APPENDIX E

_

_

Preliminary Drainage Layout & Site Proposals

Due Chalter

		N	OTES				
Site Boundary W Existing Combined Sew	er	1.	Invert leve where nev confirmed	ls and positions of a connections are to the engineer price to the	existing drains / cha b be made must be or to the commence	ambers / sew checked and ment of any	ers works.
Proposed Foul Water Se	ewer	2.	All drainag	e works shall be ca	arried out in accord	ance with the	o o ol i o
Proposed Storm Water	Sewer		conjunctio	nts of the Local Aut n with all relevant B r Adoption' 7th Edit	nority, the Environr British Standards, C ion and any adden	nent Agency odes of Pract dums as	and in ice and
Proposed Combined Wa	ater Sewer		appropriat	e.			
Proposed Private Surfac	e Water Manholes:	3.	All drainaç requireme	e shall comply with nts of BS EN 752 a	the typical details nd Part H of the Bu	and the iilding Regula	tions.
- 450mm dia PPIC - 750 x 675mm RC Ins	situ Manhole	4.	Any part o new scher shall be re	f the existing draina ne shall be cleaned paired using appro	age system to be re and inspected. An priate and approve	tained as par y structural d d means.	t of the efects
Proposed Private Foul W	/ater Manholes	5.	For setting or Mechar	-out dimensions of ical Engineer's dra	SVP's, RWP's etc, wings. Positions sh	refer to Archi own are indic	tect's ative
- 450mm dia PPIC		6.	All foul and otherwise	d RWP connections specified.	s shall be 100mm d	iameter unles	S
- 1200 x 900mm RC Ir	nsitu Manhole	7.	All precast manufactu	concrete units use red using sulphate	d in the drainage wresisting cement.	orks shall be	
- 900mm dia PCC Ma Proposed Combined Wa	nhole ter Manhole	8.	Manhole c Kitemarke carriagewa footways a covers sha in accorda	overs and frames s d. Covers and fram ays and vehicular a and soft landscaping Ill be recessed fabr nce with the FACT	hall be to BS EN 12 es shall be heavy c reas and medium d g. In blocked/conci icated steel. All rec A association gradii	24 and shall b luty D400 in luty B125 in rete paved an essed covers ngs.	eas shall
1200 x 900mm RC Insitu	I Manhole	9.	All interna screw dow	inspection chambern covers.	ers to be recessed,	double seale	d with
Soil Vent Pipe/stub Stac	k	10.	Cover leve	ls are to be adjuste	ed locally to suit fini	shed ground	levels.
Proposed Rainwater Pipe	e	11.	At least or atmosphered	e soil pipe at the he	ead of each foul rur	n shall vent to	the
Proposed Floor Gully		12.	Existing dr void backf exceeding	ainage to be remov illed with granular n 250mm.	ved is to be broken naterial, compacted	out to bed lev I in layers not	vel and
Proposed Yard Gully		13.	All drain ru gradient u unless oth	ins from SVP's, stu nless otherwise sta erwise stated.	b stacks or FW gul ted. All RWP's to b	lies to be laid e laid 1:80 mi	at 1:40 n
Private Pumping station		14.	All manho recessed o orientated	es / inspection cha covers. MH covers i 'square' with pavir	mbers in block pav in paved areas to h ig to minimise cut s	ed areas, to h ave cover & f labs or blocks	nave rame s.
Manhole with hydro-brak dia PCC)	xe (1200mm	15.	All private pipes, eith BS EN 299 be Cast Ire	drainage to be laid er uPVC to BS 466 5. Pipes below struc on to BS 437.	to levels shown us 0 and BS 5481 or v ctural building slabs	ing flexibly jo vitrified claywa s or basemen	inted are to ts shall
 Attenuation Tank with Person Distributor Pipe 	erforated	16.	Rodding e and depth	yes, etc are to be la to allow adequate f	aid to manufacturer fall from adjoining u	s minimum co Init.	over
		17.	All propos to ensure	ed trees to have ap roots are directed a	propriate tree barrie way from drainage	er details link	ing pits
C101		18.	Where new tree the se Refer to di	v sewers are const wer shall be concre ainage details.	ructed within 5m of ete encased agains	a new or exis t root intrusio	sting n.
		19.	All new dra Contractor to Drainag	ainage to be jetted to make sure that e maintenance mai	and CCTV surveye the drainage is fully nual for maintenand	d on complet operational. ce details.	ion. Refer
		20.	All runs co clay, extra socketed f	nnecting into the p length to BS EN 29 lexible joints.	ublic drainage netw 95 or BS65 with pla	ork to be vitri in sleeved or	fied
		21.	CDM note attenuation cleared ou period the surface to	All pipework, silt tr n tanks to be regula t on a regular frequ frequency can be r be regularly swept	aps, catchpits, trap arly inspected every lency for the first ni educed to every siv three times a year	ped gullies a three month ne months. A months. Por to remove the	nd s and fter this ous e silt.
		22.	This drawi drawings.	ng is to be read in o	conjunction with all	relevant Con	isbee
nt = ent = event = ble Area:	1.9 l/s 3.9 l/s 4.5 l/s 2.2 l/s 2,070 m ² 2,070 m ²	23.	HEALTH A competent recognised and appro work shall Safety Reg	ND SAFETY: The and experienced of I national organisat priate training for the be carried out in ac gulations.	works shall be carr contractors who are ion.Operatives sha ie operations they a ccordance with all p	ied out by spo members of Il have receiv are to underta pertinent Heal	ecialist a ed full ke. All th and
able Area: from Impermeable	2,070m ²		NC	I FUR C	UNSIRU	CHON	I
ace Water discharge rate	14.0 l/s		P4 10.05.1	6 Architect's Layo	ut Updated	JC	TG
00YS + 30%CC:	70 <u>m³</u>	-	P3 25.04.1	6 Tank size revise	d	AW	TG
	T.B.C. I/s.		Rev Date	Description		Drawn	Check
tenuation Notes Roof Area = 54m² Max. water depth = 0 Total =3m³ Roof Area = 20m²).08m	(COD Consulting S Consulting C	tructural Engineers ivil Engineers	see	1-5 Offord St London N1 1D Tel 020 7700 Fax 020 7700 design@conis www.conisbee	H) 6666) 6686 bee.co.uk .co.uk

Drawing	Status
Diaming	Olulus

PRELIMINARY

Project

5-17 Haverstock Hill London NW3 2I

Title

DRAINAGE LAYOUT **GROUND FLOOR** SHEET 1 OF 2

Date	March 2016			
Scale	1:100 @A1			
Drawn	AW			
Engineer AW				
Project No				

140870 Drawing No

C100

Revision **P4**

Max. water depth = 0.10m

70m³

Total =20m³

Total = 47m³

63m² x 0.80m deep

	N	OTES			
Site Boundary	1.	Invert levels and where new con	d positions of existing drains / nections are to be made mus	chambers / sev t be checked ar	wers nd
Proposed Foul Water Sewer	2.	All drainage wo	rks shall be carried out in acc	cordance with th	y works. Ie
Proposed Storm Water Sewer		requirements of conjunction with	the Local Authority, the Envi an all relevant British Standard	ronment Agenc s, Codes of Pra	y and in ctice and
Proposed Combined Water Sewer		'Sewers for Add appropriate.	option' 7th Edition and any add	dendums as	
Proposed Private Surface Water Ma	nholes: ^{3.}	All drainage shared and the second se	all comply with the typical deta f BS EN 752 and Part H of the	ails and the e Building Regu	lations.
- 450mm dia PPIC - 750 x 675mm RC Insitu Manhole	4. e	Any part of the new scheme sh shall be repaire	existing drainage system to b all be cleaned and inspected.	e retained as pa . Any structural oved means	art of the defects
	5.	For setting-out or Mechanical E	dimensions of SVP's, RWP's Engineer's drawings. Positions	etc, refer to Arc s shown are ind	hitect's licative
Proposed Private Foul Water Manho - 450mm dia PPIC	oles 6.	and subject to f All foul and RW	inal design. ′P connections shall be 100m	m diameter unle	ess
- 1200 v 900mm BC Insitu Manho	Je 7.	otherwise speci	ified. crete units used in the drainad	ge works shall b	e
- 1200 x 900mm RC Insitu Manno	ne r.	manufactured u	ising sulphate resisting cemer	nt.	
- 900mm dia PCC Manhole Proposed Combined Water Manhole	8.	Manhole covers Kitemarked. Co carriageways a footways and s covers shall be in accordance v	s and frames shall be to BS E vers and frames shall be hea nd vehicular areas and mediu oft landscaping. In blocked/co recessed fabricated steel. All with the FACTA association g	N 124 and shall vy duty D400 in im duty B125 in oncrete paved a recessed cove radings.	l be areas rs shall
1200 x 900mm RC Insitu Mannole	9.	All internal insp screw down cov	ection chambers to be recess vers.	sed, double sea	led with
Soil Vent Pipe/stub Stack	10.	Cover levels are	e to be adjusted locally to suit	finished ground	d levels.
Proposed Rainwater Pipe	11.	At least one soi atmosphere.	I pipe at the head of each fou	I run shall vent	to the
Proposed Floor Gully	12.	Existing drainag void backfilled v exceeding 250r	ge to be removed is to be brol with granular material, compa nm.	ken out to bed le cted in layers ne	evel and ot
Proposed Yard Gully	13.	All drain runs fr gradient unless unless otherwis	om SVP's, stub stacks or FW otherwise stated. All RWP's t e stated.	gullies to be lai to be laid 1:80 r	d at 1:40 nin
Private Pumping station	14.	All manholes / i recessed cover orientated 'squa	nspection chambers in block s. MH covers in paved areas are' with paving to minimise c	paved areas, to to have cover & cut slabs or bloc	have frame ks.
Manhole with hydro-brake (1200mm dia PCC)	15.	All private drain pipes, either uP BS EN 295. Pip be Cast Iron to	age to be laid to levels shown VC to BS 4660 and BS 5481 ses below structural building s BS 437.	n using flexibly j or vitrified clayv labs or baseme	ointed ware to nts shall
 Attenuation Tank with Perforated Distributor Pipe 	16.	Rodding eyes, o and depth to all	etc are to be laid to manufactu ow adequate fall from adjoinir	urers minimum o ng unit.	cover
	17.	All proposed tre to ensure roots	ees to have appropriate tree b are directed away from drain	arrier details lin age.	king pits
C101	18.	Where new sev tree the sewer s Refer to drainag	vers are constructed within 5r shall be concrete encased ag ge details.	n of a new or e» ainst root intrus	kisting ion.
	19.	All new drainag Contractor to m to Drainage ma	e to be jetted and CCTV surv ake sure that the drainage is intenance manual for mainter	reyed on comple fully operationa nance details.	etion. I. Refer
	20.	All runs connec clay, extra leng socketed flexibl	ting into the public drainage r th to BS EN 295 or BS65 with e joints.	network to be vit a plain sleeved o	trified or
	21.	CDM note: All p attenuation tanl cleared out on a period the frequ surface to be re	pipework, silt traps, catchpits, ks to be regularly inspected en a regular frequency for the firs lency can be reduced to every egularly swept three times a ye	trapped gullies very three mont st nine months. y six months. Pe ear to remove th	and hs and After this orous he silt.
	22.	This drawing is drawings.	to be read in conjunction with	n all relevant Co	nisbee
nt = 1.9 l/s ent = 3.9 l/s event = 4.5 l/s 2.2 l/s 2,070 2,070	23. m² m²	HEALTH AND S competent and recognised nati and appropriate work shall be ca Safety Regulati	SAFETY: The works shall be experienced contractors who onal organisation.Operatives e training for the operations th arried out in accordance with ons.	carried out by s are members c shall have rece ey are to under all pertinent He	pecialist of a ived full take. All alth and
able Area: 2,070 f from Impermeable	m²	NOT	FOR CONSTR		N
ace Water discharge rate 14.0 1/s	s -	P4 10.05.16 Ar	chitect's Layout Updated	JC	TG
00YS + 30%CC: 70 <u>m³</u>	F	23 25.04.16 Ta	ank size revised	AW	TG
T.B.C. I	/s.	Rev Date De	escription	Drawn	Check
tenuation Notes Roof Area = 54m ² Max. water depth = 0.08m Total =3m ³ Roof Area = 20m ²		COT Consulting Structs	ural Engineers ngineers	1-5 Offord S London N1 1 Tel 020 77 Fax 020 77 design@con www.conisbe	t IDH 00 6666 00 6686 isbee.co.uk ee.co.uk

