# 156 West End Lane





Revised Air Quality Assessment

June 2016



# 156 West End Lane, West Hampstead

## Air Quality Assessment

| Author         | Christine Park                                                                                                                    |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Approved By    | Graham Parry<br>Managing Director                                                                                                 |
| Report For     | A2 Dominion Developments Limited<br>c/o Silver Development and Construction Consultancy<br>80 Cannon Street<br>London<br>EC4N 6HL |
| Date           | 01.06.2016                                                                                                                        |
| Version Number | A2423/AQ/008                                                                                                                      |
| Status         | Final                                                                                                                             |

This report has been prepared by ACCON UK Limited with all reasonable care and diligence within the terms of the contract with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. We accept no responsibility to third parties to whom this report, or any part, thereof is made available. Any such party relies upon the report at their own risk.



# **Table of Contents**

| 1. | INTRO  | DDUCTION                                                              | 6     |
|----|--------|-----------------------------------------------------------------------|-------|
| 2. | AIR P  | OLLUTION POLICY CONTEXT                                               | 7     |
|    | 2.1.   | Introduction                                                          | 7     |
|    | 2.2.   | Legislation                                                           | 7     |
|    | 2.3.   | Planning Policy                                                       | 9     |
| 3. | BASEI  | LINE CONDITIONS                                                       | 14    |
|    | 3.1.   | Air Quality Review and Assessment                                     | 14    |
|    | 3.2.   | Local Air Quality Monitoring                                          | 14    |
|    | 3.3.   | Background Concentration of Air Pollutants                            | 14    |
| 4. | METH   | ODOLOGY AND ASSESSMENT CRITERIA                                       | 16    |
|    | 4.1.   | Methodology                                                           | 16    |
|    | 4.2.   | BREEZE ROADS Modelling of Pollutant Concentrations                    | 16    |
|    | 4.3.   | Model Set-up Parameters                                               | 16    |
|    | 4.4.   | Local Air Quality Management Technical Guidance (2009) Recommendation | าร 17 |
|    | 4.5.   | Applying the AQS to this Development                                  | 17    |
|    | 4.6.   | Assessment Criteria                                                   | 17    |
|    | 4.7.   | Construction Phase                                                    | 18    |
|    | 4.8.   | Operation Phase                                                       | 20    |
|    | 4.9.   | Identification of Relevant Receptors                                  | 20    |
|    | 4.10.  | Traffic Data                                                          | 20    |
|    | 4.11.  | Validation and Verification of the Model                              | 21    |
|    | 4.12.  | CHP and Boiler Assessment                                             |       |
|    | 4.13.  | Breeze AERMOD Modelling of Pollutant Concentrations                   |       |
|    | 4.14.  | Model Set-up Parameters                                               | 22    |
|    | 4.15.  | Treatment of Model Output                                             |       |
|    | 4.16.  | Assessment of PM <sub>2.5</sub>                                       |       |
| 5. | IMPAC  | CTS ON AIR QUALITY                                                    |       |
|    | 5.1.   | Predicted Construction Impacts                                        | 25    |
|    | 5.2.   | Air Quality Impact of Traffic - Acceptability Criteria                | 25    |
|    | 5.3.   | Air Quality Impact of Traffic - Assessment                            |       |
|    | 5.4.   | Air Quality Impacts                                                   |       |
|    | 5.5.   | Predicted Constraints on Development                                  |       |
|    | 5.6.   | Annual Mean NO <sub>2</sub> Concentrations                            | 27    |
|    | 5.7.   | NO <sub>2</sub> 1-hour Exposure Assessment                            |       |
|    | 01.06. | 2016 Page   3                                                         |       |

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH



|    | 5.8.  | Annual Mean NO <sub>2</sub> Concentrations – Existing Receptors | . 28 |
|----|-------|-----------------------------------------------------------------|------|
|    | 5.9.  | Annual Mean PM <sub>10</sub> Concentrations                     | . 29 |
|    | 5.10. | PM <sub>10</sub> 24-hour Exposure Assessment                    | . 29 |
|    | 5.11. | Annual Mean PM <sub>2.5</sub> Concentrations                    | . 31 |
| 6. | MITIG | ATION                                                           | . 33 |
|    | 6.1.  | Construction Phase                                              | . 33 |
|    | 6.2.  | Operation Phase                                                 | . 33 |
| 7. | RESID | UAL EFFECTS                                                     | . 34 |
|    | 7.1.  | Construction Impacts on Local Air Quality                       | . 34 |
|    | 7.2.  | Operation Impacts on Local Air Quality                          | . 34 |
| 8. | CONC  | LUSIONS                                                         | . 35 |

# **List of Appendices**

| Appendix 1 Glossary of Terms                         | . 36 |
|------------------------------------------------------|------|
| Appendix 2 Site Location with Existing Receptors     | . 38 |
| Appendix 3 Proposed Plans with Development Receptors | . 40 |
| Appendix 4 Air Quality Standards                     | . 47 |
| Appendix 5 Northolt Meteorological Station Windrose  | . 49 |

# **List of Tables**

| Table 3.1: Local Monitoring Data Suitable for Model Verification                                   | 14 |
|----------------------------------------------------------------------------------------------------|----|
| Table 3.2: Background Concentrations of Pollutants                                                 | 15 |
| Table 4.1: Examples of Where AQS Should Be Applied                                                 | 17 |
| Table 4.2: Risk Category from Demolition Activities                                                | 19 |
| Table 4.3: Risk Category from Earthworks Activities                                                | 19 |
| Table 4.4: Risk Category from Construction Activities                                              | 20 |
| Table 4.5: Risk Category from Trackout                                                             | 20 |
| Table 4.6: Traffic Flow Data for Verification (2013)                                               | 21 |
| Table 4.7: Traffic Flow Data Opening Year (2020)                                                   | 21 |
| Table 4.8: NO <sub>2</sub> Annual Mean Verification for 2013                                       | 22 |
| Table 4.9: Emissions Data for the CHP unit                                                         | 23 |
| Table 4.10: National Exposure Reduction Target, Target Value and Limit Value for PM <sub>2.5</sub> | 24 |
| Table 5.1: Summary of Risk Effects with No Mitigation                                              | 25 |
| Table 5.2: Impacts of Pollutants                                                                   | 26 |
| Table 5.3: Predicted NO <sub>2</sub> Concentrations – Development site 2020                        | 27 |

01.06.2016

Page | 4



| Table 5.4: Predicted NO <sub>2</sub> Concentration - | · Impacts from development in 2020 | 29 |
|------------------------------------------------------|------------------------------------|----|
| Table 5.5: Predicted PM <sub>10</sub> Concentrations | s 2020                             | 29 |
| Table 5.6: Predicted PM <sub>2.5</sub> Concentration | s 2020                             | 31 |

Email: enquiry@accon-uk.com ●www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

Reading Office Tel: 0118 971 0000 Fax: 0118 971 2272 Brighton Office Tel: 01273 573 814



## 1. INTRODUCTION

ACCON UK Limited (ACCON) has been instructed by Silver Development and Construction Consultancy on behalf of A2 Dominion Developments Limited to carry out an air quality assessment which is required for a planning application submission to the London Borough of Camden (LBC). The whole of the LBC administrative area was declared an Air Quality Management Area (AQMA) in September 2002.

The proposal is to redevelop the site (156 West End Lane), which is located east of West End Lane and north of West Hampstead Thameslink Station. The proposed development includes the demolition of all existing buildings and redevelopment of the site to provide 163 mixed-tenure homes (Use Class C3), new floorspace for town centre uses (Use Classes A1, A2, A3, D1 or D2), new employment floorspace (including four dedicated units for start-up businesses) (Use Class B1), a community meeting room and new and improved public open spaces, together with associated new landscaping, on-site access, servicing and disabled car parking

This assessment has been completed in order to determine whether the proposed development achieves compliance against the National Air Quality Objectives, along with National and Local planning policy.

This assessment will be undertaken in accordance with the Department for Environment, Food and Rural Affairs' (DEFRA's) current Technical Guidance on Local Air Quality Management (LAQM) (DEFRA, 2016) and will cover the temporary effects on local air quality during construction, as well as the effects of local air quality on the development itself.

The report assesses the overall levels of nitrogen dioxide (NO<sub>2</sub>) and particulates (PM<sub>10</sub>; PM<sub>2.5</sub>) at the site. A glossary of terms is detailed in **Appendix 1** and the location of the site is displayed in **Appendix 2**. The constraints that existing air quality may have on the proposed development have been considered as part of this assessment. It is anticipated that the development will be completed in 2020.

The potential constraints on development have been assessed on the basis of the findings of detailed dispersion modelling using Breeze Roads GIS Pro Version 5.1.10, which has been undertaken in the context of relevant National Air Quality Objectives (NAQO) and Limit values and relevant guidance.

This revised Air Quality Assessment reflects the design revisions made as a result of the feedback received and further information requested by the London Borough of Camden officers following the November 2015 planning submission.



# 2. AIR POLLUTION POLICY CONTEXT

#### 2.1. Introduction

In the UK at the present time, emissions from road transport account for a substantial proportion of national air pollutant emissions. Road transport currently contributes almost 22% of national carbon dioxide emissions<sup>1</sup>. Whilst the UK is set to meet its international commitments on carbon dioxide emission reductions, the transport sector carbon dioxide emissions are continuing to grow.

Private car ownership has grown from 20.5 million in 1994 to 28.5 million in 2009<sup>2</sup> and in 2008, car traffic accounted for 78 per cent of road traffic, this proportion has remained stable since 1980<sup>3</sup>. Whilst total pollutant emissions peaked in 1990/91 and then started to decline, emissions began increasing again in approximately 2010.

It is evident that continued growth in private car ownership and usage will continue to result in a further deterioration of air quality in urban areas and increasing emissions of greenhouse gases. Whilst current technological improvements extended the reduction in emissions to approximately 2010, additional measures are now required in order to prevent re-growth of emissions, both to meet ambient air quality targets in urban areas and to offer an alternative to the car for urban journeys. Consequently, where new development can be located in relatively close proximity to public transport and local services, a contribution to the UK's target of reducing emissions will have been made.

#### 2.2. Legislation

In 1997 the United Kingdom National Air Quality Strategy (NAQS) was published and this document, set out an analysis of the magnitude and potential health and environmental problems associated with air pollutant emissions, particularly those emanating from road traffic.

