REPORT ON A SITE INVESTIGATION

at

UCL, ASTOR COLLEGE, CHARLOTTE STREET, ST PANCRAS, LONDON W1T 4QB

for

CARTER CLACK

Report No 14/10260/CVS

ALBURY S.I. LTD

Miltons Yard Petworth Road Witley Godalming Surrey GU8 5LH

Telephone: 01428 684836 Facsimile: 01428 685261

info@alburysi.co.uk www.alburysi.co.uk

September 2014

CONTENTS

Foreword

1.0	Introduction
2.0	Fieldworks
3.0	Strata Conditions
4.0	Laboratory Testing
	4.1 Chemical Analyses - Contamination
5.0	Discussion of Ground Conditions
6.0	References
7.0	Glossary

APPENDIX 1	-	Order
APPENDIX 2	-	Site Plan
APPENDIX 3	-	Boring Records and Trialpit Section
APPENDIX 4	-	Laboratory Test Results
APPENDIX 5	-	Contamination Guidelines

FOREWORD

The following notes should be read in conjunction with the report. Any variations on the general procedures outlined below are indicated in the text.

COPYRIGHT

Copyright of this report subsists with the Client. Prior written permission must be obtained to reproduce, store in a retrieval system, or transmit, in any form, or by any means whatsoever, all or part of this report. Furthermore, copies may be obtained, with the Client's written permission, from Albury S.I. Ltd, with whom the master copy of the entire document resides.

General

The recommendations made and opinions expressed in the report are based on the strata conditions revealed by the fieldworks as indicated on the boring and trialpit records, together with an assessment of the data from insitu and laboratory tests. No responsibility can be accepted for conditions, which have not been revealed by the fieldworks, for example, between borehole and/or trialpit positions. While the report may offer opinions on the possible configuration of strata, both between the excavations and below the maximum depth achieved by the investigation, these comments are for guidance only and no liability can be accepted for their accuracy. For investigations, which include environmental issues, the data obtained relate to the conditions which are relevant at the time of the investigation.

Boring Techniques

Unless otherwise stated, the light cable percussion technique of soft ground boring has been used. This method generally enables the maximum information to be obtained in respect of strata conditions, but a degree of mixing of some layered soils, for example, thin bands of coarse and fine granular soils, is inevitable. Specific attention is drawn to this occurrence where evidence of such a condition is available.

The penetration resistances quoted on the boring records have been determined generally in accordance with the procedure given in BS1377:1990. The suffix '+' donates that the result has been extrapolated from less than 0.3m penetration into undisturbed soil.

Routine Sampling

During construction of boreholes, sampling and insitu testing will be completed in general accordance with Eurocode EN 1997-2:2007 and BS5930:1999. Variations to this code of practice will only occur where the strata conditions preclude implementation or the contract specifies alternatives.

Samples which are required for environmental testing will be stored in suitable glass containers in accordance with current guidelines.

Groundwater

The groundwater observations entered on boring and trialpit records are those noted at the time of the investigation. The normal rate of progress does not usually permit the recording of any equilibrium water level for any one water strike. Moreover, groundwater levels are prone to seasonal variation and to changes in local drainage conditions. The table on each boring record shows the groundwater level at the quoted borehole and casing depths usually at the start and finish of a day's work. The word 'none' indicates that groundwater was sealed off by the borehole casing or that no water was observed in the borehole.

Trialpits

The method of construction employed to form the trialpits is entered in their records. In general, it is not possible to extend machine excavated trialpits to depths significantly below the water table, especially in predominantly granular soils. Except for manually excavated pits, and unless otherwise stated, the trialpits have not been provided with temporary side support during their construction, hence, personnel have not entered them and examined the insitu exposed strata.

Window Sampling

Window sampling comprises driving a probe into the ground. On extraction of the probe the strata encountered are logged and representative disturbed samples recovered. In general, window sampling cannot be completed in granular soils, or below the water table.

Laboratory Testing

Unless stated in the tests, all laboratory tests have been performed in accordance with the requirements detailed in BS1377 (1990): Parts 1-9, or other standards or specifications that may be appropriate.

REPORT ON A SITE INVESTIGATION

at

UCL, ASTOR COLLEGE, CHARLOTTE STREET, ST PANCRAS, LONDON W1T 4QB

for

CARTER CLACK

Report No 14/10260/CVS

September 2014

Prepared by C

C V Sweby CEng MICE Managing Director

1.0 INTRODUCTION

It is understood that it is proposed to undertake redevelopment works at Astor College. Consequently, an investigation has been undertaken in order to determine the current foundation details and establish whether contamination is present associated with former activities in the site area.

