

## **Energy Statement**

### 36 Lancaster Grove

For Nicholas Taylor and Associates

May 2016

XCO2 energy

w: www.xco2energy.com :: e: mail@xco2energy.com t: +44 (0) 20 7700 1000 :: f: +44 (0) 020 7700 1000

17-18 Hayward's Place :: Clerkenwell :: London :: EC1R 0EQ



#### Contents

| Executive Summary                                           | 3  |
|-------------------------------------------------------------|----|
| Introduction                                                | 6  |
| Demand Reduction (Be Lean)                                  | 8  |
| Heating and Cooling Infrastructure (Be Clean) 1             | 10 |
| Renewable Energy (Be Green) 1                               | 12 |
| Conclusion 1                                                | 4  |
| Appendix A - SAP outputs for the existing building baseline |    |
| Appendix B - SAP outputs for the 'Be Lean' stage            |    |

#### About us:

XCO2 Energy are a low-carbon consultancy working in the built environment. We are a multi-disciplinary company consisting of both architects and engineers, with specialists including CIBSE low carbon consultants, Code for Sustainable Homes, EcoHomes and BREEAM assessors and LEED accredited professionals.

|                   | Issue 01   | Issue 02 | Issue 03  | Issue 04 | Issue 05 |
|-------------------|------------|----------|-----------|----------|----------|
| Remarks           | Draft      |          |           |          |          |
| Prepared by       | DB         | DB/SP    | DB/SP     |          |          |
| Checked by        | SP         | SP       | SP        |          |          |
| Authorised by     | RM         | RM       | RM        |          |          |
| Date              | 28/01/2016 | 6/5/2016 | 19/5/2016 |          |          |
| Project reference | 8612       | 8612     | 8612      |          |          |





#### **Executive Summary**

This report assesses the predicted energy performance and carbon dioxide emissions of the proposed development at 36 Lancaster Grove, based on the information provided by the design team.

The site is located between Lancaster Grove Road, Lambolle Place and Eton Ave within the London Borough of Camden, just north of Primrose Hill. The proposed scheme comprise the change of use, refurbishment and extension of the Grade II Listed former Belsize Park Fire Station Building into 10 units of apartment accommodation. The existing 7 units of residential accommodation will not form part of this application.

As the former Belsize Park Fire Station is a Listed Building located within the Belsize Park conservation area, all of the existing facades, roof, windows and floors will be retained and re-used as far as possible to maintain the character of the existing building.

In line with the 'GLA Guidance on preparing energy assessments' (April 2015) Sections 8.11-8.14, the existing building with it's current fabric and building services systems are used as the baseline condition for the scheme in this Energy Statement. The 7 no. existing residential accommodation, which do not form part of this application, has not been included in this assessment.

The methodology used to determine the  ${\rm CO_2}$  emissions is in accordance with the London Plan's three-step Energy Hierarchy (Policy 5.2) outlined below.

#### 1. Be Lean - use less energy

The first step deals with the reduction in energy use, through the adoption of sustainable design and construction measures. In accordance with this strategy, this development will incorporate a range of energy efficiency measures including the provision of a new and highly efficiency communal space heating and hot water system, electrical

rewiring to include provision of low energy lighting throughout the scheme, and insulation levels meeting Part L1B targets for the any new thermal elements. Insulation will also be provided between and below the rafters at the existing pitched roof. The improvements in the building systems and fabric have reduced regulated CO<sub>2</sub> emissions by 45.8% in comparison to the existing building, thus exceeding the requirements outlined by the Camden Council and London Plan 2015.

#### 2. Be Clean - supply energy efficiently

The second strategy takes into account the efficient supply of energy, by prioritising decentralised energy generation. The feasibility study showed that no district heating network currently exists within close proximity of the site. Due to the nature of the development, a CHP unit would not be an economically viable option. Hence, a high efficiency centralised gas boiler will be installed to provide space heating and hot water to all apartments.

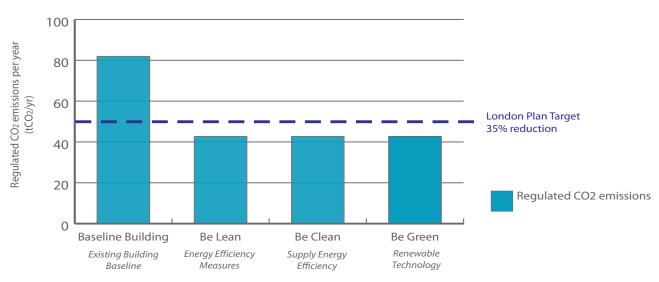
#### 3. Be Green - use renewable energy

The third strategy covers the use of renewable technologies. The feasibility study analysed a number of renewable technologies for their suitability for the site. The analysis included a biomass heating system, ground-source heat pumps, air-source heat pumps, photovoltaic panels, solar thermal and wind turbines.

The analysis demonstrated that due to the conservation requirements of the existing Grade II listed building, it will not be feasible to install renewable technologies without considerable alterations to the former Belsize Park Fire Station.

In total, the development is expected to reduce regulated  $\mathrm{CO}_2$  emissions by 47.9% when compared to the existing baseline building. This meets the London Plan  $\mathrm{CO}_2$  reduction target of 35% set out for all major developments.






#### **Conclusion**

The graph below provides a summary of the regulated CO<sub>2</sub> savings at each stage of the London Plan Energy Hierarchy. The table below and on the following page detail the regulated and unregulated emissions at each stage of the hierarchy.

It can be seen on the graph below that the development at 36 Lancaster Grove will achieve a regulated CO<sub>2</sub> saving exceeding the required 35% beyond the existing baseline building.

#### **36 Lancaster Grove Energy Hierarchy**



#### CO, Emissions Breakdown from each stage of the energy hierarchy

|                               | Carbon Dioxide Emissions (tonnes CO <sub>2</sub> per annum) |      |  |  |
|-------------------------------|-------------------------------------------------------------|------|--|--|
|                               | Regulated Total                                             |      |  |  |
| Existing building baseline    | 81.9                                                        | 95.5 |  |  |
| After energy demand reduction | 42.7                                                        | 56.3 |  |  |
| After CHP                     | 42.7                                                        | 56.3 |  |  |
| After renewable technologies  | 42.7                                                        | 56.3 |  |  |





### ${ m CO}_2$ Savings Breakdown from each stage of the energy hierarchy

|                                      | Regulated Carbon Dioxide Savings Tonnes CO <sub>2</sub> / year  % over baseline |       |  |
|--------------------------------------|---------------------------------------------------------------------------------|-------|--|
|                                      |                                                                                 |       |  |
| Savings from energy demand reduction | 39.2                                                                            | 47.9% |  |
| Savings from CHP                     | 0.0                                                                             | 0.0%  |  |
| Savings from renewable energy        | 0.0                                                                             | 0.0%  |  |
| Cumulative savings                   | 39.2                                                                            | 0.0%  |  |





#### Introduction

The proposed Belsize Park Fire Station development located at Lancaster, is a five-storey high Grade II listed building. It is a change of use development from a fire station to domestic units.

The site is located between Lancaster Grove Road, Lambolle Place and Eton Ave within the London Borough of Camden, just north of Primrose Hill. The proposed scheme comprise the change of use, refurbishment and extension of the Grade II Listed former Belsize Park Fire Station Building into 10 units of apartment accommodation. The existing 7 units of residential accommodation will not form part of this application.

This document demonstrates how the proposed development addresses the relevant energy policies of the London Plan 2015 (Further Alterations to the London Plan) and the requirements of Camden Council as outlined in their Core Strategy 2010-2025.

In particular this report responds to the energy policies of section 5 in the London Plan, including:

- Policy 5.2 Minimising Carbon Dioxide Emissions
- Policy 5.3 Sustainable Design and Construction
- Policy 5.5 Decentralised Energy Networks
- Policy 5.6 Decentralised Energy in Development proposals
- Policy 5.7 Renewable Energy where feasible.

and the Policy CS13 of the Camden's Core Strategy 2010-2025, which states the following in relation to sustainable redevelopment in the local area:

Camden Core Strategy 2010-2025: CS13 - Tackling climate change through promoting high environmental standards

## Reducing the effects of and adapting to climate change

The Council will require all development to take measures to minimise the effects of, and adapt to, climate change and encourage all development to meet the highest feasible environmental standards that are financially viable during construction and occupation by:

- ensuring patterns of land use that minimise the need to travel by car and help support local energy networks;
- promoting the efficient use of land and buildings;
- minimising carbon emissions from the redevelopment, construction and occupation of buildings by implementing, in order, all of the elements of the following energy hierarchy:
- 1. ensuring developments use less energy,
- making use of energy from efficient sources, such as the King's Cross, Gower Street, Bloomsbury and proposed Euston Road decentralised energy networks;
- 3. generating renewable energy on-site; and
- ensuring buildings and spaces are designed to cope with, and minimise the effects of, climate change.

The Council will have regard to the cost of installing measures to tackle climate change as well as the cumulative future costs of delaying reductions in carbon dioxide emissions

#### Local energy generation

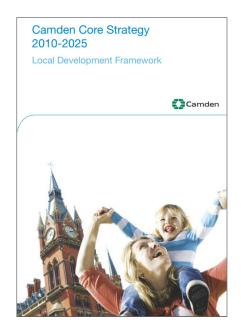
The Council will promote local energy generation and networks by:

 working with our partners and developers to implement local energy networks in the parts of Camden most likely to support them, i.e. in the vicinity of:





- 1. housing estates with community heating or the potential for community heating and other uses with large heating loads;
- 2. the growth areas of King's Cross; Euston; Tottenham Court Road; West Hampstead Interchange and Holborn:
- 3. schools to be redeveloped as part of Building Schools for the Future programme;
- 4. existing or approved combined heat and power/ local energy networks;


and other locations where land ownership would facilitate their implementation.

 protecting existing local energy networks where possible (e.g. at Gower Street and Bloomsbury) and safeguarding potential network routes (e.g. Euston Road);

#### Camden's carbon reduction measures

The Council will take a lead in tackling climate change by:

- taking measures to reduce its own carbon emissions;
- triallng new energy efficient technologies, where feasible; and
- raising awareness on mitigation and adaptation measures



Furthermore, the Camden Core Strategy recommends that:

Given the large proportion of development in the borough that relates to existing buildings, we will expect proportionate measures to be taken to improve their environmental sustainability, where possible.

The methodology employed in this Energy Statement to determine the potential CO<sub>2</sub> savings for this development, is in accordance with the three step Energy Hierarchy outlined in the London Plan:

- Be Lean Improve the energy efficiency of the scheme
- Be Clean Supply as much of the remaining energy requirement with low-carbon technologies such as combined heat and power (CHP)
- Be Green Offset a proportion of the remaining carbon dioxide emissions by using renewable technologies.

It should be noted that due to the change-ofuse and refurbishment nature of the proposed development, the baseline conditions for the development are calculated based on the existing fabric and services of the retained building.

Energy calculations were carried out using the SAP (Standard Assessment Procedure) methodology. This is in line with Building Regulations Part L 2013. The SAP sheets for the existing building baseline is presented in Appendix A, while those for the proposed development is presented in Appendix B.





#### **Demand Reduction (Be Lean)**

#### **Passive Design Measures**

#### **Enhanced Building Fabric**

The heat loss of different building elements is dependent upon their U-value. The lower the U-value, the better the level of insulation of a particular element. A building with low U-values has a reduced heating demand during the cooler months.

The extended portions of the development at 36 Lancaster Grove will incorporate insulation meeting building regulation Part L1B threshold U-values and high efficiency glazing where possible in order to reduce the demand for space heating (see tables below).

Insulation would be installed to between and below the rafters of the existing pitched roof of the building, to achieve a u-value of circa 0.28 W/m2.K. However, it must be noted that since the building is a Grade II listed structure of heritage interest, alteration of the existing fabric elements (external walls, floors, roofs and such) will impact the original character of the building, no changes apart from addition of roof insulation will be made to the existing fabric elements.

Heating and hot water to the apartments will be supplied by a communal heating system with a centralised high efficiency gas boiler.

#### **Air Tightness**

Heat loss may also occur due to air infiltration. Although this cannot be eliminated altogether, good construction detailing and the use of best practice construction techniques can minimise the amount of air infiltration into a building.

Current Part L Building Regulations (2013) sets a maximum air permeability rate of 10m³/m² at 50Pa for new build dwellings. The development will achieve this air tightness as a minimum, through draught proofing and the application of best practice construction techniques.

#### **Daylight**

The development will aim to maintain the existing good sized windows to provide satisfactory levels of daylighting in all habitable spaces such as living rooms, as a way of improving the health and wellbeing of its occupants.

#### **Active Design Measures**

#### **High Efficacy Lighting**

The development intends to incorporate low energy lighting fittings throughout the dwellings and communal spaces. All light fittings will be specified as low energy lighting to minimise energy demand. Internal and external areas which are not frequently used will be fitted with occupant sensors, whereas daylit areas will be fitted with daylight sensors and timers.





#### **Energy Demand**

The table below shows a breakdown of energy demand for space conditioning and electricity. These figures indicate baseline and Lean demand after energy efficiency measures have been applied.

The table below demonstrates the energy savings achieved through energy efficiency measures (Lean stage of the Energy Hierarchy).

#### Breakdown of Energy Consumption and CO<sub>2</sub> Emissions

|                                 | Baseline Building    |                                                           |                                                          |                      | Lean                                                      |                                                          |
|---------------------------------|----------------------|-----------------------------------------------------------|----------------------------------------------------------|----------------------|-----------------------------------------------------------|----------------------------------------------------------|
|                                 | Energy<br>(kWh/year) | CO <sub>2</sub><br>emissions<br>(kgCO <sub>2</sub> /year) | CO <sub>2</sub> (kgCO <sub>2</sub> /<br>m <sup>2</sup> ) | Energy<br>(kWh/year) | CO <sub>2</sub><br>emissions<br>(kgCO <sub>2</sub> /year) | CO <sub>2</sub> (kgCO <sub>2</sub> /<br>m <sup>2</sup> ) |
| Hot Water                       | 23,100               | 7,780                                                     | 10.5                                                     | 21,000               | 5,150                                                     | 6.9                                                      |
| Space Heating                   | 210,590              | 71,100                                                    | 95.8                                                     | 145,830              | 35,760                                                    | 48.1                                                     |
| Cooling                         | 0                    | 0                                                         | 0.0                                                      | 0                    | 0                                                         | 0.0                                                      |
| Auxiliary                       | 0                    | 0                                                         | 0.0                                                      | 0                    | 0                                                         | 0.0                                                      |
| Lighting                        | 5,810                | 3,010                                                     | 4.1                                                      | 3,420                | 1,770                                                     | 2.4                                                      |
| Equipment (not incl. in Part L) | 26,310               | 13,660                                                    | 18.4                                                     | 26,310               | 13,660                                                    | 18.4                                                     |
| Total Part L                    | 239,490              | 81,900                                                    | 110.4                                                    | 170,250              | 42,680                                                    | 57.4                                                     |
| Total (incl. Equip)             | 265,800              | 95,650                                                    | 128.7                                                    | 196,560              | 56,330                                                    | 75.8                                                     |

#### CO, Emissions

The table below shows the regulated and unregulated carbon dioxide emissions for the baseline scheme and the emissions after the passive

and active lean measures have been implemented. A saving exceeding the required 35% is expected from the regulated CO<sub>2</sub> emission over the existing building.

#### CO<sub>2</sub> Emissions Breakdown at Lean stage

|                                      | Carbon Dioxide emissions (tonnes CO <sub>2</sub> per annum) |      |      |  |  |  |
|--------------------------------------|-------------------------------------------------------------|------|------|--|--|--|
|                                      | Regulated Unregulated Total                                 |      |      |  |  |  |
| Baseline building                    | 81.9                                                        | 13.7 | 95.5 |  |  |  |
| After energy demand reduction (Lean) | 13.7 56.3                                                   |      |      |  |  |  |

|                                      | Carbon dioxide savings<br>(tonnes CO <sub>2</sub> per annum) |  |           | e savings from<br>ne (%) |
|--------------------------------------|--------------------------------------------------------------|--|-----------|--------------------------|
|                                      | Regulated Total                                              |  | Regulated | Total                    |
| Savings from energy demand reduction | 39.2 39.1                                                    |  | 47.9%     | 41.0%                    |



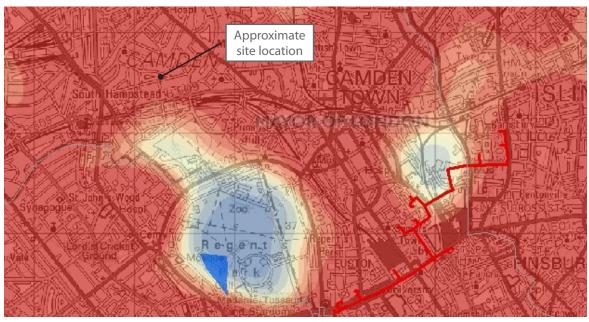


## **Heating and Cooling Infrastructure (Be Clean)**

#### **Energy System Hierarchy**

The energy system for the development has been selected in accordance with the London Plan decentralised energy hierarchy. The hierarchy listed in Policy 5.6 states that energy systems should consider:

- 1. Connection to existing heating and cooling networks
- 2. Site wide CHP network
- 3. Communal heating and cooling


Local supply of heat and power minimise distribution losses, thereby achieving a greater efficiency and reducing CO<sub>2</sub> emissions, when compared to the individual systems.

In a communal energy system, energy in the form of heat, cooling, and/or electricity is generated from a central source and distributed via a network to surrounding residencies and commercial units.

## Connection to Existing Low Carbon Heat Distribution Networks

The London Heat Map identifies existing and potential opportunities for decentralised energy projects in London. It builds on the 2005 London Community Heating Development Study. An excerpt from the London Heat Map below shows the energy demand for different areas. Darker shades of red signify areas where energy demand is high. The map also highlights any existing and proposed district heating network (DHN) within the vicinity of the development.

A review of the map shows that the closest existing or proposed heat networks approximately 1.4 miles to the south-east of the site. The scale of the development does not make it economically viable for connection with networks located at a distance from the site. For this reason connection to district heat networks are not currently considered feasible.



London Heat Map with proposed district heat network outlined in red





#### **Combined Heat and Power (CHP)**

CHP, or Co-generation is the production of electricity and useful heat from a single engine. Unlike conventional electricity generation, heat is re-used in a CHP system, primarily for hot water, thereby improving the overall energy conversion from 25-35% to around 80%.

Due to the type and size of the development, this technology would not be suitable for this site. The hot water load of the site would not be sufficient to justify the use of this technology.

Hence, this technology is deemed to be unsuitable for the development at 36 Lancaster Grove. The proposed development will be served by a communal heating network with a centralised gas boiler.

There will be no further reduction in  $CO_2$  emissions at the Clean Stage.



An example of a CHP engine (courtesy of Baxi)

#### CO<sub>2</sub> Emissions Breakdown at Clean stage

|                                      | Carbon Dioxide emissions (tonnes CO <sub>2</sub> per annum) |      |      |  |  |
|--------------------------------------|-------------------------------------------------------------|------|------|--|--|
|                                      | Regulated Unregulated Total                                 |      |      |  |  |
| Baseline building                    | 81.9                                                        | 13.7 | 95.5 |  |  |
| After energy demand reduction (Lean) | 42.7 13.7 56.3                                              |      |      |  |  |
| After CHP (Clean)                    | 42.7 13.7 56.3                                              |      |      |  |  |

|                                      | Carbon dioxide savings (tonnes CO <sub>2</sub> per annum)  Regulated Total |      | Carbon dioxide savings fro<br>baseline (%) |       |
|--------------------------------------|----------------------------------------------------------------------------|------|--------------------------------------------|-------|
|                                      |                                                                            |      | Regulated                                  | Total |
| Savings from energy demand reduction | 39.1                                                                       | 39.2 | 47.9%                                      | 41.0% |
| Savings from clean technologies      | 0.0                                                                        | 0.0  | 0.0%                                       | 0.0%  |





#### **Renewable Energy (Be Green)**

Once the energy demand has been minimised, methods of generating low and zero carbon energy can be assessed. The renewable technologies to be considered for the development are:

- Biomass
- Photovoltaic panels
- Solar thermal panels
- Ground/water source heat pumps
- Air source heat pump
- Wind energy

The table below summarises the factors taken into account in determining the appropriate renewable technology for this project. This includes estimated lifetime, level of maintenance, and level of impact on external appearance. The final column indicates the feasibility of the technology in relation to the site conditions (10 being the most feasible and 0 being infeasible).

The analysis demonstrated that due to the conservation requirements of the existing Grade II listed building, it will not be feasible to install renewable technologies without considerable construction and alterations to the former Belsize Park Fire Station building.

|         | 36 Lancaster Grove                                                                                                                                                 |          |             |                                     |                     |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-------------------------------------|---------------------|--|
|         | Comments                                                                                                                                                           | Lifetime | Maintenance | Impact on<br>External<br>Appearance | Site<br>Feasibility |  |
| Biomass | Not adopted -burning of wood pellets releases high NOx emissions and there are limitations for their storage and delivery within an urban location.                | 20yrs    | High        | High                                | 1                   |  |
| A       | Not adopted - PV panels mounted on the pitched roof would significantly alter the appearance and character of the Listed Building.                                 | 25yrs    | Low         | Med                                 | 3                   |  |
| Solar   | Not adopted - Solar thermal array mounted on the pitched roof would significantly alter the appearance and character of the Listed Building.                       | 25yrs    | Low         | Med                                 | 3                   |  |
| GSHP    | Not adopted -the installation of ground loops require significant space, additional time at the beginning of the construction process and very high capital costs. | 20yrs    | Med         | Low                                 | 1                   |  |
| ASHP    | Not adopted -ASHP evaporator units are located externally and produce noise which can be an issue in a residential location, especially at night.                  | 20yrs    | Med         | Med                                 | 3                   |  |
| Wind    | Not adopted - Wind turbines located at the site will have a significant visual impact on the existing building within the Conservation Area.                       | 25yrs    | Med         | High                                | 1                   |  |





#### CO<sub>2</sub> Emissions

The table below shows the regulated and unregulated carbon dioxide emissions for the baseline scheme and the emissions after the lean, clean and green measures have been implemented.

The proposed Energy Strategy outlined in this document achieved significant  ${\rm CO_2}$  savings for this development. The savings achieved through sustainable design measures alone are significant.

The figures below show a CO<sub>2</sub> reduction in regulated emissions exceeding the required 35% when compared to the building with its existing fabric and systems.

#### CO<sub>2</sub> Emissions Breakdown

|                                      | Carbon Dioxide emissions (tonnes CO <sub>2</sub> per annum) |      |      |  |  |  |
|--------------------------------------|-------------------------------------------------------------|------|------|--|--|--|
|                                      | Regulated Unregulated Total                                 |      |      |  |  |  |
| Baseline building                    | 81.9                                                        | 13.7 | 95.5 |  |  |  |
| After energy demand reduction (Lean) | 42.7                                                        | 13.7 | 56.3 |  |  |  |
| After CHP (Clean)                    | 42.7                                                        | 13.7 | 56.3 |  |  |  |
| After renewable technologies (Green) | 42.7 13.7 56.3                                              |      |      |  |  |  |

#### CO<sub>3</sub> Savings Breakdown at all stages for the energy hierarchy

|                                      | Carbon dioxide savings<br>(tonnes CO <sub>2</sub> per annum) |      | Carbon dioxide savings ov<br>baseline (%) |       |
|--------------------------------------|--------------------------------------------------------------|------|-------------------------------------------|-------|
|                                      | Regulated Total                                              |      | Regulated                                 | Total |
| Savings from energy demand reduction | 39.2                                                         | 39.2 | 47.9%                                     | 41.0% |
| Savings from CHP                     | 0.0 0.0                                                      |      | 0.0%                                      | 0.0%  |
| Savings from renewable energy        | 0.0                                                          | 0.0  | 0.0%                                      | 0.0%  |
| Cumulative savings                   | 39.2                                                         | 39.2 | 47.9%                                     | 41.0% |





#### **Conclusion**

In line with the London Plan's three step energy hierarchy, the regulated CO<sub>2</sub> emission savings for this development will exceed 35% when energy efficiency measures are taken into account.

The tables on the following page provide a breakdown of the CO<sub>2</sub> savings made at each stage of the Energy Hierarchy. The reductions made through each step have been outlined below:

#### 1. Be Lean - use less energy

The first step deals with the reduction in energy use, through the adoption of sustainable design and construction measures. In accordance with this strategy, this development will incorporate a range of energy efficiency measures including the provision of a new and highly efficiency communal space heating and hot water system, electrical rewiring to include provision of low energy lighting throughout the scheme, and insulation levels meeting Part L1B targets for the any new thermal elements.

Insulation will also be provided between and below the rafters at the existing pitched roof. The improvements in the building systems and fabric have reduced regulated CO<sub>2</sub> emissions by 47.9% in comparison to the existing building, thus exceeding the requirements outlined by the Camden Council and London Plan 2015.

#### 2. Be Clean - supply energy efficiently

The second strategy takes into account the efficient supply of energy, by prioritising decentralised energy generation. The feasibility study showed that no district heating network currently exists within close proximity of the site. Due to the nature of the development, a CHP unit would not be an economically viable option. Hence, a high efficiency centralised gas boiler will be installed to provide space heating and hot water to all apartments.

#### 3. Be Green - use renewable energy

The feasibility study analysed a number of renewable technologies for their suitability for the site. The analysis included a biomass heating system, ground-source heat pumps, air-source heat pumps, photo voltaic panels, solar thermal and wind turbines.

The analysis demonstrated that due to the conservation requirements of the existing Grade II listed building, it will not be feasible to install renewable technologies without considerable alterations to the former Belsize Park Fire Station.

In total, the development is expected to reduce regulated CO<sub>2</sub> emissions by 47.9% when compared to the existing baseline building. This meets the London Plan CO<sub>2</sub> reduction target of 35% set out for all major developments.





### CO<sub>2</sub> Emissions Breakdown at all stages for the energy hierarchy

|                                       | Carbon Dioxid | de emissions (tonnes CC | D <sub>2</sub> per annum) |
|---------------------------------------|---------------|-------------------------|---------------------------|
|                                       | Regulated     | Unregulated             | Total                     |
| Baseline building                     | 81.9          | 13.7                    | 95.5                      |
| After energy demand reduction (Lean)  | 42.7          | 13.7                    | 56.3                      |
| After district heating system (Clean) | 42.7          | 13.7                    | 56.3                      |
| After renewable technologies (Green)  | 42.7          | 13.7                    | 56.3                      |

### ${\rm CO_2}$ Savings Breakdown at all stages for the energy hierarchy

|                                      |           | xide savings<br>per annum) | Carbon dioxide savings over baseline (%) |       |  |  |
|--------------------------------------|-----------|----------------------------|------------------------------------------|-------|--|--|
|                                      | Regulated | Total                      | Regulated                                | Total |  |  |
| Savings from energy demand reduction | 39.2      | 39.2                       | 47.9%                                    | 41.0% |  |  |
| Savings from district heating system | 0.0       | 0.0                        | 0.0%                                     | 0.0%  |  |  |
| Savings from renewable energy        | 0.0       | 0.0                        | 0.0%                                     | 0.0%  |  |  |
| Cumulative savings                   | 39.2      | 39.2                       | 47.9%                                    | 41.0% |  |  |





# Appendix A - SAP outputs for the existing building baseline

The DER from the FSAP modelling of the proposed development with the existing fabric and building services systems were used to calculate the baseline CO<sub>2</sub> emissions of the existing building.



|                                                                                          |                      | User De     | staile:            |             |              |          |           |                          |      |
|------------------------------------------------------------------------------------------|----------------------|-------------|--------------------|-------------|--------------|----------|-----------|--------------------------|------|
| A N                                                                                      |                      |             |                    |             | L            |          |           |                          |      |
| Assessor Name: Stroma FSAF                                                               | 2012                 |             | Stroma             |             |              |          | Maraia    | on: 1.0.3.4              |      |
| Software Name: Stroma FSAF                                                               | -                    |             | Softwa<br>.ddress: |             | SION:        |          | VEISIG    | )II. 1.0.3. <del>4</del> |      |
| Address: , london, NW3                                                                   |                      | perty A     | iduless.           | Offic 1     |              |          |           |                          |      |
| 1. Overall dwelling dimensions:                                                          | 41 0                 |             |                    |             |              |          |           |                          |      |
|                                                                                          |                      | Area        | (m²)               |             | Av. Hei      | ight(m)  |           | Volume(m³                | )    |
| Basement                                                                                 |                      |             | <u>`</u>           | (1a) x      |              | .25      | (2a) =    | 74.25                    | (3a) |
| Ground floor                                                                             |                      | 1           | 19                 | (1b) x      | 1.           | .65      | (2b) =    | 31.35                    | (3b) |
| Total floor area TFA = $(1a)+(1b)+(1c)+(1d)$                                             | )+(1e)+(1n)          |             | 52                 | (4)         |              |          | _         |                          |      |
| Dwelling volume                                                                          |                      |             |                    | (3a)+(3b    | )+(3c)+(3d   | )+(3e)+  | .(3n) =   | 105.6                    | (5)  |
| 2. Ventilation rate:                                                                     |                      |             |                    |             |              |          |           |                          |      |
| main heating                                                                             | secondary<br>heating | •           | other              |             | total        |          |           | m³ per hou               | r    |
| Number of chimneys 0                                                                     | + 0                  | +           | 0                  | = [         | 0            | X ·      | 40 =      | 0                        | (6a) |
| Number of open flues 0                                                                   | + 0                  | +           | 0                  | j = F       | 0            | x        | 20 =      | 0                        | (6b) |
| Number of intermittent fans                                                              |                      |             |                    | , <u> </u>  | 2            | x        | 10 =      | 20                       | (7a) |
| Number of passive vents                                                                  |                      |             |                    | Ī           | 0            | X.       | 10 =      | 0                        | (7b) |
| Number of flueless gas fires                                                             |                      |             |                    | Ī           | 0            | X -      | 40 =      | 0                        | (7c) |
|                                                                                          |                      |             |                    |             |              |          |           |                          | _    |
|                                                                                          |                      |             |                    |             |              |          | Air Ci    | nanges per ho            | _    |
| Infiltration due to chimneys, flues and fans                                             |                      |             |                    | ontinuo fr  | 20           |          | ÷ (5) =   | 0.19                     | (8)  |
| Number of storeys in the dwelling (ns)                                                   | піспаеа, ргосееа     | 10 (17), 01 | rierwise c         | onunue II   | om (9) to (  | 16)      |           | 0                        | (9)  |
| Additional infiltration                                                                  |                      |             |                    |             |              | [(9)     | -1]x0.1 = | 0                        | (10) |
| Structural infiltration: 0.25 for steel or tir                                           | nber frame or (      | ).35 for    | masonr             | y constr    | uction       | • ,      |           | 0                        | (11) |
| if both types of wall are present, use the value                                         | corresponding to t   |             |                    |             |              |          |           |                          | `    |
| deducting areas of openings); if equal user 0.3  If suspended wooden floor, enter 0.2 (u |                      | (sealed     | d) else (          | enter 0     |              |          |           | 0                        | (12) |
| If no draught lobby, enter 0.05, else ent                                                | ŕ                    | (000.00     | a), 0.00 ·         | 511101 0    |              |          |           | 0                        | (13) |
| Percentage of windows and doors drau                                                     |                      |             |                    |             |              |          |           | 0                        | (14) |
| Window infiltration                                                                      | 9 ٥                  | O           | ).25 - [0.2        | x (14) ÷ 1  | 00] =        |          |           | 0                        | (15) |
| Infiltration rate                                                                        |                      | (           | 8) + (10) +        | + (11) + (1 | 12) + (13) + | + (15) = |           | 0                        | (16) |
| Air permeability value, q50, expressed i                                                 | n cubic metres       | per hou     | ur per so          | uare m      | etre of e    | nvelope  | area      | 20                       | (17) |
| If based on air permeability value, then (18                                             |                      | •           | •                  | •           |              |          |           | 1.19                     | (18) |
| Air permeability value applies if a pressurisation t                                     | est has been done    | or a degr   | ee air per         | meability   | is being us  | sed      |           |                          | `    |
| Number of sides sheltered                                                                |                      |             |                    |             |              |          |           | 1                        | (19) |
| Shelter factor                                                                           |                      | (           | 20) = 1 - [        | 0.075 x (1  | 19)] =       |          |           | 0.92                     | (20) |
| Infiltration rate incorporating shelter factor                                           |                      | (:          | 21) = (18)         | x (20) =    |              |          |           | 1.1                      | (21) |
| Infiltration rate modified for monthly wind                                              | speed                |             |                    |             |              |          |           |                          |      |
| Jan Feb Mar Apr                                                                          | May Jun              | Jul         | Aug                | Sep         | Oct          | Nov      | Dec       | ]                        |      |
| Monthly average wind speed from Table 7                                                  | ,                    |             |                    |             |              |          |           | _                        |      |

4.9

4.4

4.3

3.8

3.8

3.7

4.3

4.5

4.7

5

(22)m=

| Wind Factor (2                                                                                                                                                                 | 22a)m =                                                                            | (22)m ÷                                                                       | 4                                                            |                          |                                                                |                                         |                                                                     |                                                                      |                                                                           |                      |             |             |                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------|-------------|-------------|----------------------------------------------------------------------------------------------|
| (22a)m= 1.27                                                                                                                                                                   | 1.25                                                                               | 1.23                                                                          | 1.1                                                          | 1.08                     | 0.95                                                           | 0.95                                    | 0.92                                                                | 1                                                                    | 1.08                                                                      | 1.12                 | 1.18        | ]           |                                                                                              |
| Adjusted infiltra                                                                                                                                                              | ation rate                                                                         | e (allowi                                                                     | ng for sh                                                    | nelter an                | d wind s                                                       | speed) =                                | (21a) x                                                             | (22a)m                                                               |                                                                           |                      |             |             |                                                                                              |
| 1.4                                                                                                                                                                            | 1.38                                                                               | 1.35                                                                          | 1.21                                                         | 1.18                     | 1.05                                                           | 1.05                                    | 1.02                                                                | 1.1                                                                  | 1.18                                                                      | 1.24                 | 1.29        | ]           |                                                                                              |
| Calculate effect                                                                                                                                                               |                                                                                    | •                                                                             | rate for t                                                   | he appli                 | cable ca                                                       | ise                                     | !                                                                   | !                                                                    | !                                                                         |                      |             | ,           |                                                                                              |
| If mechanica                                                                                                                                                                   |                                                                                    |                                                                               | andiv N. (2                                                  | 12h) - (22a              | ) v Emy (                                                      | nguation (f                             | VEVV othor                                                          | nuico (22h                                                           | ) - (222)                                                                 |                      |             | 0           | (23a                                                                                         |
| If balanced with                                                                                                                                                               |                                                                                    |                                                                               |                                                              |                          |                                                                |                                         |                                                                     |                                                                      | ) = (23a)                                                                 |                      |             | 0           | (23b                                                                                         |
| a) If balance                                                                                                                                                                  |                                                                                    | •                                                                             | -                                                            | _                        |                                                                |                                         |                                                                     |                                                                      | 2h\m + /:                                                                 | 23h) v [             | 1 (220)     | 0           | (230                                                                                         |
| (24a)m= 0                                                                                                                                                                      | 0                                                                                  | o 0                                                                           | 0                                                            | 0                        | 0                                                              | 0                                       | 0                                                                   | 0                                                                    | 0                                                                         | 0                    | 0           | ]           | (24a                                                                                         |
| b) If balance                                                                                                                                                                  |                                                                                    |                                                                               | <u> </u>                                                     | <u> </u>                 |                                                                |                                         |                                                                     |                                                                      |                                                                           |                      |             | J           |                                                                                              |
| (24b)m= 0                                                                                                                                                                      | 0                                                                                  | 0                                                                             | 0                                                            | 0                        | 0                                                              | 0                                       | 0                                                                   | 0                                                                    | 0                                                                         | 0                    | 0           | 1           | (24)                                                                                         |
| c) If whole h                                                                                                                                                                  |                                                                                    |                                                                               | ļ                                                            | ļ                        | ļ                                                              | ventilatio                              | n from c                                                            | L<br>outside                                                         |                                                                           | <u> </u>             |             | J           |                                                                                              |
| if (22b)m                                                                                                                                                                      |                                                                                    |                                                                               |                                                              | •                        | •                                                              |                                         |                                                                     |                                                                      | .5 × (23b                                                                 | )                    |             |             |                                                                                              |
| (24c)m= 0                                                                                                                                                                      | 0                                                                                  | 0                                                                             | 0                                                            | 0                        | 0                                                              | 0                                       | 0                                                                   | 0                                                                    | 0                                                                         | 0                    | 0           | ]           | (240                                                                                         |
| d) If natural                                                                                                                                                                  |                                                                                    |                                                                               |                                                              |                          |                                                                |                                         |                                                                     |                                                                      | •                                                                         | •                    | •           | •           |                                                                                              |
| if (22b)m                                                                                                                                                                      |                                                                                    |                                                                               |                                                              |                          | · ·                                                            | · ·                                     | 0.5 + [(2                                                           | 2b)m² x                                                              | 0.5]                                                                      |                      |             |             |                                                                                              |
| (24d)m= 1.4                                                                                                                                                                    | 1.38                                                                               | 1.35                                                                          | 1.21                                                         | 1.18                     | 1.05                                                           | 1.05                                    | 1.02                                                                | 1.1                                                                  | 1.18                                                                      | 1.24                 | 1.29        |             | (240                                                                                         |
| Effective air                                                                                                                                                                  |                                                                                    |                                                                               |                                                              | i ì                      |                                                                | · `                                     |                                                                     | · ·                                                                  |                                                                           |                      |             | ,           |                                                                                              |
| (25)m= 1.4                                                                                                                                                                     | 1.38                                                                               | 1.35                                                                          | 1.21                                                         | 1.18                     | 1.05                                                           | 1.05                                    | 1.02                                                                | 1.1                                                                  | 1.18                                                                      | 1.24                 | 1.29        |             | (25)                                                                                         |
| 3. Heat losses                                                                                                                                                                 | s and he                                                                           | at loss r                                                                     | oaramete                                                     | er:                      |                                                                |                                         |                                                                     |                                                                      |                                                                           |                      |             |             |                                                                                              |
| ELEMENT                                                                                                                                                                        | Gros                                                                               |                                                                               | Openin                                                       | _                        | Net Ar                                                         |                                         | U-valu                                                              |                                                                      | AXU                                                                       |                      | k-value     |             | AXk                                                                                          |
| Doors Type 1                                                                                                                                                                   | area                                                                               | (m²)                                                                          | m                                                            | )²                       | A ,r                                                           | m²                                      | W/m2                                                                | .K                                                                   | (VV/I                                                                     | ()                   | kJ/m²-      | K           | kJ/K                                                                                         |
| Doors Type 2                                                                                                                                                                   |                                                                                    |                                                                               |                                                              |                          | 7.0                                                            |                                         | 4.4                                                                 |                                                                      | 40.00                                                                     |                      |             |             | (26)                                                                                         |
| Doors Type 2                                                                                                                                                                   |                                                                                    |                                                                               |                                                              |                          | 7.3                                                            | X                                       | 1.4                                                                 | = [                                                                  | 10.22                                                                     |                      |             |             | (26)                                                                                         |
| Windows Type                                                                                                                                                                   | . 1                                                                                |                                                                               |                                                              |                          | 4.3                                                            | x                                       | 1.4                                                                 | = [                                                                  | 6.02                                                                      |                      |             |             | (26)                                                                                         |
| Windows Type                                                                                                                                                                   |                                                                                    |                                                                               |                                                              |                          | 4.3                                                            | x x1                                    | 1.4                                                                 | 0.04] =                                                              | 6.02<br>3.1                                                               |                      |             |             | (26)<br>(27)                                                                                 |
| Windows Type                                                                                                                                                                   |                                                                                    |                                                                               |                                                              |                          | 4.3<br>1.6<br>1.97                                             | x x1 x1                                 | 1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+                                 | = [<br>0.04] = [<br>0.04] = [                                        | 6.02<br>3.1<br>3.82                                                       |                      |             |             | (26)<br>(27)<br>(27)                                                                         |
| Windows Type<br>Floor                                                                                                                                                          | 2                                                                                  |                                                                               |                                                              |                          | 4.3                                                            | x x1 x1                                 | 1.4                                                                 | 0.04] =                                                              | 6.02<br>3.1                                                               |                      |             |             | (26)<br>(27)<br>(27)<br>(28)                                                                 |
| Windows Type<br>Floor<br>Walls Type1                                                                                                                                           |                                                                                    |                                                                               | 15.1                                                         | 7                        | 4.3<br>1.6<br>1.97                                             | x x1 x1 x1 x                            | 1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+                                 | = [<br>0.04] = [<br>0.04] = [                                        | 6.02<br>3.1<br>3.82                                                       |                      |             |             | (26)<br>(27)<br>(27)<br>(28)<br>(29)                                                         |
| Windows Type<br>Floor<br>Walls Type1<br>Walls Type2                                                                                                                            | 2                                                                                  | =                                                                             | 15.1                                                         | 7                        | 4.3<br>1.6<br>1.97<br>34.3                                     | x x1 x1 x x1 x x x x x x x x x x x x x  | 1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22                         | 0.04] = [<br>0.04] = [<br>0.04] = [                                  | 6.02<br>3.1<br>3.82<br>7.546                                              |                      |             |             | (26)<br>(27)<br>(27)<br>(28)<br>(29)                                                         |
| Windows Type<br>Floor<br>Walls Type1<br>Walls Type2<br>Roof                                                                                                                    | 29.44.1                                                                            | 1                                                                             |                                                              | 7                        | 4.3<br>1.6<br>1.97<br>34.3<br>14.23                            | x x1 x1 x x1 x x x x x x x x x x x x x  | 1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28                 | = [<br>0.04] = [<br>0.04] = [<br>= [<br>= [                          | 6.02<br>3.1<br>3.82<br>7.546<br>3.98                                      |                      |             |             | (26)<br>(27)<br>(27)<br>(28)<br>(29)                                                         |
| Windows Type<br>Floor<br>Walls Type1<br>Walls Type2<br>Roof<br>Total area of e                                                                                                 | 29.44.1                                                                            | 1                                                                             | 0                                                            | 7                        | 4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1                    | x x1 x1 x1 x x x x x x x x x x x x x x  | 1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28                 | = [<br>0.04] = [<br>0.04] = [<br>= [<br>= = [                        | 6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35                             |                      |             |             | (26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)                                         |
| Windows Type<br>Floor<br>Walls Type1<br>Walls Type2<br>Roof<br>Total area of e<br>Party wall                                                                                   | 29.4<br>44.1<br>19                                                                 | , m²                                                                          | 0                                                            |                          | 4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8     | x x1 x1 x1 x x x x x x x x x x x x x x  | 1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.16 | = [<br>0.04] = [<br>0.04] = [<br>= [<br>= [<br>= [<br>= [            | 6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                     |                      |             |             | (26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)<br>(31)                                 |
| Windows Type<br>Floor<br>Walls Type1<br>Walls Type2<br>Roof<br>Total area of e                                                                                                 | 29.4<br>44.1<br>19                                                                 | , m²                                                                          | 0 0                                                          | indow U-va               | 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9 alue calcul         | x x1 x1 x1 x x x x x x x x x x x x x x  | 1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.16 | = [<br>0.04] = [<br>0.04] = [<br>= [<br>= [<br>= [<br>= [            | 6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                     | s given ir           | n paragraph | 1 3.2       | (26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)<br>(31)                                 |
| Windows Types Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and                                                                                  | 29.4 44.1 19 elements                                                              | , m²<br>ows, use e<br>sides of in                                             | 0 0 effective winternal wall                                 | indow U-va               | 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9 alue calcul         | x x1 x1 x1 x x x x x x x x x x x x x x  | 1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.16 | = [<br>0.04] = [<br>0.04] = [<br>= [<br>= [<br>= [<br>] = [<br>] = [ | 6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                     | as given ir          | ı paragraph | 1 3.2 50.07 | (26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)<br>(31)                                 |
| Windows Type<br>Floor<br>Walls Type1<br>Walls Type2<br>Roof<br>Total area of e<br>Party wall<br>* for windows and<br>** include the area                                       | 29.4 44.1 19 llements, roof windows on both as, W/K =                              | , m²  ows, use e sides of in = S (A x                                         | 0 0 effective winternal wall                                 | indow U-va               | 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9 alue calcul         | x x1 x1 x1 x x x x x x x x x x x x x x  | 1.4 /[1/( 2.1 )+ /[1/( 2.1 )+                                       |                                                                      | 6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                     |                      |             |             | (26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(31)<br>(32)                                 |
| Windows Types Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area Fabric heat los                                              | 29.4 44.1 19 Ilements, roof windows on both as, W/K = Cm = S(                      | , m²  ows, use e sides of in = S (A x A x k)                                  | 0<br>0<br>effective winternal walk                           | indow U-va               | 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9 alue calculatitions | x x1 x1 x1 x x1 x x x x x x x x x x x x | 1.4 /[1/( 2.1 )+ /[1/( 2.1 )+                                       |                                                                      | 6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>ue)+0.04] a | 2) + (32a)           |             | 50.07       | (26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(31)<br>(32)                                 |
| Windows Types Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area Fabric heat los Heat capacity Thermal mass For design assess | 29.4 44.1 19 Ilements, roof windown so on both ss, W/K = Cm = S( parame sments who | , m²  bws, use e sides of in = S (A x A x k)  ter (TMF ere the decomposition) | 0 0 offective with ternal walk U) $P = Cm \div tails of the$ | indow U-va<br>Is and pan | 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9 alue calculatitions | x x x1 x1 x x x x x x x x x x x x x x x | 1.4 /[1/( 2.1 )+ /[1/( 2.1 )+ /[1/( 2.1 )+                          | = [ 0.04] = [ 0.04] = [                                              | 6.02 3.1 3.82 7.546 3.98 12.35 3.04  0 ue)+0.04] a                        | 2) + (32a)<br>: High | (32e) =     | 50.07       | (26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(31)<br>(32)<br>(33)<br>(34)                 |
| Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area Fabric heat los Heat capacity Thermal mass                    | 29.4 44.1 19 llements, roof windo as on both as, W/K = Cm = S( parame and of a det | ows, use e<br>sides of in<br>= S (A x<br>A x k )<br>ter (TMF<br>ere the dec   | o o o o o o o o o o o o o o o o o o o                        | indow U-valls and part   | 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9 alue calculatitions | x x1 x1 x1 x x x x x x x x x x x x x x  | 1.4 /[1/( 2.1 )+ /[1/( 2.1 )+ /[1/( 2.1 )+                          | = [ 0.04] = [ 0.04] = [                                              | 6.02 3.1 3.82 7.546 3.98 12.35 3.04  0 ue)+0.04] a                        | 2) + (32a)<br>: High | (32e) =     | 50.07       | (26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(33)<br>(34)<br>(35) |