The strategy proposed a schedule of air quality objectives, which were to be met for various pollutants in the years up to 2005. In setting these objectives, due account was taken of health and socio-economic cost-benefit factors, together with consideration of the practical and pragmatic aspects of whether targets would be achievable. Whilst it was identified in the Strategy that the objectives for benzene, butadiene, lead and carbon monoxide could be achieved as a result of improvement measures already put in place, complying with targets for NO<sub>2</sub> and PM<sub>10</sub> would be more difficult. In considering what additional measures would have to be introduced to counter these apparent shortfalls, the Government voiced the following thought: "*changes in planning and transport policies (are needed) which would reduce the need to travel and reliance on the car*". With regard to the necessity for encouraging a shift away from private car usage, the Strategy commented, in terms of the new package approach to transport funding, "*As a general rule, traffic demand management and restraint measures should be included and this, together with proposals* 

<sup>&</sup>lt;sup>1</sup> Environmental Protection UK. (2010). Car Pollution. Available from www.environmental-protection.org.uk

<sup>&</sup>lt;sup>2</sup> Department for Transport. (2010). Regional Transport Statistics: Tables. Available from www.dft.gov.uk

<sup>&</sup>lt;sup>3</sup> Department for Transport. (2010). Transport Trends 2009. Available from www.dft.gov.uk

<sup>01.06.2016</sup> 



to promote and enhance other modes of transport, should aim to achieve modal shifts away from the private car".

The White Paper on Integrated Transport (July 1998) proposed a range of measures at both national and local level to address issues of congestion and environmental effects. During the consultation process in 1997, the environmental issue most frequently cited by responses was air quality and it is therefore clear that this problem is uppermost in the mind of the public. The implementation of measures to relieve congestion in urban areas, by means of improvements in provision of public transport and encouragement of a modal shift, will also benefit urban air quality.

A review of the UK Air Quality Strategy was undertaken in 1998 and a consultation document was published in January 1999, outlining proposals for amending the Strategy. In August 1999, in response to the consultation, the Government then published an Air Quality Strategy for England, Scotland, Wales and Northern Ireland. The Air Quality Regulations (England) 2000 enacted in April 2000, and the Air Quality (England) (Amendment) Regulations 2002 gave legal force to the air quality standards set out in the Strategy. A new strategy was released in July 2007 with various amendments to the air quality objectives. The proposals, in brief, consisted of recommendations to adopt the provisions of the EU Air Quality Daughter Directives.

Schedule 2 of the Air Quality Standards Regulations 2010 implements a limit value for  $PM_{2.5}$  to be achieved by 2015, although they are yet to come into force and only apply to England. The Air Quality Standards (AQS) included in the Air Quality Standards Regulations 2010 are set out in **Appendix 4**.

The 'standards' are set as concentrations below which health effects are unlikely even in sensitive population groups, or below which risks to public health would be exceedingly small. They are based purely upon the scientific and medical evidence of the effects of a particular pollutant.

The 'objectives' set out the extent to which the Government expects the standards to be achieved by a certain date. They take account of the costs, benefits, feasibility and practicality of achieving the standards. The objectives are prescribed within The Air Quality (England) Regulations 2000 (Stationery Office, 2000) and The Air Quality (England) (Amendment) Regulations 2002 (Stationery Office, 2002) (termed the 'Regulations'). Air Quality Objectives included in the Regulations and current legislation (CAFE Directive) which are relevant to the current study (NO<sub>2</sub> and PM<sub>10</sub>) are outlined in **Appendix 4**.

The Air Quality Objectives only apply where members of the public are likely to be regularly present for the averaging time of the objective (i.e. where people will be exposed to pollutants). The annual mean objectives apply to all locations where members of the public might be regularly exposed; these include building façades of residential properties, schools, hospitals and care homes. The 24-hour mean objective applies to all locations where the annual mean objective would apply, together with hotels and gardens of

01.06.2016

Page | 8

Page | 9

residential properties<sup>4</sup>. The 1-hour mean objective also applies at these locations as well as at any outdoor location where a member of the public might reasonably be expected to stay for 1-hour or more, such as shopping streets, parks and sports grounds, as well as bus stations and railway stations that are not fully enclosed.

Measurements across the UK have shown that the 1-hour mean NO<sub>2</sub> objective is unlikely to be exceeded unless the annual mean NO<sub>2</sub> concentration is greater than  $60\mu g/m^3$  (Laxen and Marner, 2003). Thus exceedances of  $60\mu g/m^3$  as an annual mean NO<sub>2</sub> concentration are used as an indicator of potential exceedances of the 1-hour mean NO<sub>2</sub> objective.

Similarly, studies (DEFRA, 2003) have also established a relationship between the annual mean  $PM_{10}$  concentration and number of exceedances of the 24-hour mean objective: those areas where the annual mean concentrations are greater than  $32\mu g/m^3$  were demonstrated to be at risk of exceeding the 24-hour mean objective. Thus exceedances of  $32\mu g/m^3$  as an annual mean  $PM_{10}$  concentration are used as an indicator of potential exceedances of the 24-hour mean  $PM_{10}$  objective.

#### 2.3. Planning Policy

#### 2.3.1. National Planning Policy Framework

The new National Planning Policy Framework released in March 2012, and replaced the Planning Policy Guidance which previously covered planning and pollution control and new development in England. The purpose of the planning system is to contribute to the achievement of sustainable development. There are three dimensions to sustainable development: economic, social and environmental. The environmental role is to contribute to protecting and enhancing our natural, built and historic environment; and as part of this, helping to improve biodiversity, use natural resources prudently, minimise waste and pollution, and mitigate to adapt to climate change including moving to a low carbon economy.

One of the core planning principles is to contribute to conserving and enhancing the natural environment and reducing pollution. Allocations of land for development should prefer land of lesser value, where consistent with other policies in the Framework. The planning system should contribute to and enhance the natural and local environment by preventing both new and existing development from contributing to or being put at unacceptable risk from, or being adversely affected by unacceptable levels of soil, air, water or noise pollution or land instability.

In relation to air quality planning policies, they should sustain compliance with and contribute towards EU limit values or national objectives for pollutants, taking into account the presence of Air Quality Management Areas and the cumulative impacts on air quality from individual sites in local areas. Planning decisions should ensure that any new development in Air Quality Management Areas is consistent with the local air quality action plan. In addition, when determining planning applications, local planning

<sup>&</sup>lt;sup>4</sup> Such locations should represent parts of the garden where relevant public exposure is likely, for example where there are seating or play areas. It is unlikely that relevant public exposure would occur at the extremities of the garden boundary, or in front gardens, although local judgement should always be applied.

<sup>01.06.2016</sup> 



authorities should ensure that any unavoidable noise, dust and particle emissions and any blasting vibrations are controlled, mitigated or removed at source.

#### 2.3.2. National Planning Practice Guidance

Whether or not air quality is relevant to a planning decision will depend on the proposed development and its location. Concerns could arise if the development is likely to generate air quality impact in an area where air quality is known to be poor. They could also arise where the development is likely to adversely impact upon the implementation of air quality strategies and action plans and/or, in particular, lead to a breach of EU legislation (including that applicable to wildlife).

When deciding whether air quality is relevant to a planning application, considerations could include whether the development would:

- Significantly affect traffic in the immediate vicinity of the proposed development site or further afield. This could be by generating or increasing traffic congestion; significantly changing traffic volumes, vehicle speed or both; or significantly altering the traffic composition on local roads.
- Expose people to existing sources of air pollutants. This could be by building new homes, workplaces or other development in places with poor air quality.
- Give rise to potentially unacceptable impact (such as dust) during construction for nearby sensitive locations.

Mitigation options where necessary will be locationally specific, will depend on the proposed development and should be proportionate to the likely impact. It is important therefore that local planning authorities work with applicants to consider appropriate mitigation so as to ensure the new development is appropriate for its location and unacceptable risks are prevented. Planning conditions and obligations can be used to secure mitigation where the relevant tests are met.

Examples of mitigation include:

- the design and layout of development to increase separation distances from sources of air pollution;
- using green infrastructure, in particular trees, to absorb dust and other pollutants;
- means of ventilation;
- promoting infrastructure to promote modes of transport with low impact on air quality;
- controlling dust and emissions from construction, operation and demolition; and
- contributing funding to measures, including those identified in air quality action plans and low emission strategies, designed to offset the impact on air quality arising from new development.

#### 2.3.3. Regional Planning Policy – the London Plan (FALP - March 2015)

The regional development strategy applicable for the site is the London Plan. This plan addresses the spatial implications of the Mayor's Air Quality Strategy. In 2011, the Greater London Authority (GLA) and Mayor of London published the London Plan

2011, replacing the London Plan of 2008. Since 2011, the Revised Early Minor Alterations to the London Plan (REMA) was published in 2013 and the Further Alterations to the London Plan (FALP) in March 2015. The London Plan is the overarching strategic plan for London which provides an integrated framework for economic, environmental, social and transport development up to the year 2031. It forms part of the wider development context for Greater London and provides the framework to which local authorities' planning policies and decisions must conform.

The main Policy for Air Quality in the London Plan (2015) is Policy 7.14 ("Improving Air Quality"). This policy states that development proposals should:

- minimise increased exposure to existing poor air quality and make provision to address local problems of air quality (particularly within Air Quality Management Areas (AQMAs) and where development is likely to be used by large numbers of those particularly vulnerable to poor air quality, such as children or older people) such as by design solutions, buffer zones or steps to promote greater use of sustainable transport modes through travel plans;
- promote sustainable design and construction to reduce emissions from the demolition and construction of buildings following the best practice guidance in the GLA and London Councils' 'The control of dust and emissions from construction and demolition';
- be at least 'air quality neutral' and not lead to further deterioration of existing poor air quality (such as areas designated as Air Quality Management Areas (AQMAs));
- ensure that where provision needs to be made to reduce emissions from a development, this is usually made on-site. Where it can be demonstrated that on-site provision is impractical or inappropriate, and that it is possible to put in place measures having clearly demonstrated equivalent air quality benefits, planning obligations or planning conditions should be used as appropriate to ensure this, whether on a scheme by scheme basis or through joint area-based approaches;
- where the development requires a detailed air quality assessment and biomass boilers are included, the assessment should forecast pollutant concentrations. Permission should only be granted if no adverse air quality impacts from the biomass boiler are identified.

