

21 Boscastle Road, NW5 1EE BIA – Audit

Document History and Status

Revision	Date	Purpose/Status	File Ref	Author	Check	Review
D1	May 2016	Comment	FDfd-12336- 45-070516-21 Boscastle Road-D1.doc	F Drammeh	S Ash	E Brown
F1	June 2016	Planning	FDfd-12336- 45-030616-21 Boscastle Road-F1.doc	F Drammeh	E Brown	E Brown

This document has been prepared in accordance with the scope of Campbell Reith Hill LLP's (CampbellReith) appointment with its client and is subject to the terms of the appointment. It is addressed to and for the sole use and reliance of CampbellReith's client. CampbellReith accepts no liability for any use of this document other than by its client and only for the purposes, stated in the document, for which it was prepared and provided. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of Campbell Reith Hill LLP. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the document as a whole. The contents of this document are not to be construed as providing legal, business or tax advice or opinion.

© Campbell Reith Hill LLP 2015

Document Details

Last saved	02/06/2016 13:01
Path	FDfd-12336-45-030616-21 Boscastle Road-F1.doc
Author	F Drammeh, MEng
Project Partner	E M Brown, BSc MSc CGeol FGS
Project Number	12336-45
Project Name	21 Boscastle Road
Planning Reference	2016/0953/P

Contents

Non-technical summary	. 1
Introduction	. 3
Basement Impact Assessment Audit Check List	. 5
Discussion	. 8
Conclusions	. 11
	Non-technical summary Introduction Basement Impact Assessment Audit Check List Discussion Conclusions

Appendix

Appendi	ix 1:	Residents'	Consultation	Comments

Appendix 2: Audit Query Tracker Appendix 3: Supplementary Supporting Documents

1.0 NON-TECHNICAL SUMMARY

- 1.1. CampbellReith was instructed by London Borough of Camden, (LBC) to carry out an audit on the Basement Impact Assessment submitted as part of the Planning Submission documentation for 21 Boscastle Road, NW5 1EE (Camden Planning reference 2016/0953/P). The basement is considered to fall within Category B as defined by the Terms of Reference.
- 1.2. The Audit reviewed the Basement Impact Assessment for potential impact on land stability and local ground and surface water conditions arising from basement development in accordance with LBC's policies and technical procedures.
- 1.3. CampbellReith was able to access LBC's Planning Portal and gain access to the latest revision of submitted documentation and reviewed it against an agreed audit check list.
- 1.4. The Basement Impact Assessment (BIA) has been carried out by Fairhurst Consulting Engineers with a Structural Engineering Report & Subterranean Construction Method Statement (SER&SCMS) was prepared by Elliot Wood Partnership LLP. The individuals concerned in the production of both documents have suitable qualifications.
- 1.5. The existing building comprises a cellar and the proposal involves the extension of this lower ground floor both in depth and in plan. The proposed construction method is to underpin the existing building and party wall foundations.
- 1.6. The basement is to be founded within the London Clay and sump pumping is proposed to deal with the anticipated perched water inflows.
- 1.7. Sketches to better indicate the construction sequence description were requested following the initial audit and these have now been provided.
- 1.8. The depth and nature of the neighbouring property foundations have not been established and unless this information is forthcoming or an investigation undertaken to determine these, the maximum differential depth should be assumed.
- 1.9. Input and output from the Oasys Pdisp programme used to predict heave movements were not provided and this was requested following the initial audit. These have now been provided although the stiffness value for the Made Ground is considered too high.
- 1.10. Category 0 (Negligible) to 1 (Very Slight) damage is predicted for Nos 19, 21 (the property itself) and 23 Boscastle Road and it is accepted that provided the works are properly controlled and the affected structures are in sound condition, it should be possible to limit damage to Category 1.

- 1.11. Outline movement monitoring proposals are provided and such a mitigation measure should be adopted. Condition surveys are recommended.
- 1.12. A works duration has been provided within the Construction Management Plan.
- 1.13. It is accepted that the proposals are unlikely to affect the hydrogeology of the area and there are no slope stability or flooding concerns regarding the proposed development.
- 1.14. It is accepted that the BIA has identified the potential impacts of the proposed development and describes sufficient mitigation.

2.0 INTRODUCTION

- 2.1. CampbellReith was instructed by London Borough of Camden (LBC) to carry out a Category B Audit on the Basement Impact Assessment (BIA) submitted as part of the Planning Submission documentation for 21 Boscastle Road, NW5 1EE (Camden Planning Reference 2016/0953/P)
- 2.2. The Audit was carried out in accordance with the Terms of Reference set by LBC. It reviewed the Basement Impact Assessment for potential impact on land stability and local ground and surface water conditions arising from basement development.
- 2.3. A BIA is required for all planning applications with basements in Camden in general accordance with policies and technical procedures contained within
 - Guidance for Subterranean Development (GSD). Issue 01. November 2010. Ove Arup & Partners.
 - Camden Planning Guidance (CPG) 4: Basements and Lightwells.
 - Camden Development Policy (DP) 27: Basements and Lightwells.
 - Camden Development Policy (DP) 23: Water.
- 2.4. The BIA should demonstrate that schemes:
 - a) maintain the structural stability of the building and neighbouring properties;
 - b) avoid adversely affecting drainage and run off or causing other damage to the water environment; and,
 - c) avoid cumulative impacts upon structural stability or the water environment in the local area

and evaluate the impacts of the proposed basement considering the issues of hydrology, hydrogeology and land stability via the process described by the GSD and to make recommendations for the detailed design.

- 2.5. LBC's Audit Instruction described the planning proposal as "*Enlargement of existing basement and creation of lightwell at front of building'.*
- 2.6. The Audit Instruction also confirmed 21 Boscastle Road is not listed, nor is it a neighbour to listed buildings.