| if details of therma                            | 0 0         | are not kn          | own (36) =    | = 0.15 x (3    | 1)         |                   |             |                       |             |                                       |         |         | _             |
|-------------------------------------------------|-------------|---------------------|---------------|----------------|------------|-------------------|-------------|-----------------------|-------------|---------------------------------------|---------|---------|---------------|
| Total fabric he                                 |             |                     |               |                |            |                   |             | ` '                   | (36) =      | (a-) (-)                              |         | 70.07   | (37)          |
| Ventilation hea                                 |             | 1                   | · ·           | <u> </u>       | I .        | Ι                 | I .         | <del>` ` ´</del>      | ·           | (25)m x (5)                           |         | 1       |               |
| Jan                                             | Feb         | Mar                 | Apr           | May            | Jun        | Jul               | Aug         | Sep                   | Oct         | Nov                                   | Dec     |         | (00)          |
| (38)m= 48.88                                    | 47.92       | 46.97               | 42.17         | 41.21          | 36.42      | 36.42             | 35.46       | 38.34                 | 41.21       | 43.13                                 | 45.05   |         | (38)          |
| Heat transfer of                                | coefficie   | nt, W/K             |               |                |            |                   |             | (39)m                 | = (37) + (  | 38)m                                  |         | -       |               |
| (39)m= 118.96                                   | 118         | 117.04              | 112.25        | 111.29         | 106.5      | 106.5             | 105.54      | 108.41                | 111.29      | 113.21                                | 115.12  |         | _             |
| Haatlaaa saas                                   | 1 /1        | II D) \ \           | / 21 <i>C</i> |                |            |                   |             |                       | _           | Sum(39) <sub>1</sub>                  | 12 /12= | 112.01  | (39)          |
| Heat loss para                                  | <del></del> | <del></del>         | r —           | 0.44           | 0.05       | 1 0.05            | 0.00        | ·                     | = (39)m ÷   | r –                                   | L 0.04  | 1       |               |
| (40)m= 2.29                                     | 2.27        | 2.25                | 2.16          | 2.14           | 2.05       | 2.05              | 2.03        | 2.08                  | 2.14        | 2.18                                  | 2.21    | 2.15    | (40)          |
| Number of day                                   | s in mo     | nth (Tab            | le 1a)        |                |            |                   |             |                       | Average =   | Sum(40) <sub>1</sub>                  | 12 /12= | 2.15    | (40)          |
| Jan                                             | Feb         | Mar                 | Apr           | May            | Jun        | Jul               | Aug         | Sep                   | Oct         | Nov                                   | Dec     |         |               |
| (41)m= 31                                       | 28          | 31                  | 30            | 31             | 30         | 31                | 31          | 30                    | 31          | 30                                    | 31      |         | (41)          |
|                                                 |             |                     |               |                |            |                   |             |                       |             |                                       |         | _       |               |
| 4. Water hea                                    | ting ene    | rgy requi           | irement:      |                |            |                   |             |                       |             |                                       | kWh/ye  | ear:    |               |
| Accumed coo                                     | in an air   | N I                 |               |                |            |                   |             |                       |             |                                       |         | 1       | (40)          |
| Assumed occu<br>if TFA > 13.9                   |             |                     | :[1 - exp     | (-0.0003       | 349 x (TF  | FA -13.9          | )2)1 + 0.0  | 0013 x ( <sup>-</sup> | TFA -13.    |                                       | .75     |         | (42)          |
| if TFA £ 13.9                                   |             |                     | i oxb         | ( 0.0000       | / 10 X (11 | 7. 10.0           | /2/]        | 00.07(                |             | ,                                     |         |         |               |
| Annual averag                                   |             |                     |               |                |            |                   |             |                       |             |                                       | 5.74    |         | (43)          |
| Redu <mark>ce the</mark> annuanot more that 125 | \           |                     |               |                |            | -                 | to achieve  | a water us            | se target o | f                                     |         |         |               |
|                                                 |             |                     |               |                |            |                   |             | -                     |             |                                       |         | 1       |               |
| Jan Hot water usage i                           | Feb         | Mar<br>r day for or | Apr           | May            | Jun        | Jul<br>Table 10 x | Aug         | Sep                   | Oct         | Nov                                   | Dec     |         |               |
|                                                 |             |                     |               |                |            |                   | · /         |                       |             |                                       |         | 1       |               |
| (44)m= 83.31                                    | 80.28       | 77.26               | 74.23         | 71.2           | 68.17      | 68.17             | 71.2        | 74.23                 | 77.26       | 80.28                                 | 83.31   |         | <b>—</b> (44) |
| Energy content of                               | hot water   | used - cal          | culated m     | onthly $= 4$ . | 190 x Vd,r | m x nm x D        | OTm / 3600  |                       |             | m(44) <sub>112</sub> =<br>ables 1b, 1 |         | 908.89  | (44)          |
| (45)m= 123.55                                   | 108.06      | 111.51              | 97.22         | 93.28          | 80.49      | 74.59             | 85.59       | 86.62                 | 100.94      | 110.19                                | 119.65  |         |               |
|                                                 | I           |                     | I             |                |            |                   | I           |                       | Total = Su  | m(45) <sub>112</sub> =                | =       | 1191.69 | (45)          |
| If instantaneous v                              | /ater heati | ng at point         | of use (no    | hot water      | storage),  | enter 0 in        | boxes (46   | ) to (61)             |             |                                       |         |         | _             |
| (46)m= 18.53                                    | 16.21       | 16.73               | 14.58         | 13.99          | 12.07      | 11.19             | 12.84       | 12.99                 | 15.14       | 16.53                                 | 17.95   |         | (46)          |
| Water storage                                   |             |                     | -             |                |            |                   |             | -                     |             |                                       | -       | 1       |               |
| Storage volum                                   | , ,         |                     | •             |                |            | _                 |             | ame ves               | sel         |                                       | 160     |         | (47)          |
| If community h                                  | •           |                     |               | •              |            |                   | ` '         |                       | (01 : - /   | (47)                                  |         |         |               |
| Otherwise if no Water storage                   |             | not wate            | er (this ir   | iciudes i      | nstantar   | neous co          | mbi boli    | ers) ente             | er o in (   | 47)                                   |         |         |               |
| a) If manufact                                  |             | eclared I           | oss facto     | or is kno      | wn (kWł    | n/day).           |             |                       |             |                                       | 0       | ]       | (48)          |
| Temperature f                                   |             |                     |               | 51 10 INITO    | (          | "aay).            |             |                       |             |                                       |         |         | (49)          |
| Energy lost fro                                 |             |                     |               | oor            |            |                   | (49) v (40) | \ _                   |             |                                       | 0       | ]       |               |
| b) If manufact                                  |             | _                   | -             |                | or is not  |                   | (48) x (49) | , =                   |             | 1                                     | 10      |         | (50)          |
| Hot water stor                                  |             |                     | •             |                |            |                   |             |                       |             | 0.                                    | .02     |         | (51)          |
| If community h                                  | -           |                     |               |                |            |                   |             |                       |             |                                       |         | _       | •             |
| Volume factor                                   |             |                     |               |                |            |                   |             |                       |             | 1.                                    | .03     |         | (52)          |
| Temperature f                                   | actor fro   | m Table             | 2b            |                |            |                   |             |                       |             | 0                                     | .6      |         | (53)          |
| Energy lost fro                                 | m water     | r storage           | , kWh/ye      | ear            |            |                   | (47) x (51) | ) x (52) x (          | 53) =       | 1.                                    | .03     |         | (54)          |
| Enter (50) or                                   | (54) in (5  | 55)                 |               |                |            |                   |             |                       |             | 1.                                    | .03     |         | (55)          |
|                                                 |             |                     |               |                |            |                   |             |                       |             |                                       |         |         |               |

| Water storage loss ca                                                                                                                                                                                                                                                                                                                                                                                                                | lculated t                                                                                                                            | for each                                                                                                         | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |                                                                               | ((56)m = (                                                                     | 55) × (41)ı                                                                       | m                                               |                                               |                                           |               |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------------|---------------|--------------------------------------|
| (56)m= 32.01 28.92                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.01                                                                                                                                 | 30.98                                                                                                            | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                                                | 32.01                                                                         | 32.01                                                                          | 30.98                                                                             | 32.01                                           | 30.98                                         | 32.01                                     |               | (56)                                 |
| If cylinder contains dedicate                                                                                                                                                                                                                                                                                                                                                                                                        | ed solar sto                                                                                                                          | rage, (57)ı                                                                                                      | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                                          | H11)] ÷ (5                                                                    | 0), else (5                                                                    | 7)m = (56)                                                                        | m where (                                       | H11) is fro                                   | m Append                                  | ix H          |                                      |
| (57)m= 32.01 28.92                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.01                                                                                                                                 | 30.98                                                                                                            | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                                                | 32.01                                                                         | 32.01                                                                          | 30.98                                                                             | 32.01                                           | 30.98                                         | 32.01                                     |               | (57)                                 |
| Primary circuit loss (a                                                                                                                                                                                                                                                                                                                                                                                                              | nnual) fro                                                                                                                            | om Table                                                                                                         | e 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                               |                                                                                |                                                                                   |                                                 |                                               | 0                                         |               | (58)                                 |
| Primary circuit loss ca                                                                                                                                                                                                                                                                                                                                                                                                              | lculated                                                                                                                              | for each                                                                                                         | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59)m = (                                                                                             | (58) ÷ 36                                                                     | 55 × (41)                                                                      | m                                                                                 |                                                 |                                               |                                           |               |                                      |
| (modified by factor                                                                                                                                                                                                                                                                                                                                                                                                                  | from Tab                                                                                                                              | le H5 if t                                                                                                       | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | olar wat                                                                                             | er heatii                                                                     | ng and a                                                                       | cylinde                                                                           | r thermo                                        | stat)                                         |                                           |               |                                      |
| (59)m= 23.26 21.01                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.26                                                                                                                                 | 22.51                                                                                                            | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.51                                                                                                | 23.26                                                                         | 23.26                                                                          | 22.51                                                                             | 23.26                                           | 22.51                                         | 23.26                                     |               | (59)                                 |
| Combi loss calculated                                                                                                                                                                                                                                                                                                                                                                                                                | for each                                                                                                                              | month (                                                                                                          | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                                            | 65 × (41)                                                                     | )m                                                                             |                                                                                   |                                                 |                                               |                                           |               |                                      |
| (61)m= 0 0                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                     | 0                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                             | 0                                                                              | 0                                                                                 | 0                                               | 0                                             | 0                                         |               | (61)                                 |
| Total heat required fo                                                                                                                                                                                                                                                                                                                                                                                                               | r water h                                                                                                                             | eating ca                                                                                                        | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I for eacl                                                                                           | h month                                                                       | (62)m =                                                                        | 0.85 × (                                                                          | (45)m +                                         | (46)m +                                       | (57)m +                                   | (59)m + (61)m |                                      |
| (62)m= 178.83 157.99                                                                                                                                                                                                                                                                                                                                                                                                                 | 166.79                                                                                                                                | 150.71                                                                                                           | 148.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133.99                                                                                               | 129.87                                                                        | 140.87                                                                         | 140.11                                                                            | 156.22                                          | 163.68                                        | 174.93                                    |               | (62)                                 |
| Solar DHW input calculated                                                                                                                                                                                                                                                                                                                                                                                                           | l using App                                                                                                                           | endix G or                                                                                                       | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                                            | ve quantity                                                                   | v) (enter '0                                                                   | ' if no sola                                                                      | r contribut                                     | ion to wate                                   | er heating)                               | •             |                                      |
| (add additional lines if                                                                                                                                                                                                                                                                                                                                                                                                             | FGHRS                                                                                                                                 | and/or V                                                                                                         | WWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                                              | , see Ap                                                                      | pendix (                                                                       | 3)                                                                                |                                                 |                                               |                                           |               |                                      |
| (63)m= 0 0                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                     | 0                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                             | 0                                                                              | 0                                                                                 | 0                                               | 0                                             | 0                                         |               | (63)                                 |
| Output from water hea                                                                                                                                                                                                                                                                                                                                                                                                                | ater                                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                    | -                                                                             |                                                                                |                                                                                   |                                                 | -                                             | -                                         |               |                                      |
| (64)m= 178.83 157.99                                                                                                                                                                                                                                                                                                                                                                                                                 | 166.79                                                                                                                                | 150.71                                                                                                           | 148.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133.99                                                                                               | 129.87                                                                        | 140.87                                                                         | 140.11                                                                            | 156.22                                          | 163.68                                        | 174.93                                    |               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                               | Outp                                                                           | out from wa                                                                       | ater heate                                      | r (annual) <sub>1</sub>                       | 12                                        | 1842.53       | (64)                                 |
| Heat gains from wate                                                                                                                                                                                                                                                                                                                                                                                                                 | heating,                                                                                                                              | kWh/mo                                                                                                           | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 [0.85                                                                                              | × (45)m                                                                       | + (61)m                                                                        | n] + 0.8 x                                                                        | c [(46)m                                        | + (57)m                                       | + (59)m                                   | ]             |                                      |
| (65)m= 59.69 52.74                                                                                                                                                                                                                                                                                                                                                                                                                   | 55.69                                                                                                                                 | 50.33                                                                                                            | 49.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.77                                                                                                | 43.41                                                                         | 47.07                                                                          | 46.81                                                                             | 52.17                                           | EAGE                                          | 58.4                                      |               | (65)                                 |
| (***)                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.00                                                                                                                                 | 00.00                                                                                                            | 75.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77.11                                                                                                | 43.4                                                                          | 47.07                                                                          | 40.01                                                                             | 32.17                                           | 54.65                                         | 36.4                                      |               | (00)                                 |
| include (57)m in ca                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                       |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                    |                                                                               |                                                                                |                                                                                   |                                                 |                                               |                                           | eating        | (55)                                 |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                                                  | culation                                                                                                                              | of (65)m                                                                                                         | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                    |                                                                               |                                                                                |                                                                                   |                                                 |                                               |                                           | eating        | (00)                                 |
| include (57)m in ca 5. Internal gains (se                                                                                                                                                                                                                                                                                                                                                                                            | culation<br>e Table 5                                                                                                                 | of (65)m                                                                                                         | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                    |                                                                               |                                                                                |                                                                                   |                                                 |                                               |                                           | eating        | (30)                                 |
| include (57)m in ca                                                                                                                                                                                                                                                                                                                                                                                                                  | culation<br>e Table 5                                                                                                                 | of (65)m                                                                                                         | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                    |                                                                               |                                                                                |                                                                                   |                                                 |                                               |                                           | eating        | (66)                                 |
| include (57)m in ca 5. Internal gains (se Metabolic gains (Tabl                                                                                                                                                                                                                                                                                                                                                                      | culation<br>e Table 5<br>e 5), Wat                                                                                                    | of (65)m<br>and 5a                                                                                               | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                                            | s in the o                                                                    | dwelling                                                                       | or hot w                                                                          | ater is fr                                      | rom com                                       | munity h                                  | eating        | (66)                                 |
| include (57)m in ca 5. Internal gains (se  Metabolic gains (Tabl  Jan Feb                                                                                                                                                                                                                                                                                                                                                            | culation<br>e Table 5<br>e 5), Wat<br>Mar<br>87.45                                                                                    | of (65)m 5 and 5a ts Apr 87.45                                                                                   | only if colors:  May 87.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jun<br>87.45                                                                                         | Jul 87.45                                                                     | Aug<br>87.45                                                                   | Sep<br>87.45                                                                      | ater is fr                                      | om com                                        | munity h                                  | eating        |                                      |
| include (57)m in ca  5. Internal gains (se  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45                                                                                                                                                                                                                                                                                                                                       | culation<br>e Table 5<br>e 5), Wat<br>Mar<br>87.45                                                                                    | of (65)m 5 and 5a ts Apr 87.45                                                                                   | only if colors:  May 87.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jun<br>87.45                                                                                         | Jul 87.45                                                                     | Aug<br>87.45                                                                   | Sep<br>87.45                                                                      | ater is fr                                      | om com                                        | munity h                                  | eating        |                                      |
| include (57)m in ca  5. Internal gains (se  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45  Lighting gains (calculated)                                                                                                                                                                                                                                                                                                          | culation<br>e Table 5<br>e 5), Wat<br>Mar<br>87.45<br>ated in Ap                                                                      | of (65)m 6 and 5a tts Apr 87.45 ppendix 15.49                                                                    | only if control is the second of the second  | Jun<br>87.45<br>ion L9 of                                                                            | Jul<br>87.45<br>r L9a), a                                                     | Aug<br>87.45<br>Iso see                                                        | Sep<br>87.45<br>Table 5                                                           | Oct 87.45                                       | Nov<br>87.45                                  | Dec 87.45                                 | eating        | (66)                                 |
| include (57)m in ca  5. Internal gains (see  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45  Lighting gains (calculated)  (67)m= 28.32 25.16                                                                                                                                                                                                                                                                                     | culation<br>e Table 5<br>e 5), Wat<br>Mar<br>87.45<br>ated in Ap                                                                      | of (65)m 6 and 5a tts Apr 87.45 ppendix 15.49                                                                    | only if control is the second of the second  | Jun<br>87.45<br>ion L9 of                                                                            | Jul<br>87.45<br>r L9a), a                                                     | Aug<br>87.45<br>Iso see                                                        | Sep<br>87.45<br>Table 5                                                           | Oct 87.45                                       | Nov<br>87.45                                  | Dec 87.45                                 | eating        | (66)                                 |
| include (57)m in ca  5. Internal gains (see  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45  Lighting gains (calculated) (67)m= 28.32 25.16  Appliances gains (calculated)                                                                                                                                                                                                                                                       | culation e Table 5 e 5), Wat Mar 87.45 ated in Ap 20.46 culated ir 150.02                                                             | of (65)m<br>5 and 5a<br>ts<br>Apr<br>87.45<br>opendix<br>15.49<br>Appendix<br>141.54                             | May<br>87.45<br>L, equati<br>11.58<br>dix L, eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun<br>87.45<br>ion L9 o<br>9.77<br>uation L                                                         | Jul<br>87.45<br>r L9a), a<br>10.56<br>13 or L1<br>114.03                      | Aug<br>87.45<br>Iso see<br>13.73<br>3a), also                                  | Sep<br>87.45<br>Table 5<br>18.43<br>see Tal<br>116.44                             | Oct 87.45  23.4 ble 5 124.92                    | Nov<br>87.45                                  | Dec 87.45                                 | eating        | (66)<br>(67)                         |
| include (57)m in ca  5. Internal gains (se  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45  Lighting gains (calculated) (67)m= 28.32 25.16  Appliances gains (calculated) (68)m= 152.43 154.01                                                                                                                                                                                                                                   | culation e Table 5 e 5), Wat Mar 87.45 ated in Ap 20.46 culated ir 150.02                                                             | of (65)m<br>5 and 5a<br>ts<br>Apr<br>87.45<br>opendix<br>15.49<br>Appendix<br>141.54                             | May<br>87.45<br>L, equati<br>11.58<br>dix L, eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun<br>87.45<br>ion L9 o<br>9.77<br>uation L                                                         | Jul<br>87.45<br>r L9a), a<br>10.56<br>13 or L1<br>114.03                      | Aug<br>87.45<br>Iso see<br>13.73<br>3a), also                                  | Sep<br>87.45<br>Table 5<br>18.43<br>see Tal<br>116.44                             | Oct 87.45  23.4 ble 5 124.92                    | Nov<br>87.45                                  | Dec 87.45                                 | eating        | (66)<br>(67)                         |
| include (57)m in ca  5. Internal gains (see  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45  Lighting gains (calculated (67)m= 28.32 25.16  Appliances gains (calculated (68)m= 152.43 154.01  Cooking gains (calculated (57)m= 28.32 25.16                                                                                                                                                                                      | culation e Table 5 e 5), Wat Mar 87.45 ated in Ap 20.46 culated in 150.02 ated in A 31.75                                             | of (65)m 5 and 5a ts Apr 87.45 ppendix 15.49 Appendix 141.54 ppendix 31.75                                       | May<br>87.45<br>L, equati<br>11.58<br>dix L, eq<br>130.83<br>L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jun<br>87.45<br>ion L9 of<br>9.77<br>uation L<br>120.76                                              | Jul<br>87.45<br>r L9a), a<br>10.56<br>13 or L1<br>114.03<br>or L15a)          | Aug<br>87.45<br>Iso see<br>13.73<br>3a), also<br>112.45                        | Sep<br>87.45<br>Table 5<br>18.43<br>See Tal<br>116.44<br>ee Table                 | Oct 87.45  23.4 ble 5 124.92                    | Nov<br>87.45<br>27.31                         | Dec 87.45                                 | eating        | (66)<br>(67)<br>(68)                 |
| include (57)m in ca  5. Internal gains (see  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45  Lighting gains (calculated (67)m= 28.32 25.16  Appliances gains (calculated (68)m= 152.43 154.01  Cooking gains (calculated (69)m= 31.75 31.75                                                                                                                                                                                      | culation e Table 5 e 5), Wat Mar 87.45 ated in Ap 20.46 culated ir 150.02 ated in A 31.75                                             | of (65)m 5 and 5a ts Apr 87.45 ppendix 15.49 Appendix 141.54 ppendix 31.75                                       | May<br>87.45<br>L, equati<br>11.58<br>dix L, eq<br>130.83<br>L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jun<br>87.45<br>ion L9 of<br>9.77<br>uation L<br>120.76                                              | Jul<br>87.45<br>r L9a), a<br>10.56<br>13 or L1<br>114.03<br>or L15a)          | Aug<br>87.45<br>Iso see<br>13.73<br>3a), also<br>112.45                        | Sep<br>87.45<br>Table 5<br>18.43<br>See Tal<br>116.44<br>ee Table                 | Oct 87.45  23.4 ble 5 124.92                    | Nov<br>87.45<br>27.31                         | Dec 87.45                                 | eating        | (66)<br>(67)<br>(68)                 |
| include (57)m in ca  5. Internal gains (see  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45  Lighting gains (calculated (67)m= 28.32 25.16  Appliances gains (calculated (68)m= 152.43 154.01  Cooking gains (calculated (69)m= 31.75 31.75  Pumps and fans gains (70)m= 0 0                                                                                                                                                     | culation e Table 5 e 5), Wat Mar 87.45 ated in Ap 20.46 culated ir 150.02 ated in A 31.75 c (Table 5                                  | of (65)m<br>5 and 5a<br>ts<br>Apr<br>87.45<br>opendix<br>15.49<br>n Append<br>141.54<br>oppendix<br>31.75<br>5a) | only if control of the control of th | Jun<br>87.45<br>ion L9 of<br>9.77<br>uation L<br>120.76<br>ion L15<br>31.75                          | Jul<br>87.45<br>r L9a), a<br>10.56<br>13 or L1<br>114.03<br>or L15a)<br>31.75 | Aug<br>87.45<br>Iso see<br>13.73<br>3a), also<br>112.45<br>, also se<br>31.75  | Sep<br>87.45<br>Table 5<br>18.43<br>see Tal<br>116.44<br>ee Table<br>31.75        | Oct 87.45  23.4 ble 5 124.92 5 31.75            | Nov<br>87.45<br>27.31<br>135.63               | Dec 87.45 29.11 145.7                     | eating        | (66)<br>(67)<br>(68)<br>(69)         |
| include (57)m in ca  5. Internal gains (see  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45  Lighting gains (calculated) (67)m= 28.32 25.16  Appliances gains (calculated) (68)m= 152.43 154.01  Cooking gains (calculated) (69)m= 31.75 31.75  Pumps and fans gains                                                                                                                                                             | culation e Table 5 e 5), Wat Mar 87.45 ated in Ap 20.46 culated ir 150.02 ated in A 31.75 c (Table 5                                  | of (65)m<br>5 and 5a<br>ts<br>Apr<br>87.45<br>opendix<br>15.49<br>n Append<br>141.54<br>oppendix<br>31.75<br>5a) | only if control of the control of th | Jun<br>87.45<br>ion L9 of<br>9.77<br>uation L<br>120.76<br>ion L15<br>31.75                          | Jul<br>87.45<br>r L9a), a<br>10.56<br>13 or L1<br>114.03<br>or L15a)<br>31.75 | Aug<br>87.45<br>Iso see<br>13.73<br>3a), also<br>112.45<br>, also se<br>31.75  | Sep<br>87.45<br>Table 5<br>18.43<br>see Tal<br>116.44<br>ee Table<br>31.75        | Oct 87.45  23.4 ble 5 124.92 5 31.75            | Nov<br>87.45<br>27.31<br>135.63               | Dec 87.45 29.11 145.7                     | eating        | (66)<br>(67)<br>(68)<br>(69)         |
| include (57)m in ca  5. Internal gains (see  Metabolic gains (Tabl    Jan   Feb     (66)m=   87.45   87.45     Lighting gains (calculated)   (67)m=   28.32   25.16     Appliances gains (calculated)   (68)m=   152.43   154.01     Cooking gains (calculated)   (69)m=   31.75   31.75     Pumps and fans gains (70)m=   0   0     Losses e.g. evaporatiated   (71)m=   -69.96   -69.96   -69.96                                   | culation e Table 5 e 5), Wat Mar 87.45 ated in Ap 20.46 culated ir 150.02 ated in A 31.75 s (Table 5 0 on (nega                       | of (65)m 5 and 5a ts Apr 87.45 Dependix 15.49 Append 141.54 Dependix 31.75 5a) 0 tive valu                       | May<br>87.45<br>L, equati<br>11.58<br>dix L, equati<br>130.83<br>L, equati<br>31.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun<br>87.45<br>ion L9 of<br>9.77<br>uation L<br>120.76<br>ion L15<br>31.75                          | Jul<br>87.45<br>r L9a), a<br>10.56<br>13 or L1<br>114.03<br>or L15a)<br>31.75 | Aug<br>87.45<br>Iso see<br>13.73<br>3a), also<br>112.45<br>o, also se<br>31.75 | Sep<br>87.45<br>Table 5<br>18.43<br>o see Tal<br>116.44<br>ee Table<br>31.75      | Oct 87.45  23.4 ble 5 124.92 5 31.75            | Nov<br>87.45<br>27.31<br>135.63               | Dec 87.45  29.11  145.7                   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| include (57)m in ca  5. Internal gains (see  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45  Lighting gains (calculated) (67)m= 28.32 25.16  Appliances gains (calculated) (68)m= 152.43 154.01  Cooking gains (calculated) (69)m= 31.75 31.75  Pumps and fans gains (70)m= 0 0  Losses e.g. evaporati                                                                                                                           | culation e Table 5 e 5), Wat Mar 87.45 ated in Ap 20.46 culated ir 150.02 ated in A 31.75 s (Table 5 0 on (nega                       | of (65)m 5 and 5a ts Apr 87.45 Dependix 15.49 Append 141.54 Dependix 31.75 5a) 0 tive valu                       | May<br>87.45<br>L, equati<br>11.58<br>dix L, equati<br>130.83<br>L, equati<br>31.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun<br>87.45<br>ion L9 of<br>9.77<br>uation L<br>120.76<br>ion L15<br>31.75                          | Jul<br>87.45<br>r L9a), a<br>10.56<br>13 or L1<br>114.03<br>or L15a)<br>31.75 | Aug<br>87.45<br>Iso see<br>13.73<br>3a), also<br>112.45<br>o, also se<br>31.75 | Sep<br>87.45<br>Table 5<br>18.43<br>o see Tal<br>116.44<br>ee Table<br>31.75      | Oct 87.45  23.4 ble 5 124.92 5 31.75            | Nov<br>87.45<br>27.31<br>135.63               | Dec 87.45  29.11  145.7                   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| include (57)m in ca  5. Internal gains (see  Metabolic gains (Tabl  Jan Feb  (66)m= 87.45 87.45  Lighting gains (calcula (67)m= 28.32 25.16  Appliances gains (calcula (68)m= 152.43 154.01  Cooking gains (calcula (69)m= 31.75 31.75  Pumps and fans gains (70)m= 0 0  Losses e.g. evaporati (71)m= -69.96 -69.96  Water heating gains (                                                                                           | culation e Table 5 e 5), Wat Mar 87.45 ated in Ap 20.46 culated ir 150.02 ated in A 31.75 c (Table 5 0 on (nega -69.96 Table 5) 74.85 | of (65)m 5 and 5a ts Apr 87.45 ppendix 15.49 Appendix 31.75 5a) 0 tive valu -69.96                               | only if construction of the construction of th | Jun<br>87.45<br>ion L9 of<br>9.77<br>uation L<br>120.76<br>ion L15<br>31.75<br>0<br>ole 5)<br>-69.96 | Jul<br>87.45<br>r L9a), a<br>10.56<br>13 or L1<br>114.03<br>or L15a)<br>31.75 | Aug<br>87.45<br>Iso see<br>13.73<br>3a), also<br>112.45<br>o, also se<br>31.75 | Sep<br>87.45<br>Table 5<br>18.43<br>0 see Tal<br>116.44<br>ee Table<br>31.75      | Oct 87.45  23.4 ble 5 124.92 5 31.75  0  -69.96 | Nov<br>87.45<br>27.31<br>135.63<br>31.75<br>0 | Dec 87.45  29.11  145.7  31.75  0  -69.96 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| include (57)m in ca  5. Internal gains (see  Metabolic gains (Tabl    Jan   Feb     (66)m=   87.45   87.45     Lighting gains (calculated)   (67)m=   28.32   25.16     Appliances gains (calculated)   (68)m=   152.43   154.01     Cooking gains (calculated)   (69)m=   31.75   31.75     Pumps and fans gains (70)m=   0   0     Losses e.g. evaporation (71)m=   -69.96   -69.96     Water heating gains (72)m=   80.23   78.48 | culation e Table 5 e 5), Wat Mar 87.45 ated in Ap 20.46 culated ir 150.02 ated in A 31.75 c (Table 5 0 on (nega -69.96 Table 5) 74.85 | of (65)m 5 and 5a ts Apr 87.45 ppendix 15.49 Appendix 31.75 5a) 0 tive valu -69.96                               | only if construction of the construction of th | Jun<br>87.45<br>ion L9 of<br>9.77<br>uation L<br>120.76<br>ion L15<br>31.75<br>0<br>ole 5)<br>-69.96 | Jul<br>87.45<br>r L9a), a<br>10.56<br>13 or L1<br>114.03<br>or L15a)<br>31.75 | Aug<br>87.45<br>Iso see<br>13.73<br>3a), also<br>112.45<br>o, also se<br>31.75 | Sep<br>87.45<br>Table 5<br>18.43<br>o see Tal<br>116.44<br>ee Table<br>31.75<br>0 | Oct 87.45  23.4 ble 5 124.92 5 31.75  0  -69.96 | Nov<br>87.45<br>27.31<br>135.63<br>31.75<br>0 | Dec 87.45  29.11  145.7  31.75  0  -69.96 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta           | ation:          | Access Fa<br>Table 6d | actor          |               | Area<br>m² |         |             | Flu<br>Tal | x<br>ole 6a |              | Т             | g_<br>able 6b    |               | Т        | FF<br>able 6c |     |     | Gains<br>(W) |      |
|-------------------|-----------------|-----------------------|----------------|---------------|------------|---------|-------------|------------|-------------|--------------|---------------|------------------|---------------|----------|---------------|-----|-----|--------------|------|
| North             | 0.9x            | 0.77                  |                | X             | 1.9        | 7       | X           | 1          | 0.63        | X            |               | 0.76             | x             |          | 0.7           |     | =   | 7.72         | (74) |
| North             | 0.9x            | 0.77                  |                | x             | 1.9        | 7       | X           | 2          | 0.32        | ×            |               | 0.76             | X             |          | 0.7           |     | =   | 14.76        | (74) |
| North             | 0.9x            | 0.77                  |                | x             | 1.9        | 7       | X           | 3          | 4.53        | x            |               | 0.76             | X             |          | 0.7           |     | = [ | 25.08        | (74) |
| North             | 0.9x            | 0.77                  |                | x             | 1.9        | 7       | X           | 5          | 5.46        | X            |               | 0.76             | X             |          | 0.7           |     | = [ | 40.28        | (74) |
| North             | 0.9x            | 0.77                  |                | X             | 1.9        | 7       | X           | 7          | 4.72        | X            |               | 0.76             | X             |          | 0.7           |     | =   | 54.27        | (74) |
| North             | 0.9x            | 0.77                  |                | x             | 1.9        | 7       | X           | 7          | 9.99        | X            |               | 0.76             | X             |          | 0.7           |     | =   | 58.09        | (74) |
| North             | 0.9x            | 0.77                  |                | X             | 1.9        | 7       | X           | 7          | 4.68        | X            |               | 0.76             | X             |          | 0.7           |     | =   | 54.24        | (74) |
| North             | 0.9x            | 0.77                  |                | x             | 1.9        | 7       | X           | 5          | 9.25        | X            |               | 0.76             | X             |          | 0.7           |     | =   | 43.03        | (74) |
| North             | 0.9x            | 0.77                  |                | x             | 1.9        | 7       | X           | 4          | 1.52        | X            |               | 0.76             | X             |          | 0.7           |     | = [ | 30.15        | (74) |
| North             | 0.9x            | 0.77                  |                | x             | 1.9        | 7       | x           | 2          | 4.19        | x            |               | 0.76             | X             |          | 0.7           |     | = [ | 17.57        | (74) |
| North             | 0.9x            | 0.77                  |                | x             | 1.9        | 7       | x           | 1          | 3.12        | x            |               | 0.76             | X             |          | 0.7           |     | = [ | 9.53         | (74) |
| North             | 0.9x            | 0.77                  |                | x             | 1.9        | 7       | X           | 8          | 3.86        | x            |               | 0.76             | X             |          | 0.7           |     | =   | 6.44         | (74) |
| South             | 0.9x            | 0.77                  |                | x             | 1.0        | 6       | X           | 4          | 6.75        | x            |               | 0.76             | X             |          | 0.7           |     | = [ | 27.58        | (78) |
| South             | 0.9x            | 0.77                  |                | x             | 1.6        | 3       | X           | 7          | 6.57        | ×            |               | 0.76             | X             |          | 0.7           |     | =   | 45.17        | (78) |
| South             | 0.9x            | 0.77                  |                | x             | 1.0        | 3       | X           | 9          | 7.53        | ×            |               | 0.76             | X             |          | 0.7           |     | =   | 57.53        | (78) |
| South             | 0.9x            | 0.77                  |                | X             | 1.6        | 6       | X           | 1          | 10.23       | X            |               | 0.76             | X             |          | 0.7           |     | =   | 65.03        | (78) |
| South             | 0.9x            | 0.77                  |                | x             | 1.0        | 5       | х           | 1          | 14.87       | x            |               | 0.76             | X             |          | 0.7           |     |     | 67.76        | (78) |
| South             | 0.9x            | 0.77                  |                | x             | 1.6        | 3       | х           | 1          | 10.55       | ×            |               | 0.76             | X             | Ī        | 0.7           |     | =   | 65.21        | (78) |
| South             | 0.9x            | 0.77                  |                | x             | 1.6        | 3       | x           | 10         | 08.01       | x            |               | 0.76             | X             | Ē        | 0.7           |     | =   | 63.71        | (78) |
| South             | 0.9x            | 0.77                  |                | x             | 1.6        | 3       | x           | 10         | 04.89       | ×            |               | 0.76             | х             | Ī        | 0.7           |     | = [ | 61.88        | (78) |
| South             | 0.9x            | 0.77                  |                | x             | 1.6        | 5       | X           | 10         | 01.89       | ×            |               | 0.76             | X             | Ē        | 0.7           |     | = [ | 60.1         | (78) |
| South             | 0.9x            | 0.77                  |                | x             | 1.6        | 6       | Х           | 8          | 2.59        | x            |               | 0.76             | X             | Ē        | 0.7           |     | = [ | 48.72        | (78) |
| South             | 0.9x            | 0.77                  |                | x             | 1.6        | 6       | x           | 5          | 5.42        | X            |               | 0.76             | X             |          | 0.7           |     | =   | 32.69        | (78) |
| South             | 0.9x            | 0.77                  |                | x             | 1.6        | 6       | x           |            | 10.4        | x            |               | 0.76             | X             | Ī        | 0.7           |     | = [ | 23.83        | (78) |
|                   |                 |                       |                |               |            |         |             |            |             | _            |               |                  | _             |          |               |     | -   |              |      |
| Solar g<br>(83)m= | ains ir<br>35.3 | watts, ca             | lculat<br>82.6 | $\overline{}$ | 105.31     | 122.03  | $\neg$      | 123.3      | 117.95      | <del>–</del> | n = S<br>4.91 | um(74)m<br>90.25 | (82)r<br>66.2 |          | 42.22         | 30. | 27  |              | (83) |
|                   |                 | internal a            |                |               |            |         |             |            |             | 10.          | +.51          | 90.23            | 00.2          | .0       | 42.22         | 50. | 21  |              | (00) |
| (84)m=            | 345.52          |                       | 377.1          | _             | 381.48     | 380.37  | <del></del> | 65.26      | 350.13      | 34           | 3.59          | 339.37           | 333.          | 96       | 330.29        | 332 | 2.8 |              | (84) |
| 7 Ma              |                 |                       |                | _             | booting    | 20000   | n)          |            |             |              |               |                  |               |          |               |     |     |              |      |
|                   |                 | ernal temp            |                |               |            |         |             | area f     | rom Tak     | عاد          | ) Th          | 1 (°C)           |               |          |               |     | ı   | 21           | (85) |
| -                 |                 | ctor for ga           | _              | •             |            |         | _           |            |             | 010          | , III         | 1 ( 0)           |               |          |               |     | l   | 21           | (00) |
|                   | Jan             | Feb                   | Ma             | $\neg$        | Apr        | May     | Ť           | Jun        | Jul         |              | ug            | Sep              | Od            | <u>-</u> | Nov           |     | ес  |              |      |
| (86)m=            | 1               | 1                     | 1              | ┪             | 1          | 1       | +           | 0.98       | 0.93        |              | 94            | 0.99             | 1             |          | 1             |     | -   |              | (86) |
|                   | intorn          | ol tompore            |                | <br>::        |            |         |             |            |             | _            |               | <u> </u>         |               |          | <u>[</u>      |     |     |              | , ,  |
| (87)m=            | 19.39           | al tempera<br>19.49   | 19.7           | $\overline{}$ | 20.03      | 20.35   |             | 20.67      | 20.86       | 1            | .84           | 20.59            | 20.1          | 8        | 19.77         | 19. | 42  |              | (87) |
| Temp              | eratur          | e during h            | eating         |               | eriods ir  | rest o  | of dv       | vellina    | from Ta     | able         | 9. TI         | h2 (°C)          |               |          | !!            |     |     |              |      |
| (88)m=            | 19.86           | 19.87                 | 19.87          | <del>_</del>  | 19.92      | 19.93   | _           | 19.98      | 19.98       | 1            | .99           | 19.96            | 19.9          | 93       | 19.91         | 19. | 89  |              | (88) |
| ا<br>وeiliti ا    | ition fa        | ctor for ga           | ains fo        | or r          | est of d   | velling | h2          | m (se      | e Tahle     | (9a)         |               |                  |               |          | ,             |     |     |              |      |
| (89)m=            | 1               | 1 1                   | 1              | <u> </u>      | 1          | 0.99    | $\neg$      | 0.96       | 0.85        | T .          | 87            | 0.98             | 1             |          | 1             | 1   |     |              | (89) |
| ` '               |                 | 1 1                   |                |               |            |         |             | -          |             |              |               |                  |               |          |               |     |     |              | •    |

| Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| (90)m= 18.38 18.49 18.7 19.07 19.39 19.75 19.91 19.91 19.65 19.23 18.8 18.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (90)                                                                                                             |
| $fLA = Living area \div (4) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.66 (91)                                                                                                        |
| Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
| (92)m= 19.04 19.15 19.36 19.7 20.02 20.36 20.54 20.52 20.27 19.86 19.44 19.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (92)                                                                                                             |
| Apply adjustment to the mean internal temperature from Table 4e, where appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                |
| (93)m= 19.04 19.15 19.36 19.7 20.02 20.36 20.54 20.52 20.27 19.86 19.44 19.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (93)                                                                                                             |
| 8. Space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
| Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | culate                                                                                                           |
| the utilisation factor for gains using Table 9a  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                |
| Utilisation factor for gains, hm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                |
| (94)m= 1 1 1 1 0.99 0.97 0.9 0.92 0.98 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (94)                                                                                                             |
| Useful gains, hmGm , W = (94)m x (84)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                |
| (95)m= 345.37 366.57 376.76 380.53 377.47 354.11 315.25 315.19 333.63 333.05 330.05 332.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (95)                                                                                                             |
| Monthly average external temperature from Table 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                |
| (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (96)                                                                                                             |
| Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m-(96)m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 (07)                                                                                                           |
| (97)m= 1754.01 1681.57 1505.17 1212.46 926.12 613.51 419.07 434.87 668.86 1029.99 1396.61 1713.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (97)                                                                                                             |
| Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m  (98)m = 1048.03 883.68 839.54 598.99 408.19 0 0 0 518.52 767.92 1027.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                |
| Total per year (kWh/year) = Sum(98) <sub>15,912</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |
| Space heating requirement in kWh/m²/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117.15 (99)                                                                                                      |
| 9b. Energy requirements – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 (301)                                                                                                          |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 (302)                                                                                                          |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 (302)                                                                                                          |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (302)                                                                                                          |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 (302)                                                                                                          |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 (302) the latter                                                                                               |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  (302) x (303a) =                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 (302) the latter  1 (303a) 1 (304a)                                                                            |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none Fraction of space heat from community system $1 - (301) = $ The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Factor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system                                                                                                                                                                                                                                                                                                             | 1 (302)  the latter  1 (303a  1 (304a  1.05 (305)  1.1 (306)                                                     |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Fractor for control and charging method (Table 4c(3)) for community heating system                                                                                                                                                                                                                                                                                                                                                                               | 1 (302)  the latter  1 (303a  1 (304a  1.05 (305)                                                                |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Factor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating                                                                                                                                                                                                                                                                                              | 1 (302)  the latter  1 (303a  1 (304a  1.05 (305)  1.1 (306)  kWh/year                                           |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Factor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating  Annual space heating requirement                                                                                                                                                                                                                                                            | 1 (302)  the latter  1 (303a  1 (304a  1.05 (305)  1.1 (306)  kWh/year  6092.05                                  |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Factor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating  Annual space heating requirement  Space heat from Community boilers  (98) x (304a) x (305) x (306) =                                                                                                                                                                                        | 1 (302)  the latter  1 (303a  1 (304a  1.05 (305)  1.1 (306)  kWh/year  6092.05  7036.32 (307a                   |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Fractor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating  Annual space heating requirement  Space heat from Community boilers  (98) x (304a) x (305) x (306) =  Efficiency of secondary/supplementary heating system in % (from Table 4a or Appendix E)  Space heating requirement from secondary/supplementary system  (98) x (301) x 100 ÷ (308) = | 1 (302)  the latter  1 (303a  1 (304a  1.05 (305)  1.1 (306)  kWh/year  6092.05  7036.32 (307a  0 (308)          |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Fractor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating  Annual space heating requirement  Space heat from Community boilers  (98) x (304a) x (305) x (306) =  Efficiency of secondary/supplementary heating system in % (from Table 4a or Appendix E)                                                                                              | 1 (302)  the latter  1 (303a  1 (304a  1.05 (305)  1.1 (306)  kWh/year  6092.05  7036.32 (307a  0 (308)          |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Fractor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating  Annual space heating requirement  Space heat from Community boilers  (98) x (304a) x (305) x (306) =  Efficiency of secondary/supplementary heating system in % (from Table 4a or Appendix E)  Space heating requirement from secondary/supplementary system  Water heating                | 1 (302)  the latter  1 (303a  1 (304a  1.05 (305)  1.1 (306)  kWh/year  6092.05  7036.32 (307a  0 (308)  0 (309) |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                            |                                                                      | _                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Water heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (64) x (303a) x                                                                                                      | (305) x (306) =            | 2128.12                                                              | (310a)                                                               |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01 × [(307a)(307                                                                                                   | 'e) + (310a)(310e)] =      | 91.64                                                                | (313)                                                                |
| Cooling System Energy Efficiency Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                      |                            | 0                                                                    | (314)                                                                |
| Space cooling (if there is a fixed cooling system, if not enter 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $=(107) \div (314)$                                                                                                  | =                          | 0                                                                    | (315)                                                                |
| Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | outside                                                                                                              |                            | 0                                                                    | (330a)                                                               |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                            | 0                                                                    | (330b)                                                               |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                            | 0                                                                    | (330g)                                                               |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =(330a) + (330                                                                                                       | b) + (330g) =              | 0                                                                    | (331)                                                                |
| Energy for lighting (calculated in Appendix L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                      |                            | 500.21                                                               | (332)                                                                |
| 12b. CO2 Emissions – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      |                            |                                                                      |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy<br>kWh/year                                                                                                   | Emission factor kg CO2/kWh | Emissions<br>kg CO2/year                                             |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                    | •                          |                                                                      |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | two fuels repeat (363) to                                                                                            | , ,                        |                                                                      | (367a)                                                               |
| Efficiency of heat source 1 (%)  CO2 associated with heat source 1  [(307b)+(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 310b)] x 100 ÷ (367b) x                                                                                              | 0 :                        | 3045.42                                                              | (367)                                                                |
| Efficiency of heat source 1 (%)  CO2 associated with heat source 1  [(307b)+(3)  Electrical energy for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 310b)] x 100 ÷ (367b) x                                                                                              | 0 : 0.52                   | 3045.42                                                              | (367)                                                                |
| Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  (307b)+(3   | 310b)] x 100 ÷ (367b) x                                                                                              | 0 : 0.52                   | 3045.42                                                              | (367)                                                                |
| Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  (307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307b)+(307 | 310b)] x 100 ÷ (367b) x<br>313) x<br>363)(366) + (368)(373                                                           | 0 0.52                     | 3045.42                                                              | (367)                                                                |
| Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  (307b)+(3   | 310b)] x 100 ÷ (367b) x<br>313) x<br>363)(366) + (368)(373                                                           | 0 : 0.52 : 0               | = 3045.42<br>= 47.56<br>= 3092.98                                    | (367) (372) (373)                                                    |
| Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or instantance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 310b)] x 100 ÷ (367b) x<br>313) x<br>363)(366) + (368)(373                                                           | 0 0.52                     | = 3045.42<br>= 47.56<br>= 3092.98<br>= 0                             | (367)<br>(372)<br>(373)<br>(374)                                     |
| Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or instantaneously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 310b)] x 100 ÷ (367b) x<br>313) x<br>363)(366) + (368)(373309) x<br>bus heater (312) x<br>373) + (374) + (375) =     | 0 0.52                     | = 3045.42<br>= 47.56<br>= 3092.98<br>= 0                             | (367)<br>(372)<br>(373)<br>(374)<br>(375)                            |
| Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or instantaneous total CO2 associated with space and water heating  CO2 associated with electricity for pumps and fans within dwelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 310b)] x 100 ÷ (367b) x<br>313) x<br>363)(366) + (368)(373309) x<br>bus heater (312) x<br>373) + (374) + (375) =     | 0 0.52 0.52 0.52           | = 3045.42<br>= 47.56<br>= 3092.98<br>= 0<br>= 0                      | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)                   |
| Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or instantaneous control co2 associated with space and water heating  CO2 associated with electricity for pumps and fans within dwelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 310b)] x 100 ÷ (367b) x<br>313) x<br>363)(366) + (368)(373309) x<br>309) x<br>373) + (374) + (375) =<br>373 (331)) x | 0 0.52 0.52 0.52           | 3045.42<br>= 47.56<br>= 3092.98<br>= 0<br>3092.98<br>= 0             | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)          |
| Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or instantaneous control CO2 associated with space and water heating  CO2 associated with electricity for pumps and fans within dwelling  CO2 associated with electricity for lighting  (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 310b)] x 100 ÷ (367b) x<br>313) x<br>363)(366) + (368)(373309) x<br>309) x<br>373) + (374) + (375) =<br>373 (331)) x | 0 0.52 0.52 0.52           | 3045.42<br>= 47.56<br>= 3092.98<br>= 0<br>3092.98<br>= 0<br>= 259.61 | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)<br>(379) |

|                                                        |                             |                     | User D       | etails:                      |                    |              |            |           |                            |             |
|--------------------------------------------------------|-----------------------------|---------------------|--------------|------------------------------|--------------------|--------------|------------|-----------|----------------------------|-------------|
| Assessor Name:<br>Software Name:                       | Stroma FSAP 20              |                     | roperty      | Stroma<br>Softwa<br>Address: | are Ve             |              |            | Versic    | on: 1.0.3.4                |             |
| Address :                                              | , London                    |                     | roperty i    | Address                      | Offit 2            |              |            |           |                            |             |
| 1. Overall dwelling dime                               | ensions:                    |                     |              |                              |                    |              |            |           |                            |             |
|                                                        |                             |                     | Area         | a(m²)                        |                    | Av. He       | ight(m)    | -         | Volume(m <sup>3</sup>      | *)          |
| Basement                                               |                             |                     |              | 55                           | (1a) x             | 2            | .17        | (2a) =    | 119.35                     | (3a)        |
| Total floor area TFA = (1                              | a)+(1b)+(1c)+(1d)+(1        | e)+(1n              | 1)           | 55                           | (4)                |              |            |           |                            |             |
| Dwelling volume                                        |                             |                     |              |                              | (3a)+(3b           | )+(3c)+(3c   | d)+(3e)+   | .(3n) =   | 119.35                     | (5)         |
| 2. Ventilation rate:                                   |                             | _                   |              |                              |                    |              |            |           |                            |             |
|                                                        |                             | secondar<br>heating | у<br>        | other                        |                    | total        |            |           | m³ per hou                 | r<br>       |
| Number of chimneys                                     | 0 +                         | 0                   | _ +          | 0                            | ] = <u>L</u>       | 0            | X 4        | 40 =      | 0                          | (6a)        |
| Number of open flues                                   | 0 +                         | 0                   | +            | 0                            | ] = [              | 0            | x 2        | 20 =      | 0                          | (6b)        |
| Number of intermittent fa                              | ins                         |                     |              |                              |                    | 2            | <b>X</b> ' | 10 =      | 20                         | (7a)        |
| Number of passive vents                                | 3                           |                     |              |                              | Ī                  | 0            | x -        | 10 =      | 0                          | (7b)        |
| Number of flueless gas fi                              | ires                        |                     |              |                              | Ē                  | 0            | X 4        | 40 =      | 0                          | (7c)        |
|                                                        |                             |                     |              |                              |                    |              |            | Air ch    | nanges <mark>per</mark> ho | our         |
| Infiltration due to chimne                             | ys, flues and fans = (      | 6a)+(6b)+(7         | a)+(7b)+(    | 7c) =                        |                    | 20           |            | ÷ (5) =   | 0.17                       | (8)         |
| If a pressurisation test has b                         |                             | ded, proceed        | d to (17), o | otherwise o                  | ontinue fr         | rom (9) to ( | (16)       |           |                            | 7.00        |
| Number of storeys in the Additional infiltration       | ne dweiling (ns)            |                     |              |                              |                    |              | [(9)       | -1]x0.1 = | 0                          | (9)<br>(10) |
| Structural infiltration: 0                             | .25 for steel or timber     | frame or            | 0.35 for     | r masonr                     | y constr           | ruction      | 1(0)       | .,,       | 0                          | (11)        |
|                                                        | resent, use the value corre | sponding to         | the great    | ter wall are                 | a (after           |              |            |           |                            |             |
| deducting areas of openial lf suspended wooden to      |                             | aled) or 0          | 1 (spale     | معام (امد                    | enter ()           |              |            |           |                            | (12)        |
| If no draught lobby, en                                |                             | aled) of o.         | i (Scale     | ou), else                    | enter o            |              |            |           | 0                          | (13)        |
| Percentage of window                                   |                             | stripped            |              |                              |                    |              |            |           | 0                          | (14)        |
| Window infiltration                                    | · ·                         |                     |              | 0.25 - [0.2                  | x (14) ÷ 1         | 00] =        |            |           | 0                          | (15)        |
| Infiltration rate                                      |                             |                     |              | (8) + (10)                   | + (11) + (1        | 12) + (13)   | + (15) =   |           | 0                          | (16)        |
| Air permeability value,                                |                             |                     | •            | •                            | •                  | etre of e    | envelope   | area      | 20                         | (17)        |
| If based on air permeabil                              | •                           |                     |              |                              |                    |              |            |           | 1.17                       | (18)        |
| Air permeability value applie Number of sides sheltere |                             | as been don         | e or a deg   | gree air pe                  | meability          | is being u   | sed        |           |                            | (19)        |
| Shelter factor                                         | su .                        |                     |              | (20) = 1 -                   | 0.0 <b>75</b> x (1 | 19)] =       |            |           | 0.85                       | (20)        |
| Infiltration rate incorporate                          | ting shelter factor         |                     |              | (21) = (18)                  | x (20) =           |              |            |           | 0.99                       | (21)        |
| Infiltration rate modified f                           | or monthly wind spee        | d                   |              |                              |                    |              |            |           |                            |             |
| Jan Feb                                                | Mar Apr May                 | Jun                 | Jul          | Aug                          | Sep                | Oct          | Nov        | Dec       |                            |             |
| Monthly average wind sp                                | peed from Table 7           |                     |              |                              |                    |              |            |           | _                          |             |
| (22)m= 5.1 5                                           | 4.9 4.4 4.3                 | 3.8                 | 3.8          | 3.7                          | 4                  | 4.3          | 4.5        | 4.7       |                            |             |
| Wind Factor (22a)m = (2.                               | 2\m ÷ 4                     |                     |              |                              |                    |              |            |           |                            |             |
|                                                        | 1.23 1.1 1.08               | 0.95                | 0.95         | 0.92                         | 1                  | 1.08         | 1.12       | 1.18      | ]                          |             |
| ` '                                                    |                             | 1                   |              |                              |                    |              |            | <u> </u>  | J                          |             |

| Adjusted infiltr                         | ation rat  | e (allowi   | ng for sh    | nelter an   | d wind s   | speed) =    | (21a) x          | (22a)m           |             | _               |                     | -            |       |
|------------------------------------------|------------|-------------|--------------|-------------|------------|-------------|------------------|------------------|-------------|-----------------|---------------------|--------------|-------|
| 1.27                                     | 1.24       | 1.22        | 1.09         | 1.07        | 0.94       | 0.94        | 0.92             | 0.99             | 1.07        | 1.12            | 1.17                |              |       |
| Calculate effe<br>If mechanic            |            | •           | rate for t   | пе арріі    | cable ca   | ise         |                  |                  |             |                 |                     | 0            | (2:   |
| If exhaust air h                         |            |             | endix N, (2  | 3b) = (23a  | a) × Fmv ( | equation (I | N5)) , othe      | rwise (23b       | ) = (23a)   |                 |                     | 0            | (2:   |
| If balanced with                         |            |             |              |             |            |             |                  |                  | , , ,       |                 |                     | 0            | (2:   |
| a) If balance                            | ed mech    | anical ve   | entilation   | with he     | at recov   | erv (MVI    | HR) (24a         | a)m = (2:        | 2b)m + (    | 23b) <b>x</b> [ | 1 – (23c)           |              | (_    |
| 24a)m= 0                                 | 0          | 0           | 0            | 0           | 0          | 0           | 0                | 0                | 0           | 0               | 0                   |              | (2    |
| b) If balance                            | d mech     | anical ve   | entilation   | without     | heat red   | covery (N   | иV) (24k         | m = (22)         | 2b)m + (    | 23b)            |                     | 1            |       |
| 24b)m= 0                                 | 0          | 0           | 0            | 0           | 0          | 0           | 0                | 0                | 0           | 0               | 0                   | ]            | (2    |
| c) If whole h                            |            |             |              | •           |            |             |                  |                  | .5 × (23b   | )<br>)          | •                   | •            |       |
| 24c)m= 0                                 | 0          | 0           | 0            | 0           | 0          | 0           | 0                | 0                | 0           | 0               | 0                   | ]            | (2    |
| d) If natural if (22b)r                  |            |             |              | •           | •          |             |                  |                  | 0.5]        | <u> </u>        |                     | J            |       |
| 24d)m= 1.27                              | 1.24       | 1.22        | 1.09         | 1.07        | 0.94       | 0.94        | 0.92             | 0.99             | 1.07        | 1.12            | 1.17                | ]            | (2    |
| Effective air                            | change     | rate - er   | nter (24a    | ) or (24l   | o) or (24  | c) or (24   | d) in bo         | x (25)           | •           | !               | •                   | •            |       |
| 25)m= 1.27                               | 1.24       | 1.22        | 1.09         | 1.07        | 0.94       | 0.94        | 0.92             | 0.99             | 1.07        | 1.12            | 1.17                |              | (2    |
| 3. Heat losse                            | s and he   | at loss i   | naramet      | or.         |            |             |                  |                  |             |                 |                     |              |       |
| LEMENT                                   | Gros       |             | Openin       |             | Net Ar     | rea         | U-val            | ue               | AXU         |                 | k-value             | e            | ΑΧk   |
|                                          | area       |             | m            |             | i, A       |             | W/m <sup>2</sup> |                  | (W/I        | K)              | kJ/m <sup>2</sup> · |              | kJ/K  |
| )oo <mark>rs</mark>                      |            |             |              |             | 1.9        | Х           | 1.4              | =                | 2.66        |                 |                     |              | (2    |
| Vin <mark>dows</mark> Type               | 1          |             |              |             | 9.03       | x1.         | /[1/( 1.6 )+     | 0.04] =          | 13.58       |                 |                     |              | (2    |
| Vin <mark>dows Type</mark>               | 2          |             |              |             | 1.82       | x1          | /[1/( 4.8 )+     | 0.04] =          | 7.33        |                 |                     |              | (2    |
| Vindows Type                             | 3          | '           |              |             | 0.87       | x1,         | /[1/( 4.8 )+     | 0.04] =          | 3.5         | 7               |                     |              | (2    |
| loor                                     |            |             |              |             | 55         | X           | 0.93             | =                | 51.15       | <b>=</b> [      |                     |              | (2    |
| /alls Type1                              | 28.        | 9           | 10.8         | 5           | 18.05      | 5 X         | 2.1              | <del>-</del>     | 37.9        | F i             |                     | <b>7</b> 7   | (2    |
| /alls Type2                              | 7.8        | 1           | 2.77         |             | 5.04       | _           | 2.1              | <u> </u>         | 10.58       | F i             |                     | 7 F          | (2    |
| otal area of e                           | lements    | , m²        |              |             | 91.7       |             |                  |                  |             |                 |                     |              | (3    |
| arty wall                                |            |             |              |             | 27.9       | X           | 0                |                  | 0           |                 |                     |              | (3    |
| arty wall                                |            |             |              |             | 1.13       | X           | 0                | =                | 0           | ≓ i             |                     | <b>=</b>   = | (3    |
| for windows and                          | roof wind  | ows, use e  | effective wi | ndow U-va   |            |             |                  | <br>!/[(1/U-valu |             | as given in     | paragrapl           | <br>h        | `     |
| * include the area                       | as on both | sides of in | nternal wal  | ls and par  | titions    |             |                  |                  |             |                 |                     |              |       |
| abric heat los                           | ss, W/K :  | = S (A x    | U)           |             |            |             | (26)(30          | ) + (32) =       |             |                 |                     | 126.         | 71 (3 |
| leat capacity                            |            | ,           |              |             |            |             |                  | ((28).           | (30) + (32  | 2) + (32a).     | (32e) =             | 0            | (3    |
| hermal mass                              | •          | •           |              | •           |            |             |                  |                  | tive Value  | · ·             |                     | 450          | (3    |
| or design assess<br>an be used inste<br> | ad of a de | tailed calc | ulation.     |             |            | •           | ecisely the      | e indicative     | e values of | TMP in Ta       | able 1f             |              |       |
| hermal bridge                            | •          | ,           |              | • .         | •          | K           |                  |                  |             |                 |                     | 14.4         | 4 (3  |
| details of therma<br>otal fabric he      |            | are not kn  | own (36) =   | = 0.15 x (3 | 31)        |             |                  | (33) 1           | · (36) =    |                 |                     |              | 14 /2 |
| entilation hea                           |            | alaulataa   | المعمدال     |             |            |             |                  |                  |             | [25)m x (5)     |                     | 141.         | 11 (3 |
| antilation por                           |            |             |              |             |            |             |                  |                  |             |                 | 1                   |              |       |

| (00)                                                     | 10.00               | 17.00                | 40                  | 40.00              | 07.0                 | 07.0                | 00.00                | 00.00               | 40.00                 | 40.07                  | 45.00              |         | (20)    |
|----------------------------------------------------------|---------------------|----------------------|---------------------|--------------------|----------------------|---------------------|----------------------|---------------------|-----------------------|------------------------|--------------------|---------|---------|
| (38)m= 49.84                                             | 48.86               | 47.88                | 43                  | 42.02              | 37.2                 | 37.2                | 36.29                | 39.09               | 42.02                 | 43.97                  | 45.93              |         | (38)    |
| Heat transfer (39)m= 190.95                              | 189.97              | nt, W/K<br>188.99    | 184.11              | 183.13             | 178.31               | 178.31              | 177.4                | (39)m<br>180.2      | = (37) + (3<br>183.13 | 38)m<br>185.08         | 187.04             |         |         |
| (39)11= 190.95                                           | 169.97              | 100.99               | 104.11              | 103.13             | 170.31               | 170.31              | 177.4                |                     |                       | Sum(39) <sub>1</sub>   |                    | 183.88  | (39)    |
| Heat loss para                                           | meter (I            | HLP), W/             | m²K                 |                    |                      | _                   | _                    |                     | = (39)m ÷             |                        | 12 / 12-           | 100.00  | ((3.3)  |
| (40)m= 3.47                                              | 3.45                | 3.44                 | 3.35                | 3.33               | 3.24                 | 3.24                | 3.23                 | 3.28                | 3.33                  | 3.37                   | 3.4                |         | _       |
| Number of day                                            | /s in mo            | nth (Tab             | le 1a)              |                    |                      |                     |                      | ,                   | Average =             | Sum(40) <sub>1</sub>   | 12 /12=            | 3.34    | (40)    |
| Jan                                                      | Feb                 | Mar                  | Apr                 | May                | Jun                  | Jul                 | Aug                  | Sep                 | Oct                   | Nov                    | Dec                |         |         |
| (41)m= 31                                                | 28                  | 31                   | 30                  | 31                 | 30                   | 31                  | 31                   | 30                  | 31                    | 30                     | 31                 |         | (41)    |
|                                                          |                     | •                    |                     |                    |                      |                     |                      |                     |                       |                        |                    |         |         |
| 4. Water heat                                            | ting ene            | rgy requi            | rement:             |                    |                      |                     |                      |                     |                       |                        | kWh/ye             | ar:     |         |
| Assumed occu                                             | inancv              | N                    |                     |                    |                      |                     |                      |                     |                       |                        | 0.4                |         | (42)    |
| if TFA > 13.9                                            | 9, N = 1            |                      | [1 - exp            | (-0.0003           | 349 x (TF            | A -13.9             | )2)] + 0.0           | 0013 x (T           | ΓFA -13.              |                        | 84                 |         | (42)    |
| Annual averag                                            | je hot wa           |                      |                     |                    |                      |                     |                      |                     |                       |                        | '.84               |         | (43)    |
| Reduce the annua                                         | _                   |                      |                     |                    | _                    | _                   | to achieve           | a water us          | e target o            | f                      |                    |         |         |
| Jan                                                      | Feb                 | Mar                  | Apr                 | Mav                | Jun                  | Jul /               | Aug                  | Sep                 | Oct                   | Nov                    | Dec                |         |         |
| Hot water usage in                                       |                     |                      |                     |                    |                      |                     |                      | Sep                 | Oct                   | INOV                   | Dec                |         |         |
| (44)m= 85.62                                             | 82.51               | 79.39                | 76.28               | 73.17              | 70.05                | 70.05               | 73.17                | 76.28               | 79.39                 | 82.51                  | 85.62              |         |         |
|                                                          |                     |                      |                     |                    |                      |                     |                      |                     | Γotal = Su            | m(44) <sub>112</sub> = |                    | 934.05  | (44)    |
| Energy content of                                        | hot water           | used - cal           | culated mo          | onthly $= 4$ .     | 190 x Vd,r           | n x nm x E          | Tm / 3600            | kWh/mon             | th (see Ta            | bles 1b, 1             | c, 1d)             |         |         |
| (45)m= 126.97                                            | 111.05              | 114.6                | 99.91               | 95.86              | 82.72                | 76.65               | 87.96                | 89.01               | 103.74                | 113.24                 | 122.97             |         | <b></b> |
| If instantaneous w                                       | /ater heati         | ng at point          | of use (no          | hot water          | storage),            | enter 0 in          | boxes (46)           |                     | Total = Su            | m(45) <sub>112</sub> = | = [                | 1224.68 | (45)    |
| (46)m= 19.05                                             | 16.66               | 17.19                | 14.99               | 14.38              | 12.41                | 11.5                | 13.19                | 13.35               | 15.56                 | 16.99                  | 18.45              |         | (46)    |
| Water storage                                            | loss:               |                      |                     |                    |                      |                     | l                    |                     |                       |                        |                    |         |         |
| Storage volum                                            | ` '                 |                      |                     |                    |                      | •                   |                      | ame ves             | sel                   |                        | 160                |         | (47)    |
| If community hours of therwise if no                     | _                   |                      |                     | _                  |                      |                     | , ,                  | ars) ante           | ar '∩' in <i>(</i>    | <b>17</b> )            |                    |         |         |
| Water storage                                            |                     | not wate             | i (uno n            | iciuues i          | iistaiitai           | ieous co            | THOI DOIL            | ers) erite          | , O III (             | 77)                    |                    |         |         |
| a) If manufact                                           | urer's d            | eclared l            | oss facto           | or is kno          | wn (kWh              | n/day):             |                      |                     |                       |                        | 0                  |         | (48)    |
| Temperature f                                            | actor fro           | m Table              | 2b                  |                    |                      |                     |                      |                     |                       |                        | 0                  |         | (49)    |
| Energy lost fro                                          |                     | _                    | -                   |                    |                      |                     | (48) x (49)          | =                   |                       | 1                      | 10                 |         | (50)    |
| <ul><li>b) If manufact</li><li>Hot water stora</li></ul> |                     |                      | -                   |                    |                      |                     |                      |                     |                       | 0                      | 02                 |         | (51)    |
| If community h                                           | -                   |                      |                     | 0 2 (              | 1,11110,00           | •97                 |                      |                     |                       | 0.                     | .02                |         | (01)    |
| Volume factor                                            |                     |                      |                     |                    |                      |                     |                      |                     |                       | 1.                     | .03                |         | (52)    |
| Temperature f                                            | actor fro           | m Table              | 2b                  |                    |                      |                     |                      |                     |                       | 0                      | .6                 |         | (53)    |
| Energy lost fro                                          |                     | _                    | , kWh/ye            | ear                |                      |                     | (47) x (51)          | x (52) x (          | 53) =                 |                        | 03                 |         | (54)    |
| Enter (50) or (                                          | ` , , `             | •                    | or oook             | month              |                      |                     | ((EG)~ '             | FF) (44\-           | <b>~</b>              | 1.                     | .03                |         | (55)    |
| Water storage                                            |                     |                      |                     |                    | 00.00                |                     | ((56)m = (           |                     |                       |                        | 00.04              |         | (FC)    |
| (56)m= 32.01 If cylinder contains                        | 28.92<br>s dedicate | 32.01<br>d solar sto | 30.98<br>rage. (57) | 32.01<br>m = (56)m | 30.98<br>x [(50) – ( | 32.01<br>H11)] ÷ (5 | 32.01<br>0), else (5 | 30.98<br>7)m = (56) | 32.01<br>m where (    | 30.98<br>H11) is fro   | 32.01<br>m Appendi | x H     | (56)    |
|                                                          |                     |                      |                     |                    |                      | 1                   |                      | 30.98               |                       | 1                      |                    | -       | (57)    |
| (57)m= 32.01                                             | 28.92               | 32.01                | 30.98               | 32.01              | 30.98                | 32.01               | 32.01                | 30.98               | 32.01                 | 30.98                  | 32.01              |         | (31)    |

| Primary circuit loss (annual) from Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 (58)                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| (modified by factor from Table H5 if there is solar water heating and a cylinder the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rmostat)                          |
| (59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 23.26 22.51 23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26 22.51 23.26 (59)               |
| Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| (61)m= 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 (61)                          |
| Total heat required for water heating calculated for each month (62)m = $0.85 \times (45)$ n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n + (46)m + (57)m + (59)m + (61)m |
| (62)m= 182.25 160.98 169.87 153.4 151.14 136.22 131.93 143.24 142.51 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 (63)                          |
| Output from water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |
| (64)m= 182.25 160.98 169.87 153.4 151.14 136.22 131.93 143.24 142.51 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .01 166.73 178.24                 |
| Output from water h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                       |
| Heat gains from water heating, kWh/month 0.25 $^{\prime}$ [0.85 × (45)m + (61)m] + 0.8 x [(46)m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                               |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | is from community heating         |
| 5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |
| Metabolic gains (Table 5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oct Nov Dec                       |
| (66)m= 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87 91.87 91.87 (66)               |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| (67)m= 24.29 21.57 17.54 13.28 9.93 8.38 9.06 11.77 15.8 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06 23.42 24.96 (67)               |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                 |
| (68)m= 160.19 161.85 157.66 148.74 137.49 126.91 119.84 118.18 122.36 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .28 142.54 153.12 (68)            |
| Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| (69)m= 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 32.19 32.19 (69)               |
| Pumps and fans gains (Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| (70)m= 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 (70)                          |
| Losses e.g. evaporation (negative values) (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |
| (71)m= -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -7 | .49 -73.49 -73.49 (71)            |
| Water heating gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
| (72)m= 81.76 79.96 76.23 71.15 67.86 63.22 59.27 64.32 66.12 71.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37 77.31 79.97 (72)               |
| Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |
| (73)m= 316.79 313.94 301.99 283.74 265.83 249.06 238.73 244.83 254.85 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| 6. Solar gains:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 293.02 300.01                     |
| Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | olicable orientation              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FF Gains                          |
| Orientation: Access Factor Area Flux g_ Table 6d m² Table 6a Table 6b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 6c (W)                      |
| North 0.9x 0.77 x 1.82 x 10.63 x 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| 1.02 × 10.00 × 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |
| North 0.9x 0.77 x 0.87 x 10.63 x 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7 = 3.81 (74)                   |

|                | 7. Mean internal temperature (heating season)  Temperature during heating periods in the living area from Table 9, Th1 (°C)  21 (85) |             |          |                |            |                |            |                |            |        |              |                               |                         |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|----------------|------------|----------------|------------|----------------|------------|--------|--------------|-------------------------------|-------------------------|
| (84)m=         | 484.23                                                                                                                               | 591.39      | 665      | 712.24 731.    |            | 05.81 681.14   | 659        | .76 640.09     | 575.05     | 492.86 | 452.93       |                               | (84)                    |
| Total g        | ains – ir                                                                                                                            | nternal and | d solar  | (84)m = $(73)$ | m + (      | 83)m , watts   |            |                |            |        |              |                               |                         |
| (83)m=         | 167.44                                                                                                                               | 277.44      | 363      | 428.51 465.    |            | 56.75 442.42   | 414        | <u> </u>       | 301.77     | 199.04 | 144.32       | ]                             | (83)                    |
| Solar          | aine in v                                                                                                                            | watte calc  | المهدان  | for each mor   | nth        |                | (83)m      | ı = Sum(74)m . | (82\m      |        |              |                               |                         |
| South          | 0.9x                                                                                                                                 | 0.77        | X        | 9.03           | X          | 40.4           | X          | 0.76           | х          | 0.7    | =            | 134.49                        | (78)                    |
| South          | 0.9x                                                                                                                                 | 0.77        | X        | 9.03           | X          | 55.42          | X          | 0.76           | x [        | 0.7    | =            | 184.49                        | (78)                    |
| South          | 0.9x                                                                                                                                 | 0.77        | X        | 9.03           | X          | 82.59          | X          | 0.76           | x [        | 0.7    | =            | 274.94                        | (78)                    |
| South          | 0.9x                                                                                                                                 | 0.77        | x        | 9.03           | X          | 101.89         | x          | 0.76           | x [        | 0.7    | =            | 339.19                        | (78)                    |
| South          | 0.9x                                                                                                                                 | 0.77        | x        | 9.03           | X          | 104.89         | x          | 0.76           | x [        | 0.7    | =            | 349.21                        | (78)                    |
| South          | 0.9x                                                                                                                                 | 0.77        | x        | 9.03           | X          | 108.01         | X          | 0.76           | ×          | 0.7    | =            | 359.59                        | (78)                    |
| South          | 0.9x                                                                                                                                 | 0.77        | ×        | 9.03           | X          | 110.55         | ] x        | 0.76           | x [        | 0.7    | = =          | 368.03                        | (78)                    |
| South          | 0.9x                                                                                                                                 | 0.77        | = ^      | 9.03           | ] ^<br>] x | 114.87         | ]          | 0.76           | ^ L<br>x [ | 0.7    | _ =          | 382.42                        | (78)                    |
| South          | 0.9x 0.9x                                                                                                                            | 0.77        | ^<br>  x | 9.03           | 」 ^<br>□ x | 110.23         | 」 ^<br>] x | 0.76           | ^ [<br>    | 0.7    | ╡ -          | 366.99                        | (78)                    |
| South          | 0.9x                                                                                                                                 | 0.77        |          | 9.03           | X x        | 76.57<br>97.53 | 」×<br>]x   | 0.76           | x [        | 0.7    | =            | 2 <mark>54.91</mark><br>324.7 | (78)                    |
| South          | 0.9x<br>0.9x                                                                                                                         | 0.77        | X        | 9.03           | X X        | 46.75          | 」×<br>]x   | 0.76           | × [        | 0.7    | =            | 155.64                        | (78)                    |
| South          | 0.9x                                                                                                                                 | 0.77        | → ×      | 0.87           | ] ×        | 8.86           | ] X<br>] v | 0.85           | × [        | 0.7    | _ =          | 3.18                          | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | ■ ×      | 1.82           | X          | 8.86           | ] X        | 0.85           | × [        | 0.7    | _ =          | 6.65                          | = $(74)$ $(74)$         |
| North<br>North | 0.9x                                                                                                                                 | 0.77        | X X      | 0.87           | ] x        | 13.12          | ]          | 0.85           | x [        | 0.7    | =            | 4.71                          | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | H X      | 1.82           | X          | 13.12          | ] x        | 0.85           | x [        | 0.7    | =            | 9.84                          | = $(74)$                |
| North          | 0.9x                                                                                                                                 | 0.77        | ×        | 0.87           | X          | 24.19          | X          | 0.85           | X          | 0.7    |              | 8.68                          | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | ×        | 1.82           | X          | 24.19          | X          | 0.85           | x          | 0.7    | =            | 18.15                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | X        | 0.87           | X          | 41.52          | X          | 0.85           | x [        | 0.7    | =            | 14.89                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | X        | 1.82           | X          | 41.52          | X          | 0.85           | x          | 0.7    | =            | 31.16                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | X        | 0.87           | X          | 59.25          | X          | 0.85           | x [        | 0.7    | =            | 21.25                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | X        | 1.82           | X          | 59.25          | X          | 0.85           | x          | 0.7    | =            | 44.46                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | X        | 0.87           | X          | 74.68          | X          | 0.85           | x [        | 0.7    | =            | 26.79                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | x        | 1.82           | j x        | 74.68          | j×         | 0.85           | x [        | 0.7    |              | 56.04                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | x        | 0.87           | X          | 79.99          | X          | 0.85           | ×          | 0.7    | =            | 28.69                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | x        | 1.82           | d x        | 79.99          | X          | 0.85           | x [        | 0.7    | =            | 60.02                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | x        | 0.87           | ] x        | 74.72          | X          | 0.85           | x [        | 0.7    | = =          | 26.8                          | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | x        | 1.82           | X          | 74.72          | X          | 0.85           | x [        | 0.7    |              | 56.07                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | x        | 0.87           | X          | 55.46          | X          | 0.85           | x [        | 0.7    | ╡ =          | 19.9                          | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | x        | 1.82           | X          | 55.46          | X          | 0.85           | _ x        | 0.7    |              | 41.62                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | ×        | 0.87           | ] x        | 34.53          | ] x        | 0.85           | x [        | 0.7    | <del>-</del> | 12.39                         | (74)                    |
| North          | 0.9x                                                                                                                                 | 0.77        | ×        | 1.82           | ]          | 34.53          | ]          | 0.85           | ^ L<br>x [ | 0.7    | ╡ -          | 25.91                         | (74)                    |
| North          | 0.9x                                                                                                                                 |             | =        |                | ╡          |                | ╡          |                | ╡┆         |        | =            |                               | ╡` ′                    |
| North          | 0.9x                                                                                                                                 | 0.77        | X<br>X   | 0.87           | 」 ×<br>□ x | 20.32          | 」 x<br>] x | 0.85<br>0.85   | x [<br>x [ | 0.7    | = =          | 7.29                          | $=$ $\frac{(74)}{(74)}$ |

| (86)m= 1 1 0.99 0.99 0.97 0.92                                                                               | 0.83             | 0.86              | 0.95           | 0.99         | 1           | 1           |           | (86)   |
|--------------------------------------------------------------------------------------------------------------|------------------|-------------------|----------------|--------------|-------------|-------------|-----------|--------|
| Mean internal temperature in living area T1 (follow ste                                                      | eps 3 to 7       | in Table          | e 9c)          |              |             |             |           |        |
| (87)m= 18.75 18.95 19.27 19.72 20.16 20.58                                                                   | 20.82            | 20.79             | 20.46          | 19.88        | 19.25       | 18.75       |           | (87)   |
| Temperature during heating periods in rest of dwelling                                                       | from Ta          | ble 9, Ti         | h2 (°C)        |              |             |             |           |        |
| (88)m= 19.26 19.27 19.28 19.33 19.34 19.38                                                                   | 19.38            | 19.39             | 19.36          | 19.34        | 19.32       | 19.3        |           | (88)   |
| Utilisation factor for gains for rest of dwelling, h2,m (so                                                  | ee Table         | 9a)               |                |              |             |             | •         |        |
| (89)m= 1 1 0.99 0.98 0.95 0.85                                                                               | 0.64             | 0.69              | 0.9            | 0.98         | 1           | 1           |           | (89)   |
| Mean internal temperature in the rest of dwelling T2 (1                                                      | follow ste       | ps 3 to 7         | 7 in Tabl      | e 9c)        |             | !           | ı         |        |
| (90)m= 17.29 17.49 17.82 18.3 18.74 19.16                                                                    | 19.33            | 19.32             | 19.05          | 18.46        | 17.83       | 17.32       |           | (90)   |
|                                                                                                              |                  |                   | f              | LA = Livin   | g area ÷ (4 | 4) =        | 0.55      | (91)   |
| Mean internal temperature (for the whole dwelling) = f                                                       | ΊΔ <b>ν</b> Τ1 . | <b>⊥</b> (1 _ fl  | Δ) <b>v</b> T2 |              |             |             |           |        |
| (92)m= 18.09 18.29 18.61 19.08 19.52 19.94                                                                   | 20.15            | 20.13             | 19.83          | 19.24        | 18.61       | 18.1        |           | (92)   |
| Apply adjustment to the mean internal temperature from                                                       | m Table          |                   |                |              |             |             |           |        |
| (93)m= 18.09 18.29 18.61 19.08 19.52 19.94                                                                   | 20.15            | 20.13             | 19.83          | 19.24        | 18.61       | 18.1        |           | (93)   |
| 8. Space heating requirement                                                                                 |                  |                   |                |              |             |             |           |        |
| Set Ti to the mean internal temperature obtained at st                                                       | ep 11 of         | Table 9           | o, so tha      | t Ti,m=(     | 76)m an     | d re-calc   | ulate     |        |
| the utilisation factor for gains using Table 9a                                                              | 1                |                   |                |              |             | _           |           |        |
| Jan Feb Mar Apr May Jun                                                                                      | Jul              | Aug               | Sep            | Oct          | Nov         | Dec         |           |        |
| Utilisation factor for gains, hm:  (94)m= 1 0.99 0.99 0.98 0.95 0.88                                         | 0.75             | 0.78              | 0.92           | 0.98         | 1           | 1           |           | (94)   |
| Useful gains, hmGm , W = (94)m x (84)m                                                                       | 0.70             | 0.70              | 0.02           | 0.00         |             |             |           | ()     |
| (95)m= 482.98 588.26 658.13 696.95 695.46 621.84                                                             | 511.73           | 516.37            | 589.56         | 564.37       | 490.53      | 452.03      |           | (95)   |
| Monthly average external temperature from Table 8                                                            |                  |                   |                |              |             | <u> </u>    |           |        |
| (96)m= 4.3 4.9 6.5 8.9 11.7 14.6                                                                             | 16.6             | 16.4              | 14.1           | 10.6         | 7.1         | 4.2         |           | (96)   |
| Heat loss rate for mean internal temperature, Lm , W                                                         | =[(39)m >        | ⟨ [(93)m          | – (96)m        | ]            |             |             | •         |        |
| (97)m= 2633.88 2543.64 2289.38 1874.09 1432.54 952.89                                                        | 632.32           | 661.17            |                |              |             | 2600.63     |           | (97)   |
| Space heating requirement for each month, kWh/mon                                                            | 1                |                   |                |              |             | 1           | ı         |        |
| (98)m= 1600.27 1314.02 1213.65 847.54 548.38 0                                                               | 0                | 0                 | 0              | 757.24       | 1181.1      | 1598.55     |           | (oo)   |
|                                                                                                              |                  | Tota              | l per year     | (kWh/year    | ) = Sum(9   | 8)15,912 =  | 9060.75   | (98)   |
| Space heating requirement in kWh/m²/year                                                                     |                  |                   |                |              |             |             | 164.74    | (99)   |
| 9b. Energy requirements – Community heating scheme                                                           | Э                |                   |                |              |             |             |           |        |
| This part is used for space heating, space cooling or w                                                      |                  | • .               | -              |              | unity sch   | neme.       | 2         | (301)  |
| Fraction of space heat from secondary/supplementary                                                          | • ,              | rable r           | 1) U II N      | one          |             |             | 0         |        |
| Fraction of space heat from community system 1 – (30                                                         | 1) =             |                   |                |              |             |             | 1         | (302)  |
| The community scheme may obtain heat from several sources. The                                               |                  |                   |                | up to four o | other heat  | sources; to | he latter |        |
| includes boilers, heat pumps, geothermal and waste heat from powe<br>Fraction of heat from Community boilers | r stations. S    | see <i>Арре</i> і | iaix C.        |              |             |             | 1         | (303a) |
| Fraction of total space heat from Community boilers                                                          |                  |                   |                | (2)          | 02) x (303  | (a) -       |           | (304a) |
| •                                                                                                            |                  |                   |                |              | 02) X (303  | a) =        | 1         | =      |
| Factor for control and charging method (Table 4c(3)) for                                                     | or commu         | inity hea         | iting syst     | tem          |             |             | 1.05      | (305)  |
| Distribution loss factor (Table 12c) for community heati                                                     | ng syster        | m                 |                |              |             |             | 1.1       | (306)  |
| Space heating                                                                                                |                  |                   |                |              |             |             | kWh/ye    | ar     |
| Annual space heating requirement                                                                             |                  |                   |                |              |             |             | 9060.75   |        |
|                                                                                                              |                  |                   |                |              |             |             |           |        |

