

12 Park Village West

Construction Method Statement

London

1-5 Offord St London N1 1DH Telephone 020 7700 6666

Norwich

2 Woolgate Court St Benedicts Street Norwich NR2 4AP Telephone 01603 628 074

Cambridge

47 – 51 Norfolk Street Cambridge CB1 2LD Telephone 01223 656 058

design@conisbee.co.uk www.conisbee.co.uk

Ref: 140627/M Tulloch BEng MEng

Approved: C Boydell BSc CEng MIStructE MICE

Date: 27 May 2016

Rev No: 1.2

Directors

Alan Conisbee BA BAI CEng MIStructE
Chris Boydell BSc CEng MIStructE MICE
Tim Attwood BSc CEng MIStructE
Bob Stagg BSc CEng FIStructE MICE
Tom Beaven BEng (Hons) CEng MIStructE
Allan Dunsmore BEng CEng MIStructE MICE
Richard Dobson MEng CEng MIStructE
Paul Hartfree HNC (Civils) MCIHT FGS

Associates

David Richards BEng (Hons) CEng MIStructE ACGI Gary Johns Terry Girdler BSc (Hons) Eng MSc CEng FICE MIStructE Conservation accredited engineer (CARE) Ben Heath BEng CEng MIStructE Keith Hirst BEng CEng MIStructE

Conisbee is a trading name of Alan Conisbee and Associates Limited Registered in England No. 3958459

1.0 INTRODUCTION & BRIEF

- 1.1 The purpose of this report is to consider the construction and condition of the existing buildings on the site of 12 Park Village West and consider how the proposed basement structure can be constructed safely without compromising the structural integrity of the existing buildings or those adjacent to the site.
- 1.2 The report is based on planning drawings produced by Collett Zarzycki Architects and a visual inspection of the building.
- 1.3 This report has been prepared to outline the proposed construction method with outline calculations and the related structural drawings and sections.

2.0 SITE INFORMATION

- 2.1 12 Park Village West, Camden is an early Victorian detached 'villa' style property, designed by office of John Nash and comprises a three storey house in an Italian style with a octagonal tower toward the road built in 1834-37. The house is Grade II Listed. The construction, typical for buildings of this era, has load bearing masonry walls and timber floors. The proposed development is structurally isolated from the main property.
- 2.2 The house lies within the generally gentle sloped setting toward Regents Canal. Although the areas to either side of no 12 are relatively flat, the site is divided into two levels: the front house and garage levelled with Park Village West road, and a lower ground level toward the garden facing Regents Canal area, with an approximately 3m difference in level.
- 2.3 The three surrounding properties: No. 11, 13-14 and 204 Albany Street are a reasonable distance from the proposed works; therefore the adjacent properties' foundations are outside the 45 degree line of influence taken from the bottom of the excavation.
- 2.4 The proposed basement development will be situation under the existing coach house. The construction consists of load bearing masonry walls, timber floor and a timber roof. A visual inspection of the site has indicated movement to the rear flank wall. A reinforced concrete box, with walls cast under the existing structure will allow the existing structure to be stabilised while creating useable living space.
- 2.5 A Basement Impact Assessment Screening and Scoping Report has been completed for the site and concludes that there are no negative impacts anticipated in this basement proposal on the hydro-geological and hydrological conditions of the local environment that cannot be suitably addressed in the detailed design of this proposal.

3.0 PROPOSED WORKS

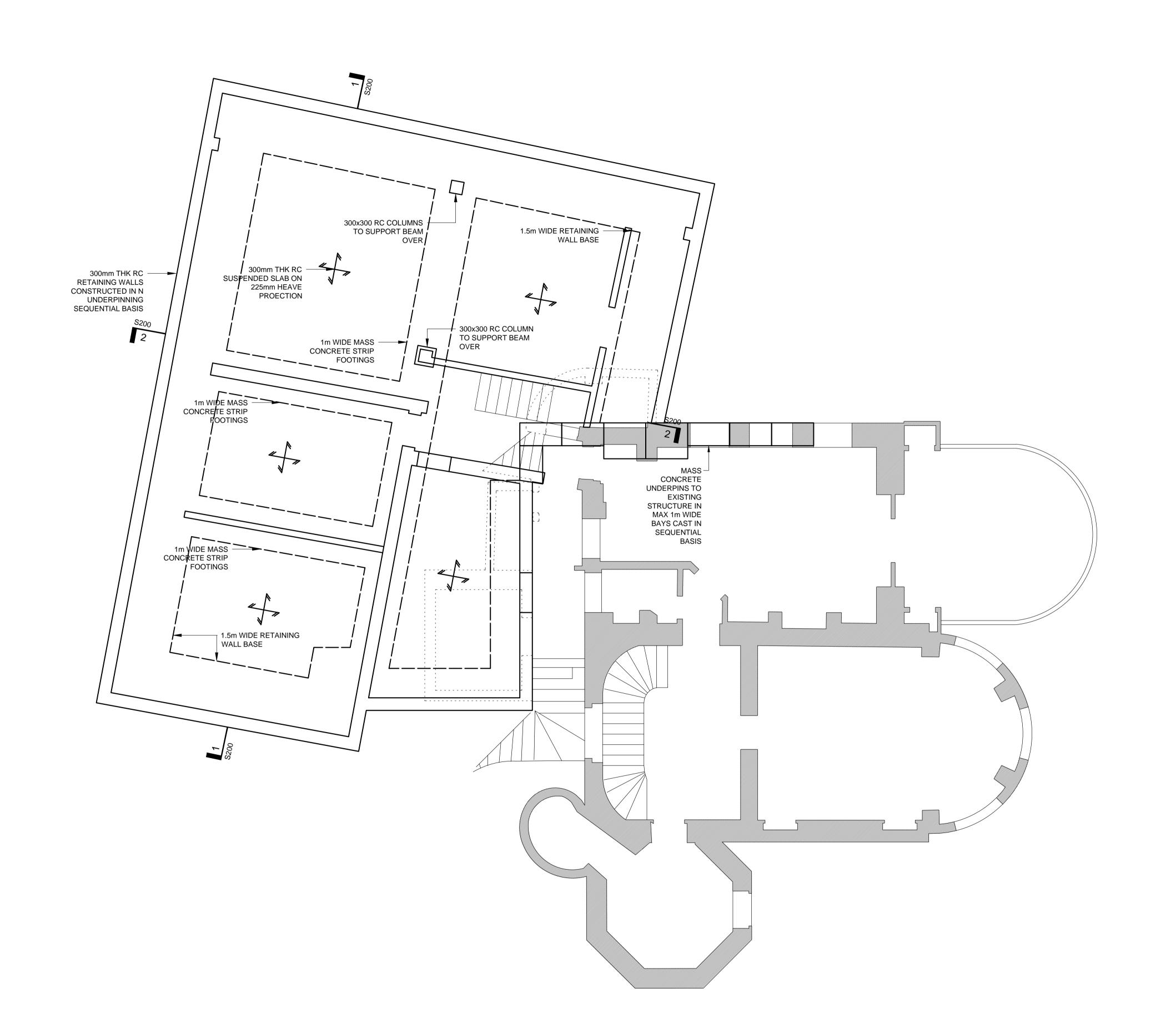
- 3.1 In outline the main proposed structural works consist of:
 - Supporting the existing structure in the temporary state to allow for excavations;
 - Reducing the existing ground level under the coach house by approximately 4.0m in order to provide a new basement structure;
 - The construction of new reinforced concrete "box" to form the basement.
- 3.2 A reinforced concrete retaining wall, which will be designed to act as simply supported, will provide the retaining structure. The basement slab will be designed for potential overburden pressures, resisted by self weight and the frictional resistance of the concrete "box" in the ground. The ground floor will consist of a reinforced concrete slab, supported on the retaining walls and acting as a prop to the top of the retaining wall.
- 3.3 Outline sketch proposals for the basement construction are shown in drawings S100, S101, S200 in Appendix A.
- 3.4 Outline structural calculations are included in Appendix B.