- 2.7. CampbellReith accessed LBC's Planning Portal on 6 May 2016 and gained access to the following relevant documents for audit purposes:
 - Basement Impact Assessment (BIA): Fairhurst Consulting Engineers, dated February 2016
 - Factual Ground Investigation report: LMB Geosolutions Limited, dated February 2016
 - Structural Engineering Report and Subterrranean Construction Management: Elliot Wood Partnership LLP, dated February 2016
 - Design and Access Statement: Finkernagel Ross Architects, dated February 2016
 - Construction Management Plan: Finkernagel Ross Architects, undated
 - Finkernagel Ross Architects and Fairhurst Consulting Engineers Planning Application Drawings consisting of

Existing Plans

Proposed Plans

- 1 No. Planning Comment/ Response
- 2.8. Subsequent to the initial audit, supplementary information was received by email on 17 May and 2 June 2016 and this information is as follows:
 - Construction sequence drawings
 - Oasys Pdisp input and output

3.0 BASEMENT IMPACT ASSESSMENT AUDIT CHECK LIST

Item	Yes/No/NA	Comment
Are BIA Author(s) credentials satisfactory?	Yes	Qualifications of all individuals concerned meet requirements of CPG4 (see Audit paragraph 4.1).
Is data required by Cl.233 of the GSD presented?	Yes	Fairhurst BIA, Structural Engineering Report & Subterranean Construction Method Statement (SER & SCMS) and appendices.
Does the description of the proposed development include all aspects of temporary and permanent works which might impact upon geology, hydrogeology and hydrology?	Yes	Fairhurst BIA and SER & SCMS.
Are suitable plan/maps included?	Yes	BIA figures, Elliot Wood sketches and Finkernagel Ross Architects drawings.
Do the plans/maps show the whole of the relevant area of study and do they show it in sufficient detail?	No	Detailed drawings mostly provided, however, not all the Arup GSD maps provided (see Audit paragraph 4.4).
Land Stability Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	Fairhurst BIA Section 3.9.
Hydrogeology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	Fairhurst BIA Section 3.9.
Hydrology Screening: Have appropriate data sources been consulted? Is justification provided for `No' answers?	Yes	Fairhurst BIA Section 3.9.
Is a conceptual model presented?	Yes	Fairhurst BIA Section 5.2 and 5.3 and Ground Investigation Report (GIR) although the thickness of the Made Ground indicated in the GIR contradicts the depths given in the BIA (see Audit paragraph 4.5).

21 Boscastle Road, NW5 1EE BIA – Audit

Item	Yes/No/NA	Comment
Land Stability Scoping Provided? Is scoping consistent with screening outcome?	Yes	Fairhurst BIA Section 4.
Hydrogeology Scoping Provided? Is scoping consistent with screening outcome?	Yes	Fairhurst BIA Section 4.
Hydrology Scoping Provided? Is scoping consistent with screening outcome?	Yes	Fairhurst BIA Section 4.
Is factual ground investigation data provided?	Yes	LMB Solutions GIR.
Is monitoring data presented?	Yes	Fairhurst BIA Section 5.
Is the ground investigation informed by a desk study?	Yes	Deskstudy information included in Fairhurst BIA which is assumed to have informed the ground investigation.
Has a site walkover been undertaken?	Yes	Fairhurst BIA Section 2.
Is the presence/absence of adjacent or nearby basements confirmed?	Yes	Fairhurst BIA Section 7 states No 19 and 23 have existing lower ground floors.
Is a geotechnical interpretation presented?	Yes	Fairhurst BIA Section 6.
Does the geotechnical interpretation include information on retaining wall design?	Yes	Fairhurst BIA Section 6.3.
Are reports on other investigations required by screening and scoping presented?	Yes	GIR presented.
Are the baseline conditions described, based on the GSD?	Yes	Fairhurst BIA Section 3.
Do the base line conditions consider adjacent or nearby basements?	Yes	Not considered in baseline conditions section but presence of lower ground floors discussed in BIA Section 7.1.2.

21 Boscastle Road, NW5 1EE BIA – Audit

Item	Yes/No/NA	Comment
Is an Impact Assessment provided?	Yes	BIA Section 7.
Are estimates of ground movement and structural impact presented?	Yes	BIA Section 7.1.5 to 7.1.7.
Is the Impact Assessment appropriate to the matters identified by screen and scoping?	Yes	Impact of issues carried forward from screening and scoping addressed.
Has the need for mitigation been considered and are appropriate mitigation methods incorporated in the scheme?	Yes	Fairhurst BIA Section 7 and SER & SCMS.
Has the need for monitoring during construction been considered?	Yes	Outline proposals in SER & SCMS.
Have the residual (after mitigation) impacts been clearly identified?	N/A	None identified.
Has the scheme demonstrated that the structural stability of the building and neighbouring properties and infrastructure will be maintained?	Yes	Fairhurst BIA Section 7 and SER & SCMS.
Has the scheme avoided adversely affecting drainage and run-off or causing other damage to the water environment?	Yes	Fairhurst BIA.
Has the scheme avoided cumulative impacts upon structural stability or the water environment in the local area?	Yes	Fairhurst BIA Section 7 and SER & SCMS.
Does report state that damage to surrounding buildings will be no worse than Burland Category 2?	Yes	Category 0 (Negligible) to Category 1 (Very Slight) damage predicted.
Are non-technical summaries provided?	Yes	Fairhurst BIA Sections 4.1, 5.6, 6.7 and 7.4.