| Space heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (98) x (304a)                                                                                                                                                                                                            | x (305) x (306) =                                                            | 10465.17                                          | (307a)                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|
| Efficiency of secondary/supplementary heating system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n in % (from Table 4a or Appe                                                                                                                                                                                            | endix E)                                                                     | 0                                                 | (308                                                                 |
| Space heating requirement from secondary/supplement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ntary system (98) x (301) >                                                                                                                                                                                              | ( 100 ÷ (308) =                                                              | 0                                                 | (309)                                                                |
| Water heating Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                              | 1875.52                                           | ]                                                                    |
| If DHW from community scheme: Water heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (64) x (303a)                                                                                                                                                                                                            | x (305) x (306) =                                                            | 2166.23                                           | (310a)                                                               |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01 × [(307a)(3                                                                                                                                                                                                         | 07e) + (310a)(310e)] =                                                       | 126.31                                            | (313)                                                                |
| Cooling System Energy Efficiency Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                              | 0                                                 | (314)                                                                |
| Space cooling (if there is a fixed cooling system, if not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | enter 0) = $(107) \div (31)$                                                                                                                                                                                             | 4) =                                                                         | 0                                                 | (315)                                                                |
| Electricity for pumps and fans within dwelling (Table 41 mechanical ventilation - balanced, extract or positive in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                          |                                                                              | 0                                                 | (330a)                                                               |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                          |                                                                              | 0                                                 | (330b)                                                               |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                          |                                                                              | 0                                                 | (330g)                                                               |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =(330a) + (33                                                                                                                                                                                                            | 30b) + (330g) =                                                              | 0                                                 | (331)                                                                |
| Energy for lighting (calculated in Appendix L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                              | 428.94                                            | (332)                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |                                                                              |                                                   | _                                                                    |
| 12b. CO2 Emissions – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                          |                                                                              |                                                   |                                                                      |
| 12b. CO2 Emissions – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Energy<br>kWh/year                                                                                                                                                                                                       | Emission factor<br>kg CO2/kWh                                                | Emissions<br>kg CO2/year                          | •                                                                    |
| CO2 from other sources of space and water heating (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kWh/year                                                                                                                                                                                                                 | kg CO2/kWh                                                                   | kg CO <mark>2/yea</mark> r                        | (367a)                                                               |
| CO2 from other sources of space and water heating (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kWh/year<br>not CHP)                                                                                                                                                                                                     | kg CO2/kWh to (366) for the second fuel                                      | kg CO <mark>2/yea</mark> r                        | (367a)<br>(367)                                                      |
| CO2 from other sources of space and water heating (r<br>Efficiency of heat source 1 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kWh/year<br>not CHP)<br>s CHP using two fuels repeat (363)                                                                                                                                                               | kg CO2/kWh to (366) for the second fuel                                      | 65<br>4197.51                                     | `<br>                                                                |
| CO2 from other sources of space and water heating (r<br>Efficiency of heat source 1 (%)  CO2 associated with heat source 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kWh/year  not CHP) s CHP using two fuels repeat (363)  [(307b)+(310b)] x 100 ÷ (367b) x                                                                                                                                  | kg CO2/kWh to (366) for the second fuel 0 = 0.52 =                           | 65<br>4197.51                                     | (367)                                                                |
| CO2 from other sources of space and water heating (r Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kWh/year  not CHP) s CHP using two fuels repeat (363)  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x                                                                                                                        | kg CO2/kWh to (366) for the second fuel 0 = 0.52 =                           | 65<br>4197.51<br>65.56<br>4263.07                 | (367)                                                                |
| CO2 from other sources of space and water heating (r Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kWh/year  not CHP) s CHP using two fuels repeat (363)  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(369) x                                                                                             | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.72) = 0 = 0.52        | 65<br>4197.51<br>65.56<br>4263.07                 | (367)<br>(372)<br>(373)                                              |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kWh/year  not CHP) s CHP using two fuels repeat (363)  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(369) x                                                                                             | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.52 = 0.52 = 0.52      | 65<br>4197.51<br>65.56<br>4263.07                 | (367)<br>(372)<br>(373)<br>(374)                                     |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | kWh/year  not CHP) s CHP using two fuels repeat (363)  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(3  (309) x  nstantaneous heater (312) x  (373) + (374) + (375) =                                   | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.52 = 0.52 = 0.52      | 65<br>4197.51<br>65.56<br>4263.07<br>0<br>4263.07 | (367)<br>(372)<br>(373)<br>(374)<br>(375)                            |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or intotal CO2 associated with space and water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kWh/year  not CHP) s CHP using two fuels repeat (363)  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(3  (309) x  nstantaneous heater (312) x  (373) + (374) + (375) =                                   | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.72) = 0 = 0.22 = 0.22 | 65 4197.51 65.56 4263.07 0 4263.07                | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)                   |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or in the community systems  Total CO2 associated with space and water heating  CO2 associated with electricity for pumps and fans with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kWh/year  not CHP) s CHP using two fuels repeat (363)  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(3  (309) x  nstantaneous heater (312) x  (373) + (374) + (375) =  hin dwelling (331)) x  (332))) x | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.22 = 0.52 = 0.52      | 65 4197.51 65.56 4263.07 0 4263.07                | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)          |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or in the control of | kWh/year  not CHP) s CHP using two fuels repeat (363)  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(3  (309) x  nstantaneous heater (312) x  (373) + (374) + (375) =  hin dwelling (331)) x  (332))) x | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.22 = 0.52 = 0.52      | 65 4197.51 65.56 4263.07 0 4263.07 0 222.62       | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)<br>(379) |

|                                                             |                                                                | User Do      | etails:          |             |                    |          |           |               |              |
|-------------------------------------------------------------|----------------------------------------------------------------|--------------|------------------|-------------|--------------------|----------|-----------|---------------|--------------|
| Assessor Name:<br>Software Name:                            | Stroma FSAP 2012                                               | ;            | Stroma<br>Softwa | re Ve       |                    |          | Versic    | on: 1.0.3.4   |              |
|                                                             |                                                                | Property A   | Address:         | Unit 3      |                    |          |           |               |              |
| Address: 1. Overall dwelling dimer                          | , london                                                       |              |                  |             |                    |          |           |               |              |
| 1. Overall dwelling diffler                                 | 1510115.                                                       | Area         | n(m²)            |             | Av He              | ight(m)  |           | Volume(m³     | `            |
| Basement                                                    |                                                                |              | <u> </u>         | (1a) x      |                    | .17      | (2a) =    | 110.67        | (3a)         |
| Total floor area TFA = (1a                                  | )+(1b)+(1c)+(1d)+(1e)+(1                                       | n)           | 51               | (4)         |                    |          | _         |               |              |
| Dwelling volume                                             |                                                                | · L          |                  |             | )+(3c)+(3c         | d)+(3e)+ | (3n) =    | 110.67        | (5)          |
| 2. Ventilation rate:                                        |                                                                |              |                  |             |                    |          |           |               |              |
| <u> </u>                                                    | main seconda<br>heating heating                                | ry (         | other            |             | total              |          |           | m³ per hou    | r            |
| Number of chimneys                                          |                                                                | <b>-</b> + - | 0                | =           | 0                  | x 4      | 40 =      | 0             | (6a)         |
| Number of open flues                                        | 0 + 0                                                          | <b></b>      | 0                | i - F       | 0                  | x        | 20 =      | 0             | (6b)         |
| Number of intermittent fan                                  | is                                                             |              |                  | <b>'</b>    | 2                  | x -      | 10 =      | 20            | (7a)         |
| Number of passive vents                                     |                                                                |              |                  | Ē           | 0                  | x ·      | 10 =      | 0             | (7b)         |
| Number of flueless gas fire                                 | es                                                             |              |                  | Ī           | 0                  | X 4      | 40 =      | 0             | (7c)         |
|                                                             |                                                                |              |                  | _           |                    |          | Δir ch    | nanges per ho | ur           |
| Infiltration due to chimney                                 | s, flues and fans = (6a)+(6b)+(                                | 7a)±(7h)±(7  | 70) -            | _           |                    |          |           |               | _            |
|                                                             | en carried out or is intended, proces                          |              |                  | ontinue fr  | 20<br>rom (9) to ( |          | ÷ (5) =   | 0.18          | (8)          |
| Number of storeys in the                                    |                                                                |              |                  |             |                    | -/       |           | 0             | (9)          |
| Additional infiltration                                     |                                                                |              |                  |             |                    | [(9)     | -1]x0.1 = | 0             | (10)         |
|                                                             | 25 for steel or timber frame o                                 |              |                  | •           | uction             |          |           | 0             | (11)         |
| if both types of wall are pre<br>deducting areas of opening | esent, use the value corresponding t                           | o the greate | er wall area     | a (after    |                    |          |           |               |              |
| , ,                                                         | oor, enter 0.2 (unsealed) or 0                                 | ).1 (seale   | d), else         | enter 0     |                    |          |           | 0             | (12)         |
| If no draught lobby, ente                                   | er 0.05, else enter 0                                          | `            | ,.               |             |                    |          |           | 0             | (13)         |
| Percentage of windows                                       | and doors draught stripped                                     |              |                  |             |                    |          |           | 0             | (14)         |
| Window infiltration                                         |                                                                | (            | 0.25 - [0.2      | x (14) ÷ 1  | 00] =              |          |           | 0             | (15)         |
| Infiltration rate                                           |                                                                | (            | (8) + (10) -     | + (11) + (1 | 12) + (13) -       | + (15) = |           | 0             | (16)         |
| •                                                           | q50, expressed in cubic metro                                  | •            | •                | •           | etre of e          | envelope | area      | 20            | (17)         |
| •                                                           | ty value, then $(18) = [(17) \div 20] + (18) = [(17) \div 20]$ |              |                  |             |                    |          |           | 1.18          | (18)         |
|                                                             | if a pressurisation test has been do                           | ne or a deg  | ıree air per     | meability   | is being u         | sed      |           |               | 7(40)        |
| Number of sides sheltered<br>Shelter factor                 | 1                                                              | (            | (20) = 1 - [     | 0.075 x (1  | 19)] =             |          |           | 0.78          | (19)<br>(20) |
| Infiltration rate incorporation                             | ng shelter factor                                              |              | (21) = (18)      |             | / <del>-</del>     |          |           | 0.70          | (21)         |
| Infiltration rate modified fo                               |                                                                |              | , , , ,          | , ,         |                    |          |           | 0.92          | (21)         |
|                                                             | Mar Apr May Jun                                                | Jul          | Aug              | Sep         | Oct                | Nov      | Dec       |               |              |
| Monthly average wind spe                                    | eed from Table 7                                               | '            |                  |             |                    |          | •         | •             |              |
| <del> </del>                                                | 4.9 4.4 4.3 3.8                                                | 3.8          | 3.7              | 4           | 4.3                | 4.5      | 4.7       | ]             |              |
| Wind Factor (00 c) (22                                      | 1 1                                                            | 1 1          |                  |             |                    | 1        | •         | ı             |              |
| Wind Factor $(22a)m = (22a)m = 1.27$ 1.25 1                 | )m ÷ 4<br>.23 1.1 1.08 0.95                                    | 0.95         | 0.92             | 1           | 1.08               | 1.12     | 1.18      | ]             |              |
| (22a)m= 1.27 1.25 1                                         | .20 1.1 1.00 0.95                                              | 0.95         | 0.92             | ı           | 1.08               | 1.12     | 1.10      | J             |              |

| 1.17                           | 1.14           | 1.12         | 1.01        | 0.98        | 0.87        | 0.87         | 0.85           | (22a)m<br><sub>0.92</sub> | 0.98          | 1.03        | 1.08      | 1        |               |
|--------------------------------|----------------|--------------|-------------|-------------|-------------|--------------|----------------|---------------------------|---------------|-------------|-----------|----------|---------------|
| alculate effe                  |                | l            |             |             |             |              | 0.00           | 0.32                      | 0.90          | 1.00        | 1.00      | J        |               |
| If mechanica                   | al ventila     | ition:       |             |             |             |              |                |                           |               |             |           | 0        | (2            |
| If exhaust air he              | eat pump       | using Appe   | endix N, (2 | 3b) = (23a  | a) × Fmv (e | equation (N  | N5)) , othe    | rwise (23b                | ) = (23a)     |             |           | 0        | (2            |
| If balanced with               | heat reco      | overy: effic | iency in %  | allowing f  | or in-use f | actor (fron  | n Table 4h     | ) =                       |               |             |           | 0        | (2            |
| a) If balance                  | d mech         | anical ve    | entilation  | with he     | at recove   | ery (MVI     | HR) (24a       | a)m = (2)                 | 2b)m + (      | 23b) × [    | 1 – (23c) | ÷ 100]   |               |
| 4a)m= 0                        | 0              | 0            | 0           | 0           | 0           | 0            | 0              | 0                         | 0             | 0           | 0         |          | (2            |
| b) If balance                  | d mech         | anical ve    | entilation  | without     | heat red    | covery (N    | ЛV) (24b       | )m = (22                  | 2b)m + (      | 23b)        |           | _        |               |
| 4b)m= 0                        | 0              | 0            | 0           | 0           | 0           | 0            | 0              | 0                         | 0             | 0           | 0         |          | (2            |
| c) If whole h                  |                |              |             | •           | •           |              |                |                           |               |             |           |          |               |
| if (22b)n                      | า < 0.5 x      | (23b), t     | hen (24)    | c) = (23b)  | ); other\   | vise (24     | c) = (22k      | o) m + 0                  | .5 × (23b     | <u>)</u>    |           | 1        |               |
| 4c)m= 0                        | 0              | 0            | 0           | 0           | 0           | 0            | 0              | 0                         | 0             | 0           | 0         |          | (2            |
| d) If natural                  |                |              |             |             |             |              |                |                           | 0.51          |             |           |          |               |
| if (22b)n<br>4d)m= 1.17        | 1 = 1, 111     | 1.12         | 1.01        | 0.98        | 0.88        | 0.88         | 0.5 + [(2      | 0.92                      | 0.5]          | 1.03        | 1.08      | 1        | (2            |
| - /                            |                | <u> </u>     |             |             |             |              |                |                           | 0.90          | 1.03        | 1.00      |          | (2            |
| Effective air 5)m= 1.17        | change<br>1.14 | 1.12         | 1.01        | 0.98        | 0.88        | 0.88         | 0.86           | 0.92                      | 0.98          | 1.03        | 1.08      | 1        | (2            |
| 5)111= 1.17                    | 1.14           | 1.12         | 1.01        | 0.30        | 0.88        | 0.00         | 0.86           | 0.92                      | 0.98          | 1.03        | 1.08      |          | (2            |
| . Heat losse                   | s and he       | eat loss     | oaramete    | er:         |             |              |                |                           |               |             |           |          |               |
| LEMENT                         | Gros           |              | Openin      | -           | Net Ar      |              | U-valı<br>W/m2 |                           | A X U<br>(W/I | k)          | k-value   |          | A X k<br>kJ/K |
| oors                           | area           | (111-)       | - 11        |             | A ,r        |              |                |                           | `             | N)          | kJ/m²-l   | N.       |               |
|                                | . 1            |              |             |             | 1.9         | X            | 1.4            | 0.04]                     | 2.66          | H           |           |          | (2            |
| indows Type                    |                |              |             |             | 9.03        |              | /[1/( 1.6 )+   |                           | 13.58         | H           |           |          | (2            |
| indows Type                    | 2              |              |             |             | 2.89        | x1.          | /[1/( 4.8 )+   | 0.04] =                   | 11.64         | 닡 ,         |           |          | (2            |
| oor                            |                |              |             |             | 51          | X            | 0.99           | =                         | 50.49         | <u> </u>    |           | <b>ᆜ</b> | (2            |
| alls Type1                     | 16.1           | 4            | 9.03        |             | 7.11        | X            | 2.1            | =                         | 14.93         |             |           |          | (2            |
| alls Type2                     | 16.            | 1            | 4.79        |             | 11.31       | X            | 2.1            | =                         | 23.75         |             |           |          | (2            |
| tal area of e                  | lements        | , m²         |             |             | 83.24       | 1            |                |                           |               |             |           |          | (3            |
| arty wall                      |                |              |             |             | 33.3        | X            | 0              | =                         | 0             |             |           |          | (3            |
| or windows and                 |                |              |             |             |             | ated using   | formula 1      | /[(1/U-valu               | ıe)+0.04] a   | as given in | paragraph | n 3.2    |               |
| include the area               |                |              |             | is and par  | titions     |              | (26)(30)       | 1 + (32) -                |               |             |           |          | - (           |
| bric heat lose<br>eat capacity |                | •            | U)          |             |             |              | (20)(00)       |                           | (30) + (32    | 2) + (225)  | (220) -   | 117.0    | ====          |
| ermal mass                     |                | ,            | 2 – Cm ·    | TEA) ir     | k I/m2k/    |              |                | ., ,                      | tive Value    | , , ,       | (326) =   | 0        | (3            |
| r design assess                | •              | •            |             | ,           |             |              | acisaly the    |                           |               | · ·         | ahla 1f   | 450      | (3            |
| n be used inste                |                |              |             | CONSTRUCT   | ion are no  | i kilowii pi | colsoly the    | maioative                 | , values of   | TIVII III I | abic 11   |          |               |
| nermal bridge                  | es : S (L      | x Y) cal     | culated (   | using Ap    | pendix l    | <            |                |                           |               |             |           | 12.8     | 3 (3          |
| letails of therma              | al bridging    | are not kn   | own (36) =  | = 0.15 x (3 | 1)          |              |                |                           |               |             |           |          |               |
| tal fabric he                  | at loss        |              |             |             |             |              |                | (33) +                    | (36) =        |             |           | 129.8    | 35 (3         |
| entilation hea                 | at loss ca     | alculated    | monthly     |             |             |              | 1              | (38)m                     | = 0.33 × (    | (25)m x (5  | )         | 1        |               |
| Jan                            | Feb            | Mar          | Apr         | May         | Jun         | Jul          | Aug            | Sep                       | Oct           | Nov         | Dec       | Į        |               |
| 3)m= 42.61                     | 41.77          | 40.94        | 36.76       | 35.93       | 32.06       | 32.06        | 31.34          | 33.55                     | 35.93         | 37.6        | 39.27     | ]        | (3            |
| eat transfer o                 | oefficier      | nt, W/K      |             |             |             |              |                | (39)m                     | = (37) + (3   | 38)m        |           | _        |               |
|                                | 171.62         | 170.79       | 166.61      | 165.78      | 161.91      | 161.91       | 161.19         | 163.4                     | 165.78        | 167.44      | 169.12    | ]        |               |
| 9)m= 172.46                    | 171.02         | 170.70       | 100.01      | 100.70      | 101.01      |              | 101110         |                           |               |             |           |          |               |

| Heat loss para                                           | ameter (I       | HLP), W    | /m²K        |                       |              |             |             | (40)m                 | = (39)m ÷      | · (4)                  |         |         |      |
|----------------------------------------------------------|-----------------|------------|-------------|-----------------------|--------------|-------------|-------------|-----------------------|----------------|------------------------|---------|---------|------|
| (40)m= 3.38                                              | 3.37            | 3.35       | 3.27        | 3.25                  | 3.17         | 3.17        | 3.16        | 3.2                   | 3.25           | 3.28                   | 3.32    |         |      |
|                                                          |                 | l .        |             |                       |              | ļ           | ļ           |                       | L<br>Average = | Sum(40) <sub>1</sub> . | 12 /12= | 3.26    | (40) |
| Number of day                                            | ys in mo        | nth (Tab   | le 1a)      |                       |              |             |             |                       |                |                        |         |         | _    |
| Jan                                                      | Feb             | Mar        | Apr         | May                   | Jun          | Jul         | Aug         | Sep                   | Oct            | Nov                    | Dec     |         |      |
| (41)m= 31                                                | 28              | 31         | 30          | 31                    | 30           | 31          | 31          | 30                    | 31             | 30                     | 31      |         | (41) |
|                                                          |                 |            |             |                       |              | -           | -           |                       |                | -                      | -       |         |      |
| 4. Water hea                                             | ting ene        | rgy requi  | irement:    |                       |              |             |             |                       |                |                        | kWh/ye  | ar:     |      |
| Assumed occu<br>if TFA > 13.9<br>if TFA £ 13.9           | 9, N = 1        |            | [1 - exp    | (-0.0003              | 349 x (TF    | FA -13.9    | )2)] + 0.0  | 0013 x ( <sup>-</sup> | TFA -13.       |                        | 72      |         | (42) |
| Annual average<br>Reduce the annual<br>not more that 125 | ,<br>al average | hot water  | usage by    | $5\%$ if the $\alpha$ | lwelling is  | designed t  | ` ,         |                       | se target o    |                        | .04     |         | (43) |
| Jan                                                      | Feb             | Mar        | Apr         | May                   | Jun          | Jul         | Aug         | Sep                   | Oct            | Nov                    | Dec     |         |      |
| Hot water usage i                                        | n litres pe     | day for ea | ach month   | Vd,m = fa             | ctor from    | Table 1c x  | (43)        | •                     | •              | •                      |         |         |      |
| (44)m= 82.54                                             | 79.54           | 76.54      | 73.54       | 70.54                 | 67.54        | 67.54       | 70.54       | 73.54                 | 76.54          | 79.54                  | 82.54   |         |      |
|                                                          |                 |            |             |                       |              | •           |             |                       |                | m(44) <sub>112</sub> = |         | 900.48  | (44) |
| Energy content of                                        | f hot water     | used - cal | culated mo  | onthly $= 4$ .        | 190 x Vd,r   | n x nm x E  | Tm / 3600   | ) kWh/mor             | nth (see Ta    | ables 1b, 1            | c, 1d)  |         |      |
| (45)m= 122.41                                            | 107.06          | 110.48     | 96.32       | 92.42                 | 79.75        | 73.9        | 84.8        | 85.81                 | 100.01         | 109.17                 | 118.55  |         | _    |
| <i>II</i> :                                              |                 |            |             | that was to           |              |             |             |                       | Total = Su     | m(45) <sub>112</sub> = | [       | 1180.67 | (45) |
| If instantaneous w                                       | _               |            |             | -                     |              | _           | boxes (46)  |                       |                |                        |         |         |      |
| (46)m= 18.36                                             | 16.06           | 16.57      | 14.45       | 13.86                 | 11.96        | 11.08       | 12.72       | 12.87                 | 15             | 16.37                  | 17.78   |         | (46) |
| Water storage Storage volum                              |                 | includir   | ng any so   | olar or W             | /WHRS        | storage     | within sa   | ame ves               | sel            |                        | 160     |         | (47) |
| If community h                                           | neating a       | and no ta  | ınk in dw   | elling, e             | nter 110     | litres in   | (47)        |                       |                |                        |         |         |      |
| Otherwise if no                                          | o stored        | hot wate   | er (this in | icludes i             | nstantar     | neous co    | mbi boil    | ers) ente             | er '0' in (    | 47)                    |         |         |      |
| Water storage                                            |                 |            |             |                       |              |             |             |                       |                |                        |         |         |      |
| a) If manufact                                           | turer's d       | eclared I  | oss facto   | or is kno             | wn (kWł      | n/day):     |             |                       |                |                        | 0       |         | (48) |
| Temperature f                                            | actor fro       | m Table    | 2b          |                       |              |             |             |                       |                |                        | 0       |         | (49) |
| Energy lost fro                                          |                 | •          |             |                       |              |             | (48) x (49) | ) =                   |                | 1                      | 10      |         | (50) |
| <ul><li>b) If manufact</li><li>Hot water store</li></ul> |                 |            | -           |                       |              |             |             |                       |                |                        | 20      |         | (E1) |
| If community h                                           | •               |            |             | C Z (KVV              | ii/iiti e/ue | .y <i>)</i> |             |                       |                | 0.                     | 02      |         | (51) |
| Volume factor                                            | •               |            |             |                       |              |             |             |                       |                | 1.                     | 03      |         | (52) |
| Temperature f                                            | actor fro       | m Table    | 2b          |                       |              |             |             |                       |                | -                      | .6      |         | (53) |
| Energy lost fro                                          | m watei         | storage    | , kWh/ye    | ear                   |              |             | (47) x (51) | ) x (52) x (          | 53) =          | 1.                     | 03      |         | (54) |
| Enter (50) or                                            |                 | _          | •           |                       |              |             |             |                       |                |                        | 03      |         | (55) |
| Water storage                                            | loss cal        | culated t  | for each    | month                 |              |             | ((56)m = (  | (55) × (41)           | m              |                        |         |         |      |
| (56)m= 32.01                                             | 28.92           | 32.01      | 30.98       | 32.01                 | 30.98        | 32.01       | 32.01       | 30.98                 | 32.01          | 30.98                  | 32.01   |         | (56) |
| If cylinder contains                                     |                 |            |             |                       |              |             |             |                       |                |                        |         | хН      | , ,  |
| (57)m= 32.01                                             | 28.92           | 32.01      | 30.98       | 32.01                 | 30.98        | 32.01       | 32.01       | 30.98                 | 32.01          | 30.98                  | 32.01   |         | (57) |
| Primary circuit                                          | loss (ar        | nual) fro  | m Table     | 3                     |              |             |             |                       |                |                        | 0       |         | (58) |
| Primary circuit                                          | ,               | ,          |             |                       | 59)m = (     | (58) ÷ 36   | 65 × (41)   | m                     |                |                        |         |         | •    |
| (modified by                                             |                 |            |             | ,                     | •            | ` '         | , ,         |                       | r thermo       | stat)                  |         |         |      |
| (59)m= 23.26                                             | 21.01           | 23.26      | 22.51       | 23.26                 | 22.51        | 23.26       | 23.26       | 22.51                 | 23.26          | 22.51                  | 23.26   |         | (59) |

| Combi loss o         | oloulotod     | for ooob   | month          | (61)m -   | (60) ·    | 265 ~ (41                 | \m          |               |             |           |                                                  |            |                      |      |
|----------------------|---------------|------------|----------------|-----------|-----------|---------------------------|-------------|---------------|-------------|-----------|--------------------------------------------------|------------|----------------------|------|
| (61)m= 0             | 0 0           | 0          | 0              | 0         | (00) -    | - 303 x (41               | )III<br>  0 |               | 0           | 0         | T 0                                              | 0          | 1                    | (61) |
|                      |               |            | <u> </u>       |           |           |                           |             |               |             |           |                                                  |            | (50)== : (61)==      | (01) |
| (62)m= 177.6         | <del></del>   | 165.75     | 149.81         | 147.69    | 133.      |                           | 140.        | _             | 139.31      | 45)III +  | <del>`                                    </del> | 173.82     | · (59)m + (61)m<br>] | (62) |
| ` ′                  |               |            | <u> </u>       |           |           |                           | <u> </u>    |               |             |           |                                                  |            | ]                    | (02) |
| Solar DHW inputation |               |            |                |           |           |                           |             |               |             | CONTINU   | illon to wate                                    | er neaung) |                      |      |
| (63)m= 0             | 0             | 0          | 0              | 0         | аррі<br>0 | 0                         | 0           |               | 0           | 0         | 0                                                | 0          | 1                    | (63) |
| Output from          | ļ             |            |                |           |           |                           |             |               |             |           |                                                  |            | I                    | (00) |
| (64)m= 177.6         |               | 165.75     | 149.81         | 147.69    | 133.      | 24 129.18                 | 140.        | 08            | 139.31      | 155.28    | 162.66                                           | 173.82     | 1                    |      |
| (01)111= 177.0       | 100.00        | 100.70     | 1 10.01        | 111.00    | 100       | 120.10                    | L           |               |             |           | er (annual)                                      |            | 1831.51              | (64) |
| Heat gains fi        | om water      | heating    | k\Mh/m         | onth () 2 | o1 ` 7    | 85 <b>v</b> (45)m         |             |               |             |           |                                                  |            |                      | J` ′ |
| (65)m= 59.31         |               | 55.34      | 50.03          | 49.34     | 44.5      | <del></del>               | 46.8        |               | 46.54       | 51.86     | 54.31                                            | 58.03      | ]                    | (65) |
| , ,                  |               |            | l              |           |           | er is in the              | <u> </u>    |               |             |           |                                                  |            | ]<br>posting         | ()   |
| 5. Internal          | •             |            |                |           | ymrac     |                           | uweii       | iiig          | OI HOL W    | alei is   | iioiii coiii                                     | indinty i  | leating              |      |
|                      | •             |            |                | ).        |           |                           |             |               |             |           |                                                  |            |                      |      |
| Metabolic ga         | T             | Mar        | Apr            | May       | Ju        | n Jul                     | Aı          | ıa            | Sep         | Oct       | Nov                                              | Dec        | 1                    |      |
| (66)m= $85.98$       |               | 85.98      | 85.98          | 85.98     | 85.9      |                           | 85.9        | Ť             | 85.98       | 85.98     | 85.98                                            | 85.98      |                      | (66) |
| Lighting gain        | _             | ted in Ar  | nendix         | Leguat    |           |                           | _           | $\rightarrow$ |             |           |                                                  |            |                      |      |
| (67)m= $22.71$       | <u> </u>      | 16.4       | 12.42          | 9.28      | 7.8       |                           | 11.0        | _             | 14.77       | 18.76     | 21.89                                            | 23.34      | 1                    | (67) |
| Appliances of        | -             | ulated ir  | Append         | dix L ea  | uatio     | 1 13 or l 1               |             | $\vdash$      |             |           | _                                                |            | 1                    |      |
| (68)m= 149.8         | <u> </u>      | 147.47     | 139.13         | 128.6     | 118       |                           | 110.        |               | 114.45      | 122.8     | 133.32                                           | 143.22     | ]                    | (68) |
| Cooking gair         | _             |            |                | L equat   |           | _                         | ) also      | 0. SE         | ee Table    | 5         |                                                  |            | 1                    |      |
| (69)m= 31.6          | 31.6          | 31.6       | 31.6           | 31.6      | 31.0      |                           | 31.         | _             | 31.6        | 31.6      | 31.6                                             | 31.6       | ]                    | (69) |
| Pumps and f          | ans gains     | (Table f   | 5a)            |           |           |                           | <u> </u>    |               |             |           |                                                  |            |                      |      |
| (70)m= 0             | 0             | 0          | 0              | 0         | 0         | 0                         | 0           |               | 0           | 0         | 0                                                | 0          | 1                    | (70) |
| Losses e.g.          | evaporatio    | n (nega    | ı<br>tive valu | es) (Tab  | le 5)     | <b>!</b>                  | !           |               |             |           | <u>.</u> l                                       |            | 1                    |      |
| (71)m= -68.78        |               | -68.78     | -68.78         | -68.78    | -68.      | 78 -68.78                 | -68.        | 78            | -68.78      | -68.78    | -68.78                                           | -68.78     | ]                    | (71) |
| Water heatin         | g gains (T    | rable 5)   | ļ              |           |           |                           |             |               |             |           | ļ                                                |            | ı                    |      |
| (72)m= 79.72         | <del>~~</del> | 74.39      | 69.49          | 66.32     | 61.8      | 4 58.04                   | 62.9        | 91            | 64.64       | 69.71     | 75.43                                            | 77.99      | ]                    | (72) |
| Total intern         | al gains =    | <u> </u>   |                |           |           | <b>I</b><br>(66)m + (67)m | า + (68     | 3)m +         | + (69)m + ( | (70)m + ( |                                                  | )m         | ı                    |      |
| (73)m= 301.0         | <del></del>   | 287.05     | 269.83         | 252.99    | 237.      | 17 227.39                 | 233.        | .25           | 242.66      | 260.05    | 279.44                                           | 293.35     | ]                    | (73) |
| 6. Solar gai         | ns:           |            |                |           |           |                           |             |               |             |           |                                                  |            |                      |      |
| Solar gains are      |               | using sola | r flux from    | Table 6a  | and as    | sociated equa             | ations t    | to co         | nvert to th | e applica | ıble orienta                                     | tion.      |                      |      |
| Orientation:         |               |            | Area           |           |           | Flux                      |             |               | g_          |           | FF                                               |            | Gains                |      |
|                      | Table 6d      |            | m²             |           |           | Table 6a                  |             | Т             | able 6b     | _         | Γable 6c                                         |            | (W)                  |      |
| North 0.9            | 0.77          | X          | 2.8            | 39        | <b>x</b>  | 10.63                     | X           |               | 0.85        | x [       | 0.7                                              | =          | 12.67                | (74) |
| North 0.9            | 0.77          | х          | 2.8            | 39        | x         | 20.32                     | x           |               | 0.85        | x         | 0.7                                              | =          | 24.22                | (74) |
| North 0.9            | 0.77          | х          | 2.8            | 39        | x         | 34.53                     | X           |               | 0.85        | x         | 0.7                                              | =          | 41.15                | (74) |
| North 0.9            | 0.77          | X          | 2.8            | 39        | x         | 55.46                     | x           |               | 0.85        | x [       | 0.7                                              | =          | 66.09                | (74) |
| North 0.9            | 0.77          | X          | 2.8            | 39        | x         | 74.72                     | x           |               | 0.85        | x [       | 0.7                                              | =          | 89.03                | (74) |

| North                                                                 | _                                                              |                                                                                                    | 7                                            |                                                       |                                                                                     |                             |                                                                                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                |                                        |                          |        | _                            |
|-----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------|--------------------------|--------|------------------------------|
| North                                                                 | 0.9x                                                           | 0.77                                                                                               | X                                            | 2.8                                                   | 9                                                                                   | X                           | 79.99                                                                                                        | X                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                | 0.7                                    | =                        | 95.31  | (74)                         |
| North                                                                 | 0.9x                                                           | 0.77                                                                                               | X                                            | 2.8                                                   | 9                                                                                   | X                           | 74.68                                                                                                        | X                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                | 0.7                                    | =                        | 88.99  | (74)                         |
| North                                                                 | 0.9x                                                           | 0.77                                                                                               | X                                            | 2.8                                                   | 9                                                                                   | X                           | 59.25                                                                                                        | X                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                | 0.7                                    | =                        | 70.6   | (74)                         |
| North                                                                 | 0.9x                                                           | 0.77                                                                                               | X                                            | 2.8                                                   | 9                                                                                   | X                           | 41.52                                                                                                        | X                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                | 0.7                                    | =                        | 49.47  | (74)                         |
| North                                                                 | 0.9x                                                           | 0.77                                                                                               | X                                            | 2.8                                                   | 9                                                                                   | X                           | 24.19                                                                                                        | X                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                | 0.7                                    | =                        | 28.83  | (74)                         |
| North                                                                 | 0.9x                                                           | 0.77                                                                                               | X                                            | 2.8                                                   | 9                                                                                   | X                           | 13.12                                                                                                        | X                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                | 0.7                                    | =                        | 15.63  | (74)                         |
| North                                                                 | 0.9x                                                           | 0.77                                                                                               | X                                            | 2.8                                                   | 9                                                                                   | x                           | 8.86                                                                                                         | x                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                | 0.7                                    | =                        | 10.56  | (74)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | x                                            | 9.0                                                   | 3                                                                                   | X                           | 46.75                                                                                                        | x                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                | 0.7                                    | =                        | 155.64 | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | x                                            | 9.0                                                   | 3                                                                                   | X                           | 76.57                                                                                                        | x                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                | 0.7                                    | =                        | 254.91 | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | x                                            | 9.0                                                   | 3                                                                                   | X                           | 97.53                                                                                                        | x                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                | 0.7                                    | =                        | 324.7  | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | x                                            | 9.0                                                   | 3                                                                                   | X                           | 110.23                                                                                                       | x                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                | 0.7                                    | =                        | 366.99 | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | x                                            | 9.0                                                   | 3                                                                                   | X                           | 114.87                                                                                                       | x                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                | 0.7                                    | =                        | 382.42 | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | x                                            | 9.0                                                   | 3                                                                                   | X                           | 110.55                                                                                                       | x                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                | 0.7                                    | =                        | 368.03 | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | х                                            | 9.0                                                   | 3                                                                                   | x                           | 108.01                                                                                                       | x                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                | 0.7                                    | =                        | 359.59 | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | x                                            | 9.0                                                   | 3                                                                                   | x                           | 104.89                                                                                                       | x                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                | 0.7                                    | =                        | 349.21 | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | x                                            | 9.0                                                   | 3                                                                                   | X                           | 101.89                                                                                                       | ×                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                | 0.7                                    | =                        | 339.19 | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | x                                            | 9.0                                                   | 3                                                                                   | X                           | 82.59                                                                                                        | x                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                | 0.7                                    | =                        | 274.94 | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | X                                            | 9.03                                                  | 3                                                                                   | X                           | 55.42                                                                                                        | X                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х                                                | 0.7                                    | =                        | 184.49 | (78)                         |
| South                                                                 | 0.9x                                                           | 0.77                                                                                               | j×                                           | 9.0                                                   | 3                                                                                   | Х                           | 40.4                                                                                                         | x                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                | 0.7                                    | _                        | 134.49 | (78)                         |
|                                                                       |                                                                |                                                                                                    |                                              |                                                       |                                                                                     |                             |                                                                                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                        |                          |        | _                            |
| Solar g                                                               | ains in v                                                      | vatts, <mark>calcu</mark> l                                                                        | ated                                         | for each                                              | n month                                                                             | 1                           |                                                                                                              | (83)m                                                  | = Sum(74)m .                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (82)m                                            |                                        |                          |        |                              |
| (83)m=                                                                | 168.32                                                         | 279.12 365                                                                                         | 5.85                                         | 433.08                                                | 471.46                                                                              | 46                          | 63.34 448.58                                                                                                 | 419                                                    | .81 388.67                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 303.76                                           | 200.12                                 | 145.05                   |        | (83)                         |
| Total g                                                               | ains – in                                                      | ternal and s                                                                                       | solar                                        | (84)m =                                               | : (73)m                                                                             | 3) +                        | 83)m , watts                                                                                                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                        |                          |        |                              |
| (84)m=                                                                | 469.37                                                         | 577.45 65                                                                                          | 2.9                                          | 702.91                                                | 724.45                                                                              | 70                          | 00.52 675.97                                                                                                 | 653                                                    | .06 631.33                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 563.82                                           | 479.56                                 | 438.4                    |        | (84)                         |
| 7. Mea                                                                | an interr                                                      | nal temperat                                                                                       | ture (                                       | heating                                               | seasor                                                                              | n)                          |                                                                                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                        |                          |        |                              |
| Tempe                                                                 | erature o                                                      | during heati                                                                                       | ng p                                         | eriods in                                             | the livi                                                                            | ing                         | area from Ta                                                                                                 | able 9,                                                | Th1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                        |                          | 21     | (85)                         |
| Utilisa                                                               | ition fact                                                     | or for gains                                                                                       | for li                                       | ving are                                              | a, h1,m                                                                             | า (ร                        | ee Table 9a)                                                                                                 | )                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                        |                          |        | _                            |
| [                                                                     | Jan                                                            | Feb M                                                                                              | 1ar                                          | Apr                                                   | May                                                                                 |                             | Jun Jul                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                        |                          |        |                              |
| (86)m=                                                                | 1                                                              | 4                                                                                                  |                                              |                                                       | ,                                                                                   |                             | Juli Juli                                                                                                    | A                                                      | ug Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oct                                              | Nov                                    | Dec                      |        |                              |
|                                                                       |                                                                | 1 0.                                                                                               | 99                                           | 0.98                                                  | 0.96                                                                                | +                           | 0.91 0.8                                                                                                     | 0.8                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Oct<br>0.99                                      | Nov<br>1                               | Dec<br>1                 |        | (86)                         |
| Mean                                                                  | internal                                                       | !                                                                                                  |                                              |                                                       | 0.96                                                                                | (                           | 0.91 0.8                                                                                                     | 0.8                                                    | 3 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | +                                      |                          |        | (86)                         |
| Mean<br>(87)m=                                                        | internal                                                       | temperatur                                                                                         |                                              |                                                       | 0.96                                                                                | ollo                        |                                                                                                              | 0.8                                                    | 3 0.94<br>able 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 1                                      |                          |        | (86)<br>(87)                 |
| (87)m=                                                                | 18.82                                                          | temperatur                                                                                         | e in I                                       | iving are                                             | 0.96<br>ea T1 (f                                                                    | ollo<br>2                   | 0.91 0.8<br>w steps 3 to<br>0.63 20.84                                                                       | 0.8<br>7 in T                                          | a3 0.94<br>Table 9c)<br>82 20.51                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99                                             | 1                                      | 1                        |        | ` ,                          |
| (87)m= Tempe                                                          | 18.82<br>erature                                               | temperatur<br>19.02 19<br>during heati                                                             | e in l                                       | iving are<br>19.79<br>eriods in                       | 0.96<br>ea T1 (for 20.23                                                            | ollo<br>2<br>dw             | 0.91 0.8<br>w steps 3 to<br>0.63 20.84<br>relling from 1                                                     | 0.8 7 in T 20.8                                        | 0.94  able 9c) 20.51  7, Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.99<br>19.93                                    | 19.31                                  | 1 18.82                  |        | ` ,                          |
| (87)m=<br>Tempo<br>(88)m=                                             | 18.82<br>erature (                                             | temperatur<br>19.02 19<br>during heati<br>19.32 19                                                 | e in I<br>.34<br>ng po                       | iving are 19.79 eriods in                             | 0.96 ea T1 (for 20.23 a rest of 19.37                                               | ollo<br>2<br>dw             | 0.91 0.8  w steps 3 to 0.63 20.84  relling from 7 9.41 19.41                                                 | 0.8 7 in T 20.8 Table 9                                | 0.94  able 9c) 20.51  7, Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.99                                             | 19.31                                  | 1                        |        | (87)                         |
| (87)m= [<br>Tempe<br>(88)m= [<br>Utilisa                              | 18.82 erature ( 19.31 ation fact                               | temperatur 19.02 19 during heati 19.32 19 or for gains                                             | e in l<br>.34<br>ng po<br>.33                | iving are 19.79 eriods in 19.37 est of dv             | 0.96 ea T1 (f 20.23 express of 19.37 welling,                                       | ollo<br>2<br>dw<br>1<br>h2, | 0.91 0.8  w steps 3 to 0.63 20.84  relling from 7 9.41 19.41  m (see Table)                                  | 0.8 7 in T 20.8  Table 9 19.6  19.6                    | able 9c) 20.51 3, Th2 (°C) 42 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.99<br>19.93<br>19.37                           | 19.31                                  | 1 18.82 19.34            |        | (87)                         |
| (87)m= [ Tempe (88)m= [ Utilisa (89)m= [                              | erature of 19.31 ation fact                                    | temperatur 19.02 19 during heati 19.32 19 or for gains 1 0.9                                       | e in I<br>.34<br>ng po<br>.33<br>for r       | iving are 19.79 eriods in 19.37 est of dv 0.98        | 0.96 ea T1 (for 20.23 no rest of 19.37 welling, 0.94                                | ollo<br>2<br>dw<br>1<br>h2, | 0.91 0.8  w steps 3 to 0.63 20.84  relling from 7 9.41 19.41  m (see Table 0.82 0.61                         | 0.8 7 in T 20.8 Table 9 19.6 9 0.6                     | 7 able 9c) 82 20.51 9), Th2 (°C) 42 19.4                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99<br>19.93<br>19.37                           | 19.31                                  | 1 18.82                  |        | (87)                         |
| (87)m= [ Tempo (88)m= [ Utilisa (89)m= [ Mean                         | erature (19.31 lation fact 1 linternal                         | temperatur 19.02 19 during heati 19.32 19 or for gains 1 0. temperatur                             | e in I .34  ng pe .33  for r 99              | eriods in 19.37 est of dv 0.98 he rest of             | 0.96 ea T1 (for 20.23 express of 19.37 expression welling, 0.94 of dwell            | ollo 2 dw 1 h2,             | 0.91 0.8  w steps 3 to 0.63 20.84  relling from 7 9.41 19.41  m (see Tabl 0.82 0.61  T2 (follow s            | 0.8 7 in T 20.6 Table 9 19.6 e 9a) 0.6 teps 3          | able 9c) 20.51  7, Th2 (°C) 21 22 20.51  23 20.51  24 21 24 21 25 26 26 27 27 28 28 29 20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51  20.51 | 0.99<br>19.93<br>19.37<br>0.98<br>e 9c)          | 19.31                                  | 1<br>18.82<br>19.34      |        | (87)<br>(88)<br>(89)         |
| (87)m= [ Tempe (88)m= [ Utilisa (89)m= [                              | erature of 19.31 ation fact                                    | temperatur 19.02 19 during heati 19.32 19 or for gains 1 0. temperatur                             | e in I<br>.34<br>ng po<br>.33<br>for r       | iving are 19.79 eriods in 19.37 est of dv 0.98        | 0.96 ea T1 (for 20.23 no rest of 19.37 welling, 0.94                                | ollo 2 dw 1 h2,             | 0.91 0.8  w steps 3 to 0.63 20.84  relling from 7 9.41 19.41  m (see Table 0.82 0.61                         | 0.8 7 in T 20.8 Table 9 19.6 9 0.6                     | 7 able 9c) 82 20.51 9, Th2 (°C) 42 19.4 16 0.89 16 7 in Tabl 37 19.12                                                                                                                                                                                                                                                                                                                                                                                             | 0.99<br>19.93<br>19.37<br>0.98<br>e 9c)<br>18.55 | 19.31<br>19.36<br>1<br>17.92           | 1<br>18.82<br>19.34<br>1 |        | (87)<br>(88)<br>(89)<br>(90) |
| (87)m= [ Tempo (88)m= [ Utilisa (89)m= [ Mean                         | erature (19.31 lation fact 1 linternal                         | temperatur 19.02 19 during heati 19.32 19 or for gains 1 0. temperatur                             | e in I .34  ng pe .33  for r 99              | eriods in 19.37 est of dv 0.98 he rest of             | 0.96 ea T1 (for 20.23 express of 19.37 expression welling, 0.94 of dwell            | ollo 2 dw 1 h2,             | 0.91 0.8  w steps 3 to 0.63 20.84  relling from 7 9.41 19.41  m (see Tabl 0.82 0.61  T2 (follow s            | 0.8 7 in T 20.6 Table 9 19.6 e 9a) 0.6 teps 3          | 7 able 9c) 82 20.51 9, Th2 (°C) 42 19.4 16 0.89 16 7 in Tabl 37 19.12                                                                                                                                                                                                                                                                                                                                                                                             | 0.99<br>19.93<br>19.37<br>0.98<br>e 9c)<br>18.55 | 19.31                                  | 1<br>18.82<br>19.34<br>1 | 0.55   | (87)<br>(88)<br>(89)         |
| (87)m= [ Tempo (88)m= [ Utilisa (89)m= [ Mean (90)m= [                | erature (19.31 stion fact 1 internal 17.39                     | temperatur 19.02 19 during heati 19.32 19 or for gains 1 0. temperatur 17.6 17                     | e in I<br>.34<br>ng po<br>.33<br>for r<br>99 | eriods in<br>19.37<br>est of dv<br>0.98<br>he rest of | 0.96 ea T1 (for 20.23) n rest of 19.37 welling, 0.94 of dwell 18.83                 | ollo 2 dw 1 h2, cut ling 1  | 0.91 0.8  w steps 3 to 0.63 20.84  relling from 7 9.41 19.41  m (see Tabl 0.82 0.61  T2 (follow s            | 0.8 7 in T 20.4 19.4 e 9a) 0.6 teps 3                  | 7 able 9c) 82 20.51 9, Th2 (°C) 42 19.4 16 0.89 16 7 in Tabl 37 19.12                                                                                                                                                                                                                                                                                                                                                                                             | 0.99<br>19.93<br>19.37<br>0.98<br>e 9c)<br>18.55 | 19.31<br>19.36<br>1<br>17.92           | 1<br>18.82<br>19.34<br>1 | 0.55   | (87)<br>(88)<br>(89)<br>(90) |
| (87)m= [ Tempo (88)m= [ Utilisa (89)m= [ Mean (90)m= [  Mean (92)m= [ | erature of 19.31 ation fact of 1 internal 17.39 internal 18.19 | temperatur 19.02 19 during heati 19.32 19 or for gains 1 0. temperatur 17.6 17 temperatur 18.39 18 | e in l                                       | est of dv<br>0.98<br>he rest of<br>18.4               | 0.96 ea T1 (for 20.23 no rest of 19.37 welling, 0.94 of dwell 18.83 ole dwell 19.61 | ollo 2 dw 1 h2, cut ling 1  | 0.91 0.8  w steps 3 to 0.63 20.84  relling from 7 9.41 19.41  m (see Tabl 0.82 0.61  T2 (follow s 9.23 19.37 | 0.8 7 in T 20.4 19.4 e 9a) 0.6 teps 3 19.4 1 + (1-20.4 | 7 able 9c) 82 20.51 9, Th2 (°C) 42 19.4 6 0.89 to 7 in Tabl 37 19.12 f                                                                                                                                                                                                                                                                                                                                                                                            | 0.99  19.93  19.37  0.98  e 9c)  18.55  LA = Liv | 19.31 19.36 19.36 17.92 ring area ÷ (- | 1<br>18.82<br>19.34<br>1 | 0.55   | (87)<br>(88)<br>(89)<br>(90) |