Drawing Status

PRELIMINARY

Project

5-17 Haverstock Hill London NW3 2I

Title

GROUND FLOOR SHEET 2 OF 2

Date Marc	ch 2016
Scale 1:10)0 @A1
Drawn A	Ŵ
Engineer A	Ŵ
Project No 14087	<u>'0</u>
 Drawing No	
C101	

Revision

P4

DRAINAGE LAYOUT

Max. water depth = 0.10m

<u>70m³</u>

Total =20m³

Total = 47m³

63m² x 0.80m deep

THIS DRAWING MUST BE READ IN CONJUNCTION WITH THE SPECIFICATION AND ALL OTHER RELEVANT DRAWINGS. DO NOT SCALE FROM THIS DRAWING.

		N	IOTES
pe Legend:		1.	Invert levels and positions of existing drains / chambers / sewers where new connections are to be made must be checked and confirmed to the engineer prior to the commencement of any works.
Site Bounda	агу	2.	All drainage works shall be carried out in accordance with the requirements of the Local Authority, the Environment Agency and in conjunction with all relevant British Standards, Codes of Practice and 'Sewers for Adoption' 7th Edition and any addendums as
Legend:		3.	All drainage shall comply with the typical details and the
		4	requirements of BS EN 752 and Part H of the Building Regulations.
		4.	new scheme shall be cleaned and inspected. Any structural defects shall be repaired using appropriate and approved means.
Blue Roof		5.	For setting-out dimensions of SVP's, RWP's etc, refer to Architect's or Mechanical Engineer's drawings. Positions shown are indicative and subject to final design.
Green Roof		6.	All foul and RWP connections shall be 100mm diameter unless otherwise specified.
		7.	All precast concrete units used in the drainage works shall be manufactured using sulphate resisting cement.
		8.	Manhole covers and frames shall be to BS EN 124 and shall be Kitemarked. Covers and frames shall be heavy duty D400 in carriageways and vehicular areas and medium duty B125 in footways and soft landscaping. In blocked/concrete paved areas covers shall be recessed fabricated steel. All recessed covers shall in accordance with the FACTA association gradings.
		9.	All internal inspection chambers to be recessed, double sealed with screw down covers.
		10.	Cover levels are to be adjusted locally to suit finished ground levels.
		11.	At least one soil pipe at the head of each foul run shall vent to the atmosphere.
		12.	Existing drainage to be removed is to be broken out to bed level and void backfilled with granular material, compacted in layers not exceeding 250mm.
		13.	All drain runs from SVP's, stub stacks or FW gullies to be laid at 1:40 gradient unless otherwise stated. All RWP's to be laid 1:80 min unless otherwise stated.
		14.	All manholes / inspection chambers in block paved areas, to have recessed covers. MH covers in paved areas to have cover & frame orientated 'square' with paving to minimise cut slabs or blocks.
		15.	All private drainage to be laid to levels shown using flexibly jointed pipes, either uPVC to BS 4660 and BS 5481 or vitrified clayware to BS EN 295. Pipes below structural building slabs or basements shall be Cast Iron to BS 437.
		16.	Rodding eyes, etc are to be laid to manufacturers minimum cover and depth to allow adequate fall from adjoining unit.
		17.	All proposed trees to have appropriate tree barrier details linking pits to ensure roots are directed away from drainage.
		18.	Where new sewers are constructed within 5m of a new or existing tree the sewer shall be concrete encased against root intrusion. Refer to drainage details.
		19.	All new drainage to be jetted and CCTV surveyed on completion. Contractor to make sure that the drainage is fully operational. Refer to Drainage maintenance manual for maintenance details.
		20.	All runs connecting into the public drainage network to be vitrified clay, extra length to BS EN 295 or BS65 with plain sleeved or socketed flexible joints.
		21.	CDM note: All pipework, silt traps, catchpits, trapped gullies and attenuation tanks to be regularly inspected every three months and cleared out on a regular frequency for the first nine months. After this period the frequency can be reduced to every six months. Porous surface to be regularly swept three times a year to remove the silt.
		22.	This drawing is to be read in conjunction with all relevant Conisbee drawings.
		23.	HEALTH AND SAFETY: The works shall be carried out by specialist competent and experienced contractors who are members of a recognised national organisation.Operatives shall have received full and appropriate training for the operations they are to undertake. All work shall be carried out in accordance with all pertinent Health and Safety Regulations.
event = n event =	1.9 l/s 3.9 l/s	- F	P4 26.04.16 Green roof area revised AW TG
m event =	4.5 l/s 2.2 l/s	F	P3 25.04.16 Blue / green roof area revised AW TG
	2 0702	F	P2 08.04.16 Water depths revised. DN TG
neable Area: rmeable Area: n off from Impermeable	2,070 m ² 2,070 m ² 2,070m ²	F	Rev Date Description Drawn Check
urface Water discharge rate	28.8 l/s 14.0 l/s		1-5 Offord St
<u>r 100YS + 30%CC:</u>	70 <u>m³</u>		CONISOEE London N1 1DH Tel 020 7700 6666 Eav 020 7700 6666
Je:	T.B.C. I/s.		Consulting Structural Engineers design@conisbee.co.uk Consulting Civil Engineers www.conisbee.co.uk

Attenuat	Attenuation Notes			
	Roof Area = 54m² Max. water depth = 0.08m Total =3 m ³			
	Roof Area = 20m² Max. water depth = 0.10m Total =20 m ³			
	63m² x 0.80m deep Total = 47m ³			
ATION	<u>70m³</u>			

Title DRAINAGE LAYOUT GROUND FLOOR

Drawing Status

Project

PRELIMINARY

London NW3 2I

5-17 Haverstock Hill

www.conispee.co.uk

Date	March 2016	
Scale	1:200 @A1	
Drawn	AW	
Engine	er AW	
 Project No 140870		
Drawin	a No	

C105

Revision

P4

Conisbee		Page 1
1-5 Offord Street		
Islington		<u> </u>
London N1 1DH		Micco
Date 17/03/2016 11:35	Designed by anna.wilk	
File	Checked by	Dialitada
XP Solutions	Source Control 2015.1	1
ICD SUD	S Mean Annual Flood	

ICP SUDS Mean Annual Flood

Input

Return Period (years)100Soil0.450Area (ha)0.207Urban0.750SAAR (mm)609RegionNumberRegion

Results 1/s

QBAR Rural 0.8 QBAR Urban 2.2 Q100 years 4.5 Q1 year 1.9 Q30 years 3.9 Q100 years 4.5

Conisbee			Page 1
1-5 Offord Street			
Islington			r a
London N1 1DH			Micco
Date 08/07/2016 14:29	Designed by anna	a.wilk	
File	Checked by		Diamada
XP Solutions	Source Control 2	2015.1	
Greenf	ield Runoff Volu	me	
	ECP Data		
	FSK Dala		
Return Peric	d (years)	1	
Storm Durati	on (mins)	360	
Ν	Region England a: 15-60 (mm)	21.000	
	Ratio R	0.438	
Areal Reducti	on Factor	1.00	
	Area (ha) SAAR (mm)	609	
	CWI	88.620	
	Urban	0.000	
	SPR	47.000	
	Results		
Per	centage Runoff (%)	37.91	
Greentield	Runoll volume (m°)	17.304	
<u>@1982</u>	-2015 XP Solution	IS	

Conisbee		Page 1
1-5 Offord Street		
Islington		4
London N1 1DH		Micco
Date 08/07/2016 14:32	Designed by anna.wilk	
File	Checked by	Drainage
XP Solutions	Source Control 2015.1	
Greenf	ield Runoff Volume	
	FSR Data	
Return Perio	d (years) 100	
Storm Durati	on (mins) 360	
	Region England and Wales	
M	5-60 (mm) 21.000 Ratio R 0.438	
Areal Reducti	on Factor 1.00	
	Area (ha) 0.207	
	SAAR (mm) 609	
	CWI 88.620	
	SPR 47.000	
	Results	
Per	centage Bunoff (%) 41 93	
Greenfield	Runoff Volume (m ³) 54.601	
©1982-	-2015 XP Solutions	

