

48 Shoot-up Hill, London NW2 3QB BIA – Audit

Document History and Status

Revision	Date	Purpose/Status	File Ref	Author	Check	Review
D1	May 2016	Comment	VPjw12336- 53-190516-48 Shoot-up Hill- D1.doc	VP	EMB	EMB
F1	July 2016	For planning	VPjw12336- 53-080716-48 Shoot-up Hill- F1.doc	VP	EMB	EMB

This document has been prepared in accordance with the scope of Campbell Reith Hill LLP's (CampbellReith) appointment with its client and is subject to the terms of the appointment. It is addressed to and for the sole use and reliance of CampbellReith's client. CampbellReith accepts no liability for any use of this document other than by its client and only for the purposes, stated in the document, for which it was prepared and provided. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of Campbell Reith Hill LLP. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the document as a whole. The contents of this document are not to be construed as providing legal, business or tax advice or opinion.

© Campbell Reith Hill LLP 2015

Document Details

Last saved	08/07/2016 12:57
Path	VPjw12336-53-080716-48 Shoot-up Hill-F1.doc
Author	Valeriu Pseneac BSc MSc
Project Partner	E M Brown, BSc MSc CGeol FGS
Project Number	12336-53
Project Name	48 Shoot-up Hill, London NW2 3QB
Planning Reference	2016/1089/P

Structural a Civil a Environmental a Geotechnical a Transportation

Contents

1.0	Non-technical summary	1
2.0	Introduction	3
3.0	Basement Impact Assessment Audit Check List	5
4.0	Discussion	8
5.0	Conclusions	11

Appendix

Appendix 1: Residents' Consultation Comments	
Appendix 2: Audit Ouery Tracker	

Appendix 2: Audit Query Hacker Appendix 3: Supplementary Supporting Documents

1.0 NON-TECHNICAL SUMMARY

- 1.1. CampbellReith was instructed by London Borough of Camden, (LBC) to carry out an audit on the Basement Impact Assessment submitted as part of the Planning Submission documentation for 48 Shoot-up Hill (planning reference 2016/1089/P). The basement is considered to fall within Category B as defined by the Terms of Reference.
- 1.2. The Audit reviewed the Basement Impact Assessment for potential impact on land stability and local ground, and surface water conditions arising from basement development in accordance with LBC's policies and technical procedures.
- 1.3. CampbellReith was able to access LBC's Planning Portal and gain access to the latest revision of submitted documentation and reviewed it against an agreed audit check list.
- 1.4. The BIA has been carried out by Lyons O'Neill using individuals who possess suitable qualifications.
- 1.5. The BIA has confirmed that the proposed basement will be founded within Made Ground and its foundations will need to be deepened to encounter the London Clay below.
- 1.6. The proposed construction methodology and structural solution, which includes underpinning of the existing party and internal load-bearing walls, and concrete walls in combination with a contiguous piled wall elsewhere, is suitable for this scheme.
- 1.7. A comprehensive Structural Strategy Report (SSR) has not been included in the BIA. However, the sketches and explanatory text included in the BIA are sufficient and an SSR is not required for audit purposes. Design calculations had not been initially presented in the BIA. Calculations, showing preliminary designs of basement slab and retaining wall, were later received and reviewed by CampbellReith.
- It is possible that ground water will be encountered during basement foundation excavation.
 The dewatering measures recommended in the BIA should be considered.
- 1.9. A revised Ground Movement Assessment was undertaken and submitted, in addition to the original preliminary GMA, and the damage categories established. Mitigating measures to limit the potential damage to neighbouring buildings to Burland Category 1 have been proposed.
- 1.10. Proposals for a movement monitoring strategy, during and post basement construction, have been included in the BIA and these should be implemented.
- 1.11. It is accepted that the surrounding slopes to the development site are stable.

48 Shoot-up Hill, London NW2 3QB BIA – Audit

- 1.12. It is accepted that the development will not impact on the wider hydrogeology of the area and is not in an area subject to flooding. However, anti-flood measures associated with sewer flooding, should be described.
- 1.13. Queries and requests for further information raised by the initial audit are discussed in Section 5 and summarised in Appendix 2. It is accepted that the revised BIA and supporting documents adequately identify the impact of the basement proposals and describe suitable mitigation.

2.0 INTRODUCTION

- 2.1. CampbellReith was instructed by London Borough of Camden (LBC) on 20 April 2016 to carry out a Category B Audit on the Basement Impact Assessment (BIA) submitted as part of the Planning Submission documentation for no. 48 Shoot-up Hill, Camden Reference 2016/1089/P.
- 2.2. The Audit was carried out in accordance with the Terms of Reference set by LBC. It reviewed the Basement Impact Assessment for potential impact on land stability and local ground and surface water conditions arising from basement development.
- 2.3. A BIA is required for all planning applications with basements in Camden in general accordance with policies and technical procedures contained within
 - Guidance for Subterranean Development (GSD). Issue 01. November 2010. Ove Arup & Partners.
 - Camden Planning Guidance (CPG) 4: Basements and Lightwells.
 - Camden Development Policy (DP) 27: Basements and Lightwells.
 - Camden Development Policy (DP) 23: Water.
- 2.4. The BIA should demonstrate that schemes:
 - a) maintain the structural stability of the building and neighbouring properties;
 - b) avoid adversely affecting drainage and run off or causing other damage to the water environment; and,
 - c) avoid cumulative impacts upon structural stability or the water environment in the local area

and evaluate the impacts of the proposed basement considering the issues of hydrology, hydrogeology and land stability via the process described by the GSD and to make recommendations for the detailed design.

- 2.5. LBC's Audit Instruction described the planning proposal as *"excavation of basement with front and rear lightwells; alteration of the residential mix to comprise 4x1-bed and 3x2-bed units and associated works"* and confirmed that the basement proposals do not involve a listed building nor does the property neighbour any listed buildings.
- 2.6. CampbellReith accessed LBC's Planning Portal on 27 April 2016 and gained access to the following relevant documents for audit purposes:
 - Basement Impact Assessment Report (BIA)

.

.

.

Planning Application Drawings consisting of

Location Plan

Existing Plans and Elevations

Proposed Plans and Elevations

Design & Access Statement

2.7. Additional information including a revised GMA, Arboricultural Method Statement and calculations showing preliminary designs of structural elements, was received on 8 June 2016.

3.0 BASEMENT IMPACT ASSESSMENT AUDIT CHECK LIST

Item	Yes/No/NA	Comment
Are BIA Author(s) credentials satisfactory?	Yes	BIA Page 4.
Is data required by CI.233 of the GSD presented?	Yes	
Does the description of the proposed development include all aspects of temporary and permanent works which might impact upon geology, hydrogeology and hydrology?	Yes	BIA and drawings.
Are suitable plan/maps included?	No	BIA Appendices Surface and Groundwater flood risk maps have not been presented.
Do the plans/maps show the whole of the relevant area of study and do they show it in sufficient detail?	Yes	Applicable to the maps presented only.
Land Stability Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	BIA Paragraphs 3.3, 4.2.
Hydrogeology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	
Hydrology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	No flood risk maps presented. Updated Flood Maps for Surface Water Flooding (CAMDEN SFRA 2014) have not been presented.
Is a conceptual model presented?	Yes	BIA Section 5.
Land Stability Scoping Provided? Is scoping consistent with screening outcome?	Yes	BIA Paragraph 3.3.

48 Shoot-up Hill, London NW2 3QB BIA – Audit

Item	Yes/No/NA	Comment
Hydrogeology Scoping Provided? Is scoping consistent with screening outcome?	Yes	BIA Paragraph 3.2.
Hydrology Scoping Provided? Is scoping consistent with screening outcome?	Yes	BIA Paragraph 3.4.
Is factual ground investigation data provided?	Yes	BIA Sections 5 and 6.
Is monitoring data presented?	Yes	BIA Paragraph 6.1.
Is the ground investigation informed by a desk study?	Yes	BIA Section 5.
Has a site walkover been undertaken?	Yes	
Is the presence/absence of adjacent or nearby basements confirmed?	No	It is to be confirmed whether or not 46 Shoot-up Hill has a basement.
Is a geotechnical interpretation presented?	Yes	BIA Appendix G.
Does the geotechnical interpretation include information on retaining wall design?	No	However, calculations, presenting preliminary wall designs, have been submitted and accepted.
Are reports on other investigations required by screening and scoping presented?	No	
Are the baseline conditions described, based on the GSD?	Yes	BIA Section 3.
Do the base line conditions consider adjacent or nearby basements?	No	
Is an Impact Assessment provided?	Yes	BIA Section 4.
Are estimates of ground movement and structural impact presented?	Yes	A preliminary calculation based on assumed movement had been

Item	Yes/No/NA	Comment
		initially prepared (BIA Appendix F). A revised GMA was later submitted presenting the structural movements and likely damage.
Is the Impact Assessment appropriate to the matters identified by screen and scoping?	Yes	
Has the need for mitigation been considered and are appropriate mitigation methods incorporated in the scheme?	Yes	
Has the need for monitoring during construction been considered?	Yes	BIA Section 8.
Have the residual (after mitigation) impacts been clearly identified?	Yes	
Has the scheme demonstrated that the structural stability of the building and neighbouring properties and infrastructure will be maintained?	Yes	A revised GMA and preliminary calculations have been submitted.
Has the scheme avoided adversely affecting drainage and run-off or causing other damage to the water environment?	Yes	BIA Sections 3 & 4.
Has the scheme avoided cumulative impacts upon structural stability or the water environment in the local area?	Yes	BIA Sections 3 & 4.
Does report state that damage to surrounding buildings will be no worse than Burland Category 2?	Yes	The scheme has been revised to restrict the anticipated damage to Fordwych Court to Burland Category 1. Negligible damage, corresponding to Category 0, is expected in the case of 46 Shoot- up Hill according to the GMA.
Are non-technical summaries provided?	No	

4.0 DISCUSSION

- 4.1. The Basement Impact Assessment (BIA) has been carried out by Lyons O'Neill and the individuals concerned in its production have suitable qualifications.
- 4.2. Neither a Structural Strategy Report (SSR) nor structural design calculations had been initially included in the BIA. Annotated sketches and explanatory text, outlining the construction methodology, had been presented in BIA Appendix C and it is accepted that no SSR is required for audit purposes. Calculations showing preliminary designs of basement slab and retaining wall were subsequently presented on CampbellReith's request. It is worth noting that the BIA indicates that the Contractor is "to submit an overall Method Statement" prior to commencement of site works together with "detailed drawings and calculations" which would include a ground movement assessment due to excavation, underpinning and piling.
- 4.3. The Design and Access Statement identified that the property "is not listed and is not located within a Conservation Area". This has also been confirmed by LBC in the BIA Audit Instruction.
- 4.4. The proposed basement consists of a single storey construction formed by "enlarging the existing basement to provide two additional units" according to the Design and Access Statement. The construction of the basement is proposed to comprise underpinning, using traditional "hit and miss" methodology, of the party wall and internal load-bearing walls. Concrete liner walls in combination with a contiguous piled wall are proposed elsewhere. The construction techniques are well established and suitable for the scheme.
- 4.5. The BIA has identified that the new basement will be founded at approximately 3.2 m bgl in London Clay which underlies Made Ground. The depth of the Made Ground varies from 0.1m to 2.7m according to the soil investigation based on 1 no. borehole, 2 no. window samples and 5 no. hand-dug trial pits.
- 4.6. The BIA presents groundwater monitoring data which indicates the presence of a "shallow water table" potentially due to perched water or surface infiltration sources. The report acknowledges that allowance should be made for dewatering during the construction of the basement and proposes that "intermittent pumping" from collector sumps is considered. In addition, the BIA proposes that the basement design incorporates waterproofing measures in the permanent condition.
- 4.7. The BIA has determined that the clay soils encountered at the site are of high volume change potential. The same report goes to conclude that no specific precautions should be considered due to the distance between the existing trees and basement foundations. An Arboricultural Method Statement (AMS), which identified the type, number and root protection areas of trees,

was later submitted for review. The AMS confirmed that no trees were expected to be removed and it is accepted that these will not have an impact on the existing and new foundations.

