PRICE&MYERS ***** ♣ ♣ � ◎

Consulting Engineers

Job No 23261 Page 1 of 9 Rev -Date 16/10/2015 TM Eng Chd

Job 22 Frognal Way

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Wall details

Retaining wall type:

Height of retaining wall stem;

Thickness of wall stem;

Length of toe;

Length of heel;

Overall length of base;

Thickness of base:

Depth of downstand;

Position of downstand;

Thickness of downstand;

Height of retaining wall;

Depth of cover in front of wall;

Depth of unplanned excavation; Height of ground water behind wall;

Height of saturated fill above base;

Density of wall construction;

Density of base construction;

Angle of rear face of wall;

Angle of soil surface behind wall;

Effective height at virtual back of wall;

Retained material details

Mobilisation factor;

Moist density of retained material;

Saturated density of retained material;

Design shear strength;

 $h_{\text{stem}} = 3800 \text{ mm}$

 $t_{wall} = 350 \text{ mm}$

 $I_{toe} = 3000 \text{ mm}$

 $I_{heel} = 0 \text{ mm}$

 $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 3350 \text{ mm}$

t_{base} = **450** mm

 $d_{ds} = 750 \text{ mm}$

 $I_{ds} = 0 \text{ mm}$

 $t_{ds} = 825 \text{ mm}$

 $h_{\text{wall}} = h_{\text{stem}} + t_{\text{base}} + d_{\text{ds}} = 5000 \text{ mm}$

 $d_{cover} = 0 \text{ mm}$

 $d_{exc} = 0 \text{ mm}$

h_{water} = 3900 mm

 $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 2700 mm$

 $\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$

 $\gamma_{base} = 23.6 \text{ kN/m}^3$

 α = 90.0 deg

 β = 20.0 deg

 $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 5000 \text{ mm}$

M = 1.5

 $\gamma_{\rm m} = 18.0 \text{ kN/m}^3$

 $\gamma_{\rm s}$ = 21.0 kN/m³

 $\phi' = 24.2 \text{ deg}$

Job No 23261 Page 2 Of 9 Rev
Date 16/10/2015 Eng TM Chd

Job 22 Frognal Way

Angle of wall friction:

 δ = **18.6** deg

Base material details

Stiff clay

Moist density;

Design shear strength;

Design base friction;

Allowable bearing pressure;

 $\gamma_{mb} = 19.0 \text{ kN/m}^3$

 ϕ'_{b} = **25.0** deg

 $\delta_{b} = 18.6 \text{ deg}$

P_{bearing} = 125 kN/m²

Using Coulomb theory

Active pressure coefficient for retained material

 $K_a = \sin(\alpha + \phi')^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi' + \delta) \times \sin(\phi' - \beta) / (\sin(\alpha - \delta) \times \sin(\alpha + \beta)))}]^2) = \textbf{0.574}$

Passive pressure coefficient for base material

 $K_p = \sin(90 - \phi_b^*)^2 / (\sin(90 - \delta_b) \times [1 - \sqrt{(\sin(\phi_b^* + \delta_b) \times \sin(\phi_b^*) / (\sin(90 + \delta_b)))}]^2) = 4.367$

At-rest pressure

At-rest pressure for retained material;

 $K_0 = 1 - \sin(\phi') = 0.590$

Loading details

Surcharge load on plan;

Surcharge = 10.0 kN/m²

Applied vertical dead load on wall;

Applied vertical live load on wall;

 $W_{dead} = 0.0 \text{ kN/m}$ $W_{live} = 0.0 \text{ kN/m}$

Applied vertical live load off wall,

 $I_{load} = 0 \text{ mm}$

Position of applied vertical load on wall; Applied horizontal dead load on wall;

 $F_{dead} = 0.0 \text{ kN/m}$

Applied horizontal live load on wall;

 $F_{live} = 0.0 \text{ kN/m}$

Height of applied horizontal load on wall;

 $h_{load} = 0 \text{ mm}$

Loads shown in kN/m, pressures shown in kN/m²

Vertical forces on wall

Wall stem;