| (93)m= 18.19                                           | 18.39                | 18.71       | 19.17             | 19.61              | 20.01       | 20.19          | 20.17                                             | 19.89         | 19.32       | 18.7           | 18.19              |           | (93)     |
|--------------------------------------------------------|----------------------|-------------|-------------------|--------------------|-------------|----------------|---------------------------------------------------|---------------|-------------|----------------|--------------------|-----------|----------|
| 8. Space hea                                           |                      |             |                   |                    |             |                |                                                   |               |             |                |                    |           |          |
| Set Ti to the the utilisation                          |                      |             |                   |                    | ed at ste   | ep 11 of       | Table 9                                           | o, so tha     | t Ti,m=(    | 76)m an        | d re-calc          | ulate     |          |
| Jan                                                    | Feb                  | Mar         | Apr               | May                | Jun         | Jul            | Aug                                               | Sep           | Oct         | Nov            | Dec                |           |          |
| Utilisation fac                                        | L                    | L           |                   | May                | 00.1        |                | 7.09                                              | Сор           |             |                |                    |           |          |
| (94)m= 1                                               | 0.99                 | 0.99        | 0.97              | 0.94               | 0.86        | 0.72           | 0.76                                              | 0.91          | 0.98        | 0.99           | 1                  |           | (94)     |
| Useful gains,                                          | hmGm                 | , W = (94   | 4)m x (84         | 4)m                | Į.          | Į.             |                                                   |               | Į.          | Į.             |                    |           |          |
| (95)m= 468.03                                          | 573.98               | 645.06      | 685.03            | 682.48             | 603.48      | 487.47         | 493.33                                            | 573.38        | 551.64      | 476.99         | 437.44             |           | (95)     |
| Monthly aver                                           | age exte             | rnal tem    | perature          | from Ta            | able 8      |                |                                                   |               |             |                |                    |           |          |
| (96)m= 4.3                                             | 4.9                  | 6.5         | 8.9               | 11.7               | 14.6        | 16.6           | 16.4                                              | 14.1          | 10.6        | 7.1            | 4.2                |           | (96)     |
| Heat loss rate                                         | 1                    |             |                   |                    |             | <del>-``</del> | <del>- `                                   </del> | <u>`</u>      | <del></del> | <u> </u>       |                    |           | (0-1)    |
| ` '                                                    | 2314.88              |             | 1711.55           | 1310.84            | 875.22      | 581.23         | 607.94                                            | 946.16        | 1445.15     | l .            | 2366.26            |           | (97)     |
| Space heatin                                           | <del>i i</del>       |             | r each n<br>739.1 | 10nth, K\<br>467.5 | /vn/mon     | $\ln = 0.02$   | 24 x [(97]                                        | )m – (95<br>0 | )m] x (4)   | 1)m<br>1054.51 | 1435.04            |           |          |
| (98)m= 1433.55                                         | 1169.89              | 1071.95     | 739.1             | 467.3              | U           | U              |                                                   |               |             | <u> </u>       | └──┤               | 0026.24   | (98)     |
|                                                        |                      |             |                   | .,                 |             |                | Tota                                              | l per year    | (KWII/yeai  | ) = Sum(9      | <b>O)</b> 15,912 = | 8036.31   | ╡``      |
| Space heatin                                           | ig require           | ement in    | kWh/m²            | /year              |             |                |                                                   |               |             |                | L                  | 157.57    | (99)     |
| 9b. Energy red                                         |                      |             |                   | Ĭ                  |             |                |                                                   |               |             |                |                    |           |          |
| This part is us<br>Fraction of spa                     |                      |             |                   |                    | _           |                |                                                   | -             |             | unity sch      | neme.              | 0         | (301)    |
|                                                        |                      |             |                   |                    |             |                | (Table I                                          | 1, 0 11 11    | Offic       |                | I                  |           |          |
| Fraction of spa                                        |                      |             |                   |                    |             |                |                                                   |               |             |                | [                  | 1         | (302)    |
| The c <mark>ommu</mark> nity so<br>includes boilers, h |                      |             |                   |                    |             |                |                                                   |               | up to four  | other heat     | sources; th        | ne latter |          |
| Fraction of hea                                        |                      |             |                   |                    | iom power   | oldirono.      | occ 7 ippor                                       |               |             |                |                    | 1         | (303a)   |
| Fraction of total                                      | al space             | heat fro    | m Comn            | nunity bo          | oilers      |                |                                                   |               | (3          | 02) x (303     | a) =               | 1         | (304a)   |
| Factor for conf                                        |                      |             |                   |                    |             | r commi        | unity hea                                         | ating sys     |             | <b>,</b> `     | ′ L                | 1.05      | (305)    |
| Distribution los                                       | ss factor            | (Table 1    | 2c) for c         | commun             | ity heatii  | ng syste       | m                                                 |               |             |                |                    | 1.1       | (306)    |
| Space heating                                          |                      | `           | ,                 |                    | ,           | 0 ,            |                                                   |               |             |                | L                  | kWh/yea   | r        |
| Annual space                                           | _                    | requirem    | nent              |                    |             |                |                                                   |               |             |                |                    | 8036.31   | <u>.</u> |
| Space heat fro                                         | om Comi              | munity b    | oilers            |                    |             |                |                                                   | (98) x (30    | 04a) x (30  | 5) x (306) :   | - [                | 9281.94   | (307a)   |
| Efficiency of se                                       | econdar              | y/supple    | mentary           | heating            | system      | in % (fro      | om Table                                          | 4a or A       | ppendix     | E)             |                    | 0         | (308     |
| Space heating                                          | require              | ment fro    | m secon           | dary/sur           | oplemen     | tary sys       | tem                                               | (98) x (30    | 01) x 100 - | ÷ (308) =      | ĺ                  | 0         | (309)    |
| Water heating                                          | g                    |             |                   |                    |             |                |                                                   |               |             |                |                    |           |          |
| Annual water                                           | heating ı            | requirem    | ent               |                    |             |                |                                                   |               |             |                |                    | 1831.51   |          |
| If DHW from c<br>Water heat fro                        |                      |             |                   |                    |             |                |                                                   | (64) x (30    | 03a) x (30  | 5) x (306) :   | = [                | 2115.39   | (310a)   |
| Electricity used                                       | d for hea            | at distribu | ution             |                    |             |                | 0.01                                              | × [(307a).    | (307e) +    | · (310a)(      | (310e)] =          | 113.97    | (313)    |
|                                                        |                      |             |                   |                    |             |                |                                                   |               |             |                | L                  |           | _        |
| Cooling Syster                                         | m Energ              | y Efficie   | ncy Ratio         | <b>)</b>           |             |                |                                                   |               |             |                |                    | 0         | (314)    |
| Cooling System Space cooling                           | _                    | -           | •                 |                    | n, if not e | enter 0)       |                                                   | = (107) ÷     | · (314) =   |                | ]                  | 0         | (314)    |
|                                                        | (if there            | is a fixe   | d cooling         | g system           |             | ,              |                                                   | = (107) ÷     | (314) =     |                | [                  |           | =        |
| Space cooling                                          | (if there<br>oumps a | is a fixe   | d cooling         | g system           | Γable 4f)   | :              | outside                                           | = (107) ÷     | · (314) =   |                | ]<br>]<br>]        |           | =        |

| warm air heating system fans                                                                               |                                     |                             |        | 0                      | (330b)  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|--------|------------------------|---------|
| pump for solar water heating                                                                               |                                     |                             |        | 0                      | (330g)  |
| Total electricity for the above, kWh/year                                                                  | =(330a) + (330                      | b) + (330g) =               |        | 0                      | (331)   |
| Energy for lighting (calculated in Appendix L)                                                             |                                     |                             |        | 401.03                 | (332)   |
| 12b. CO2 Emissions – Community heating scheme                                                              |                                     |                             |        |                        |         |
|                                                                                                            | Energy<br>kWh/year                  | Emission fact<br>kg CO2/kWh |        | nissions<br>  CO2/year |         |
| CO2 from other sources of space and water heating (not CF Efficiency of heat source 1 (%)  If there is CHP | IP) using two fuels repeat (363) to | (366) for the second        | d fuel | 0.5                    | (367a)  |
|                                                                                                            | using two racio repeat (600) to     |                             | luci   | 65                     | ](367a) |
| CO2 associated with heat source 1 [(30                                                                     | 7b)+(310b)] x 100 ÷ (367b) x        | 0                           | =      | 3787.42                | (367)   |
| Electrical energy for heat distribution                                                                    | [(313) x                            | 0.52                        | =      | 59.15                  | (372)   |
| Total CO2 associated with community systems                                                                | (363)(366) + (368)(37               | 2)                          | =      | 3846.57                | (373)   |
| CO2 associated with space heating (secondary)                                                              | (309) x                             | 0                           | =      | 0                      | (374)   |
| CO2 associated with water from immersion heater or instant                                                 | taneous heater (312) x              | 0.22                        | =      | 0                      | (375)   |
| Total CO2 associated with space and water heating                                                          | (373) + (374) + (375) =             |                             |        | 3846.57                | (376)   |
| CO2 associated with electricity for pumps and fans within du                                               | velling (331)) x                    | 0.52                        | =      | 0                      | (378)   |
| CO2 associated with electricity for lighting                                                               | (332))) x                           | 0.52                        | =      | 208.13                 | (379)   |
| Total CO2, kg/year sum of (376)(382) =                                                                     |                                     |                             |        | 4054.71                | (383)   |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                   |                                     |                             |        | 79.5                   | (384)   |
| El rating (section 14)                                                                                     |                                     |                             |        | 45.56                  | (385)   |

|                                                            |                      |                     | User D       | etails: _                  |             |             |          |           |                       |          |
|------------------------------------------------------------|----------------------|---------------------|--------------|----------------------------|-------------|-------------|----------|-----------|-----------------------|----------|
| Assessor Name:<br>Software Name:                           | Stroma FSAP          |                     |              | Strom<br>Softwa<br>Address | are Vei     |             |          | Versio    | n: 1.0.3.4            |          |
| Address :                                                  | , london             | r                   | roperty.     | Address                    | Offit 4     |             |          |           |                       |          |
| 1. Overall dwelling dime                                   | nsions:              |                     |              |                            |             |             |          |           |                       |          |
| _                                                          |                      |                     | Area         | a(m²)                      |             | Av. He      | ight(m)  | <b>.</b>  | Volume(m <sup>3</sup> | <u>^</u> |
| Basement                                                   |                      |                     |              | 51                         | (1a) x      | 2           | .18      | (2a) =    | 111.18                | (3a)     |
| Total floor area TFA = (1a                                 | a)+(1b)+(1c)+(1d)+   | +(1e)+(1r           | ר)           | 51                         | (4)         |             |          |           |                       |          |
| Dwelling volume                                            |                      |                     |              |                            | (3a)+(3b)   | )+(3c)+(3c  | d)+(3e)+ | .(3n) =   | 111.18                | (5)      |
| 2. Ventilation rate:                                       |                      |                     |              | -41                        |             | 4-4-1       |          |           |                       | -        |
|                                                            | main<br>heating      | secondar<br>heating | ту<br>       | other                      |             | total       |          | i         | m³ per hou            | r<br>    |
| Number of chimneys                                         | 0                    | 0                   | _            | 0                          | ] = [       | 0           | X 4      | 40 =      | 0                     | (6a)     |
| Number of open flues                                       | 0 +                  | 0                   | ] + [        | 0                          | =           | 0           | x 2      | 20 =      | 0                     | (6b)     |
| Number of intermittent far                                 | ns                   |                     |              |                            |             | 2           | X '      | 10 =      | 20                    | (7a)     |
| Number of passive vents                                    |                      |                     |              |                            |             | 0           | X ·      | 10 =      | 0                     | (7b)     |
| Number of flueless gas fir                                 | res                  |                     |              |                            | Ī           | 0           | X 4      | 40 =      | 0                     | (7c)     |
|                                                            |                      |                     |              |                            |             |             |          | Air ch    | anges per ho          | our      |
| Infiltration due to chimney                                |                      |                     |              |                            |             | 20          |          | ÷ (5) =   | 0.18                  | (8)      |
| If a pressurisation test has be<br>Number of storeys in th |                      | ended, procee       | d to (17), ( | otherwise (                | continue fr | om (9) to ( | (16)     |           | 0                     | (9)      |
| Additional infiltration                                    | ic dwelling (113)    |                     |              |                            |             |             | [(9)     | -1]x0.1 = | 0                     | (10)     |
| Structural infiltration: 0.                                | 25 for steel or time | per frame or        | 0.35 fo      | r masonı                   | y constr    | uction      | ,        | •         | 0                     | (11)     |
| if both types of wall are pr                               |                      | orresponding to     | the great    | ter wall are               | a (after    |             |          | '         |                       |          |
| deducting areas of opening<br>If suspended wooden floor    | • ,. ,               | sealed) or 0        | .1 (seale    | ed). else                  | enter 0     |             |          |           | 0                     | (12)     |
| If no draught lobby, ent                                   | ,                    | •                   | (000         | , c.cc                     |             |             |          |           | 0                     | (13)     |
| Percentage of windows                                      | and doors draugh     | nt stripped         |              |                            |             |             |          |           | 0                     | (14)     |
| Window infiltration                                        |                      |                     |              | 0.25 - [0.2                | x (14) ÷ 1  | 00] =       |          |           | 0                     | (15)     |
| Infiltration rate                                          |                      |                     |              | (8) + (10)                 |             |             |          |           | 0                     | (16)     |
| Air permeability value,                                    |                      |                     | •            | •                          | •           | etre of e   | envelope | area      | 20                    | (17)     |
| If based on air permeabili  Air permeability value applies | •                    |                     |              |                            |             | is heina u  | sad .    |           | 1.18                  | (18)     |
| Number of sides sheltere                                   |                      | it rias been dei    | ic or a act  | gree an pe                 | meability   | is being a  | Scu      |           | 2                     | (19)     |
| Shelter factor                                             |                      |                     |              | (20) = 1 -                 | 0.075 x (1  | 19)] =      |          |           | 0.85                  | (20)     |
| Infiltration rate incorporati                              | ing shelter factor   |                     |              | (21) = (18                 | x (20) =    |             |          |           | 1                     | (21)     |
| Infiltration rate modified for                             | or monthly wind sp   | eed                 |              |                            |             | 1           | 1        | 1         | 1                     |          |
| Jan Feb                                                    | Mar Apr M            | lay Jun             | Jul          | Aug                        | Sep         | Oct         | Nov      | Dec       |                       |          |
| Monthly average wind spe                                   |                      |                     |              |                            |             |             |          |           | 1                     |          |
| (22)m= 5.1 5                                               | 4.9 4.4 4.           | 3 3.8               | 3.8          | 3.7                        | 4           | 4.3         | 4.5      | 4.7       |                       |          |
| Wind Factor (22a)m = (22                                   | 2)m ÷ 4              |                     |              |                            |             |             |          |           |                       |          |
| (22a)m= 1.27 1.25                                          | 1.23 1.1 1.0         | 0.95                | 0.95         | 0.92                       | 1           | 1.08        | 1.12     | 1.18      |                       |          |

| 1.28                               | ation rate   | 1.23         | 1.1        | 1.08        | 0.95           | 0.95              | 0.93                | 1              | 1.08                                             | 1.13                                             | 1.18               |        |               |
|------------------------------------|--------------|--------------|------------|-------------|----------------|-------------------|---------------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------------|--------|---------------|
| alculate effe                      | ctive air    | change       | rate for t | he appli    | cable ca       | se                | ļ .                 | <u> </u>       |                                                  |                                                  |                    |        |               |
| If mechanica                       |              |              |            |             |                |                   |                     |                |                                                  |                                                  |                    | 0      | (2            |
| If exhaust air h                   |              | 0            |            | , ,         | ,              | . ,               | ,, .                | ,              | ) = (23a)                                        |                                                  |                    | 0      | (2            |
| If balanced with                   | ı heat reco  | very: effic  | iency in % | allowing f  | or in-use f    | actor (fron       | n Table 4h          | ) =            |                                                  |                                                  |                    | 0      | (2            |
| a) If balance                      |              |              |            |             | ·              | <del>- ` ` </del> | <del>- ^ `</del>    | ŕ              | <del>,                                    </del> | <del> </del>                                     | <del>1 ` '</del>   | ÷ 100] |               |
| 4a)m= 0                            | 0            | 0            | 0          | 0           | 0              | 0                 | 0                   | 0              | 0                                                | 0                                                | 0                  |        | (2            |
| b) If balance                      |              |              |            |             |                | <u> </u>          | <del>- ^ ` ` </del> | <del>í `</del> | <del> </del>                                     | <del>-                                    </del> |                    | I      |               |
| 4b)m= 0                            | 0            | 0            | 0          | 0           | 0              | 0                 | 0                   | 0              | 0                                                | 0                                                | 0                  |        | (2            |
| c) If whole h                      |              |              |            | •           | •              |                   |                     |                | F (00l-                                          |                                                  |                    |        |               |
|                                    | n < 0.5 ×    | (23b), t     | <u> </u>   | <u> </u>    | ŕ              | wise (24)         | <del>É `</del>      | o) m + 0.      | · ` ·                                            | í –                                              |                    |        | (2            |
|                                    |              |              | 0          | 0           |                | <u> </u>          | 0                   | <u> </u>       | 0                                                | 0                                                | 0                  |        | (2            |
| d) If natural if (22b)n            | ventilation  |              |            |             |                |                   |                     |                | 0.51                                             |                                                  |                    |        |               |
| 1d)m= 1.28                         | 1.25         | 1.23         | 1.1        | 1.08        | 0.95           | 0.95              | 0.93                | 1              | 1.08                                             | 1.13                                             | 1.18               |        | (2            |
| Effective air                      | change       | rate - er    | nter (24a  | ) or (24b   | o) or (24      | c) or (24         | d) in box           | (25)           |                                                  | <u> </u>                                         | ļ                  |        |               |
| 5)m= 1.28                          | 1.25         | 1.23         | 1.1        | 1.08        | 0.95           | 0.95              | 0.93                | 1              | 1.08                                             | 1.13                                             | 1.18               |        | (2            |
|                                    |              |              |            |             |                |                   |                     | ı              |                                                  |                                                  |                    |        |               |
| . Heat losse                       |              |              |            |             |                |                   |                     |                |                                                  |                                                  |                    | _      |               |
| LEMENT                             | Gros<br>area |              | Openin     | -           | Net Ar<br>A ,r |                   | U-valı<br>W/m2      |                | A X U<br>(W/I                                    | <)                                               | k-value<br>kJ/m²-l |        | A X k<br>kJ/K |
| oors                               | G.: <b>5</b> | ,,,          | , i        |             | 1.9            | x                 | 1.4                 | = 1            | 2.66                                             | -,                                               | ,,,,,              |        | (2            |
| in <mark>dows</mark> Type          | <u>.</u> 1   |              |            |             | 9.03           | =                 | /[1/( 1.6 )+        | \ !            | 13.58                                            | Ħ                                                |                    |        | (2            |
| indows Type                        |              |              |            |             | 0.39           | <del>-</del>      | /[1/( 4.8 )+        |                | 1.57                                             | Ħ                                                |                    |        | (2            |
| oor                                |              |              |            |             |                |                   |                     |                |                                                  | ╡,                                               |                    |        | `             |
|                                    |              |              |            |             | 51             | x                 | 0.97                | =              | 49.47                                            | <del> </del>                                     |                    | ╡      | (2            |
| alls Type1                         | 39.2         |              | 0.39       | =           | 38.81          | =                 | 2.1                 | =              | 81.5                                             | 닠 ¦                                              |                    | ╡      | (2            |
| alls Type2                         | 10.9         |              | 10.93      | 3           | 0.06           | ×                 | 2.1                 | =              | 0.13                                             |                                                  |                    |        | (2            |
| otal area of e                     | lements      | , <b>m</b> ² |            |             | 101.1          | 9                 |                     |                |                                                  |                                                  |                    |        | (;            |
| arty wall                          |              |              |            |             | 16.1           | X                 | 0                   | =              | 0                                                |                                                  |                    |        | (3            |
| or windows and<br>include the area |              |              |            |             |                | ated using        | formula 1           | /[(1/U-valu    | ıe)+0.04] a                                      | ns given in                                      | n paragraph        | 3.2    |               |
| bric heat los                      |              |              |            |             |                |                   | (26)(30)            | ) + (32) =     |                                                  |                                                  |                    | 148.91 | (:            |
| eat capacity                       |              | •            | -,         |             |                |                   |                     | ((28).         | (30) + (32                                       | 2) + (32a)                                       | (32e) =            | 0      | (;            |
| nermal mass                        | `            | ,            | = Cm ÷     | - TFA) ir   | n kJ/m²K       |                   |                     | ,              | itive Value                                      | , , ,                                            | ` '                | 450    | (3            |
| r design assess                    | •            | •            |            | ,           |                |                   | ecisely the         | e indicative   | e values of                                      | TMP in T                                         | able 1f            | 100    |               |
| n be used inste                    |              |              |            |             |                |                   | •                   |                |                                                  |                                                  |                    |        |               |
| nermal bridge                      | es : S (L    | x Y) cal     | culated (  | using Ap    | pendix I       | <                 |                     |                |                                                  |                                                  |                    | 15.2   | (3            |
| letails of therma                  |              | are not kn   | own (36) = | = 0.15 x (3 | 11)            |                   |                     | (0.0)          | (0.0)                                            |                                                  | ı                  |        |               |
| otal fabric he                     |              |              |            |             |                |                   |                     |                | (36) =                                           | , ,_                                             |                    | 164.11 | (3            |
| entilation hea                     |              |              |            |             | Ι.             | l                 |                     |                | = 0.33 × (                                       |                                                  | 1                  | l      |               |
|                                    | Feb          | Mar          | Apr        | May         | Jun            | Jul               | Aug                 | Sep            | Oct                                              | Nov                                              | Dec                |        |               |
| Jan                                | 45.00        | 45.00        | 40.70      | 00.50       |                | l ^-              | 1 04.4              |                | 1 00                                             |                                                  | 4000               |        | 10            |
| Jan                                | 45.99        | 45.08        | 40.48      | 39.56       | 35             | 35                | 34.13               | 36.8           | 39.56                                            | 41.4                                             | 43.24              |        | (3            |
| Jan                                |              | <u> </u>     | 40.48      | 39.56       | 35             | 35                | 34.13               | <u> </u>       | 39.56                                            | <u> </u>                                         | 43.24              |        | (3            |

| Heat Ic                                 | ss para            | meter (H                | HLP), W/          | ′m²K        |                    |                  |            |                        | (40)m                 | = (39)m ÷   | · (4)                  |           |         |              |
|-----------------------------------------|--------------------|-------------------------|-------------------|-------------|--------------------|------------------|------------|------------------------|-----------------------|-------------|------------------------|-----------|---------|--------------|
| (40)m=                                  | 4.14               | 4.12                    | 4.1               | 4.01        | 3.99               | 3.9              | 3.9        | 3.89                   | 3.94                  | 3.99        | 4.03                   | 4.07      |         |              |
|                                         |                    |                         |                   |             |                    |                  | l .        |                        | ,                     | Average =   | Sum(40) <sub>1</sub>   | 12 /12=   | 4.01    | (40)         |
| Numbe                                   | er of day          |                         | nth (Tab          | le 1a)      |                    |                  | i          | i                      |                       |             | <del></del>            |           |         |              |
|                                         | Jan                | Feb                     | Mar               | Apr         | May                | Jun              | Jul        | Aug                    | Sep                   | Oct         | Nov                    | Dec       |         |              |
| (41)m=                                  | 31                 | 28                      | 31                | 30          | 31                 | 30               | 31         | 31                     | 30                    | 31          | 30                     | 31        |         | (41)         |
|                                         |                    |                         |                   |             |                    |                  |            |                        |                       |             |                        |           |         |              |
| 4. Wa                                   | iter heat          | ing ener                | rgy requi         | rement:     |                    |                  |            |                        |                       |             |                        | kWh/ye    | ar:     |              |
| if TF                                   |                    |                         |                   | [1 - exp    | (-0.0003           | 49 x (TF         | FA -13.9   | )2)] + 0.0             | 0013 x ( <sup>-</sup> | ΓFA -13.    |                        | 72        |         | (42)         |
| Reduce                                  | the annua          | al average              | hot water         | usage by    |                    | welling is       | designed t | (25 x N)<br>to achieve |                       | se target o |                        | 5.04      |         | (43)         |
|                                         | Jan                | Feb                     | Mar               | Apr         | May                | Jun              | Jul        | Aug                    | Sep                   | Oct         | Nov                    | Dec       |         |              |
| Hot wate                                | er usage ii        | n litres per            | day for ea        | ach month   | Vd,m = fa          | ctor from        | Table 1c x | (43)                   |                       |             |                        |           |         |              |
| (44)m=                                  | 82.54              | 79.54                   | 76.54             | 73.54       | 70.54              | 67.54            | 67.54      | 70.54                  | 73.54                 | 76.54       | 79.54                  | 82.54     |         |              |
| - Charant                               | antont of          | hat water               | used sel          | aulated m   | anthly 1           | 100 v Vd r       |            | Tm / 3600              |                       |             | m(44) <sub>112</sub> = |           | 900.48  | (44)         |
|                                         |                    |                         |                   |             |                    |                  |            |                        |                       | ,           |                        |           |         |              |
| (45)m=                                  | 122.41             | 107.06                  | 110.48            | 96.32       | 92.42              | 79.75            | 73.9       | 84.8                   | 85.81                 | 100.01      | 109.17                 | 118.55    | 4400.07 | (45)         |
| If instant                              | taneous w          | ater heatii             | ng at point       | of use (no  | hot water          | storage),        | enter 0 in | boxes (46)             |                       | lotal = Su  | m(45) <sub>112</sub> = |           | 1180.67 | (45)         |
| (46)m=                                  | 18.36              | 16.06                   | 16.57             | 14.45       | 13.86              | 11.96            | 11.08      | 12.72                  | 12.87                 | 15          | 16.37                  | 17.78     |         | (46)         |
|                                         | storage            |                         |                   |             | 4000               | 11100            |            |                        |                       |             |                        |           |         | , ,          |
| Storag                                  | e volum            | e (litres)              | includir          | ig any so   | olar or W          | WHRS             | storage    | within sa              | ame ves               | sel         |                        | 160       |         | (47)         |
|                                         | -                  | _                       |                   |             | elling, e          |                  |            | , ,                    |                       |             |                        |           |         |              |
|                                         |                    |                         | hot wate          | er (this in | icludes i          | nstantar         | neous co   | mbi boil               | ers) ente             | er '0' in ( | 47)                    |           |         |              |
|                                         | storage<br>anufact |                         | eclared l         | nss facto   | or is kno          | wn (k\//ł        | n/day).    |                        |                       |             |                        | 0         |         | (48)         |
| ,                                       |                    |                         | m Table           |             | ) 13 KHO           | WII (ICVVI       | ı, day).   |                        |                       |             |                        | 0         |         | (49)         |
| •                                       |                    |                         | storage           |             | ar                 |                  |            | (48) x (49)            | · –                   |             |                        | 10        |         | (50)         |
|                                         |                    |                         | _                 | -           | oss facto          | or is not        |            | (40) X (40)            | _                     |             | '                      | 10        |         | (30)         |
| Hot wa                                  | iter stora         | age loss                | factor fr         | om Tabl     | e 2 (kWl           | h/litre/da       | ay)        |                        |                       |             | 0.                     | .02       |         | (51)         |
|                                         | •                  | •                       | ee secti          | on 4.3      |                    |                  |            |                        |                       |             |                        |           |         |              |
|                                         |                    | from Tal                | bie 2a<br>m Table | 2h          |                    |                  |            |                        |                       |             | <b>—</b>               | .03       |         | (52)         |
| •                                       |                    |                         |                   |             |                    |                  |            | (47) v (E4)            | . v. (EQ) v. (I       | E0)         |                        | .6        |         | (53)         |
| • • • • • • • • • • • • • • • • • • • • |                    | 711 water<br>[54) in (5 | storage           | , KVVII/ye  | ai                 |                  |            | (47) x (51)            | ) X (32) X (          | 33) =       |                        | .03       |         | (54)<br>(55) |
|                                         |                    | . , .                   | culated f         | or each     | month              |                  |            | ((56)m = (             | 55) × (41)ı           | m           | 1.                     | .03       |         | (00)         |
| 1                                       | 32.01              | 28.92                   | 32.01             |             |                    | 30.98            | 32.01      | 32.01                  | 30.98                 | 32.01       | 30.98                  | 32.01     |         | (56)         |
| (56)m=                                  |                    |                         |                   | 30.98       | 32.01<br>m = (56)m |                  |            |                        |                       |             |                        | m Appendi | кH      | (30)         |
| (57)m=                                  | 32.01              | 28.92                   | 32.01             | 30.98       | 32.01              | 30.98            | 32.01      | 32.01                  | 30.98                 | 32.01       | 30.98                  | 32.01     |         | (57)         |
| ` '                                     |                    |                         |                   |             |                    | 50.30            | JZ.01      | 02.01                  | 50.30                 | JZ.U1       | <u> </u>               | <u> </u>  |         | , ,          |
|                                         | •                  | •                       | nual) fro         |             |                    | 50\ <del>~</del> | (EQ) + 20  | SE > (44)              | m                     |             |                        | 0         |         | (58)         |
|                                         | •                  |                         |                   |             | ,                  | •                | ` '        | 65 × (41)<br>ng and a  |                       | r thermo    | stat)                  |           |         |              |
| (59)m=                                  | 23.26              | 21.01                   | 23.26             | 22.51       | 23.26              | 22.51            | 23.26      | 23.26                  | 22.51                 | 23.26       | 22.51                  | 23.26     |         | (59)         |
| (55)                                    |                    |                         |                   |             | _56                |                  |            | L0.20                  |                       |             |                        | 5.20      |         | ( )          |

| Combi loss     | calculated                | for oach   | month       | (61)m -                | (60) · ·     | 265 × (41     | )m        |                |             |               |              |                         |      |
|----------------|---------------------------|------------|-------------|------------------------|--------------|---------------|-----------|----------------|-------------|---------------|--------------|-------------------------|------|
| (61)m= 0       | 0 0                       | 0          | 0           | 01)111 =               | 00) +        | 0 7 (41       | 0         | T 0            | 0           | T 0           | 0            | 1                       | (61) |
|                |                           |            |             |                        |              |               |           |                |             |               |              | ]<br>· (59)m + (61)m    | (0.) |
| (62)m= 177.6   | <del>-i</del>             | 165.75     | 149.81      | 147.69                 | 133.24       |               | 140.08    |                | 155.28      | 162.66        | 173.82       | (39)III + (01)IIII<br>] | (62) |
| Solar DHW inp  |                           |            |             |                        |              |               | ļ         |                |             |               |              | ]                       | (02) |
| (add addition  |                           |            |             |                        |              |               |           |                | ii continbu | tion to wat   | ci ricating) |                         |      |
| (63)m= 0       | 0                         | 0          | 0           | 0                      | 0            | 0             | 0         | 0              | 0           | 0             | 0            | ]                       | (63) |
| Output from    | water hea                 | ter        | <u> </u>    | <u> </u>               |              |               | <u> </u>  | <u>I</u>       | <u>!</u>    | 1             | Į            | J                       |      |
| (64)m= 177.6   |                           | 165.75     | 149.81      | 147.69                 | 133.24       | 129.18        | 140.08    | 3 139.31       | 155.28      | 162.66        | 173.82       | ]                       |      |
|                |                           |            | <u> </u>    | <u> </u>               | <u> </u>     | 1             | Ot        | Itput from w   | ater heate  | er (annual)   | 112          | 1831.51                 | (64) |
| Heat gains f   | rom water                 | heating    | , kWh/m     | onth 0.2               | 5 ′ [0.8     | 5 × (45)m     | ı + (61)  | m] + 0.8 x     | x [(46)m    | + (57)m       | ı + (59)m    | ]                       | -    |
| (65)m= 59.3    |                           | 55.34      | 50.03       | 49.34                  | 44.53        | 43.18         | 46.81     | 46.54          | 51.86       | 54.31         | 58.03        | ]                       | (65) |
| include (5     | 7)m in cal                | culation   | of (65)m    | only if c              | vlinder      | is in the     | dwellin   | g or hot w     | ater is f   | rom com       | munity h     | ı<br>neating            |      |
| 5. Internal    | •                         |            | ` ′         |                        | •            |               |           |                |             |               |              | <u> </u>                |      |
| Metabolic ga   |                           |            |             | ,                      |              |               |           |                |             |               |              |                         |      |
| Jar            |                           | Mar        | Apr         | May                    | Jun          | Jul           | Aug       | Sep            | Oct         | Nov           | Dec          | ]                       |      |
| (66)m= 85.98   | 8 85.98                   | 85.98      | 85.98       | 85.98                  | 85.98        | 85.98         | 85.98     | 85.98          | 85.98       | 85.98         | 85.98        |                         | (66) |
| Lighting gair  | ns (calcula               | ted in A   | pendix      | L, equ <mark>at</mark> | ion L9       | or L9a),      | ılso see  | Table 5        |             |               |              |                         |      |
| (67)m= 23.08   | 8 20.5                    | 16.67      | 12.62       | 9.44                   | <b>7</b> .97 | 8.61          | 11.19     | 15.02          | 19.07       | 22.26         | 23.72        |                         | (67) |
| Appliances (   | gains (ca <mark>lc</mark> | ulated ir  | Append      | dix L, eq              | uation       | L13 or L1     | 3a), al   | so see Ta      | ble 5       |               |              |                         |      |
| (68)m= 149.8   | 33 151.39                 | 147.47     | 139.13      | 128.6                  | 118.7        | 112.09        | 110.54    | 114.45         | 122.8       | 133.32        | 143.22       |                         | (68) |
| Cooking gai    | ns (calcula               | ated in A  | ppendix     | L, equat               | ion L1       | 5 or L15a     | ), also   | see Table      | 5           |               | •            | •                       |      |
| (69)m= 31.6    | 31.6                      | 31.6       | 31.6        | 31.6                   | 31.6         | 31.6          | 31.6      | 31.6           | 31.6        | 31.6          | 31.6         |                         | (69) |
| Pumps and      | fans gains                | (Table     | <br>5a)     |                        |              |               | •         |                |             |               |              | •                       |      |
| (70)m= 0       | 0                         | 0          | 0           | 0                      | 0            | 0             | 0         | 0              | 0           | 0             | 0            |                         | (70) |
| Losses e.g.    | evaporatio                | n (nega    | tive valu   | es) (Tab               | le 5)        | •             | •         | -              |             | •             |              | •                       |      |
| (71)m= -68.7   | 8 -68.78                  | -68.78     | -68.78      | -68.78                 | -68.78       | -68.78        | -68.78    | -68.78         | -68.78      | -68.78        | -68.78       | ]                       | (71) |
| Water heatir   | ng gains (1               | Table 5)   |             |                        |              | -             |           |                |             |               |              | •                       |      |
| (72)m= 79.72   | 2 77.99                   | 74.39      | 69.49       | 66.32                  | 61.84        | 58.04         | 62.91     | 64.64          | 69.71       | 75.43         | 77.99        | ]                       | (72) |
| Total intern   | al gains =                |            |             |                        | (6           | 6)m + (67)n   | n + (68)n | n + (69)m +    | (70)m + (7  | 71)m + (72)   | )m           | •                       |      |
| (73)m= 301.4   | 3 298.67                  | 287.32     | 270.04      | 253.14                 | 237.3        | 227.53        | 233.43    | 3 242.91       | 260.36      | 279.8         | 293.73       | ]                       | (73) |
| 6. Solar ga    | ins:                      |            |             |                        |              |               |           |                |             |               |              |                         |      |
| Solar gains ar | e calculated              | using sola | r flux from | Table 6a               | and asso     | ciated equa   | ations to | convert to th  | ne applica  |               | tion.        |                         |      |
| Orientation:   | Access F<br>Table 6d      |            | Area<br>m²  |                        |              | ux<br>able 6a |           | g_<br>Table 6b | т           | FF<br>able 6c |              | Gains                   |      |
|                |                           |            |             |                        |              | able ba       | . –       | Table 60       | _ '         | able oc       |              | (W)                     | ,    |
| North 0.9      |                           | X          | 0.3         | 39                     | x            | 10.63         | X         | 0.85           | x           | 0.7           | =            | 1.71                    | (74) |
| North 0.9      |                           | X          | 0.3         | 39                     | x            | 20.32         | X         | 0.85           | x           | 0.7           | =            | 3.27                    | (74) |
| North 0.9      | × 0.77                    | X          | 0.3         | 39                     | x            | 34.53         | X         | 0.85           | x           | 0.7           | =            | 5.55                    | (74) |
| North 0.9      |                           | X          | 0.3         | 39                     | x            | 55.46         | X         | 0.85           | x           | 0.7           | =            | 8.92                    | (74) |
| North 0.9      | X 0.77                    | x          | 0.3         | . I                    | X            | 74.72         | X         | 0.85           | X           | 0.7           | =            | 12.02                   | (74) |