The programme of this investigation comprised the construction of a single trialpit and three probeholes using manual excavation methods. During this work samples were taken for further examination and laboratory testing. This report describes the work undertaken, presents the information obtained and discusses the ground conditions.

A copy of the order for these works is presented as Appendix 1. This report is for the benefit of the Client alone and cannot be assigned to a third party without the consent of Albury SI Ltd.

2.0 FIELDWORKS

The trialpit and probeholes were completed on 8^{th} September 2014 at the positions as shown on the site plan, drawing no 14/10260/1, which is presented as Appendix 2 to this report. It should be noted that trialpit 2 was not completed and probehole 3/3a encountered an obstruction.

The depths and descriptions of the strata encountered at the test locations are given on their respective records, which comprise Appendix 3 to this report. These records note the depths at which samples were taken. The foundation details revealed in trialpit 1 are presented on a sectional drawing, no 14/10260/2, included in Appendix 3.

3.0 STRATA CONDITIONS

A study of the site records indicates that made ground, generally comprising a paving slab bedded on concrete was present at surface. Brown sand with considerable amounts of brick and concrete rubble, metal fragments, gravel and roots was revealed beneath the surface horizon. Probeholes 3 and 3a were terminated in the made ground at 0.8m, whilst probehole 4 was terminated at 1.8m. In each case an obstruction was revealed and the excavation works could not continue.

Trialpit 1 was extended by probing and the made ground was proved to 2.6m depth. Brown sandy gravel was revealed at this depth and proved to 2.8m the work being terminated at this depth.

Trialpit 1 indicated that the "foundation" extended to a depth of 970mm below surface, which locates it within made ground. It is not clear, however, whether the concrete revealed in the trialpit is part of a more comprehensive foundation system, for example a pile cap or beam associated with piled foundations supporting the building, piling being completed in view of the depth of made ground.

No groundwater strikes were noted during the siteworks. Consequently, no short-term standing water levels were recorded.

4.0 LABORATORY TESTING

4.1 Chemical Analyses - Contamination

Samples of the made ground have been analysed for the presence of contamination in accordance with the current CLEA guidelines together with other currently available guidance data. This work has been completed in the *M*CERTS and UKAS accredited laboratories operated by SAL Ltd. The results are presented as Appendix 4 to this report.

5.0 DISCUSSION OF GROUND CONDITIONS

It is understood that consideration is being given to the construction of extensions to Astor College. At the time of the preparation of this report the extent of the proposed works had not been finalised.

Samples of the near surface made ground have been tested for a range of parameters based upon the CLEA framework. These results can be used, when the scope of works is finalised, to complete an assessment in respect of the potential risk to human health, using the available data published at the time of the issue of this report. This includes SGVs published in 2009 by the Environment Agency, the LQM/CIEH GAC and where applicable the EIC/AGS/CL:AIRE GAC. The tables, which comprise Appendix 5, list the determinants, current guideline values and their sources. Where no current UK standard guidelines exist for the proposed land use it will be appropriate to refer to the Atkins ATRISK^{SOIL} SSVs and WSVs. There is no current UK standard guideline for Lead. Therefore, the ATRISK^{SOIL} SSV for derived for Lead should be considered.

A preliminary assessment of the results indicates that high levels of Lead have been determined. Hence, the potential impact of the high Lead levels should be considered when establishing Health & Safety protocols for the development of this site.

The landfill directive indicates that there is a duty of care that all controlled wastes are transferred to an authorised person or site. The waste holder should take all reasonable steps to ensure that there are no unauthorised deposits and documentation is maintained for the movement and management and should include a List of Wastes code, in accordance with the 2005 Regulations. The soils descriptions and contamination test results should be used by the waste producer to provide a List of Wastes Code and thus identify sites which will accept the excavated materials. The waste regulations have stipulated that all building waste should be treated prior to disposal. A précis of the regulations is included within Appendix 5.