- 4.8. The BIA has given consideration to the potential heave uplift that may occur upon basement excavation. Heave protective measures, in the form of compressible material placed beneath the ground bearing slab, are recommended in the BIA. Additional calculations, showing the proposed type and thickness of heave protection material, were subsequently provided by Lyon O'Neill.
- 4.9. Brief calculations of the potential movement of the neighbouring property, that may occur during the excavation of the basement, had been initially included in the BIA. These had been prepared based on assumed vertical and horizontal deflections. The BIA had stated that "revised values for deflections may be used during the detailed design stage". A revised Ground Movement Assessment (GMA), which reviewed the category and extent of potential damage to neighbouring properties, was later submitted for review. The GMA concluded that negligible damage to 46 Shoot-up Hill, corresponding to Burland Category 1, would be anticipated during the construction of the proposed basement. However, calculations indicate that the anticipated damage to Fordwych Court would fall within Burland Category 2. Mitigating measures, in the form of high level permanent wall propping, have been proposed by the Engineer and these should be adopted. It is accepted that these measures will reduce the anticipated damage to Fordwych Court walls from Burland Category 2 to Burland Category 1.
- 4.10. It is to be confirmed whether or not the neighbouring building has an existing basement. It is likely that there is a basement, of size similar to the existing at 48 Shoot-up Hill, at no. 46 Shoot-up Hill according to the BIA. No neighbouring basements have been considered when preparing the GMA.
- 4.11. The BIA proposes that a movement monitoring strategy is adopted during both excavation and construction works. An outline of the strategy and mitigating measures, which are suitable for this scheme, are detailed in the BIA.
- 4.12. The BIA states that contaminated soil was encountered during the site investigation. It also recommends that "allowance should be made for experienced verification of the excavation/remedial works by a geo-environmental engineer". The report also advises that soil remediation may be required as well as the provision of a hydrocarbon resistance vapour membrane within the floor slab construction.
- 4.13. Despite the site not being located within risk areas of surface or ground water flooding, antiflood measures, in the form of non-return valves fitted to the basement drainage scheme, may be required to protect the basement from flooding due to local sewers operating under surcharge.

48 Shoot-up Hill, London NW2 3QB BIA – Audit

- 4.14. It can be concluded that the site is not located within flood risk areas based on the maps found in Camden SFRA 2014, although the BIA has not shown any maps of surface water or ground water flood risk areas. The BIA states that the scheme will not have an adverse impact on the overall site hydrogeology due to the "local falls in the local topography, low to negligible hydraulic gradient and the very low/impermeable nature of the underlying clay materials".
- 4.15. It is accepted that there are no slope stability concerns regarding the proposed development

5.0 CONCLUSIONS

- 5.1. The BIA has been carried out by Lyons O'Neill using individuals who possess suitable qualifications. Queries and requests for further information are discussed in Section 5 and summarised in Appendix 2.
- 5.2. A comprehensive SSR has not been included in the BIA, although an outline of the construction sequence has been presented in the form of annotated sketches and brief explanatory text. Calculations, presenting preliminary slab and retaining wall designs, were later submitted for review.
- 5.3. The BIA has confirmed that the property is not listed nor it is located within a Conservation Area.
- 5.4. The BIA has confirmed that the proposed basement will be founded within Made Ground and its foundations will be deepened to encounter the London Clay below.
- 5.5. It is possible that ground water may be encountered during basement foundation excavation and the BIA makes proposals for dewatering measures. The potential loss of fine soil particles will need to be taken into account should dewatering be employed.
- 5.6. The BIA concludes that no special precautions are required for foundation design although the London Clay found at the site is classed as high volume change Potential. An Arboricultural Method Statement was prepared and reviewed. It is accepted that the existing trees will have no impact on both new and existing foundations.
- 5.7. The proposed structural solutions and methodology for the construction of the basement are suitable for this scheme.
- 5.8. It is recommended that the party wall foundations are exposed prior to commencement of any basement construction works.
- 5.9. The revised GMA submitted by Lyons O'Neill has shown that the anticipated damage to 46 Shoot-up Hill would be negligible. The report has also shown that the anticipated damage to Fordwych Court would fall within Burland Category 2. However, this would be mitigated by providing permanent propping to the piled wall. The Engineer is to ensure that the proposed propping is designed so that the potential damage to Fordwych Court walls is limited to Burland Category 1.
- 5.10. Proposals for a movement monitoring strategy, during and post basement construction, have been included in the BIA and these should be implemented.

48 Shoot-up Hill, London NW2 3QB BIA – Audit

- 5.11. Anti-flood measures incorporated into the basement drainage scheme to prevent potential flooding due to local sewers operating under surcharge should be described.
- 5.12. It is accepted that the surrounding slopes to the development site are stable.
- 5.13. It is accepted that the development will not impact on the wider hydrogeology of the area and is not in an area subject to flooding.
- 5.14. Queries and requests for further information are discussed in Section 5 and summarised in Appendix 2.

Appendix 1: Residents' Consultation Comments

None

Appendix 2: Audit Query Tracker

Audit Query Tracker

Query No	Subject	Query	Status	Date closed out
1	Stability	Justification of GMA to be submitted for review	Closed - Revised GMA submitted and accepted.	1.07.2016
2	Stability	Design calculations to show adequacy of proposed structural solutions (concrete walls, ground bearing slab, capping beam etc.) to be prepared and submitted for review.	Closed - Preliminary designs of basement slab and retaining walls presented and accepted. The calculations included information on heave protective measures which are suitable for the scheme.	1.07.2016
3	Stability	Arboricultural report to be finalised and submitted for review	Closed - Arboricultural Method Statement submitted and reviewed.	16.06.2016

Appendix 3: Supplementary Supporting Documents

Information received from Simon Barker (Lyons O'Neill) on 1 July 2016

48 Shoot-Up Hill GMA

Job Number:	15094
Revision:	P2

June 2016

Lyons O'Neill	Project: 48 Shoot-Up Hill				Job No: 15094	
5 Maidstone Mews, 72-76 Borough High Street,	Section: GMA			Sheet No: 1		
London, SE1 1GN	By: SB	Date: 01/07/16	Chk'd by: IJ	Date: 01/07/16	App'd by:	Date:

1. Introduction

Following and audit by Campbell Reith, Lyons O'Neill were instructed to complete a preliminary ground movement analysis on the proposed basement development at 48 Shoot-Up Hill.

This document is supplementary to the already submitted BIA report by Lyons O'Neill.

2. Assessments

Two assessment of the predicted ground movements have been undertaken based on CIRIA's document C580. Graphs and tables from C580 are used to approximate lateral and vertical movements soil during installation of retaining walls and excavation in front of retaining walls. Heave movements are also considered and are based on Pdisp calculations by Southern Testing.

The assessments are as follows:

- Fordwych Court Wall

There are two different wall types along this boundary. A contiguous piled wall acting as a cantilever and an RC underpin which will act as a propped cantilever. The piled wall is considered worst case and will be checked.

46 Shoot-Up Hill Wall

The main wall type along this line is a RC underpin which will act as a propped cantilever.

NOTE: All walls will be designed to be performance specified to be within Damage Category 2.

Lyons O'Neill	Project: 48 Shoot-Up Hill				Job No: 15094	
5 Maidstone Mews, 72-76 Borough High Street,	Section:	G	MA		Sheet No: 2	
London, SE1 1GN	By: SB	Date: 01/07/16	Chk'd by: IJ	Date: 01/07/16	App'd by:	Date:

3. Fordwych Court Wall

Two walls (A and B) of this structure are considered and are referenced in Section 2. Differential deflections across the perpendicular walls to the basement are determined and checked for their corresponding damage category.

3.1. Movement due to Installation

Table 2.2 Ground surface movements due to bored pile and diaphragm wall installation in stiff clay

Wall type	Horiz	contal movements	Vertical movements		
Surface movement at wall (per cent of wall depth)Distance behind wall to negligible movement (multiple of wall depth)		Surface movement at wall (per cent of wall depth)	Distance behind wall to negligible movement (multiple of wall depth)		
Bored piles					
Contiguous	0.04	1.5	0.04	2	
Secant	0.08	1.5	0.05	2	
Diaphragm walls					
Planar	0.05	1.5	0.05	1.5	
Counterfort	0.1	1.5	0.05	1.5	

It is widely accepted that C580 report by CIRIA is overly conservative and with well-constructed piled walls no horizontal movement will be recorded and vertical movement will be limited to 0.02% of the wall depth. See 'Prediction of party wall movements using CIRIA report C580' by Richard Ball and Nick Langdon. This was also stated to us by Southern Testing, the geotechnical engineers who undertook the site investigation.

• Wall A

Nearest distance from retaining structure (contiguous piles) = 2.5mFurthest distance from retaining structure (contiguous piles) = 10.5mAssumed Pile Depth = 10m

Vertical Deflection Due to Installation at nearest end = 0mm (assume no deflection at this distance) Vertical Deflection Due to Installation at furthest end = 0mm (assume no deflection at this distance)

• Wall B

Nearest distance from retaining structure (contiguous piles) = 2.5mAssumed Pile Depth = 10m

Vertical Deflection Due to Installation = 0mm (assume no deflection at this distance)

Lyons O'Neill	Project: 48 Shoot-Up Hill				Job No: 15094	
5 Maidstone Mews, 72-76 Borough High Street,	Section: GMA				Sheet No: 3	
London, SE1 1GN	By: SB	Date: 01/07/16	Chk'd by: IJ	Date: 01/07/16	App'd by:	Date:

3.2. Movement due to excavation

The graphs on the following page are from CIRIA C580 Figure 2.11 and allow conservative approximation of soil movement based on proximity of the wall in question and depth of excavation.

• Wall A

Nearest distance from retaining structure (contiguous piles) = 2.5mMaximum Excavation Depth = 3.2mDistance from wall / Maximum excavation depth = 0.78

Horizontal Movement = 0.32% / 100 * 3200 = 10.24mm Vertical Movement = 0.22% / 100 * 3200mm = 7.04mm

Furthest distance from retaining structure (contiguous piles) = 10.5m Maximum Excavation Depth = 3.2m Distance from wall / Maximum excavation depth = 3.28

Horizontal Movement = 0.05% / 100 * 3200 = 1.6mm Vertical Movement = 0.1% / 100 * 3200mm = 3.2mm

• Wall B

Nearest distance from retaining structure (contiguous piles) = 2.5mMaximum Excavation Depth = 3.2mDistance from wall / Maximum excavation depth = 0.78

Horizontal Movement = 0.32% / 100 * 3200 = 10.24mm Vertical Movement = 0.22% / 100 * 3200mm = 7.04mm

Key:

Site | Wall Type

CPW: Contiguous bored pile wall SPW: Secant bored pile wall DW: Diaphragm wall KP: King post wall

See Appendix 2 for details of case histories

- A406/A10 Jn | DW
- × Bell Common | SPW
- * Britanic House | DW
- ⊞ British Library Euston | SPW
- * East of Falloden Way (1) | CPW
- East of Falloden Way (2) | DW
- Hackney Wick | SPW
- * Limehouse Link | DW
- * Lion Yard | DW
- Neasden | DW
- New Palace Yard | DW
- Rayleigh Weir | CPW
- Reading | DW
- Walthamstow (1) | CPW
- Walthamstow (2) | DW
- Waterloo Int'l Terminal | DW
 - YMCA | DW

Lyons O'Neill	Project: 48 Shoot-Up Hill				Job No: 15094	
5 Maidstone Mews, 72-76 Borough High Street,	Section: GMA				Sheet No: 5	
London, SE1 1GN	By: SB	Date: 01/07/16	Chk'd by: IJ	Date: 01/07/16	App'd by:	Date:

3.3. Movement due to Heave

Heave displacements have been calculated by Soiltechnics using Pdisp analysis. The results are shown on the following pages. Advice given by Soiltechnics was to consider the difference between long term and short term heave displacements and subtract this from the vertical movement when considering soil settlement.