4.0 DISCUSSION

- 4.1. The Basement Impact Assessment (BIA) has been carried out by Fairhurst Consulting Engineers and the individuals involved have CEng MICE and CGeol FGS qualifications.
- 4.2. A Structural Engineering Report & Subterranean Construction Method Statement (SER & SCMS) was prepared by Elliot Wood Partnership LLP and the individuals involved have CEng MIStructE qualifications.
- 4.3. The site comprises a four storey terraced residential property including an existing lower ground floor/cellar and front and rear garden areas. The site slopes gently to the east with levels of 53.72m AOD measured in the garden area and 52.32m AOD measured in the front garden area. The existing lower ground floor has a level of around 51.21m AOD. The site is located within the Dartmouth Park Conservation Area in the London Borough of Camden.
- 4.4. Although it is evident that a thorough screening process has been undertaken with some of the Arup GSD map extracts included, it would be beneficial if the all the relevant map extracts from the Arup GSD and Camden Strategic Flood Risk Management Assessment identifying the site location on each map are included. These extracts would help to support statements made in the BIA screening process.
- 4.5. The ground investigation revealed Made Ground up to c.1.25m below ground level (m bgl) which was not proven in a number of trial pits over London Clay which was proven to 15m bgl. The depth of the Made Ground is indicated to a maximum depth of 0.90m bgl in the Ground Investigation Report, which does not appear to consider the thickness encountered in the trial pits. Groundwater was monitored to within 3.20m bgl. The BIA confirmed the basement is to be founded within the London Clay and that the water table is considered to be perched water reflective of high winter levels. Sump pumping is indicated to be likely to be able to deal with perched water inflows during construction, however, long term ground water monitoring is recommended.
- 4.6. Trial pits were undertaken to investigate the existing building foundations as well as the party wall foundations. The trial pits indicate that the main house is founded on corbelled brickwork strip foundations. The existing cellar walls are founded on mass concrete strip footings around its perimeter at existing cellar floor level. It is stated that along the party wall with No.19, the base of the footing was encountered at approximately 0.80m below existing ground floor level. Along the party wall with No.23, it is indicated the footings were observed down to a depth of approximately 1.10m below existing ground floor level, however, the trial pit records in the Ground Investigation Report state the base of the foundation could not be established.

21 Boscastle Road, NW5 1EE BIA – Audit

- 4.7. The BIA states that Nos 19 and 23 are constructed in a similar manner to No 21, being four storey terraced residential properties with existing lower ground floor/cellars and front and rear garden areas, however it is stated the foundation depths of these properties are unknown. Unless this information is forthcoming, the greatest differential depth should be assumed.
- 4.8. The proposals include a full width single storey basement extension beneath the footprint of the existing building and extending 1.50m into the rear garden. A lightwell is also proposed at the front of the building. The basement and lightwell are to extend to a maximum depth of approximately 3.00m bgl which is approximately 1.10m deeper than the existing basement.
- 4.9. The proposed construction method is underpinning. It is stated that '*L-shaped reinforced concrete underpins will be used to underpin the main house along the party wall with No.19 Boscastle Road around the perimeter of the basement. The reinforced concrete underpins will be designed to support the surcharge from the soil and neighbouring building. Mass concrete underpins will be used to underpin the main house along the party wall with No.23 Boscastle Road. A reinforced concrete lining wall will be constructed against the mass concrete underpins which will be designed to support the surcharge from the soil and neighbouring building. The basement retaining walls to the front and rear of the building will be formed from reinforced concrete cast in an underpin sequence to avoid undermining existing structures above'.*
- 4.10. A detailed construction method and sequence is described in the SER & SCMS with temporary propping indicated. An underpinning bay sequence is included together with indicative structural calculations. Sketches indicating each stage of the basement excavation, construction and temporary propping details to better indicate the construction sequence were not included and this was requested following the initial audit. These have now been provided and are included in Appendix 3.
- 4.11. Section 7.1.4 of the BIA indicate short term heave movements of 8mm within the excavation, 4mm adjacent to No 19 and 5mm adjacent to No 23 estimated using Oasys Pdisp. Although contour plots of the anticipated movements were included, the tabular input and output from the programme was not included. This was requested for completeness following the initial audit and has now been provided. The stiffness value for the Made Ground used in the analysis is however considered to be too high.
- 4.12. The BIA predicts vertical ground movements of approximately 2mm and 5mm horizontal movement. It is stated that provided good workmanship and the proposed construction sequence is followed together with temporary propping, Category 0 (Negligible) to 1 (very Slight) damage is predicted for Nos 19, 21 (the property itself) and 23 Boscastle Road. It is accepted that provided the works are properly controlled and the affected structures are in sound condition, it should be possible to limit damage to Category 1.

- 4.13. It is indicated that the site is within 5m of a pedestrian right of way and it is stated in the impact assessment that `*there is nothing unusual in the proposed development that will give rise to any concerns with regard to the stability of public highways*'. This is accepted.
- 4.14. It is accepted that the proposals are unlikely to affect the hydrogeology of the area and there are no slope stability or flooding concerns regarding the proposed development.
- 4.15. Outline movement monitoring proposals are included in the SER&SCMS. Details and trigger levels may be agreed as part of the Party Wall Awards. Condition surveys are recommended.
- 4.16. An indicative works duration is included in the Construction Management Plan. A detailed programme may be presented by the appointed Contractor.
- 4.17. It is clear that the requirements of CPG4 and the Arup GSD have been largely followed with the information required presented and the BIA and SER & CMS together with the supplementary information proposes appropriate mitigation with respect to the issues identified.

5.0 CONCLUSIONS

- 5.1. The Basement Impact Assessment (BIA) has been carried out by Fairhurst Consulting Engineers with a Structural Engineering Report & Subterranean Construction Method Statement (SER & SCMS) was prepared by Elliot Wood Partnership LLP. The individuals concerned in the production of both documents have suitable qualifications.
- 5.2. The basement is to be founded within the London Clay and sump pumping is proposed to deal with the anticipated perched water inflows.
- 5.3. The existing building comprises a cellar and the proposal involves the extension of this lower ground floor both in depth and in plan. The proposed construction method is to underpin the existing building and party wall foundations.
- 5.4. Sketches to better indicate the construction sequence description were requested following the initial audit and these have now been provided.
- 5.5. The depth and nature of the neighbouring property foundations have not been established and unless this information is forthcoming or an investigation undertaken to determine these, the maximum differential depth should be assumed.
- 5.6. Input and output from the Oasys Pdisp programme used to predict heave movements were not provided and this was requested following the initial audit. These have now been provided although the stiffness value for the Made Ground is considered too high.
- 5.7. Category 0 (Negligible) to 1 (Very Slight) damage is predicted for Nos 19, 21 and 23 Boscastle Road and it is accepted that provided the works are properly controlled and the affected structures are in sound condition, it may be possible to limit damage to Category 1.
- 5.8. Outline movement monitoring proposals are provided and such a mitigation measure should be adopted. Condition surveys are recommended.
- 5.9. A works duration has been provided within the Construction Management Plan.
- 5.10. It is accepted that the proposals are unlikely to affect the hydrogeology of the area and there are no slope stability or flooding concerns regarding the proposed development.
- 5.11. It is accepted that the BIA has identified the potential impacts of the proposed development and proposes sufficient mitigation.