Wall base;

Wall downstand; Total vertical load; $w_{wall} = h_{stem} \times t_{wall} \times \gamma_{wall} = 31.4 \text{ kN/m}$

 $w_{base} = I_{base} \times t_{base} \times \gamma_{base} = 35.6 \text{ kN/m}$

 $w_{ds} = d_{ds} \times t_{ds} \times \gamma_{base} = 14.6 \text{ kN/m}$

 $W_{total} = w_{wall} + w_{base} + w_{ds} = 81.6 \text{ kN/m}$

PRICE&MYERS ★ ↓ ♦ ◎

Consulting Engineers

Job No 23261 Page 3 of 9 Rev
Date 16/10/2015 Eng TM Chd

Job 22 Frognal Way

Horizontal forces on wall

Surcharge; $F_{sur} = K_a \times cos(90 - \alpha + \delta) \times Surcharge \times h_{eff} = 27.2 \text{ kN/m}$

Moist backfill above water table; $F_{m_a} = 0.5 \times K_a \times \cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water})^2 = 5.9$

kN/m

Moist backfill below water table; $F_{m_b} = K_a \times \cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 42$

kN/m

Saturated backfill; $F_s = 0.5 \times K_a \times \cos(90 - \alpha + \delta) \times (\gamma_s - \gamma_{water}) \times h_{water}^2 = 46.3$

kN/m

Water; $F_{\text{water}} = 0.5 \times h_{\text{water}}^2 \times \gamma_{\text{water}} = 74.6 \text{ kN/m}$

Total horizontal load; $F_{total} = F_{sur} + F_{m a} + F_{m b} + F_{s} + F_{water} = 196.1 \text{ kN/m}$

Calculate propping force

Passive resistance of soil in front of wall; $F_p = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times \cos(\delta_b) \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times K_p \times (d_{exc} - d_{exc})^2 \times \gamma_{mb} = 0.5 \times (d_{exc} - d_{exc})^2 \times \gamma_{$

56.6 kN/m

Propping force; $F_{prop} = \max(F_{total} - F_p - (W_{total}) \times \tan(\delta_b), 0 \text{ kN/m})$

 $F_{prop} = 112.0 \text{ kN/m}$

Overturning moments

Surcharge; $M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 47.6 \text{ kNm/m}$

Moist backfill above water table; $M_{m_a} = F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 20.8 \text{ kNm/m}$

Moist backfill below water table; $M_{m_b} = F_{m_b} \times (h_{water} - 2 \times d_{ds}) / 2 = 50.4 \text{ kNm/m}$ Saturated backfill; $M_s = F_s \times (h_{water} - 3 \times d_{ds}) / 3 = 25.5 \text{ kNm/m}$

Saturated backfill; $M_s = F_s \times (h_{water} - 3 \times d_{ds}) / 3 = 25.5 \text{ kNm/m}$ Water; $M_{water} = F_{water} \times (h_{water} - 3 \times d_{ds}) / 3 = 41 \text{ kNm/m}$

Soil in front of wall; $M_{p_o} = F_p \times [2 \times d_{ds} - t_{base} - d_{cover} + d_{exc}] / 3 = 19.8 \text{ kNm/m}$

Total overturning moment; $M_{ot} = M_{sur} + M_{m_a} + M_{m_b} + M_s + M_{water} + M_{p_o} = 205.2$

kNm/m

Restoring moments

Wall stem; $M_{\text{wall}} = w_{\text{wall}} \times (l_{\text{toe}} + t_{\text{wall}} / 2) = 99.7 \text{ kNm/m}$

Wall base; $M_{base} = w_{base} \times I_{base} / 2 = 59.6 \text{ kNm/m}$

Wall downstand; $M_{ds} = w_{ds} \times (I_{ds} + I_{ds} / 2) = 6 \text{ kNm/m}$

Total restoring moment; $M_{rest} = M_{wall} + M_{base} + M_{ds} = 165.3 \text{ kNm/m}$