Conisbee			Page 1
1-5 Offord Street			
Islington			
London N1 1DH			Micro
Date 08/07/2016 14:31	Designed by	anna.wilk	
File	Checked by		Diamaye
XP Solutions	Source Cont	rol 2015.1	
Greenf	ield Bunoff	Volume	
<u>9166111</u>		Vorume	
	FSR Data		
Return Peric	od (years)	30	
Storm Durati	on (mins)	360	
N	Region Engl 15-60 (mm)	and and Wales	
Ľ	Ratio R	0.438	
Areal Reducti	on Factor	1.00	
	Area (ha)	0.207	
	SAAR (mm)	609	
	CWI	88.620	
	Urban	0.000	
	SPR	47.000	
	Results		
Per	centage Runoff	(응) 39.92	
Greeniieid	Runoll volume	(m°) 40.107	
©1982-	-2015 XP Solu	utions	

Conisbee		Page 1
1-5 Offord Street		
Islington		<u> </u>
London N1 1DH		Micco
Date 08/07/2016 15:22	Designed by anna.wilk	
File 1.srcx	Checked by	Digitigh
XP Solutions	Source Control 2015.1	

Summary of Results for 1 year Return Period

	Sto Eve	rm nt	Max Level (m)	Max Depth (m)	Max Volume (m³)	Status
360	min	Summer	8.034	0.034	34.1	O K
<mark>360</mark>	min	Winter	8.038		38.2	O K

	Storm Event		Rain (mm/hr)	Flooded Volume	Time-Peak (mins)
				(m³)	
360	min	Summer	3.663	0.0	376
360	min	Winter	3.663	0.0	376

-5 Offord Street slington ondon N1 1DB ate 08/07/2016 15:22 11e 1.srcx P Solutions Source Control 2015.1 Rainfall Model Return Period (years) N5-60 (mn) Summer Storms N5-60 (mn) Clinate Change % Summer Storms Yes Clinate Change % Clinate Change %	1-5 Offord Street Islington London N1 1DH Date 08/07/2016 15:22 Designed by anna.wilk File 1.srcx Checked by XP Solutions Source Control 2015.1 Rainfall Details Rainfall Model FSR Winter Storms Yes Return Period (years) 1 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 360 Ratio R 0.441 Longest Storm (mins) 360 Summer Storms Yes Climate Change % +0 <u>Time Area Diagram</u> Total Area (ha) 0.207	U- D Iagi																sbee	Conis
slington ondon N1 DH ate 08/07/2016 15:22 P Solutions Source Control 2015.1 Eanfall Details Mainfall Model Second Version Region England and Wales Cr (Winter) 0.840 MS-60 (nm 21.000 Shortest Storm (mins) 360 MS-60 (nm 21.000 Shortest Storm (mins) 360 MS-60 (nm 21.000 Shortest Storm (mins) 360 MS-60 (nm 21.000 Shortest Storm (mins) 360 Summer Storms Yes Climate Change % +0 Time (mins) Area From: To: (ha) 0 4 0.051 4 8 0.052 8 12 0.052 12 16 0.052	Islington London N1 1DH Date 08/07/2016 15:22 Designed by anna.wilk File 1.srcx Checked by XP Solutions Source Control 2015.1 Rainfall Model FSR Winter Storms Return Period (years) 1 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 360 Summer Storms Yes Climate Change % +0 Time Area Diagram Total Area (ha) 0.207	U D Iagi	,	ſ											t	eet	Stre	Offord	L-5 C
ondon N1 1DH	London N1 1DH Designed by anna.wilk Microsoft Date 08/07/2016 15:22 Designed by anna.wilk Checked by File 1.srcx Checked by Checked by KP Solutions Source Control 2015.1 Rainfall Details Rainfall Model FSR Winter Storms Yes Return Period (years) 1 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 360 Summer Storms Yes Climate Change % +0 Time Area Diagram Total Area (ha) 0.207	agi	L															ngton	Islin
ate 08/07/2016 15:22 Designed by anna.wilk Checked by p Solutions Source Control 2015.1 Solutions Source Control 2015.1 Example 1 (Model Source Control 2015.1 Source Control 2015.1 Main Source Control 2015.1 Source Control 2015.1 Refinal Model FR FX Where Storms Ves Region England and Wales Summer Storms 1 CV (Winter) 0.780 Summer Storms Yes Climate Change 3 40 Time (mins) Area Time (m	Date 08/07/2016 15:22 Designed by anna.wilk Checked by File 1.srcx Checked by KP Solutions Source Control 2015.1 Rainfall Model FSR Winter Storms Return Period (years) 1 CV (Summer) 0.750 Region England and Wales CV (Winter) M5-60 (mm) 21.000 Shortest Storm (mins) Ratio R 0.441 Longest Storm (mins) Summer Storms Yes Climate Change % +0 Time Area Diagram Total Area (ha) 0.207	agi	Mirco														1DH	on N1	Londo
ile 1, srcx Checked by P Solutions Source Control 2015.1 Anifall Details Eainfall Model FSR Winter Storms Yes Rainfall Model FSR Winter Storms Yes 0.750 Region England and Valle CY (Summer) 0.750 Region England and Valle CY (Summer) 0.750 Region England and Valle CY (Summer) 0.750 Region England and Valle CY (Summer) 0.750 Ratio R 0.441 Longest Storm (mins) 360 Summer Storms Yes Climate Change 8 +0 Time (mins) Area Time (mins) Area Time (mins) Time (mins) Area Time (mins) Area Time (mins) Area Tore (ha) From: To: (ha) From: To: (ha) From: To: (ha) 0 4 0.051 4 8 0.052 8 12 0.052 12 16 0.052 16 0.052	File 1.srcx Checked by XP Solutions Source Control 2015.1 Rainfall Model FSR Winter Storms Yes Return Period (years) 1 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 360 Ratio R 0.441 Longest Storm (mins) 360 Summer Storms Yes Climate Change % +0 Time Area Diagram Total Area (ha) 0.207	ay	Dcain				wilk	nna.	Уá	ned l	Desig				15:22	6 3	/2016	08/07	Date
P Solutions Source Control 2015.1 Exainfall Model FSR Winter Storms Yes Return Period (years) 1 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 360 Ratio R 0.441 Longest Storm (mins) 360 Summer Storms Yes Climate Change 8 +00 Time Area Diagram Total Area (ha) 0.207 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) 0 4 0.051 4 8 0.052 8 12 0.052 12 16 0.052	XP Solutions Source Control 2015.1 Rainfall Details Rainfall Model FSR Winter Storms Yes Return Period (years) 1 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 360 Ratio R 0.441 Longest Storm (mins) 360 Summer Storms Yes Climate Change % +0 Time Area Diagram Total Area (ha) 0.207		DIGIII							ed b	Check						Х	1.src	File
	Rainfall Details Rainfall Model FSR Winter Storms Yes Return Period (years) 1 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 360 Ratio R 0.441 Longest Storm (mins) 360 Summer Storms Yes Climate Change % +0 Time Area Diagram Total Area (ha) 0.207						15.1	_ 20	tro	e Co	Sourc						ns	olutic	XP Sc
Rainfall ModelFSRWinter Storms Yes C (Summer) 0.750 Regional and WalesCY (Summer) 0.750 (Winter) 0.840 M5-60 (mm)M5-60 (mm)21.000 Shortest Storm (mins)360 Ratio RMatio R0.441 Summer StormsYesClimate Change %Time Area Diagram From:YesClimate Change %+0Time (mins) Area From:Time (mins) Area From:Time (mins) Area From:Time (mins) Area From:Time (mins) Area From:Time (mins) Area From:040.051480.0528120.0521100.051480.05212160.052	Rainfall Model FSR Winter Storms Yes Return Period (years) 1 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 360 Ratio R 0.441 Longest Storm (mins) 360 Summer Storms Yes Climate Change % +0 Time Area Diagram Total Area (ha) 0.207								il	Det	nfall	<u>Rai</u>	-						
Fine Fine (mine)Time (mine)Tere	<u>Time Area Diagram</u> Total Area (ha) 0.207 Time (mine) Area Time (mine) Area Time (mine) Area		s 0 0 0 0 0	Yes .750 .840 360 360 +C	ms r) 0 r) 0 s) s) %	r Storn (Summe (Winte n (min n (min Change	Winte Cv Cv t Stor t Stor imate	rtes nges Cl	Sh L	FSI Wale: 21.00 0.44 Ye:	nd and	gla	l) n En) R s	l Mode (years Regio 60 (mm Ratio Storm	ainfal eriod M5- Summer	R n P	Return		
Total Area (ha) 0.207 Time (mins) Area Time (mins) Area From: To: Time (mins) Area Trom: To: Time (mins) Area Trom: To: Time (mins) Area Trom: To: Total Area (ha) 0 4 0.051 4 8 0.052 8 12 0.052 12 16 0.052	Total Area (ha) 0.207							<u>l</u>	gra	a Dia	e Area	<u>rim</u>	<u>ר</u>						
Time(mins)Area From:Time(mins)Area From:Time(mins)Area From:Time(mins)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:Area From:To:(ha)Area From:Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:Area From:To:(ha)Area From:To:(ha)Area From:To:(ha)Area From:Area From:Area From:To:(ha)Area From:Area From:Area <td>Time (mine) Area Time (mine) Area Time (mine) Area Time (mine) Area</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td>0.2</td> <td>(ha)</td> <td>L Area</td> <td>'ota</td> <td>Т</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Time (mine) Area Time (mine) Area Time (mine) Area Time (mine) Area							7	0.2	(ha)	L Area	'ota	Т						
0 4 0.051 4 8 0.052 8 12 0.052 12 16 0.052	From: To: (ha) From: To: (ha) From: To: (ha) From: To: (ha)		Area (ha)	ns) >:	(min To	Time From:	Area (ha)	ns)):	(n	Time From	Area (ha)	ns)):	(mir To	Time From:	Area (ha)	s)	(mins To:	Time From:	
	0 4 0.051 4 8 0.052 8 12 0.052 12 16 0.052		0.052	16		12	0.052	12			0.052	8		4	0.051	4		0	