#### **2.3.4.** London Construction Dust Supplementary Planning Guidance

The Control of Dust and Emissions during Construction and Demolition Supplementary Planning Guidance (SPG) was published in July 2014. The guidance should be considered as a material planning consideration by London Borough Councils in their development of Local or Neighbourhood Planning Documents.

It recommends that Local Authorities therefore consider requesting that developers submit an Air Quality and Dust Risk Assessment when planning applications are received.

<sup>01.06.2016</sup> 



At post-application phase, it recommends that the developer should provide an Air Quality and Dust Risk Assessment summarising how demolition, earthworks, construction and trackout activities could cause dust soiling or impact on human health or environmentally sensitive receptors (see **Section 4.7).** The dust assessment procedure replicates that previously set out in the Institute of Air Quality Management's 2014 guidance on the Assessment of Dust from Demolition and Construction, but stipulates that a higher level of mitigation would be required if the effects of background  $PM_{10}$  and construction dust combined would increase ambient  $PM_{10}$  concentrations to within 10% of the annual NAQO. It should also confirm that a Dust Management Plan will be submitted to the Local Planning Authority before works commence.

The SPG recommends that planning conditions or section 106 agreements could be used to inform an Air Quality and Dust Management Plan which should be submitted before works commence on site. These plans should detail the following:

- "Confirmation of dust and air quality emission control measures to be implemented;
- Confirmation of what monitoring methods are to be implemented;
- From 2015, confirmation that construction standards will meet [Non-Road Mobile Machinery] standards, where possible."

During the construction phase, the developer and planning authority should monitor demolition and construction works, reviewing and implementing control measures where required.

It recommends that all developments where construction dust risks are at least 'low' should implement monitoring mechanisms such as by reviewing "occupational exposure standards to minimise worker exposure and breaches of air quality objectives that may occur outside the site boundary", and by logging and acting upon public complaints. Further recommendations are outlined for sites where the assessed risk is greater.

# 2.3.5. Camden Local Development Framework - Policy CS9 Achieving a Successful Central London and Policy DP32 Air Quality and Camden's Clear Zone

The Council's Core Strategy highlights the need to promote higher standards of air quality within the borough. It is recognised that parts of Camden have some of the poorest air quality levels in London and consequently the whole of the borough has been declared an Air Quality Management Area. The Council has produced an Air Quality Action Plan that identifies actions and mitigating measures necessary to improve air quality in the borough. Core Strategy Policy CS9 seeks to continue to designate Central London as a Clear Zone Region, which aims to reduce congestion, air and noise pollution and improve the urban realm.

#### Camden's Clear Zone

Development Policy DP32 "Air Quality and Camden's Clear Zone" states that "The Council will require air quality assessments where development could potentially cause significant harm to air quality. Mitigation measures will be expected in developments

Brighton Office Tel: 01273 573 814



that are located in areas of poor air quality". The site is located within a Growth Area (West Hampstead Interchange) and the supporting text advises that developments in these areas need to be well protected against air and noise pollution, with the Council expecting high standards of energy efficient design to be incorporated into development schemes.

01.06.2016

Page | 13

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

Reading Office Tel: 0118 971 0000 Fax: 0118 971 2272 Brighton Office Tel: 01273 573 814



# **3. BASELINE CONDITIONS**

#### 3.1. Air Quality Review and Assessment

As previously indicated, Local Authorities have been required to carry out a review of local air quality within their boundaries to assess areas that may fail to achieve the limit values. Where these objectives are unlikely to be achieved, local authorities must designate these areas as AQMA's and prepare a written action plan to achieve the AQS's.

The review of air quality takes on several prescribed stages, of which each stage is reported. LBC's latest Air Quality Report (April 2014) states that there is one Air Quality Management Area, which includes the whole Local Authority area and was designated for exceedances of the annual mean  $NO_2$  AQS's in 2002.

Further details on the monitoring data used for model verification purposes are provided in **Section 3.2**.

#### 3.2. Local Air Quality Monitoring

By selecting the closest appropriate roadside monitoring locations to the site, the most representative sites used for model verification purposes were located within both LBC and in the neighbouring London Borough of Barnet (LBB). The monitoring locations selected were the diffusion tubes at Emmanuel Primary School (CA25) and Chetwynd Road (CA24) from LBC, and Golders Green Lane (PBN9) from LBB. These are located approximately 0.3km southwest, 3.1km east and 2.2km northwest of the site respectively.

The 2013 annual mean  $NO_2$  concentrations for all of the monitoring sites are shown in **Table 3.1** below. The annual mean  $NO_2$  NAQO is exceeded at all of the monitoring locations.

|          | Distance to         | Grid Reference       |        | 2013 Annual Mean                     | 2013 Data   |  |
|----------|---------------------|----------------------|--------|--------------------------------------|-------------|--|
| Location | nearest Kerb<br>(m) | rest Kerb<br>(m) X Y |        | NO <sub>2</sub> (µg/m <sup>3</sup> ) | Capture (%) |  |
| CA24     | 1.5                 | 528723               | 185949 | 47.8                                 | 100         |  |
| CA25     | 2.5                 | 525325               | 185255 | 62.9*                                | 100*        |  |
| PBN9     | 5.5                 | 524691               | 187506 | 56.0                                 | 92          |  |

| Table 3.1: Local Monitoring | Data Suitable for Model Verification |
|-----------------------------|--------------------------------------|
|-----------------------------|--------------------------------------|

\* Data from CA25 were annualised in accordance with LAQM TG.16 (using data from the Harrow Stanmore, Haringey Priory Road and Thurrock London Road urban background AURN sites) as the original data capture was below 90%. Before adjustment 2013 Annual Mean was 57.9µg/m<sup>3</sup>.

#### **3.3. Background Concentration of Air Pollutants**

Background concentrations of air pollutants for the modelling were obtained from the 2011 pollutant concentration maps which were published by DEFRA in June 2014. These updated maps are based on monitoring and meteorological data for 2011 and incorporate updated road forecasts and NO<sub>x</sub> emission rates.

As the background concentrations from DEFRA are mapped in 1km by 1km grid squares and the monitoring stations and development receptors are located in different grid squares

Brighton Office Tel: 01273 573 814



compared to the development site, their respective background concentrations have been used for verification and adjustment purposes.

| Year                                                                | NO <sub>x</sub> µg/m <sup>3</sup> | NO <sub>2</sub> µg/m <sup>3</sup> | <b>ΡΜ</b> 10 μg/m <sup>3</sup> | PM <sub>2.5</sub> μg/m <sup>3</sup> |
|---------------------------------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------|-------------------------------------|
| 2013 Development Site and<br>Existing Receptors<br>(525500, 184500) | 52.3                              | 32.1                              | 22.2                           | 15.3                                |
| 2020 Development Site and<br>Existing Receptors<br>(525500, 184500) | 40.4                              | 25.8                              | 20.6                           | 13.8                                |
| 2013 CA24<br>(528500, 185500)                                       | 49.8                              | 31.0                              | 22.1                           | 15.3                                |
| 2020 CA24<br>(528500, 185500)                                       | 37.7                              | 24.47                             | 20.5                           | 13.8                                |
| 2013 CA25<br>(524500, 184500)                                       | 53.4                              | 32.1                              | 22.8                           | 15.7                                |
| 2020 CA25<br>(524500, 184500)                                       | 36.9                              | 23.8                              | 21.0                           | 14.1                                |
| 2013 PBN9<br>(524500, 187500)                                       | 50.4                              | 30.9                              | 22.7                           | 15.6                                |
| 2020 PBN9<br>(524500, 187500)                                       | 40.4                              | 25.5                              | 21.2                           | 14.21                               |

#### Table 3.2: Background Concentrations of Pollutants

Note: The ratio between  $PM_{10}$  and  $PM_{2.5}$  in 2013 at the site is 0.69.

**Table 3.2** shows that the estimated background concentrations for annual mean  $NO_2$  and  $PM_{10}$  used in the assessment are below the annual mean objective limit of  $40\mu g/m^3$ .



# 4. METHODOLOGY AND ASSESSMENT CRITERIA

#### 4.1. Methodology

In the UK, the Department for Environment, Food & Rural Affairs (DEFRA) provides guidance on the most appropriate methods to estimate pollutant concentrations for use in Local Air Quality Management (LAQM). DEFRA regularly updates its Technical Guidance, with the latest LAQM Technical Guidance TG (16) published in April 2016. The methodology in TG (16) directs air quality professionals to a number of tools published by DEFRA to predict and manage air quality. For example, it is necessary to use the updated NO<sub>x</sub> to NO<sub>2</sub> calculator to derive NO<sub>2</sub> concentrations from the NO<sub>x</sub> outputs from BREEZE ROADS modelling. This is because NO<sub>2</sub> concentrations within the model are predicted using the CALINE4 NO<sub>x</sub> to NO<sub>2</sub> conversion methodology, which should not be used within the model as current evidence shows that the proportion of primary NO<sub>2</sub> in vehicle exhausts has increased since the model was developed, which would affect the relationship between NO<sub>x</sub> and NO<sub>2</sub> at roadside locations.

In order to determine the extent to which air quality issues will affect the development of the site, the study has considered the following:

- Any air quality measurements carried out in the area near the proposed development; and
- London Borough of Camden Council's most recent (2013) air quality data.

#### 4.2. BREEZE ROADS Modelling of Pollutant Concentrations

Dispersion modelling has been undertaken using BREEZE ROADS to determine air quality concentrations across the site. BREEZE ROADS is an air dispersion modelling software suite that predicts air quality impacts of carbon monoxide (CO), nitrogen dioxide (NO<sub>2</sub>), particulate matter (PM), and other inert pollutant concentrations from moving and idling motor vehicles at or alongside roadways and roadway intersections.

BREEZE ROADS can be used in conjunction with the MOBILE5, EMFAC emission models or other emissions data, to demonstrate compliance with the UK's National Air Quality Strategy. BREEZE ROADS predicts air pollutant concentrations near highways and arterial streets due to emissions from motor vehicles operating under free-flow conditions and idling vehicles. In addition, 1-hour and running 8-hour averages of CO or 24-hour and annual block averages of PM<sub>10</sub> can be calculated.