6.0 **REFERENCES**

- 2009a, Environment Agency "Human health toxicological assessment of contaminants in soil." Science Report: SC050021/SR2.
- 2009b, Environment Agency "Updated technical background to the CLEA model." Science Report: SC050021/SR3.
- 2009 "LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd Edition)."
- 2010 "EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment."
- Atkins ATRISK^{SOIL} Screening Values: www.atrisksoil.co.uk

7.0 GLOSSARY

b(a)p	benzo(a)pyrene
CIEH	Chartered Institute of Environmental Health
GAC	Generic Assessment Criteria
PAH	Polycyclic Aromatic Hydrocarbons

- PID Photo Ionisation Detector
- SGV Soil Guideline Value

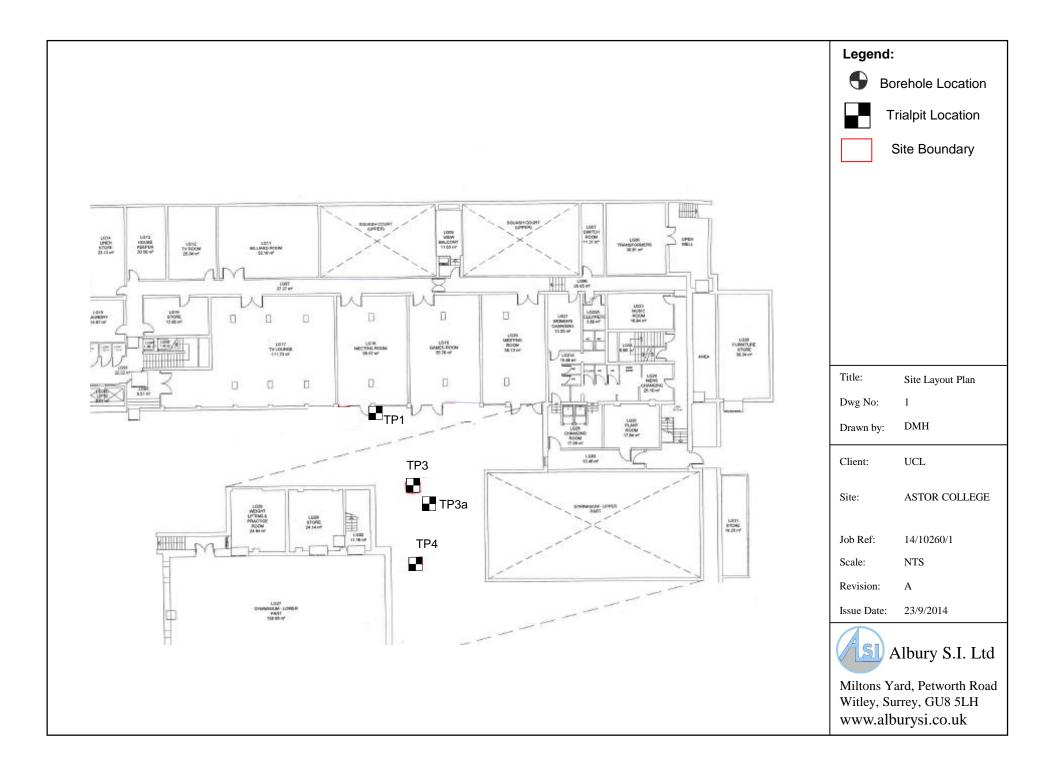
- SOM Soil Organic Matter
- SSV Soil Screening Values
- SVOC Semi-volatile Organic Compounds
- TPH Total Petroleum Hydrocarbon
- VOC Volatile Organic Compound
- WSV Water Screening Values

Order

Miltons Yard Petworth Road Witley Godalming Surrey GU8 5LH Email info@alburysi.co.uk Tel 01428 684836 Fax 01428 685261

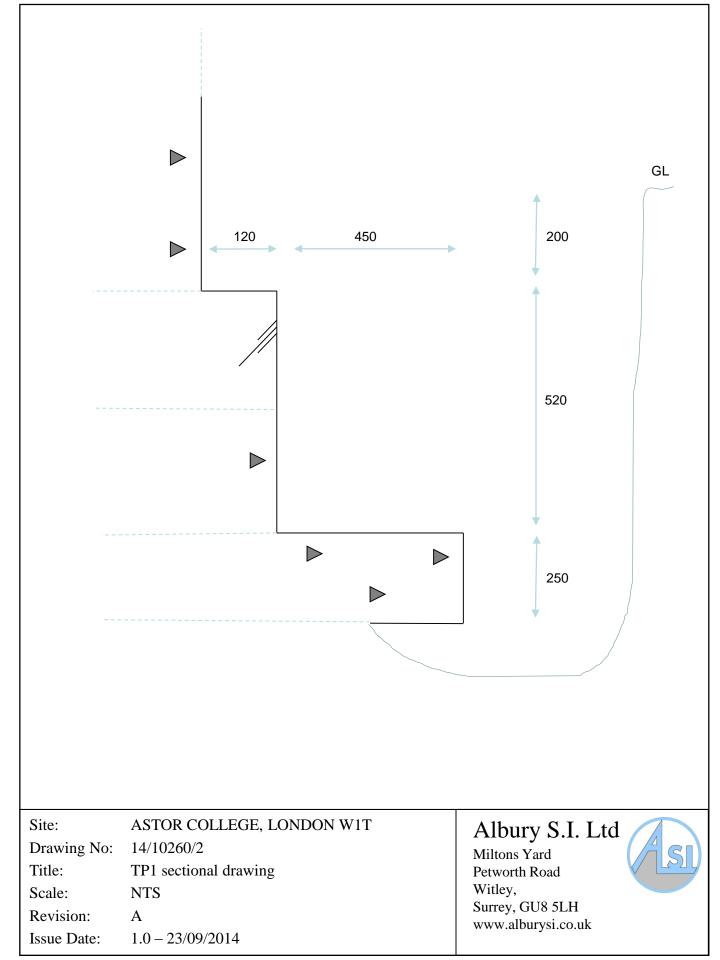
Geotechnical and environmental testing specialists