Conisbee		Page 3
1-5 Offord Street		
Islington		<u> </u>
London N1 1DH		Micco
Date 08/07/2016 15:22	Designed by anna.wilk	
File 1.srcx	Checked by	Digitigh
XP Solutions	Source Control 2015.1	1

<u>Model Details</u>

Storage is Online Cover Level (m) 10.000

Tank or Pond Structure

Invert Level (m) 8.000

Depth (m)	Area (m²)						
0.000	1000.0	2.800	0.0	5.600	0.0	8.400	0.0
0.400	1000.0	3.200	0.0	6.000	0.0	8.800	0.0
0.800	1000.0	3.600	0.0	6.400	0.0	9.200	0.0
1.200	0.0	4.000	0.0	6.800	0.0	9.600	0.0
1.600	0.0	4.400	0.0	7.200	0.0	10.000	0.0
2.000	0.0	4.800	0.0	7.600	0.0		
2.400	0.0	5.200	0.0	8.000	0.0		

Conisbee		Page 1
1-5 Offord Street		
Islington		<u> </u>
London N1 1DH		Micco
Date 08/07/2016 15:25	Designed by anna.wilk	
File 1.srcx	Checked by	Digitigh
XP Solutions	Source Control 2015.1	1

Summary of Results for 100 year Return Period (+30%)

	Sto Eve	rm nt	Max Level (m)	Max Depth (m)	Max Volume (m³)	Status
360	min	Summer	8.127	0.127	126.6	ОК
360	min	Winter	8.142	0.142	141.8	O K

	Sto	rm	Rain	Flooded	Time-Peak
	Eve	nt	(mm/hr)	Volume	(mins)
				(m-)	
360	min	Summer	13.593	0.0	376
360	min	Winter	13.593	0.0	376

											Page 2
1-5 Offor	d Stree	t									
Islington											4
London N	1 1DH										Micco
Date 08/0	7/2016	15:25			Desig	ned by	y anna	.wilk			
File 1.sr	СХ				Check	ed by					Drainagi
XP Soluti	ons				Source	e Cont	crol 20)15.1			
				Rai	nfall	Deta	ils				
	Potumn	Rainfal	1 Model	L		FSR 100		Winte	r Stori	ms Ye	s
	Recuill i	reriou	Region	Engla	nd and	Wales		CV	(Winte	r) 0.73	0
		м5-	60 (mm)	i nigra	2	21.000	Shortes	t Stor	m (min	s) 36	0
			Ratio H	ર		0.441	Longes	t Stor	m (min	s) 36	0
		Summer	Storms	3		Yes	Cl	imate	Change	% +3	0
				Tim	e Area	a Diag	ram				
				Tata	1 7 200	(ha) 0	207				
				Tota	1 Area	(na) U	1.207				
Time From	(mins) : To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)
	0 4	0.051	4	8	0.052	8	12	0.052	12	16	0.052

Conisbee		Page 3
1-5 Offord Street		
Islington		<u> </u>
London N1 1DH		Micco
Date 08/07/2016 15:25	Designed by anna.wilk	
File 1.srcx	Checked by	Digitigh
XP Solutions	Source Control 2015.1	

<u>Model Details</u>

Storage is Online Cover Level (m) 10.000

Tank or Pond Structure

Invert Level (m) 8.000

Depth (m)	Area (m²)						
0.000	1000.0	2.800	0.0	5.600	0.0	8.400	0.0
0.400	1000.0	3.200	0.0	6.000	0.0	8.800	0.0
0.800	1000.0	3.600	0.0	6.400	0.0	9.200	0.0
1.200	0.0	4.000	0.0	6.800	0.0	9.600	0.0
1.600	0.0	4.400	0.0	7.200	0.0	10.000	0.0
2.000	0.0	4.800	0.0	7.600	0.0		
2.400	0.0	5.200	0.0	8.000	0.0		

Conisbee		Page 1
1-5 Offord Street		
Islington		<u> </u>
London N1 1DH		Micco
Date 08/07/2016 15:24	Designed by anna.wilk	
File 1.srcx	Checked by	Dialidye
XP Solutions	Source Control 2015.1	1

Summary of Results for 100 year Return Period

	Sto Eve	rm nt	Max Level (m)	Max Depth (m)	Max Volume (m³)	Status
360	min	Summer	8.097	0.097	97.4	O K
<mark>360</mark>	min	Winter	8.109	0.109	109.1	O K

Storm		Rain	Flooded	Time-Peak	
	Eve	nt	(mm/hr)	Volume (m³)	(mins)
360	min	Summer	10.456	0.0	376
360	min	Winter	10.456	0.0	376

									Page 2
-5 Offord Stree	+								ruge z
slingtor									4
Condon N1 1DU									1 m
$\frac{1}{2}$	1 5 - 0 4		Deelau						Micro
Date 08/07/2016	15:24		Design		y anna	WIIK			Drainaru
file l.srcx			Checke	ed by	1 0/				Brainage
(P Solutions			Source	e Cont	trol 20)15.1			
		Deł		Data	41.5				
		<u>Ra1</u>	niall	Deta	<u>115</u>				
F	ainfall Mode			FSR		Winte	r Stor	ms Ye	S
Return B	eriod (years)			100		Cv	(Summe	r) 0.75	0
	Region	n Engla	nd and	Wales		Cv	(Winte	r) 0.84	0
	M5-60 (mm)		2	21.000	Shortes	t Stor	m (min	s) 36	0
	Ratio H	۲. -		0.441 Ves	Longes	t Stor	m (min Change	s) 36 2 +	0
	Summer Scorma	2		163	01	IIIIace	change	0	0
		Time	e Area	a Diac	<u>iram</u>				
				-					
		Tota	l Area	(ha) C	.207				
Time (mins)	Area Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From: To:	(ha) From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0 4	0.051 4	8	0.052	8	12	0.052	12	16	0.052
	I		I						

Conisbee		Page 3
1-5 Offord Street		
Islington		<u> </u>
London N1 1DH		Micco
Date 08/07/2016 15:24	Designed by anna.wilk	
File 1.srcx	Checked by	Digitigh
XP Solutions	Source Control 2015.1	1

<u>Model Details</u>

Storage is Online Cover Level (m) 10.000

Tank or Pond Structure

Invert Level (m) 8.000

Depth (m)	Area (m²)						
0.000	1000.0	2.800	0.0	5.600	0.0	8.400	0.0
0.400	1000.0	3.200	0.0	6.000	0.0	8.800	0.0
0.800	1000.0	3.600	0.0	6.400	0.0	9.200	0.0
1.200	0.0	4.000	0.0	6.800	0.0	9.600	0.0
1.600	0.0	4.400	0.0	7.200	0.0	10.000	0.0
2.000	0.0	4.800	0.0	7.600	0.0		
2.400	0.0	5.200	0.0	8.000	0.0		

Conisbee		Page 1
1-5 Offord Street		
Islington		<u> </u>
London N1 1DH		Micco
Date 08/07/2016 15:23	Designed by anna.wilk	
File 1.srcx	Checked by	Dialitage
XP Solutions	Source Control 2015.1	1

Summary of Results for 30 year Return Period

	Sto Eve	rm nt	Max Level (m)	Max Depth (m)	Max Volume (m³)	Status
360	min	Summer	8.075	0.075	75.1	O K
<mark>360</mark>	min	Winter	8.084	0.084	84.1	O K

Storm		Rain	Flooded	Time-Peak	
	Eve	nt	(mm/hr)	Volume	(mins)
				(m³)	
360	min	Summer	8.066	0.0	376
360	min	Winter	8.066	0.0	376