#### 4.3. Model Set-up Parameters

The most recent Emissions Factor Toolkit (version 6.0.2, July 2014) was used to derive emissions factors (in grams per kilometre) for vehicle movement along roads incorporated into the model. This version includes updates to COPERT NO<sub>x</sub> emissions factors for some light duty vehicles, and particulate matter and hydrocarbons are now based on COPERT emissions factors. There have also been updates to the vehicle fleet and age information.

Meteorological data from the nearby Northolt Meteorological Station has been used in the model. Sensitive receptors are also included in the model, focusing on the proposed

Brighton Office Tel: 01273 573 814



residential properties on the site. The receptor locations used in this model are displayed in **Appendix 2.** 

#### 4.4. Local Air Quality Management Technical Guidance (2009) Recommendations

The Local Air Quality Management Technical Guidance (TG(16)) has made recommendations of where the AQS should and should not be applied, as summarised in **Table 4.1**.

As it is not always possible to be prescriptive in this matter, Local Authorities may apply local knowledge and judgement when considering the application of the AQS. The examples given in **Table 4.1** are not intended to be a comprehensive list.

| Averaging Period        | AQS Should Apply:                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AQS Should Not Apply:                                                                                                                                                                                                                                                                                                                                      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Annual Mean             | <ul> <li>All locations where members of the public might be regularly exposed.</li> <li>Building facades of: <ul> <li>Residential properties</li> <li>Schools</li> <li>Hospitals</li> <li>Care homes etc.</li> </ul> </li> </ul>                                                                                                                                                                                                                                   | <ul> <li>Building facades of offices or other places<br/>of work where members of the public do not<br/>have regular access.</li> <li>Hotels, unless people live there as their<br/>permanent residence.</li> <li>Residential gardens</li> <li>Kerbside sites or any other location<br/>where public exposure is expected to be<br/>short term.</li> </ul> |
| 24-hour and 8-hour mean | <ul><li>All locations where the annual mean objective would apply.</li><li>Hotels</li><li>Residential gardens</li></ul>                                                                                                                                                                                                                                                                                                                                            | Kerbside sites or any other location where<br>public exposure is expected to be short<br>term.                                                                                                                                                                                                                                                             |
| 1-hour mean             | <ul> <li>All locations where the annual mean<br/>and 24 and 8-hour mean objectives<br/>apply.</li> <li>Kerbside sites (e.g. pavements of<br/>busy shopping streets)</li> <li>Those parts of car parks, bus<br/>stations and railway stations etc<br/>which are not fully enclosed,<br/>where members of the public<br/>might spend one hour or more.</li> <li>Any outdoor locations where<br/>members of the public might<br/>spend one hour or longer.</li> </ul> | Kerbside sites where the public would not<br>be expected to have regular access.                                                                                                                                                                                                                                                                           |
| 15-min mean             | All locations where members of the public might reasonably be exposed for a period of 15 minutes or longer.                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |

 Table 4.1: Examples of Where AQS Should Be Applied

## 4.5. Applying the AQS to this Development

This planning application includes rooms which will be used for residential purposes, which according to **Table 4.1** is a location where the AQS calendar year limit value applies. The 24-hour and 1-hour mean objectives will also be considered.

#### 4.6. Assessment Criteria

A detailed assessment was considered appropriate for this proposed development with model results being verified against local monitoring data. This was carried out using the detailed dispersion model BREEZE ROADS.

01.06.2016

Brighton Office Tel: 01273 573 814



For the purposes of this assessment, the limit values assigned to individual pollutants as set out in the Air Quality Standards Regulations 2010 should form the basis of the air quality assessment. The limit values are based on an assessment of the effects of each pollutant on public health. Therefore, they are a good indicator in assessing whether, under normal circumstances, the air quality in the vicinity of a development is likely to be detrimental to human health.

#### 4.7. Construction Phase

During the construction phase, there will be a number of activities undertaken that have the potential to generate and/or re-suspend dust and  $PM_{10}/PM_{2.5}$ . At the time of assessment the exact activities to be undertaken during construction are unknown. In order to evaluate the magnitude and extent of potential adverse impacts likely to result from the proposed development, the following construction activities have therefore been assumed:

- Demolition;
- site clearance and preparation;
- landscaping;
- construction and fabrication processes;
- internal and external finishing and refurbishment; and
- materials handling, storage, potential spillage and disposal.

The magnitude of the potential impacts of a construction site on air quality is mainly determined by its size, the range of activities undertaken across the site, proximity to sensitive receptors, prevailing wind direction, complexity of terrain and any barriers between sources and receptors.

A qualitative assessment of the potential impacts during construction has been undertaken using information in guidance documents produced by the Building Research Establishment (Control of Dust from Construction and Demolition Activities, 2003) and the recent document produced by the Institute of Air Quality Management (Guidance on the Assessment of Dust from Demolition and Construction, 2014).

Following the release of the IAQM Guidance in January 2014, the assessment criteria have been revised. The dust assessment criteria have now been broken down into five steps;

- Step 1: Screen the need for a detailed assessment;
- Step 2: Assess the risk of dust impacts;
  - Step 2A determine the scale and nature of the works;
  - Step 2B assess the sensitivity of the area;
  - Step 2C combine 2A and 2B to determine the risk of dust impacts;
- Step 3: Site Specific Mitigation;
- Step 4: Determine Significance of Effects;
- Step 5: Dust Assessment Report.

According to this guidance; human receptors include locations where people spend time and where property may be affected by dust. In terms of annoyance effects, this will most commonly relate to the loss of amenity due to dust deposition or visible dust plumes, often related to people making complaints, but not necessarily sufficient to be a statutory nuisance.

01.06.2016



According to IAQM guidance (2014), activities on construction sites can be divided into four types to reflect their different potential impacts, with the potential for dust emissions to be assessed only for each activity taking place:

- demolition;
- earthworks;
- construction; and
- Trackout.

The assessment methodology is to consider three separate dust effects:

- annoyance due to soiling;
- harm to ecological receptors; and
- The risk of health effects due to a significant increase in exposure to PM<sub>10</sub>.

Account is also to be taken of the distance of the receptors that may experience these effects. Receptors, such as residential properties, are generally considered to be of a medium or high sensitivity to the effects of demolition, earthworks and construction when they are situated within 200m of the site boundary. However, depending on the development size, the effects of trackout may be experienced up to 500m from the site exit.

The Windrose in **Appendix 4** identifies the prevailing wind direction in the region is from the south-west. As such, it is expected that receptors located to the north-east of the site will be at most risk of construction dust impacts.

The assessment procedure assumes no mitigation measures are applied to determine a worst case scenario. In practice a significant number of mitigation measures will be implemented on site (please see details in **Section 6.1**) which will result in a negligible risk of dust nuisance. **Tables 4.2** to **4.5** set out the risk category from each of the four types of activity.

| Sensitivity of the | Dust Emission Class |                  |                  |  |
|--------------------|---------------------|------------------|------------------|--|
| Area               | Large               | Medium           | Small            |  |
| High               | High Risk Site      | Medium Risk Site | Medium Risk Site |  |
| Medium             | High Risk Site      | Medium Risk Site | Low Risk Site    |  |
| Low                | Medium Risk Site    | Low Risk Site    | Negligible       |  |

 Table 4.2: Risk Category from Demolition Activities

#### Table 4.3: Risk Category from Earthworks Activities

| Sonaitivity of the Area | Dust Emission Class |                  |               |  |
|-------------------------|---------------------|------------------|---------------|--|
| Sensitivity of the Area | Large Medium        |                  | Small         |  |
| High                    | High Risk Site      | Medium Risk Site | Low Risk Site |  |
| Medium                  | Medium Risk Site    | Medium Risk Site | Low Risk Site |  |
| Low                     | Low Risk Site       | Low Risk Site    | Negligible    |  |

| Table 4.4. Misk category nom construction Admites |                     |                  |               |  |  |
|---------------------------------------------------|---------------------|------------------|---------------|--|--|
| Sensitivity of the Area                           | Dust Emission Class |                  |               |  |  |
| Sensitivity of the Area                           | Large Medium        |                  | Small         |  |  |
| High                                              | High Risk Site      | Medium Risk Site | Low Risk Site |  |  |
| Medium                                            | Medium Risk Site    | Medium Risk Site | Low Risk Site |  |  |
| Low                                               | Low Risk Site       | Low Risk Site    | Negligible    |  |  |

#### Table 4.4: Risk Category from Construction Activities

#### Table 4.5: Risk Category from Trackout

| Sensitivity of the Area | Dust Emission Class |                  |               |  |
|-------------------------|---------------------|------------------|---------------|--|
| Sensitivity of the Area | Large               | Medium           | Small         |  |
| High                    | High Risk Site      | Medium Risk Site | Low Risk Site |  |
| Medium                  | Medium Risk Site    | Low Risk Site    | Negligible    |  |
| Low                     | Low Risk Site       | Low Risk Site    | Negligible    |  |

#### 4.8. **Operation Phase**

The main pollutants of concern for road traffic are generally considered to be  $NO_2$  and  $PM_{10}$ . Once construction has been completed, it is not anticipated that the proposed development will have a significant effect on local pollution concentrations as there will be will only be 12 disabled parking spaces on site. As a result it is considered that the traffic generation onto the local highway network associated with the development will be negligible.

The BREEZE ROADS methodology has been used for this assessment to predict the constraints on development. For the assessment, the following scenarios were considered:

- 2013 Model Verification; and
- 2020 Opening Year.

#### 4.9. Identification of Relevant Receptors

To assess the impacts and constraints on development, sensitive receptor locations were identified on the façades of the proposed residential units (Development Receptors) and at local sensitive receptors e.g. residential properties (Existing Receptors). The plans in **Appendix 2** and **Appendix 3** identify the Existing Receptor (ER) and Development Receptor (DR) locations respectively.

#### 4.10. Traffic Data

The BREEZE prediction model requires the user to provide various input data, including the Annual Average Hourly Traffic (AAHT) flow, the proportion of heavy duty vehicles (HDVs), the distance of the road centreline from the receptor and the vehicle speed. Traffic speeds have been estimated from local speed restrictions. Vehicle speeds near junctions, crossings and bus stops were revised downwards to account for queuing traffic.

The traffic information utilised for this assessment is detailed in **Table 4.6** and **Table 4.7** below for both the verification and assessment scenarios. Traffic flow data used in the predictions have been obtained independently from the Department for Transport website.

