000	•••				
	1057.05	815.02	679.55	391.24	171.86	0	0	0	0	391.96	753.12	1084.44		
(211)m	n = {[(98)m x (20	4)]}x1	00 ÷ (20)6)	•	•			•				(211)
	1131.74	872.62	727.57	418.89	184	0	0	0	0	419.66	806.33	1161.07		
			•				•	Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	=	5721.87	(211)

Space heating fuel (secondary), kWh/month

(215)m= 0 0 0 0 0 0 0 0 Total (kWh/year) = Water heating	0 0 =Sum(215) _{15,10}	0		
Total (kWh/year) =	=Sum(215) _{15,10}			
Water heating		12	0	(215)
Output from water heater (calculated above)	96 60 107 47	211.05	1	
Efficiency of water beater	00.09 197.47	211.00	80.2	7(216)
(217)m 88 5 88 29 87 88 86 95 85 02 80 3 80 3 80 3 80 3 80 3	36.87 88.1	88 58	00.3	(217)
Fuel for water beating $kWb/month$	00.07	00.00		()
$(219)m = (64)m \times 100 \div (217)m$			_	
(219)m= 245.29 216.71 228.61 206.93 204.92 191.08 183.07 204.08 206.33 214	14.89 224.15	239.16		_
Total = Sum(219a),	$(a)_{112} =$		2565.23	(219)
Annual totals	kWh/yea	r	kWh/year	٦
Space heating fuel used, main system i			5/21.8/	ļ
Water heating fuel used			2565.23	
Electricity for pumps, fans and electric keep-hot				
central heating pump:		30		(230c)
boiler with a fan-assisted flue		45]	(230e)
Total electricity for the above, kWh/year sum of (230a)(23	230g) =		75	(231)
Electricity for lighting			441.48	(232)
12a. CO2 emissions – Individual heating systems including micro-CHP				
Energy En kWh/year kg	mission fac g CO2/kWh	ctor	Emissions kg CO2/yea	ar
Space heating (main system 1) (211) x	0.216	=	1235.92	(261)
Space heating (secondary) (215) x	0.519	=	0	(263)
Water heating (219) x	0.216	=	554.09	(264)
Space and water heating (261) + (262) + (263) + (264) =			1790.01	(265)
Electricity for pumps, fans and electric keep-hot (231) x	0.519	=	38.93	(267)
Electricity for lighting (232) ×	0.519	=	229.13	(268)
Total CO2, kg/year sum of (26	265)(271) =		2058.07	(272)

TER =

17.69 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 09 August 2016

Property Details: Top Floor GS PV

Dwelling type:	Flat	
Located in:	England	
Region:	Thames valley	
Cross ventilation possible:	Yes	
Number of storeys:	1	
Front of dwelling faces:	West	
Overshading:	Average or unknown	
Overhangs:	None	
Thermal mass parameter:	Indicative Value Medium	
Night ventilation:	False	
Blinds, curtains, shutters:	Dark-coloured curtain or roller blind	
Ventilation rate during hot weather (ach):	6 (Windows fully open)	
Overheating Details:		
Summer ventilation heat loss coefficient:	576.03	(P1)
Transmission heat loss coefficient:	92	
Summer heat loss coefficient:	668.08	(P2)

Overhangs:

Orientation:	Ratio:	Z_overhangs:
South (South 1)	0	1
North (North 1)	0	1
North (North 2)	0	1
North (North 3)	0	1
South (South 2)	0	1
South (South 3)	0	1

Solar shading:

Orientation:	Z blin	ds:	Solar access:	Ove	rhangs:	Z summer:		
South (South 1)	0.85		1	1		0.85		(P8)
North (North 1)	0.85		1	1		0.85		(P8)
North (North 2)	0.85		1	1		0.85		(P8)
North (North 3)	0.85		1	1		0.85		(P8)
South (South 2)	0.85		1	1		0.85		(P8)
South (South 3)	0.85		1	1		0.85		(P8)
Solar gains:								
Orientation		Area	Flux	g_	FF	Shading	Gains	
South (South 1)	1 x	5.8	112.21	0.72	0.7	0.85	250.92	
North (North 1)	1 x	6.26	81.19	0.72	0.7	0.85	195.95	
North (North 2)	1 x	2.16	81.19	0.72	0.7	0.85	67.61	
North (North 3)	1 x	6.2	81.19	0.72	0.7	0.85	194.07	
South (South 2)	1 x	6.22	112.21	0.72	0.7	0.85	269.09	
South (South 3)	1 x	1.58	112.21	0.72	0.7	0.85	68.35	
						Total	1046	(P3/P4)
Internal gains:								
				Ju	ine	July	August	
Internal gains				52	27.94	506.05	515.3	
Total summer gains				16	532.92	1552.04	1467.9	(P5)