ORDER MANDATE FORM


To be signed by Client or signatory responsible for payment of invoice

Client Name	CARTER CLACK	CARTER CLACK					
Invoicing Address	49 ROMNEY STREE LONDON SW1P 3RF	ΞT					
Telephone No	0207 233 0303	0207 233 0303 Email Address timsmith@carterclack.co.uk					
Registered Address (if different from above)							
Company Reg No	2001554	VAT No	333 2391 80				
Estimate Ref	AD13/8/14b	Estimate Date	8 th September 2014				
Site Address	UCL Astor College Charlotte Street London W1T 4QB						
Your Order No	4370						
To be signed by th	e Client or signatory	responsible for	payment of invoice				
I hereby confirm ac agree to the Condition	•	nate detailed abov	ve from Albury SI Ltd and				
Signed	nut	Dated <i>03.0</i>	9.14				
Print Name <i>Tiu. Suith</i>		Position in Company	DIRECTOR_				

On receipt of this form duly completed the required works will be placed into programme


C V Sweby C Eng MICE K J Clark BSc Hons Registered Office Beechey House, 87 Church Street, Crowthorne, Berkshire RG45 7AW Registered Number 2702786 England

Site Plan

Boring Records and Trialpit Section

ALBU	JRY S. I	. Ltd Pet	worth Road	Witley Su	rrey GU8 5LH	Trialpit 1
Contra	ict	Charlotte	e Street, Lo	ondon W1		Report 14/10260/CVS
Client		UCL				Date 8/9/2014
Site Ad	dress	UCL, Ch	arlotte Str	eet, St Pa	ncras,London W1T 4QB	Ground Level mOD
Type of I	Excavator	Manual/I	HA	Water 1	evel after completion, m	none
	trikes, m	Pit Dim	ensions, m	Ease o	f Excavation, m	
1 2.70 2)	Length Breadth	0.90 0.40	Very e Moder		Difficult 2.60-2.80 Very hard
Remarl	śs	Dicadu	0.40			
Sample Type	Depth, m	Shear Strength kPa	Scale 40 Depth	mm: 1m Legend	De	escription
		ici ti	0.20	$\left \right\rangle$	Made ground (paving sla	
D	0.25				Made ground (dark brow brick and concrete fragm	n silty sand with extensive ents and occasional metal
D	0.50			\mathbb{K}	and roots)	
D	1.00		0.95		×	
				\times	Made ground (brown silt brick fragments)	y/clayey sand with gravel and
				\times	() () () () () () () () () ()	
D	1.50			\times		
D	2.00			\times		
D	2.00			$\times \times$		
				\times		
D	2.50			\times		
D	2.70		2.60	× ```	Brown silty sandy gravel	
			2.80	·D · *.		

						Demont
Contract		Charlotte	Street, Lor	ndon W1		Report 14/10260/CVS No
Client		UCL				Date 8/9/2014
Site Addro	ess	Charlotte	Street, St I	ancras,	London W1T 4QB	Ground Level mOD
Type of Exc	cavator	Manual		Water le	evel after completion, m	none
Water Stri	kes, m	Pit Dim	ensions, m	Ease of	f Excavation, m	
1 none 2		Length Breadth	0.40 0.40	Very ea Modera		Difficult Very hard 0.80+
Remarks		Dieddin	0.10			very hard 0.00
Sample I Type I	Depth, m	Shear Strength kPa	Scale 40m Depth	m: 1m Legend		Description
				\times	Made ground (paving	slab over concrete)
D	0.25		0.25		gravel fragments)	own silty sand with brick and own peaty silty sand with brick