Brighton Office Tel: 01273 573 814

<sup>01.06.2016</sup> 



The data has been adjusted for the proposed occupation date of 2020 using a worst case traffic growth factor of 1.5% per year between the surveyed years and 2020.

| Table 4.0. Traine flow Data for Vermeation (2013)        |       |                 |            |
|----------------------------------------------------------|-------|-----------------|------------|
| Location                                                 | AAHT  | Speed<br>(km/h) | HDV<br>(%) |
| Model Verification                                       |       |                 |            |
| Chetwynd Road                                            | 541   | 15              | 3.4        |
| Finchley Road (north of Golders Green Road)              | 792   | 28              | 6.4        |
| Finchley Road (Golders Green Road to Fortune Green Road) | 721   | 30              | 9.0        |
| Finchley Road (south of Fortune Green Road)              | 2,032 | 22              | 7.2        |
| Fortune Green Road                                       | 663   | 20              | 5.4        |
| Golders Green Road                                       | 534   | 14              | 7.9        |
| Gordon House Road                                        | 523   | 21              | 6.5        |
| Highgate Road (north of Chetwynd Road)                   | 619   | 30              | 7.0        |
| Highgate Road (south of Chetwynd Road)                   | 988   | 22              | 6.5        |
| Hodford Road                                             | 386   | 19              | 6.3        |
| Mill Lane                                                | 396   | 26              | 4.4        |
| Redington Gardens                                        | 163   | 22              | 4.1        |
| West End Lane (north of Lymington Road)                  | 364   | 20              | 12.0       |

#### Table 4.6: Traffic Flow Data for Verification (2013)

#### Table 4.7: Traffic Flow Data Opening Year (2020)

| Location         | AAHT<br>2020 | Speed<br>(km/h) | HDV<br>(%) |
|------------------|--------------|-----------------|------------|
| Model Adjustment |              |                 |            |
| West End Lane    | 404          | 20              | 12.3       |

#### **4.11.** Validation and Verification of the Model

Model validation undertaken by the software developer will not have been carried out in the vicinity of the site being considered in this assessment. As a result, it is necessary to perform a comparison of the modelled results with local monitoring data at suitable locations. This verification process aims to minimise model uncertainty and systematic error by correcting modelled results by an adjustment factor to gain greater confidence in the final results.

In respect of NO<sub>2</sub> concentrations, this exercise resulted in an average difference between the modelled and monitored NO<sub>2</sub> roads results of -74.6% (-32.8% for NO<sub>2</sub> total), which indicates that the models are significantly under predicting. When the monitored and modelled results are compared as recommended in TG.16 the road NO<sub>x</sub> adjustment factor is **4.4864** (as shown in **Table 4.8**). This factor was applied to all modelled NO<sub>x</sub> results prior to calculating modelled NO<sub>2</sub> using the NO<sub>x</sub> to NO<sub>2</sub> calculator. In the absence of PM<sub>10</sub> monitoring within close proximity to the site, the NO<sub>x</sub> adjustment factor has also been applied to the PM<sub>10</sub> modelled concentrations, in accordance with the guidance provided in LAQM TG.16.

01.06.2016

|      | Monitored Modelled % Difference |                                   | Monitored            |                                              | % Difference                                    | 04 <b>D</b> :44                                             | Deed                      |
|------|---------------------------------|-----------------------------------|----------------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|---------------------------|
| Site | Road<br>NO₂<br>µg/m³            | Road<br>NOx <sup>5</sup><br>µg/m³ | Road<br>NO₂<br>µg/m³ | Road<br>NO <sub>x</sub><br>µg/m <sup>3</sup> | (NO <sub>2</sub> Total)<br>Before<br>Adjustment | % Difference<br>(NO <sub>2</sub> Total)<br>After Adjustment | NO <sub>X</sub><br>Factor |
| CA24 | 16.8                            | 40.7                              | 7.5                  | 17.0                                         | -19.4                                           | 24.8                                                        |                           |
| CA25 | 30.8                            | 84.1                              | 4.5                  | 10.0                                         | -41.8                                           | -20.1                                                       | 4.4864                    |
| PBN9 | 25.1                            | 64.4                              | 4.2                  | 9.2                                          | -37.3                                           | -14.1                                                       |                           |

#### Table 4.8: NO<sub>2</sub> Annual Mean Verification for 2013

#### 4.12. CHP and Boiler Assessment

The development proposals include for the provision of 2 No. CHP units and 4 No. boiler units. The exact design and models have not as yet been determined. As a result typical units, which will meet the energy criteria requirements for the development have been used as part of this air quality assessment.

It has been assumed that as a worst case the CHP unit(s) will operate on full load approximately 17 hours a day and the boilers have been modelled for a 24 hour a day operation. Dispersion modelling has been undertaken to determine whether the CHP and boiler units will have a detrimental impact on air quality on the development and existing sensitive receptors.

## 4.13. Breeze AERMOD Modelling of Pollutant Concentrations

Breeze AERMOD is designed to estimate pollutant concentrations and deposition from an industrial source complex. The model predicts pollutant concentrations from continuous point, flare, area, line, volume, and open pit sources. The model enables the user to estimate concentrations from virtually any type of source emitting a non-reactive pollutant.

AERMOD is an advanced new-generation model developed by the U.S. EPA. This versatile model is the preferred model by the U.S. EPA because of many features including, but not limited to its ability to:

- predict air dispersion fundamentally based on planetary boundary layer turbulence structure;
- estimate concentrations from nearly any type of source emitting non-reactive pollutants;
- process complex and simple terrain data; and
- handle both surface and elevated sources.

#### 4.14. Model Set-up Parameters

The CHP and boiler emission rates and stack specifications are provided within **Table 4.9** below. As  $NO_x$  ( $NO_2$ ) is the primary issue, this will be the only pollutant modelled. The CHP and boiler units which will be used on the proposed development site have not been decided at this point and therefore the modelling has used the following units as examples:

• Boiler system – 4 x Ultramax R604 boilers; and

Page | 22

 $<sup>^5</sup>$  Obtained from NO\_X to NO\_2 Calculator Spreadsheet available from <u>http://laqm.defra.gov.uk/</u> 0 1 . 0 6 . 2 0 1 6

• CHP system – 2 x EC Power XRGI CHP engines

Meteorological data from the nearby Northolt Meteorological Station has been used in the model.

| Input parameter                               | CHP Unit<br>(2 No. Units) | Boiler Units<br>(4 No. Units) |
|-----------------------------------------------|---------------------------|-------------------------------|
| Stack height (m)                              | 23.5                      | 23.5                          |
| Stack internal diameter (m)                   | 0.15                      | 0.40                          |
| NO <sub>x</sub> Emission rate (g/s)           | 0.005                     | 0.012                         |
| Temperature (°C)                              | 140                       | 70                            |
| Volume Flow Rate (m/s)                        | 3.5                       | 2.75                          |
| Operating Regime<br>(operating hours per day) | 17                        | 24 (worst case)               |

#### Table 4.9: Emissions Data for the CHP unit

#### 4.15. Treatment of Model Output

For the purpose of this assessment, the  $NO_x$  levels which are determined using the AERMOD dispersion model will be converted to  $NO_2$  using the Air Quality Modelling and Assessment Unit's (AQMAU) Conversion Ratios for  $NO_x$  and  $NO_2$ .

For the annual mean predicted environmental concentration, the predicted process contributions;  $(NO_x)$  from the CHPs, are added to the local background contributions (DEFRA background pollutant concentration maps), and the modelled roads contribution to give a total concentration for the opening year of the development scheme (2020).

#### 4.16. Assessment of PM<sub>2.5</sub>

The 2007 Air Quality Strategy introduced a new exposure reduction regime for  $PM_{2.5}$ , tiny particles associated with respiratory and cardio-vascular illness and mortality which have no known safe limit for human exposure. The new regime will attempt to reduce the exposure of all urban dwellers, alongside the existing method of reducing hotspots of PM exposure.  $PM_{2.5}$  typically makes up two thirds of  $PM_{10}$  emissions and concentrations. However, objectives for  $PM_{2.5}$  (as shown in **Table 4.10**) are not currently incorporated into Local Air Quality Management regulations, therefore there is no statutory obligation to review and assess air quality against them.

Email: enquiry@accon-uk.com •www.accon-uk.com



Page | 24

#### Table 4.10: National Exposure Reduction Target, Target Value and Limit Value for PM<sub>2.5</sub>

| Time Period                                                             | Objective/Obligation                                                                                                                                                                             | To be achieved by |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Annual mean                                                             | ual mean Target value of 25 µg/m <sup>3</sup>                                                                                                                                                    |                   |  |
| Annual mean                                                             | Limit value of 25 µg/m³                                                                                                                                                                          | 2015              |  |
| Annual mean                                                             | Stage 2 indicative limit value of 20µg/m <sup>3</sup>                                                                                                                                            | 2020              |  |
| 3 year Average Exposure<br>Indicator (AEI) <sup>6</sup>                 | 3 year Average Exposure<br>Indicator (AEI) <sup>6</sup> Exposure reduction target relative to the AEI<br>depending on the 2010 value of the 3 year AEI<br>(ranging from a 0% to a 20% reduction) |                   |  |
| 3 year Average Exposure<br>Indicator (AEI) <sup>6</sup> (of vegetation) |                                                                                                                                                                                                  | 2015              |  |

Presently, BREEZE ROADS does not predict the concentration of  $PM_{2.5}$  as part of the methodology therefore the future concentration of  $PM_{2.5}$  will be calculated using the typical ratio between the background concentrations of  $PM_{10}$  and  $PM_{2.5}$  for the opening year of development. This predicted concentration will then be compared against the annual mean Objective Limit value of  $25\mu g/m^3$ .

<sup>6</sup> The 3 year running mean of AEI is calculated from the PM<sub>2.5</sub> concentration averaged across all urban background monitoring locations in the UK e.g. the AEI for 2010 is the mean concentration measured over 2008, 2009 and 2010.



# 5. IMPACTS ON AIR QUALITY

#### 5.1. Predicted Construction Impacts

The main source of dust and PM<sub>10</sub> during construction activities include:

- Haulage routes, vehicles and construction traffic;
- Materials handling, storage, stockpiling, potential spillage and disposal;
- Exhaust emissions from site plant;
- Site preparation;
- Construction and fabrication processes; and
- Internal and external finishing and refurbishment.