For Fordwych Court there will be approximately 3mm of additional movement from long term heave at Wall A's nearest end and along Wall B. No heave is expected at the end of Wall A.

3.4. Total Differential Movement Along the Wall

• Wall A

Total Vertical at Nearest End = 7.04mm + 0mm - 3.00mm = 4.04mm Total Horizontal at Nearest End = 10.24mm

Total Vertical at Furthest End = 3.2mm + 0mm - 0mm = 3.2mmTotal Horizontal at Furthest End = 1.6mm

Total Differential Vertical Movement Along Wall = 0.84mm Total Differential Horizontal Movement Along Wall = 8.64mm

• Wall B

It is assumed that Wall B will move as one and there will be no differential movement along the wall.

A damage category will not be provided for this wall.

Lyons O'Neill	Project: 48 Shoot-Up Hill			Job No: 1509	94	
5 Maidstone Mews, 72-76 Borough High Street,	Section:	G	MA		Sheet No: 6	
London, SE1 1GN	By: SB	Date: 01/07/16	Chk'd by: IJ	Date: 01/07/16	App'd by:	Date:

3.5. Calculation of Damage Category

Job	Job 15094 - 47 Shoot-Up Hill - Fordwych Court Wall A						Feb'16	Page
Title	Monitoring	g and Dam	age Categorie	5		Ву	SB	Chkd
<u>Title</u>	e to Identif	y Wall						
	ongitudinal	Length, L	1 = 7.5 m	<i>→</i>	L/H = 0).5		
н	eight,	H	= 15.0 m					
D	amaqe Ca	tegory 0	ε _{im} = 0	.050 %				
	ε _h /ε _{iim}	ε _h (%)	δ _h (mm)	(Δ/L)/ε _{lim}	ΔL	∆ (mm)		
	0	0	0	1	5.0E-04	3.8		
	0.2	0.01	1	0.91	4.6E-04	3.4		
	0.4	0.02	2	0.8	4.0E-04	3.0		
	0.6	0.03	2	0.64	3.2E-04	2.4		
	0.8	0.04	3	0.42	2.1E-04	1.6		
	1	0.05	4	0	0.0E+00	0.0		
₫	amaqe Ca	tegory 1	ε _{lim} = 0	.075 %				
	ε _h /ε _{iim}	ε _h (%)	δ _h (mm)	(∆/L)/ε _{im}	Δ/L	∆ (mm)	_	
	0	0	0	1	7.5E-04	5.6	_	
	0.2	0.015	1	0.91	6.8E-04	5.1		
	0.4	0.03	2	0.8	6.0E-04	4.5		
	0.6	0.045	3	0.64	4.8E-04	3.6		
	0.8	0.08	5	0.42	3.2E-04	2.4		
	1	0.075	0	v	0.0E+00	0.0		
D	amaqe Ca	tegory 2	ε _{im} = 0	.150 %				
	ε _h /ε _{iim}	ε _h (%)	δ _h (mm)	(∆/L)/ε _{lim}	ΔL	∆ (mm)		
	0	0	0	1	1.5E-03	11.3	_	
	0.2	0.03	2	0.91	1.4E-03	10.2		
	0.4	0.08	5	0.8	1.2E-03	9.0		
	0.6	0.09	7	0.64	9.6E-04	7.2		
	0.8	0.12	9	0.42	0.3E-04	4.7		
		0.15			0.02100	0.0		

Lyons O'Neill	Project: 48 Shoot-Up Hill				Job No: 15094	
5 Maidstone Mews, 72-76 Borough High Street,	Section:	Sheet No: 7				
London, SE1 1GN	By: SB	Date: 01/07/16	Chk'd by: IJ	Date: 01/07/16	App'd by:	Date:

piles at approximately 3m centres we will reduce the horizontal deflections and be within Damage Category 1. An approximate arrangement of propping is shown on the following page.

© 2012 Lyons Official Ltd

LAYOUT OF NON-STRUCTURAL TIMBER PARTITION WALLS HAS CHANGED. THIS IS TO BE DETERMINED BY ARCHITECT.

THICK. TOE LENGTH APPROX I.S. FROM BACK OF STEM. WALL FOUND WITHIN

Lyons O'Neill Structural Engineers	Project: 48 Shoot-Up Hill				Job No: 15094	
5 Maidstone Mews, 72-76 Borough High Street,	Section:	G	MA		Sheet No: 8	
London, SE1 1GN	By: SB	Date: 01/07/16	Chk'd by: IJ	Date: 01/07/16	App'd by:	Date:

4. 46 Shoot-Up Hill Wall

Ground movements for underpinning are not well documented, however, when construction is undertaken in a well-controlled manner these are typically small.

To provide some basis of estimating likely movements the underpinned section of the basement has been treated as piles. This is the recommendation of Southern Testing the geotechnical engineers for the job. CIRIA guide C580 provides guidance on the horizontal and vertical movement of the soil.

RC retaining walls will be modelled as propped cantilevers and will therefore have high support stiffness's.

Movement type	High support stiff (high propped wall construction)	ness , top-down	Low support stiff (cantilever or low- props or temporary low level)	ness stiffness temporary y props installed at
	Surface movement at wall (per cent of max excavation depth)	Distance behind wall to negligible movement (multiple of max excavation depth)	Surface movement at wall (per cent of max excavation depth)	Distance behind wall to negligible movement (multiple of max excavation depth)
Horizontal	0.15	4	0.4	4

Table 2.4
 Ground surface movements due to excavation in front of bored pile, diaphragm wall and sheet pile walls wholly embedded in stiff clays

Two walls (C and D) of this structure are considered and are referenced in Section 2. Differential deflections across the perpendicular walls to the basement are determined and checked for their corresponding damage category.

• Wall C

It is assumed that Wall C will move as one and there will be no differential movement along the wall.

A damage category will not be provided for this wall.

Wall D

Maximum excavation depth = 3.2m Horizontal Movement at Nearest End = 0.15%/100*3200 = 4.8mm Vertical Movement at Nearest End = 0.1%/100*3200 = 3.2mm Movement at the Furthest End from the wall will be negligible according the table above. Differential Movement in the wall Horizontally = 4.8mm Differential Movement in the wall Vertically = 3.2mm

Lyons O'Neill	Project:				Job No:	
Structural Engineers	48 Shoot-Up Hill				15094	
5 Maidstone Mews,	Section:				Sheet No:	
72-76 Borough High Street,	GMA				9	
London, SE1 1GN	By: SB	Date: 01/07/16	Chk'd by: IJ	Date: 01/07/16	App'd by:	Date:

Lyons O'Neill

Job	15094 - 4	8 Shoot-l	Jp Hill - 48 Sho	ot-Up Hill W	all	Date	Feb'16	Page
Title	Monitoring	g and Dar	mage Categorie	5		Ву	SB	Chkd
Ті	tle to Identify	y Wall						
	Longitudinal	Longth	L = 98 m	~	LAL - 01	De la		
	Transverse L	.ength,	L ₂ = 9.6 m	~	L/H - 0.	30		
	Height,		H = 10.0 m					
	Damage Cat	eqory 0	ε _{lim} = O	.050 %				
	ε _h /ε _{iim}	ε _h (%)	δ _k (mm)	(Δ/L)/ε _{im}	Δ/L	∆ (mm)		
	0	0	0	1.18	5.9E-04	5.7		
	0.2	0.01	1	0.96	4.8E-04	4.6		
	0.4	0.02	2	0.8	4.0E-04	3.8		
	0.6	0.03	3	0.55	2.8E-04	2.6		
	0.8	0.04	4	0.28	1.3E-04	1.2		
		0.05	5	U U	0.02400	0.0		
	Damaqe Cal	eqory 1	ε _{im} = 0	.075 %				
	ε _h /ε _{lim}	ε _h (%)	δ _h (mm)	(Δ/L)/ε _{iim}	Δ/L	∆ (mm)		
	0	0	0	1.18	8.9E-04	8.5	-	
	0.2	0.015	1	0.98	7.2E-04	6.9		
	0.4	0.03	3	0.8	6.0E-04	5.8		
	0.6	0.045	4	0.55	4.1E-04	4.0		
	0.8	0.05	7	0.26	2.0E-04	1.9		
		0.075	,	, v	0.02.000	0.0		
	Damage Cat	eqory 2	ε _{lim} = 0	.150 %				
	ε _h /ε _{lim}	ε _h (%)	δ _հ (mm)	(Δ/L)/ε _{lim}	ΔÆ	∆ (mm)		
	0	0	0	1,18	1.8E-03	17.0	_	
	0.2	0.03	3	0.96	1.4E-03	13.8		
	0.4	0.08	6	0.8	1.2E-03	11.5		
	0.6	0.09	9	0.55	8.3E-04	7.9		
	0.8	0.12	12	0.26	3.9E-04	3.7		
	1	0.15	14	0	0.0E+00	0.0		

Lyons O'Neill Structural Engineers	Project:	Job No: 15094				
5 Maidstone Mews, 72-76 Borough High Street,	Section:	Sheet No: 10				
London, SE1 1GN	By: SB	Date: 01/07/16	Chk'd by: IJ	Date: 01/07/16	App'd by:	Date:

15094 - 48 Shoot-Up Hill

Preliminary Structural Calculations

Issue Date: June 2016

Date 07/06/16Page 1

JOB 15094 - 48 SHOOT-UP HITLL

Title PREUSINSHARE CALCULATIONS

By SB Chkd

AS REQUESTED BY CAMPBELL REITH, LYOND ONEILL HAVE CONVETED PREIZHISNARY CALCULATIONS ON SOME STRUCTURAL FRENS.
CAMBRELL RESTM HAVE REQUESTED THE FOLLOWER.
- HEAVE PROTECTION THILLENESS,
- PRECIFIZNAR CALLOUATTONS ON RETAINTAGE LOACH.
- PREUSHENARY CALEDLATIONS ON SUSTENDED SUNE.
· HEAVE PROTECTION.
- SI REPORT SHOLSS HEGH PHASTYCETT
- SLEAB DERTA EXECTED TO BE 2 25000

Results of Soil Analysis	NHBC Category	Predicted Ground Movement or BRE/	Depth of C required	Cellcore HX to achieve	
		NHBC requirement	'Equivalent Void'		
Plasticity Index	Shrinkage Category	Void Dimensions (mm)	HX S (mm)	HX B (mm)	
10 - 20	Low	50	90	85	
20 - 40	Medium	100	160	155	
40 - 60*	High	150	225	220	

* When the analysis exceeds 60 or a deeper void is required, please consult our Technical Services team.