Contra	ict	Charlotte	e Street, Lon	idon W1		Report 14/10260/CVS
						1N0
Client		UCL				Date 8/9/2014
Site Ad	dress	Charlotte	e Street, St F	ancras,	London W1T 4QB	Ground Level mOD
Type of	Excavator	Manual		Water 1	evel after completion, m	none
	trikes, m	Pit Dim	ensions, m	Ease of	f Excavation, m	
1 non 2	e	Length Breadth	0.40 0.40	Very e Moder		Difficult Very hard 0.80+
Remarl	ζS	Dicauti	0.40	Woder	atc 0L-0.00	Very hard 0.00+
Sample Type	Depth, m	Shear Strength kPa	Scale 40m Depth	m: 1m Legend	D	escription
		KI d		$\times \times$	Made ground (paving sl	ab over sand)
D	0.25		0.25	$\overline{\times}$	Made ground (dark brow	vn silty sand with brick and
D	0.50			\times	gravel fragments and roo	ots)
				\otimes		
			0.80	$ \land \land $	Obstruction	
			· · · · · · · · · · · · · · · · · · ·			

Contra	ct	Charlotte	e Street, Lo	ondon W1		Report 14/10260/CVS
Client		UCL				Date 8/9/2014
Site Ad	dress	Charlotte	e Street, St	Pancras,	London W1T 4QB	Ground Level
Type of I	Excavator	Window	Sampler	Water l	evel after completion, m	mOD none
Water S	trikes, m	Pit Dim	ensions, m	Ease of	f Excavation, m	
1 non 2	5	Length Breadth	0.40 0.40	Very e Moder		Difficult Very hard 1.80+
Remarl	KS	Dicadu	0.40	Widden		vorginara 1.007
Sample Type	Depth, m	Shear Strength	Scale 40 Depth	nm: 1m Legend	D	escription
		kPa	0.20		Made ground (paving sl	ab over concrete)
D	0.25		0.20	$\left \right\rangle$	Made ground (dark brow gravel fragments)	wn silty sand with brick and
D	0.50					wn peaty silty sand with brick
			0.90	\mid		
D	1.00				Made ground (brown si fragments)	Ity sand with brick and gravel
			1.40	$\left \right\rangle$		
D	1.50				Made ground (brown si particles)	lty sand with occasional brick
			1.80	\square	Obstruction	
				-		
				-		
				-		
				-		
				-		
				-		
				-		

Laboratory Test Results

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Scientific Analysis Laboratories Ltd

Certificate of Analysis

3 Crittall Drive Springwood Industrial Estate Braintree Essex CM7 2RT Tel : 01376 560120 Fax : 01376 552923

Report Number: 421953-1

Date of Report: 24-Sep-2014

Customer: Albury S.I. Ltd Miltons Yard Petworth Road Witley Godalming Surrey GU8 5LH

Customer Contact: Mr Nick McKeon

Customer Job Reference: 14/10260/KJC Customer Purchase Order: 10827 Customer Site Reference: Charlotte St, W1 Date Job Received at SAL: 12-Sep-2014 Date Analysis Started: 15-Sep-2014 Date Analysis Completed: 24-Sep-2014

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs All results have been reviewed in accordance with QP22

Report checked and authorised by : Miss Claire Brown Customer Service Manager Issued by : Miss Claire Brown Customer Service Manager