The majority of the releases are likely to occur during the typical 'working-week'. Depending on wind speed and turbulence it is likely that the majority of dust will be deposited in the area immediately surrounding the source (up to 200 metres away). The Windrose in **Appendix 4** shows that the prevailing wind direction for the site is from the south-west. Therefore, properties within 200m to the north-east of the site have the greatest potential to be effected by construction dust. The risk of effects are summarised in **Table 5.1** below.

|              | -                    |                    |                          |
|--------------|----------------------|--------------------|--------------------------|
| Source       | Dust Soiling Effects | Ecological Effects | PM <sub>10</sub> Effects |
| Demolition   | Medium risk          | Not applicable     | Medium risk              |
| Earthworks   | Medium risk          | Negligible risk    | Medium risk              |
| Construction | Medium risk          | Negligible risk    | Medium risk              |
| Trackout     | Medium risk          | Negligible risk    | Medium risk              |

 Table 5.1: Summary of Risk Effects with No Mitigation

In consideration of the factors described above, an appropriate level of mitigation will be applied to the site during the demolition and construction phases in order to minimise the impact of the construction on the local sensitive receptors to a negligible level.

#### 5.2. Air Quality Impact of Traffic - Acceptability Criteria

It is common in the UK to use the Environmental Protection UK's (EPUK) Guidance<sup>7</sup> on Air Quality Assessments for Planning Applications to assess the impact of a development. This advises that an air quality assessment will be required where the development is anticipated to give rise to significant changes in air quality. There will also be a need to assess air quality implications of a development where a significant change in relevant exposure is anticipated. A full air quality assessment should normally be undertaken where proposals give a rise to significant changes in either volumes, typically a change in annual average daily traffic (AADT) or peak traffic flows of +-5% or +-10%, depending on local circumstances, or in vehicle speed (or both), usually on a road with more than 10,000 AADT (5,000 if narrow and congested). It also advises of the need for an assessment where the proposals will:

- generate or increase congestion;
- alter the traffic composition on local roads;

01.06.2016

Page | 25

<sup>&</sup>lt;sup>7</sup> Environmental Protection UK (2010 Update) – Development Control: Planning for Air Quality



- include significant new car parking;
- significantly affect nitrogen deposition on sensitive habitats;
- introduce new exposure close to existing sources of air pollutants;
- include biomass boilers or biomass-fuelled CHP plant;
- include centralised boilers of CHP;
- give rise to potentially significant impacts during construction; or
- include a large, long-term construction site.

#### 5.3. Air Quality Impact of Traffic - Assessment

In 2013, the average number of vehicles per day on West End Lane was 8,747 vehicles. Over time, the transport sector is expected to grow by approximately 1.5% per year, which will bring this daily traffic flow up to approximately 9,283 vehicles by 2020, the opening year of the proposed development.

The scheme proposes only 12 on-site disabled parking spaces and therefore the development will not have an adverse air quality impact in respect of generated traffic flows onto the local highway network.

#### 5.4. Air Quality Impacts

In May 2015, Environmental Protection UK (EPUK) and the Institution of Air Quality Management (IAQM) updated their guidance on "Land-Use Planning and Development Control: Planning for Air Quality". The guidance provides a methodology for determining the impacts of increased pollutant concentrations at sensitive receptor locations resulting from emission sources such as the generate traffic from the site.

| Long Term Average<br>Concentration in | % Change in Concentration relative the Air Quality<br>Assessment Level (AQAL) |             |             |             |  |
|---------------------------------------|-------------------------------------------------------------------------------|-------------|-------------|-------------|--|
| Assessment Year                       | 1                                                                             | >10         |             |             |  |
| 75% or less of AQAL                   | Negligible                                                                    | Negligible  | Slight      | Moderate    |  |
| 76-94% of AQAL                        | Negligible                                                                    | Slight      | Moderate    | Moderate    |  |
| 95-102% of AQAL                       | Slight                                                                        | Moderate    | Moderate    | Substantial |  |
| 103-109% of AQAL                      | Moderate                                                                      | Moderate    | Substantial | Substantial |  |
| 110% or more of AQAL                  | Moderate                                                                      | Substantial | Substantial | Substantial |  |

Table 5.2: Impacts of Pollutants

The AQAL is the Air Quality Assessment Level, which may be an air quality objective, EU limit or target value, or an Environment Agency 'Environmental Assessment Level'

#### 5.5. Predicted Constraints on Development

To characterise the air quality at the proposed development, predictions of air pollutant concentrations have been made for an occupation year of 2020 using the BREEZE ROADS dispersion model. The results of the predictions which include the road  $NO_X$  adjustment factor (**Table 4.8**) can be seen in **Tables 5.3** to **5.5**.

```
01.06.2016
```

Page | 26



#### 5.6. Annual Mean NO<sub>2</sub> Concentrations

Pollutant concentrations of NO<sub>2</sub> have been compared to the annual mean limit value. The maximum concentration predicted for the site is  $31.0\mu g/m^3$ , which is predicted at receptor DR07 and therefore no mitigation is required.

Due to the small predicted changes in traffic from the redevelopment of the site, the development will have an imperceptible change on local NO<sub>2</sub> annual mean concentrations at the existing sensitive receptors.

As the dispersion of air pollution generated by vehicle traffic improves with elevation above ground level and because exceedances were not identified on the second to fifth floors, exceedances of the NO<sub>2</sub> annual mean NAQO would also not occur on any of the floors above.

#### 5.7. NO<sub>2</sub> 1-hour Exposure Assessment

According to guidance, there is only a risk that the NO<sub>2</sub> 1-hour objective  $(200\mu g/m^3)$  could be exceeded if the annual mean NO<sub>2</sub> concentration is greater than  $60\mu g/m^3$ . At the development site, the worst case annual mean predicted is  $31.1\mu g/m^3$ ; therefore hourly exceedances would not be expected

| Receptor<br>Locations | Receptor<br>ID | Air Quality<br>Objective<br>Level µg/m <sup>3</sup> | Total NO₂<br>Roads<br>μg/m³ | Total NO₂<br>Roads + CHP<br>μg/m³ |
|-----------------------|----------------|-----------------------------------------------------|-----------------------------|-----------------------------------|
|                       | DR01           | 40                                                  | 26.9                        | 28.2                              |
|                       | DR02           | 40                                                  | 26.9                        | 28.8                              |
| Lower                 | DR03           | 40                                                  | 26.9                        | 28.2                              |
| Floor                 | DR04           | 40                                                  | 26.6                        | 26.7                              |
|                       | DR05           | 40                                                  | 26.6                        | 26.9                              |
|                       | DR06           | 40                                                  | 26.7                        | 27.2                              |
|                       | DR07           | 40                                                  | 28.2                        | 28.3                              |
|                       | DR08           | 40                                                  | 27.2                        | 27.6                              |
| Ground<br>Floor       | DR09           | 40                                                  | 26.6                        | 26.7                              |
|                       | DR10           | 40                                                  | 26.6                        | 26.9                              |
|                       | DR11           | 40                                                  | 27.4                        | 27.6                              |
|                       | DR12           | 40                                                  | 28.0                        | 28.1                              |
|                       | DR13           | 40                                                  | 31.0                        | 31.1                              |
|                       | DR14           | 40                                                  | 28.1                        | 28.2                              |
| First Floor           | DR15           | 40                                                  | 27.2                        | 27.6                              |
|                       | DR16           | 40                                                  | 26.6                        | 26.7                              |
|                       | DR17           | 40                                                  | 26.6                        | 26.9                              |
|                       | DR18           | 40                                                  | 27.4                        | 27.6                              |
|                       | DR19           | 40                                                  | 28.1                        | 28.2                              |

 Table 5.3: Predicted NO2 Concentrations – Development site 2020

01.06.2016

Page | 27

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

Reading Office Tel: 0118 971 0000 Fax: 0118 971 2272 Brighton Office Tel: 01273 573 814



|             | DR20 | 40 | 30.0 | 30.1 |
|-------------|------|----|------|------|
|             | DR21 | 40 | 30.0 | 30.1 |
|             | DR22 | 40 | 27.9 | 28.0 |
| Second      | DR23 | 40 | 27.1 | 27.4 |
| Floor       | DR24 | 40 | 26.6 | 26.7 |
|             | DR25 | 40 | 26.5 | 26.8 |
|             | DR26 | 40 | 27.3 | 27.4 |
|             | DR27 | 40 | 27.9 | 28.0 |
|             | DR28 | 40 | 28.3 | 28.4 |
|             | DR29 | 40 | 28.3 | 28.4 |
|             | DR30 | 40 | 27.1 | 27.3 |
| Third Floor | DR31 | 40 | 26.5 | 26.6 |
|             | DR32 | 40 | 26.5 | 26.9 |
|             | DR33 | 40 | 27.0 | 27.4 |
|             | DR34 | 40 | 27.7 | 27.8 |
|             | DR35 | 40 | 27.4 | 27.5 |
|             | DR36 | 40 | 27.4 | 27.5 |
|             | DR37 | 40 | 27.0 | 27.2 |
| Fourth      | DR38 | 40 | 26.5 | 26.7 |
| FIOUI       | DR39 | 40 | 26.5 | 26.9 |
|             | DR40 | 40 | 26.9 | 27.0 |
|             | DR41 | 40 | 27.5 | 27.6 |
|             | DR42 | 40 | 26.9 | 27.0 |
|             | DR43 | 40 | 26.9 | 27.0 |
|             | DR44 | 40 | 26.9 | 27.4 |
| Fifth Floor | DR45 | 40 | 26.5 | 26.8 |
|             | DR46 | 40 | 26.5 | 27.0 |
|             | DR47 | 40 | 26.9 | 27.5 |
|             | DR48 | 40 | 27.1 | 27.3 |

## 5.8. Annual Mean NO<sub>2</sub> Concentrations – Existing Receptors

Based on the modelling undertaken the maximum increase in NO<sub>2</sub> concentrations at the sensitive receptors in close proximity to the development site is  $0.5\mu g/m^3$  (ER04 and ER05) (identified in **Table 5.4**). According to the EPUK & IAQM Guidance, this would fall within 2-5% of the AQAL (1.5% would be rounded up to 2%, the nearest whole value).