Secondly, the grade of the product is determined by the depth of the concrete to be cast on the Cellcore, as detailed in table two below:

State (Load (MAAIII)	Fail Load (kN/m²)	Maximum Concrete Depth** (mm)	
7	10	220	 For easy identification the panel labels are coloured a
9	13	300	shown.
13	18	460	** Based on the Eurocode
18	24	660	and a live load allowance o
24	32	900	1.5kN/m2.
	7 9 13 18 24	7 10 9 13 13 18 18 24 24 32	7 10 220 9 13 300 13 18 460 18 24 660 24 32 900

Table Two

Job 150944 - 48 SHOOT-68 HITLE Date 07/06/16 Page 2 Title PREVERATIONS By SB Chkd

Section design to Eurocode 2 (DD ENV 1992-1-1 : 199)2) _{REIN}
COLID CLADE	CON
	A COLOR

Originated from RCCe11.xls on CD © 1999 BCA for RCC

INPUT	Location	1st Floor	r, Span H-J						
М	kNm/m	15	fck	N/mm²	30	$\gamma c = 1.50$			
δ		1.00	fyk	N/mm²	460	γs = 1.15			
span	mm	3500	gk	kN/m²	5.20				
h	mm	250	qk	kN/m²	1.50				
Bar Ø	mm	10							
cover	mm	50	to this stee	əl					
			S	Section I	ocation SI	MPLY SUPPORTE			
OUTPUT	1st Floor	r, Span H	-J .						
	d = 250 - 50 - 10/2 = 195.0 mm								
Equn A9	x = [195	- (195² -	1600/0.68	x 15 x 1	.5/30)½]/0.	8 = 5.7 mm			
Equn A8	(x/d) limi	t = 0.448	x/d a	actual =	0.029 < 0.	448 ok			
4.2.1.3.3(12)	z = 195 -	0.4 x 5.7	7 = 192.7 m	nm	,				
	As = 15E	E6/460/19	92.7 x 1.15	= 195 <	: As min = 2	293 mm²/m			
5.4.2.1.1	As min =	• 1.5 x 19	5 = 293 mr	n²/m					
4.4.2.2	As crack	= 400 x	0.8 x 3 x 25	50/2 / 46	60 = 261 m	m²/m			
	As def =	90 mm²/	m						
	Provide	T10 @ 2	50 = 314 m	m²/m					
Table 1 NAD	$\psi 2 =$	0.2 (Dwe	elling)						
4.4.3.2(4)	fs = 460	x 5.50/9.	27 x 195/3 [.]	14/1.15	= 147.0 N/i	mm²			
	Modifica	tion facto	or = 250/147	7.0 = 1.7	7007				
Table 7 NAD	Permissi	ble L/d =	1.7007 x 3	3.714 =	57.337				
	Actual L/	d = 3500	/195 = 17.9	949 ok	•				

250 mm SLAB WITH A393 MESH OKAA FON BENDING.

3

Chkd

JOB 15094 - 48 SHOOT-OP HILL

Date 01/07/16 Page

By SB

Title PREISMENALY CALCULATEONS

T		21	1 1	1	Proj	ect:				Job:				
Lyons	5 (JI	Vell	.l	48 -	Shoo	ot-Up Hi	II		15094				
	S	tructural	Enginee	ers	Sec	tion:				Sheet I	No:			
45 Grea	t Guile	dford St	reet		Cap	ping	Beam D)esign		15094				
	Lond	on	on					Date:		Chk'd b	by:	Date:		
	SE1 (DES			SB			Jul-16						
Calculation for A	ctive	Pressu	res - Co	mbina	ation	1								
1.2 Water + 1.5 S	Surcha	nrge + 1	.35 Acti	ve Pro	essur	e								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Soil Layer	Depth below surface, z (m)	Density, ye (kg/m3)	ر ۲ Z (kN/m2)	Head of water, z – zw 🛽 0 (m)	Pore water pressure, u (kN/m2)	Minimum surcharge' q(kN/m2)	Effective vertical stress ,ơ' v, (kN/m2) (4) + (7) – (6)	φ'd (degrees)	Kh = Kad	Active horizontal pressure σ'ah, (kN/m2) (8) × (10) + (6)	Surcharge, qk(kN/m2) (7) × (10)	Water, qkw(kN/m2) (= 6)	Active Pressure, gk(kN/m2) (11) – (12) – (13)	Factored total (kN/m2)
Clay	0	1900	0	0	0	0	0	20	0.49	0	0	0	0	0
Cidy	3	1900	57	0	0	0	57	20	0.49	27.93	0	0	27.93	37.7

=> DESIGN OF CAPPING BEAM

SEE TEDDS CALCS ON FOLLOWING PAGES, USE:

Structural Engineers		15094 - 48	Shoot-Up Hill		1	5094
Lyons O'Neill	Calcs for	Consist Deser	Dealine Deal		Start page no./f	Revision
5 Maldstone Mews		Capping Beam	- Prelim Desi	gn		1
London SE1 1GN	Cales by	Calcs date 01/07/2016	Checked by	Checked date	Approved by	Approved date
		N				
In accordance with UK nation	onal annex	9				
					TEDDS calcul:	ition version 2.1.15
16.200		Load Envelope - Com	bination 1			
0.0						
mm [500 1		<u> </u>	
kNm		Bending Moment I	invelop e			
0.0						
24.806 – mm 1			24.8 500		1	
A.			1		6	
kN 28.4		Shear Force Env	elope			
20.350						
0.0-						
-28,350			500		-28.4	
A			1		Ġ	
Support conditions		Vertically	estrained			
		Rotational	v free			
		, total of fail				
Support B		Vertically r	estrained			
Support B		Vertically r Rotationall	estrained y free			
Support B		Vertically r Rotationall	estrained y free			
Support B Applied loading		Vertically r Rotationall Permanen	estrained y froe t full UDL 16.2	kN/m		
Support B Applied loading Load combinations		Vertically r Rotationall Permanen	estrained y free t full UDL 16.2	kN/m		
Support B Applied loading Load combinations Load combination 1		Vertically r Rotationall Permanen Support A	estrained y free ; full UDL 16.2	kN/m Perma	nent × 1.00	
Support B Applied loading Load combinations Load combination 1		Vertically r Rotationall Permanen Support A	estrained y free t full UDL 16.2	kN/m Perma Variab	inent × 1.00 le × 1.00	
Support B Applied loading Load combinations Load combination 1		Vertically r Rotationall Permanen Support A Span 1	estrained y free t full UDL 16.2	kN/m Perma Variab Perma	inent × 1.00 le × 1.00 inent × 1.00	
Support B Applied loading Load combinations Load combination 1		Vertically r Rotationall Permanen Support A Span 1	estrained y free : full UDL 16.2	kN/m Perma Variab Perma Variab	inent × 1.00 le × 1.00 inent × 1.00 le × 1.00	
Support B Applied loading Load combinations Load combination 1		Vertically r Rotationall Permanen Support A Span 1 Support B	estrained y free : fuil UDL 16.2	kN/m Perma Variab Perma Variab Perma	inent × 1.00 le × 1.00 inent × 1.00 le × 1.00 inent × 1.00	
Support B Applied loading Load combinations Load combination 1		Vertically r Rotationall Permanen Support A Span 1 Support B	estrained y free : full UDL 16.2	kN/m Perma Variab Perma Variab Perma Variab	nent × 1.00 le × 1.00 nent × 1.00 le × 1.00 nent × 1.00 le × 1.00	
Support B Applied loading Load combinations Load combination 1 Analysis results		Vertically r Rotationall Permanen Support A Span 1 Support B	estrained y free : full UDL 16.2	kN/m Perma Variab Perma Variab Perma Variab	nent × 1.00 le × 1.00 nent × 1.00 le × 1.00 nent × 1.00 le × 1.00	
Support B Applied loading Load combinations Load combination 1 Analysis results Maximum moment support A		Vertically r Rotationall Permanen Support A Span 1 Support B MA_max = 0	estrained y free : full UDL 16.2 kNm	kN/m Perma Variab Perma Variab Variab Ma_red	inent × 1.00 le × 1.00 inent × 1.00 inent × 1.00 inent × 1.00 le × 1.00 = 0 kNm	

yons O'Neill		Job no. 1	5094			
Lyons O'Neill Ca	les for	apping Beam	- Prelim Desic	ID.	Start page no./	Revision
72 -76 Borough High Street Ca London SE1 1GN	les by C S	alcs date 01/07/2016	Checked by	Checked date	Approved by	Approved date
Maximum moment support B Maximum shear support A Maximum shear support A span 1 a Maximum shear support B Maximum shear support B span 1 a Maximum reaction at support A Unfactored permanent load reactio Maximum reaction at support B Unfactored permanent load reactio Rectangular section details Section width Section depth	at 234 mm at 3266 mm n at support A n at support B	MB_max = 0 k VA_max = 28 VA_s1_max = 2 VB_s1_max = -28 VB_s1_max = -28 VB_s1_max = -28 VB_s1_max = -28 KN RA_Permanent RD = 28 kN RD_Permanent b = 200 mm h = 300 mm	:Nm kN 24 kN 24 kN 24 kN = 28 kN = 28 kN	Mo_red = VA_st_red = VA_st_red VO_red = VO_st_re	= 0 kNm = 28 kN d = 24 kN = -28 kN d = -24 kN	
Concrete details (Table 3.1 - Stree Concrete strength class Characteristic compressive cylinde Characteristic compressive cylinde Mean value of compressive cylinde Mean value of axial tensile strength Secant modulus of elasticity of con Partial factor for concrete (Table 2	ngth and defo r strength rrength r strength h cretee 1N1	←2 rmation char C28/35 fek = 28 N/m fekkeube = 35 fem = fek + 8 fetm = 0.3 N/ Ecm = 22 kN vc = 1.50	acteristics fo Im ² N/mm ² = 36 N mm ² × (f _{ek} / 1 N V/mm ² × [f _{em} /10	r concrete) /mm² i/mm²)² ²⁰ = 2.8 N 0 N/mm²] ^{0.3} = 323	/mm² 108 N/mm²	
Compressive strength coefficient (c Design compressive concrete stren Maximum aggregate size Reinforcement details Characteristic yield strength of rein Partial factor for reinforcing steel (T Design yield strength of reinforcem	forcement able 2.1N) ent	$\begin{aligned} & \gamma_{\rm C} = 1.30 \\ & \alpha_{\rm cc} = 0.85 \\ & f_{\rm cd} = \alpha_{\rm ccc} \times f_{\rm c} \\ & h_{\rm agg} = 20 \text{ m} \\ & f_{\rm yk} = 500 \text{ N/} \\ & \gamma_{\rm G} = 1.15 \\ & f_{\rm yd} = f_{\rm yk} / \gamma_{\rm S} : \end{aligned}$	κ / γc = 15.9 N/ m mm ² = 435 N/mm ²	mm ₂		
Nominal cover to reinforcement Nominal cover to top reinforcement Nominal cover to bottom reinforcement Nominal cover to side reinforcement	t nent nt	C _{nom_t} = 50 r C _{nom_b} = 50 r C _{nom_s} = 50 r	nm mm mm			