SAL Reference: 421	953					
Project Site: Cha		1				
Customer Reference: 14/1						
Soil Ana	lysed as Sc	oil				
Albury SI Suite 1						
					101050 001	404050.000
		0	-	L Reference	421953 001	421953 002
		Custor		e Reference ate Sampled	BH1 @ 0.5m 11-SEP-2014	BH4 @ 0.5m 11-SEP-2014
			Di		Fill	Fill
	1	1	1	Туре	FIII	FIII
Determinand	Method	Test Sample	LOD	Units		
Arsenic	T257	A40	2.0	mg/kg	14	26
Beryllium	T245	A40	0.5	mg/kg	0.6	1.0
Boron (water-soluble)	T82	A40	1	mg/kg	<1	<1
Cadmium	T257	A40	0.1	mg/kg	0.2	0.3
Chromium	T257	A40	0.5	mg/kg	15	11
Copper	T257	A40	2	mg/kg	110	250
Lead	T257	A40	2	mg/kg	940	2100
Mercury	T245	A40	1.0	mg/kg	3.6	12
Nickel	T257	A40	0.5	mg/kg	17	23
Selenium	T257	A40	3	mg/kg	<3	<3
Vanadium	T257	A40	0.1	mg/kg	32	47
Zinc	T257	A40	2	mg/kg	250	150
Asbestos ID	T27	A40			Asbestos not detected	Asbestos not detected
Chromium (trivalent)	T85	A40	2	mg/kg	15	11
Chromium VI	T82	A40	1	mg/kg	<1	<1
рН	T7	A40			9.4	7.6
(Water Soluble) SO4 expressed as SO4	T242	A40	0.01	g/l	1.4	1.4
SO4(Total)	T102	A40	0.02	%	0.82	1.4
Sulphide	T4	A40	10	mg/kg	<10	<10
Sulphur (total)	Т6	A40	0.01	%	0.31	0.52
Total Organic Carbon	T21	A40	0.1	%	3.3	8.4
Cyanide(Total)	T4	AR	1	mg/kg	<1	<1
Phenols(Mono)	T221	AR	0.5	mg/kg	⁽⁶³⁾ <1.0	⁽⁶³⁾ <1.0
Moisture @ 105 C	T162	AR	0.1	%	15	23
Retained on 2mm	T2	AR	0.1	%	⁽³²⁾ <0.1	(32) <0.1

SAL Reference: 421953 Project Site: Charlotte St, W1 Customer Reference: 14/10260/KJC

Soil

Analysed as Soil Total and Speciated USEPA16 PAH (SE) (MCERTS)

			SA	L Reference	421953 001	421953 002
		Custor	ner Sampl	e Reference	BH1 @ 0.5m	BH4 @ 0.5m
			Da	ate Sampled	11-SEP-2014	11-SEP-2014
				Туре	Fill	Fill
Determinand	Method	Test Sample	LOD	Units		
Naphthalene	T16	AR	0.1	mg/kg	<0.1	0.2
Acenaphthylene	T16	AR	0.1	mg/kg	<0.1	<0.1
Acenaphthene	T16	AR	0.1	mg/kg	<0.1	<0.1
Fluorene	T16	AR	0.1	mg/kg	<0.1	<0.1
Phenanthrene	T16	AR	0.1	mg/kg	0.3	0.6
Anthracene	T16	AR	0.1	mg/kg	<0.1	<0.1
Fluoranthene	T16	AR	0.1	mg/kg	0.7	<0.1
Pyrene	T16	AR	0.1	mg/kg	0.7	0.1
Benzo(a)Anthracene	T16	AR	0.1	mg/kg	0.4	0.1
Chrysene	T16	AR	0.1	mg/kg	0.5	0.2
Benzo(b/k)Fluoranthene	T16	AR	0.1	mg/kg	0.8	0.2
Benzo(a)Pyrene	T16	AR	0.1	mg/kg	0.4	<0.1
Indeno(123-cd)Pyrene	T16	AR	0.1	mg/kg	0.2	<0.1
Dibenzo(ah)Anthracene	T16	AR	0.1	mg/kg	<0.1	<0.1
Benzo(ghi)Perylene	T16	AR	0.1	mg/kg	0.2	<0.1
PAH(total)	T16	AR	0.1	mg/kg	4.3	1.5

SAL R	eference:	421953				
Pre	oject Site:	Charlotte	St, W1			
Customer R	eference:	14/10260	/KJC			
Soil		Analysed	as Soil			
Miscellaneous						
			SA	L Reference	421953 001	421953 002
		Custor	ner Sampl	e Reference	BH1 @ 0.5m	BH4 @ 0.5m
			Da	ate Sampled	11-SEP-2014	11-SEP-2014
				Туре	Fill	Fill
Determinand	Method	Test Sample	LOD	Units		
TPH (C10-C12)	T219	AR	2	mg/kg	<2	<2
TPH (C12-C16)	T219	AR	2	mg/kg	<2	<2
TPH (C16-C21)	T219	AR	2	mg/kg	<2	<2
TPH (C21-C35)	T219	AR	2	mg/kg	85	28
TPH (C35-C40)	T219	AR	2	mg/kg	150	19
TPH (C10-C40)	T219	AR	10	mg/kg	240	47

Index to symbols used in 421953-1

Value	Description							
AR	As Received							
A40	Assisted dried < 40C							
32	Whole sample was crushed							
63	LOD was raised because an alternative analytical procedure was used							
W	Analysis was performed at another SAL laboratory							
S	Analysis was subcontracted							
U	Analysis is UKAS accredited							
Ν	Analysis is not UKAS accredited							