-5 Offord Street slington ondon N1 1DB ate 08/07/2016 15:23 lie 1.srcx P Solutions Source Control 2015.1 Rainfall Model Return Period (years) 0 (Winter) 0.840 M5-60 (rm) 21.000 Shortest Storm (mins) 360 Summer Storms Yes Clinate Change % -0 Time (mins) Area From: To: (ha) 0 4 0.051 A 8 0.052 8 12 0.052 12 16 0.052	-5 Offord Street slington ondon Ni 1DH ate 08/07/2016 15:23 ile 1.srcx Designed by anna.wilk Checked by P Solutions Source Control 2015.1 Eatiful Details Mainfall Model FSR Winter Storms Yes Return Period (years) 30 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 360 Summer Storms Yes Climate Change 8 +0 Ime Area Diagram Total Area (ha) 0.207 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha) 0 4 0.051 4 8 0.052 8 12 0.052 12 16 0.052	-5 Offord											Page 2
slington ondon N1 DB besigned by anna.wilk besigned by anna.wilk ile 1.srcx P Solutions Source Control 2015.1 P Solutions Source Control 2015.1 Engined by anna.wilk P Solutions Source Control 2015.1 Engined by anna.wilk P Solutions Source Control 2015.1 Engine England and Nes V (Winter) 0.80 Return Period (years) 30 CV (Winter) 0.80 Marce England and Nels CV (Winter) 0.80 0.80 0.80 Summer Storms Yes Climate Change 8 0.00 0.00 0.80 Summer Storms Yes Climate Change 8 0.00 0.80 0.0000 0.0000 0.0000 0.000	slington ondon N1 10H date 08/07/2016 15:23 besigned by anna.wilk Checked by P solutions Source Control 2015.1 Canfall Model Search Source Control 2015.1 Canfall Model Search Source Control 2015.1 Canfall Model Search Source Control 2015.1 Surce Storms Source Control 2015.1 Surce Storms Yes Climate Storms Yes Climate Change 8 40 Canfall Model Surce Storms Yes Climate Change 8 40 Surce Storms Yes Surce		Stree	et									<u> </u>
ondon N1 1DH Designed by anna.wilk Designed by anna.wilk the 08/07/2016 15:23 Designed by anna.wilk Designed by anna.wilk the 1.stcx Source Control 2015.1 Designed by anna.wilk checked by Source Control 2015.1 Designed by anna.wilk checked by Source Control 2015.1 Designed by anna.wilk Control 2015.1 Designed by anna.wilk Designed by anna.wilk Control 2015.1 Control 2015.1 District Storm Vise Non Control 2015.1 District Change & 10 Control Control Control 2016.1 Time Area Diagram Time (mins) Area Time (mins) Area Fro	ondon N1 108	slington											Ly .
ate 08/07/2016 15:23 Designed by anna.wilk (hecked by Source Control 2015.1	ate 08/07/2016 15:23 ile 1.srcx P Solutions Source Control 2015.1 Checked by Source Control 2015.1 Source Control 2015.1	ondon N1	1DH										Mirm
Ite 1.srcx Checked by P Solutions Source Control 2015.1 Begin Source Control 2015.1 Aginfall Details Rainfall Model FSR Winter Storms Yes Return Period (years) 30 CV (Summer) 0.840 Return Period (mm) 21.000 Shortest Storm (mins) 360 Return Period (mm) 21.000 Shortest Storm (mins) 360 Summer Storms Yes Climate Change % +0 Hand Diagram Time (mins) Area (ha) 0.207 Time (mins) Area From: To: Time (mins) Area From: To: To: Main (ha) From: To: To: Main (ha) Area From: To: Time (mins) Area 8 Source 7 To: Main (ha) Area 7 Time (ha) Area 7 To: Main (ha) <	ile 1.srcx Checked by P Solutions Source Control 2015.1 Acinfall Model Source Control 2015.1 Acinfall Model P Solutions Source Control 2015.1 Acinfall Model P Solutions Source Control 2015.1 Acinfall Model PSR Winter Storms Yes Region England and Wales Cv (Winter) 0.840 MS-60 (mm) 21.000 Shortest Storm (mins) 300 Summer Storms Yes Climate Change 8 MS-60 (mm) 21.000 Shortest Storm (mins) 300 Summer Storms Yes Climate Change 8 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) 0 4 0.051 4 0.052 8 12 0.052 12 16 0.052	ate 08/07	/2016	15:23			Desig	ned by	y anna	.wilk			Drainag
P Solutions Source Control 2015.1 Earliant Co	P Solutions P Solutions Source Control 2015.1 Exainfall Model Exainfall Details Mainfall Model EXA Winter Storms Yes Region England and Wales CV (Summer) 0.750 Region England and Wales CV (Winter) 0.800 Source Control 2000 Shortest Storm (mins) 360 Summer Storms Yes Summer Storms V. Collimate Change * 10 Time Area Diagram Total Area (ha) 0.201 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: 0 4 0.051 4 8 0.052 8 12 0.052 12 16 0.052	'ile 1.src	X				Check	ed by					
Linchel PetendiKinker KinkerMinistry Ministry Minis	<section-header></section-header>	P Solutio	ns				Sourc	e Cont	trol 20	015.1			
Rainfall ModelFSRWinter StormsYesReturn Period (years)30Cv (Summer) 0.750Rejon England and MalesCv (Winter) 0.840M5-60 (mm)21.000 Shortest Storm (mins)360Ratio R0.441Longest Storm (mins)360Summer StormsYesClinate Change S+0Time Area DiagramTime (mins) AreaTime (mins) AreaTime (mins) AreaFrom:To:(ha)From:To:(ha)04 0.05148 0.052812 0.0521216 0.052	Rainfall ModelFSRWinter StormsYesRegion England and MalesCV (Summer) 0.840MS-60 (m)21.000Shorteas Storm (mins)360Satio0.441Longest Storm (mins)360Jummer StormsYesClimate Change 3+0Immer StormsYesClimate Change 3Time (mins) AreaTime (mins)AreaTime (mins)AreaFrom:To:(ha)From:To:(ha)040.051480.0528120.0521216040.051480.0528120.05212160.052					Rai	nfall	Deta	<u>ils</u>				
Fine Area DiagramTotal Area (ha) ColsTime (mine) Area (han) (mine) (min	Fine fine fine fine fine fine fineTime fine <t< td=""><td>F</td><td>Return</td><td>Rainfal Period M5- Summer</td><td>l Mode (years) Region 60 (mm) Ratio H Storms</td><td>l) n Engla) R s</td><td>nd and</td><td>FSR 30 Wales 21.000 0.441 Yes</td><td>Shortes Longes Cl</td><td>Winte Cv Cv st Stor st Stor .imate</td><td>r Storn (Summe (Winte m (min m (min Change</td><td>ms Ye r) 0.75 r) 0.84 s) 36 s) 36 % +</td><td>s 0 0 0 0</td></t<>	F	Return	Rainfal Period M5- Summer	l Mode (years) Region 60 (mm) Ratio H Storms	l) n Engla) R s	nd and	FSR 30 Wales 21.000 0.441 Yes	Shortes Longes Cl	Winte Cv Cv st Stor st Stor .imate	r Storn (Summe (Winte m (min m (min Change	ms Ye r) 0.75 r) 0.84 s) 36 s) 36 % +	s 0 0 0 0
Total Area (ha) 0.207Time (mins) Area From: To:Time (mins) Area From: To:Time (mins) Area From: To:Time (mins) Area From: To:Time (mins) Area From: To:Area From: To:Time (mins) Area (ha)Time (mins) Area From: To:Area (ha)04 0.05148 0.052812 0.0521216 0.05204 0.05148 0.052812 0.0521216 0.052	Titel Area (ha) 0.207 Time (mins) Area To: Time (mins) To: Time (ha) To: Time (ha) To: Time (ha) To: To: <tht< td=""><td></td><td></td><td></td><td></td><td><u>Tim</u></td><td>e Area</td><td>a Diag</td><td><u>gram</u></td><td></td><td></td><td></td><td></td></tht<>					<u>Tim</u>	e Area	a Diag	<u>gram</u>				
Time(mins)AreaTime(mins)AreaFrom:To:(ha)From:To:(ha)From:To:(ha)From:To:(ha)From:To:(ha)From:To:(ha)From:To:(ha)Area040.051480.0528120.05212160.052040.051480.0528120.05212160.052	Time(mins)AreaTime(mins)AreaTime(mins)AreaFrom:To:(ha)From:To:(ha)From:To:(ha)040.051480.0528120.05212160.052040.051480.0528120.05212160.052					Tota	l Area	(ha) (.207				
0 4 0.051 4 8 0.052 8 12 0.052 12 16 0.052	0 4 0.051 4 8 0.052 8 12 0.052 12 16 0.052	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)
		0	2	1 0.051	4	8	0.052	8	12	0.052	12	16	0.052

Conisbee		Page 3
1-5 Offord Street		
Islington		<u> </u>
London N1 1DH		Micco
Date 08/07/2016 15:23	Designed by anna.wilk	
File 1.srcx	Checked by	Digitigh
XP Solutions	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 10.000

Tank or Pond Structure

Invert Level (m) 8.000

Depth (m)	Area (m²)						
0.000	1000.0	2.800	0.0	5.600	0.0	8.400	0.0
0.400	1000.0	3.200	0.0	6.000	0.0	8.800	0.0
0.800	1000.0	3.600	0.0	6.400	0.0	9.200	0.0
1.200	0.0	4.000	0.0	6.800	0.0	9.600	0.0
1.600	0.0	4.400	0.0	7.200	0.0	10.000	0.0
2.000	0.0	4.800	0.0	7.600	0.0		
2.400	0.0	5.200	0.0	8.000	0.0		

Conisbee						Page 1
1-5 Offord Street						
Islington						4
London N1 1DH						- Com
Date 17/03/2016 11:49	Desi	gned by	/ anna	a.wilk		
File attenuation.srcx	Chec	ked by	2			Drainage
XP Solutions	Sour	ce Cont	rol 2	2015 1		
	5001		2101 2	-010.1		
Summary of Results	for 1	10 vear	Ratur	rn Par	(+30%)	
<u>Summary of Results</u>	, 101 1	<u>ycar</u>	ite cu.		100 (1008)	
Storm	Max	Max 1	Max	Max	Status	
Event	Level	Depth Co	ntrol	Volume		
	(m)	(m) (1	1/s)	(m³)		
15 min Cumpo	0 550	0 552	12 7	55 2	O V	
30 min Summe	r 8 666	0.552	13.7 13.8	55.Z	OK	
60 min Summe	r 8.683	0.683	13.9	68.3	0 K	
120 min Summe	r 8.624	0.624	13.7	62.4	0 K	
180 min Summe	r 8.556	0.556	13.7	55.6	0 K	
240 min Summe	r 8.486	0.486	13.7	48.6	0 K	
360 min Summe	r 8.358	0.358	13.7	35.8	O K	
480 min Summe	r 8.226	0.226	13.7	22.6	O K	
600 min Summe	r 8.128	0.128	13.7	12.8	O K	
720 min Summe	r 8.061	0.061	13.7	6.1	0 K	
960 min Summe	r 8.001	0.001	13.7	0.1	0 K	
1440 min Summe	r 8.000	0.000	9.9	0.0	0 K	
2160 min Summe	r 8.000	0.000	7.1	0.0	0 K	
2880 min Summe	r 8.000	0.000	5.6	0.0	0 K	
4320 min Summe	r 8.000	0.000	4.0	0.0	ΟK	
5760 min Summe	r 8.000	0.000	3.1	0.0	ΟK	
7200 min Summe	r 8.000	0.000	2.6	0.0	ΟK	
8640 min Summe	r 8.000	0.000	2.2	0.0	ΟK	
10080 min Summe	r 8.000	0.000	2.0	0.0	O K	
15 min Winte	r 8.554	0.554	13.7	55.4	O K	
30 min Winte	r 8.670	0.670	13.8	67.0	O K	
Storm	Rain	Flooded	Disch	arge T	ime-Peak	
Event	(mm/hr)	Volume	Volu	me	(mins)	
		(m³)	(m³	')		
15 min Summer	139.783	0.0		72.4	23	
30 min Summer	90.217	0.0		93.2	34	
60 min Summer	55.351	0.0	1	14.1	56	
120 min Summer	32.791	0.0	1	36.5	90	
180 min Summer	23.828	0.0	1	47.6	124	
240 min Summer	18.892	0.0	1	55.8	158	
360 min Summer	13.617	0.0	1	69.1	224	
480 min Summer	10.786	0.0	1	78.2	284	
600 min Summer	8.997	0.0	1	86.3	338	
720 min Summer	7.754	0.0	1	92.5	390	
960 min Summer	6.129	0.0	2	03.0	490	
1440 min Summer	4.394	0.0	2	18.3	0	
2160 min Summer	3.146	0.0	2	34.4	0	
2880 min Summer	2.480	0.0	2	46.4	0	
4320 min Summer	1.771	0.0	2	64.0	0	
5760 min Summer	1.394	0.0	2	77.0	0	
7200 min Summer	1.157	0.0	2	87.4	0	
8640 min Summer	0.993	0.0	2	96.1	0	
10080 min Summer	0.873	0.0	3	03.6	0	
15 min Winter	139.783	0.0		72.4	23	
30 min Winter	90.217	0.0		93.0	34	
	82-2015	XP SOL	ut i nn	1.S		