Check bearing pressure

Total moment for bearing; $M_{total} = M_{rest} - M_{ot} = -40 \text{ kNm/m}$

Total vertical reaction; $R = W_{total} = 81.6 \text{ kN/m}$ Distance to reaction; $x_{bar} = M_{total} / R = -490 \text{ mm}$

Eccentricity of reaction; $e = abs((l_{base} / 2) - x_{bar}) = 2165 \text{ mm}$

WARNING - Beyond scope of calculation

Bearing pressure at toe; $p_{toe} = R / (1.5 \times x_{bar}) = -111 \text{ kN/m}^2$

Bearing pressure at heel; $p_{heel} = 0 \text{ kN/m}^2 = 0 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

Job No. 23261 Page 4 of 9

Rev -

Date 16/10/2015 Job 22 Frognal Way

TM Eng

Chd

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor:

Live load factor:

Earth and water pressure factor;

Factored vertical forces on wall

Wall stem:

Consulting Engineers

Wall base:

Wall downstand:

Total vertical load;

Factored horizontal at-rest forces on wall

Surcharge;

Moist backfill above water table;

Moist backfill below water table:

Saturated backfill;

Water;

Total horizontal load:

Calculate propping force

Passive resistance of soil in front of wall;

 $\gamma_{mb} = 79.3 \text{ kN/m}$

Propping force;

Factored overturning moments

Surcharge:

Moist backfill above water table;

Moist backfill below water table;

Saturated backfill:

Water;

Soil in front of wall;

Total overturning moment;

314.7 kNm/m

Restoring moments

Wall stem;

Wall base;

Wall downstand;

Total restoring moment;

Factored bearing pressure

Total moment for bearing:

Total vertical reaction;

Distance to reaction;

Eccentricity of reaction;

Bearing pressure at toe; Bearing pressure at heel;

Rate of change of base reaction;

 $\gamma_{f | l} = 1.6$

 $\gamma_{f_e} = 1.4$

 $\gamma_{fd} = 1.4$

$$w_{\text{wall }f} = \gamma_{\text{f d}} \times h_{\text{stem}} \times t_{\text{wall}} \times \gamma_{\text{wall}} = 43.9 \text{ kN/m}$$

$$W_{base_f} = \gamma_{f_d} \times I_{base} \times t_{base} \times \gamma_{base} = 49.8 \text{ kN/m}$$

$$w_{ds f} = \gamma_{f d} \times d_{ds} \times t_{ds} \times \gamma_{base} = 20.4 \text{ kN/m}$$

$$W_{total_f} = w_{wall_f} + w_{base_f} + w_{ds_f} = 114.2 \text{ kN/m}$$

 $F_{sur} f = \gamma_{f,l} \times K_0 \times Surcharge \times h_{eff} = 47.2 \text{ kN/m}$

 $F_{m a f} = \gamma_{f e} \times 0.5 \times K_0 \times \gamma_m \times (h_{eff} - h_{water})^2 = 9 \text{ kN/m}$

 $F_{m \ b \ f} = \gamma_{f \ e} \times K_0 \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 63.8 \ kN/m$

 $F_{sf} = \gamma_{fe} \times 0.5 \times K_0 \times (\gamma_{s} - \gamma_{water}) \times h_{water}^2 = 70.3 \text{ kN/m}$

 $F_{\text{water f}} = \gamma_{\text{f e}} \times 0.5 \times h_{\text{water}}^2 \times \gamma_{\text{water}} = 104.4 \text{ kN/m}$

 $F_{\text{total } f} = F_{\text{sur } f} + F_{\text{m } a f} + F_{\text{m } b f} + F_{\text{s } f} + F_{\text{water } f} = 294.7 \text{ kN/m}$

$$F_{p_f} = \gamma_{f_e} \times 0.5 \times K_p \times cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times$$

$$F_{prop f} = max(F_{total f} - F_{p f} - (W_{total f}) \times tan(\delta_b), 0 kN/m)$$