Appendix 1: Residents' Consultation Comments

Residents' Consultation Comments

Surname	Address	Date	Issue raised	Response
Delew	235 Boscastle Road London NW5 1EE	28/03/16	Impact on neighbouring properties	See Audit paragraph 4.12

Appendix 2: Audit Query Tracker

Audit Query Tracker

Query No	Subject	Query	Status	Date closed out
1	Stability	Sketches to indicate each stage of the basement excavation and construction not provided	Closed – Provided with supplementary information (Appendix 3).	03/06/16
2	Stability	Input and output from Pdisp not provided	Closed – Provided with supplementary information (Appendix 3).	03/06/16

Appendix 3: Supplementary Supporting Documents

Eliottwood Construction Sequence Sketches Oasys Pdisp Input

- -ENSTING STRUCTURE PONDUSHED + ENSTING GROUP O FLOUR SUSPENDED TIMBER FLOUR ROMOVOD, TO ALLOW UNDER PINNING WORKS TO COMMONCE IN THE LOCATION -BENEATH THE EXISTING REAR ELEVATION.
- SM LENGTH OF UNDERPINE TO BE INSTALLED ON EACH GIDE OF PROPOSED BASEMENT TO DISTRIBUTE LOADS FROM PROPOSED BEAM SPANNING ALROSS UNDERPINS. TO BE LAST IN IM SECTIONS.

- TEMPORARY MASS CONCRETE PAD FOOTINGS TO BE CAST EACH SIDE OF REAR ELEVATION TO GROUND FLOOR LEVEL, ENSURING EXISTING FOOTINGS ARE NOT UNDERMINED.
- TEMPORARY STEEL NEEDLE BEAMS INSTALLED + PROPPED OFF TEMPORARY PAD FOOTINGS.
- REAR ELEVATION IN PERMANENT LASE.
- TEMPORARY NEEDLE PROPPING MAY NOW BE REMOVED.

- ETISTING TIMBER FLOOR REMOVED AT GROUND FLOOR + DRAINALE ROMOND WHERE NELESSARY
- PROPPING + TROULL EMEETING INSTALLED IN SHAFT, BACK SHUTTUR INSTALLED DEPENDING ON GROUND'S ABILITY TO 'STAND OF'.
- MASS CONCRETE UNDERPINS INSTALLED IN MAX. IM SECTIONS.
- PROPPING TO ROMAIN IN PLACE
- 1ST STALLE EXCAVATION DOWN TO EASTING CELLAR FLOOR LEVEL. TEMPORARY PROPS + WALING BEAMS TO BE INSTALLED TO THE UNDERPINS ALROSS THE FULL WIDTH OF THE BASEMENT AS THE DIG PROGRESSES.
- EXISTING LEUAR WALLY FOOTINGS POTOLISHED (NOT SHOWN ABOVE FOR CLARITY).
- 2 ND STALE EXCAUATION DOWN TO BASEMENT FORMATION LEVEL . PROPS + WALLING BOAMS INSTALLED AS IN IST STALLE EXCAVATION.

- CORDER CALLORE MEANE PROTECTION INSTALLED.

- R.C. SUSPENDED SLAB CAST. ONLE LURED, LATERAL PROPS DIRECTLY ABOVED REMOVED .

- 1ST LIFT OF R.C. LINING WALL CAST IN IM SECTIONS AND MID-LEVEL PROPPING SEQUENTIALLY REMOVED .

	elliottwood
Job no 2140872	Job name 21 BOSCASTIF ROAD
Drawing no SK. 201	Drawing title Revision SEQUENCE FUR UNDERPINNING WORKS (1/1) P1

- 200 LIFT OF R. C. LINING WALL CAST IN IN SECTIONS, MIGH-LEVEL PROPPING SERVENTIALLY REMOVED.
- SUPERSTRUCTURE WORKS COMPLETED TO FORM GROUND FLOOR OVER BASEMENT.

document issue sheet

elliottwood

Elliott Wood Partnership LLP 241 the broadway, london sw19 1sd tel. 020 8544 0033, fax. 020 8544 0066 Consulting Structural and Civil Engineers