Conisbee						Page 2
1-5 Offord Street						
Islington						4
London N1 1DH						
Date 17/03/2016 11:49	Des	igned b	y anna	a.wil	k	
File attenuation.srcx	Cheo	cked by	<u> </u>			Drainag
XP Solutions	S0111	rce Con	trol	2015	1	
AI SOLUCIONS	5001			2010.	±	
Summary of Results	s for 1	00 vear	Retu	rn Pe	riod (+30%)	
		-				
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth Co	ontrol	Volume	2	
	(m)	(m)	(1/S)	(m°)		
60 min Winter	r 8.691	0.691	13.9	69.1	ОК	
120 min Winter	r 8.606	0.606	13.7	60.6	о к	
180 min Winter	r 8.506	0.506	13.7	50.6	о к	
240 min Winter	r 8.401	0.401	13.7	40.1	. ОК	
360 min Winter	r 8.185	0.185	13.7	18.5	ОК	
480 min Winter	r 8.043	0.043	13.7	4.3	ОК	
600 min Winter	r 8.000	0.000	13.1	0.0	ОК	
720 min Winter	r 8.000	0.000	11.3	0.0	ОК	
960 min Winter	r 8.000	0.000	8.9	0.0) OK	
1440 min Winter 2160 min Winter	r 8.000	0.000	6.4	0.0) OK	
2160 min Winter	r 8.000	0.000	4.6	0.0		
2880 min Winter	r 8.000	0.000	3.6	0.0) OK	
4320 Min Winter	r 8 000	0.000	2.0	0.0) OK	
7200 min Winter	r 8 000	0.000	2.0	0.0		
8640 min Winter	r 8.000	0.000	1.4	0.0) ОК	
10080 min Winter	r 8.000	0.000	1.3	0.0) ОК	
Storm	Rain	Flooded	l Disch	arge 1	Time-Peak	
Event	(mm/hr)	Volume	Volu	ume	(mins)	
		(m³)	(m	3)		
60 min Winter	55.351	0.0) 1	15.2	58	
120 min Winter	32.791	0.0) 1	35.5	94	
180 min Winter	23.828	0.0) 1	48.1	132	
240 min Winter	18.892	0.0) 1	56.7	168	
360 min Winter	13.617	0.0) 1	69.0	228	
480 min Winter	10.786	0.0) 1	78.4	276	
600 min Winter	8.997	0.0) 1) 7	.86.2	0	
/20 min Winter	1.154	0.0		92.0	U	
960 min Winter	0.129	0.0) 2) 2	19 2	U	
1440 Min Winter 2160 min Winter	4.394		ν ∠ Γ Γ	. 10.J	0	
2880 min Winter	2 480) 2	246 4	0	
4320 min Winter	2.400	0.0	, 2) 2	264.0	0	
5760 min Winter	1.394	0.0) 2	277.0	0	
7200 min Winter	1.157	0.0) 2	287.4	0	
8640 min Winter	0.993	0.0) 2	96.1	ů 0	
10080 min Winter	0.873	0.0) 3	803.6	0	

Conisbee		Page 3
1-5 Offord Street		
Islington		Y.,
London N1 1DH		Micro
Date 17/03/2016 11:49	Designed by anna.wilk	
File attenuation.srcx	Checked by	Diamage
XP Solutions	Source Control 2015.1	
Ra	infall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Ye 100 Cv (Summer) 1.00 and and Wales Cv (Winter) 1.00 21.000 Shortest Storm (mins) 10 0.439 Longest Storm (mins) 1008 Yes Climate Change % +3	es 00 15 30 30
Tin	ne Area Diagram	
Tota	al Area (ha) 0.207	
Time (mins) Area Ti From: To: (ha) Fro	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.069	4 8 0.069 8 12 0.069	
©1982-	2015 XP Solutions	