 $F_{prop f} = 177.0 \text{ kN/m}$

$$M_{sur} f = F_{sur} f \times (h_{eff} - 2 \times d_{ds}) / 2 = 82.6 \text{ kNm/m}$$

$$M_{m_af} = F_{m_af} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 31.6 \text{ kNm/m}$$

$$M_{m_b_f} = F_{m_b_f} \times (h_{water} - 2 \times d_{ds}) / 2 = 76.6 \text{ kNm/m}$$

$$M_{s f} = F_{s f} \times (h_{water} - 3 \times d_{ds}) / 3 = 38.7 \text{ kNm/m}$$

$$M_{water f} = F_{water f} \times (h_{water} - 3 \times d_{ds}) / 3 = 57.4 \text{ kNm/m}$$

$$M_{p_of} = F_{p_f} \times [2 \times d_{ds} - t_{base} - d_{cover} + d_{exc}] / 3 = 27.7 \text{ kNm/m}$$

$$M_{ot f} = M_{sur f} + M_{m a f} + M_{m b f} + M_{s f} + M_{water f} + M_{p o f} =$$

$$M_{\text{wall f}} = W_{\text{wall f}} \times (I_{\text{toe}} + t_{\text{wall}} / 2) = 139.5 \text{ kNm/m}$$

$$M_{base f} = W_{base f} \times I_{base} / 2 = 83.4 \text{ kNm/m}$$

$$M_{ds f} = W_{ds f} \times (I_{ds} + I_{ds} / 2) = 8.4 \text{ kNm/m}$$

$$M_{rest_f} = M_{wall_f} + M_{base_f} + M_{ds_f} = 231.4 \text{ kNm/m}$$

$$M_{total_f} = M_{rest_f} - M_{ot_f} = -83.3 \text{ kNm/m}$$

$$R_f = W_{total \ f} = 114.2 \ kN/m$$

$$x_{bar_f} = M_{total_f} / R_f = -729 \text{ mm}$$

$$e_f = abs((I_{base} / 2) - x_{bar f}) = 2404 mm$$

WARNING - Beyond scope of calculation

$$p_{toe\ f} = R_f / (1.5 \times x_{bar\ f}) = -104.4 \text{ kN/m}^2$$

$$p_{heel f} = 0 kN/m^2 = 0 kN/m^2$$

rate =
$$p_{toe f} / (3 \times x_{bar f}) = 47.72 \text{ kN/m}^2/\text{m}$$

Job No 23261

Date 16/10/2015

Page 5 of 9

Rev -

TM Eng

Chd

Job 22 Frognal Way

Bearing pressure at stem / toe;

Bearing pressure at mid stem;

kN/m²

Bearing pressure at stem / heel;

kN/m²

 $p_{\text{stem_toe_f}} = \text{max}(p_{\text{toe_f}} - (\text{rate} \times l_{\text{toe}}), 0 \text{ kN/m}^2) = \mathbf{0} \text{ kN/m}^2$

 $p_{\text{stem mid f}} = \max(p_{\text{toe f}} - (\text{rate} \times (l_{\text{toe}} + t_{\text{wall}} / 2)), 0 \text{ kN/m}^2) = \mathbf{0}$

 $p_{\text{stem heel f}} = \max(p_{\text{toe f}} - (\text{rate} \times (I_{\text{toe}} + t_{\text{wall}})), 0 \text{ kN/m}^2) = \mathbf{0}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Characteristic strength of concrete;

Characteristic strength of reinforcement;

 $f_{cu} = 40 \text{ N/mm}^2$ $f_v = 500 \text{ N/mm}^2$

Base details

Minimum area of reinforcement;

Cover to reinforcement in toe;

k = 0.13 %

 $c_{toe} = 75 \text{ mm}$

Calculate shear for toe design

Shear from weight of base;

Shear from weight of downstand;

Total shear for toe design;

 $V_{toe_wt_base} = \gamma_{f_d} \times \gamma_{base} \times I_{toe} \times t_{base} = 44.6 \text{ kN/m}$