Notes

	Sub contracted analysis performed by SAL Manchester & REC Asbestos Limited						
	Retained on 2mm is removed before analysis						
Repor	ted results on as received samples are corrected to a 105 degree centionade dry weight basis excent TPH Banded						

Method Index

Value	Description
T245	ICP/OES(Aqua Regia Extraction)
T27	PLM
T7	Probe
T4	Colorimetry
T85	Calc
T242	2:1 Extraction/ICP/OES (TRL 447 T1)
T16	GC/MS
T162	Grav (1 Dec) (105 C)
T21	OX/IR
T2	Grav
Т6	ICP/OES
T82	ICP/OES (Sim)
T102	ICP/OES (HCI extract)
T219	GC/FID (SE)
T221	Colorimetry (CE)
T257	ICP/OES (SIM) (Aqua Regia Extraction)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
TPH (C10-C12)	T219	AR	2	mg/kg	U	001-002
TPH (C12-C16)	T219	AR	2	mg/kg	U	001-002
TPH (C16-C21)	T219	AR	2	mg/kg	U	001-002
TPH (C21-C35)	T219	AR	2	mg/kg	U	001-002
TPH (C35-C40)	T219	AR	2	mg/kg	N	001-002
TPH (C10-C40)	T219	AR	10	mg/kg	U	001-002

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Arsenic	T257	A40	2.0	mg/kg	U	001-002
Beryllium	T245	A40	0.5	mg/kg	U	001-002
Boron (water-soluble)	T82	A40	1	mg/kg	N	001-002
Cadmium	T257	A40	0.1	mg/kg	U	001-002
Chromium	T257	A40	0.5	mg/kg	U	001-002
Copper	T257	A40	2	mg/kg	U	001-002
Lead	T257	A40	2	mg/kg	U	001-002
Mercury	T245	A40	1.0	mg/kg	U	001-002
Nickel	T257	A40	0.5	mg/kg	U	001-002
Selenium	T257	A40	3	mg/kg	U	001-002
Vanadium	T257	A40	0.1	mg/kg	U	001-002
Zinc	T257	A40	2	mg/kg	U	001-002
Asbestos ID	T27	A40			SU	001-002
Chromium (trivalent)	T85	A40	2	mg/kg	N	001-002
Chromium VI	T82	A40	1	mg/kg	N	001-002
pH	T7	A40			U	001-002
(Water Soluble) SO4 expressed as SO4	T242	A40	0.01	g/l	U	001-002
SO4(Total)	T102	A40	0.02	%	U	001-002
Sulphide	T4	A40	10	mg/kg	N	001-002
Sulphur (total)	T6	A40	0.01	%	U	001-002
Total Organic Carbon	T21	A40	0.1	%	WN	001-002
Cyanide(Total)	T4	AR	1	mg/kg	U	001-002
Phenols(Mono)	T221	AR	0.5	mg/kg	U	001-002
Moisture @ 105 C	T162	AR	0.1	%	N	001-002
Retained on 2mm	T2	AR	0.1	%	N	001-002
Naphthalene	T16	AR	0.1	mg/kg	U	001-002
Acenaphthylene	T16	AR	0.1	mg/kg	U	001-002
Acenaphthene	T16	AR	0.1	mg/kg	U	001-002
Fluorene	T16	AR	0.1	mg/kg	U	001-002
Phenanthrene	T16	AR	0.1	mg/kg	U	001-002
Anthracene	T16	AR	0.1	mg/kg	U	001-002
Fluoranthene	T16	AR	0.1	mg/kg	N	001-002
Pyrene	T16	AR	0.1	mg/kg	N	001-002
Benzo(a)Anthracene	T16	AR	0.1	mg/kg	U	001-002
Chrysene	T16	AR	0.1	mg/kg	U	001-002
Benzo(b/k)Fluoranthene	T16	AR	0.1	mg/kg	U	001-002
Benzo(a)Pyrene	T16	AR	0.1	mg/kg	U	001-002
Indeno(123-cd)Pyrene	T16	AR	0.1	mg/kg	U	001-002
Dibenzo(ah)Anthracene	T16	AR	0.1	mg/kg	U	001-002
Benzo(ghi)Perylene	T16	AR	0.1	mg/kg	U	001-002
PAH(total)	T16	AR	0.1	mg/kg	U	001-002