1-5 Offord Street Jalington London N1 10H Date 17/03/2016 11:49 Designed by anna.wilk Checked by XP Solutions Source Control 2015.1 Model Details Storage is Online Cover Level (m) 10.000 Tank or Pond Structure Invert Level (m) 8.000 Depth (n) Area (n') Depth (n) Area (n') Depth (n) Area (n') Depth (n) Area (n') 0.000 100.0 2.800 0.0 5.600 0.8.600 0.0 0.400 100.0 3.600 0.0 5.600 0.0 9.800 0.0 1.200 0.8 4.400 0.0 7.700 0.0 0.00 0.0 2.400 0.0 5.200 0.0 7.600 0.0 0.00 0.0 0.00 2.400 0.0 5.200 0.0 7.600 0.0 0.0 0.00 0.0 0.0 2.400 0.0 5.200 0.0 1.200 14.0 1200 0.0 0.0 0.0 2.400 0.0	Conisbee							Page 4
Islington London Million Million Million Date 17/03/2016 11:49 File attenuation.srcx Designed by anna.wilk Checked by Designed by anna.wilk Checked by Y Solutions Source Control 2015.1 Designed by anna.wilk Checked by Designed by anna.wilk Checked by Model Letails Storage is online Cover Level (m) 10.000 External of the storage is online Cover Level (m) 10.000 Depth (n) Ares (n') Pepth (n) Ares (n') Pepth (n) Ares (n') Pepth (n) Ares (n') 0.000 100.0 3.200 0.0 6.400 0.0 9.500 0.0 0.000 100.0 3.200 0.0 6.400 0.0 9.500 0.0 0.000 100.0 3.200 0.0 6.400 0.0 9.500 0.0 0.000 0.0 4.600 0.0 7.200 0.0 10.000 0.0 1.600 0.0 4.600 0.0 7.200 0.0 10.000 0.0 2.400 0.0 5.200 0.0 7.600 1.200 1.200 1.200 Design Plow (r/s) Internal Medd (m) 1.200 1.200 1.200	1-5 Offord Str	eet						
London N1 1DH Designed by anna.wilk Diversity Date 17/03/2016 11:49 Checked by Diversity Diversity XP Solutions Source Control 2015.1 Designed by anna.wilk Diversity XP Solutions Source Control 2015.1 Diversity Diversity Diversity Kendel Lance Control Structure Diversity Diversity Diversity Diversity Diversity New Level (n) 8.00 0.0 5.600 0.0 5.800 0.0 0.000 100.0 3.200 0.0 6.600 0.0 5.800 0.0 0.400 100.0 3.200 0.0 6.600 0.0 5.800 0.0 1.200 0.0 4.600 0.0 5.800 0.0	Islington							4
Date 17/03/2016 11:49 Designed by anna.wilk Checked by Designed by anna.wilk Checked by Designed by anna.wilk Checked by Designed by anna.wilk Checked by Source Control 2015.1 Model Details Storage is Online Cover Level (m) 10.000 Details Invert Level (m) 8.000 Depth (m) Area (n*) Depth (m) Area (m*) Desting Prove (1/s) Minimum Outlet Pipe Diameter (mm) 1200 Suggested Kanhol Eisemeter (mm) 1200 Noter Prov (1/s) Mean Flow over Head Pange 13.9 Pepth (n) Flow (1/s)<	London N1 1DH							1 mm
Description Description Description Description XP Solutions Source Control 2015.1 Model Details Checked by Description Model Details Storage is Online Cover level (n) 10.000 Tank or Fond Structure Invert level (n) 8.000 Depth (n) Area (n²) Depth (n) Area (n²) 0.000 100.0 2.800 0.0 6.600 0.0 8.400 0.0 0.000 100.0 3.600 0.0 6.600 0.0 8.400 0.0 0.000 100.0 3.600 0.0 6.600 0.0 9.600 0.0 1.200 0.0 4.400 0.0 7.200 0.0 0.0 2.400 0.0 7.600 0.0 1.200 0.0 0.0 2.400 0.0 7.500 Minimum Outlet Pipe Diameter (rm) 1200 14.0 Flow (L/g) 14.0 Flow 1/grad 1.20 Minimum Outlet Pipe Dia	Date 17/03/201	6 11•4	9	Designe	d by ann	a wilk		MICIO
Model Details Source Control 2015.1 Model Details Source Control 2015.1 Model Details Storage is Online Cover Level (m) 10.000 Tank or Pond Structure Tovert Level (m) 8.000 Depth (n) Area (m') Depth (n) Area (m') Depth (n) Area (m') O.000 0.000 100.0 2.800 0.0 6.400 0.0 0.000 100.0 2.800 0.0 6.400 0.0 8.400 0.0 0.000 100.0 3.200 0.0 6.400 0.0 8.400 0.0 1.200 0.0 4.400 0.0 7.200 0.0 10.200 0.0 1.200 0.0 4.400 0.0 7.600 0.0 1.200 1.200 0.0 4.400 0.0 7.600 0.0 1.200 1.200 0.0 5.200 0.0 8.000 1.200 1.0 1.200 1.0 0.0 5.200 0.0 1.200 <t< td=""><td>Date 17/05/201</td><td>0 11.4</td><td><i>.</i></td><td>Charles</td><td>u by anno br</td><td>a.wiik</td><td></td><td>Drainage</td></t<>	Date 17/05/201	0 11.4	<i>.</i>	Charles	u by anno br	a.wiik		Drainage
Model Details Model Details Source Control 2015.1 Model Details Storage is Online Cover Level (m) 10.000 Tark or Pond Structure Invert Level (m) 8.000 Depth (m) Area (m ²) Depth (m) Area	File attenuati	on.src	X	Checked	y y			Brainage
Definition of the second seco	XP Solutions			Source	Control 2	2015.1		
Determine Storage is Online Cover Level (m) 10.000 TARK OF POINT STUCTURE Tark of Point (m) Area (m²) Depth (m) Area (m²) <t< td=""><td></td><td></td><td></td><td>Madal Da</td><td></td><td></td><td></td><td></td></t<>				Madal Da				
Storage is Online Cover Level (m) 10.000 JAC PER				<u>Model De</u>	talls			
Extrage is contract based on the Bead/Discharge relationship for the approximate dependence of the store result.			Storago is	Online Cour	r Iovol (m) 10 000		
Tark or Pond StructureThere for the formation of			Storage is	UNITINE COVE	T Tevet (m	10.000		
Invert Level (m) 8.000 Depth (m) Area (m²) Depth (m) Area (n²) Depth (m) Area (m²) 0.000 100.0 2.800 0.0 6.600 0.0 8.600 0.0 0.300 100.0 3.600 0.0 6.600 0.0 8.600 0.0 0.300 100.0 3.600 0.0 6.600 0.0 8.600 0.0 1.600 0.0 4.600 0.0 7.600 0.0 10.000 0.0 2.000 0.0 5.200 0.0 8.600 0.0 10.000 0.0 2.000 0.0 5.200 0.0 8.600 0.0 10.000 0.0 2.000 0.0 5.200 0.0 8.600 0.0 10.000 0.0 2.000 0.0 5.200 0.0 8.600 0.00 12.00 Design Filew (1/s) Inter Ference MD-SHE-0166-1400-1200-1400 Design Filew (1/s) Inter Filew Calculated 0.50 Diameter (m) 12.00 13.9 Flush-Filew 0.363 13.9 Flush-Filew 0.363 13.9 <			Tanl	or Pond	Structur	e		
Invert Level (m) 8.000 Popth (m) Area (m') Red (m) <			<u>10111</u>		berdeedi	<u> </u>		
Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 100.0 3.200 0.0 5.600 0.0 8.400 0.0 0.400 100.0 3.200 0.0 6.000 0.0 8.400 0.0 1.200 0.0 4.000 0.0 6.600 0.0 9.600 0.0 1.200 0.0 4.400 0.0 7.200 0.0 10.000 0.0 2.400 0.0 4.600 0.0 7.600 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 12.00 Missinger 1.200 1.200 12.0			In	vert Level	(m) 8.000			
0.000 100.0 2.800 0.0 5.600 0.0 8.400 0.0 0.400 100.0 3.200 0.0 6.000 0.0 8.400 0.0 1.200 0.0 4.000 0.0 6.600 0.0 9.200 0.0 1.200 0.0 4.000 0.0 7.200 0.0 9.600 0.0 2.000 0.0 4.800 0.0 7.600 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 10.000 0.0 2.400 0.0 5.200 0.0 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200	Depth (m) A:	rea (m²)	Depth (m) A	area (m²) D	epth (m) An	rea (m²) De	epth (m) A	Area (m²)
0.400 100.0 3.200 0.0 6.000 0.0 8.800 0.0 0.800 100.0 3.600 0.0 6.400 0.0 9.200 0.0 1.200 0.0 4.400 0.0 7.200 0.0 9.600 0.0 2.400 0.0 5.200 0.0 8.000 0.0 0.00 2.400 0.0 5.200 0.0 8.000 0.0 0.00 2.400 0.0 5.200 0.0 8.000 0.0 0.00 2.400 0.0 5.200 0.0 8.000 0.0 0.00 Design Flow (1/2) 14.0 1.200 14.0 1.200 14.0 Flush-Flo ^m Calculated 0.503 13.9 15.0 Suggested Manhole Diameter (mm) 1500 15.0 15.0 15.0 Maintum Outlet Pipe Diameter (mm) 150 15.0 15.0 15.0 Mean Flow over Head Range - 12.0 15.9 15.0	0.000	100.0	2.800	0.0	5.600	0.0	8.400	0.0
0.800 100.0 3.600 0.0 6.400 0.0 9.200 0.0 1.600 0.0 4.400 0.0 7.200 0.0 10.000 0.0 2.000 0.0 5.200 0.0 7.600 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 10.000 0.0 Head (m) Subol 0.0 7.600 0.0 10.000 0.0 Lydro-Brake Optimum® Outflow Control Unit Reference MD-SHE-0166-1400-1200-1400 Design Head (m) 1.200 Design Flow (1/s) 14.0 Flush-Flo# Calculated Objective Minimise upstream storage Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500 Design Point (Calculated) 1.200 13.9 Flush-Flow 0.363 13.9 Flush-Flow 0.363 15.9 Flush-Flow 0.799 11.5 Mean Flow over Head Range 12.0 14.	0.400	100.0	3.200	0.0	6.000	0.0	8.800	0.0
1.200 0.0 4.000 0.0 7.200 0.0 10.000 0.0 2.000 0.0 4.800 0.0 7.600 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 10.000 0.0 Hydro-Brake Optimum® Outflow Control Unit Reference MD-SHE-0166-1400-1200-1400 Design Head (m) 1.200 Design Head (m) 1.200 Design Flow (1/s) 14.0 Flush-Flow Calculated Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500 Design Point (Calculated) 1.200 13.9 Flush-Flow 0.363 13.9 Flush-Flow 0.363 13.9 Flush-Flow 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (0.800	100.0	3.600	0.0	6.400	0.0	9.200	0.0
1.600 0.0 4.400 0.0 7.200 0.0 10.000 0.0 2.400 0.0 5.200 0.0 8.000 0.0 0.0 2.400 0.0 5.200 0.0 8.000 0.0 0.0 Hydro-Brake Optimum® Outflow Control Unit Reference MD-SHE-0166-1400-1200-1400 Design Head (m) 1.200 Design Flow (1/s) 14.0 Fluenter (mm) 1.200 Diameter (mm) 7.500 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500 Design Foint (Calculated) 1.200 13.9 Fluenter' 0.363 13.9 Kick-Flow 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Mean Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6	1.200	0.0	4.000	0.0	6.800	0.0	9.600	0.0
2.000 0.0 4.800 0.0 7.600 0.0 2.400 0.0 5.200 0.0 8.000 0.0 Hydro-Brake Optimum© Outflow Control Unit Reference MD-SHE-0166-1400-1200-1400 Design Head (m) 1.200 Diameter (mn) 1.200 Diameter (mn) 1.66 Invert Level (m) 7.500 Diameter (mn) 1500 Control Points Head (m) Flow (1/s) Design Foint (Calculated) 1.200 13.9 Flush-Flo [∞] 0.363 13.9 Kick-Flo@ 0.798 11.5 Mean Flow voer Head Range - 12.0 They flow (1/s) Pepth (m) Flow (1/s) Depth (m) Flow (1/s) Detext (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) <	1.600	0.0	4.400	0.0	7.200	0.0	10.000	0.0
2.400 0.0 5.200 0.0 8.000 0.0 Hydro-Brake Optimum® Outflow Control Hydro-Brake Optimum® Outflow Control Unit Reference MD-SHE-0166-1400-1200-1400 Design Head (m) 1.200 Design Flow (1/s) 14.0 Flow (1/s) Calculated Objective Minimise upstream storage Diameter (mm) Invert Level (m) 7.500 Minimum Outlet Pipe plameter (mm) 1500 Control Points Head (m) Flow (1/s) Design Foint (Calculated) 1.200 13.9 Flush-Flow 0.363 13.9 Kick-Flo® 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) De	2.000	0.0	4.800	0.0	7.600	0.0		
Hydro-Brake Optimum® Outflow Control Unit Reference MD-SHE-0166-1400-1200-1400 Design Flow (1/s) 1.200 Design Flow (1/s) 14.0 Flush-Flow Calculated 0bjective Minimise upstream storage Diameter (mm) 166 Divert Level (m) 7.500 1500 225 Suggested Manhole Diameter (mm) 1500 1500 Control Point Read (m) Flow (1/s) Design Point (Calculated) 1.200 13.9 Flush-Flow 0.363 13.9 Kick-Flow 0.363 15.5 Man Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Rydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 5.9 1.200 13.3 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 22.0 7.500 33.5 0.300 13.8 1.600	2.400	0.0	5.200	0.0	8.000	0.0		
Unit Reference MD-SHE-0166-1400-1200-1400 Design Head (m) 1.200 Design Flow (1/s) 14.0 Flush-FLO [™] Calculated Objective Minimise upstream storage Diameter (mm) 166 Invert Level (m) 7.500 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.200 13.9 Flush-Flo [™] 0.363 13.9 Kick-Flo [®] 0.7398 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.9 4.000 24.8 8.000 34.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 35.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.600 13.4 2.200 18.4 5.500 31.3		I	<u>lydro-Brake</u>	e Optimum@	Outflow	Control		
Design Head (m) 1.200 Design Flow (1/s) 14.0 Flush-Flo** Calculated Objective Minimise upstream storage Diameter (mm) 7.500 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.200 13.9 Flush-Flo** 0.363 13.9 Kick-Flo@ 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 5.9 1.200 13.8 0.400 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.50 0.300 13.8 1.600 16.9 4.500 26.2 8.500 36.6 0.500 13.7			Un	it Referenc	e MD-SHE-0	166-1400-12	200-1400	
Design Flow (1/s) 14.0 Flush-Flow Calculated Objective Minimise upstream storage Diameter (mm) 166 Invert Level (m) 7.500 Minimum Outlet Pipe Diameter (mm) 1500 Control Points Head (m) Flow (1/s) Design Point (Calculated) Control Points Head (m) Flow (1/s) Design Point (Calculated) Lish-Flow AGA (2000) Kick-Flow 0.363 Kick-Flow 0.363 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® as specified. Should another type of 2.2 0.100 5.9 1.200 13.9 0.300 13.1 1.400 15.0 0.300 13.8 1.600 16.0 4.000 24.8 0.300 13.4			Des	ign Head (m	1)		1.200	
Flush-Flo# Calculated Objective Minimise upstream storage Diameter (mm) 7.500 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500 Control Points Head (m) Flow (l/s) Design Foint (Calculated) 1.200 13.9 Flush-Flo@ 0.363 13.9 Kick-Flo@ 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) 0.100 5.9 1.200 13.9 0.300 13.8 1.600 16.0 4.000 24.8 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000			Desig	n Flow (l/s)		14.0	
Objective Minimise upstream storage Diameter (mm) 166 160 Invert Level (m) 7.500 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500 Control Points Head (m) Flow (l/s) Design Foint (Calculated) 1.200 13.9 Flush-Flo ^{me} 0.363 13.9 Kick-Flo® 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000				Flush-Flc	TM	Cal	culated	
Diameter (mm) 166 Invert Level (m) 7.500 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500 Control Points Head (m) Flow (1/s) Design Point (Calculated) Flush-Flo® Note: Control Points Mead (m) Flow (1/s) Design Point (Calculated) Flush-Flo® O.798 Mean Flow over Head Range - The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 5.9 1.200 13.9 1.600 16.0 0.300 13.8 1.600 16.0 0.100 5.9 1.200 13.9 1.800 16.9 0.300 13.8 1.600 16.0 0.400 13.4			_	Objectiv	e Minimis	e upstream	storage	
Invert level (m) 7.300 Minimum Otlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.200 13.9 Flush-Flo™ 0.363 13.9 Kick-Flo@ 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.500 33.5 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9			D	iameter (mm	1)		166	
Minimum Outlet Type Diameter (mm) 1500 Suggested Manhole Diameter (mm) 1500 Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.200 13.9 Flush-Flo™ 0.363 13.9 Kick-Flo® 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800	M	inimum O	Inve utlet Pipe D	rt Level (m jameter (mm	1)		225	
Control Point Head (m) Flow (l/s) Design Point (Calculated) 1.200 13.9 Flush-Flow 0.363 13.9 Kick-Flow 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) State (m) flow (l/s) Depth (141.	Suggest	ed Manhole D	iameter (mm	l)		1500	
Design Point (Calculated) 1.200 13.9 Flush-Flo™ 0.363 13.9 Kick-Flo® 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.1 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 31.3 9.500 37.6			Control	Points	Head (m)	Flow (l/s)		
Flush-Flo ^M 0.363 13.9 Flush-Flo ^M 0.363 13.9 Kick-Flo® 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.500 28.9 9.500 37.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 <		De	sign Point ('Calculated'	1 200	13 9		
Kick-Flo® 0.798 11.5 Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 1.000 12.8 2.600 20.1 6.500 31.3		20	Jorgin rorne	Flush-Flo	[™] 0.363	13.9		
Mean Flow over Head Range - 12.0 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.800 11.5 2.400 19.4 6.000 30.1 1.000 37.6 0.800 11.5 2.400 19.4 6.000 30.1 31.3 1.000 37.6				Kick-Flo	0.798	11.5		
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 1.000 12.8 2.600 20.1 6.500 31.3		Me	an Flow over	Head Range	e –	12.0		
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 31.3 31.3								
Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 1.000 12.8 2.600 20.1 6.500 31.3 ©1982-2015 XP Solutions	The hydrologica	al calcu	lations have	been based	l on the He	ad/Discharg	e relatio	nship for the
Invalid Depth (m) Flow (l/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 1.000 12.8 2.600 20.1 6.500 31.3	Hydro-Brake Op	timum® a ⊧imum® b	s specified.	Snould an	torage rou	or control	aevice c	ll be
Depth (m)Flow(1/s)Depth (m)Flow(1/s)Depth (m)Flow(1/s)0.1005.91.20013.93.00021.67.00032.40.20013.11.40015.03.50023.27.50033.50.30013.81.60016.04.00024.88.00034.60.40013.91.80016.94.50026.28.50035.60.50013.72.00017.85.00027.69.00036.60.60013.42.20018.65.50028.99.50037.60.80011.52.40019.46.00030.11.00012.82.60020.16.50031.3	invalidated	cinding D	e utilista t		corage roa	cing carear	.acions wi	
Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 4.500								
0.100 5.9 1.200 13.9 3.000 21.6 7.000 32.4 0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 1.000 12.8 2.600 20.1 6.500 31.3	Depth (m) Flow	w (1/s)	Depth (m) Fl	.ow (1/s) D	epth (m) Fi	low (1/s) D	epth (m)	Flow (l/s)
0.200 13.1 1.400 15.0 3.500 23.2 7.500 33.5 0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 31.3 36.6 1.000 12.8 2.600 20.1 6.500 31.3 31.3 36.6	0.100	5.9	1.200	13.9	3.000	21.6	7.000	32.4
0.300 13.8 1.600 16.0 4.000 24.8 8.000 34.6 0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 31.3 1.000 12.8 2.600 20.1 6.500 31.3 1.3	0.200	13.1	1.400	15.0	3.500	23.2	7.500	33.5
0.400 13.9 1.800 16.9 4.500 26.2 8.500 35.6 0.500 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 31.3 31.3 31.3	0.300	13.8	1.600	16.0	4.000	24.8	8.000	34.6
0.300 13.7 2.000 17.8 5.000 27.6 9.000 36.6 0.600 13.4 2.200 18.6 5.500 28.9 9.500 37.6 0.800 11.5 2.400 19.4 6.000 30.1 1.000 12.8 2.600 20.1 6.500 31.3	0.400	13.9	1.800	16.9	4.500	26.2	8.500	35.6
0.800 11.5 2.400 19.4 6.000 30.1 1.000 12.8 2.600 20.1 6.500 31.3	0.500	13./	2.000	10 6	5.000	21.6	9.000	30.0
0.000 11.0 2.400 19.4 0.000 30.1 1.000 12.8 2.600 20.1 6.500 31.3	0.600	11 5.4	2.200	10 1	5.500	20.9	9.000	37.0
©1982-2015 XP Solutions	1 000	12 R	2.400 2.600	20 1	6 500	30.1 31 3		
©1982-2015 XP Solutions	T.000	12.0	2.000	20.1	0.000	51.5		
©1982-2015 XP Solutions								
©1982-2015 XP Solutions								
©1982-2015 XP Solutions			<u></u>	0 0015 575	0			
			©198	Z-ZUIS XP	SOLUTION	15		