Job name	:	21 Boscastl	a Boad NW5 1EG	S	i	ssue no.	-	2	e	4	5	9	7	80	6	10
		21 00300310		ion		day	16	04	09	18	28	22	22	31	03	16
Sht no.	01	Job number:	0140070	evis		month	01	02	02	03	04	01	02	03	05	05
	UI		2140872	est r		year	15	15	15	15	15	16	16	16	16	16
dra no	document title			late	scale	size										
dig no					Scale	5120					1	1	1			
S 01	Proposed Baser	ment Floor Plan		02	1.50	Δ3						P1	C1	02		
S 02A	Proposed Groun	nd Floor Plan - Without Bas	ement Option A	P1	1.50	A3						P1	01	02		
S 02B	Proposed Groun	nd Floor Plan - Without Bas	sement Option R	P1	1:50	A3						P1				
S.02	Proposed Groun	nd Floor Plan		C5	1:50	A3	P1	T1	T1	C1	C2	C3	C4	C5		
S.03	Proposed First F	loor Plan		C6	1:50	A3	P1	T1	T2	C1	C2	C3	C4	C5	C6	
S.04	Proposed Secor	nd Floor Plan		C4	1:50	A3	P1	T1	T2	C1	C2	СЗ	C4			
S.05	Proposed Third	Floor Plan		C4	1:50	A3	P1	T1	T2	C1	C1	C2	C3		C4	
S.06	Proposed Roof F	Plan		СЗ	1:50	A3	P1	T1	T2	C1	C1	C2	C3			
0.10	Decession 1 Const			E.	4.05	4.0		D .								
S.10	Proposed Section	on Cellar		P1	1:25	A3		P1								
SK02	Section A-A			P1	nts	Δ4						P1				
01102					1113	/\+										
SK.101	Support to Rear	Elevation		P1												P1
SK.201	Sequence for Ur	nderpinning Works 1/2		P1												P1
SK.202	Sequence for Ur	nderpinning Works 2/2		P1												P1
SPEC	Specification for	Structural Works		C2				T1	T1	C1		C2				
format ke	<i></i>	$2/\mathbf{R} = 2 \times 43$ reduction	D = digital copy													
2 = 2 x full	I size copies.	$\mathbf{F} = \text{sent by fax}$	$\mathbf{X} = $ issue sheet only													
	, ··	,			a4-4		-	-	-	~	~	~	~	~	~	Ĺ
Status Key		T – tondor	C = construction		status:		P 9W/			SW	SW	C SW/	EDa	EDa	EDa	P EDa
r – preim	iii idi y				135001.		300	300	300	300	300	300	LDa	LDa	LDa	LDa
function		name:	company:													
Client																
Architect		Catherine Finkernagel	Finkernagel Ross Arc	hitec	ts		D	D	D	D	D	D	D	D	D	D
Quantity	Surveyor															
	gineer															
Building	Control															
Project N	Vanager															
								-			-					
EW File							D	D	D	D	D	D	D	D	D	D