yons O'Neill	Project	15094 - 48	Shoot-Up Hill		Јођ по, 1:	5094				
Lyons O'Neill 5 Maldstone Mews	Calcs for	Capping Beam	- Prelim Desig	gn	Start page no./F	Revision 3				
72 -76 Borough High Street London SE1 1GN	Calcs by S	Calcs date 01/07/2016	Checked by	Checked date	Approved by	Approved date				
Support A										
	300		2 x 16 ₀ bars 2 x 8 ₀ shear leg 2 x 16 ₀ bars	s at 150 c/c						
	◄	200								
Rectangular section in flexure	(Section 6.1)									
Minimum moment factor (cl 9 2	1.2(1))	β ₁ = 0.25								
Design bending moment	M = max(a)	$M = max(abs(M_{4} \dots a) B_{4} \times abs(M_{44} \dots b) = 6 \text{ blue}$								
Depth to tension reinforcement	d = h - c	$w_1 - max(abs(w_1, p_1 \times abs(w_1, p_1 \times abs(w_1, p_1)) = 0 \text{ Kiviti}$ $d = b - c_{1} + b_{1} + b_{2} + b$								
Perceptage redistribution		m = 0 %	$m_{re} = 0.\%$							
Percentage redistribution		$\sin A = 0.76$	m · 1) = 1 00	0						
Redistributori ratio		8 = MI(1 -	(1172, 1) = 1.00	20						
		K = W / (D		2 0.01 - 0.007						
		K = 0.598	×0-0.181×0	0.21 = 0.207	n rolafaraa	nt le reculue d				
1			K'>K-	No compressio	n reintorcem	ent is required				
Lever arm		z = min((d	/ Z) X [1 + (1 -	3.53 × K) ^{5.5}], 0.9	$5 \times a) = 222 \text{ m}$	m				
Depth of neutral axis	1. 22	x = 2.5 × (c	1 - z) = 29 mm							
Area of tension reinforcement re	equired	$A_{s,req} = M /$	$(t_{yd} \times z) = 64 n$	nm+						
Tension reinforcement provided	(6)(0) V	2 × 16¢ ba	$2 \times 16\phi$ bars							
Area of tension reinforcement p	rovided	$A_{s,prov} = 40$	$A_{s,prov} = 402 \text{ mm}^2$							
Minimum area of reinforcement	(exp.9.1N)	A _{s,min} = ma	$x(0.26 \times f_{ctm} / f_{ctm})$	_{yk,} 0.0013) × b ×	$d = 67 \text{ mm}^2$					
Maximum area of reinforcement	t (cl.9.2.1.1(3))	$A_{s,max} = 0.0$	$4 \times b \times h = 24$	00 mm²						
	PASS - Area o	f reinforcemen	t provided is g	greater than are	a of reinforce	ment required				
Minimum bottom reinforceme	nt at supports									
Minimum reinforcement factor (cl.9.2.1.4(1))	β ₂ = 0.25								
Area of reinforcement to adjace	nt span	A _{s,span} = 40	2 mm ²							
Minimum bottom reinforcement	to support	$A_{s2,min} = \beta_2$	$A_{s2,min} = \beta_2 \times A_{s,span} = 101 \text{ mm}^2$							
Bottom reinforcement provided		2 × 16¢ ba	$2 \times 16\phi$ bars							
Area of bottom reinforcement p	rovided	As2,prov = 40	02 mm²							
PASS - AI	rea of reinforco	ment provided	is greater the	an minimum are	a of reinforce	ment required				
Rectangular section in shear	(Section 6.2)									
Design shear force at support A	()	V _{Ed max} = al	os(max(Va max	VA red)) = 28 kN						
Angle of comp. shear strut for n	naximum shear	$\theta_{max} = 45 c$	leg							
Maximum design shear force (e	xp.6.9)	VRd max = b	$\times Z \times V_1 \times f_{oft}/$	(cot(0max) + tan(6	(max)) = 188 kN					
	PASS - I	Design shear fo	orce at suppoi	rt is less than m	aximum desi	an shear force				
	34 mm	Ved = max	VA 51 max. VA 51	red) = 24 kN						
Design shear force span 1 at 23										
Design shear force span 1 at 23 Design shear stress	24 (111)	VEd = VEd /	$(b \times z) = 0.547$	N/mm ²						
Design shear force span 1 at 23 Design shear stress Strength reduction factor (cl 6 2	3(3))	$v_{Ed} = V_{Ed} / v_1 = 0.6 \times 10^{-10}$	$(b \times z) = 0.547$	N/mm^2 $mm^2 = 0.533$						

Lyons O'Neill	Project	15094 - 48	Shoot-Up Hill		Job no.	5094
Lyons O'Neill 5 Maidstone Mews	Calcs for	Capping Beam	- Prelim Desi	gn	Start page no./F	Revision 4
72 -76 Borough High Street London SE1 1GN	Calcs by S	Calcs date 01/07/2016	Checked by	Checked date	Approved by	Approved date
Angle of concrete compression	struit (cl 6 2 3)					
	$\theta = mir$	(max(0.5 × Asin[r	$min(2 \times v_{Ed} / (c$	$x_{cw} \times f_{cd} \times v_1), 1)],$	21.8 deg), 45d	ea) = 21.8 dea
Area of shear reinforcement re-	quired (exp.6.1	3) Asy,reg = VEd	× b / (fyd × cot	(θ)) = 101 mm ² /n	n	
Shear reinforcement provided		2 × 8¢ legs	at 150 c/c	a 10		
Area of shear reinforcement pro	ovided	Asy,prov = 67	'0 mm²/m			
Minimum area of shear reinford	ement (exp.9.5	5N) Asymin = 0.0	8 N/mm ² × b :	× (f _{ck} / 1 N/mm ²) ⁰	⁵ / f _{yk} = 169 mr	n²/m
	F	ASS - Area of si	near reinforce	ment provided	exceeds mini	mum required
Maximum longitudinal spacing	(exp.9.6N)	Svi,max = 0.7	5 × d = 175 m	m		
	PASS - Long	gitudinal spacing	of shear rei	nforcement prov	vided is less t	han maximum
Crack control (Section 7.3)						
Maximum crack width		w _k = 0.3 m	n			
Design value modulus of elasti	city reinf (3.2.7	(4)) E _s = 20000	0 N/mm ²			
Mean value of concrete tensile	strength	f _{ct,eff} = f _{ctm} =	2.8 N/mm ²			
Stress distribution coefficient		kc = 0.4				
Non-uniform self-equilibrating s	stress coefficier	nt k = min(ma 1.00	ix(1 + (300 mr	n - min(h, b)) × 0	.35 / 500 mm,	0.65), 1) =
Actual tension bar spacing		s _{bar} = (b - 2	\times (Cnom s + ϕ_v)) - (Ntop) / (Ntop - 1)	= 68 mm	
Maximum stress permitted (Tal	ole 7.3N)	σ. = 346 N	/mm ²			
Concrete to steel modulus of e	last, ratio	$\alpha_{er} = E_{e} / E$				
Distance of the Elastic NA from	bottom of bea	$m = (b \times b^2)$	/2 + A	$(a_{rr} = 1) \times (b = d)$	$(b \times b + A_{ran})$	$\times (\alpha_{m-1}) =$
		147 mm	ν Σ · να,prov ∧ ($\operatorname{corr} = 1/2$ ($\Pi = G//2$	(S A II · Asprov	/ ~ (cuer = 1)) =
Area of concrete in the tensile	zone	$A_{rt} = b \times v$	= 29435 mm ²			
Minimum area of reinforcemen	t required (exp.	7 1) Assimin = ks	x k x fet off x Ac	$\sqrt{\alpha_{c}} = 94 \text{ mm}^{2}$		
PASS	- Area of tens	ion reinforceme	nt provided e	xceeds minimu	m required for	crack control
Quasi-permanent value of varia	able action	W2 = 0.30				
Quasi-permanent limit state mo	oment	Mor = abs(Ma (21) + W2 X	$abs(M_{A,c22}) = 0 k$:Nm	
Permanent load ratio		RPL = MOP	M = 0.00	(incorr)		
Service stress in reinforcement	E)	$\sigma_{\rm eff} = f_{\rm vd} \times A$	s.reg / As.prov ×	$R_{PL} = 0 N/mm^2$		
Maximum bar spacing (Tables	7.3N)	Sbar.max = 30	00 mm			
	PA	SS - Maximum b	ar spacing e	xceeds actual b	ar spacing for	crack control
Minimum bar spacing						
Minimum bottom bar spacing		Shot min = (b	- 2 × Coom = - 2	× du = dinot) / (Nino)	(-1) = 68 mm	
Minimum allowable bottom bar	spacing	Shar, het min =	max/deat have	+ 5 mm 20 mm	$+ d_{\text{max}} = 41 \text{ mm}$	
Minimum top bar spacing	opaonig	Star air = (b	- 2 × C 2	2 x du = du =) / (Nu	- 1) = 68 mm	
Minimum allowable top bar spa	icing	Shar teamia =	max/dea has	+ 5 mm 20 mm	+ - = 41 mm	
	long	obar_top,min =	PASS - Actu	al bar spacing (exceeds minin	num allowable
			THEE HELE	an bar opacing c		anowable