4.0 DESIGN & OUTLINE CONSTRUCTION METHOD STATEMENT

- 4.1 SSK001, in Appendix C, shows the stages of construction on a typical cross-section through the site as detailed in the method statement below. S099 shows the proposed temporary works required to support the existing structure during construction.
- 4.2 The retaining wall will be constructed in an underpinning type sequence to ensure the stability of the existing building is not compromised. The underpinning works should be carried out by a competent contractor, experienced with these types of operations and, preferably accredited with the Association of Specialist Underpinning Contractors (ASUC).
- 4.3 Phase 1 Locally break out existing slab and install Pynford beams under loading bearing walls. Install temporary piles to support Pynford beams. Demolition of the existing ground bearing slab once all temporary works are installed.
- 4.4 Phase 2 The first stage of underpinning is to be carried out in traditional 1.0m wide sections to minimise the risk of damage to the existing walls. The depth of the underpinning sections will be over 1.5m so temporary shoring should be used to ensure the stability of the excavations are maintained during the formation of the pins particularly where increased depths of made ground are encountered.

- 4.5 Each section of underpinning is to be tied to the adjacent section using either pre-fixed or post-fixed dowels and surfaces prepared to provide a shear key between each section. Hydrophilic water stops are to be applied to each joint before pouring of new sections to ensure water tightness is achieved.
- 4.6 Horizontal propping is to be installed before the ground level is fully reduced to the level required to undertake the second stage of underpinning.
- 4.7 Phase 3 The second stage of underpinning should be carried out in 1.0m bays similar to the first stage. Vertical bars from the first stage of underpinning should lap with reinforcement in the second stage pins in order to provide full continuity. As with the vertical joints hydrophilic are to be installed to the horizontal surface to prevent water ingress through the joints.
- 4.8 Horizontal propping is to be installed to the second stage pins in order to allow excavation to the base slab formation level.
- 4.9 Phase 4 Construction of basement slab. Reinforcement from the lower underpinning sections is to be fully continuous with that present in the base slab which can be achieved using mechanical couplers.
- 4.10 Phase 5 Construction of ground floor slab. Temporary propping can be removed once ground floor slab is fully cast and cured. Temporary piles to be broken down.

5.0 SUMMARY


The proposed development of 12 Park Village West is to construct a single storey basement under the existing coach house. The development allows for the stabilisation of the existing building, which is suffering from significant movement, while creating a useable living space.

The construction sequence indicated within this document allows for the basement to be constructed in a manner that is safe and economic considering the scale of the building.

The works to 12 Park Village West, although complicated, should not be unfamiliar to a competent and experienced groundwork contractor and are relatively modest.

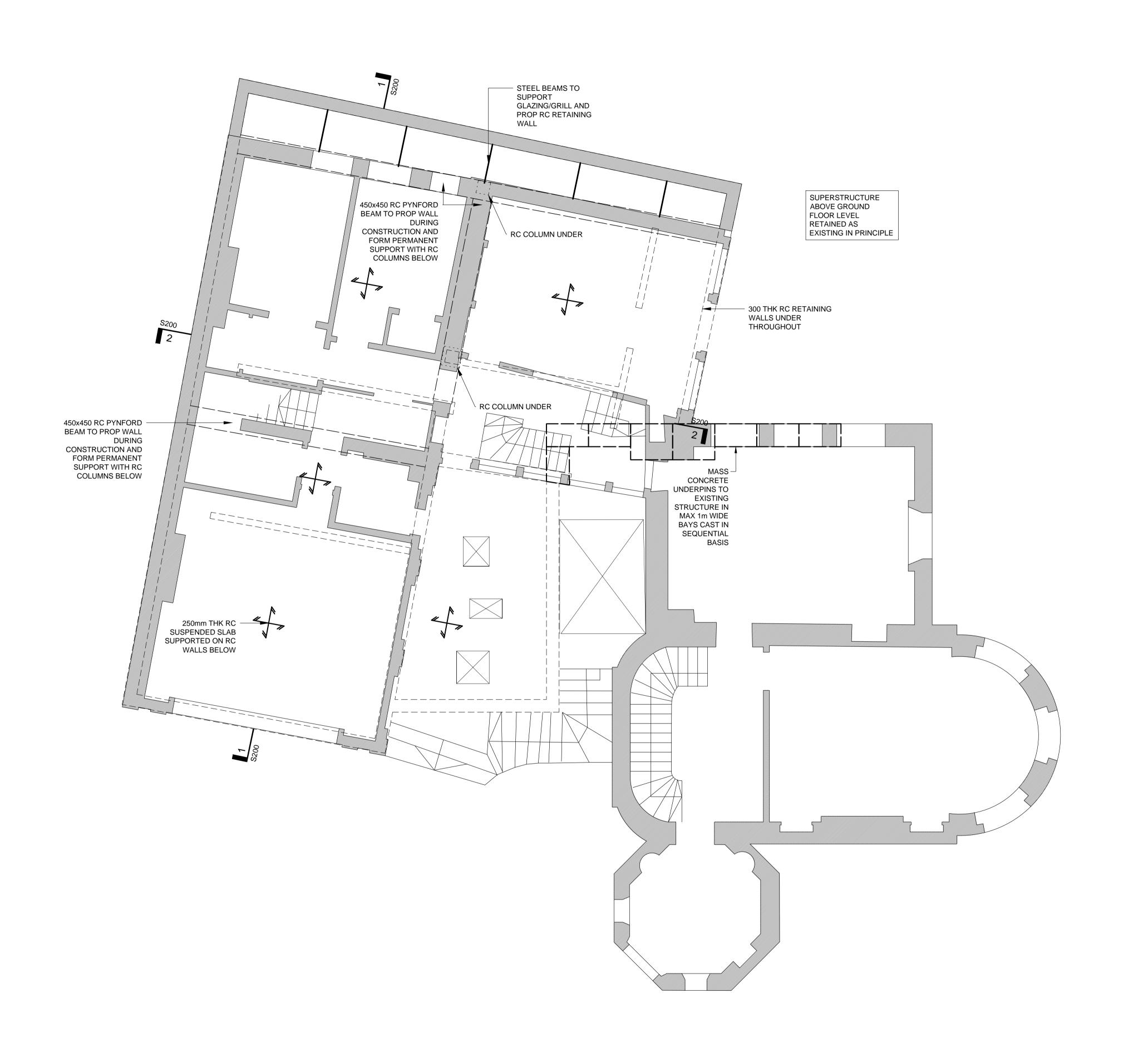
Appendix A – Structural Drawings and Sections

NOTES

GENERAL NOTES:

- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS, DRAINAGE AND SPECIALIST DRAWINGS AND SPECIFICATIONS.
- 2. THE CONTRACTOR IS TO ASCERTAIN THE LOCATION OF EXISTING SERVICES PRIOR TO COMMENCING WORKS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND INSTALLATION OF ALL TEMPORARY WORKS AND SHALL SEQUENCE THE WORKS SUCH THAT THE BUILDING REMAINS STABLE AT ALL TIMES.

NOT FOR CONSTRUCTION


P2	27.05.16	ISSUED FOR INFORMATION	MT	СВ
P1	14.08.15	ISSUED FOR INFORMATION	MT	СВ
Rev	Date	Description	Drawn	Che

London N1 1DH
Tel 020 7700 6666
Fax 020 7700 6686
design@conisbee.co.uk
www.conisbee.co.uk

Drawing Status	Date	AUG 1
PLANNING	Scale	1:50@ <i>P</i>
Project	Drawn	MT
2 PARK VILLAGE WEST	Engineer	· MT
ONDON	Project N	
itle	Drawing	No
BASEMENT PLAN	S100	0
	Revision	
	P2	

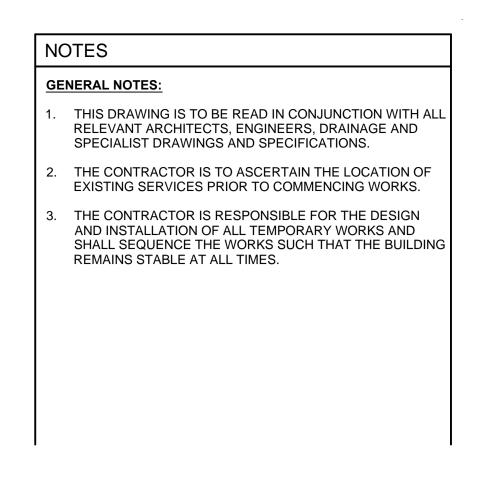
THIS DRAWING MUST BE READ IN CONJUNCTION WITH THE SPECIFICATION AND ALL OTHER RELEVANT DRAWINGS. DO NOT SCALE FROM THIS DRAWING.