APPENDIX F

_

_

The SUDS Management Train

The SUDS Management Train

Prevention

The use of good site design and site housekeeping measures to prevent runoff and pollution (eg sweeping to remove surface dust and detritus from car parks), and rainwater reuse/harvesting. Prevention policies should generally be included within the site management plan.

Source Control

Control of runoff at or very near its source (eg soakaways, other infiltration methods, green roofs, pervious pavements).

Site Control

Management of water in a local area or site (eg routing water from building roofs and car parks to a large soakaway, infiltration or detention basin).

Regional Control

Management of runoff from a site or several sites, typically in a balancing pond or wetland.

Runoff Quality Control Processes

There is a range of natural water quality treatment processes that can be exploited within the design of a sustainable drainage system.

Sedimentation

Sedimentation is one of the primary removal mechanisms in SUDS. Most pollution in runoff is attached to sediment particles and therefore removal of sediment results in a significant reduction in pollutant loads. Sedimentation is achieved by reducing flow velocities to a level at which the sediment particles fall out of suspension. Care has to be taken in design to minimise the risk of re-suspension when extreme rainfall events occur.

Filtration and Biofiltration

Pollutants that are conveyed in association with sediment may be filtered from percolating waters. This may occur through trapping within the soil or aggregate matrix, on plants or on geotextile layers within the construction. The location of any filtration will depend upon the internal structure of the particular SUDS technique, for example whether a geotextile layer is near the surface or at the subgrade in a previous surface.

Adsorption

Adsorption occurs when pollutants attach or bind to the surface of soil or aggregate particles. The actual process is complex but tends to be a combination of surface reactions grouped as sorption processes:

Adsorption Pollutants bind to surface of soil/aggregate

Cation exchange Attraction between cations and clay minerals

Chemisorption Solute is incorporated in the structure of a soil/aggregate

Absorption The solute diffuses into the soil/aggregate/organic maters

Change in acidity of runoff can either increase or decrease the adsorption of pollutants by construction materials or soils. Eventually the materials onto which pollutants adsorb will become saturated and thus this method of treatment will stop.

Biodegration

In addition to the physical and chemical processes, which may occur on and within a SUDS technique, biological treatment may also occur. Microbial communities may be established within the ground, using the oxygen within the free-draining materials and the nutrients supplied with the inflows, to degrade organic pollutants such as oils and grease. The level of activity of such bioremediation will be affected by the environmental conditions such as temperature and the supply of oxygen and nutrients. It also depends on the physical conditions within the ground such as the suitability of the materials for colonisation.

Volatilisation

Volatilisation comprises the transfer of a compound from solution in water to the soil atmosphere and then to the general atmosphere. The conversion to a gas or vapour occurs due to heat, reducing pressure, chemical reaction or a combination of these processes. The rate of volatilisation of a compound is controlled by a number of its properties and those of the surrounding soil. In SUDS schemes volatilisation is primarily concerned with organic compounds in petroleum products and pesticides.

Precipitation

This process is the most common mechanism for removing soluble metals. Precipitation involves chemical reactions between pollutants and the soil or aggregate that transform dissolved constituents to form a suspension of particles of insoluble precipitates. Metals are precipitated as hydroxides, sulphides, and carbonates depending on which precipitants are present and the pH level. Precipitation can remove most metals (arsenic, cadmium, chromium III, copper, iron, lead, mercury, nickel, zinc) and many anionic species (phosphates, sulphates, fluorides).

Uptake By Plants

In ponds and wetlands, uptake by plants is an important removal mechanism for nutrients (phosphorous and nitrogen). Metals can also be removed in this manner (although intermittent maintenance is required to remove the plants otherwise the metals will be returned to the water when the plants die). Plants also create suitable conditions for deposition of metals, for example as sulphides the root zone.

Nitrification

Ammonia and ammonium ions can be oxidised by bacteria in the ground to form nitrate, which is a highly soluble form of nitrogen. Nitrate is readily used as a nutrient by plants

Photolysis

The breakdown of organic pollutants by exposure to ultra-violet light.

The removal mechanism appropriate for each pollutant category is presented in the Table below.

Pollutant	Removal mechanisms in SUDS
Nutrients	Sedimentation, biodegradation, precipitation, de-nitrification
Phosphorous, nitrogen	
Sediments	Sedimentation, filtration
Total suspended solids	
Hydrocarbons	Biodegradation, photolysis, filtration and adsorption
TPH, PAH, VOC, MTBE	
Metals	Sedimentation, adsorption, filtration, precipitation, plant uptake
Lead, copper, cadmium,	
mercury, zinc, chromium,	
aluminium	
Pesticides	Biodegradation, adsorption, volatilisation
Chlorides	Prevention
Cyanides	Volatilisation, photolysis
Litter	Trapping, removal during routine maintenance
Organic matter, BOD	Filtration, sedimentation, biodegradation

Table 3 - removal mechanism appropriate for each pollutant