| North                                                                                                  |                                                                                                                                                                |                                                                                                          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                          |                                                                                                                         | _                                                    |                                           |                           |        | _                                    |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|---------------------------|--------|--------------------------------------|
|                                                                                                        | 0.9x 0.77                                                                                                                                                      | X                                                                                                        | 0.3                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99                                                                  | X                                                        | 0.85                                                                                                                    | X                                                    | 0.7                                       | =                         | 12.86  | (74)                                 |
| North                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 0.3                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68                                                                  | X                                                        | 0.85                                                                                                                    | X                                                    | 0.7                                       | =                         | 12.01  | (74)                                 |
| North                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 0.3                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                  | X                                                        | 0.85                                                                                                                    | X                                                    | 0.7                                       | =                         | 9.53   | (74)                                 |
| North                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 0.3                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52                                                                  | X                                                        | 0.85                                                                                                                    | X                                                    | 0.7                                       | =                         | 6.68   | (74)                                 |
| North                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 0.3                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19                                                                  | X                                                        | 0.85                                                                                                                    | X                                                    | 0.7                                       | =                         | 3.89   | (74)                                 |
| North                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 0.3                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                  | X                                                        | 0.85                                                                                                                    | X                                                    | 0.7                                       | =                         | 2.11   | (74)                                 |
| North                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 0.3                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36                                                                  | X                                                        | 0.85                                                                                                                    | X                                                    | 0.7                                       | =                         | 1.43   | (74)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 9.0                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                                                                  | x                                                        | 0.76                                                                                                                    | x                                                    | 0.7                                       | =                         | 155.64 | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 9.0                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57                                                                  | x                                                        | 0.76                                                                                                                    | x                                                    | 0.7                                       | =                         | 254.91 | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 9.0                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53                                                                  | x                                                        | 0.76                                                                                                                    | x                                                    | 0.7                                       | =                         | 324.7  | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 9.0                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .23                                                                 | x                                                        | 0.76                                                                                                                    | x                                                    | 0.7                                       | =                         | 366.99 | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 9.0                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .87                                                                 | X                                                        | 0.76                                                                                                                    | x                                                    | 0.7                                       | =                         | 382.42 | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | , x                                                                                                      | 9.0                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .55                                                                 | x                                                        | 0.76                                                                                                                    | x                                                    | 0.7                                       | =                         | 368.03 | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 9.0                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .01                                                                 | x                                                        | 0.76                                                                                                                    | x                                                    | 0.7                                       |                           | 359.59 | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | , x                                                                                                      | 9.0                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .89                                                                 | x                                                        | 0.76                                                                                                                    | x                                                    | 0.7                                       |                           | 349.21 | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 9.0                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .89                                                                 | х                                                        | 0.76                                                                                                                    | ×                                                    | 0.7                                       | =                         | 339.19 | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | , x                                                                                                      | 9.0                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59                                                                  | x                                                        | 0.76                                                                                                                    | x                                                    | 0.7                                       | =                         | 274.94 | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 9.0                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42                                                                  | Х                                                        | 0.76                                                                                                                    | Х                                                    | 0.7                                       | =                         | 184.49 | (78)                                 |
| South                                                                                                  | 0.9x 0.77                                                                                                                                                      | ×                                                                                                        | 9.0                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .4                                                                  | х                                                        | 0.76                                                                                                                    | x                                                    | 0.7                                       |                           | 134.49 | (78)                                 |
|                                                                                                        |                                                                                                                                                                |                                                                                                          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                          |                                                                                                                         |                                                      |                                           |                           |        |                                      |
| Solar ga                                                                                               | ins in watts, c                                                                                                                                                | alculated                                                                                                | for each                                                                                                                 | n month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | (83)m                                                    | = Sum(74)m .                                                                                                            | ( <mark>8</mark> 2)m                                 |                                           |                           |        |                                      |
| (83)m=                                                                                                 | 1 <b>5</b> 7.35 258.1 <mark>7</mark>                                                                                                                           | 330.26                                                                                                   | 375.91                                                                                                                   | 394.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 371.6                                                               | 358.                                                     | 74 345.87                                                                                                               | 278.8                                                | 3 186.6                                   | 135.92                    |        | (83)                                 |
| Total ga                                                                                               | ins – internal                                                                                                                                                 | and solar                                                                                                | (84)m =                                                                                                                  | = (73)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33)m , v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | watts                                                               |                                                          |                                                                                                                         |                                                      |                                           |                           |        |                                      |
| (84)m= 4                                                                                               | 458.78 556.84                                                                                                                                                  |                                                                                                          |                                                                                                                          | 047.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                          |                                                                                                                         | _                                                    | _                                         | -                         |        |                                      |
|                                                                                                        | 456.76   556.64                                                                                                                                                | 617.58                                                                                                   | 645.94                                                                                                                   | 647.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 599.13                                                              | 592.                                                     | 17 588.78                                                                                                               | 539.1                                                | 9 466.4                                   | 429.65                    |        | (84)                                 |
| 7. Mea                                                                                                 | n internal tem                                                                                                                                                 |                                                                                                          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 599.13                                                              | 592.                                                     | 17 588.78                                                                                                               | 539.1                                                | 9 466.4                                   | 429.65                    |        | (84)                                 |
|                                                                                                        |                                                                                                                                                                | perature                                                                                                 | (heating                                                                                                                 | season                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                          |                                                                                                                         | 539.1                                                | 9 466.4                                   | 429.65                    | 21     | (84)                                 |
| Tempe                                                                                                  | n internal tem                                                                                                                                                 | perature<br>heating p                                                                                    | (heating<br>eriods in                                                                                                    | season                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | area fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | om Tab                                                              |                                                          |                                                                                                                         | 539.1                                                | 9 466.4                                   | 429.65                    | 21     |                                      |
| Tempe                                                                                                  | n internal tem                                                                                                                                                 | perature<br>heating p                                                                                    | (heating<br>eriods in                                                                                                    | season                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | area fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | om Tab                                                              |                                                          | Th1 (°C)                                                                                                                | 539.11<br>Oct                                        |                                           | 429.65<br>Dec             | 21     |                                      |
| Tempe                                                                                                  | n internal tem<br>rature during<br>ion factor for g                                                                                                            | perature<br>heating p<br>gains for I                                                                     | (heating<br>eriods in<br>iving are                                                                                       | season<br>the livi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | area fro<br>ee Table<br>Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | om Tab                                                              | ole 9,                                                   | Th1 (°C)                                                                                                                |                                                      |                                           |                           | 21     |                                      |
| Tempe<br>Utilisati                                                                                     | n internal tem<br>rature during<br>ion factor for g<br>Jan Feb                                                                                                 | perature<br>heating p<br>gains for I<br>Mar<br>0.99                                                      | (heating<br>eriods ir<br>iving are<br>Apr<br>0.99                                                                        | season<br>the living<br>ea, h1,m<br>May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | area fro<br>ee Tablo<br>Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | om Tab<br>e 9a)<br>Jul<br>0.88                                      | ole 9,                                                   | Th1 (°C)  ug Sep 9 0.96                                                                                                 | Oct                                                  | Nov                                       | Dec                       | 21     | (85)                                 |
| Tempe Utilisati (86)m=                                                                                 | n internal tem rature during ion factor for g Jan Feb 1 1                                                                                                      | perature<br>heating p<br>gains for I<br>Mar<br>0.99                                                      | (heating<br>eriods ir<br>iving are<br>Apr<br>0.99                                                                        | season<br>the living<br>ea, h1,m<br>May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng a (se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | area fro<br>ee Table<br>Jun<br>).94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | om Tab<br>e 9a)<br>Jul<br>0.88                                      | ole 9,                                                   | Th1 (°C)  ug Sep 9 0.96  able 9c)                                                                                       | Oct                                                  | Nov 1                                     | Dec                       | 21     | (85)                                 |
| Tempe Utilisati (86)m=  Mean ii (87)m=                                                                 | n internal tem rature during ion factor for g Jan Feb 1 1 nternal tempe 18.41 18.6                                                                             | perature heating p gains for I Mar 0.99 rature in 18.95                                                  | (heating eriods in iving are 0.99 living are 19.43                                                                       | season<br>the livings, h1,m<br>May<br>0.98<br>ea T1 (for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng a (se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | area fro<br>ee Table<br>Jun<br>0.94<br>w steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | om Tab<br>e 9a)<br>Jul<br>0.88                                      | 0.8<br>' in T                                            | Th1 (°C)  ug Sep 9 0.96  able 9c) 67 20.29                                                                              | Oct<br>0.99                                          | Nov 1                                     | Dec 1                     | 21     | (85)                                 |
| Tempe Utilisati (86)m=  Mean ii (87)m=  Tempe                                                          | n internal tem rature during ion factor for g Jan Feb 1 1 nternal tempe                                                                                        | perature heating p gains for I Mar 0.99 rature in 18.95                                                  | (heating eriods in iving are 0.99 living are 19.43                                                                       | season<br>the livings, h1,m<br>May<br>0.98<br>ea T1 (for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng a (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | area fro<br>ee Table<br>Jun<br>0.94<br>w steps<br>20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | om Tab<br>e 9a)<br>Jul<br>0.88                                      | 0.8<br>' in T                                            | Th1 (°C)  ug Sep 9 0.96  able 9c) 67 20.29  9, Th2 (°C)                                                                 | Oct<br>0.99                                          | Nov 1                                     | Dec 1                     | 21     | (85)                                 |
| Tempe Utilisati (86)m=  Mean ii (87)m=  Tempe (88)m=                                                   | n internal tem rature during ion factor for g Jan Feb 1 1 nternal tempe 18.41 18.6 rature during 18.93 18.94                                                   | perature heating p gains for I Mar 0.99 rature in 18.95 heating p                                        | (heating eriods in iving are 0.99 living are 19.43 eriods in 18.99                                                       | season<br>the livings, h1,m<br>May<br>0.98<br>ea T1 (for<br>19.92<br>or rest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | area from the second se | om Table 9a)  Jul  0.88  s 3 to 7  20.7  rom Ta  19.05              | 0.8<br>7 in T<br>20.6<br>ble 9                           | Th1 (°C)  ug Sep 9 0.96  able 9c) 67 20.29  9, Th2 (°C)                                                                 | Oct<br>0.99                                          | Nov<br>1<br>18.96                         | Dec 1                     | 21     | (86)                                 |
| Tempe Utilisati (86)m=  Mean ii (87)m=  Tempe (88)m=  Utilisati                                        | n internal tem rature during ion factor for g Jan Feb 1 1 nternal tempe 18.41 18.6 rature during 18.93 18.94 ion factor for g                                  | perature heating p gains for I Mar 0.99 rature in 18.95 heating p 18.95                                  | criods in iving are 0.99 living are 19.43 eriods in 18.99                                                                | season the living the | ng a (se color) (se co | area from the second se | om Table 9a)  Jul  0.88  3 to 7  20.7  rom Ta  19.05                | Au<br>0.8<br>7 in T<br>20.6<br>ble 9<br>19.0             | Th1 (°C)  ug Sep 9 0.96  able 9c)  67 20.29  1, Th2 (°C)  16 19.03                                                      | Oct<br>0.99<br>19.64                                 | 18.96                                     | Dec 1 18.4 18.97          | 21     | (85)<br>(86)<br>(87)<br>(88)         |
| Tempe Utilisati (86)m=  Mean ii (87)m=  Tempe (88)m=  Utilisati (89)m=                                 | n internal tem rature during ion factor for g Jan Feb 1 1 nternal tempe 18.41 18.6 rature during 18.93 18.94 ion factor for g 1 0.99                           | perature heating p gains for I Mar 0.99 rature in 18.95 heating p 18.95 gains for I 0.99                 | criods in iving are 0.99 living are 19.43 eriods in 18.99 rest of dv 0.98                                                | season<br>the livings, h1,m<br>May<br>0.98<br>ea T1 (for<br>19.92<br>or rest of<br>19<br>welling,<br>0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )) ng a (see ) c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | area from the second se | om Table 9a)  Jul  0.88  3 to 7  20.7  rom Ta  19.05  Table  0.68   | Au 0.8 7 in T 20.6 19.0 9a) 0.7                          | Th1 (°C)  ug Sep 9 0.96  able 9c) 67 20.29  0, Th2 (°C) 106 19.03                                                       | Oct<br>0.99<br>19.64<br>19                           | Nov<br>1<br>18.96                         | Dec 1                     | 21     | (86)                                 |
| Tempe Utilisati (86)m=  Mean ii (87)m=  Tempe (88)m=  Utilisati (89)m=  Mean ii                        | n internal tem rature during ion factor for g Jan Feb 1 1 nternal tempe 18.41 18.6 rature during 18.93 18.94 ion factor for g 1 0.99 nternal tempe             | perature heating p gains for I Mar 0.99 rature in 18.95 heating p 18.95 gains for I 0.99                 | (heating eriods in 19.43) eriods in 18.99 rest of do 0.98                                                                | season the living the | ) ng a (se ) c   c   c   c   c   c   c   c   c   c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | area from the second se | om Table 9a)  Jul  0.88  s 3 to 7  20.7  rom Ta  19.05  Table  0.68 | Au 0.8 7 in T 20.6 19.0 9a) 0.7 ps 3                     | Th1 (°C)  ug Sep 9 0.96  able 9c) 67 20.29  9, Th2 (°C) 19.03  1 0.91  to 7 in Table                                    | Oct<br>0.99<br>19.64<br>19<br>0.98<br>e 9c)          | 1 Nov 1 1 18.96 18.99 0.99                | Dec 1 18.4 18.97          | 21     | (85)<br>(86)<br>(87)<br>(88)<br>(89) |
| Tempe Utilisati (86)m=  Mean ii (87)m=  Tempe (88)m=  Utilisati (89)m=  Mean ii                        | n internal tem rature during ion factor for g Jan Feb 1 1 nternal tempe 18.41 18.6 rature during 18.93 18.94 ion factor for g 1 0.99                           | perature heating p gains for I Mar 0.99 rature in 18.95 heating p 18.95 gains for I 0.99                 | criods in iving are 0.99 living are 19.43 eriods in 18.99 rest of dv 0.98                                                | season<br>the livings, h1,m<br>May<br>0.98<br>ea T1 (for<br>19.92<br>or rest of<br>19<br>welling,<br>0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) ng a (se ) c   c   c   c   c   c   c   c   c   c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | area from the second se | om Table 9a)  Jul  0.88  3 to 7  20.7  rom Ta  19.05  Table  0.68   | Au 0.8 7 in T 20.6 19.0 9a) 0.7                          | Th1 (°C)  ug Sep 9 0.96  able 9c) 67 20.29 0, Th2 (°C) 19.03  1 0.91  to 7 in Table 07 18.64                            | Oct<br>0.99<br>19.64<br>19<br>0.98<br>e 9c)<br>17.99 | Nov<br>1<br>18.96<br>18.99<br>0.99        | Dec<br>1<br>18.4<br>18.97 |        | (85)<br>(86)<br>(87)<br>(88)<br>(89) |
| Tempe Utilisati  (86)m=  Mean ii  (87)m=  Tempe  (88)m=  Utilisati  (89)m=  Mean ii                    | n internal tem rature during ion factor for g Jan Feb 1 1 nternal tempe 18.41 18.6 rature during 18.93 18.94 ion factor for g 1 0.99 nternal tempe             | perature heating p gains for I Mar 0.99 rature in 18.95 heating p 18.95 gains for I 0.99                 | (heating eriods in 19.43) eriods in 18.99 rest of do 0.98                                                                | season the living the | ) ng a (se ) c   c   c   c   c   c   c   c   c   c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | area from the second se | om Table 9a)  Jul  0.88  s 3 to 7  20.7  rom Ta  19.05  Table  0.68 | Au 0.8 7 in T 20.6 19.0 9a) 0.7 ps 3                     | Th1 (°C)  ug Sep 9 0.96  able 9c) 67 20.29 0, Th2 (°C) 19.03  1 0.91  to 7 in Table 07 18.64                            | Oct<br>0.99<br>19.64<br>19<br>0.98<br>e 9c)<br>17.99 | 1 Nov 1 1 18.96 18.99 0.99                | Dec<br>1<br>18.4<br>18.97 | 21     | (85)<br>(86)<br>(87)<br>(88)<br>(89) |
| Tempe Utilisati (86)m=  Mean ii (87)m=  Tempe (88)m=  Utilisati (89)m=  Mean ii (90)m=                 | n internal tem rature during ion factor for g Jan Feb 1 1 nternal tempe 18.41 18.6 rature during 18.93 18.94 ion factor for g 1 0.99 nternal tempe 16.71 16.91 | perature heating p gains for I Mar 0.99 rature in 18.95 heating p 18.95 gains for I 0.99 rature in 17.26 | criods in iving are 19.43 eriods in 18.99 erest of do 17.77                                                              | season<br>the living<br>ea, h1,m<br>0.98<br>ea T1 (for<br>19.92<br>or rest of<br>19<br>welling,<br>0.96<br>of dwelling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) ng a (se of collow the collow t | area from the second se | om Table 9a)  Jul  0.88  3 to 7  20.7  Table  0.68  ow ste  18.98   | Au 0.8  7 in T 20.6  19.0  9a) 0.7  ps 3                 | Th1 (°C)  ug Sep 9 0.96  able 9c) 67 20.29  0, Th2 (°C) 106 19.03  1 0.91  to 7 in Table 17 18.64                       | Oct<br>0.99<br>19.64<br>19<br>0.98<br>e 9c)<br>17.99 | Nov<br>1<br>18.96<br>18.99<br>0.99        | Dec<br>1<br>18.4<br>18.97 |        | (85)<br>(86)<br>(87)<br>(88)<br>(89) |
| Tempe Utilisati (86)m=  Mean ii (87)m=  Tempe (88)m=  Utilisati (89)m=  Mean ii (90)m=  Mean ii (90)m= | n internal tem rature during ion factor for g Jan Feb 1 1 nternal tempe 18.41 18.6 rature during 18.93 18.94 ion factor for g 1 0.99 nternal tempe 16.71 16.91 | perature heating p gains for I Mar 0.99 rature in 18.95 heating p 18.95 gains for I 0.99 rature in 17.26 | criods in iving are Apr 0.99 living are 19.43 eriods in 18.99 erest of do 0.98 the rest of 17.77 results the whole 18.55 | season the living the | ) ng a (se of the second secon | area from the second se | om Table 9a)  Jul  0.88  3 to 7  20.7  Table  0.68  ow ste  18.98   | Au 0.8  7 in T 20.6  19.0  9a)  0.7  ps 3  18.9  + (1-1) | Th1 (°C)  Ig Sep 9 0.96  able 9c) 67 20.29  0, Th2 (°C) 106 19.03  1 0.91  to 7 in Table 17 18.64  f  - fLA) × T2 19.42 | Oct 0.99 19.64 19 0.98 e 9c) 17.99 LA = Liv          | Nov 1 18.96 18.99 0.99 17.3 ving area ÷ ( | Dec<br>1<br>18.4<br>18.97 |        | (85)<br>(86)<br>(87)<br>(88)<br>(89) |

|                                       | T           |           | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | T           | T                 | l              |             | T                  |                    | 1           |           | (00)   |
|---------------------------------------|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------------|----------------|-------------|--------------------|--------------------|-------------|-----------|--------|
| (93)m= 17.51                          | 17.71       | 18.06     | 18.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.04     | 19.53       | 19.79             | 19.77          | 19.42       | 18.77              | 18.08              | 17.52       |           | (93)   |
| 8. Space hea                          |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ro obtoir | and at at   | on 11 of          | Table Ok       | o co tha    | t Ti m_/           | 76)m an            | d ro colo   | ulato     |        |
| the utilisation                       |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | icu ai sii  | ър птог           | i abie 3i      | ), 50 ii ia | ı. 11,111—(        | <i>i</i> ojili ali | u ie-caic   | uiate     |        |
| Jan                                   | Feb         | Mar       | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May       | Jun         | Jul               | Aug            | Sep         | Oct                | Nov                | Dec         |           |        |
| Utilisation fac                       | ctor for g  | ains, hm  | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |             |                   |                |             |                    |                    |             |           |        |
| (94)m= 1                              | 0.99        | 0.99      | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.96      | 0.9         | 0.78              | 0.8            | 0.92        | 0.98               | 0.99               | 1           |           | (94)   |
| Useful gains,                         | 1           | · ·       | 4)m x (84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4)m       | T           | ı                 | 1              |             | ı                  |                    |             |           |        |
| (95)m= 457.11                         | 553.06      | 610.21    | 631.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 618.93    | 555.19      | 467.2             | 475.12         | 543.64      | 527.84             | 463.46             | 428.4       |           | (95)   |
| Monthly aver                          | <del></del> | T T       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | r           |                   |                |             |                    |                    | I 1         |           | (00)   |
| (96)m= 4.3                            | 4.9         | 6.5       | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7      | 14.6        | 16.6              | 16.4           | 14.1        | 10.6               | 7.1                | 4.2         |           | (96)   |
| Heat loss rate                        | e for mea   |           | 1975.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1495.61   | Lm , VV =   | =[(39)m<br>635.17 | x [(93)m-      | ` ,         | 1664.17            | 2256.73            | 2761.2      |           | (97)   |
| (97)m= 2787.46<br>Space heatin        | l           | l         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | <u> </u>    | l                 |                | 1068.9      | <u> </u>           |                    | 2/01.2      |           | (97)   |
| (98)m= 1733.78                        | <del></del> |           | 967.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 652.25    | 0           | 0.02              | 0              | 0 0         | 845.43             | 1291.15            | 1735.6      |           |        |
| (30)111= 1733.70                      | 1407.04     | 1044.01   | 307.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 002.20    |             |                   |                | ,           | <u> </u>           | r) = Sum(9         | <u> </u>    | 10006.86  | (98)   |
| O b                                   |             |           | 1-10/1- /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/        |             |                   | Tota           | i poi year  | (KVVII/yCai        | ) = Odiff(3        | O)15,912 —  |           | = ' '  |
| Space heating                         | ig require  | ement in  | kvvh/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /year     |             |                   |                |             |                    |                    | l           | 196.21    | (99)   |
| 9b. Energy red                        |             |           | The state of the s | Ĭ         |             |                   |                |             |                    |                    |             |           |        |
| This part is us<br>Fraction of spa    |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   |                |             |                    | unity sch          | neme.       | 0         | (301)  |
|                                       |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   | (Table I       | 1) 0 11 11  | OHE                |                    | l           | 0         | =      |
| Fraction of spa                       | ace heat    | trom co   | mmunity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | system    | 1 - (30)    | 1) =              |                |             |                    |                    | [           | 1         | (302)  |
| The community s                       |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   |                |             | up to four         | other heat         | sources; th | he latter |        |
| includes boilers, l<br>Fraction of he |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | rom power   | stations.         | See Apper      | idix C.     |                    |                    |             | 1         | (303a) |
|                                       |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | oiloro      |                   |                |             | (2                 | 02) v (202         | [           |           | ╡`     |
| Fraction of tot                       |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   |                |             |                    | 02) x (303         | a) = [      | 1         | (304a) |
| Factor for con                        | trol and    | charging  | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Table    | 4c(3)) fo   | r comm            | unity hea      | ting sys    | tem                |                    |             | 1.05      | (305)  |
| Distribution los                      | ss factor   | (Table 1  | 12c) for d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | commun    | ity heatii  | ng syste          | m              |             |                    |                    |             | 1.1       | (306)  |
| Space heatin                          | g           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   |                |             |                    |                    |             | kWh/yea   | r      |
| Annual space                          | heating     | requiren  | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |             |                   |                |             |                    |                    |             | 10006.86  |        |
| Space heat fro                        | om Comi     | munity b  | oilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             |                   |                | (98) x (30  | 04a) x (30         | 5) x (306) =       | = [         | 11557.93  | (307a) |
| Efficiency of s                       | econdar     | y/supple  | mentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating   | system      | in % (fro         | om Table       | 4a or A     | .ppendix           | E)                 |             | 0         | (308   |
| Space heating                         | •           |           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | -           | ,                 |                |             | ) )<br>) ) x 100 - | ,                  | l<br>[      | 0         | (309)  |
| Space fleating                        | require     | ineni no  | 111 360011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uary/su   | ppiemen     | lary sys          | l <b>C</b> III | (50) X (50  | 31) X 100 ·        | - (300) =          |             |           | (303)  |
| Water heating                         | -           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   |                |             |                    |                    | ı           |           |        |
| Annual water                          | _           | •         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   |                |             |                    |                    |             | 1831.51   |        |
| If DHW from o                         |             | •         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   |                | (64) v (3(  | 13a) v (30         | 5) x (306) :       | _ [         | 2115.39   | (310a) |
|                                       |             | •         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   |                |             |                    |                    | l<br>r      |           | =      |
| Electricity use                       |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   | 0.01           | × [(307a).  | (307e) +           | · (310a)(          | 310e)] =    | 136.73    | (313)  |
| Cooling Syste                         | m Energ     | y Efficie | ncy Ration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0         |             |                   |                |             |                    |                    |             | 0         | (314)  |
| Space cooling                         | (if there   | is a fixe | d cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g systen  | n, if not e | enter 0)          |                | = (107) ÷   | (314) =            |                    |             | 0         | (315)  |
| Electricity for p                     | oumps a     | nd fans   | within dv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | velling ( | Γable 4f)   | :                 |                |             |                    |                    |             |           |        |
| mechanical ve                         |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   | outside        |             |                    |                    |             | 0         | (330a) |
|                                       |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                   |                |             |                    |                    | •           |           |        |

| warm air heating system fans                                                                                           |                           |                           | 0                          | (330b) |
|------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|----------------------------|--------|
| pump for solar water heating                                                                                           |                           |                           | 0                          | (330g) |
| Total electricity for the above, kWh/year                                                                              | =(330a) + (330            | b) + (330g) =             | 0                          | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                         |                           |                           | 407.66                     | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                          |                           |                           |                            |        |
|                                                                                                                        | Energy<br>kWh/year        | Emission facto kg CO2/kWh | r Emissions<br>kg CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)  Efficiency of heat source 1 (%)  If there is CHP using to | two fuels repeat (363) to | (366) for the second for  | uel 65                     | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                           | 310b)] x 100 ÷ (367b) x   | 0                         | = 4543.75                  | (367)  |
| Electrical energy for heat distribution [(3                                                                            | 313) x                    | 0.52                      | = 70.96                    | (372)  |
| Total CO2 associated with community systems (3                                                                         | 363)(366) + (368)(372     | 2)                        | = 4614.71                  | (373)  |
| CO2 associated with space heating (secondary) (3                                                                       | 809) x                    | 0                         | = 0                        | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                         | ous heater (312) x        | 0.22                      | = 0                        | (375)  |
| Total CO2 associated with space and water heating (3                                                                   | 373) + (374) + (375) =    |                           | 4614.71                    | (376)  |
| CO2 associated with electricity for pumps and fans within dwelling                                                     | g (331)) x                | 0.52                      | = 0                        | (378)  |
| CO2 associated with electricity for lighting (3                                                                        | 332))) x                  | 0.52                      | = 211.57                   | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                 |                           |                           | 4826.29                    | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                               |                           |                           | 94.63                      | (384)  |
| El rating (section 14)                                                                                                 |                           |                           | 38.37                      | (385)  |

|                                                              |                |                    |                    | User D         | etails:         |             |                   |                   |           |                                     |                      |
|--------------------------------------------------------------|----------------|--------------------|--------------------|----------------|-----------------|-------------|-------------------|-------------------|-----------|-------------------------------------|----------------------|
| Assessor Name:<br>Software Name:                             | Strom          | na FSAP 201        | 2                  |                | Strom<br>Softwa |             |                   |                   | Versio    | on: 1.0.3.4                         |                      |
|                                                              |                |                    | Р                  | roperty .      | Address         | Unit 5      |                   |                   |           |                                     |                      |
| Address :                                                    | , londo        | on                 |                    |                |                 |             |                   |                   |           |                                     |                      |
| 1. Overall dwelling dime                                     | ensions:       |                    |                    | Δ              | - (m- 2)        |             | Av. Ha            | : au la 4 / 124 \ |           | Value a/m²                          |                      |
| Basement                                                     |                |                    |                    |                | a(m²)<br>128    | (1a) x      |                   | ight(m)<br>.08    | (2a) =    | <b>Volume(m</b> <sup>2</sup> 522.24 | (3a)                 |
| Total floor area TFA = (1                                    | a)+(1b)+       | -(1c)+(1d)+(1e     | e)+(1r             | n)             | 128             | (4)         |                   |                   |           |                                     |                      |
| Dwelling volume                                              |                |                    |                    |                |                 | (3a)+(3b)   | )+(3c)+(3d        | l)+(3e)+          | .(3n) =   | 522.24                              | (5)                  |
| 2. Ventilation rate:                                         |                |                    |                    |                |                 |             |                   |                   |           |                                     |                      |
| Number of chimneys                                           | ma<br>hea      |                    | econdai<br>neating | ry<br>  +      | other<br>0      | ] = [       | total<br>0        | X 4               | 40 =      | m³ per hou                          | ı <b>r</b><br>  (6a) |
| Number of open flues                                         |                | 0 +                | 0                  | ┪╻┝            | 0               | 」<br>] = [  | 0                 | x 2               | 20 =      | 0                                   | (6b)                 |
| Number of intermittent fa                                    | L_<br>ans      |                    |                    |                | 0               | J L         |                   |                   | 10 =      |                                     | (7a)                 |
|                                                              |                |                    |                    |                |                 | Ļ           | 3                 |                   |           | 30                                  | ╡`´                  |
| Number of passive vents                                      |                |                    |                    |                |                 | L           | 0                 |                   | 10 =      | 0                                   | (7b)                 |
| Number of flueless gas f                                     | ires           |                    |                    |                |                 |             | 0                 | X 4               | 40 =      | 0                                   | (7c)                 |
|                                                              |                |                    |                    |                |                 |             |                   |                   | Air ch    | nanges per ho                       | NI P                 |
|                                                              | مريد ال        | and fame (6        | a) . (6b) . (7     | 70) ( (7b) ( ( | 70) -           | _           |                   | _                 |           |                                     | _                    |
| Infiltration due to chimne                                   |                |                    |                    |                |                 | continue fr | 30<br>om (9) to ( |                   | ÷ (5) =   | 0.06                                | (8)                  |
| Number of storeys in t                                       |                |                    | λα, μ. σσσσ        |                |                 |             | 0,11 (0) 10 (     | . 3)              |           | 0                                   | (9)                  |
| Additional infiltration                                      |                |                    |                    |                |                 |             |                   | [(9)              | -1]x0.1 = | 0                                   | (10)                 |
| Structural infiltration: (                                   |                |                    |                    |                |                 | •           | uction            |                   |           | 0                                   | (11)                 |
| if both types of wall are p<br>deducting areas of open       |                |                    | ponding to         | the great      | er wall are     | a (after    |                   |                   |           |                                     |                      |
| If suspended wooden                                          | • / .          |                    | led) or 0          | .1 (seale      | ed), else       | enter 0     |                   |                   |           | 0                                   | (12)                 |
| If no draught lobby, er                                      |                | •                  | ,                  | ,              | ,.              |             |                   |                   |           | 0                                   | (13)                 |
| Percentage of window                                         | s and do       | ors draught s      | ripped             |                |                 |             |                   |                   |           | 0                                   | (14)                 |
| Window infiltration                                          |                |                    |                    |                | 0.25 - [0.2     | x (14) ÷ 1  | 00] =             |                   |           | 0                                   | (15)                 |
| Infiltration rate                                            |                |                    |                    |                | (8) + (10)      | + (11) + (1 | (13) +            | + (15) =          |           | 0                                   | (16)                 |
| Air permeability value                                       |                |                    |                    | •              |                 | •           | etre of e         | nvelope           | area      | 20                                  | (17)                 |
| If based on air permeabi                                     | •              |                    |                    |                |                 |             | :- h - :          | 1                 |           | 1.06                                | (18)                 |
| Air permeability value application Number of sides sheltered |                | surisation test na | s been aor         | ne or a deg    | gree air pe     | теарицу     | is being us       | sea               |           | 2                                   | (19)                 |
| Shelter factor                                               | Ju             |                    |                    |                | (20) = 1 -      | 0.075 x (1  | 9)] =             |                   |           | 0.85                                | (20)                 |
| Infiltration rate incorpora                                  | ting shelt     | ter factor         |                    |                | (21) = (18      | x (20) =    |                   |                   |           | 0.9                                 | (21)                 |
| Infiltration rate modified                                   | for month      | nly wind speed     | ł                  |                |                 |             |                   |                   |           |                                     | _                    |
| Jan Feb                                                      | Mar            | Apr May            | Jun                | Jul            | Aug             | Sep         | Oct               | Nov               | Dec       |                                     |                      |
| Monthly average wind sp                                      | peed from      | n Table 7          |                    |                |                 |             |                   |                   |           |                                     |                      |
| (22)m= 5.1 5                                                 |                | 4.4 4.3            | 3.8                | 3.8            | 3.7             | 4           | 4.3               | 4.5               | 4.7       |                                     |                      |
|                                                              | .0)            | •                  |                    |                |                 |             |                   |                   |           | -                                   |                      |
| Wind Factor (22a)m = (2                                      | <del>-</del> - | , ,                |                    |                |                 |             |                   |                   |           | 1                                   |                      |
| (22a)m= 1.27   1.25                                          | 1.23           | 1.1 1.08           | 0.95               | 0.95           | 0.92            | 1           | 1.08              | 1.12              | 1.18      |                                     |                      |

| l 1.15 l                                                                                                                                                  |                                                                                                          |                                                     |                                       |                                                                            | <del>i ´</del>                         | <del>r` ´</del>                                                                                   | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                         |           | 1                        |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------|--------------------------|---------------|
| Calculate effec                                                                                                                                           | 1.12 1.1<br>tive air chan                                                                                | 1                                                   | 0.97<br>he appli                      | 0.85<br>cable ca                                                           | 0.85<br>se                             | 0.83                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97                                                                       | 1.01                                    | 1.06      | ]                        |               |
| If mechanica                                                                                                                                              |                                                                                                          | <b>9</b>                                            |                                       |                                                                            |                                        |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                         |           |                          | 0             |
| If exhaust air he                                                                                                                                         | at pump using A                                                                                          | Appendix N, (2                                      | 23b) = (23a                           | a) × Fmv (e                                                                | equation (I                            | N5)) , othe                                                                                       | rwise (23b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) = (23a)                                                                  |                                         |           |                          | 0 (           |
| If balanced with                                                                                                                                          | heat recovery:                                                                                           | efficiency in %                                     | allowing f                            | for in-use f                                                               | factor (fron                           | n Table 4h                                                                                        | ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |                                         |           |                          | 0             |
| a) If balance                                                                                                                                             | d mechanica                                                                                              | l ventilation                                       | with he                               | at recov                                                                   | ery (MVI                               | HR) (24a                                                                                          | a)m = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2b)m + (2                                                                  | 23b) × [                                | 1 – (23c) | ÷ 100]                   |               |
| 24a)m= 0                                                                                                                                                  | 0 0                                                                                                      | 0                                                   | 0                                     | 0                                                                          | 0                                      | 0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                          | 0                                       | 0         |                          | (             |
| b) If balance                                                                                                                                             | d mechanica                                                                                              | l ventilation                                       | without                               | heat red                                                                   | covery (I                              | ИV) (24b                                                                                          | m = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2b)m + (2                                                                  | 23b)                                    |           | 7                        |               |
| 24b)m= 0                                                                                                                                                  | 0 0                                                                                                      |                                                     | 0                                     | 0                                                                          | 0                                      | 0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                          | 0                                       | 0         | ]                        | (             |
| c) If whole he if (22b)m                                                                                                                                  | ouse extract $0 < 0.5 \times (23 \text{ kg})$                                                            |                                                     | •                                     | •                                                                          |                                        |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5 × (23b                                                                  | )                                       |           |                          |               |
| 24c)m= 0                                                                                                                                                  | 0 0                                                                                                      | 0                                                   | 0                                     | 0                                                                          | 0                                      | 0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                          | 0                                       | 0         | ]                        | (             |
| d) If natural v                                                                                                                                           | ventilation or<br>n = 1, then (2                                                                         |                                                     | •                                     | •                                                                          |                                        |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5]                                                                       |                                         | •         | •                        |               |
| 24d)m= 1.15                                                                                                                                               | 1.12 1.1                                                                                                 | 0.99                                                | 0.97                                  | 0.86                                                                       | 0.86                                   | 0.85                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97                                                                       | 1.01                                    | 1.06      | ]                        | (             |
| Effective air                                                                                                                                             | change rate                                                                                              | - enter (24a                                        | n) or (24k                            | b) or (24                                                                  | c) or (24                              | d) in bo                                                                                          | x (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                         | -         | -                        |               |
| 25)m= 1.15                                                                                                                                                | 1.12 1.1                                                                                                 | 0.99                                                | 0.97                                  | 0.86                                                                       | 0.86                                   | 0.85                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97                                                                       | 1.01                                    | 1.06      |                          | (             |
| 3. Heat losses                                                                                                                                            | and heat lo                                                                                              | ss paramet                                          | er:                                   |                                                                            |                                        |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                         |           |                          | _             |
| LEMENT                                                                                                                                                    | Gross<br>area (m²)                                                                                       | Openir                                              |                                       | Net Ar<br>A ,r                                                             |                                        | U-val<br>W/m2                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A X U<br>(W/ł                                                              | <)                                      | k-value   |                          | A X k<br>kJ/K |
| oors Type 1                                                                                                                                               |                                                                                                          |                                                     |                                       | 2.8                                                                        | х                                      | 1.4                                                                                               | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.92                                                                       |                                         |           |                          |               |
| oors Type 2                                                                                                                                               |                                                                                                          |                                                     |                                       |                                                                            |                                        |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                         |           |                          |               |
| r                                                                                                                                                         |                                                                                                          |                                                     |                                       | 1.5                                                                        | X                                      | 1.4                                                                                               | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.1                                                                        |                                         |           |                          | (             |
| vindows Type                                                                                                                                              | 1                                                                                                        |                                                     |                                       | 1.5                                                                        | x<br>x<br>x1                           | 1.4<br>/[1/( 4.8 )+                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1<br>69.87                                                               |                                         |           |                          | (             |
|                                                                                                                                                           |                                                                                                          |                                                     |                                       |                                                                            | <b>-</b>                               |                                                                                                   | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |                                         |           |                          |               |
| /indows Type                                                                                                                                              | 2                                                                                                        |                                                     |                                       | 17.35                                                                      | x1                                     | /[1/( 4.8 )+                                                                                      | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69.87                                                                      |                                         |           |                          | (             |
| Vin <mark>dows Type</mark><br>Vindows Type<br>Vindows Type<br>Ioor                                                                                        | 2                                                                                                        |                                                     |                                       | 17.35                                                                      | x1 x1                                  | /[1/( 4.8 )+<br>/[1/( 1.6 )+                                                                      | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69.87                                                                      |                                         |           |                          |               |
| /indows Type<br>/indows Type<br>loor                                                                                                                      | 2                                                                                                        | 18.8                                                | 5                                     | 17.35<br>2.48<br>1.5                                                       | x1 x1 x                                | /[1/( 4.8 )+<br>/[1/( 1.6 )+<br>/[1/( 4.8 )+                                                      | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69.87<br>3.73<br>6.04                                                      |                                         |           | ]<br>] [                 | (             |
| /indows Type<br>/indows Type<br>loor<br>/alls Type1                                                                                                       | 2 3                                                                                                      | 18.8                                                | _                                     | 17.35<br>2.48<br>1.5                                                       | x1 x1 x x x x x                        | /[1/( 4.8 )+<br>/[1/( 1.6 )+<br>/[1/( 4.8 )+<br>                                                  | 0.04] = 0.04] = 0.04] = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69.87<br>3.73<br>6.04<br>101.12                                            |                                         |           |                          | (             |
| /indows Type<br>/indows Type<br>loor<br>/alls Type1<br>/alls Type2                                                                                        | 2<br>3<br>74.26                                                                                          |                                                     | 3                                     | 17.35<br>2.48<br>1.5<br>128<br>55.4                                        | x1 x1 x x1 x x x x x x x x x x x x x x | /[1/( 4.8 )+<br>/[1/( 1.6 )+<br>/[1/( 4.8 )+<br>0.79                                              | 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69.87<br>3.73<br>6.04<br>101.12<br>116.36                                  |                                         |           |                          |               |
| /indows Type<br>/indows Type<br>loor<br>/alls Type1<br>/alls Type2<br>/alls Type3                                                                         | 2<br>3<br>74.26<br>46.4                                                                                  | 5.28                                                | 3                                     | 17.38<br>2.48<br>1.5<br>128<br>55.4<br>41.12                               | x1 x1 x x1 x x x x x x x x x x x x x x | /[1/( 4.8 )+<br>/[1/( 1.6 )+<br>/[1/( 4.8 )+<br>0.79<br>2.1                                       | 0.04] = 0.04] = 0.04] = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51                         |                                         |           |                          |               |
| /indows Type<br>/indows Type<br>loor<br>/alls Type1<br>/alls Type2<br>/alls Type3<br>/alls Type4                                                          | 2<br>3<br>74.26<br>46.4<br>71.16                                                                         | 5.28                                                | 3                                     | 17.35<br>2.48<br>1.5<br>128<br>55.4 <sup>2</sup><br>41.12<br>69.66         | x1 x1 x x1 x x x x x x x x x x x x x x | /[1/( 4.8 )+<br>/[1/( 1.6 )+<br>/[1/( 4.8 )+<br>0.79<br>2.1<br>0.28                               | 0.04] = 0.04] = 0.04] = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29               |                                         |           |                          |               |
| /indows Type /indows Type loor /alls Type1 /alls Type2 /alls Type3 /alls Type4 oof                                                                        | 2<br>3<br>74.26<br>46.4<br>71.16<br>5.34                                                                 | 5.28<br>1.5                                         | 3                                     | 17.35<br>2.48<br>1.5<br>128<br>55.4<br>41.12<br>69.66<br>5.34              | x1 x1 x x1 x x x x x x x x             | /[1/( 4.8 )+<br>/[1/( 1.6 )+<br>/[1/( 4.8 )+                                                      | 0.04] = 0.04] = 0.04] = = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29               |                                         |           |                          |               |
| /indows Type<br>/indows Type                                                                                                                              | 2<br>3<br>74.26<br>46.4<br>71.16<br>5.34                                                                 | 5.28<br>1.5                                         | 3                                     | 17.35<br>2.48<br>1.5<br>128<br>55.4<br>41.12<br>69.66<br>5.34              | x1 x1 x x1 x x x x x x x x x x         | /[1/( 4.8 )+<br>/[1/( 1.6 )+<br>/[1/( 4.8 )+                                                      | 0.04] = 0.04] = 0.04] = = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29               |                                         |           |                          |               |
| /indows Type /indows Type loor /alls Type1 /alls Type2 /alls Type3 /alls Type4 oof otal area of elearty wall                                              | 2<br>3<br>74.26<br>46.4<br>71.16<br>5.34<br>17<br>dements, m <sup>2</sup>                                | 5.28 1.5 0 0 se effective w                         | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 17.35 2.48 1.5 128 55.4 41.12 69.66 5.34 17 342.1 22.1 alue calcul         | x1 x1 x x1 x x x x x x x x x x x x x x | /[1/( 4.8 )+<br>/[1/( 1.6 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>0.79<br>2.1<br>0.28<br>2.1<br>0.3 | 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29<br>1.6<br>1.7 | ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ | paragrapi | ] [<br>] [<br>] [<br>] [ |               |
| /indows Type /indows Type /indows Type /alls Type1 /alls Type3 /alls Type4 oof otal area of elearty wall for windows and include the area                 | 2 3 74.26 46.4 71.16 5.34 17 lements, m² roof windows, us on both sides                                  | 5.28 1.5 0 0 see effective w                        | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 17.35 2.48 1.5 128 55.4 41.12 69.66 5.34 17 342.1 22.1 alue calcul         | x1 x1 x x1 x x x x x x x x x x x x x x | /[1/( 4.8 )+<br>/[1/( 1.6 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>0.79<br>2.1<br>0.28<br>2.1<br>0.3 | 0.04] = 0.04] = 0.04] = = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29<br>1.6<br>1.7 | ] [                                     | paragrapi |                          |               |
| /indows Type /indows Type loor /alls Type1 /alls Type2 /alls Type3 /alls Type4 oof otal area of el                                                        | 2 3 74.26 46.4 71.16 5.34 17 lements, m² roof windows, us s on both sides s, W/K = S (A)                 | 5.28 1.5 0 0 see effective w of internal was        | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 17.35 2.48 1.5 128 55.4 41.12 69.66 5.34 17 342.1 22.1 alue calcul         | x1 x1 x x1 x x x x x x x x x x x x x x | /[1/( 4.8 )+ /[1/( 1.6 )+ /[1/( 4.8 )+                                                            | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | 69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29<br>1.6<br>1.7 |                                         |           | 46                       |               |
| /indows Type /indows Type /indows Type /alls Type1 /alls Type3 /alls Type4 oof otal area of ele arty wall for windows and include the area abric heat los | 2 3 74.26 46.4 71.16 5.34 17 dements, m² roof windows, us on both sides s, W/K = S (A x k) Cm = S(A x k) | 5.26 1.5 0 0 see effective w of internal was A x U) | indow U-ve                            | 17.35 2.48 1.5 128 55.4 41.12 69.66 5.34 17 342.1 22.1 alue calculatitions | x1 x1 x x1 x x x x x x x x x x x x x x | /[1/( 4.8 )+ /[1/( 1.6 )+ /[1/( 4.8 )+                                                            | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | 69.87 3.73 6.04 101.12 116.36 11.51 146.29 1.6 1.7 0 ue)+0.04] a           | 2) + (32a).                             |           | 46                       | 4.24          |