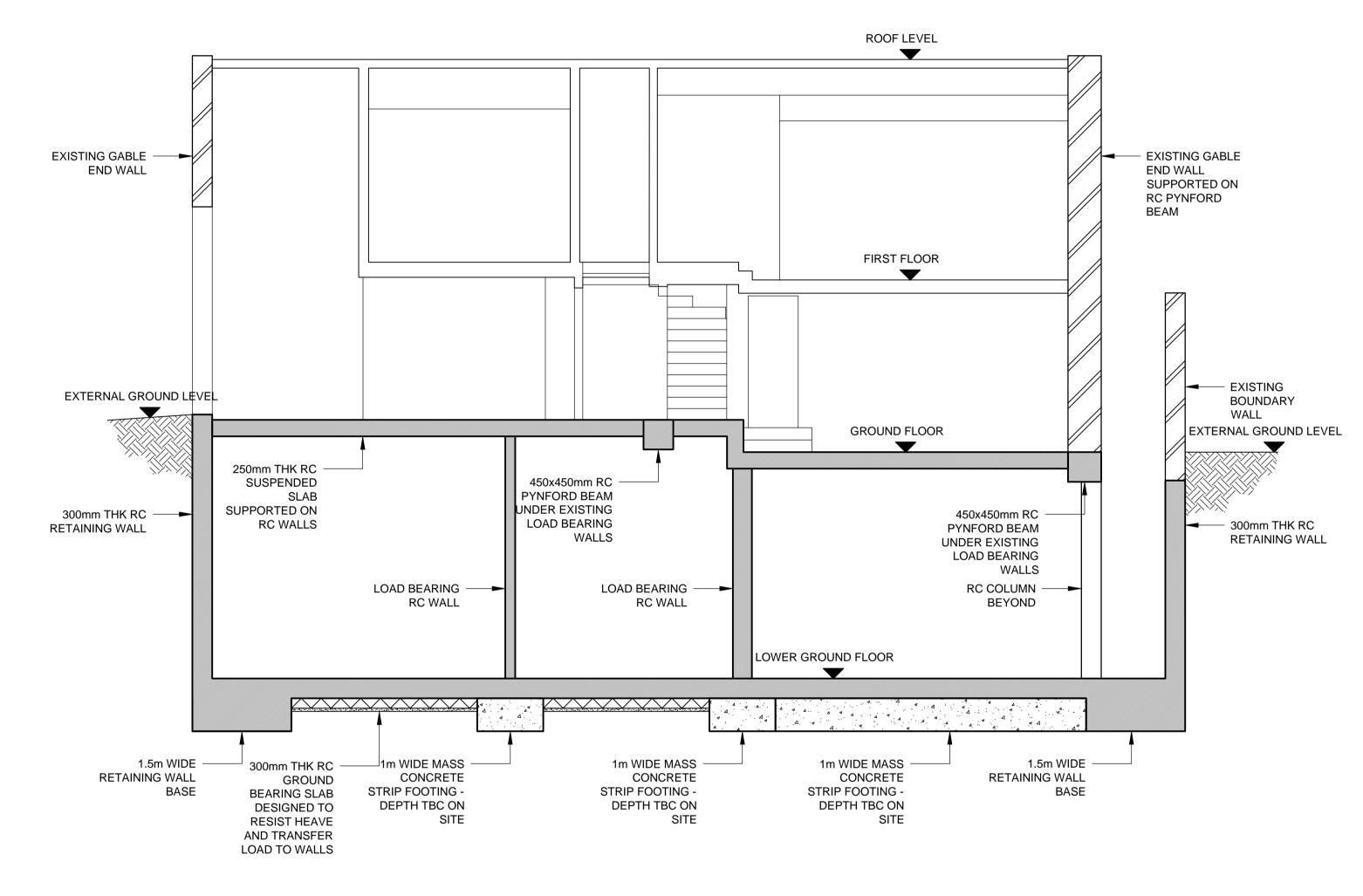
NOTES

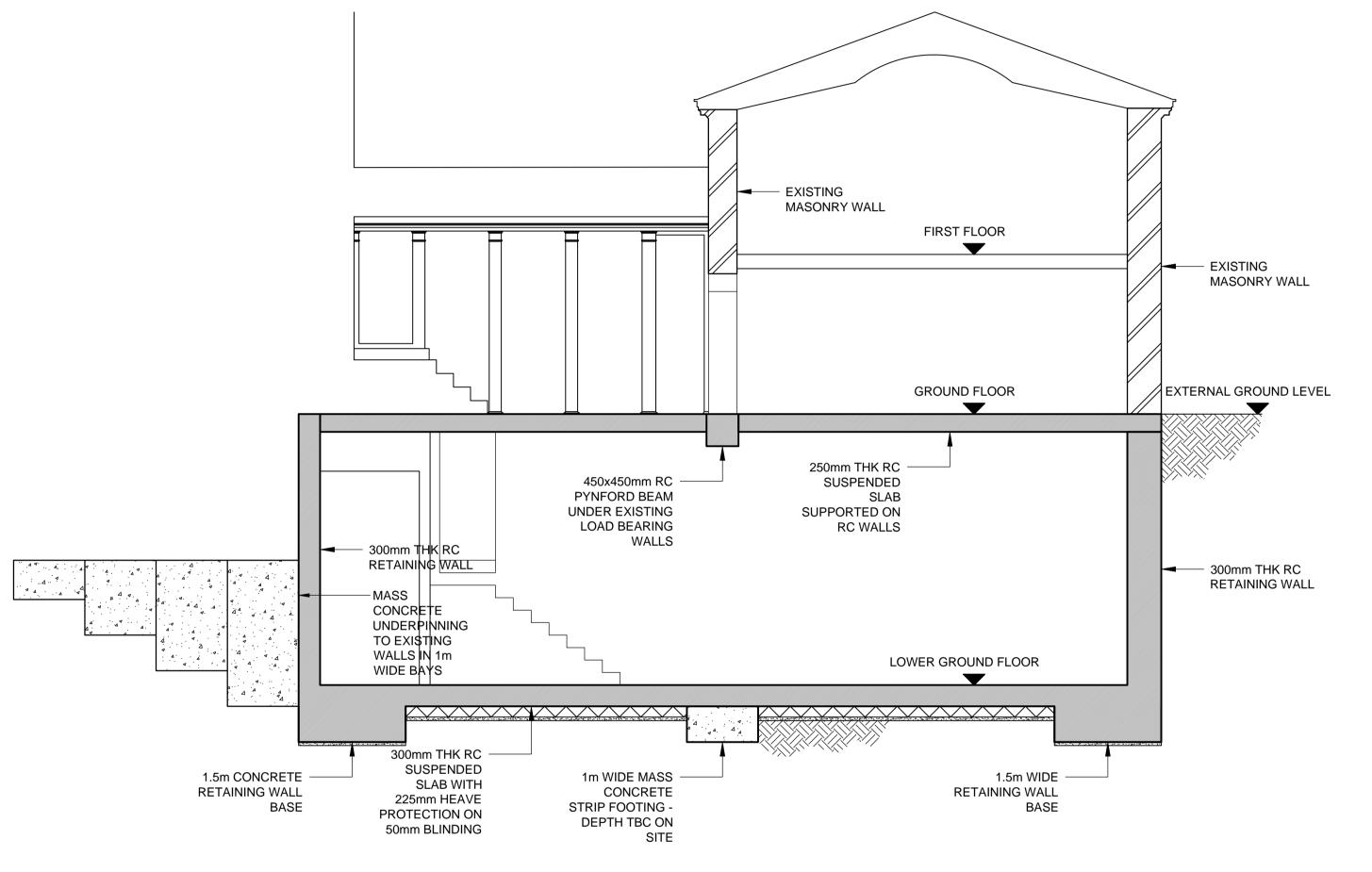
GENERAL NOTES:

- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS, DRAINAGE AND SPECIALIST DRAWINGS AND SPECIFICATIONS.
- 2. THE CONTRACTOR IS TO ASCERTAIN THE LOCATION OF EXISTING SERVICES PRIOR TO COMMENCING WORKS.
- THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND INSTALLATION OF ALL TEMPORARY WORKS AND SHALL SEQUENCE THE WORKS SUCH THAT THE BUILDING REMAINS STABLE AT ALL TIMES.