 $V_{toe_wt_ds} = \gamma_{f d} \times \gamma_{base} \times d_{ds} \times t_{ds} = 20.4 \text{ kN/m}$

 $V_{toe} = V_{toe_wt_base} - V_{toe_wt_ds} = 24.2 \text{ kN/m}$

Calculate moment for toe design

Moment from weight of base;

kNm/m

Moment from weight of downstand;

56.5 kNm/m

Total moment for toe design;

 $M_{toe\ wt\ base} = (\gamma_{f\ d} \times \gamma_{base} \times t_{base} \times (I_{toe} + t_{wall}/2)^2/2) = 74.9$

 $M_{toe_wt_ds} = \gamma_{f_d} \times \gamma_{base} \times d_{ds} \times t_{ds} \times (I_{toe} - I_{ds} + (t_{wall} - t_{ds}) / 2) =$

M_{toe} = M_{toe wt base} - M_{toe wt ds} = 18.5 kNm/m

Check toe in bending

Width of toe;

Depth of reinforcement;

Constant;

Lever arm;

b = 1000 mm/m

 $d_{toe} = t_{base} - c_{toe} - (\phi_{toe} / 2) = 362.5 \text{ mm}$

Area of tension reinforcement required;

Minimum area of tension reinforcement;

Area of tension reinforcement required;

Reinforcement provided;

Area of reinforcement provided;

 $K_{toe} = M_{toe} / (b \times d_{toe}^2 \times f_{cu}) = 0.004$

Compression reinforcement is not required

 $z_{\text{toe}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{toe}}, 0.225) / 0.9)), 0.95)} \times d_{\text{toe}}$

 $z_{toe} = 344 \text{ mm}$

 $A_{s_toe_des} = M_{toe} / (0.87 \times f_y \times z_{toe}) = \textbf{123 mm}^2 / m$

 $A_{s_toe_min} = k \times b \times t_{base} = 585 \text{ mm}^2/\text{m}$

 $A_{s \text{ toe req}} = Max(A_{s \text{ toe des}}, A_{s \text{ toe min}}) = 585 \text{ mm}^2/\text{m}$

25 mm dia.bars @ 200 mm centres

 $A_{s_{toe_prov}} = 2454 \text{ mm}^2/\text{m}$

Job No 23261

Page 6 of 9

Rev

Date 16/10/2015

Eng TM

Chd

Job 22 Frognal Way

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress;

Allowable shear stress;

N/mm²

Consulting Engineers

 $v_{toe} = V_{toe} / (b \times d_{toe}) = 0.067 \text{ N/mm}^2$

 $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 5.000$

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress;

$$v_{c toe} = 0.665 \text{ N/mm}^2$$

 $v_{toe} < v_{c_toe}$ - No shear reinforcement required

Design of reinforced concrete retaining wall downstand (BS 8002:1994)

Material properties

Characteristic strength of concrete;

 $f_{cu} = 40 \text{ N/mm}^2$

Characteristic strength of reinforcement;

 $f_v = 500 \text{ N/mm}^2$

Base details

Minimum area of reinforcement;

k = 0.13 %

Cover to reinforcement in downstand;

 $c_{ds} = 75 \text{ mm}$

Calculate shear for downstand design

Total shear for downstand design

$$V_{down} = \gamma_{fe} \times K_p \times cos(\delta_b) \times \gamma_m \times d_{ds} \times (d_{cover} + t_{base} + d_{ds} / 2) = 64.5 \text{ kN/m}$$

Calculate moment for downstand design

Total moment for downstand design

$$M_{down} = \gamma_{f_e} \times K_p \times cos(\delta_b) \times \gamma_m \times d_{ds} \times \left[(d_{cover} + t_{base}) \times (t_{base} + d_{ds}) + d_{ds} \times (t_{base} / 2 + 2 \times d_{ds} / 3) \right] / 2 = 42.4 \text{ kNm/m}$$