SAP 2012 Overheating Assessment

Summer gain/loss ratio	2.44	2.32	2.2 (P6)
Mean summer external temperature (Thames valley)	16	17.9	17.8
Thermal mass temperature increment	0.25	0.25	0.25
Threshold temperature	18.69	20.47	20.25 (P7)
Likelihood of high internal temperature	Not significant	Not significant	Not significant

Assessment of likelihood of high internal temperature:

Not significant

Appendix 2 SBEM Report (Commercial Space)

SBEM Main Calculation Output Document

Tue Aug 09 10:24:07 2016

v5.2.g.3

Building name

52 Holmes Rd PV

Building type: B1 Offices and Workshop businesses

SBEM is an energy calculation tool for the purpose of assessing and demonstrating compliance with Building Regulations (Part L for England and Wales, Section 6 for Scotland, Part F for Northern Ireland, Part L for Republic of Ireland and Building Bye-laws Jersey Part 11) and to produce Energy Performance Certificates and Building Energy Ratings. Although the data produced by the tool may be of use in the design process, SBEM is not intended as a building design tool.

Building Energy Performance and CO2 emissions

2 kgCO2/m2 displaced by the use of renewable sources.

Building area is 447.06 m2

(Pie chart excluding Equipment end-use)

(*) Although energy consumption by equipment is shown in the graphs, the CO2 emissions associated with this end-use have not been taken into account when producing the rating.

Annual Heating Demand

BRUKL Output Document

HM Government

Compliance with England Building Regulations Part L 2013

Project name

52 Holmes Rd PV

Date: Tue Aug 09 10:24:07 2016

Administrative information

Building Details

Address: 52 Holmes Rd, Camden, London, NW5

Certification tool

Calculation engine: SBEM

Calculation engine version: v5.2.g.3 Interface to calculation engine: iSBEM

interface to calculation engine. IODEM

Interface to calculation engine version: v5.2.g BRUKL compliance check version: v5.2.g.3

Owner Details

Name: Information not provided by the user Telephone number: Information not provided by the user Address: Information not provided by the user, Information

not provided by the user, Information not provided by the user

Certifier details

Name: D Lloyd

Telephone number: 02476 505600

Address: Abbey Park, Humber Road, Coventry, CV3 4AQ

Criterion 1: The calculated CO₂ emission rate for the building should not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	17.3
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	17.3
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	11.3
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency

Values not achieving standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red. Building fabric

Element	Us-Limit	Ua-Calc	Ul-Calc	Surface where the maximum value occurs*			
Wall**	0.35	0.2	0.2	LG a/su			
Floor	0.25	0.15	0.2	LG a/ci			
Roof	0.25	0.2	0.2	LG a/c			
Windows***, roof windows, and rooflights	2.2	1.1	1.1	LG a/e/g			
Personnel doors	2.2	-	÷.	"No external personnel doors"			
Vehicle access & similar large doors	1.5	-	-	"No external vehicle access doors"			
High usage entrance doors	3.5	-	-	"No external high usage entrance doors"			
U _{e-Limit} = Limiting area-weighted average U-values [W/(m ² K)] U _{e-Celc} = Calculated area-weighted average U-values [W/(m ² K)] U _{i-Celc} = Calculated maximum individual element U-values [W/(m ² K)]							

** Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

*** Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m³/(h.m²) at 50 Pa	10	5

Shell and Core

As designed

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values			
Whole building electric power factor achieved by power factor correction	<0.9		

1- Heating

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency		
This system	3	(m)	-	-	-		
Standard value	2.5* N/A		N/A	N/A	N/A		

Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system NO

* Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

1- Hot Water

	Water heating efficiency	Storage loss factor [kWh/litre per day]
This building	Hot water provided by HVAC system	-
Standard value	N/A	N/A

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide					
Α	Local supply or extract ventilation units serving a single area					
в	Zonal supply system where the fan is remote from the zone					
С	Zonal extract system where the fan is remote from the zone					
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery					
ε	Local supply and extract ventilation system serving a single area with heating and heat recovery					
F	Other local ventilation units					
G	Fan-assisted terminal VAV unit					
н	Fan coil units					
1	Zonal extract system where the fan is remote from the zone with grease filter					

Zone name		SFP [W/(I/s)]											
ID of system type	Α	В	С	D	E	F	G	Н	I.	rik efficiency			
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard		
LG a	-	-	-	-	-	-	-	-	-	- "	N/A		
LGb	-	-	-	-	-	-	-	-	-	-	N/A		
LG c	-	-	-	-	<u>ی</u>	-	-	•	-	-	N/A		
LG d	-	-	-		5 4 5	-	-	-	-	-	N/A		
UG a	-	-	-	-	-	-	-	5-2	-	-	N/A		
UG b	-	-	-	-			-	-	-	-	N/A		
UG c	1.5	-	-	-	19 2 9	-	-	· .	-	-	N/A		
UG d	-	-	-		-		-	-	-	-	N/A		