NOT FOR CONSTRUCTION


Rev Date	Dov
P1 14.08.15	P1
P2 27.05.16	P2




London N1 1DH
Tel 020 7700 6666
Fax 020 7700 6686
design@conisbee.co.uk
www.conisbee.co.uk

awing Status	Date	AUG 15
ANNING	Scale	1:50@A1
pject	Drawn	MT
PARK VILLAGE WEST	Engine	er MT
ONDON	Project 140	
e	Drawing	j No
ROUND FLOOR PLAN	S10	1
	Revisio	n
	P2	

THIS DRAWING MUST BE READ IN CONJUNCTION WITH THE SPECIFICATION AND ALL OTHER RELEVANT DRAWINGS. DO NOT SCALE FROM THIS DRAWING.

SECTION 1-1

SCALE 1:50

SECTION 2-2

SCALE 1:50

NOT FOR CONSTRUCTION

P2	27.05.16	ISSUED FOR INFORMATION	MT	СВ
P1	14.08.15	ISSUED FOR INFORMATION	MT	СВ
Rev	Date	Description	Drawn	Check

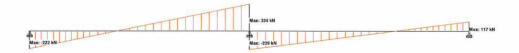
London N1 1DH
Tel 020 7700 6666
Fax 020 7700 6686
design@conisbee.co.uk
www.conisbee.co.uk

1-5 Offord St

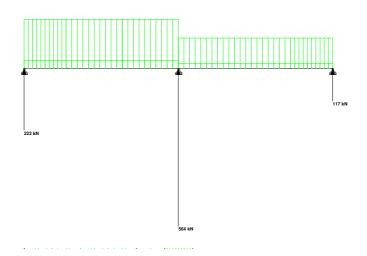
Drawing Status	Date AL	JG 15
PLANNING	Scale 1:50)@A1
Project	Drawn MT	
12 PARK VILLAGE WEST	Engineer MT	•
LONDON	Project No 140627	7
Title	Drawing No	
SECTION 1-1 & 2-2	S200	
	Revision	
	P2	

THIS DRAWING MUST BE READ IN CONJUNCTION WITH THE SPECIFICATION AND ALL OTHER RELEVANT DRAWINGS. DO NOT SCALE FROM THIS DRAWING.

Appendix B – Outline Structural Calculations


ondon • (elephone esign@co ww.conis	020 7 nisbe	700 6 e.co.u	666		ich				*		proj 12	· P	A	UL	U	ILL	AC	it	l	V.	8	Τ,				-	no. O (et no.	52	7
con	is	be	ee	Co	onsult	ing Str	uctura il Engi	l Engi neers	ineers		title		60	W)	d	SE	Ai	1	De	8	IC/	U				date engir chec			
date																													
																													L
				1,	1								W	2						· ·									
		_	~	Ů		~	_	M	~	~	\sim	_	~	_	~	~													
	Λ							1								1	\					1					8.		
	/							/																					
	7		ARCH PROPERTY.	5	-	^	,					1		M		1								П					
)	7									10.1															
ndin	0																	- 1									20		
	7											-												П					
WI:																											-		
1																			=										
doad	1	1.1		1			77		, (00	\ 1	, 1	1	3	9	39	. (1	\										
wal	1	Lyli				40	1	m	7	U	1	21	3.7	1			7	Ple	1	W	١.								
210 N	Ma	Mo	UN	٦. ٦	2.	my	- 6	11	a		2	-	1.1	Sn	1		7	les	711	M									
LM?		105	N	,	IW	~ [14	1) /i	n				_		1	a	MA	1							-		
100			Cu	1	4		w	In	1		40	B	2	(2		-	1	Ne	U	N	` (1			-					
bed	im	SI	U	-(3.1	E5	Lec).(65	7	<2	LF	6	Mr	1 5			(1)	16	6	ال	1						_	
																		6	_`[40	0	1	11	n					
live				-					Δ.	2									,	1		_							
Moso	5	1	- *	5h	~ {	1	-0	C	Mr	^	-					-		5	a	بال	n								
1			In		-	12	-0	10	U	m	1					ton.		2	L	1	M								
100		-	Zn	$\hat{\wedge}$	4	0	7	51	a)/v	ne	_				_	-	1	1	le)/	n	1						
						Į.												7	- 1	5	01	11	m						
W	=	101	1	1	NIN	\wedge																							
						-															i								
WZ:																													H
if i																													
dego	7 /	A \	- '	3	1	105	3	3		0	01	10	11.	40	2	-		19	1	> 1	01	VI	2 -4						
900	1		15	2	1	7,000	4	7	101	. 1		3,	(1)	77	CI		-	17	1		11.	Sh							
190	1	- 4	740	100	4	16		1.00	2	20	14/1			·	3 11	1	-	1			11	7							
200	1	SIN	1-	-	1	1	1	100			71	(1.	1		3			1		N) IV							+	
pla	W	2100) 4	-3/		hat	١	1	u	t le	N	w	12		-	-	3	10	7	01	M	1					
1							+												20	1	0(-10		IN	^			-	
live	,				7		1	2					-			_		1		(1				-					1
Klov	b -	m			10	Sler 35	1		1	Н								4	W	ال	m								
flor	1	0	m	1	0	47	Kr	In	1						Ц	-1		1	-2	1	W	m							
																		5	5		er	IIV	n					-	
A																											_	-	
WZ	- (4	11	d) [h																							
																						1							
																					-								
										Ш																			
																12/12/20													
																		B											
	1																												
									1															- 1					1

	Job No 140627	Sheet No	Rev
Software licensed to	Part PYNFORD BE	AM	
Job Title 12 PARK VILLAGE WEST	Ref		
	Ву	Date 12-08-15	Chd
Client	File pynford beam.	psa Date/Ti	me 13-Aug-2015 16:04


FACTORED BENDING MOMENT

	Job No 140627	Sheet No		Rev
Software licensed to	Part PYNFORD BE.	AM		
Job Title 12 PARK VILLAGE WEST	Ref			
	Ву	Date 12-08	-15 Chd	
Client	File pynford beam.	osa	Date/Time 13-A	ug-2015 16:04

FACTORED SHEAR FORCE

	Job No 140627	Sheet No		Rev
Software licensed to	Part PYNFORD BE	EAM		
Job Title 12 PARK VILLAGE WEST	Ref			
	Ву	Date 12-08	3-15 ^{Chd}	
Client	File pynford beam	.psa	Date/Time 13-A	ug-2015 17:12

BEAM REACTIONS

	Consul					ers Page	No.					Re	visio	 on					
conisbee	1 – 5 Oi Talapho	Ford St	Long	tion 111	1DH			N.4				Det	- -						
	Fax			700 56i		Engin	lee:	M	i 			Dat	е —						
	www.cc designi					Chec	ked					Dat	te						
Job No. 140627						Job	Title	1	2 Pa	rk Vil	lage	We	st						
Subject Pynford Bea	m					-													
																			\Box
Reinforced Concrete	Beam D	esign	1	_	+		-	_	\dashv	+		+	-	-	-				<u> </u>
Beam Reference			1				RC	Bear	 n					l			\dashv		
					\prod		T		Ï	T	T.				T		П		
Forces									Bea	am D	ime	nsio	ns						
Maximum Moment					M =	310	kNi	n	Dep	oth						450	,]	mn	n
Maximum Shear Force)				V =	334	kN		Wic	dth						450		mn	n_
									_ Ter	ıs. re	inft	cove	r			35		mn	<u></u>
Material Properties										np. r	einft	cove	er			35		mn	n_
Char. Strength tension	reinft				_f _y =	500		nm²	Spa	an						5.5		m	_
Char. Strength links					$f_{yv} =$	500	N/n	nm²											
Concrete strength					f _{cu} =	40	N/n	nm²											_
Compression and Te	nsion R	einfor	cen	nent															_
Effective Depth to tens	ion reinf	t	Ш		_d =	392.5	mm	۱ <u> </u>		\perp									Ĺ
Effective depth to com	pression	reinft			q ' =	57.5	mm	۱							ļ				
					_k =	0.112													Ĺ
Lever arm		<u> </u>			z =	335.5	mm	<u> </u>											Ĺ
					_x =	126.8	mr												Ĺ
Reduced char strength	1					Not required	d N/n	nm²	For	com	pres	sion	reir	nforce	me	nt o	nly		
			Ш																
Tension Reinforceme										<u>.</u>	1								
Tension reinforcement					A _s =	1946	mu												
Tension reinforcement	provided	k		A _{s p}	rov =	2454	mm	1 ²	Pro	vide		5	Н	25	s				L.
									Ter	rsior	rei	nfor	cen	ient c	k				
Compression reinfor							$\perp \perp \perp$												
Compression reinforce		•	1	l 1	4 _{s'} =		mr												
Compression reinforce	ment pro	ovided	i	A _s p	rov =	2454	mr	12	Pro	vide		5	Н	25	s				
									Co	mpre	ssi	on re	einft	t ok					
Shear reinforcement										_	_ _								
Design shear stress	<u> </u>				v =	1.89		nm²											
Concrete shear stress					v _c =	0.83		nm²					_						
Shear reinforcement					/ _{sv} =	252	mm		Pro	vide			Н	10	lin	ks			
Area of shear links				A _{sv p}		314	mn	1 ²		a	t 2	250	cen	itres					
									Sh	ear li	nks	ok				<u></u>			
Deflection																			
Basic span/effective de	epth ratio)				20													
Design service stress					f _s =	264	N/n	nm²						\perp					
Modification factor (ter						0.88									\perp				
Modification Factor (co			nft)	\perp		1.32									\perp				
Modified span/effective	•			\perp		23.2			$\perp \perp \perp$						\perp				
Actual span/effective of	epth rati	0				14.0			Spa	an/ei	fect	ive c	lept	th rati	io o	k			
							_												_
																		'	1