4 200 ▶

Check downstand in bending

Width of downstand;

b = 1000 mm/m

Depth of reinforcement;

 $d_{down} = t_{ds} - c_{ds} - (\phi_{down} / 2) = 740.0 \text{ mm}$

Constant;

 $K_{down} = M_{down} / (b \times d_{down}^2 \times f_{cu}) = 0.002$

Compression reinforcement is not required

Job No 23261 Page 7 Of 9 Rev
Date 16/10/2015 Eng TM Chd

Job 22 Frognal Way

Lever arm;

 $z_{down} = Min(0.5 + \sqrt{(0.25 - (min(K_{down}, 0.225) / 0.9)),0.95)} \times$

 d_{down}

 $z_{down} = 703 \text{ mm}$

Area of tension reinforcement required;

 $A_{s \text{ down des}} = M_{down} / (0.87 \times f_{y} \times z_{down}) = 139 \text{ mm}^{2}/\text{m}$

Minimum area of tension reinforcement;

 $A_{s_down_min} = k \times b \times t_{ds} = 1073 \text{ mm}^2/\text{m}$

Area of tension reinforcement required;

 $A_{s_down_req} = Max(A_{s_down_des}, A_{s_down_min}) = 1073 \text{ mm}^2/\text{m}$

Reinforcement provided;

20 mm dia.bars @ 200 mm centres

Area of reinforcement provided;

 $A_{s \text{ down prov}} = 1571 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall downstand is adequate

Check shear resistance at downstand

Design shear stress;

 $v_{down} = V_{down} / (b \times d_{down}) = 0.087 \text{ N/mm}^2$

Allowable shear stress:

 $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 5.000$

N/mm²

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress;

 $v_{c down} = 0.441 \text{ N/mm}^2$

 $v_{down} < v_{c_down}$ - No shear reinforcement required

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Characteristic strength of concrete;

 $f_{cu} = 40 \text{ N/mm}^2$

Characteristic strength of reinforcement:

 $f_v = 500 \text{ N/mm}^2$

Wall details

Minimum area of reinforcement;

k = 0.13 %

Cover to reinforcement in stem;

 $c_{stem} = 75 \text{ mm}$

Cover to reinforcement in wall;

 $c_{wall} = 75 \text{ mm}$

Factored horizontal at-rest forces on stem

Surcharge;

 $F_{s_sur_f} = \gamma_{f_l} \times K_0 \times Surcharge \times (h_{eff} - t_{base} - d_{ds}) = 35.9 \text{ kN/m}$

Moist backfill above water table;

 $F_{s m a f} = 0.5 \times \gamma_{f e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{sat})^2 = 9$

kN/m

Moist backfill below water table;

 $F_{s m b f} = \gamma_{f e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{sat}) \times h_{sat} = 44.2$

kN/m

Saturated backfill;

 $F_{s s f} = 0.5 \times \gamma_{f e} \times K_0 \times (\gamma_{s} - \gamma_{water}) \times h_{sat}^2 = 33.7 \text{ kN/m}$

Water;

 $F_{s \text{ water } f} = 0.5 \times \gamma_{f e} \times \gamma_{water} \times h_{sat}^2 = 50.1 \text{ kN/m}$

Calculate shear for stem design

Shear at base of stem;

 $V_{\text{stem}} = F_{\text{s sur } f} + F_{\text{s m a } f} + F_{\text{s m b } f} + F_{\text{s s } f} + F_{\text{s water } f} - F_{\text{prop } f}$

= -4.2 kN/m

Calculate moment for stem design

Surcharge; $M_{s \text{ sur } f} \times (h_{stem} + t_{base}) / 2 = 76.2 \text{ kNm/m}$

Moist backfill above water table; $M_{s m a} = F_{s m a f} \times (2 \times h_{sat} + h_{eff} - d_{ds} + t_{base} / 2) / 3 = 29.6$

kNm/m

Moist backfill below water table; $M_{s_m_b} = F_{s_m_b_f} \times h_{sat} / 2 = 59.6 \text{ kNm/m}$