	00.10	-					Job No.		Sheet No.	Rev.
Ja	SYS)					1129	81		
Boscast	le Road						Drg. Re	f.		
round Mo	vement As Displacen	sessme ents Fol	nt Iowing	Excava	tion		Made by	Ľ	Date	Checked
alysis Opti	ions inesq									
bal Poisson's imum allowab izontal rigi	s ratio: 0.50 le ratio betwee d boundarv leve	n values of i	E: 1.5 m OD]							
placements at	t area centroio	s calculated								
oil Profiles	Soil Profile 1	Youngs Modu	lus Poi	seons Non-li	ear					
top	intermediate displacement	Toungs Moud.	ra	tio curve						
[mOD]	levels	Top B ⁱ [kN/m ²] [kN	tm /m²l							
1 0.0 2 -1.2500	10	10000. 1 11500. 2	0000. 0.	50000 P	lone					
3 -3.5000	10	20000. 65	5000. 0.:	50000 P	lone					
ne Name	X coordinates min max	Y coord min	inates max	Profile						
1 Soil	[m] [m] -2.5966 23.5	[m] 51 -3.1258	[m] 15.414	Soil Profil	.e 1					
ad Data										
ad Name f.	Shape	Orientation	Cen	tre of load	Load positi Angle of	.on Width x Length	y Polygon	Numbe	Load v r Normal 7	value Fangential
		Plane	x	(GIODAI) Y 2 (let	from from	or Radius	Coordinates	tolerance rectang	(local z) (loca les	11 x) (local y)
	Polygonal	Horizontal	[m] N/A	[m] [n N/A -3] [Degrees] 0000 N/A	[m] [m] N/A N	[m] /A (6.57,3.75) (6.57,5.74)	10.000	[kN/m ²] [kN/ 3 -22.200	/m ²] [kN/m ²] N/A N/A
1 Load #		Horizontal	N/A	N/A -3	0000 N/A	N/A N	(8.9,5.79) (8.9,5.33) (13.2,5.44) (13.3,3.8) /A (6.57,3.75) (3.01,3.75)	10.000	5 -55.000	N/A N/A
1 Load # 2 Load #	Polygonal						(3.08,9.59) (13.6,9.59)			
1 Load # 2 Load #	Polygonal						(15.1,5.00) (15.1,5.11)			
1 Load # 2 Load #	Polygonal						(15.0, 5.06) $(15.1, 5.1)(15.1, 5.44)$ $(8.9, 5.33)(8.9, 5.79)$ $(6.57, 5.74)$			
1 Load # 2 Load # Diygonal Lo o. Centre of	Polygonal ads' Rectan	g les	Depth y				(15.1,5.5,6) (15.1,5.1) (15.1,5.44) (8.9,5.33) (8.9,5.79) (6.57,5.74)			
1 Load # 2 Load # Dlygonal Lo 5. Centre of X	Polygonal pads' Rectan f load Angle Y local from clobal	gles of Width x x	Depth y				(15.1,5.44) (8.9,5.33) (8.9,5.79) (6.57,5.74)			
1 Load # 2 Load # Dlygonal Lo c. Centre of X [m] ad 1 : Load #	Polygonal Podys Rectan f load Angle Y local from global [m] [Degre	gles of Width x x es] [m]	Depth y				(13.67,5.69) (13.17,5.13) (15.1,5.44) (8.9,5.33) (8.9,5.79) (6.57,5.74)			
1 Load # 2 Load # 2 Load # bygonal Lo 0. Centre of x [m] d 1 : Load # (m) d 1 : Load # 1 1 3.231 2 11 0.48	Polygonal pads' Rectan f load Angle Y local from global (m) [Degre) 4.2131 -177 4.5854 -178	gles of Width x x es] [m] .78 0.080942 78 4 2685	Depth y [m] 0.81915 1.5962				(13.679.60) (13.5,23.1) (15.1,5.44) (8.9,5.33) (8.9,5.79) (6.57,5.74)			
1 Load # 2 Load # 2 Load # 0 ygonal Lo 0. Centre of x ad 1 : Load # dge 4 optimal; 1 13.231 2 11.044 3 7.7482 3 42 2 : Load #	Polygonal Polygonal	gles of Width x x es] [m] .78 0.080942 .78 4.2685 .78 2.3226	[m] 0.81915 1.5962 2.0009				(15,17,5,44) (8,9,5,33) (15,17,5,44) (8,9,5,33) (8,9,5,79) (6,57,5,74)			
1 Load # 2 Load # 2 Load # Dlygonal Lo o. Centre o: X ad 1 : Load # i 13.231 1 13.231 2 11.048 3 7.7482 ad 2 : Load # i 14.389 2 11.763	Polygonal Fload Angle Y local [m] [Degre 4.2131 -17(4.8854 -17(4.7634 -17(7.2576 -18(7.42876 -18(gles of Width x x x s [m] .78 0.080942 .78 4.2685 .78 2.3226 .00 1.5215 .00 4.7301	Depth y [m] 0.81915 1.5962 2.0009 3.6609 4.2232				(15.175.44) (8.9.5.33) (8.9,5.79) (6.57,5.74)			
1 Load # 2 Load # 2 Load # Dygonal Lo . Centre o: x [m] d1 : Load # [fge 4 optimal] 1 13.231 2 11.048 3 7.7482 d2 : Load # 1 2 Load # [fge 5 optimal] 1 14.389 2 11.263 3 7.7318 4 4.8210	Polygonal Polygonal add' Rectan from global [m] [Degre) 4.2131 -176 4.2554 -176 4.7634 -176 7.2576 -186 7.4808 -186 7.6781 -186 6.6734 -186	gles of Width x x es] [m] .78 0.080942 .78 4.2685 .78 4.2685 .78 2.3226 .00 1.5215 .00 4.7301 .00 2.3319	Depth y [m] 0.81915 1.5962 2.0009 3.6609 4.2232 3.8287 5.8382				(13.679.06) (13.5,2.33) (15.1,5.44) (8.9,5.33) (8.9,5.75) (6.57,5.74)			
1 Load # 2 Load # 2 Load # Dlygonal Lo b. Centre o: X [m] id 1: Load # ige 4 optimal; 1 13,231 1 11,233 3 7,7482 ige 5 optimal; 1 14,389 2 11,263 3 2,142,204 4 4,8210 5 3,0431 	Polygonal ads' Rectan from [local Angle y local from] [Degre 4,2131 - 17; 4,5854 - 17; 4,7634 - 17; 7,2576 - 18; 7,4008 - 18; 7,6781 - 18; 6,6734 - 18; 5,2138 - 18; 5,2138 - 18; 1 Dots	gles of Width x x es] [m] .78 0.080942 .78 4.2685 .78 2.326 .00 1.5215 .00 4.7301 .00 2.34897 .00 0.066160	Depth y [m] 0.81915 1.5962 2.0009 3.6609 4.2232 3.8287 5.8382 2.9191				(13.679.50) (13.5,23.1) (15.1,5.44) (8.9,5.33) (8.9,5.75) (6.57,5.74)			
1 Load # 2 Load # 2 Load # (m) (m) (d 1: Load # (m) (d 1: Load # (m) (d 2: Load # (d 2: Lo	Polygonal Polygonal f load Angle y local from global (m) [Degree 4.2131 -176 4.5854 -176 4.5854 -176 7.4508 -186 7.4508 -186 7.4508 -186 5.2138 -186 5.2148 -186 5.2148 -186 5.2148 -186 5.2148 -186 5.2148 -186	gles of Width x x es] [m] .78 0.080942 .78 4.2685 .78 2.3226 .00 1.5215 .00 4.7301 .00 2.3319 .00 3.4897 .00 0.066160	Depth y [m] 0.81915 1.5962 2.0009 3.6609 4.2212 3.8287 5.8382 2.9191 List point	ne/Line for «	second roi	No. of	intrvls No. of intr	1s Show Calculate Details	a	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\int a$	$C \wedge I C$						Job No.		Sheet No.	Rev.
21 Boscastile Road Shound Movement Assessment mmediate Displacements Following Loading Dip. Ref. Analysis Options Status in the set of the s	JU.	s ys						112	981		