At the worst case receptor (ER04) the annual predicted NO<sub>2</sub> pollutant concentrations would be within the 76% and 94% band of the AQAL and therefore the impact of CHP plant and boilers on the worst case closest sensitive receptor would be "slight".

```
01.06.2016
```

Page | 28



| Receptor<br>ID | Air Quality<br>Objective<br>Level μg/m <sup>3</sup> | Total NO₂<br>without CHP<br>(μg/m³) | Total NO₂ with CHP<br>development<br>(μg/m³) | Total NO <sub>2</sub><br>Change<br>(μg/m <sup>3</sup> ) |
|----------------|-----------------------------------------------------|-------------------------------------|----------------------------------------------|---------------------------------------------------------|
| ER01           | 40                                                  | 34.8                                | 34.9                                         | 0.1                                                     |
| ER02           | 40                                                  | 33.8                                | 33.9                                         | 0.1                                                     |
| ER03           | 40                                                  | 27.1                                | 27.4                                         | 0.3                                                     |
| ER04           | 40                                                  | 26.7                                | 27.2                                         | 0.5                                                     |
| ER05           | 40                                                  | 26.6                                | 27.1                                         | 0.5                                                     |

|                          | • • •           |                |                     |
|--------------------------|-----------------|----------------|---------------------|
| l able 5.4: Predicted NO | Concentration - | · Impacts from | development in 2020 |

#### 5.9. Annual Mean PM<sub>10</sub> Concentrations

The highest predicted annual  $PM_{10}$  concentration at the site is  $21.1\mu g/m^3$ . The pollutant concentrations in **Table 5.3** have been compared to the annual mean limit value for  $PM_{10}$  and it is apparent that the concentrations at the site are significantly below the Objective Level.

The number of days exceeding the  $50\mu g/m^3$  limit is below the 35 days Objective identified in the NAQO at the modelled receptor locations. Accordingly, it is considered that PM<sub>10</sub> in 2020 will not be a constraint on the development of the site, and that no mitigation measures are necessary to protect the future residential occupants from exceedances of PM<sub>10</sub>.

#### 5.10. PM<sub>10</sub> 24-hour Exposure Assessment

There are no exceedances of  $32\mu g/m^3$  as an annual mean PM<sub>10</sub> predicted concentration; therefore exceedances of the 24-hour mean objective are unlikely with the implementation of the proposed development.

| Receptor<br>Locations    | Receptor<br>ID | Air Quality Objective<br>Level µg/m <sup>3</sup> | Total PM <sub>10</sub> Do-Something<br>μg/m³ (Days >50 μg/m³) <sup>8</sup> |
|--------------------------|----------------|--------------------------------------------------|----------------------------------------------------------------------------|
| Lower<br>Ground<br>Floor | DR01           | 40                                               | 20.8 (4)                                                                   |
|                          | DR02           | 40                                               | 20.7 (4)                                                                   |
|                          | DR03           | 40                                               | 20.7 (4)                                                                   |
|                          | DR04           | 40                                               | 20.7 (4)                                                                   |
|                          | DR05           | 40                                               | 20.7 (4)                                                                   |
|                          | DR06           | 40                                               | 20.7 (4)                                                                   |
| Ground<br>Floor          | DR07           | 40                                               | 20.8 (5)                                                                   |
|                          | DR08           | 40                                               | 20.7 (4)                                                                   |
|                          | DR09           | 40                                               | 20.7 (4)                                                                   |
|                          | DR10           | 40                                               | 20.7 (4)                                                                   |
|                          | DR11           | 40                                               | 20.8 (4)                                                                   |
|                          | DR12           | 40                                               | 20.8 (4)                                                                   |

#### Table 5.5: Predicted PM<sub>10</sub> Concentrations 2020

<sup>8</sup> Not to be exceeded more than 35 times a year

01.06.2016

Page | 29

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

Reading Office Tel: 0118 971 0000 Fax: 0118 971 2272 Brighton Office Tel: 01273 573 814



| First Floor | DR13 | 40 | 21.1 (5) |
|-------------|------|----|----------|
|             | DR14 | 40 | 20.8 (5) |
|             | DR15 | 40 | 20.7 (4) |
|             | DR16 | 40 | 20.7 (4) |
|             | DR17 | 40 | 20.7 (4) |
|             | DR18 | 40 | 20.8 (4) |
|             | DR19 | 40 | 20.8 (4) |
|             | DR20 | 40 | 21.0 (5) |
|             | DR21 | 40 | 21.0 (5) |
|             | DR22 | 40 | 20.8 (4) |
| Second      | DR23 | 40 | 20.7 (4) |
| Floor       | DR24 | 40 | 20.7 (4) |
|             | DR25 | 40 | 20.7 (4) |
|             | DR26 | 40 | 20.8 (4) |
|             | DR27 | 40 | 20.8 (4) |
|             | DR28 | 40 | 20.9 (5) |
|             | DR29 | 40 | 20.9 (5) |
|             | DR30 | 40 | 20.7 (4) |
| Third Floor | DR31 | 40 | 20.7 (4) |
|             | DR32 | 40 | 20.7 (4) |
|             | DR33 | 40 | 20.7 (4) |
|             | DR34 | 40 | 20.8 (4) |
|             | DR35 | 40 | 20.8 (4) |
|             | DR36 | 40 | 20.8 (4) |
|             | DR37 | 40 | 20.7 (4) |
| Fourth      | DR38 | 40 | 20.7 (4) |
| FIUUI       | DR39 | 40 | 20.7 (4) |
|             | DR40 | 40 | 20.7 (4) |
|             | DR41 | 40 | 20.8 (4) |
| Fifth Floor | DR42 | 40 | 20.7 (4) |
|             | DR43 | 40 | 20.7 (4) |
|             | DR44 | 40 | 20.7 (4) |
|             | DR45 | 40 | 20.7 (4) |
|             | DR46 | 40 | 20.7 (4) |
|             | DR47 | 40 | 20.7 (4) |
|             | DR48 | 40 | 20.7 (4) |



#### 5.11. Annual Mean PM<sub>2.5</sub> Concentrations

The pollutant concentrations in **Table 5.4** have been compared to the annual mean limit value for  $PM_{2.5}$  and it is apparent that the concentrations at the site are well below the Objective Level. In terms of the development receptors, a maximum concentration of 14.6µg/m<sup>3</sup> was calculated using the  $PM_{10}$  predicted concentration and the ratio between  $PM_{10}$  and  $PM_{2.5}$ . Accordingly,  $PM_{2.5}$  in 2020 will not be a constraint on the development of the site, and no mitigation measures are necessary to protect the future residential occupants from exceedances of  $PM_{2.5}$ .

| Receptor<br>Locations | Receptor<br>ID | Air Quality Objective<br>Level µg/m <sup>3</sup> | Total PM <sub>2.5</sub> Do-<br>Something μg/m <sup>3</sup> |
|-----------------------|----------------|--------------------------------------------------|------------------------------------------------------------|
|                       | DR01           | 25                                               | 14.3                                                       |
|                       | DR02           | 25                                               | 14.3                                                       |
| Lower                 | DR03           | 25                                               | 14.3                                                       |
| Floor                 | DR04           | 25                                               | 14.3                                                       |
|                       | DR05           | 25                                               | 14.3                                                       |
|                       | DR06           | 25                                               | 14.3                                                       |
|                       | DR07           | 25                                               | 14.4                                                       |
|                       | DR08           | 25                                               | 14.3                                                       |
| Ground                | DR09           | 25                                               | 14.3                                                       |
| Floor                 | DR10           | 25                                               | 14.3                                                       |
|                       | DR11           | 25                                               | 14.3                                                       |
|                       | DR12           | 25                                               | 14.4                                                       |
|                       | DR13           | 25                                               | 14.6                                                       |
|                       | DR14           | 25                                               | 14.4                                                       |
|                       | DR15           | 25                                               | 14.3                                                       |
| First Floor           | DR16           | 25                                               | 14.3                                                       |
|                       | DR17           | 25                                               | 14.3                                                       |
|                       | DR18           | 25                                               | 14.3                                                       |
|                       | DR19           | 25                                               | 14.4                                                       |
|                       | DR20           | 25                                               | 14.5                                                       |
| Second<br>Floor       | DR21           | 25                                               | 14.5                                                       |
|                       | DR22           | 25                                               | 14.4                                                       |
|                       | DR23           | 25                                               | 14.3                                                       |
|                       | DR24           | 25                                               | 14.3                                                       |
|                       | DR25           | 25                                               | 14.3                                                       |
|                       | DR26           | 25                                               | 14.3                                                       |
|                       | DR27           | 25                                               | 14.4                                                       |
| Third Floor           | DR28           | 25                                               | 14.4                                                       |

#### Table 5.6: Predicted PM<sub>2.5</sub> Concentrations 2020

01.06.2016

Page | 31

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

Reading Office Tel: 0118 971 0000 Fax: 0118 971 2272 Brighton Office Tel: 01273 573 814



|                 | DR29 | 25 | 14.4 |
|-----------------|------|----|------|
|                 | DR30 | 25 | 14.3 |
|                 | DR31 | 25 | 14.3 |
|                 | DR32 | 25 | 14.3 |
|                 | DR33 | 25 | 14.3 |
|                 | DR34 | 25 | 14.4 |
|                 | DR35 | 25 | 14.3 |
|                 | DR36 | 25 | 14.3 |
| Fourth<br>Floor | DR37 | 25 | 14.3 |
|                 | DR38 | 25 | 14.3 |
|                 | DR39 | 25 | 14.3 |
|                 | DR40 | 25 | 14.3 |
|                 | DR41 | 25 | 14.3 |
| Fifth Floor     | DR42 | 25 | 14.3 |
|                 | DR43 | 25 | 14.3 |
|                 | DR44 | 25 | 14.3 |
|                 | DR45 | 25 | 14.3 |
|                 | DR46 | 25 | 14.3 |
|                 | DR47 | 25 | 14.3 |
|                 | DR48 | 25 | 14.3 |



## 6. MITIGATION

#### 6.1. Construction Phase

There are a number of Best Practice mitigation measures that can be used by contractors to ensure that the impacts experienced in close proximity to the construction site are minimal. These include:

- Effective site planning:
  - On site boundary, display name of site air quality manager for the site, and contact details for head office;
  - Compile a risk-based Dust Management Plan and get approval by LBC;
  - Record details of all dust and air quality complaints made and of all significant air quality incidents. Make complaints log available to LBC upon request;
  - Erect solid barriers around the site boundary or dust-generating activities being undertaken for an extensive period;
  - Remove dust generating activities from site and cover or screen potentially dusty objects (e.g. stockpiles, goods coming into site);
  - Use mains powered generators and switch off vehicles when idle;
  - Employ dust suppression or minimisation techniques during site operations and ensure dust suppression equipment is accessible; and,
  - Minimise drop heights from conveyors and loading shovels, etc.
- Demolition measures:
  - Ensure water suppression mechanisms in place during demolition works;
  - Avoid explosive blasting; and,
  - Soft strip buildings and/or dampen materials before demolition takes place.