Lyons O'Neill Project	15094 - 48 Shoot-Up Hill	Job no. 1:	5094	Lyons O'Neill	Project	15094 - 48	Shoot-Up Hill		Job no. 1	5094
Lyons O'Neill Calcs for		Start page no./F	Revision	Lyons O'Neill	Calcs for				Start page no.//	Revision
5 Maldstone Mews	Capping Beam - Prelim Design		5	5 Maidstone Mews		Capping Bear	n - Prelim Desig	n		6
London SE1 1GN S	Calcs date Checked by Checked date 01/07/2016	Approved by	Approved date	London SE1 1GN	Calcs by S	Calcs date 01/07/2016	Checked by	Checked date	Approved by	Approved date
Mid span 1				Concrete to steel modulus of el	last. ratio	$\alpha_{cr} = E_s / I$	E _{cm} = 6.19			
*				Distance of the Elastic NA from	bottom of beam	y = (b × h	$^{2}/2 + A_{s,prov} \times (\alpha$	_{ker} - 1) × (h - d)) /	$(b\times h + A_{s,prov}$	$(\alpha_{cr} - 1)) =$
	3 x 16¢ bars					147 mm				
1				Area of concrete in the tensile :	zone	$A_{ct} = b \times y$	r = 29435 mm ²			
-300	$2 \times 8_{\varphi}$ shear legs at 150 c/c			Minimum area of reinforcement	t required (exp.7.	1) $A_{sc,min} = k_c$	$\mathbf{x} \times \mathbf{k} \times \mathbf{f}_{ct,eff} \times \mathbf{A}_{ct}$	/ σ _s = 94 mm ²		
	2 × 16+ barr			PASS	- Area of tensio	n reinforceme	ent provided ex	ceeds minimun	n required for	crack control
				Quasi-permanent value of varia	able action	$\psi_2 = 0.30$				
<u> </u>				Quasi-permanent limit state mo	oment	IVIOP = abs	$(N_{ls1_c21}) + \psi_2 \times \psi_2$	$abs(M_{s1_{c22}}) = 25$	6 KNM	
				Service stress in reinforcement		RPL = IVIOP	·/W = 1.00	286 N/mm2		
-	200			Maximum bar spacing (Tables	7 3NI)	Osr = lyd x	As,reg / As,prov × K	PL - 200 N/IIIII-		
				Maximum bar spacing (Tables	PAS	S - Maximum	bar spacing ex	coods actual b	ar spacing for	crack control
Rectangular section in flexure (Section 6	.1) - Positive midspan moment			Minimum har enacing		e maximum	sur optioning ex		in opacing for	cruck control
Design bending moment	$M = abs(M_{s1_{red}}) = 25 \text{ kNm}$			Minimum battom bat spacing		c = //			1) = 69 mm	
Depth to tension reinforcement	$d = h - c_{nom_b} - \phi_v - \phi_{bot} / 2 = 234 \text{ mm}$			Minimum allowable bottom bar	enacing	Sbot,min - (1	= max/4 . h	$x \phi v = \phi bot) 7 (N bot)$	- 1) - 60 mm	-
Percentage redistribution	$m_{rs1} = M_{s1_red} / M_{s1_max} - 1 = 0 \%$			Minimum top bar spacing	spacing	Star_bot,min ·		- 5 mm, 20 mm)	$+ \phi_{bot} - 41 mm$	
Redistribution ratio	$\delta = \min(1 - m_{re1}, 1) = 1.000$			Minimum allowable too bar spa	cina	Stop,min - (1	$= max/d_{\rm b}$	$x \phi v = \phi top) / (N top)$	- 1) - 34 mm	
	K = M / (b \times d ² \times f _{ck}) = 0.081				loing	FAIL -	Minimum allow	able bar spacir	a exceeds to	n barsnacing
	K' = 0.598 \times δ - 0.181 \times δ^2 - 0.21 = 0.207			Deflection control (Section 7	4			ubie bui spueli	ig exceeds to	p bar spacing
	K' > K - No compressio	on reinforceme	ent is required	Reference reinforcement ratio	.4)	$c_{-n} = lf_{++}$	1 N/mm2\0.5 / 10	00 - 0 005		
Lever arm	z = min((d / 2) × [1 + (1 - 3.53 × K) ^{0.5}], 0.9	5 × d) = 216 mi	m	Required tension reinforcement	t ratio	pmu = (ick /	$(h \times d) = 0.000$	2000 - 0.000		
Depth of neutral axis	$x = 2.5 \times (d - z) = 45 \text{ mm}$			Required compression reinforce	ement ratio	p'm = A_p	$(0 \times d) = 0.000$,)0		
Area of tension reinforcement required	$A_{s,req} = M / (f_{yd} \times z) = 264 \text{ mm}^2$			Structural system factor (Table	7 4N)	$p_m = A_{62,m}$ $K_h = 1.0$	a / (b × d) = 0.00			
Tension reinforcement provided	$2 \times 16\phi$ bars			Basic allowable span to depth	ratio (7.16b)	span to	depthase = Ka x	[11 + 1 5 × (fee /	1 N/mm ²)0.5 v	0m0 / (0m = 0'm)
Area of tension reinforcement provided	$A_{s,prov} = 402 \text{ mm}^2$	n 300 44				+ (fex / 1 N	1/mm ²) ^{0.5} × (o'm /	$(100)^{0.5} / 121 = 18$	438	pinor (pin piny
Minimum area of reinforcement (exp.9.1N)	$A_{s,min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times b \times$	d = 67 mm ²		Reinforcement factor (exp.7.17)	$K_s = min(a)$	As prov / As reg × 50	00 N/mm ² / fee 1	5) = 1.500	
Maximum area of reinforcement (cl.9.2.1.1(3)) $A_{s,max} = 0.04 \times b \times h = 2400 \text{ mm}^2$			Flange width factor	,	F1 = 1.00	0			
PASS - Are	a of reinforcement provided is greater than are	a of reinforce.	ment required	Long span supporting brittle pa	rtition factor	F2 = 1.00	0			
Rectangular section in shear (Section 6.2	2)			Allowable span to depth ratio		span_to_	depthallow = min(s	span_to_depthba	$_{\rm sic} imes {\rm K}_{\rm s} imes {\rm F1} imes$	F2, 40 × K _b) =
Shear reinforcement provided	$2 \times 8\phi$ legs at 150 c/c					27.657				
Area of shear reinforcement provided	Asv,prov = 670 mm ² /m			Actual span to depth ratio		span_to_	$depth_{actual} = L_{s1} /$	d = 14.957		
Minimum area of shear reinforcement (exp.)	9.5N) Asymin = 0.08 N/mm ⁻ × D × (Ick / 1 N/mm ⁻)		m~/m			PAS	S - Actual span	to depth ratio	is within the a	allowable limit
Maximum langitudigal spacing (ave 0.6N)	PASS - Area of snear reinforcement provided	exceeas mini	mum requirea	Support B						
PASS - / o	svimax = 0.75 x d = 175 mm	vidad is lass t	han maximum		*					
Design shear resistance (assuming cot(0) is	(2.5) V mu = 2.5 × Asy may × 7 × fut = 157.3 kN	1000 13 1033 0	inan maximum		۴	3	$2 \times 16_{\varphi}$ bars			
Shear links provided	d valid between 0 mm and 3500 mm with tensio	n reinforceme	nt of 402 mm ²							
Grack control (Section 7.3)					30		2 x 86 shear leg:	s at 150 c/c		
Maximum crack width	w _k = 0.3 mm					-	2 x 16 ₄ bars			
Design value modulus of elasticity reinf (3.2	2.7(4)) E _s = 200000 N/mm ²									
Mean value of concrete tensile strength	f _{ct,eff} = f _{ctm} = 2.8 N/mm ²				arten la					
Stress distribution coefficient	kc = 0.4				12	<i></i>				
Non-uniform self-equilibrating stress coeffic	ient $k = min(max(1 + (300 mm - min(h, b)) \times C))$.35 / 500 mm,	0.65), 1) =		42	200				
	1.00									
Actual tension bar spacing	$s_{bar} = (b - 2 \times (c_{nom_s} + \phi_v) - \phi_{bot}) / (N_{bot} - 1)$	= 68 mm								
Maximum stress permitted (Table 7.3N)	σs = 346 N/mm²									

Lyons O'Neill	Project	15094 - 48	Job no. 15094 Start page no./Revision 7			
Lyons O'Neill 5 Maldstone Mews	Calcs for	Capping Beam				
72 -76 Borough High Street London SE1 1GN	Calcs by S	Calcs date 01/07/2016	Checked by	Checked date	Approved by	Approved date

Rectangular section in flexure (Section 6.1)	
Minimum moment factor (cl.9.2.1.2(1))	β ₁ = 0.25
Design bending moment	$M = max(abs(M_{B_{red}}), \beta_1 \times abs(M_{s1_{red}})) = 6 \text{ kNm}$
Depth to tension reinforcement	$d = h - c_{nom_{1}t} - \phi_{v} - \phi_{top} / 2 = 234 \text{ mm}$
Percentage redistribution	m _{rB} = 0 %
Redistribution ratio	$\delta = \min(1 - m_{rB}, 1) = 1.000$
	$K = M / (b \times d^2 \times f_{ck}) = 0.020$
	K' = $0.598 \times \delta - 0.181 \times \delta^2 - 0.21 = 0.207$
	K' > K - No compression reinforcement is required
Lever arm	z = min((d / 2) × [1 + (1 - 3.53 × K) ^{0.5}], 0.95 × d) = 222 mm
Depth of neutral axis	x = 2.5 × (d - z) = 29 mm
Area of tension reinforcement required	$A_{s,reg} = M / (f_{yd} \times z) = 64 \text{ mm}^2$
Tension reinforcement provided	2 × 16¢ bars
Area of tension reinforcement provided	A _{s,prov} = 402 mm ²
Minimum area of reinforcement (exp.9.1N)	$A_{s,min} = max(0.26 \times f_{etm} / f_{yk}, 0.0013) \times b \times d = 67 \text{ mm}^2$
Maximum area of reinforcement (cl.9.2.1.1(3))	A _{s,max} = 0.04 × b × h = 2400 mm ²
PASS - Area of re	inforcement provided is greater than area of reinforcement required
Minimum bottom reinforcement at supports	
Minimum reinforcement factor (cl.9.2.1.4(1))	β ₂ = 0.25
Area of reinforcement to adjacent span	$A_{s,span} = 402 \text{ mm}^2$
Minimum bottom reinforcement to support	$A_{s2,min} = \beta_2 \times A_{s,span} = 101 \text{ mm}^2$
Bottom reinforcement provided	2 × 16¢ bars
Area of bottom reinforcement provided	A _{s2,prov} = 402 mm ²
PASS - Area of reinforceme	nt provided is greater than minimum area of reinforcement required
Rectangular section in shear (Section 6.2)	
Design shear force at support B	V _{Ed,max} = abs(max(V _{B_max} , V _{B_red})) = 28 kN
Angle of comp. shear strut for maximum shear	θ _{max} = 45 deg
Maximum design shear force (exp.6.9)	$V_{Rd,max} = b \times z \times v_1 \times f_{cd} / (cot(\theta_{max}) + tan(\theta_{max})) = 188 \text{ kN}$
PASS - Des	ign shear force at support is less than maximum design shear force
Design shear force span 1 at 3266 mm	$V_{Ed} = abs(min(V_{B_s1_max}, V_{D_s1_red})) = 24 \text{ kN}$
Design shear stress	$v_{Ed} = V_{Ed} / (b \times z) = 0.547 \text{ N/mm}^2$
Strength reduction factor (cl.6.2.3(3))	v ₁ = 0.6 × [1 - f _{ok} / 250 N/mm ²] = 0.533
Compression chord coefficient (cl.6.2.3(3))	acow = 1.00
Angle of concrete compression strut (cl.6.2.3)	
θ = min(ma	$x(0.5 \times Asin[min(2 \times v_{Ed} / (\alpha_{cw} \times f_{cd} \times v_1), 1)], 21.8 \text{ deg}), 45 \text{deg}) = 21.8 \text{ deg})$
Area of shear reinforcement required (exp.6.13)	$A_{sv,req} = v_{Ed} \times b / (f_{yd} \times cot(\theta)) = 101 \text{ mm}^2/\text{m}$
Shear reinforcement provided	$2 \times 8\phi$ legs at 150 c/c
Area of shear reinforcement provided	A _{sv,prov} = 670 mm ² /m
Minimum area of shear reinforcement (exp.9.5N)	$A_{sv,min} = 0.08 \text{ N/mm}^2 \times b \times (f_{ck} / 1 \text{ N/mm}^2)^{0.5} / f_{yk} = 169 \text{ mm}^2/\text{m}$
PASS	- Area of shear reinforcement provided exceeds minimum required
Maximum longitudinal spacing (exp.9.6N)	s _{vl,max} = 0.75 × d = 175 mm
PASS - Longitud	linal spacing of shear reinforcement provided is less than maximum
Crack control (Section 7.3)	
Maximum crack width	w _k = 0.3 mm
Design value modulus of elasticity reinf (3.2.7(4))	E _s = 200000 N/mm ²