Saturated backfill; $M_{s s} = F_{s s f} \times h_{sat} / 3 = 30.3 \text{ kNm/m}$

Water; M_s water = F_s water $f \times h_{sat} / 3 = 45.1$ kNm/m

Total moment for stem design; $M_{\text{stem}} = M_{\text{s sur}} + M_{\text{s m a}} + M_{\text{s m b}} + M_{\text{s s}} + M_{\text{s water}} = 240.9$

kNm/m

 Job No
 23261
 Page
 8 of
 9
 Rev

 Date
 16/10/2015
 Eng
 TM
 Chd

Job 22 Frognal Way

Check wall stem in bending

Width of wall stem;

Depth of reinforcement;

Constant;

Lever arm;

 d_{stem}

Area of tension reinforcement required;

Minimum area of tension reinforcement;

Area of tension reinforcement required;

Reinforcement provided:

Area of reinforcement provided;

b = **1000** mm/m

 $d_{stem} = t_{wall} - c_{stem} - (\phi_{stem} / 2) = 262.5 \text{ mm}$

 $K_{\text{stem}} = M_{\text{stem}} / (b \times d_{\text{stem}}^2 \times f_{\text{cu}}) = 0.087$

Compression reinforcement is not required

 $z_{\text{stem}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{stem}}, 0.225) / 0.9)), 0.95)} \times$

 $z_{\text{stem}} = 234 \text{ mm}$

 $A_{s \text{ stem des}} = M_{stem} / (0.87 \times f_{v} \times z_{stem}) = 2367 \text{ mm}^{2}/\text{m}$

 $A_{s_stem_min} = k \times b \times t_{wall} = 455 \text{ mm}^2/\text{m}$

 $A_{s_stem_req} = Max(A_{s_stem_des}, A_{s_stem_min}) = 2367 \text{ mm}^2/\text{m}$

25 mm dia.bars @ 200 mm centres

 $A_{s \text{ stem prov}} = 2454 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress;

Allowable shear stress;

N/mm²

 $v_{\text{stem}} = V_{\text{stem}} / (b \times d_{\text{stem}}) = -0.016 \text{ N/mm}^2$

 $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 5.000$

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress;

 $v_{c \text{ stem}} = 0.803 \text{ N/mm}^2$

 $v_{stem} < v_{c_stem}$ - No shear reinforcement required

 Job No
 23261
 Page
 9 of
 9
 Rev

 Date
 16/10/2015
 Eng
 TM
 Chd

Job 22 Frognal Way

Indicative retaining wall reinforcement diagram

Toe bars - 25 mm dia.@ 200 mm centres - (2454 mm²/m)

Downstand bars - 20 mm dia.@ 200 mm centres - (1571 mm²/m)

Stem bars - 25 mm dia.@ 200 mm centres - (2454 mm²/m)

Overturning Moment resistance

Overturning moment will be resisted by the 350 thick lower ground floor slab.

M_{OT} = 201.2kNm/m => Factored = 1.4 x 201.2kNm/m = 282kNm/m

Design 350 thick slab to resist this force.

h = 350mm, c = 25mm, $\phi = 25$ mm, d = 300mm, $f_v = 500$ N/mm²

 $A_{s,req} = M/0.87 f_y z = 282 \times 10^6 / 0.87 \times 500 \times 0.9 \times 300 = 2401 \text{mm}^2 / \text{m}$

Provide H25s @ 200 c/c A_{s,prov} = 2454mm²

Ensure piled wall has sufficient stiffness as well.

Pile $\phi = 450$ mm, Lining wall = 225mm, outside cover = 75mm => d = 600mm

 $A_{s,req} = M/0.87 f_v z = 282 \times 10^6 / 0.87 \times 500 \times 0.9 \times 600 = 1201 \text{mm}^2 / \text{m}$

Provide 0.45 x 1201mm²/m = 541mm² per pile => Provide at least 2 H10 bars per pile

 $A_{s,prov} = 628 \text{mm}^2$