| if details of therma           | 0 0         | are not kn        | own (36) =  | = 0.15 x (3    | 1)          |                   |             | (00)                                             | (0.0)                  |                                       |              |         | <b>7</b> |
|--------------------------------|-------------|-------------------|-------------|----------------|-------------|-------------------|-------------|--------------------------------------------------|------------------------|---------------------------------------|--------------|---------|----------|
| Total fabric he                |             |                   |             | _              |             |                   |             | • •                                              | (36) =                 | (E)                                   |              | 516.24  | (37)     |
| Ventilation hea                |             |                   | ·           | <u> </u>       |             | <del></del>       |             | · · ·                                            | <u> </u>               | 25)m x (5)                            |              | 1       |          |
| Jan<br>407.5                   | Feb         | Mar               | Apr         | May            | Jun         | Jul               | Aug         | Sep                                              | Oct                    | Nov                                   | Dec          |         | (38)     |
| (38)m= 197.5                   | 193.63      | 189.76            | 170.4       | 166.62         | 149         | 149               | 145.73      | 155.79                                           | 166.62                 | 174.27                                | 182.01       |         | (30)     |
| Heat transfer of               |             | nt, W/K           |             |                |             | 1                 | 1           | <del>-                                    </del> | = (37) + (3            | 38)m                                  | 1            | ī       |          |
| (39)m= 713.74                  | 709.87      | 705.99            | 686.64      | 682.86         | 665.24      | 665.24            | 661.97      | 672.02                                           | 682.86                 | 690.5                                 | 698.25       |         | _        |
| Heat loss para                 | motor (L    | אי עם ור          | /m2l/       |                |             |                   |             |                                                  | Average =<br>= (39)m ÷ | Sum(39) <sub>1</sub>                  | 12 /12=      | 686.26  | (39)     |
| Heat loss para (40)m= 5.58     | 5.55        | 5.52              | 5.36        | 5.33           | 5.2         | 5.2               | 5.17        | 5.25                                             | 5.33                   | 5.39                                  | 5.46         | ]       |          |
| (40)m= 5.58                    | 5.55        | 5.52              | 5.36        | 5.55           | 5.2         | 5.2               | 5.17        |                                                  |                        |                                       |              | F 26    | (40)     |
| Number of day                  | s in mor    | nth (Tab          | le 1a)      | _              | -           | -                 | -           |                                                  | Average =              | Sum(40)₁                              | 12 / 1 Z=    | 5.36    | (40)     |
| Jan                            | Feb         | Mar               | Apr         | May            | Jun         | Jul               | Aug         | Sep                                              | Oct                    | Nov                                   | Dec          |         |          |
| (41)m= 31                      | 28          | 31                | 30          | 31             | 30          | 31                | 31          | 30                                               | 31                     | 30                                    | 31           |         | (41)     |
|                                |             |                   |             |                |             |                   |             |                                                  |                        |                                       |              |         |          |
| 4. Water heat                  | ting ener   | rgy requi         | irement:    |                |             |                   |             |                                                  |                        |                                       | kWh/ye       | ear:    |          |
| Assumed east                   | inanay l    | NI.               |             |                |             |                   |             |                                                  |                        |                                       |              | 1       | (40)     |
| Assumed occu<br>if TFA > 13.9  |             |                   | [1 - exp    | (-0.0003       | 349 x (TF   | FA -13.9          | )2)1 + 0.0  | 0013 x (                                         | ΓFA -13.               |                                       | .89          |         | (42)     |
| if TFA £ 13.9                  |             |                   | L. 5.4      | ( ) )          | (           |                   | ,_,         | (                                                |                        |                                       |              |         |          |
| Annual averag                  |             |                   |             |                |             |                   |             |                                                  |                        |                                       | 2.83         |         | (43)     |
| Redu <mark>ce the</mark> annua | \           |                   |             |                | _           | -                 | to achieve  | a water us                                       | se target o            | f                                     |              |         |          |
|                                |             | _                 |             |                |             |                   |             |                                                  | 0.1                    |                                       |              | 1       |          |
| Jan<br>Hot water usage ii      | Feb         | Mar<br>day for or | Apr         | May            | Jun         | Jul<br>Table 10 x | Aug         | Sep                                              | Oct                    | Nov                                   | Dec          |         |          |
|                                |             |                   |             |                |             |                   |             |                                                  |                        |                                       |              | 1       |          |
| (44)m= 113.11                  | 109         | 104.88            | 100.77      | 96.66          | 92.55       | 92.55             | 96.66       | 100.77                                           | 104.88                 | 109                                   | 113.11       |         | 7        |
| Energy content of              | hot water   | used - cal        | culated m   | onthly $= 4$ . | 190 x Vd,i  | m x nm x E        | OTm / 3600  |                                                  |                        | m(44) <sub>112</sub> :<br>ables 1b, 1 |              | 1233.94 | (44)     |
| (45)m= 167.74                  | 146.71      | 151.39            | 131.98      | 126.64         | 109.28      | 101.27            | 116.2       | 117.59                                           | 137.04                 | 149.59                                | 162.45       |         |          |
|                                |             |                   |             |                |             |                   |             |                                                  | Γotal = Su             | m(45) <sub>112</sub> =                | =            | 1617.89 | (45)     |
| If instantaneous w             | ater heatii | ng at point       | of use (no  | hot water      | r storage), | enter 0 in        | boxes (46   | ) to (61)                                        |                        |                                       |              |         |          |
| (46)m= 25.16                   | 22.01       | 22.71             | 19.8        | 19             | 16.39       | 15.19             | 17.43       | 17.64                                            | 20.56                  | 22.44                                 | 24.37        |         | (46)     |
| Water storage                  |             |                   | -           |                |             |                   |             | -                                                |                        |                                       |              | 1       |          |
| Storage volum                  | ` ,         |                   | •           |                |             | _                 |             | ame ves                                          | sel                    |                                       | 160          |         | (47)     |
| If community h                 | •           |                   |             | •              |             |                   | ` '         |                                                  | (01.1                  |                                       |              |         |          |
| Otherwise if no                |             | hot wate          | er (this in | ıcludes ı      | nstantar    | neous co          | mbi boil    | ers) ente                                        | er 'O' in (            | 47)                                   |              |         |          |
| Water storage a) If manufact   |             | aclared l         | nee farti   | nr is kna      | wn (k\/\/   | n/day)·           |             |                                                  |                        |                                       | 0            | ]       | (48)     |
| •                              |             |                   |             | JI 13 KI10     | WII (IXVVI  | i/day).           |             |                                                  |                        |                                       | 0            | ]<br>]  | , ,      |
| Temperature for                |             |                   |             |                |             |                   | (40) (40)   |                                                  |                        |                                       | 0            |         | (49)     |
| Energy lost fro b) If manufact |             | •                 | -           |                | or is not   |                   | (48) x (49) | ) =                                              |                        | 1                                     | 10           |         | (50)     |
| Hot water stora                |             |                   | -           |                |             |                   |             |                                                  |                        | 0                                     | .02          |         | (51)     |
| If community h                 | -           |                   |             | ,              |             | -,                |             |                                                  |                        |                                       | <del>-</del> | Į       | (= -)    |
| Volume factor                  | _           |                   |             |                |             |                   |             |                                                  |                        | 1.                                    | .03          |         | (52)     |
| Temperature fa                 | actor fro   | m Table           | 2b          |                |             |                   |             |                                                  |                        | 0                                     | .6           |         | (53)     |
| Energy lost fro                | m water     | storage           | , kWh/ye    | ear            |             |                   | (47) x (51) | ) x (52) x (                                     | 53) =                  | 1.                                    | .03          |         | (54)     |
| Enter (50) or (                | (54) in (5  | 55)               |             |                |             |                   |             |                                                  |                        | 1.                                    | .03          |         | (55)     |
|                                |             |                   |             |                |             |                   |             |                                                  |                        |                                       |              | •       |          |

| Water storage loss calcul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lated for each                                                                                                                                                           | month                                                                                  |                                                                                                                  |                                                                                 | ((56)m = (                                                                     | 55) × (41)r                                                                   | m                                              |                                         |                                   |               |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------|---------------|--------------------------------------|
| (56)m= 32.01 28.92 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.01 30.98                                                                                                                                                              | 32.01                                                                                  | 30.98                                                                                                            | 32.01                                                                           | 32.01                                                                          | 30.98                                                                         | 32.01                                          | 30.98                                   | 32.01                             |               | (56)                                 |
| If cylinder contains dedicated so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | olar storage, (57)                                                                                                                                                       | m = (56)m x                                                                            | · [(50) – (                                                                                                      | H11)] ÷ (5                                                                      | 0), else (5                                                                    | 7)m = (56)                                                                    | m where (                                      | H11) is fro                             | m Append                          | ix H          |                                      |
| (57)m= 32.01 28.92 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.01 30.98                                                                                                                                                              | 32.01                                                                                  | 30.98                                                                                                            | 32.01                                                                           | 32.01                                                                          | 30.98                                                                         | 32.01                                          | 30.98                                   | 32.01                             |               | (57)                                 |
| Primary circuit loss (annu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ual) from Table                                                                                                                                                          | e 3                                                                                    |                                                                                                                  |                                                                                 |                                                                                |                                                                               |                                                |                                         | 0                                 |               | (58)                                 |
| Primary circuit loss calcul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                        |                                                                                        | 59)m = (                                                                                                         | (58) ÷ 36                                                                       | 55 × (41)                                                                      | m                                                                             |                                                |                                         |                                   | l             |                                      |
| (modified by factor fron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          | ,                                                                                      | ,                                                                                                                | . ,                                                                             | , ,                                                                            |                                                                               | r thermo                                       | stat)                                   |                                   |               |                                      |
| (59)m= 23.26 21.01 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.26 22.51                                                                                                                                                              | 23.26                                                                                  | 22.51                                                                                                            | 23.26                                                                           | 23.26                                                                          | 22.51                                                                         | 23.26                                          | 22.51                                   | 23.26                             |               | (59)                                 |
| Combi loss calculated for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r each month                                                                                                                                                             | (61)m = (6                                                                             | 60) ÷ 36                                                                                                         | 65 × (41)                                                                       | )m                                                                             |                                                                               |                                                |                                         |                                   | •             |                                      |
| (61)m= 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                                                                                                                                                                      | 0                                                                                      | 0                                                                                                                | 0                                                                               | 0                                                                              | 0                                                                             | 0                                              | 0                                       | 0                                 |               | (61)                                 |
| Total heat required for wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ater heating ca                                                                                                                                                          | alculated                                                                              | for each                                                                                                         | n month                                                                         | (62)m =                                                                        | 0.85 × (                                                                      | 45)m +                                         | (46)m +                                 | (57)m +                           | (59)m + (61)m |                                      |
| (62)m= 223.02 196.63 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06.67 185.48                                                                                                                                                             | 181.92                                                                                 | 162.78                                                                                                           | 156.54                                                                          | 171.48                                                                         | 171.09                                                                        | 192.32                                         | 203.09                                  | 217.72                            |               | (62)                                 |
| Solar DHW input calculated usi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing Appendix G o                                                                                                                                                         | Appendix I                                                                             | H (negativ                                                                                                       | ve quantity                                                                     | /) (enter '0                                                                   | if no sola                                                                    | r contribut                                    | on to wate                              | er heating)                       | •             |                                      |
| (add additional lines if FG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GHRS and/or \                                                                                                                                                            | WWHRS:                                                                                 | applies,                                                                                                         | , see Ap                                                                        | pendix (                                                                       | 3)                                                                            |                                                |                                         |                                   |               |                                      |
| (63)m= 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                                                                                                                                                                      | 0                                                                                      | 0                                                                                                                | 0                                                                               | 0                                                                              | 0                                                                             | 0                                              | 0                                       | 0                                 |               | (63)                                 |
| Output from water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ſ                                                                                                                                                                        | -                                                                                      |                                                                                                                  |                                                                                 |                                                                                |                                                                               |                                                |                                         | -                                 | •             |                                      |
| (64)m= 223.02 196.63 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06.67 185.48                                                                                                                                                             | 181.92                                                                                 | 162.78                                                                                                           | 156.54                                                                          | 171.48                                                                         | 171.09                                                                        | 192.32                                         | 203.09                                  | 217.72                            |               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                        |                                                                                                                  |                                                                                 | Outp                                                                           | out from wa                                                                   | ater heate                                     | r (annual) <sub>1</sub>                 | 12                                | 2268.73       | (64)                                 |
| Heat gains from water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating, kWh/m                                                                                                                                                            | onth 0.25                                                                              | [0.85                                                                                                            | × (45)m                                                                         | + (61)m                                                                        | n] + 0.8 x                                                                    | (46)m                                          | + (57)m                                 | + (59)m                           | 1             |                                      |
| (65)m= 74.38 65.59 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.95 61.89                                                                                                                                                               | 60.72                                                                                  | 54.35                                                                                                            | 52.28                                                                           | 57.25                                                                          | F7.44                                                                         | 64.18                                          | 67.75                                   | 72.62                             |               | (65)                                 |
| (00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01.09                                                                                                                                                                    | 00.72                                                                                  | 54.55                                                                                                            | 52.20                                                                           | 57.25                                                                          | 57.11                                                                         | 04.10                                          | 67.75                                   | 12.62                             |               | (00)                                 |
| include (57)m in calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                        | _                                                                                                                |                                                                                 |                                                                                |                                                                               |                                                |                                         | <u> </u>                          | eating        | (55)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ation of (65)m                                                                                                                                                           | only if cy                                                                             | _                                                                                                                |                                                                                 |                                                                                |                                                                               |                                                |                                         | <u> </u>                          | eating        | (66)                                 |
| include (57)m in calcula  5. Internal gains (see Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ation of (65)m<br>able 5 and 5a                                                                                                                                          | only if cy                                                                             | _                                                                                                                |                                                                                 |                                                                                |                                                                               |                                                |                                         | <u> </u>                          | eating        | (66)                                 |
| include (57)m in calcula 5. Internal gains (see Tournal gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ation of (65)m<br>able 5 and 5a                                                                                                                                          | only if cy                                                                             | _                                                                                                                |                                                                                 |                                                                                |                                                                               |                                                |                                         | <u> </u>                          | eating        | (33)                                 |
| include (57)m in calcula  5. Internal gains (see Table 5)  Metabolic gains (Table 5)  Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation of (65)m<br>able 5 and 5a<br>), Watts                                                                                                                              | only if cy                                                                             | vlinder is                                                                                                       | s in the d                                                                      | dwelling                                                                       | or hot w                                                                      | ater is fr                                     | om com                                  | munity h                          | eating        | (66)                                 |
| include (57)m in calcula  5. Internal gains (see Table 5)  Metabolic gains (Table 5)  Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation of (65)m<br>able 5 and 5a<br>), Watts<br>Mar Apr<br>44.48 144.48                                                                                                   | only if cy : May 144.48                                                                | Jun<br>144.48                                                                                                    | Jul 144.48                                                                      | Aug<br>144.48                                                                  | Sep                                                                           | oct                                            | om com                                  | munity h                          | eating        |                                      |
| include (57)m in calculated  5. Internal gains (see Towns of the second  | ation of (65)m<br>able 5 and 5a<br>), Watts<br>Mar Apr<br>44.48 144.48                                                                                                   | only if cy : May 144.48                                                                | Jun<br>144.48                                                                                                    | Jul 144.48                                                                      | Aug<br>144.48                                                                  | Sep                                                                           | oct                                            | om com                                  | munity h                          | eating        |                                      |
| include (57)m in calculated  5. Internal gains (see Towns of the see Towns | ation of (65)m  able 5 and 5a  ), Watts  Mar Apr  44.48 144.48  d in Appendix 32.88 24.89                                                                                | only if cy : May 144.48 L, equation 18.61                                              | Jun<br>144.48<br>on L9 on<br>15.71                                                                               | Jul<br>144.48<br>r L9a), a<br>16.97                                             | Aug<br>144.48<br>Iso see                                                       | Sep<br>144.48<br>Table 5<br>29.61                                             | Oct 144.48                                     | Nov                                     | Dec                               | eating        | (66)                                 |
| include (57)m in calculated  5. Internal gains (see Table 5)  Metabolic gains (Table 5)  Jan Feb  (66)m= 144.48 144.48 1  Lighting gains (calculated 67)m= 45.52 40.43 3  Appliances gains (calculated forms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation of (65)m  able 5 and 5a  ), Watts  Mar Apr  44.48 144.48  d in Appendix 32.88 24.89                                                                                | only if cy : May 144.48 L, equation 18.61                                              | Jun<br>144.48<br>on L9 on<br>15.71                                                                               | Jul<br>144.48<br>r L9a), a<br>16.97                                             | Aug<br>144.48<br>Iso see                                                       | Sep<br>144.48<br>Table 5<br>29.61                                             | Oct 144.48                                     | Nov                                     | Dec                               | eating        | (66)                                 |
| include (57)m in calculated  5. Internal gains (see Table 5)  Metabolic gains (Table 5)  Jan Feb  (66)m= 144.48 144.48 15  Lighting gains (calculated (67)m= 45.52 40.43 3  Appliances gains (calculated forms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ation of (65)m able 5 and 5a ), Watts Mar Apr 44.48 144.48 d in Appendix 32.88 24.89 ated in Appendix 90.64 274.2                                                        | May<br>144.48<br>L, equation<br>18.61<br>dix L, equal<br>253.45                        | Jun<br>144.48<br>on L9 or<br>15.71<br>ration L                                                                   | Jul<br>144.48<br>r L9a), a<br>16.97<br>13 or L1:<br>220.91                      | Aug<br>144.48<br>Iso see<br>22.06<br>3a), also<br>217.85                       | Sep<br>144.48<br>Table 5<br>29.61<br>see Tal<br>225.57                        | Oct 144.48 37.6 ble 5 242.01                   | Nov<br>144.48<br>43.88                  | Dec 144.48                        | eating        | (66)<br>(67)                         |
| include (57)m in calculated  5. Internal gains (see Table 5)  Jan Feb  (66)m= 144.48 144.48 1.  Lighting gains (calculated 67)m= 45.52 40.43 3.  Appliances gains (calculated 68)m= 295.29 298.36 2.  Cooking gains (calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ation of (65)m able 5 and 5a ), Watts Mar Apr 44.48 144.48 d in Appendix 32.88 24.89 ated in Appendix 90.64 274.2                                                        | May<br>144.48<br>L, equation<br>18.61<br>dix L, equal<br>253.45                        | Jun<br>144.48<br>on L9 or<br>15.71<br>ration L                                                                   | Jul<br>144.48<br>r L9a), a<br>16.97<br>13 or L1:<br>220.91                      | Aug<br>144.48<br>Iso see<br>22.06<br>3a), also<br>217.85                       | Sep<br>144.48<br>Table 5<br>29.61<br>see Tal<br>225.57                        | Oct 144.48 37.6 ble 5 242.01                   | Nov<br>144.48<br>43.88                  | Dec 144.48                        | eating        | (66)<br>(67)                         |
| include (57)m in calculated (57)m in calculated (57)m in calculated (58)m= 144.48 144.48 152 152 152 152 152 152 152 153 153 153 153 153 153 153 153 153 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ation of (65)m able 5 and 5a ), Watts Mar Apr 44.48 144.48 d in Appendix 32.88 24.89 ated in Appendi 90.64 274.2 d in Appendix 37.45 37.45                               | May 144.48 L, equation 18.61 dix L, equ 253.45 L, equation                             | Jun<br>144.48<br>on L9 on<br>15.71<br>uation L<br>233.94<br>on L15                                               | Jul<br>144.48<br>r L9a), a<br>16.97<br>13 or L1:<br>220.91<br>or L15a)          | Aug<br>144.48<br>Iso see 22.06<br>3a), also<br>217.85                          | Sep<br>144.48<br>Table 5<br>29.61<br>see Tal<br>225.57                        | Oct 144.48  37.6 ble 5 242.01                  | Nov<br>144.48<br>43.88                  | Dec 144.48 46.78                  | eating        | (66)<br>(67)<br>(68)                 |
| include (57)m in calculated  5. Internal gains (see Table 5)  Jan Feb  (66)m= 144.48 144.48 1  Lighting gains (calculated 67)m= 45.52 40.43 3  Appliances gains (calculated 68)m= 295.29 298.36 2  Cooking gains (calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ation of (65)m able 5 and 5a ), Watts Mar Apr 44.48 144.48 d in Appendix 32.88 24.89 ated in Appendi 90.64 274.2 d in Appendix 37.45 37.45                               | May 144.48 L, equation 18.61 dix L, equ 253.45 L, equation                             | Jun<br>144.48<br>on L9 on<br>15.71<br>uation L<br>233.94<br>on L15                                               | Jul<br>144.48<br>r L9a), a<br>16.97<br>13 or L1:<br>220.91<br>or L15a)          | Aug<br>144.48<br>Iso see 22.06<br>3a), also<br>217.85                          | Sep<br>144.48<br>Table 5<br>29.61<br>see Tal<br>225.57                        | Oct 144.48  37.6 ble 5 242.01                  | Nov<br>144.48<br>43.88                  | Dec 144.48 46.78                  | eating        | (66)<br>(67)<br>(68)                 |
| include (57)m in calculated  5. Internal gains (see Towns of the following see Towns of the following  | ation of (65)m able 5 and 5a ), Watts Mar Apr 44.48 144.48 d in Appendix 32.88 24.89 ated in Appendix 90.64 274.2 d in Appendix 37.45 37.45 Table 5a) 0 0                | May 144.48 L, equation 18.61 dix L, equation 253.45 L, equation 37.45                  | Jun<br>144.48<br>on L9 on<br>15.71<br>lation L<br>233.94<br>on L15<br>37.45                                      | Jul<br>144.48<br>r L9a), a<br>16.97<br>13 or L1:<br>220.91<br>or L15a)<br>37.45 | Aug<br>144.48<br>Iso see 22.06<br>3a), also<br>217.85<br>, also se<br>37.45    | Sep<br>144.48<br>Table 5<br>29.61<br>see Tal<br>225.57<br>ee Table<br>37.45   | Oct 144.48  37.6 ble 5 242.01 5 37.45          | Nov<br>144.48<br>43.88<br>262.76        | Dec 144.48 46.78 282.26 37.45     | eating        | (66)<br>(67)<br>(68)<br>(69)         |
| include (57)m in calculated  5. Internal gains (see Table 5)  Jan Feb  (66)m= 144.48 144.48 1.  Lighting gains (calculated (67)m= 45.52 40.43 3.  Appliances gains (calculated (68)m= 295.29 298.36 2.  Cooking gains (calculated (69)m= 37.45 37.45 3.  Pumps and fans gains (Table 5)  Jan Feb  (66)m= 144.48 1.  Lighting gains (calculated (67)m= 295.29 298.36 2.  Cooking gains (calculated (69)m= 37.45 37.45 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ation of (65)m able 5 and 5a ), Watts Mar Apr 44.48 144.48 d in Appendix 32.88 24.89 ated in Appendix 90.64 274.2 d in Appendix 37.45 37.45 able 5a) 0 0 (negative value | May 144.48 L, equation 18.61 dix L, equ 253.45 L, equation 37.45  0 es) (Table         | Jun<br>144.48<br>on L9 on<br>15.71<br>lation L<br>233.94<br>on L15<br>37.45                                      | Jul<br>144.48<br>r L9a), a<br>16.97<br>13 or L1<br>220.91<br>or L15a)<br>37.45  | Aug<br>144.48<br>Iso see 22.06<br>3a), also<br>217.85<br>, also se<br>37.45    | Sep<br>144.48<br>Table 5<br>29.61<br>0 see Tal<br>225.57<br>ee Table<br>37.45 | Oct 144.48  37.6 ble 5 242.01 5 37.45          | Nov<br>144.48<br>43.88<br>262.76        | Dec 144.48 46.78 282.26 0         | eating        | (66)<br>(67)<br>(68)<br>(69)         |
| include (57)m in calculated (58)m= 295.29 298.36 2 Cooking gains (calculated (69)m= 37.45 37.45 3 Pumps and fans gains (T0)m= 0 0 Losses e.g. evaporation (55.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ation of (65)m able 5 and 5a ), Watts Mar Apr 44.48 144.48 d in Appendix 32.88 24.89 ated in Appendix 37.45 37.45 able 5a) 0 0 (negative value) 15.58 -115.58            | May 144.48 L, equation 18.61 dix L, equ 253.45 L, equation 37.45  0 es) (Table         | Jun<br>144.48<br>on L9 or<br>15.71<br>ration L <sup>2</sup><br>233.94<br>on L15<br>37.45                         | Jul<br>144.48<br>r L9a), a<br>16.97<br>13 or L1<br>220.91<br>or L15a)<br>37.45  | Aug<br>144.48<br>Iso see<br>22.06<br>3a), also<br>217.85<br>, also se<br>37.45 | Sep<br>144.48<br>Table 5<br>29.61<br>0 see Tal<br>225.57<br>ee Table<br>37.45 | Oct 144.48 37.6 ole 5 242.01 5 37.45           | Nov<br>144.48<br>43.88<br>262.76        | Dec 144.48 46.78 282.26 0         | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| include (57)m in calculated (57)m in calculated (57)m in calculated (66)m= 144.48 144.48 1.  Lighting gains (calculated (67)m= 45.52 40.43 3.  Appliances gains (calculated (68)m= 295.29 298.36 2.  Cooking gains (calculated (69)m= 37.45 37.45 3.  Pumps and fans gains (Topims of the cooking gains of the cooking gains (Topims of the cooking gains of the cooking gain | ation of (65)m able 5 and 5a ), Watts Mar Apr 44.48 144.48 d in Appendix 32.88 24.89 ated in Appendix 37.45 37.45 able 5a) 0 0 (negative value) 15.58 -115.58            | May 144.48 L, equation 18.61 dix L, equ 253.45 L, equation 37.45  0 es) (Table         | Jun<br>144.48<br>on L9 or<br>15.71<br>ration L <sup>2</sup><br>233.94<br>on L15<br>37.45                         | Jul<br>144.48<br>r L9a), a<br>16.97<br>13 or L1<br>220.91<br>or L15a)<br>37.45  | Aug<br>144.48<br>Iso see<br>22.06<br>3a), also<br>217.85<br>, also se<br>37.45 | Sep<br>144.48<br>Table 5<br>29.61<br>0 see Tal<br>225.57<br>ee Table<br>37.45 | Oct 144.48 37.6 ole 5 242.01 5 37.45           | Nov<br>144.48<br>43.88<br>262.76        | Dec 144.48 46.78 282.26 0         | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| include (57)m in calculated (57)m in calculated (57)m in calculated (58)m= 144.48 144.48 1.  Lighting gains (calculated (67)m= 45.52 40.43 3.  Appliances gains (calculated (68)m= 295.29 298.36 2.  Cooking gains (calculated (69)m= 37.45 37.45 3.  Pumps and fans gains (Topical (70)m= 0 0.  Losses e.g. evaporation (71)m= -115.58 -115.58 -1.  Water heating gains (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation of (65)m able 5 and 5a ), Watts Mar Apr 44.48 144.48 d in Appendix 32.88 24.89 ated in Appendix 37.45 37.45 able 5a) 0 0 (negative valu 15.58 -115.58 ble 5)       | May 144.48 L, equation 18.61 dix L, equ 253.45 L, equation 37.45  0 es) (Table -115.58 | Jun<br>144.48<br>on L9 or<br>15.71<br>ration L <sup>2</sup><br>233.94<br>on L15<br>37.45<br>0<br>e 5)<br>-115.58 | Jul<br>144.48<br>r L9a), a<br>16.97<br>13 or L1<br>220.91<br>or L15a)<br>37.45  | Aug<br>144.48<br>Iso see<br>22.06<br>3a), also<br>217.85<br>, also se<br>37.45 | Sep<br>144.48<br>Table 5<br>29.61<br>225.57<br>ee Table<br>37.45              | Oct 144.48 37.6 ole 5 242.01 5 37.45 0 -115.58 | Nov 144.48 43.88 262.76 37.45 0 -115.58 | Dec 144.48 46.78 282.26 0 -115.58 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| include (57)m in calculated (56)m= 144.48 144.48 1.  Lighting gains (calculated (67)m= 45.52 40.43 3.  Appliances gains (calculated (68)m= 295.29 298.36 2.  Cooking gains (calculated (69)m= 37.45 37.45 3.  Pumps and fans gains (T(70)m= 0 0 0.  Losses e.g. evaporation (71)m= -115.58 -115.58 -1.  Water heating gains (Table (72)m= 99.98 97.6 9.  Total internal gains =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ation of (65)m able 5 and 5a ), Watts Mar Apr 44.48 144.48 d in Appendix 32.88 24.89 ated in Appendix 37.45 37.45 able 5a) 0 0 (negative valu 15.58 -115.58 ble 5)       | May 144.48 L, equation 18.61 dix L, equ 253.45 L, equation 37.45  0 es) (Table -115.58 | Jun<br>144.48<br>on L9 or<br>15.71<br>ration L <sup>2</sup><br>233.94<br>on L15<br>37.45<br>0<br>e 5)<br>-115.58 | Jul<br>144.48<br>r L9a), a<br>16.97<br>13 or L1<br>220.91<br>or L15a)<br>37.45  | Aug<br>144.48<br>Iso see<br>22.06<br>3a), also<br>217.85<br>, also se<br>37.45 | Sep<br>144.48<br>Table 5<br>29.61<br>225.57<br>ee Table<br>37.45<br>0         | Oct 144.48 37.6 ole 5 242.01 5 37.45 0 -115.58 | Nov 144.48 43.88 262.76 37.45 0 -115.58 | Dec 144.48 46.78 282.26 0 -115.58 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientat | tion:   | Access Factor<br>Table 6d | or   | Area<br>m²                                       |            | Flu<br>Tal | x<br>ole 6a |       | g_<br>Table 6b | ,      | FF<br>Table 6c |              | Gains<br>(W) |      |
|----------|---------|---------------------------|------|--------------------------------------------------|------------|------------|-------------|-------|----------------|--------|----------------|--------------|--------------|------|
| North    | 0.9x    | 0.77                      | x    | 2.48                                             | ,          | 1          | 0.63        | x     | 0.76           | х      | 0.7            | =            | 9.72         | (74) |
| North    | 0.9x    | 0.77                      | x    | 2.48                                             | <u> </u>   | 2          | 0.32        | x     | 0.76           | X      | 0.7            | =            | 18.58        | (74) |
| North    | 0.9x    | 0.77                      | X    | 2.48                                             | <u> </u>   | 3          | 4.53        | x     | 0.76           | x      | 0.7            | =            | 31.57        | (74) |
| North    | 0.9x    | 0.77                      | x    | 2.48                                             | <u> </u>   | : 5        | 5.46        | x     | 0.76           | x      | 0.7            | =            | 50.71        | (74) |
| North    | 0.9x    | 0.77                      | x    | 2.48                                             | ,          | 7          | 4.72        | x     | 0.76           | x      | 0.7            | =            | 68.31        | (74) |
| North    | 0.9x    | 0.77                      | X    | 2.48                                             | <u> </u>   | 7          | 9.99        | x     | 0.76           | x      | 0.7            | =            | 73.13        | (74) |
| North    | 0.9x    | 0.77                      | X    | 2.48                                             | ,          | 7          | '4.68       | x     | 0.76           | x      | 0.7            | =            | 68.28        | (74) |
| North    | 0.9x    | 0.77                      | X    | 2.48                                             | <u> </u>   | 5          | 9.25        | x     | 0.76           | x      | 0.7            | =            | 54.17        | (74) |
| North    | 0.9x    | 0.77                      | X    | 2.48                                             | ,          | 2          | 1.52        | x     | 0.76           | x      | 0.7            | =            | 37.96        | (74) |
| North    | 0.9x    | 0.77                      | X    | 2.48                                             | ,          | 2          | 4.19        | x     | 0.76           | x      | 0.7            | =            | 22.12        | (74) |
| North    | 0.9x    | 0.77                      | X    | 2.48                                             | ,          | 1          | 3.12        | x     | 0.76           | x      | 0.7            | =            | 11.99        | (74) |
| North    | 0.9x    | 0.77                      | X    | 2.48                                             | ,          |            | 3.86        | x     | 0.76           | X      | 0.7            | =            | 8.1          | (74) |
| South    | 0.9x    | 0.77                      | X    | 17.35                                            | ,          |            | 6.75        | x     | 0.85           | X      | 0.7            | =            | 334.46       | (78) |
| South    | 0.9x    | 0.77                      | X    | 17.35                                            | <u> </u>   | 7          | 6.57        | x     | 0.85           | x      | 0.7            | =            | 547.77       | (78) |
| South    | 0.9x    | 0.77                      | X    | 17.35                                            | <u> </u>   | : 5        | 7.53        | x     | 0.85           | x      | 0.7            |              | 697.76       | (78) |
| South    | 0.9x    | 0.77                      | ×    | 17.35                                            |            | 1          | 10.23       | Х     | 0.85           | X      | 0.7            |              | 788.62       | (78) |
| South    | 0.9x    | 0.77                      | x    | 17.35                                            | = ,        | 1          | 14.87       | х     | 0.85           | x      | 0.7            | 7            | 821.79       | (78) |
| South    | 0.9x    | 0.77                      | x    | 17.35                                            | <u> </u>   | 1          | 10.55       | x \   | 0.85           | x      | 0.7            | _ =          | 790.86       | (78) |
| South    | 0.9x    | 0.77                      | X    | 17.35                                            | <b>7</b> , | 1          | 08.01       | x     | 0.85           | х      | 0.7            | =            | 772.72       | (78) |
| South    | 0.9x    | 0.77                      | x    | 17.35                                            | <b>,</b>   | 1          | 04.89       | х     | 0.85           | x      | 0.7            | <del>-</del> | 750.42       | (78) |
| South    | 0.9x    | 0.77                      | x    | 17.35                                            | = ,        | 1          | 01.89       | х     | 0.85           | x      | 0.7            | <del>=</del> | 728.89       | (78) |
| South    | 0.9x    | 0.77                      | x    | 17.35                                            | ٠,         |            | 2.59        | x     | 0.85           | x      | 0.7            | =            | 590.82       | (78) |
| South    | 0.9x    | 0.77                      | x    | 17.35                                            |            |            | 55.42       | x     | 0.85           | ×      | 0.7            | =            | 396.45       | (78) |
| South    | 0.9x    | 0.77                      | x    | 17.35                                            | = ,        | :          | 40.4        | x     | 0.85           | x      | 0.7            | =            | 289.01       | (78) |
| West     | 0.9x    | 0.77                      | x    | 1.5                                              | ,          | 1          | 9.64        | x     | 0.85           | x      | 0.7            | =            | 12.15        | (80) |
| West     | 0.9x    | 0.77                      | X    | 1.5                                              | ,          | : 3        | 8.42        | x     | 0.85           | x      | 0.7            | =            | 23.76        | (80) |
| West     | 0.9x    | 0.77                      | x    | 1.5                                              | <u> </u>   |            | 3.27        | x     | 0.85           | x      | 0.7            | =            | 39.13        | (80) |
| West     | 0.9x    | 0.77                      | x    | 1.5                                              | ,          |            | 2.28        | x     | 0.85           | x      | 0.7            | =            | 57.08        | (80) |
| West     | 0.9x    | 0.77                      | X    | 1.5                                              | <u> </u>   | 1          | 13.09       | x     | 0.85           | x      | 0.7            | =            | 69.95        | (80) |
| West     | 0.9x    | 0.77                      | x    | 1.5                                              | <b>=</b> , | 1          | 15.77       | x     | 0.85           | x      | 0.7            | _ =          | 71.6         | (80) |
| West     | 0.9x    | 0.77                      | x    | 1.5                                              | ,          | 1          | 10.22       | x     | 0.85           | x      | 0.7            | =            | 68.17        | (80) |
| West     | 0.9x    | 0.77                      | X    | 1.5                                              | <u> </u>   |            | 4.68        | x     | 0.85           | x      | 0.7            | =            | 58.56        | (80) |
| West     | 0.9x    | 0.77                      | x    | 1.5                                              | <b>=</b> , | : 7        | '3.59       | x     | 0.85           | x      | 0.7            | _ =          | 45.52        | (80) |
| West     | 0.9x    | 0.77                      | x    | 1.5                                              | = ,        |            | 5.59        | x     | 0.85           | x      | 0.7            | <del>=</del> | 28.2         | (80) |
| West     | 0.9x    | 0.77                      | x    | 1.5                                              | = ,        | 2          | 4.49        | x     | 0.85           | x      | 0.7            | =            | 15.15        | (80) |
| West     | 0.9x    | 0.77                      | x    | 1.5                                              | = ,        | 1          | 6.15        | х     | 0.85           | x      | 0.7            | =            | 9.99         | (80) |
|          |         |                           | _    |                                                  | _          |            |             | •     |                |        |                |              |              |      |
| Solar ga | ains ir | n watts, calcul           | ated | for each mo                                      | nth        |            |             | (83)m | = Sum(74)m     | (82)m  |                |              | _            |      |
| ` ′      | 356.33  |                           | 3.46 | 896.41 960                                       |            | 935.6      | 909.17      | 863   | .14 812.37     | 641.1  | 3 423.6        | 307.1        | ]            | (83) |
| <u>_</u> |         | internal and              |      | <del>`                                    </del> |            | ` '        |             |       |                | ,      |                |              | 7            |      |
| (84)m=   | 863.47  | 1092.84 125               | 0.99 | 1347.8 1380                                      | 0.06       | 1327.07    | 1283.67     | 1246  | 5.35 1213.21   | 1073.3 | 890.68         | 800.1        | J            | (84) |