Contamination Guidelines

Soil Generic Assessment Criteria for Human Health - Inorganics

Determinand	Residential with consumption of home- grown produce	Residential without consumption of home- grown produce	Allotments	Commercial	GAC Source
Arsenic*	32	ND	43	640	EA SGV, 2009
Antimony	ND	550	ND	7500	EIC/AGS/CL:AIRE, 2010
Barium	ND	1300	ND	22000	EIC/AGS/CL:AIRE, 2010
Beryllium*	51	ND	55	420	LQM/CIEH, 2009
Boron*	291	ND	45	192000	LQM/CIEH, 2009
Cadmium*	10	ND	1.8	230	EA SGV, 2009
Chromium III*	627	ND	15300	8840	LQM/CIEH, 2009/2011
Chromium VI*	4.3	ND	2.1	35	LQM/CIEH, 2009
Copper*	2330	ND	524	71700	LQM/CIEH, 2009
Inorganic Mercury (Hg ²⁺)	170	ND	80	3600	EA SGV, 2009
Elemental Mercury (Hg ⁴)	1	ND	26	26	EA SGV, 2009
Methyl Mercury (Hg ⁺⁴)*	11	ND	8	410	EA SGV, 2009
Molybdenum	ND	670	ND	17000	EIC/AGS/CL:AIRE, 2010
Nickel*	130	ND	230	1800	EA SGV, 2009
Selenium*	350	ND	120	13000	EA SGV, 2009
Vanadium*	75	ND	18	3160	LQM/CIEH, 2009
Zinc*	3750	ND	618	665000	LQM/CIEH, 2009

*based on a sandy loam with soil organic matter of 6% and pH 7.0 (Environment Agency, 2009) ND: Not Derived

Soil Generic Assessment Criteria for Human Health - Organics

Determinand	Residential with consumption of home- grown produce	Residential without consumption of home- grown produce	Allotments	Commercial	GAC Source	
Benzene	0.33	ND	0.07	95	EA SGV, 2009	
Phenol	420	ND	280	32000	EA SGV, 2009	
Ethyl benzene	350	ND	90	2.8 x 10 ³	EA SGV, 2009	
Toluene	610	ND	120	4.4 x 10 ³	EA SGV, 2009	
o-xylene	250	ND	160	2.6 x 10 ³	EA SGV, 2009	
m-xylene	240	ND	180	3.0 x 10 ³	EA SGV, 2009	
p-xylene	230	ND	160	3.2 x 10 ³	EA SGV, 2009	

based on a sandy loam with soil organic matter of 6% and pH 7.0 (Environment Agency, 2009) ND: Not Derived

The above GAC are presented above for reference only and should be considered with their respective technical notes.

References:

Environment Agency, 2009. Updated technical background to the CLEA model. Science Report SC050021/SR3 LQM/CIEH, 2009. Generic Assessment Criteria for Human Health Risk Assessment (2nd Edition) including 2011 Cr (III) erratum EIC/AGS/CL:AIRE, 2010. Soil Generic Assessment Criteria for Human Health Risk Assessment.

(Version 7 - Sept 2014)

WASTE TREATMENT

The Landfill (England and Wales) Regulations 2002 require that waste (including inert arisings and contaminated soil) must be treated before it is disposed of at non-hazardous and inert landfills. The proposed treatment option must be compared against a 'three-point test'.

- 1. It must be a physical, thermal, chemical or biological process including sorting
- 2. It must change the characteristics of the waste; and
- 3. It must do so in order to:
 - a) reduce its volume; or
 - b) reduce its hazardous nature; or
 - c) facilitate its handling; or
 - d) enhance its recovery.

There are limited exceptions to the above:

- it is inert waste for which treatment is not technically feasible
- it is waste other than inert waste and treatment would not reduce its quantity or the hazards that it poses to human heath or the environment

The waste producer should either

- treat their own waste and provide information about the treatment for subsequent holders, or
- ensure that the waste would be treated by a subsequent holder prior to landfilling

The waste producer or holder should produce a written statement detailing the type of treatment and if relevant the amount of waste sorted out for recovery or alternative treatment.

Based on the foregoing Guidance, it is evident that the current methods of simply removing "contaminated" soil from the site will have to be amended. Preferably as much soil as possible should remain on site, where possible; for example, under areas of hard cover, paths, drives etc. Soils that are to be removed from site must be treated and this may simply be sorting for example the removal of brick and concrete, which can be crushed and used elsewhere. Contaminated soils will require treatment either on site or at a specialist facility prior to disposal. It will be important, therefore, to ensure that the new guidelines are followed during the development of the site. This is likely to have implications on the development in terms of cost and should be carefully considered prior to commencement.