I

Lon Tele des www	epho ign w.c	one @c	e 0 con isb	120 nisb niee.	7' oee .cc	700 e.c. o.ul	0 6 o.u k	866 ik	66				ting	ı St	truc	tura Eng	al E	Engi	ine«	ers		ti	2 itle)	0		-		1									8	T					she	↓(no.	-	5	7.	_	
ev.	_	late			Т		_	_	_	_	_			_	_	-	_	_	-		_	Ł	_		Ť			_							1	_		_				_	_[che	cke	d				Ŧ	_
	+				+			1		_		_		Т			Т					-			1	=		+			+				+	-		_	ł			H	+			+	+			+	
Z)a	V	1		2	*	5	V	~					F			+											+																			-				
Ox	00	b	~	9)					-																																									
d	00	20	λ	:	,	7.1					a			ļ			_	_	2	part -					1		,				I																				
11	SIL	W)		10	1	26	S	11	N	16	2	51	V	N	1	1	7	1	h	1	M	1			(er	١١٨	1	1	'n											-							_	
1	N			3								V																																							_
V	8	il								٥	P	0-	Λ	0	-									4																											
o	lac					0	.	7	^	£.		2	W	-	1	e le	2	01	sle	1	5	n	3/	<	V	n			4		en	7	1/1	1																+	
		li:	V	e				7		8	~	^	7	_	4		- Tu	CI	51	N	^2	4			n		i e		•	5		6	le	U																	1
	P			8				e	~)) /				1	73		1 1							. ,			-					10			- 1										
	2	e h	00	a	5	4	5	,	1	1- J-	7.	- (V		12	1	8	1	PI	12	1		-	+		35	÷	4	5	1(0	+	7	2	5	-4	-	1,	_		7 L	5	9	es	J)h	_	-		+	
																			•6																							F				+					
																																								-									100		
		+			5													•										+																		-					
																									1																										
																	1					-									-										_										
																				+								+												=											
																																												15							
										-																																		-							
											-						+														_																				
				-	_												1					İ			1												Ī							-1					F		

conisbee

1-5 Offord Street London N1 1DH Telephone 020 7700 6666 design@conisbee.co.uk www.conisbee.co.uk

Consulting Structural Engineers Consulting Civil Engineers project

12 Park Village West London

Ground Floor Slab

140627

sheet no.

date

engineer checked

Material Properties

date

Concrete Self Weight = 24 kN/m³ Concrete Grade, f_{cu} = 40 N/mm² Reinforcement Strength, f_v = 500 N/mm²

Slab Properties

 Span =
 5.5 m

 Overall Depth, h =
 250 mm

 Bar Diameter =
 16 mm

 Link diameter =
 0 mm

 Cover =
 30 mm

 Effective depth, d =
 212 mm

Design Moment, M = 75 kNmUltimate Moment, M_u = 280 kNm

M < Mu therefore section adequate

Reinforcement

k = 0.0415 < 0.156 No compression steel required $z = 0.9500 \text{ d} \le 0.95 \text{d}$

 $A_{s reqd} = 852 \text{ mm}^2/\text{m}$

 $A_{s min} = 325$

Therefore provide 16 s @ 200 mm spacing

 $A_{s prov} = 1005 \text{ mm}^2/\text{m} > \text{As reqd, reinforcement is adequate}$

Steel content = 0.40% > 0.13 and < 4 %

 $A_{s' prov} = 393 \text{ mm}^2/\text{m}$

Deflection Check

basic I/d = 20 (Simply supported)

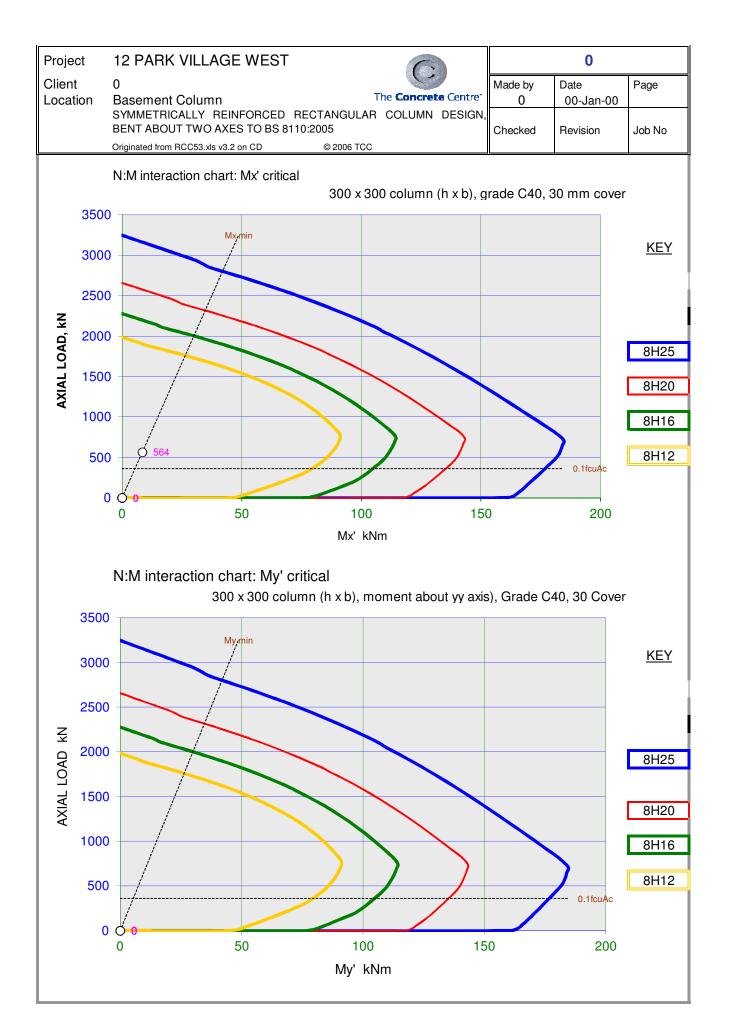
 $M / bd^2 = 1.660$

Design Service Stress, $f_s = 264.93 \text{ N/mm}^2$ Modification factor (t) = 1.24 \leq 2 Modification factor (c) = 1.06 \leq 1.5