Lyons O'Neill 5 Maidatone Mewa 72 -76 Borough High Str London SE1 1GN Mean value of concre- itress distribution coo lon-uniform self-equi actual tension bar spa faximum stress perm Concrete to steel mod Distance of the Elastie area of concrete in the Ainimum area of reinf Quasi-permanent valu Quasi-permanent valu Quasi-permanent load ratio Service stress in reinf Maximum bar spacing Minimum bar spacing Minimum bar space Minimum allowable to Minimum allowable to	treet	Calcs for								
5 Maidatone Mewa 72 -76 Borough High Str London SE1 1GN Mean value of concre stress distribution coo lon-uniform self-equi aximum stress perm Concrete to steel mod Distance of the Elastic area of concrete in th Ainimum area of reint Quasi-permanent valu Quasi-permanent load ratio Service stress in reinf Maximum bar spacing Minimum bar spacing Ainimum bottom bar space Ainimum allowable to Ainimum allowable to	i treet					Start page no./	Revision			
72-76 Borough High Str London SE1 1GN Mean value of concre- tress distribution coc- lon-uniform self-equi- actual tension bar spa flaximum stress perm concrete to steel mod Distance of the Elasti- area of concrete in the flinimum area of reint Quasi-permanent value Quasi-permanent load ratio Service stress in reinf flaximum bar spacing flinimum bar spacing flinimum bottom bar space flinimum allowable to flinimum al	treet		Capping Bear	n - Prelim Desi	gn		8			
Mean value of concre stress distribution cod lon-uniform self-equi Actual tension bar spa Maximum stress perm Concrete to steel mod Distance of the Elastic area of concrete in the Ainimum area of reint Quasi-permanent value Quasi-permanent load ratio Service stress in reinf Maximum bar spacing Minimum bar space Minimum allowable bar Ainimum allowable to Ainimum allowable to Ai		Calcs by S	Calcs date 01/07/2016	Checked by	Checked date	Approved by	Approved of			
Stress distribution cod lon-uniform self-equi Actual tension bar spi faximum stress perm Concrete to steel mod Distance of the Elastic Area of concrete in the Ainimum area of reint Quasi-permanent valu Quasi-permanent valu Quasi-permanent load ratio Service stress in reinf faximum bar spacing Ainimum bar spacing Ainimum bar space Ainimum allowable to Ainimum allowable to	ete tensile	strength	f _{ct,eff} = f _{ctm}	= 2.8 N/mm ²						
Ion-uniform self-equi Actual tension bar spa flaximum stress perm concrete to steel mod Distance of the Elastic Area of concrete in the Alinimum area of reint Quasi-permanent valu Quasi-permanent load ratio Service stress in reinf flaximum bar spacing Alinimum bar spacing Alinimum allowable bar Alinimum allowable to Alinimum allowable to	pefficient		$k_{c} = 0.4$							
Actual tension bar spa Aaximum stress perm Concrete to steel mod Distance of the Elasti- Area of concrete in the Aninimum area of reintan Quasi-permanent value Quasi-permanent load ratio Service stress in reinford Aaximum bar spacing Aninimum bar space Aninimum bar space Aninimum allowable bar Aninimum allowable to Aninimum allo	uilibrating	stress coefficie	ent k = min(m 1.00	ax(1 + (300 mr	n - min(h, b)) × 0	.35 / 500 mm,	0.65), 1) =			
Maximum stress perm concrete to steel mod Distance of the Elastic vera of concrete in the Minimum area of reinf Quasi-permanent valu Quasi-permanent limi Permanent load ratio Service stress in reinf Maximum bar spacing Minimum bar space Minimum bar space Minimum allowable be Minimum allowable to	pacing		Shar = (b -	2 × (Coom = + du)) = (hen) / (Nen = 1)	= 68 mm				
Concrete to steel mod Distance of the Elasti Area of concrete in the Alinimum area of reinf Quasi-permanent valu Quasi-permanent load ratio Service stress in reinf Aaximum bar spacing Alinimum bar spacing Alinimum bar space Alinimum allowable be Alinimum allowable to	mitted (Ta	ble 7.3N)	G. = 346 I	1/mm ²	(tip) (tipp)					
Distance of the Elasti vera of concrete in th Alinimum area of reint Quasi-permanent valu Quasi-permanent limi Permanent load ratio Service stress in reinf Aaximum bar spacing Alinimum bar spacing Alinimum bar space Alinimum allowable bo Alinimum allowable to	odulus of e	elast ratio	$\alpha_{cr} = F_{r}/1$	Form = 6.19						
Area of concrete in th Ainimum area of reint Quasi-permanent valu Quasi-permanent limi Permanent load ratio Service stress in reinf Aaximum bar spacing Ainimum bar spacing Ainimum bar space Ainimum allowable bo Ainimum allowable to	tic NA fron	n bottom of be	am v=(b×h	2/2 + A	$(a_{11} = 1) \times (b_{12} = d)$	$(h \times h + A)$	× /m = 1))			
rea of concrete in th <i>A</i> inimum area of reint Quasi-permanent valu Quasi-permanent load ratio Service stress in reinf <i>A</i> aximum bar spacing <i>A</i> inimum bar spacing <i>A</i> inimum bottom bar space <i>A</i> inimum allowable bar <i>A</i> inimum allowable to <i>A</i> inimum allowable to		in bollow of be	147 mm	/∠ / As,prov ∧ (u _d r − 1) × (11 − u)).	(UXII+As,prov	/ × (0.cr = 1))			
Ainimum area of rein Quasi-permanent valu Quasi-permanent limi Permanent load ratio Service stress in reinf Aaximum bar spacin Ainimum bar spacin Ainimum bat spacin Ainimum allowable ba Ainimum allowable to	he tensile	zone	$A_{et} = b \times y$	= 29435 mm ²						
Quasi-permanent valu Quasi-permanent limi Permanent load ratio Service stress in reinf Maximum bar spacing Minimum bottom bar space Minimum allowable bo Minimum top bar space Minimum allowable to	nforcemen	nt required (exp	0.7.1) A _{sc,min} = k	$\mathbf{k} \times \mathbf{k} \times \mathbf{f}_{ct,eff} \times \mathbf{A}_{c}$	1 / σ ₅ = 94 mm ²					
Quasi-permanent valu Quasi-permanent limi Permanent load ratio Service stress in reinf Aaximum bar spacing Ainimum bar spacing Ainimum allowable bo Ainimum allowable to Ainimum allowable to	PASS	- Area of ten:	sion reinforcem	nt provided e	xceeds minimui	m required for	r crack cor			
Quasi-permanent limi Permanent load ratio Service stress in reinf flaximum bar spacing Ainimum bar spacing Ainimum allowable bo Ainimum top bar space Ainimum allowable to	lue of vari	able action	$\psi_2 = 0.30$							
Permanent load ratio Service stress in reinf Maximum bar spacing Minimum bottom bar s Minimum allowable ba Minimum top bar spac Minimum allowable to	nit state m	oment	Mop = abs	$(M_{B_{c21}}) + \psi_2 \times$	$abs(M_{B_{c22}}) = 0 k$	Nm				
Service stress in reinf Maximum bar spacing Minimum bottom bar s Minimum allowable bo Minimum top bar spac Minimum allowable to	o		RPL = Mar	$R_{PL} = M_{QP} / M = 0.00$						
faximum bar spacing finimum bottom bar s finimum allowable ba finimum top bar spac finimum allowable to	nforcemen	nt	$\sigma_{sr} = f_{yd} \times$	$\sigma_{sr} = f_{yd} \times A_{s,req} / A_{s,prov} \times R_{PL} = 0 \text{ N/mm}^2$						
finimum bar spacin finimum bottom bar s finimum allowable ba finimum top bar spac finimum allowable to	ng (Tables	7.3N)	Sbar,max = 3	00 mm						
finimum bar spacin finimum allowable be finimum top bar spac finimum allowable to		P	ASS - Maximum	bar spacing e	xceeds actual b	ar spacing for	r crack cor			
finimum bottom bar : finimum allowable bo finimum top bar spac finimum allowable to	ing									
finimum allowable bo finimum top bar spar finimum allowable to	r spacing		Sbot,min = (- 2 × Cnom_s - 2	$2 \times \phi_v - \phi_{bot}$ / (N _{bot}	- 1) = 68 mm				
finimum top bar spar	bottom bar	r spacing	Sbar_bot,min	= max(opot, hagg	+ 5 mm, 20 mm)	+ opt = 41 mm	n			
finimum allowable to	acing		Stop,min = (I	- 2 × Cnom_s - 2	$2 \times \phi_v - \phi_{top}) / (N_{top})$	- 1) = 68 mm				
	top bar spa	acing	Sbar_top,min	= max(ϕ_{top} , hagg	+ 5 mm, 20 mm)	+ the = 41 mm	n			
				PASS - Actu	al bar spacing o	exceeds minin	num allow			

Arboricultural method statement

Trees

at and adjacent to

48 Shoot Up Hill London NW2 3QB

for

Mr J Moore

Skerratt

R Skerratt BSc(For) M. Arbor. A. 158 Malden Road London NW5 4BT

Tel: +44 (0)7768 398776 Fax: +44 (0)20 7767 4004 Email: raphaelskerratt@gmail.com

job no.: 467

document rev. no.:

date: 31.05.16

1. Scope and status

1.1 Scope

- 1.1.1 This method statement sets out measures for the protection of 6 trees or groups of trees standing within and adjacent to the property boundary of 48 Shoot Up Hill, London NW2 3QB, in relation to proposed residential development works.
- 1.1.2 The locations of the trees are shown on the **Tree protection plan** in **Appendix a.**
- 1.1.3 The development works to which this method statement refers include:
 - Extension of an existing basement to provide additional habitable space
 - Refurbishment of the existing dwelling
 - Associated external works including resurfacing of existing hard standings, the creation of new pedestrian access and soft landscape works.
- 1.1.4 The measures contained in this method statement are based on the advice and guidance set out in *BS5837:2012 Trees in relation to design, demolition and construction Recommendations.*

1.2 Status

- 1.2.1 This method statement forms a part of the building contract and its requirements are an integral part of the contract specification and schedule of works.
- 1.2.2 A copy of the method statement must be available for inspection on site at all times.
- 1.2.3 All persons working on site should be aware of the importance of avoiding damage to trees and should observe the necessary precautions. A guidance leaflet is included in this method statement in **Appendix c**.

2. Preparatory works prior to construction

2.1 Tree works

2.1 Tree works

- 2.1.1 Preparatory tree works to retained trees are listed in the **Tree works schedule** in **Appendix b** and should be carried out prior to the start of the main contract
- 2.1.2 All works will be carried out in accordance with *BS3998:2010 Recommendations for Tree Work.*
- 2.1.3 Unless otherwise specified, all arisings are to be taken off-site to an approved tip.

2.2 Protective measures: tree protection fencing

- 2.2.1 The extent and location of tree protection fencing is shown on the **Tree protection plan** in **Appendix a**. Fencing must be erected before any site works take place. It is particularly important that no demolition, soil stripping, breaking out of existing hard surfaces, re-grading or other excavation takes place before protective fencing has been erected.
- 2.2.2 Tree protection fencing will comply with the advice and guidance contained in BS5837:2012 – Trees in relation to design, demolition and construction – Recommendations.
- 2.2.3 In this case, fencing will be 2000mm high welded steel mesh panels (eg Heras round or square top panels or equivalent), mounted on compatible concrete or rubber feet, linked with 2 anti-tamper couplings and strutted at the ends. Struts will be attached at their lower ends to base plates secured with ground pins or to surface mounted concrete or rubber feet that are compatible with the strut size. A detail of full specification *BS5837:2012* fencing is included in **Appendix c.**
- 2.2.4 Areas separated from the construction site by tree protection fencing are **Construction Exclusion Zones (CEZ).**
- 2.2.5 **CEZs** are total exclusion areas. All of the following will be excluded:
 - Animals
 - Pedestrians
 - Vehicles and construction equipment
 - Materials and equipment storage
 - Contamination from materials used outside the **CEZ** (for example spillage of diesel or other toxic liquids)
 - Surface water runoff from outside the CEZ
- 2.2.6 Clearly legible, weatherproof signs will be fixed to the perimeter fencing of the **CEZ** clearly setting out the access restrictions set out above. An example is included at the end of this statement in **Appendix c.**

3. Works during development

3.1 Storage, handling and use of materials

3.1.1 Phytotoxic materials (diesel or cement for example) must be stored in a bunded container and handled (poured or mixed for example) outside the Root Protection Areas (RPAs) of the trees shown on the Tree protection plan in Appendix a.

3.2 Safe positioning of heavy lifting and handling equipment

3.2.1 Lifting and handling equipment (eg cranes and excavators) must be located in such a way that, when in use, no part extends into the **CEZ**. When lifting and handling equipment is working beneath the crown spread of any retained tree, a banksman will be employed to guide operations and minimise the risk of damage to the tree's branch system.

3.3 No fires on site

3.3.1 No fires will be lit anywhere on site.

3.4 Special Construction Areas

3.4.1 Within the area marked **Special Construction Area** on the **Tree protection plan** in **Appendix a**, preparatory excavation for new hard surfaces must not extend below the depth of existing hard surfacing and its associated sub-base.

3.5 Removal of protective fencing

3.5.1 Protective fencing may be dismantled only when construction works are completed and all construction equipment has been removed from site.

4.Summary of methods

4.1 Conflicts and remedial actions

4.1.1 The main potential sources of damage to trees are listed in **Table 1** below together with the remedial measures that should be adopted to minimise or avoid damage.