Shell and core configuration

Zone	Assumed shell?
LG a	YES
LG b	YES
LG c	YES
LG d	YES
UG a	YES
UG b	YES

Shell and core configuration

Zone	Assumed shell?
UG c	NO
UG d	NO

General lighting and display lighting	Lumino	ous effic]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
LG a	79	-		300
LGb	83	-	-	70
LG c	83	-	-	40
LG d	80	-	-	880
UG a	80	-	-	740
UG b	83	-	-	40
UG c	-	52	-	90
UG d	73	-	-	126

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%	6) Internal blinds used?
LG a	NO (-59.8%)	NO
LG b	YES (+17.9%)	NO
LG c	N/A	N/A
LG d	NO (-5%)	NO
UG a	NO (-72.9%)	NO
UG b	NO (-7.4%)	NO
UG d	NO (-38.7%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?		
Is evidence of such assessment available as a separate submission?		
Are any such measures included in the proposed design?		

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area (m²)	447.1	447.1
External area [m ²]	977.1	977.1
Weather	LON	LON
Infiltration [m ³ /hm ² @ 50Pa]	5	3
Average conductance [W/K]	240.56	447.83
Average U-value [W/m ² K]	0.25	0.46
Alpha value* [%]	26.65	16.73

*Percentage of the building's average heat transfer coefficient which is due to thermal bridging

% Area Building Type

Building Use

	A1/A2 Retail/Financial and Professional services
	ASIA4/AS Rectaurants and Cafes/Drinking Est/Takeaways
100	B1 Offices and Workshop businesses
	B2 to B7 General industrial and Special Industrial Groups
	88 Storage or Distribution
	C1 Hotels
	C2 Residential Inst. Hospitals and Care Fiomes
	C2 Residential Inst. Residential schools
	C2 Residential Inst. Universities and colleges
	C2A Secure Residential Inst.
	Residential spaces
	D1 Non-residential Inst.: Community/Day Centre
	D1 Non-residential Inst : Libraries, Museums, and Galleries
	D1 Non-residential Inst.: Education
	D1 Non-residential inst.: Primary Health Care Building
	D1 Non-residential Inst.: Crown and County Courts
	D2 General Assembly and Leisure, Night Clubs and Theatres
	Others: Passenger terminals
	Others: Emergency services
	Others: Miscellaneous 24hr activities
	Others: Car Parks 24 hrs
	Others - Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	6.1	11.8
Cooling	0	0
Auxiliary	2.35	1.07
Lighting	15.25	20.28
Hot water	0.99	1.1
Equipment*	41.63	41.63
TOTAL**	24.69	34.24

* Energy used by equipment does not count towards the total for calculating emissions.
** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	3	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	172.25	216.06
Primary energy* [kWh/m ²]	75.8	102.5
Total emissions [kg/m ²]	11.3	17.3

* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

ŀ	IVAC Sys	stems Pei	formanc	е						
Sy	stem Type	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2	Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[5]	[] Central he	eating using) water: rad	iators, [HS]	Heat pum	p (electric):	air source,	[HFT] Elec	tricity, [CF1] Electricity
	Actual	58.8	113.5	6.1	0	2.3	2.68	0	3	0
	Notional	103.2	112.9	11.8	0	1.1	2.43	0		

Key to terms

Heat dem [MJ/m2]	= Heating energy demand
Cool dem [MJ/m2]	= Cooling energy demand
Heat con [kWh/m2]	= Heating energy consumption
Cool con [kWh/m2]	= Cooling energy consumption
Aux con [kWh/m2]	= Auxiliary energy consumption
Heat SSEFF	= Heating system seasonal efficiency (for notional building, value depends on activity glazing class)
Cool SSEER	= Cooling system seasonal energy efficiency ratio
Heat gen SSEFF	= Heating generator seasonal efficiency
Cool gen SSEER	= Cooling generator seasonal energy efficiency ratio
ST	= System type
HS	= Heat source
HFT	= Heating fuel type
CFT	= Cooling fuel type

Key Features

The BCO can give particular attention to items with specifications that are better than typically expected.

Building fabric

Element	U _{4-Тур}	Ul-Min	Surface where the minimum value occurs*		
Wall	0.23	0.2	LG a/su		
Floor	0.2	0.13	LG d/f		
Roof	0.15	0.2	LG a/c		
Windows, roof windows, and rooflights	1.5	1.1	LG a/e/g		
Personnel doors	1.5	-	"No external personnel doors"		
Vehicle access & similar large doors	1.5		"No external vehicle access doors"		
High usage entrance doors	1.5	-	"No external high usage entrance doors"		
U _{FTyp} = Typical individual element U-values [W/(m ² K)] U _{FMm} = Minimum individual element U-values [W/(m ² K)]					
* There might be more than one surface where the minimum U-value occurs.					

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	5