Allowable I / d = 26.25 Actual I/d = 25.94 **OK**

Shear Check

V = 45 kN


Design Shear Stress, v = 0.212 N/mm² < 5N/mm² therefore beam size adequate

 $100A_s / b_v d = 0.474$

Design Concrete Shear Stress, 0.576 N/mm²

v < vc therefore shear links are not required</p>

Project	12 PARK	VILLAGE	WEST		4				
Client					(Made by	Date	Page
Location	Basement	Column			The Cond	crete Centre"			
		CALLY REINF DAXES TO B		CTANGULAR	COLUMN DE	SIGN, BENT		D	
		from RCC53.xls		@ 200	06 TCC		Checked	Revision	Job No
	Originated	TOTAL PROCESSION	VO.2 011 0D	<u> </u>				<u> </u>	
MATERIALS	3								
fcu	<u>40</u>	N/mm²	γm, steel	<u>1.15</u>	Co	over to link	<u>30</u>	mm	
fy		N/mm²	γm, conc	<u>1.5</u>		h agg	<u>20</u>	mm	
steel class	<u> </u>								
SECTION	200						_		
h b		mm mm			•	• •	1 		
with		bars per 300	face		X		X		
and		bars per 300				•		_	
	_	•			•	• •			
				7					
RESTRAINT		Тор	Btm			. , ,			
X-AXIS	Lo (mm)	Condition	Condition	Braced ?	ß 1	Le (mm)	Lex/h =	derness	Status
Y-AXIS	3800 3800	<u>3</u> 3	<u>3</u> 3	Y	1	3800 3800	Lex/n =		Column is SHORT
I-AXIS	<u>3000</u>	<u> </u>	<u> </u>		ı	3000	Ley/D =	12.07	SHORT
LOADCASE	S	AXIAL		TOP MOME	ENTS (kNm)		BTM MOM	ENTS (kNm)	1
		N (kN)		M ix	M iy		M ix	M iy	
<u>B1</u>	<u> </u>	<u>564</u>		<u>0.0</u>	<u>0.0</u>		0.0	<u>0.0</u>	
							0.0	<u>0.0</u>	
							0.0 0.0	0.0 0.0	
							0.0	<u>0.0</u> 0.0	
							0.0	0.0	
			I			1			1
BAR ARRAN			~		RES (mm)	N.L. /L-N.I\	I		
Bar □	ï I 40	Asc % 11.17	Link Ø 10	300 Face 90	300 Face 90	Nuz (kN)	۸۵۵	Checks	6.2)
	4 0 32	7.15	8	96	96	0		c > 6 % (3.12 c > 6 % (3.12	
	25	4.36	8	100	100	3245	7130	ok	.0.2)
	20	2.79	6	104	104	2656		ok	
н	16	1.79	6	106	106	2279		ok	
н	12	1.01	6	108	108	1985		ok	
DECION MA		V 4	VIC	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VIC	2014	DINIED	T	
DESIGN MC	MENTS (KI	X A M add	XIS Mx	M add	XIS My	Axis	BINED M'	REBAR	max V *
B1		0.0	8.5	0.0	0.0	X	8.5	8 H12	48.4
0				1.0					#DIV/0!
0									#DIV/0!
0									#DIV/0!
0 0									#DIV/0! #DIV/0!
	'	l	1	1	<u> </u>	<u> </u>	I	1	πυιν/υ:
		SE	E CHAR	TS ON NE	EXT SHE	ET			

London • Cambridge • Norwich Telephone 020 7700 6666 design@conisbee.co.uk www.conisbee.co.uk			project 12 PARK UILLIGE WEST						job no. 140627 sheet no.	
	Consulting Stru	RETAINING WALL.					е	date engineer checked		
date	9 =							3		
loading.	q-walm				X-=		levi	m ³		
(P3) (Pa)	la la	L+m.			lear		22			
			1	7						
Sal. C	epth (m)	Pres.	Dure	Ckul						
las.	4	10	¥ 0.4 + + (4	4 = 4 19.	4.4	4)+(4	7147	344)=5(.32
2 cordina			/ 1					-		
	(op & bat		(north	- tu	be p	Opped	r de	in	g Con	Spric
Vmax:	= 86.7 kg	J								
, , , ,	Cantleva									
Minax	= 89.9 W	Jm J								
								*		
-										

1-5 Offord Street London N1 1DH Telephone 020 7700 6666 design@conisbee.co.uk www.conisbee.co.uk

Consulting Structural Engineers Consulting Civil Engineers

project 12 Park Village West London

Retaining wall

propped top and bottom

140627

sheet no.

date

engineer checked

date **Material Properties**

24 kN/m³ Concrete Self Weight = 40 N/mm² Concrete Grade, f_{cu} = 500 N/mm² Reinforcement Strength, f_v =

Slab Properties

Span = 4 m

Overall Depth, h = 300 mm Bar Diameter = 16 mm Link diameter = 0 mm Cover = 30 mm Effective depth, d = 262 mm

Design Moment, M = 87 kNm Ultimate Moment, M, = 428 kNm

M < Mu therefore section adequate

Reinforcement

0.0316 < 0.156 No compression steel required k =

 $0.9500 d \le 0.95d$ z =801 mm²/m $A_{s read} =$

390 $A_{s min} =$

Therefore provide 16 s @ 200 mm spacing

> $A_{s prov} =$ 1005 mm²/m > As regd, reinforcement is adequate

Steel content = 0.34% > 0.13 and < 4 %

> 1005 mm²/m $A_{s' prov} =$

Deflection Check

basic I/d = 20 (Simply supported)

 $M / bd^2 =$ 1.263

249.07 N/mm² Design Service Stress, f_s = Modification factor (t) = 1.43 ≤ 2 1.11 ≤ 1.5 Modification factor (c) = Allowable I / d = 31.80 15.27 **OK**

Actual I/d =

Shear Check

109 kN V =

0.416 N/mm² < 5N/mm2 therefore beam size adequate Design Shear Stress, v =

> $100A_{s} / b_{v}d =$ 0.384

Design Concrete Shear Stress, 0.537 N/mm²

v < vc therefore shear links are not required

1-5 Offord Street London N1 1DH Telephone 020 7700 6666 design@conisbee.co.uk www.conisbee.co.uk

Consulting Structural Engineers Consulting Civil Engineers project
12 Park Village West
London

title

Retaining Wall
Propped Cantilever

job no.
140627
sheet no.

checked

ev	date

Material Properties

Concrete Self Weight = 24 kN/m 3 Concrete Grade, f_{cu} = 40 N/mm 2 Reinforcement Strength, f_v = 500 N/mm 2

Slab Properties

Span = 4 m

 Overall Depth, h =
 300 mm

 Bar Diameter =
 16 mm

 Link diameter =
 0 mm

 Cover =
 35 mm

 Effective depth, d =
 257 mm

Design Moment, M = 90 kNmUltimate Moment, M_u = 412 kNm

M < Mu therefore section adequate

Reinforcement

k = 0.0340 < 0.156 No compression steel required

 $z = 0.9500 d \le 0.95d$ $A_{s reqd} = 847 mm^2/m$

 $A_{s min} = 390$

Therefore provide 16 s @ 100 mm spacing

 $A_{s prov} =$ 2010 mm²/m > As reqd, reinforcement is adequate

Steel content = 0.67% > 0.13 and < 4 %

 $A_{s' prov} = 1005 \text{ mm}^2/\text{m}$

Deflection Check

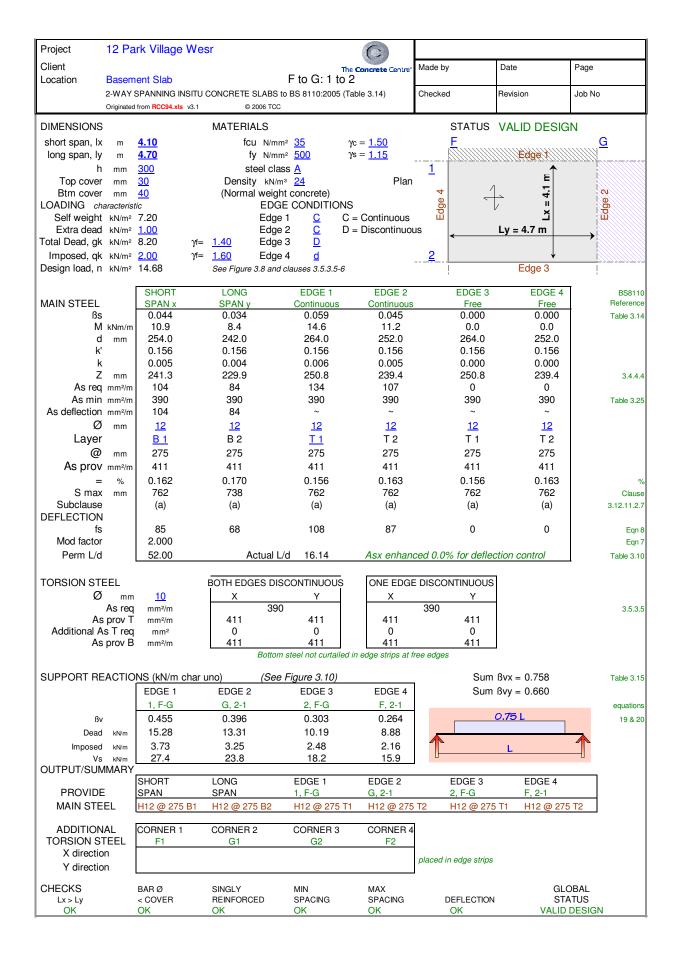
basic I/d = 20 (Simply supported)