Source of damage	Remedial actions	See	Trees at risk			
Damage to tree stems and foliage	Erect protective fencing; plan construction activities to avoid damage to overhead branches:	Sections: 2.2, 3.2, 3.3 Tree protection plan	001-005			
Damage by surface compaction from site traffic/storage of materials	Not applicable					
Damage from spillage of toxic materials	Phytotoxic materials to be stored in a bunded compound/ container outside RPAs	Section: 3.1	All			
Damage to tree roots	Observe working constraints in Special Construction Areas	Section: 3.4 Tree protection plan	006			

 Table 1: Summary of Potential Damage Sources and Remedial Measures

Appendix a

Tree protection plan

Appendix b

Pre-contract tree works schedule

Skerratt

Explanatory notes

For general information on any entry in the detailed survey text, refer to the notes below which are organised on a column by column basis.

Tree number

All trees have been numbered in the survey text to correspond to the location numbers shown on the accompanying Tree Survey Plan. No trees have been marked on site.

Species

Common English names have been used wherever possible and Latin names are listed (in brackets in *italics*) in all cases.

Dimensions

Height - are recorded in m.

Stem diameter – recorded in mm at breast height (1.5m) wherever possible. Where measurement at 1.5m is not possible, one of the alternative methods set out in *Annex C of BS5837:2012* has been used.

If the diameter has been measured at a different height, this has been recorded, e.g. 60 @ 1m = 60mm diameter at 1m height. Other abbreviations used:

av - average	est/e - estimated	
ms - multi-stemmed	max – maximum	gl - ground level

Crown spread - radial crown spreads in metres have been recorded at four points on the circumference of the crown (north, east, south and west). The accompanying Tree survey plan shows approximate crown shapes based on these measurements

Crown height - the height of the first major branch and the height of the lowest point of the crown are recorded in metres eg 3/3

Client:Mr J MooreDate:31.05.16Project:Tree survey scheduleLocation:48 Shoot Up Hill, London NW2 3QBJob No.:467

Skerratt

Explanatory notes

Age

Y	Young	SM	Semi-mature			
EM	Early mature	Μ	Mature			
OM	Over-mature					

Where the precise age of a tree is known, it has been recorded in brackets adjacent to the general classification i.e. M(7).

Condition

Physiological condition

Gives a measure of biological vigour and of the presence or absence of disease, insect attack or other debilitating factors.

- G Good
- F Fair
- P Poor

Structural condition

Gives a measure of each tree's physical form and mechanical stability.

- G Good
- F Fair
- P Poor

Comments

See also discussion and conclusions in the accompanying report.

Client:Mr J MooreDate:31.05.16Project:Tree survey scheduleLocation:48 Shoot Up Hill, London NW2 3QBJob No.:467

Skerratt

Explanatory notes

Recommendations

Preliminary management recommendations under existing conditions

Life expectancy

An approximate estimate for each tree's anticipated future safe life in the following ranges:

<10 years 10-20 years 20-40 years 40+ years

Retention category

This grading is based on the recommendations set out in BS 5837:2012 *Trees in relation todesign, demolition and construction* - *Recommendations.* The categories are summarised in the standard as follows:

- A Trees of high quality with an estimated remaining safe life of at least 40 years
- B Trees of moderate quality with an estimated remaining safe life of at least 20 years
- C Trees of low quality with an estimated remaining safe life of at least 10 years, or young trees with a stem diameter below 150mm
- U Trees in such a condition that they cannot realistically be retained as living trees in the context of the current land use for longer than 10 years

In addition the British Standard requires one or more subcategories to be applied to the main Retention Category. In summary these are as follows:

- 1 Mainly arboricultural qulaities (that is individual aesthetic characteristics)
- 2. Mainly landscape qualities
- 3. Mainly cultural values, including conservation

Client:Mr J MooreDate:31.05.16Project:Tree survey scheduleLocation:48 Shoot Up Hill, London NW2 3QBJob No.:467

Tree works schedule

Tree No.	Species	Height (m)	Diam (mm)	Crown Spread (m)		Crown Spread (m)		Crown Spread (m)		Crown Spread (m)		rown Spread (m)		Crown Height (m)	Age	Physiological Condition	Structural Condition	Comments	Recommendations	Life Expectancy	Retention Category	Retention Sub- category
				Ν	Е	S	w															
001	Sycamore (Acer pseudoplatanus)	14	300 est	6	6	6	6	3/5	SM	G	G	Single upright stem: well proportioned rather open spreading crown: main branch fork at 3m: stands off-site in an adjacent garden	No immediate action required	40+	В	1/2						
002	Leyland Cypress (X Cupressocyparis leylandii)	12 max	100- 250 est	1	3e	3	4	1/1	SM	G	G	A line of approximately 5 stems (a grown-out hedge): the 2 stems at the east end of the line are much larger than the rest (approximately 250mm compared with <100mm): a useful low level screen standing off-site: crown dimesnions are for the group as a whole	No immediate action required	20-40	С	2						
003	Sycamore (Acer pseudoplatanus)	12	200 est	2	2	3	3	2/2	SM	F	F	Single slightly leaning stem: main branch fork at about 2m: rather loose one sided crown: of natural seedling origin:stands off-site	No immediate action required	20-40	С	2						
004	Turkey Oak (Q <i>uercus cerris</i>)	6	85	2	1	2	3	1/0	Y	G	G	Single leaning stem with a rather one sided crown (to W): first lateral at less than 1m height: planted in a small brick planting enclosure	Lift crown to 3m above surrounding ground level	40+	С	1						
005	Ash (Fraxinus excelsior)	12	85/ 85	2	0	2.5	3	2/2	SM	G	F	2 stemmed: rather high narrow but well balanced crown: grows at the base of the boundary wall where root action is	Remove within 5 years (future management problem)	<10	U	1/2						
006	Italian Alder (Alnus incana)	12	230	3.5	3.5	3.5	3.5	2/2	SM	G	G	Single upright stem with slight sweep (localised curvature) at base: well proportioned crown: stands off site	No immediate action required	20-40	В	1						

Skerratt

Pre-contract tree works schedule

Skerratt

Specification

General

All works must be carried out in accordance with the provisions of BS3889:2010 Tree works

1. Felling

- 1.1 Where necessary to avoid damage to neighbouring trees and vegetation, trees for removal will be dismantled in sections and lowered under controlled conditions
- 1.2 No retained tree will be used as an anchorage point for any tree removal operation

2. Stump grinding

2.1 Stump grinding will be to a sufficient depth to extend through the base of the central part of the stump

2.2 Chippings from stump grinding will be treated as arisings and removed from site to an approved disposal location

3. Pruning: General

Active Target pruning

- 3.1 Pruning cuts will be made close to the point of origin of the branch or branchlet to be removed (to avoid stubs which can inhibit wound occlusion)
- 3.2 Where there is a visible branch bark ridge and branch collar, pruning cuts will be made between the outer edge of the branch bark ridge and the outer edge of the branch collar
- 3.3 Where no branch collar is visible, cuts should be made from the outer edge of the branch ridge at right angles to the grain of the branch to be removed

Size and location of pruning cuts

- 3.4 The size and number of all pruning cuts will be kept to a minimum consistent with the specified management objective
- 3.5 Preference will be given to the removal of a larger number of seconday branches rather than the removal of larger primary branches (to minimise pruning wound diameter) to achieve the specified management objective
- 3.6 Pruning cuts will not execced 30% of the diameter of the parent branch or stem

4. Remove dead wood (safety)

4.1 Remove dead secondary branches and branchlets of 25mm diameter or greater at their point of origin following the principles of Active Target pruning

5. Crown lift (to a specified height)

- 5.1 Achieve the clearance specified between ground level and the lowest point of overhanging crown
- 5.2 Achieve the specified increase in headroom by removing secondary branches with the smallest possible diameter in accordance with the principles of Active Target pruning

Where necessary to avoid pruning wounds in excess of 30% of the diameter of the parent branch or stem, shorten rather5.3 than remove the limb to be pruned back to a healthy lateral with the largest possible diameter in relation to its parent branch.

5.4 Shortening cuts will be made distal to the union with the lateral branch using Active Target pruning principles

Appendix c

BS protective fencing detail Tree protection notice Tree protection notes

Excerpts from BS5837:2012 Trees in relation to design, demolition and construction - Recommendations

(For barriers) the default specification should consist of a vertical and horizontal scaffold framework comprising a vertical and horizontal framework, well braced to resist impacts, with vertical tubes spaced at a maximum interval of 3m and driven securely into the ground.

Onto this framework, welded mesh panels should be securely fixed. using wire or scaffold clamps.

Care should be exercised when locating the vertical poles to avoid underground services and, in the case of bracing poles, also to avoid contact with o structural roots

NOTE: The above is preferred because it is readily available, resistant to impact, can be re-used and enables inspection of the protected area

BS5837:2012 Protective Fencing Detail Scale: 1:20 [A4]

Skerratt arboricultural advice 158 MALDEN ROAD LONDON NW5 4BT 07768 398776

TREE PROTECTION ZONE

NO DIGGING OR TRENCHING NO STORAGE OF PLANT AND MATERIALS NO VEHICULAR ACCESS NO FIRES TO BE LIT NO CHEMICALS TO BE STORED OR HANDLED IN THE VICINTY OF THIS ZONE AVOID PHYSICAL DAMAGE TO TREES

REPORT DAMAGE TO TREES OR FENCING IMMEDIATELY

48 SHOOT UP HILL LONDON NW2 3QB

CARING FOR TREES

TREE PROTECTION NOTES

Trees are thin skinned and easily damaged

Their roots spread widely and run close to the ground surface.

All of the following can cause serious damage:

- Heavy traffic over and the storage of heavy materials above tree roots
- Direct damage to stems and branches from badly handled construction equipment,
- Root damage caused by unnecessary excavation
- Leakage of toxic liquids and powders above roots and close to tree stems.

Please keep the trees on site safe by following these simple rules carefully and in full.

There is a protective fence round each retained tree. These fenced-off areas are CONSTRUCTION EXCLUSION ZONES (CEZ). Don't enter any CEZ unless authorised to do so

In Construction Exclusion Zones

- Don't store any materials
- Don't use heavy machinery
- Don't handle toxic materials
- Stick to the planned work programme. Don't undertake unscheduled variations
- Don't light fires
- Report any damage to protective fencing to the Site Manager

Work Planning

Plan your work so that construction machinery does not come into contact with and cause damage to branches and stems of retained trees.

Appoint someone to supervise movement of machinery and equipment close to CEZs

Tell the Site Manager if tree pruning is needed to get machinery in, out or around the site. Don't do it yourself

London

Friars Bridge Court 41- 45 Blackfriars Road London, SE1 8NZ

T: +44 (0)20 7340 1700 E: london@campbellreith.com

Surrey

Raven House 29 Linkfield Lane, Redhill Surrey RH1 1SS

T: +44 (0)1737 784 500 E: surrey@campbellreith.com

Bristol

Wessex House Pixash Lane, Keynsham Bristol BS31 1TP

T: +44 (0)117 916 1066 E: bristol@campbellreith.com

Birmingham

Chantry House High Street, Coleshill Birmingham B46 3BP

T: +44 (0)1675 467 484 E: birmingham@campbellreith.com

Manchester

No. 1 Marsden Street Manchester M2 1HW

T: +44 (0)161 819 3060 E: manchester@campbellreith.com

UAE

Office 705, Warsan Building Hessa Street (East) PO Box 28064, Dubai, UAE

T: +971 4 453 4735 E: uae@campbellreith.com

Campbell Reith Hill LLP. Registered in England & Wales. Limited Liability Partnership No OC300082 A list of Members is available at our Registered Office at: Friars Bridge Court, 41- 45 Blackfriars Road, London SE1 8NZ VAT No 974 8892-43