Sandbul Novements Following Loading Made by Date Checker Analysis Options Restance in the former where the intervent of the intervent intervent with the former where the intervent intervent with the intervent with the intervent with the intervent intervent with the intervent with the intervent with the intervent intervent with the intervent withe inter	21 Boscastle Road						Drg. R	ef.			
Analysis Options Market 1 lower 1 and the set of the	nmediate D	isplacemer	its Follo	owing Loa	ding			Made b	Y	Date	Checked
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
hange man and a set of the set o	analysis Optic	ons									
A proving a mark of the proving a mark of th	halysis: Boussin lobal Poisson's aximum allowable prizontal rigid isplacements at	esq ratio: 0.50 ratio between va boundary level: - area centroids ca	ilues of E: -30.00 [m ilculated.	1.5 OD]							
No. Tope Number No. No. Source of Load No.	oil ProfilesSc ayer Level at top i d	Number of You ntermediate isplacement	ings Modult	s Poissons N ratio	Ion-linear curve						
Sol Zone New X conclusion 1 point - 2 2056 22:521 3:1228 5:414 sol Profile 1 point - 2 2056 22:521 3:1228 5:414 sol Profile 1 point - 2 2056 22:521 3:1228 5:414 sol Profile 2 conclusion 1 point - 2 2 conclusion 2 conclu	[mOD] 1 0.0 2 -1.2500 3 -3.5000	TC [kN/ 10 10 10 11 10 20	p Btm 'm²] [kN/m J000. 100 3500. 200 J000. 650	1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None None						
Conduct Summer of Name Conduction Conductin Conductin Conducti	oil Zones ne Name 1 Soil - Zone #	X coordinates min max [m] [m] 2.5966 23.551	Y coordin min [m] -3.1258	mates Pro max [m] 15.414 Soil	file Profile 1						
<pre>sf. Shape Orientation Centre of load Angle of Witht x Length y Polygon</pre>	oad Data				Load po	osition				Load va	alue
(m) (١Ì.	Shape Orie I	of lane	Global X Y	load Angle .) loca Z fro	e of Width x al x or om Radius	Length y	Polygon Coordinates	Nu Rectangle tolerance rect	mber Normal Ta of (local z) (local angles	ngential . x) (local y)
2 Load # Polygonal Horizontal N/A N/A -3.0000 N/A N/A N/A (13.2,3.4) (13.4,2,3.4) (13.4,2,3.4) (13.6,9.59) (3.0,9.59) (3.0,9.59) (3.16,9.59) (13.6,9.57) (13.6,9.59) (13.6,9.57) (13.6,9.59) (13.6,9.57)	1 Load #	Polygonal Hor	izontal	[m] [m] N/A N/	[m] [Degr 'A -3.0000	nees] [m] N/A N/A	[m] A N/A	[m] (6.57,3.75) (6.57,5.74) (8.9,5.79) (8.9,5.33)	10.000	[kN/m ²] [kN/m 2 7.8000	1 ²] [kN/m ²] N/A N/A
No. Centre of load Angle of Nidth x Depth y X Y local x from Centre of load global X Image: Centre of load No. Of Nidth x Depth y Y local x global X Image: Centre of load Image: Centre of load Teget centre of load Load # Centre of load Centre of load Load # Centre of load Line/Line for extrusion No. of intr	2 Load #	Polygonal Hor	izontal	N/A N/	A -3.0000	N/A N/J	A N/A	$\begin{array}{l} (13.2,5.44) & (13.2,3.8) \\ (6.57,3.75) & (3.01,3.75) \\ (3.08,5.59) & (13.6,9.59) \\ (13.6,9.06) & (15.1,9.11) \\ (15.1,5.44) & (8.9,5.33) \\ (8.9,5.79) & (6.57,5.74) \end{array}$	10.000	5 -25.000	N/A N/A
X Y local x from global X m Degrees m m m Degrees m isod 1 Local # isod 2 Local # isod 1 Local # isod 2 Local # isod 1 Local # isod 1 Local # isod 2 Local # isod 1 Local # isod 1 Local # isod 2 Local # isod 3 Local # Local # isod 3 Local # Local # isod 4 Local # Local # Local # isod 3 Local # Local # <thlocal #<="" th=""> Local #</thlocal>	olygonal Loa	ds' Rectangle	S Width x I	epth v							
[m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [x	Y local x from global X									
2 11.031 4.5855 0.43082 4.2554 1.5953 cdge 5 optimal) 1 14.386 - 180.00 1.5215 3.6609 2 11.263 7.4808 -180.00 4.7301 4.2232 3 7.7318 7.6781 -180.00 2.3319 3.8287 3 7.7318 7.6781 -180.00 2.3319 3.8287 5 3.0431 5.2138 -180.00 0.066160 2.9191 Displacement Data Direction Line/Line for extrusion No. of intrvls No. of intrvls Show ef. Type Name of First point Second point across Extrusion along Calcular Detailed First point Second point across Extrusion along Calcular Detailed	Dad 1 : Load # Edge 2 optimal)	[m] [Degrees]	[m]	[m]							
1 14,389 7,2576 -180,00 1.5215 3,6609 2 11,263 7,4608 -180,00 4,7301 4,2232 3 7,7318 7,6781 -180,00 2,3319 3,8287 4 4,8210 6,6734 -180,00 2,319 3,8287 5 3,0431 5,2138 -180,00 0.066160 2,9191 isplacement Data Direction Line/Line for extrusion No. of intrvis No. of intrvis No. of intrvis across Extrusion colspan="4">Calculate Detailed Across Across Across Show Intrvision X X X Across Show Across Show Across Show Across Show Across Show Across Show <t< td=""><td>2 11.031 ad 2 : Load #</td><td>4.5855 0.43082</td><td>4.2554</td><td>1.5953</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2 11.031 ad 2 : Load #	4.5855 0.43082	4.2554	1.5953							
Displacement Data Direction Line/Line for extrusion No. of intrvls No. of intrvls Show ef. Type Name of First point Second point across Extrusion along Calculate Detailed For the Detailed Second Point Across Second Point Point Second Point Point Second Point Point Second Point Po	1 14.389 2 11.263 3 7.7318 4 4.8210 5 3.0431	7.2576 -180.00 7.4808 -180.00 7.6781 -180.00 6.6734 -180.00 5.2138 -180.00	1.5215 4.7301 2.3319 3.4897 0.066160	3.6609 4.2232 3.8287 5.8382 2.9191							
Direction Line/Line for extrusion No. of intrus No. of intrus Snow ef. Type Name of First point Second point across Extrusion along Calculate Detailed Extrusion X Y Z(level) X Y Z(level) extrusion/line Depth extrusion results	isplacement	Data			•		No. 16 (1)	tunia di tuto			
	ef. Type N	ame of Extrusion	Fir X	st point Y Z(leve	Second (1) X Y	d point Z (level)	acros extrusion	s Extrusion along /line Depth extrusio	Calculate Deta n resu	iled lts	