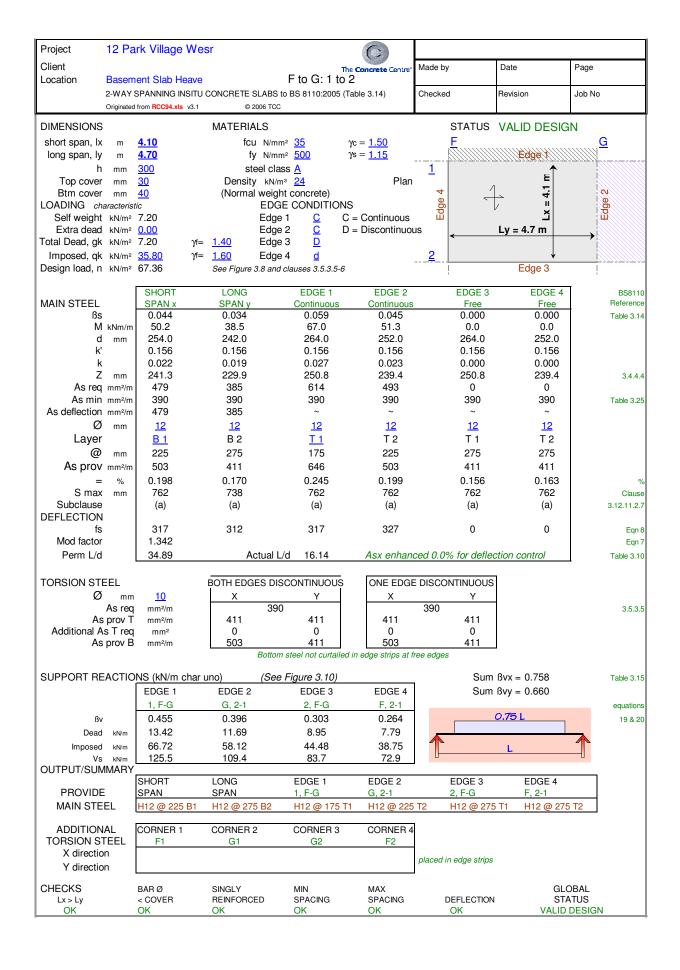
 $M / bd^2 = 1.361$

Shear Check

V = 132 kN

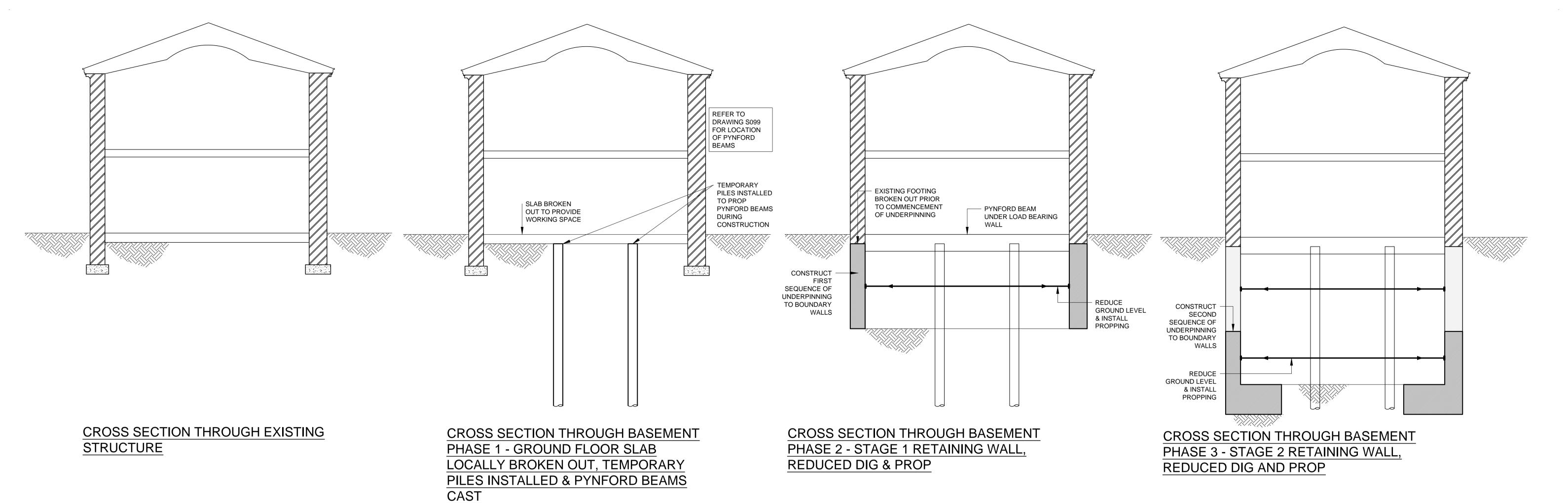
Design Shear Stress, v = 0.514 N/mm² < 5N/mm² therefore beam size adequate