If Best Practice mitigation techniques are implemented, it is considered that the potentially significant impact from the construction phase would be negligible.

#### 6.2. Operation Phase

There are no predicted exceedences of any of the pollutants on the proposed development and therefore mitigation will not be required.

Email: enquiry@accon-uk.com •www.accon-uk.com



# 7. **RESIDUAL EFFECTS**

## 7.1. Construction Impacts on Local Air Quality

The implementation of Best Practice mitigation techniques will ensure the formation of dust and harmful emissions from the construction site are minimised as much as practicable. As such, the likely significant impact from the construction phase will reduce to negligible with the implementation of Best Practice mitigation.

## 7.2. Operation Impacts on Local Air Quality

Due to the very small increase in traffic movements as a result of the development, there will not be any significant impacts on air quality

The worst case impact of the CHP and boilers on two local sensitive receptors to the north of the site will be "slight", and there will be no exceedences of the AQAL and therefore the impact is not considered to be significant.



# 8. CONCLUSIONS

During the construction phase, the estimated magnitude of impacts associated with the proposed development, assuming the mitigation measures recommended in **Section 6.1** are implemented, is negligible.

In terms of the operation phase, BREEZE Roads calculations have predicted that annual mean concentrations of NO<sub>2</sub>,  $PM_{10}$  and  $PM_{2.5}$  will not exceed the NAQO's. As a result, the development of this site should not be constrained in any way by air quality.

Additionally, as there will not be any significant vehicle movements associated with the development, traffic generation onto the local traffic network will have an insignificant impact on air quality for occupiers of existing local residential property. There will be a "slight" impact at two of the local sensitive existing receptors however this will not result in the exceedence of the AQAL.



Appendix 1 Glossary of Terms

01.06.2016

Page | 36

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

Reading Office Tel: 0118 971 0000 Fax: 0118 971 2272 Brighton Office Tel: 01273 573 814



# **Appendix 1: Glossary of Terms**

Air Quality Standard (AQS): The concentrations of pollutants in the atmosphere, which can broadly be taken to achieve a certain level of environmental quality. The standards are based on assessment of the effects of each pollutant on human health including the effects on sensitive sub groups.

**Air Quality Management Area (AQMA):** An area that a local authority has designated for action, based upon predicted exceedances of Air Quality Objectives.

**Benzene:** A VOC which is a minor constituent of petrol. The main sources of benzene in the atmosphere in Europe are the distribution and combustion of petrol. Of these, combustion by petrol vehicles is the single biggest source (70% of total emissions).

**Calendar Year:** The average of the concentrations measured for each pollutant for one year. In the case of the AQS this is for a calendar year.

**Concentration:** The amount of a (polluting) substance in a volume (of air), typically expressed as a mass of pollutant per unit volume of air (for example, micrograms per cubic metre,  $\mu g/m^3$ ) or a volume of gaseous pollutant per unit volume of air (parts per million, ppm).

**Exceedance:** A period of time where the concentration of a pollutant is greater than the appropriate Air Quality Objective.

**Nitrogen Oxides:** Nitric oxide (NO) is mainly derived from road transport emissions and other combustion processes such as the electricity supply industry. NO is not considered to be harmful to health. However, once released to the atmosphere, NO is usually very rapidly oxidised to nitrogen dioxide (NO<sub>2</sub>), which is harmful to health. NO<sub>2</sub> and NO are both oxides of nitrogen and together are referred to as nitrogen oxides (NO<sub>x</sub>).

**Particulate Matter:** Fine Particles are composed of a wide range of materials arising from a variety of sources including combustion sources (mainly road traffic), and coarse particles, suspended soils and dust from construction work. Particles are measured in a number of different size fractions according to their mean aerodynamic diameter. Most monitoring is currently focused on  $PM_{10}$  (less than 10 microns in aero-dynamic diameter), but the finer fractions such as  $PM_{2.5}$  (less than 2.5 microns in aero-dynamic diameter) is becoming of increasing interest in terms of health effects.

 $\mu$ g/m<sup>3</sup> micrograms per cubic metre of air: A measure of concentration in terms of mass per unit volume. A concentration of 1  $\mu$ g/m<sup>3</sup> means that one cubic metre of air contains one microgram (millionth of a gram) of pollutant.

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH



# Appendix 2 Site Location with Existing Receptors

01.06.2016

Page | 38

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

Reading Office Tel: 0118 971 0000 Fax: 0118 971 2272 Brighton Office Tel: 01273 573 814 A2 Dominion Development Limited 156 West End Lane, West Hampstead Air Quality Assessment Status: Final



# Appendix 2: Site Location Plan with Existing Receptors



01.06.2016

Page | 39

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

 Reading Office
 Tel:
 0118
 971
 0000
 Fax:
 0118
 971
 2272

 Brighton Office
 Tel:
 01273
 573
 814



# Appendix 3 Proposed Plans with Development Receptors

01.06.2016

Page | 40

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

Reading Office Tel: 0118 971 0000 Fax: 0118 971 2272 Brighton Office Tel: 01273 573 814 A2 Dominion Development Limited 156 West End Lane, West Hampstead Air Quality Assessment Status: Final





# **Appendix 3: Lower Ground Floor Site Plan with Development Receptor Locations**

01.06.2016

Page | 41

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

 Reading Office
 Tel: 0118
 971
 0000
 Fax: 0118
 971
 2272

 Brighton Office
 Tel: 01273
 573
 814



# **Appendix 3: Ground Floor Site Plan with Development Receptor Locations**



Page | 42 Email: enquiry@accon-uk.com •www.accon-uk.com

Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

 Reading Office
 Tel:
 0118
 971
 0000
 Fax:
 0118
 971
 2272

 Brighton Office
 Tel:
 01273
 573
 814



## **Appendix 3: First Floor Site Plan with Development Receptor Locations**



01.06.2016

Page | 43

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

 Reading Office
 Tel: 0118
 971
 0000
 Fax: 0118
 971
 2272

 Brighton Office
 Tel: 01273
 573
 814



# **Appendix 3: Second Floor Site Plan with Development Receptor Locations**



01.06.2016

Page | 44

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

 Reading Office
 Tel:
 0118
 971
 0000
 Fax:
 0118
 971
 2272

 Brighton Office
 Tel:
 01273
 573
 814



## Appendix 3: Third, and Fourth Floor Site Plans with Development Receptor Locations



01.06.2016

Page | 45

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

 Reading Office
 Tel: 0118
 971
 0000
 Fax: 0118
 971
 2272

 Brighton Office
 Tel: 01273
 573
 814



#### **DR42 DR48** LEGEND **Development Receptors** ۲ DR42 – DR48 = Fifth Floor **DR47** 40 ml Plot E5.01 294P - P8 84.33 m<sup>2</sup> Type PW **DR46** Service riser ACV 13 m Core 3 284P - P2 Bedroon 11 m 76.68 m<sup>2</sup> 30.0 Type PX **DR43 DR45** DR4 Design MR 16.05.2016 Description: Client: Fifth Floor Site Plan with A2 Dominion Development Limited 16.05.2016 **Development Receptor Locations** Drawn MR 16.05.2016 MR Checked Appendix 3 Project: Description: FINAL Rev: 156 West End Lane, West А GP Hampstead 16.05.2016 Scale Not to Scale Approved

## **Appendix 3: Fifth Floor Site Plan with Development Receptor Locations**

01.06.2016

Page | 46

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

 Reading Office
 Tel: 0118
 971
 0000
 Fax: 0118
 971
 2272

 Brighton Office
 Tel: 01273
 573
 814



# Appendix 4 Air Quality Standards

01.06.2016

Page | 47

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

Reading Office Tel: 0118 971 0000 Fax: 0118 971 2272 Brighton Office Tel: 01273 573 814



# **Appendix 4: Air Quality Standards**

| Pollutant                      | Averaging Period                     | Limit Value                                                            | Margin of Tolerance |
|--------------------------------|--------------------------------------|------------------------------------------------------------------------|---------------------|
| Benzene                        | Calendar Year                        | 5µg/m3                                                                 |                     |
| Carbon<br>Monoxide             | Maximum daily<br>running 8 Hour Mean | 10mg/m3                                                                |                     |
| Lead                           | Calendar Year                        | 0.5µg/m3                                                               | 100%                |
| Nitrogen<br>Dioxide            | One Hour                             | 200µg/m3<br>Not to be exceeded more than<br>18 times per year          |                     |
|                                | Calendar Year                        | 40µg/m3                                                                |                     |
| Particles (PM <sub>10</sub> )  | One day                              | 50µg/m3<br>Not to be exceeded more than<br>35 times per year           | 50%                 |
|                                | Calendar Year                        | 40µg/m3                                                                | 20%                 |
| Particles (PM <sub>2.5</sub> ) | Calendar Year                        | 25µg/m3                                                                | 20%                 |
| Sulphur Dioxide                | One Hour                             | 350µg/m3<br>Not to be exceeded more than<br>24 times per calendar year | 150 µg/m3           |
|                                | One Day                              | 150μg/m3<br>Not to be exceeded more than<br>3 times per calendar year  |                     |

#### Notes:

µg/m3 - micrograms per cubic metre mg/m3 - milligrams per cubic metre



# Appendix 5 Northolt Meteorological Station Windrose

01.06.2016

Page | 49

Email: enquiry@accon-uk.com •www.accon-uk.com Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

 Reading Office
 Tel:
 0118
 971
 0000
 Fax:
 0118
 971
 2272

 Brighton Office
 Tel:
 01273
 573
 814

01.06.2016









Email: <u>enquiry@accon-uk.com</u>

Reading Office:

Tel: 0118 971 0000 Fax: 0118 971 2272 Unit B, Fronds Park, Frouds Lane, Aldermaston, Reading, RG7 4LH

Brighton Office:

Tel: 01273 573 814 Citibase, 95 Ditchling Road, Brighton, East Sussex, BN1 4ST

<u>www.accon-uk.com</u>