					Job No.		Sheet No	». I	?ev.
Oasys					11298	81			
1 Boscastle Road		Drg. Ref.							
ong Term Displaceme	essment				Made by	Ľ	ate	Che	cked
nalysis Options alysis: Boussinesq lobal Poisson's ratio: 0.20 aximum allowable ratio between v risontal rigid boundary level: isplacements at area centroids	values of E: 1.5 -30.00 [m OD] calculated.								
oil ProfilesSoil Profile 1 yer Level at Number of Yo top intermediate displacement levels	oungs Modulus Pois rat	sons Non-linear io curve							
[mOD] [kl 1 0.0 10 2 -1.2500 10 3 -3.5000 10	V/m ²] [kN/m ²] [0000. 10000. 0.5 5500.0 15500. 0.5 15500. 50000. 0.5	00000 None 20000 None 20000 None							
ne Name X coordinates min max [m] [m] 1 Soil -2.5966 23.551	Y coordinates min max [m] [m] -3.1258 15.414	Profile Soil Profile 1							
bad Data	ientation Cent	Lc :re of load (Global) Y Z	ad position Angle of Width x local x or from Radius	Length y Coor	Polygon dinates	Numbe Rectangle of tolerance rectang	Le r Normal (local z) les	oad value Tangential (local x) (local y)	
ad Name f. Shape Or:	of Plane X	(10101)							
ad Name ff. Shape Or 1 Load # Polygonal He 2 Load # Polygonal He	of Plane X [m] prizontal N/A prizontal N/A	(level) [m] [m] N/A -3.0000 N/A -3.0000	[Degrees] [m] N/A N/A N/A N/A	[m] N/A (6.57,3.75) ((8.9,5.79) (8 (13.2,5.44) (N/A (6.57,3.75) ((3.08,9.55) ((13.6,9.06) ((15.1,5.44) ((8.9,5.79) (6	[m] 6.57,5.74) .9,5.33) 13.2,3.8) 3.01,3.75) 13.6,9.59) 15.1,9.11) 8.9,5.33) .57,5.74)	10.000	[kN/m ²] 2 7.8000 5 -25.000	[kN/m ²] [kN/m ²] N/A N/A N/A N/A	
and Name sf. Shape Or 1 Load # Polygonal He 2 Load # Polygonal He Olygonal Loads' Rectangle No. Centre of load Angle of X Y local x from y	of Plane X [m] N/A orizontal N/A	(level) [m] [m] N/A -3.0000 N/A -3.0000	[Degrees] [m] N/A N/A N/A N/A	[m] N/A (6.57, 3.75) ((8.9, 5, 79) (8 (13.2, 5, 44) (3.06, 9, 53) ((13.6, 9, 53) ((15.1, 5, 54) ((8.9, 5, 79) (6		10.000	[kN/m ²] 2 7.8000 5 -25.000	[kN/m ²] [kN/m ²] N/A N/A N/A N/A	
aad Name ef. Shape Or 1 Load # Polygonal He 2 Load # Polygonal He 2 Load # Polygonal He Colygonal Loads' Rectangle No. Centre of load Angle of X Y local X [m] [m] [Degrees] ad 1 : Load # I 2 Jost 1 1 7,7376 4,7634 0.4308 2 11.031 4,5855 0.4308	of Plane X [m] N/A prizontal N/A SS Width x Depth y [m] [m] 2.3288 2.0006 4.2554 1.5953	(level) [m] [m] N/A -3.0000 N/A -3.0000	[Degrees] [m] N/A N/A N/A N/A	[m] N/A (6.57,3,75) ((8.9,5,79) (5 (3.2,5,44) N/A (6.57,3,75) ((3.08,9,59) ((13.6,9,06) ((13.6,9,06) ((15.1,5,44) ((8.9,5,79) (6	[m] (9,5,7,5,74) (9,5,33) (13,2,3,8) (13,2,3,8) (13,6,9,59) (15,1,9,11) (15,9,59) (15,1,9,11) (15,9,59) (15,1,9,11) (15,7,5,74)	10.000	[kW/m ²] 2 7.8000 5 -25.000	[kN/m ²] [kN/m ²] N/A N/A N/A N/A	
Load Name ref. Shape Or 1 Load # Polygonal Hi 2 Load # Polygonal Hi 2 Load # Polygonal Hi POlygonal Loads' Rectangle Angle of Angle of No. Centre of load Angle of Jocal x (m) [m] Ioegrees; Jocal x (add 1) Ioad # From Jocal x (Edge 2) optimal) 1 9.0302 1 10.7376 4.7634 0.43082 (add 2) Load # 1 1 1 1.439 7.2576 -180.00 2 1.2318 7.6698 -180.00 3 7.1318 7.6678 -180.00 3 7.318 7.678 -180.00 3 7.318 7.678 -180.00 5 3.0431 5.2138 -180.00	of Plane X [m] N/A prizontal N/A prizontal N/A PS Width x Depth y [m] 2 2.3288 2.0006 2 4.2554 1.5953] 1.5215 3.6609] 4.7301 4.2232] 2.334897 5.8382] 0.066160 2.9191	(level) [m] [m] N/A -3.0000 N/A -3.0000	[Degrees] [m] N/A N/A N/A N/A	[m] N/A (6.57,3,75) ((8.9,5,79) (6 (3.2,5,44) N/A (6.57,3,75) ((3.0,9,9,59) ((13.6,9,06) ((13.6,9,06) ((15.1,5,44) ((8.9,5,79) (6	[m] (a, 57, 5, 74) (a, 5, 53) (13, 2, 3, 8) (13, 2, 3, 8) (13, 2, 9, 5) (13, 6, 9, 59) (15, 1, 9, 11) (14, 9, 11) (14, 9, 11) (15, 7, 5, 74)	10.000	[kW/m ²] 2 7.8000 5 -25.000	[kN/m ²] N/A N/A N/A N/A	

London

Friars Bridge Court 41- 45 Blackfriars Road London, SE1 8NZ

T: +44 (0)20 7340 1700 E: london@campbellreith.com

Surrey

Raven House 29 Linkfield Lane, Redhill Surrey RH1 1SS

T: +44 (0)1737 784 500 E: surrey@campbellreith.com

Bristol

Wessex House Pixash Lane, Keynsham Bristol BS31 1TP

T: +44 (0)117 916 1066 E: bristol@campbellreith.com

Birmingham

Chantry House High Street, Coleshill Birmingham B46 3BP

T: +44 (0)1675 467 484 E: birmingham@campbellreith.com

Manchester

No. 1 Marsden Street Manchester M2 1HW

T: +44 (0)161 819 3060 E: manchester@campbellreith.com

UAE

Office 705, Warsan Building Hessa Street (East) PO Box 28064, Dubai, UAE

T: +971 4 453 4735 E: uae@campbellreith.com

Campbell Reith Hill LLP. Registered in England & Wales. Limited Liability Partnership No OC300082 A list of Members is available at our Registered Office at: Friars Bridge Court, 41- 45 Blackfriars Road, London SE1 8NZ VAT No 974 8892-43