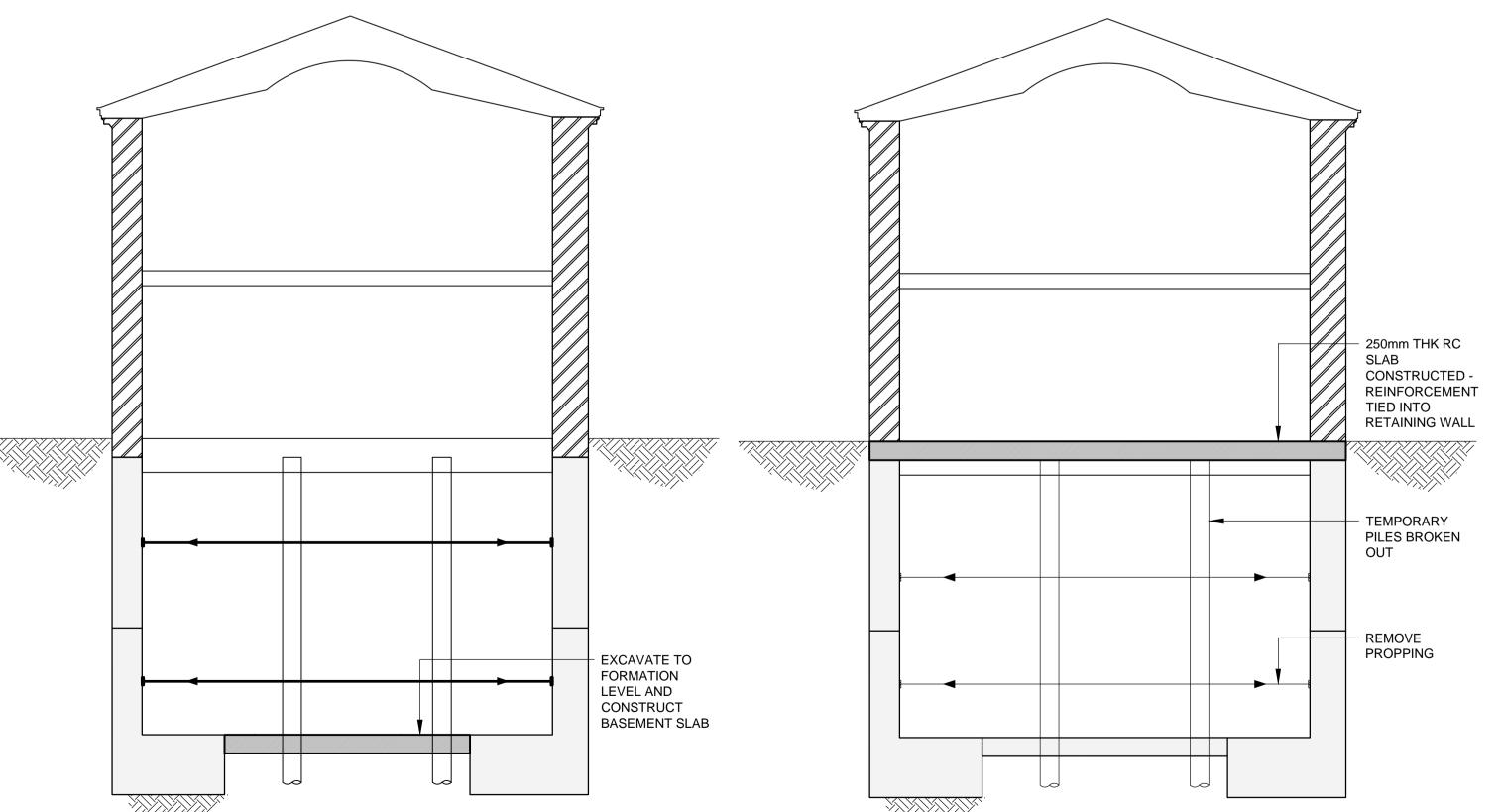

 $100A_s / b_v d = 0.782$


Design Concrete Shear Stress, 0.681 N/mm²

v < vc therefore shear links are not required

ndon • Cambridge • Norwich ephone 020 7700 6666 sign@conisbee.co.uk vw.conisbee.co.uk	project 1/2	PARIC VILLARE WEST	job no. 140627. sheet no.		
consulting Structural Engineers		SEMENT SLAB			
date					
asement Slab					
oading.					
dead : 0-3m + 246	. 3 -	7212/m3			
houses.	M -	1. Olevlan2			
Myster		The country of the co			
10100		2-Olevlin?			
while:					
house 215mm (el	1 case 14	91/13 - 13 les lon?			
water. In + 10	www	= 30 les m2.			
Wdownsard - 14-Ce	8 la)				
w uproto = 35-	levi	n -			
1					
	-				
			1		


•



Appendix C – Construction Method Statement

THE PRINCIPLE OF THIS
SEQUENCE APPLIES
THROUGHOUT PROPOSED
BASEMENT

CROSS SECTION THROUGH BASEMENT

PHASE 5 - GROUND FLOOR SLAB

CONSTRUCTED

CROSS SECTION THROUGH BASEMENT

PHASE 4 - CONSTRUCTION OF

BASEMENT SLAB

NOTE: SOIL LEVELS OUTSIDE THE COACH HOUSE ONLY TO REDUCE ONCE UNDERPINNING OF THE COACH HOUSE IS COMPLETE

P2 27.05.16 ISSUED FOR INFORMATION MT CB
P1 14.08.15 ISSUED FOR INFORMATION MT CB
Rev Date Description Drawn Check

NOT FOR CONSTRUCTION

CO11SOCC

Consulting Structural Engineers

Consulting Civil Engineers

design@conisbee.co.uk
www.conisbee.co.uk

Date AUG 15

Drawing No SSK001

Revision

1-5 Offord St

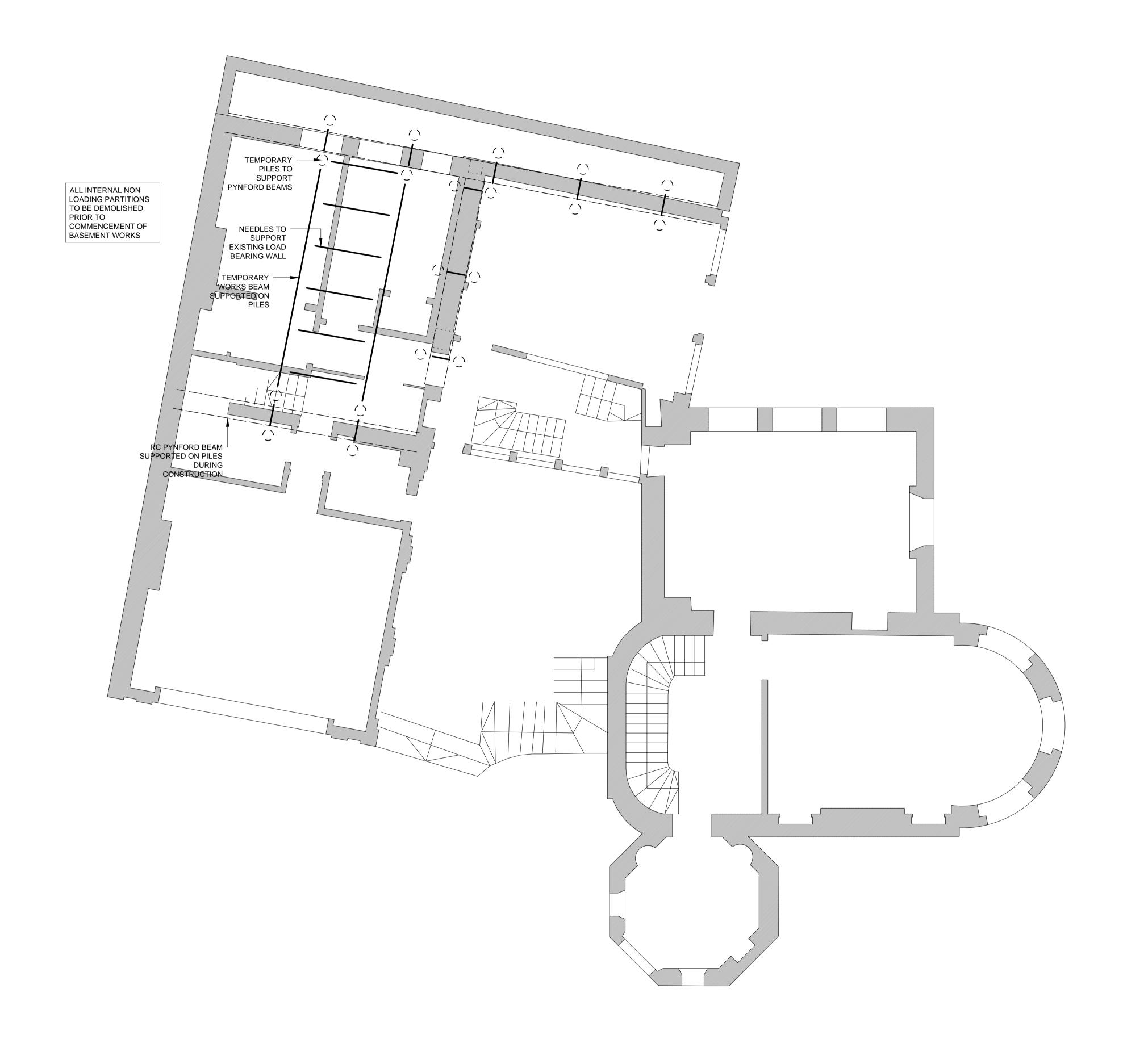
Drawing Status

PLANNING

Scale 1:50@A1

Project

Drawn MT


12 PARK VILLAGE WEST

LONDON

Project No

140627

SUGGESTED CONSTRUCTION SEQUENCE

NOTES

GENERAL NOTES:

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS, DRAINAGE AND SPECIALIST DRAWINGS AND SPECIFICATIONS.
- 2. THE CONTRACTOR IS TO ASCERTAIN THE LOCATION OF EXISTING SERVICES PRIOR TO COMMENCING WORKS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND INSTALLATION OF ALL TEMPORARY WORKS AND SHALL SEQUENCE THE WORKS SUCH THAT THE BUILDING REMAINS STABLE AT ALL TIMES.

NOT FOR CONSTRUCTION

P1	14.08.15	ISSUED FOR INFORMATION	ON MT	СВ
Rev	Date	Description	Drawn	Che

design@conisbee.co.uk
www.conisbee.co.uk

Date AUG 15

Drawing Status	Date	AUG 15		
PLANNING	Scale	1:50@A1		
Project	Drawn	MT		
12 PARK VILLAGE WEST	Enginee	r MT		
LONDON	Project No 140627			
Title	•	Drawing No		
PROPOSED TEMPORARY WORK GROUND FLOOR PLAN	Revision			