| 7. Me   | an inter  | nal temr  | perature       | (heating                 | season     | )         |              |                       |            |                       |            |                        |           |        |
|---------|-----------|-----------|----------------|--------------------------|------------|-----------|--------------|-----------------------|------------|-----------------------|------------|------------------------|-----------|--------|
|         |           |           |                | `                        |            |           | from Tah     | ole 9, Th             | 1 (°C)     |                       |            |                        | 21        | (85)   |
| -       |           | _         |                | living are               |            | _         |              | JIO 0, 111            | . ( 0)     |                       |            |                        |           |        |
| Otilise | Jan       | Feb       | Mar            | Apr                      | May        | Jun       | Jul          | Aug                   | Sep        | Oct                   | Nov        | Dec                    | l         |        |
| (86)m=  | 1         | 1         | 1              | 0.99                     | 0.98       | 0.97      | 0.93         | 0.94                  | 0.98       | 0.99                  | 1          | 1                      | l         | (86)   |
|         |           |           | <u> </u>       |                          |            |           |              |                       |            | 0.55                  | '          | '                      |           | (00)   |
|         |           |           | T T            |                          | <u> </u>   |           | <del>-</del> | in Table              |            |                       |            | 1                      | l         | (a=)   |
| (87)m=  | 17.67     | 17.88     | 18.28          | 18.87                    | 19.47      | 20.08     | 20.46        | 20.42                 | 19.94      | 19.15                 | 18.34      | 17.68                  |           | (87)   |
| Temp    | erature   | during h  | neating p      | eriods ir                | rest of    | dwelling  | from Ta      | able 9, Ti            | h2 (°C)    |                       |            |                        |           |        |
| =m(88)  | 18.21     | 18.23     | 18.24          | 18.32                    | 18.33      | 18.4      | 18.4         | 18.41                 | 18.37      | 18.33                 | 18.3       | 18.27                  | l         | (88)   |
| Utilisa | ation fac | tor for a | ains for       | rest of d                | welling, I | h2,m (se  | e Table      | 9a)                   |            |                       |            |                        |           |        |
| (89)m=  | 1         | 1         | 0.99           | 0.99                     | 0.97       | 0.9       | 0.7          | 0.75                  | 0.93       | 0.99                  | 1          | 1                      | 1         | (89)   |
| Mean    | interna   | l tampar  | atura in       | the rest                 | of dwelli  | na T2 (f  | ollow ste    | eps 3 to 7            | 7 in Tahl  | <br>a 0c)             |            |                        |           |        |
| (90)m=  | 15.48     | 15.7      | 16.11          | 16.75                    | 17.35      | 17.99     | 18.31        | 18.29                 | 17.84      | 17.04                 | 16.21      | 15.53                  | 1         | (90)   |
| (00)    | .00       |           |                |                          |            |           |              | 10.20                 |            | LA = Livin            |            |                        | 0.36      | (91)   |
|         |           |           |                |                          |            |           |              |                       |            |                       | `          | <i>'</i>               |           |        |
|         |           |           | · `            | 1                        |            |           |              | + (1 – fL             |            |                       |            | 1                      | l         | (00)   |
| (92)m=  | 16.27     | 16.49     | 16.9           | 17.51                    | 18.12      | 18.74     | 19.09        | 19.06                 | 18.6       | 17.8                  | 16.98      | 16.31                  |           | (92)   |
|         | _         |           |                |                          |            |           |              | 4e, whe               |            |                       |            |                        |           | (00)   |
| (93)m=  | 16.27     | 16.49     | 16.9           | 17.51                    | 18.12      | 18.74     | 19.09        | 19.06                 | 18.6       | 17.8                  | 16.98      | 16.31                  |           | (93)   |
|         |           |           | uirement       |                          |            | 1 1 1     |              | <del>-</del>          |            | . —                   | -0)        |                        | 1.        |        |
|         |           |           |                | mperatui<br>using Ta     |            | ed at ste | ep 11 of     | l able 9              | o, so tha  | t II,m=(              | /6)m an    | d re-calc              | ulate     |        |
| tric at | Jan       | Feb       | Mar            | Apr                      | May        | Jun       | Jul          | Aug                   | Sep        | Oct                   | Nov        | Dec                    |           |        |
| Utilisa |           |           | ains, hm       |                          | ividy      | Juli      | July         | , rug                 | ССР        | 001                   | 1407       | _ D00                  |           |        |
| (94)m=  | 1         | 0.99      | 0.99           | 0.98                     | 0.96       | 0.92      | 0.81         | 0.83                  | 0.94       | 0.98                  | 1          | 1                      |           | (94)   |
|         | L dains   |           | <u> </u>       | 4)m x (84                |            |           |              |                       |            |                       |            |                        |           |        |
| (95)m=  | 860.91    | 1086.77   | <del>- `</del> | 1323.83                  |            | 1216.5    | 1035.48      | 1038.91               | 1142       | 1056.28               | 886.33     | 798.23                 | l         | (95)   |
|         | nlv avera | age exte  |                | perature                 |            | able 8    |              |                       |            |                       |            |                        |           |        |
| (96)m=  | 4.3       | 4.9       | 6.5            | 8.9                      | 11.7       | 14.6      | 16.6         | 16.4                  | 14.1       | 10.6                  | 7.1        | 4.2                    | l         | (96)   |
| Heat    | loss rate | for mea   | an intern      | al tempe                 | erature,   | Lm , W =  | =[(39)m :    | x [(93)m              | – (96)m    | 1                     |            |                        |           |        |
| (97)m=  | 8546.27   | 8226.8    | 7339.05        | 5913.9                   | 4382.29    |           |              | 1759.51               | 3021.12    |                       | 6823.99    | 8453.98                | l         | (97)   |
| Space   | e heatin  | g require | ement fo       | r each n                 | nonth, k\  | Wh/mont   | th = 0.02    | 24 x [(97             | )m – (95   | )m] x (4 <sup>2</sup> | 1)m        |                        |           |        |
| (98)m=  | 5717.9    | 4798.1    | 4538.62        |                          | 2270.7     | 0         | 0            | 0                     | 0          | 2872.72               |            | 5695.88                | 1         |        |
|         |           |           |                |                          |            |           |              | Tota                  | l per year | (kWh/year             | ) = Sum(9  | 8) <sub>15,912</sub> = | 33473.89  | (98)   |
| Space   | e heatin  | a require | ement in       | kWh/m²                   | ?/vear     |           |              |                       |            |                       |            |                        | 261.51    | (99)   |
| •       |           | • ,       |                |                          |            |           |              |                       |            |                       |            |                        | 201.01    |        |
|         | · ·       |           |                | mmunity                  | Ŭ          |           |              |                       |            |                       |            |                        |           |        |
|         |           |           |                | • .                      |            | -         |              | ting prov<br>(Table 1 | -          |                       | unity scr  | neme.<br>              | 0         | (301)  |
|         | •         |           |                | -                        |            | •         |              | (Table T              | ., •       | 0110                  |            |                        |           | 亅`     |
| ractio  | n ot spa  | ace neat  | from co        | mmunity                  | system     | 1 – (301  | 1) =         |                       |            |                       |            |                        | 1         | (302)  |
|         | -         |           |                |                          |            |           |              |                       |            | up to four o          | other heat | sources; ti            | ne latter |        |
|         |           |           | -              | nai and wa<br>ity boiler |            | rom power | stations.    | See Appei             | idix C.    |                       |            |                        | 1         | (303a) |
|         | 5. 1100   | 0.111     | . J            | ,                        | -          |           |              |                       |            |                       |            |                        | !         |        |

| Fraction of total space heat from Community boilers                                                                                                    |                                                | (302) x (303a) =              | 1                                   | (304a)                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------|-------------------------------------|----------------------------------|
| Factor for control and charging method (Table 4c(3)) for commu                                                                                         | unity heating system                           |                               | 1.05                                | (305)                            |
| Distribution loss factor (Table 12c) for community heating system                                                                                      |                                                |                               | 1.1                                 | (306)                            |
| Space heating                                                                                                                                          |                                                |                               | kWh/year                            | _                                |
| Annual space heating requirement                                                                                                                       |                                                |                               | 33473.89                            | ]                                |
| Space heat from Community boilers                                                                                                                      | (98) x (304a) x                                | (305) x (306) =               | 38662.34                            | (307a)                           |
| Efficiency of secondary/supplementary heating system in % (from                                                                                        | om Table 4a or Apper                           | ndix E)                       | 0                                   | (308                             |
| Space heating requirement from secondary/supplementary syst                                                                                            | tem (98) x (301) x 1                           | 100 ÷ (308) =                 | 0                                   | (309)                            |
| Water heating Annual water heating requirement                                                                                                         |                                                |                               | 2268.73                             |                                  |
| If DHW from community scheme: Water heat from Community boilers                                                                                        | (64) x (303a) x                                | (305) x (306) =               | 2620.38                             | (310a)                           |
| Electricity used for heat distribution                                                                                                                 | 0.01 × [(307a)(307                             | 7e) + (310a)(310e)] =         | 412.83                              | (313)                            |
| Cooling System Energy Efficiency Ratio                                                                                                                 |                                                |                               | 0                                   | (314)                            |
| Space cooling (if there is a fixed cooling system, if not enter 0)                                                                                     | = (107) ÷ (314)                                | ) =                           | 0                                   | (315)                            |
| Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from                           | outside                                        |                               | 0                                   | (330a)                           |
| warm air heating system fans                                                                                                                           |                                                |                               | 0                                   | (330b)                           |
| pump for solar water heating                                                                                                                           |                                                |                               | 0                                   | (330g)                           |
| Total electricity for the above, kWh/year                                                                                                              | =(330a) + (330                                 | 0b) + (330g) =                | 0                                   | (331)                            |
| Energy for lighting (calculated in Appendix L)                                                                                                         |                                                |                               | 803.82                              | (332)                            |
| 12b. CO2 Emissions – Community heating scheme                                                                                                          |                                                |                               |                                     |                                  |
|                                                                                                                                                        | Energy<br>kWh/year                             | Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/year            |                                  |
| CO2 from other sources of space and water heating (not CHP) Efficiency of heat source 1 (%)  If there is CHP using                                     | g two fuels repeat (363) to                    | (366) for the second fue      | 65                                  | (367a)                           |
| CO2 associated with heat source 1 [(307b)+                                                                                                             | (310b)] x 100 ÷ (367b) x                       | 0 =                           | 13718.57                            | (367)                            |
| Electrical energy for heat distribution                                                                                                                | [(313) x                                       | 0.52                          | 214.26                              | (372)                            |
| Total CO2 associated with community systems                                                                                                            | (363)(366) + (368)(37                          | 2) =                          | 13932.82                            | (373)                            |
| CO2 associated with space heating (secondary)                                                                                                          | (309) x                                        | 0 =                           | 0                                   | (374)                            |
| CO2 associated with water from immersion heater or instantane                                                                                          |                                                |                               | = 0                                 | 7(275)                           |
|                                                                                                                                                        | eous heater (312) x                            | 0.22                          | 0                                   | (375)                            |
| Total CO2 associated with space and water heating                                                                                                      | eous heater (312) x<br>(373) + (374) + (375) = | 0.22                          | 13932.82                            | (375)<br>(376)                   |
| Total CO2 associated with space and water heating CO2 associated with electricity for pumps and fans within dwelli                                     | (373) + (374) + (375) =                        | 0.22                          | 13932.82                            | <b>」</b> ` `                     |
| CO2 associated with electricity for pumps and fans within dwelli                                                                                       | (373) + (374) + (375) =                        | 0.22                          | 13932.82                            | (376)                            |
| CO2 associated with electricity for pumps and fans within dwelli                                                                                       | (373) + (374) + (375) =<br>ing (331)) x        | 0.52                          | 13932.82                            | (376)                            |
| CO2 associated with electricity for pumps and fans within dwelling                                                                                     | (373) + (374) + (375) =<br>ing (331)) x        | 0.52                          | 13932.82                            | (376)<br>(378)<br>(379)          |
| CO2 associated with electricity for pumps and fans within dwelling CO2 associated with electricity for lighting Total CO2, kg/year sum of (376)(382) = | (373) + (374) + (375) =<br>ing (331)) x        | 0.52                          | 13932.82<br>0<br>417.18<br>14350.01 | (376)<br>(378)<br>(379)<br>(383) |

|                                   |                                                                                          | User D      | etails:          |            |             |            |           |                       |      |
|-----------------------------------|------------------------------------------------------------------------------------------|-------------|------------------|------------|-------------|------------|-----------|-----------------------|------|
| Assessor Name:<br>Software Name:  | Stroma FSAP 2012                                                                         |             | Stroma<br>Softwa | re Ve      |             |            | Versio    | on: 1.0.3.4           |      |
|                                   |                                                                                          | roperty i   | Address:         | Unit 7     |             |            |           |                       |      |
| Address: 1. Overall dwelling dime | , london                                                                                 |             |                  |            |             |            |           |                       |      |
| 1. Overall awelling all ne        | noiono.                                                                                  | Area        | a(m²)            |            | Av. He      | ight(m)    |           | Volume(m <sup>3</sup> | 3)   |
| Basement                          |                                                                                          |             | <u>`</u>         | (1a) x     |             | .05        | (2a) =    | 250.1                 | (3a) |
| Total floor area TFA = (1a        | a)+(1b)+(1c)+(1d)+(1e)+(1                                                                | n)          | 82               | (4)        |             |            | J         |                       |      |
| Dwelling volume                   |                                                                                          |             |                  | (3a)+(3b   | )+(3c)+(3d  | d)+(3e)+   | (3n) =    | 250.1                 | (5)  |
| 2. Ventilation rate:              |                                                                                          |             |                  |            |             |            |           |                       |      |
|                                   | main seconda<br>heating heating                                                          | ry          | other            |            | total       |            |           | m³ per hou            | ır   |
| Number of chimneys                |                                                                                          | + [         | 0                | =          | 0           | X 4        | 40 =      | 0                     | (6a) |
| Number of open flues              | 0 + 0                                                                                    | <u> </u>    | 0                |            | 0           | x          | 20 =      | 0                     | (6b) |
| Number of intermittent far        | ns                                                                                       |             |                  | Ī          | 2           | x -        | 10 =      | 20                    | (7a) |
| Number of passive vents           |                                                                                          |             |                  | Ī          | 0           | x ·        | 10 =      | 0                     | (7b) |
| Number of flueless gas fin        | res                                                                                      |             |                  | Ī          | 0           | X 4        | 40 =      | 0                     | (7c) |
|                                   |                                                                                          |             |                  | _          |             |            | Air ch    | nanges per ho         | our  |
| Infiltration due to chimne        | vs, flues and fans = (6a)+(6b)+(                                                         | 7a)+(7b)+(  | 7c) =            | Г          | 20          |            | ÷ (5) =   | 0.08                  | (8)  |
|                                   | een carried out or is intended, procee                                                   |             |                  | ontinue fr |             |            | - (3) =   | 0.06                  | (0)  |
| Number of storeys in th           | ne dw <mark>elling</mark> (ns)                                                           |             |                  |            |             |            |           | 0                     | (9)  |
| Additional infiltration           |                                                                                          |             |                  |            |             | [(9)       | -1]x0.1 = | 0                     | (10) |
|                                   | 25 for steel or timber frame of                                                          |             |                  | •          | uction      |            |           | 0                     | (11) |
| deducting areas of openin         | esent, use the value corresponding to<br>gs); if equal user 0.35                         | o tne great | er waii are      | а (аптег   |             |            |           |                       |      |
| If suspended wooden f             | loor, enter 0.2 (unsealed) or 0                                                          | .1 (seale   | ed), else        | enter 0    |             |            |           | 0                     | (12) |
| If no draught lobby, ent          | er 0.05, else enter 0                                                                    |             |                  |            |             |            |           | 0                     | (13) |
| <u> </u>                          | and doors draught stripped                                                               |             |                  |            |             |            |           | 0                     | (14) |
| Window infiltration               |                                                                                          |             | 0.25 - [0.2      | , ,        | -           |            |           | 0                     | (15) |
| Infiltration rate                 |                                                                                          |             | (8) + (10)       |            |             |            |           | 0                     | (16) |
| •                                 | q50, expressed in cubic metre                                                            | •           | •                | •          | etre of e   | envelope   | area      | 20                    | (17) |
| ·                                 | ty value, then $(18) = [(17) \div 20] + (18)$<br>is if a pressurisation test has been do |             |                  |            | io hoina u  | and        |           | 1.08                  | (18) |
| Number of sides sheltere          |                                                                                          | ie or a deg | gree air per     | пеаышу     | is being us | seu        |           | 2                     | (19) |
| Shelter factor                    | -                                                                                        |             | (20) = 1 -       | 0.075 x (  | 19)] =      |            |           | 0.85                  | (20) |
| Infiltration rate incorporati     | ing shelter factor                                                                       |             | (21) = (18)      | x (20) =   |             |            |           | 0.92                  | (21) |
| Infiltration rate modified for    | or monthly wind speed                                                                    |             |                  |            |             |            |           |                       |      |
| Jan Feb                           | Mar Apr May Jun                                                                          | Jul         | Aug              | Sep        | Oct         | Nov        | Dec       |                       |      |
| Monthly average wind spe          | eed from Table 7                                                                         |             |                  |            |             |            |           |                       |      |
| (22)m= 5.1 5                      | 4.9 4.4 4.3 3.8                                                                          | 3.8         | 3.7              | 4          | 4.3         | 4.5        | 4.7       |                       |      |
| Wind Factor (22a)m = (22          | 2)m ÷ 1                                                                                  |             |                  |            |             |            |           | -                     |      |
|                                   | 2)m ÷ 4<br>1.23                                                                          | 0.95        | 0.92             | 1          | 1.08        | 1.12       | 1.18      | ]                     |      |
|                                   | 1 1 3.00                                                                                 | L           |                  | •          |             | L <u>-</u> | L         | J                     |      |

| 4.47                                    | `                 | <u>_</u>                    | shelter ar    | nd wind s      | <del>i ´</del> | <del>`</del>  | <del>` ´</del>   | 1 0 00        | 4.00        | 4.00               | 1                                              |               |
|-----------------------------------------|-------------------|-----------------------------|---------------|----------------|----------------|---------------|------------------|---------------|-------------|--------------------|------------------------------------------------|---------------|
| 1.17  <br>Calculate effective           |                   |                             |               | 1              | 0.87<br>ise    | 0.85          | 0.92             | 0.99          | 1.03        | 1.08               | J                                              |               |
| If mechanical                           |                   | -                           | ,,            |                |                |               |                  |               |             |                    | 0                                              | (2            |
| If exhaust air heat                     | pump using        | Appendix N,                 | (23b) = (23b) | a) × Fmv (e    | equation (l    | N5)) , othe   | rwise (23b       | o) = (23a)    |             |                    | 0                                              | (2            |
| If balanced with he                     | eat recovery      | efficiency in               | % allowing    | for in-use f   | factor (fron   | n Table 4h    | ) =              |               |             |                    | 0                                              | (2            |
| a) If balanced                          | mechanic          | al ventilatio               | n with he     | at recov       | ery (MV        | HR) (24a      | a)m = (2)        | 2b)m + (      | 23b) × [    | 1 – (23c)          | ÷ 100]                                         |               |
| 24a)m= 0                                | 0                 | 0 0                         | 0             | 0              | 0              | 0             | 0                | 0             | 0           | 0                  |                                                | (2            |
| b) If balanced                          | mechanic          | al ventilatio               | n without     | heat red       | covery (I      | MV) (24b      | m = (22)         | 2b)m + (2     | 23b)        |                    |                                                |               |
| 24b)m= 0                                | 0                 | 0 0                         | 0             | 0              | 0              | 0             | 0                | 0             | 0           | 0                  |                                                | (2            |
| c) If whole hou<br>if (22b)m <          |                   | t ventilation<br>(24), then | •             | •              |                |               |                  | .5 × (23b     | o)          |                    | _                                              |               |
| 24c)m= 0                                | 0                 | 0 0                         | 0             | 0              | 0              | 0             | 0                | 0             | 0           | 0                  |                                                | (2            |
| d) If natural ve<br>if (22b)m =         |                   | r whole hou<br>24d)m = (22  | •             | •              |                |               |                  | 0.5]          |             |                    | _                                              |               |
| 24d)m= 1.17                             | 1.15 1.           | 12 1.01                     | 0.99          | 0.88           | 0.88           | 0.86          | 0.92             | 0.99          | 1.03        | 1.08               |                                                | (2            |
| Effective air ch                        | nange rate        | - enter (24                 | a) or (24     | b) or (24      | c) or (24      | d) in bo      | x (25)           |               |             |                    | ,                                              |               |
| 25)m= 1.17                              | 1.15 1.           | 1.01                        | 0.99          | 0.88           | 0.88           | 0.86          | 0.92             | 0.99          | 1.03        | 1.08               |                                                | (2            |
| 3. Heat losses a                        | and heat lo       | oss parame                  | ter:          |                |                |               |                  |               |             |                    | _                                              |               |
| LEMENT                                  | Gross<br>area (m² | Openi<br>)                  | ngs<br>m²     | Net Ar<br>A ,r |                | U-val<br>W/m2 |                  | A X U<br>(W/I | K)          | k-value<br>kJ/m²-l |                                                | A X k<br>kJ/K |
| oo <mark>rs Ty</mark> pe 1              |                   |                             |               | 1.8            | х              | 3             | =                | 5.4           |             |                    |                                                | (2            |
| oo <mark>rs Ty</mark> pe 2              |                   |                             |               | 1.6            | x              | 1.4           |                  | 2.24          |             |                    |                                                | (2            |
| Vindows Type 1                          |                   |                             |               | 5.56           | x1             | /[1/( 4.8 )+  | 0.04] =          | 22.39         |             |                    |                                                | (2            |
| Vindows Type 2                          |                   |                             |               | 4              | x1             | /[1/( 4.8 )+  | 0.04] =          | 16.11         |             |                    |                                                | (2            |
| Vindows Type 3                          |                   |                             |               | 1.21           | x1             | /[1/( 4.8 )+  | 0.04] =          | 4.87          |             |                    |                                                | (2            |
| loor                                    |                   |                             |               | 82             | x              | 1.25          |                  | 102.5         | <u> </u>    |                    |                                                | (2            |
| Valls Type1                             | 79.85             | 12.                         | 57            | 67.28          | 3 x            | 2.1           | <del>-</del>     | 141.29        | T i         |                    | $\exists \                                   $ | (2            |
| Valls Type2                             | 20.23             | 1.                          | 6             | 18.63          | 3 X            | 2.1           | =                | 39.12         |             |                    |                                                | (2            |
| loof                                    | 19.77             |                             |               | 19.77          | 7 X            | 2.3           | <del>-</del>     | 45.47         | T i         |                    | 7 F                                            | (3            |
| otal area of ele                        | ments, m²         |                             |               | 201.8          | 35             |               |                  |               |             |                    |                                                | (;            |
| arty wall                               |                   |                             |               | 16.8           | X              | 0             | =                | 0             |             |                    |                                                | (3            |
| arty wall                               |                   |                             |               | 5.8            | x              | 0             | <b>=</b>         | 0             | F i         |                    | 7 7                                            | (3            |
| for windows and ro<br>include the areas |                   |                             |               |                | lated using    | g formula 1   | <br> /[(1/U-valu | ue)+0.04] a   | as given in | paragraph          | 1 3.2                                          | `             |
| abric heat loss,                        | W/K = S           | (A x U)                     |               |                |                | (26)(30       | ) + (32) =       |               |             |                    | 379.39                                         | 9 (3          |
|                                         | m = S(A x)        | k )                         |               |                |                |               | ((28).           | (30) + (32    | 2) + (32a). | (32e) =            | 0                                              | (3            |
| leat capacity Cr                        |                   |                             |               |                | •              |               | Indica           | ative Value   | · High      |                    | 450                                            |               |
| leat capacity Cr<br>hermal mass pa      | arameter (        | TMP = Cm                    | ÷ TFA) i      | n KJ/m²K       | ١.             |               | maice            | ative value   | . r iigii   |                    | 450                                            | (;            |
|                                         | ents where t      | he details of th            | ,             |                |                | recisely the  |                  |               | •           | able 1f            | 450                                            | (             |

| Ventilation heat loss calculated monthly  Vanilation heat loss calculated monthly  Vanilation heat loss calculated monthly  Jun Jul Aug Sep Oct Nov Dec  (38)m = (38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total fabric he    | at loss      |                                                  |             |                |             |            |             | (33) +       | (36) =      |                        | Γ            | 397.79  | (37) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|--------------------------------------------------|-------------|----------------|-------------|------------|-------------|--------------|-------------|------------------------|--------------|---------|------|
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |              | alculated                                        | d monthly   | V              |             |            |             |              |             | (25)m x (5)            | L            | 397.79  | (37) |
| (38)   96.6   94.7   92.81   83.34   81.43   72.85   71.02   76.94   81.45   85.23   89.02   (38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 1            |                                                  | · ·         | <del></del>    | Jun         | Jul        | Aua         | ` ′          |             | 1                      |              |         |      |
| (39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |              |                                                  | <del></del> |                |             |            | Ť           |              |             |                        | <del> </del> |         | (38) |
| (39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heat transfer      | coefficie    | nt, W/K                                          | ļ.          | l              |             | Į.         |             | (39)m        | = (37) + (  | 38)m                   |              |         |      |
| Heat loss parameter (HLP), W/m²K  (40)m = 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |              | <u> </u>                                         | 481.13      | 479.24         | 470.44      | 470.44     | 468.81      |              |             | ·                      | 486.81       |         |      |
| Harmonian   Harm |                    |              | =>                                               |             |                |             | ı          |             |              | _           |                        | 12 /12=      | 480.87  | (39) |
| Average = Sum(40)x/12=   5.86   (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | <del> </del> | <del>-                                    </del> | r —         | 5.04           | F 7.4       |            | T = 70      | ·            |             | r –                    |              |         |      |
| Number of days in month (Table 1a)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (40)m= 6.03        | 6.01         | 5.98                                             | 5.87        | 5.84           | 5.74        | 5.74       | 5.72        |              |             |                        | L .          | 5.96    | (40) |
| 4. Water heating energy requirement:  **Reduce the annual average hot water usage in litres per day Vd_average = (25 x N) + 36 **Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 tiles here per base on per day of lawater usa, hot and cold!  **Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usage in litres per day Vd_average = (25 x N) + 36 **Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 tiles here per base on per day rall water usa, hot and cold!  **Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usage in litres per day for each month Vd,m = fector from Table 1c x 43:  **(44)m= 102.93 99.18 95.44 91.7 87.95 84.21 84.21 87.95 91.7 95.44 99.18 102.93  **Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/min (see Tables to, fc, rd)  **(46)m= 152.63 133.5 137.76 120.1 115.24 99.44 92.15 105.74 107 124.7 136.12 147.82  **It instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  **Water storage loss:**  Storage volume (litres) including any solar or WWHRS storage within same vessel 160 (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  **Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  **Diff monumal storage loss factor from Table 2 (kWh/litre/day) 0.02 (61)  **Total = Sum(45)                                                                                                                                                                                                                                                                                                                                                                                                           | Number of day      | ys in mo     | nth (Tab                                         | le 1a)      |                |             |            |             | ,            | Average =   | Sum(40) <sub>1</sub>   | 12 / 12=     | 5.00    | (40) |
| ### A. Water heating energy requirement:  ### Assumed occupancy, N  If TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  If TFA £ 13.9, N = 1  Annual average in litres per day. Vd., average = (25 x N) + 36  ### Reduce the annual average hot water usage in litres per day. Vd., average = (25 x N) + 36  ### Reduce the annual average hot water usage by 5% if the dwalling is designed to achieve a water use target or not more that 125 litres per person per day of water usage. In litres per day. Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jan                | Feb          | Mar                                              | Apr         | May            | Jun         | Jul        | Aug         | Sep          | Oct         | Nov                    | Dec          |         |      |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per person per day (all water usa, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1c x (43)  (44)m = 102.93 99.18 95.44 91.7 87.95 84.21 84.21 87.95 91.7 95.44 99.18 102.93  Total = Sum(44)e 1122.82 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd.m x nm x DTm / 3600 kWn/month (see Tables 1b, 1c, 1d)  (45)m = 152.63 133.5 137.76 120.1 115.24 99.44 92.15 105.74 107 124.7 136.12 147.82  Total = Sum(45)e 117.29 14.92 13.82 15.86 16.05 18.71 20.42 22.17  (46)m = 22.9 20.02 20.66 18.01 17.29 14.92 13.82 15.86 16.05 18.71 20.42 22.17  (47) Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 160 (47)  Water storage loss:  3) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Diff manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  Energy lost from water storage, kWh/year (48) x (49) = 0.6 (63)  Energy lost from water storage section 4.3  Volume factor from Table 2b 0.6 (63)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (41)m= 31          | 28           | 31                                               | 30          | 31             | 30          | 31         | 31          | 30           | 31          | 30                     | 31           |         | (41) |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA E 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1c x (43)  (44)m = 102.93 99.18 95.44 91,7 87.95 84.21 84.21 87.95 91,7 95.44 99.18 102.93  Total = Sum(44), v = 1122.82 (44)  Energy content of hot water used - calculated monthly = 4,190 x Vd.m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m = 152.63 133.5 137.76 120.1 115.24 99.44 92.15 105.74 107 124.7 136.12 147.82  Total = Sum(45), v = 1472.19 (45)  if instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m = 22.9 20.02 20.66 18.01 17.29 14.92 13.82 15.86 16.05 18.71 20.42 22.17 (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 160 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  for community heating see section 4.3  Volume factor from Table 2b 0.6 (63)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)                                                                                                                                                                                                           |                    |              |                                                  |             |                |             |            |             |              |             |                        |              |         |      |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the divelling is designed to achieve a water use target or not more that 125 litres per person per day (all water usage hot water usage to litres per person per day (all water usage hot water usage in litres per person per day (all water usage hot water usage in litres per day for each month Vd.m = factor from Table 1c x (43)  (44)m = 102.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4. Water hea       | ting ene     | rgy requi                                        | irement:    |                |             |            |             |              |             |                        | kWh/ye       | ear:    |      |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the divelling is designed to achieve a water use target or not more that 125 litres per per day fall water usage hot water usage by 5% if the divelling is designed to achieve a water use target or not more that 125 litres per per day fall water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1c x [43]  (44)m = 102.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                  |              |                                                  |             |                |             |            |             |              |             |                        |              |         |      |
| Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |              |                                                  | :[1 - exp   | (-0.0003       | 349 x (TF   | FA -13.9   | )2)1 + 0.0  | 0013 x (     | ΓFA -13.    |                        | 5            |         | (42) |
| Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day fall water use. Not and cold)    Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |              |                                                  |             | (              | ( )         |            | /_/]        | (            |             | ,                      |              |         |      |
| Note    |                    |              |                                                  |             |                |             |            |             |              | no torget o |                        | 3.57         |         | (43) |
| Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m = 102.93 99.18 95.44 91.7 87.95 84.21 84.21 87.95 91.7 95.44 99.18 102.93  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m = 152.63 133.5 137.76 120.1 115.24 99.44 92.15 105.74 107 124.7 136.12 147.82  If instantaneous water healing at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m = 22.9 20.02 20.66 18.01 17.29 14.92 13.82 15.86 16.05 18.71 20.42 22.17  (46) Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 160 (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  If community heating see section 4.3  Volume factor from Table 2a 1.03 (52)  Temperature factor from Table 2b (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |              |                                                  |             |                | _           | -          | io acriieve | a water us   | se largel o | ·/                     |              |         |      |
| Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m = 102.93 99.18 95.44 91.7 87.95 84.21 84.21 87.95 91.7 95.44 99.18 102.93  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m = 152.63 133.5 137.76 120.1 115.24 99.44 92.15 105.74 107 124.7 136.12 147.82  If instantaneous water healing at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m = 22.9 20.02 20.66 18.01 17.29 14.92 13.82 15.86 16.05 18.71 20.42 22.17  (46) Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 160 (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  If community heating see section 4.3  Volume factor from Table 2a 1.03 (52)  Temperature factor from Table 2b (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jan                | Feb          | Mar                                              | Apr         | May            | Jun         | Jul        | Aug         | Sep          | Oct         | Nov                    | Dec          |         |      |
| Energy content of hot water used - calculated monthly = 4.190 x Vd.m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 152.63 133.5 137.76 120.1 115.24 99.44 92.15 105.74 107 124.7 136.12 147.82  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 22.9 20.02 20.66 18.01 17.29 14.92 13.82 15.86 16.05 18.71 20.42 22.17  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 160 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  If community heating see section 4.3  Volume factor from Table 2a 1.03 (52)  Temperature factor from Table 2b (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |              |                                                  | <u> </u>    |                |             |            |             | Сор          | 00.         | 1101                   | 300          |         |      |
| Energy content of hot water used - calculated monthly = 4.190 x Vd.m x nm x DTm / 3600 k Wh/month (see Tables 1b, 1c, 1d)  (45)m= 152.63 133.5 137.76 120.1 115.24 99.44 92.15 105.74 107 124.7 136.12 147.82  Total = Sum(45) 1.12 = 1472.19 (45)  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 22.9 20.02 20.66 18.01 17.29 14.92 13.82 15.86 16.05 18.71 20.42 22.17 (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 160 (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  If community heating see section 4.3  Volume factor from Table 2b 0.66 (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (44)m= 102.93      | 99.18        | 95.44                                            | 91.7        | 87.95          | 84.21       | 84.21      | 87.95       | 91.7         | 95.44       | 99.18                  | 102.93       |         |      |
| (45)me       152.63       133.5       137.76       120.1       115.24       99.44       92.15       105.74       107       124.7       136.12       147.82         Total = Sum(45) 12       Total = Sum(45) 12       1472.19       (45)         If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)       106       1472.19       (46)         Water storage loss:         Storage volume (litres) including any solar or WWHRS storage within same vessel       160       (47)         If instantaneous litres in (47)         Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)         Water storage loss:         a) If manufacturer's declared loss factor is known (kWh/day):       0       (48)         Total = Sum(45) 12       0       (48)         Water storage loss:       0       (47)         A loss in the storage loss factor is known (kWh/day):       0       (48)         Calcated cylinder loss factor is not known:       0       (48)         Hot manufacturer's declared cylinder loss factor is not known:       0       0       0       0         Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |              |                                                  |             |                |             |            |             |              | Total = Su  | m(44) <sub>112</sub> = | =            | 1122.82 | (44) |
| Total = Sum(45) <sub>112</sub> = 1472.19   (45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Energy content of  | hot water    | used - cal                                       | culated mo  | onthly = $4$ . | 190 x Vd,r  | n x nm x E | OTm / 3600  | kWh/mor      | nth (see Ta | bles 1b, 1             | c, 1d)       |         |      |
| If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)         (46)m=       22.9       20.02       20.66       18.01       17.29       14.92       13.82       15.86       16.05       18.71       20.42       22.17       (46)         Water storage loss:         Storage volume (litres) including any solar or WWHRS storage within same vessel       160       (47)         Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)         Water storage loss:         a) If manufacturer's declared loss factor is known (kWh/day):       0       (48)         Temperature factor from Table 2b       0       (49)         Energy lost from water storage, kWh/year       (48) x (49) =       110       (50)         b) If manufacturer's declared cylinder loss factor is not known:         Hot water storage loss factor from Table 2 (kWh/litre/day)       0.02       (51)         If community heating see section 4.3         Volume factor from Table 2a       1.03       (52)         Temperature factor from Table 2b       0.6       (53)         Energy lost from water storage, kWh/year       (47) x (51) x (52) x (53) =       1.03       (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (45)m= 152.63      | 133.5        | 137.76                                           | 120.1       | 115.24         | 99.44       | 92.15      | 105.74      | 107          | 124.7       | 136.12                 | 147.82       |         | _    |
| (46)m=       22.9       20.02       20.66       18.01       17.29       14.92       13.82       15.86       16.05       18.71       20.42       22.17       (46)         Water storage loss:         Storage volume (litres) including any solar or WWHRS storage within same vessel       160       (47)         Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)         Water storage loss:         a) If manufacturer's declared loss factor is known (kWh/day):       0       (48)         Temperature factor from Table 2b       0       (49)         Energy lost from water storage, kWh/year       (48) × (49) =       110       (50)         b) If manufacturer's declared cylinder loss factor is not known:         Hot water storage loss factor from Table 2 (kWh/litre/day)       0.02       (51)         If community heating see section 4.3         Volume factor from Table 2a       1.03       (52)         Temperature factor from Table 2b       0.6       (53)         Energy lost from water storage, kWh/year       (47) × (51) × (52) × (53) =       1.03       (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | If instantaneous v | vater heati  | na at point                                      | of use (no  | o hot water    | · storage). | enter 0 in | boxes (46   |              | Total = Su  | m(45) <sub>112</sub> = | - [          | 1472.19 | (45) |
| Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (48) x (49) =  110  (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) x (51) x (52) x (53) =  1.03  (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |              |                                                  |             |                |             |            |             |              | 18 71       | 20.42                  | 22 17        |         | (46) |
| If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (48) × (49) =  110  (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) =  1.03  (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | 1            | 20.00                                            | 10.01       | 17.23          | 14.92       | 13.02      | 13.00       | 10.03        | 10.71       | 20.42                  | 22.17        |         | (10) |
| Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) =  1.03  (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Storage volum      | ne (litres)  | includir                                         | ng any so   | olar or W      | /WHRS       | storage    | within sa   | ame ves      | sel         |                        | 160          |         | (47) |
| Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year (48) × (49) =  110 (50) b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) =  1.03 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If community h     | neating a    | ınd no ta                                        | ınk in dw   | elling, e      | nter 110    | litres in  | (47)        |              |             |                        |              |         |      |
| a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) x (51) x (52) x (53) =  (48) x (49) =  0  (49)  (49)  (50)  (51)  (51)  (52)  (52)  (53)  Energy lost from water storage, kWh/year  (47) x (51) x (52) x (53) =  1.03  (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              | hot wate                                         | er (this in | icludes i      | nstantar    | neous co   | mbi boil    | ers) ente    | er '0' in ( | 47)                    |              |         |      |
| Temperature factor from Table 2b $0$ (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) $0.02$ (51)  If community heating see section 4.3  Volume factor from Table 2a $1.03$ (52)  Temperature factor from Table 2b $0.6$ (53)  Energy lost from water storage, kWh/year $(47) \times (51) \times (52) \times (53) = 1.03$ (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                  |              | odorod I                                         | oon foot    | or io kno      |             | 2/dox4):   |             |              |             |                        |              |         | (40) |
| Energy lost from water storage, kWh/year (48) x (49) = 110 (50) b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51) If community heating see section 4.3  Volume factor from Table 2a 1.03 (52) Temperature factor from Table 2b 0.6 (53) Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                  |              |                                                  |             | JI IS KIIO     | WII (KVVI   | i/uay).    |             |              |             |                        |              |         |      |
| b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) x (51) x (52) x (53) =  1.03  (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                  |              |                                                  |             | 201            |             |            | (40) × (40) |              |             |                        |              |         |      |
| Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) x (51) x (52) x (53) =  1.03  (51)  (52)  (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                  |              | _                                                | -           |                | or is not   |            | (40) X (49) | ) =          |             | 1                      | 10           |         | (50) |
| Volume factor from Table 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                  |              |                                                  | -           |                |             |            |             |              |             | 0.                     | 02           |         | (51) |
| Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -            |                                                  | on 4.3      |                |             |            |             |              |             |                        |              |         |      |
| Energy lost from water storage, kWh/year $ (47) \times (51) \times (52) \times (53) = 1.03 $ (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |              |                                                  | 01          |                |             |            |             |              |             | 1.                     | .03          |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                  |              |                                                  |             |                |             |            |             |              |             | 0                      | .6           |         | (53) |
| Totar (FO) or (FA) in (FF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |              | _                                                | , kWh/ye    | ear            |             |            | (47) x (51) | ) x (52) x ( | 53) =       | -                      |              |         |      |
| Enter (50) or (54) in (55) 1.03 (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ⊏⊓(e) (50) 0f      | (54) III (t  | JJ)                                              |             |                |             |            |             |              |             | 1.                     | .03          |         | (55) |

| Water storage loss calculated for each month $((56)m = (55) \times (41)m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| (56)m= 32.01 28.92 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (56)                         |
| If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷ (50), else (57)m = (56)m where (H11) is from Appendix H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |
| (57)m= 32.01 28.92 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (57)                         |
| Primary circuit loss (annual) from Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (58)                         |
| Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
| (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| (59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26 22.51 23.26 22.51 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (59)                         |
| Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| (61)m= 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (61)                         |
| Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m                            |
| (62)m= 207.91 183.42 193.03 173.59 170.51 152.93 147.42 161.02 160.5 179.98 189.61 203.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (62)                         |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |
| (63)m= 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (63)                         |
| Output from water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| (64)m= 207.91 183.42 193.03 173.59 170.51 152.93 147.42 161.02 160.5 179.98 189.61 203.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| Output from water heater (annual) <sub>112</sub> 2123.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (64)                         |
| Heat gains from water heating, kWh/month 0.25 [0.85 x (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |
| (65)m= 69.36 61.2 64.41 57.94 56.93 51.07 49.25 53.77 53.59 60.07 63.27 67.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (65)                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (66)                         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (66)                         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (66)<br>(67)                 |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ` '                          |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ` '                          |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (67)                         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.9 | (67)                         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.9 | (67)<br>(68)                 |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.9 | (67)<br>(68)                 |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (67)<br>(68)<br>(69)         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.9 | (67)<br>(68)<br>(69)         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.9 | (67)<br>(68)<br>(69)<br>(70) |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.9 | (67)<br>(68)<br>(69)<br>(70) |
| Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (67)<br>(68)<br>(69)<br>(70) |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.9 | (67)<br>(68)<br>(69)<br>(70) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta | tion:  | Access Facto<br>Table 6d | r             | Area<br>m²                                        |             | Flu<br>Tal | x<br>ole 6a |             | g_<br>Table 6b |        | FF<br>Table 6c |        | Gains<br>(W     |      |      |
|---------|--------|--------------------------|---------------|---------------------------------------------------|-------------|------------|-------------|-------------|----------------|--------|----------------|--------|-----------------|------|------|
| North   | 0.9x   | 0.77                     | x             | 4                                                 | ×           | 1          | 0.63        | x           | 0.85           | x      | 0.7            | =      | 17              | .54  | (74) |
| North   | 0.9x   | 0.77                     | x             | 4                                                 | X           | 2          | 0.32        | x           | 0.85           | x      | 0.7            | _ =    | 33              | .52  | (74) |
| North   | 0.9x   | 0.77                     | x             | 4                                                 | X           | 3          | 4.53        | x           | 0.85           | x      | 0.7            | =      | 56              | .95  | (74) |
| North   | 0.9x   | 0.77                     | x             | 4                                                 | X           | 5          | 5.46        | x           | 0.85           | x      | 0.7            | =      | 91              | .48  | (74) |
| North   | 0.9x   | 0.77                     | x             | 4                                                 | X           | 7          | 4.72        | x           | 0.85           | x      | 0.7            | =      | 123             | 3.23 | (74) |
| North   | 0.9x   | 0.77                     | x             | 4                                                 | X           | 7          | 9.99        | x           | 0.85           | x      | 0.7            | =      | 13 <sup>-</sup> | 1.92 | (74) |
| North   | 0.9x   | 0.77                     | x             | 4                                                 | X           | 7          | 4.68        | x           | 0.85           | x      | 0.7            | =      | 123             | 3.17 | (74) |
| North   | 0.9x   | 0.77                     | X             | 4                                                 | X           | 5          | 9.25        | x           | 0.85           | x      | 0.7            | =      | 97              | .72  | (74) |
| North   | 0.9x   | 0.77                     | x             | 4                                                 | X           |            | 1.52        | x           | 0.85           | x      | 0.7            | =      | 68              | .47  | (74) |
| North   | 0.9x   | 0.77                     | X             | 4                                                 | X           | 2          | 4.19        | x           | 0.85           | x      | 0.7            | =      | 39              | 9.9  | (74) |
| North   | 0.9x   | 0.77                     | x             | 4                                                 | X           | 1          | 3.12        | X           | 0.85           | X      | 0.7            | =      | 21              | .64  | (74) |
| North   | 0.9x   | 0.77                     | x             | 4                                                 | X           |            | 8.86        | x           | 0.85           | x      | 0.7            |        | 14              | .62  | (74) |
| East    | 0.9x   | 1                        | X             | 5.56                                              | X           | 1          | 9.64        | x           | 0.85           | x      | 0.7            | =      | 45              | .03  | (76) |
| East    | 0.9x   | 1                        | x             | 5.56                                              | X           | 3          | 8.42        | X           | 0.85           | X      | 0.7            | =      | 88              | .08  | (76) |
| East    | 0.9x   | 1                        | x             | 5.56                                              | X           | 6          | 3.27        | x           | 0.85           | x      | 0.7            | =      | 14              | 5.06 | (76) |
| East    | 0.9x   | 1                        | X             | 5.56                                              | ×           | 9          | 2.28        | X           | 0.85           | X      | 0.7            | =      | 21              | 1.56 | (76) |
| East    | 0.9x   | 1                        | x             | 5.56                                              | x           | 1          | 13.09       | x           | 0.85           | x      | 0.7            | _      | 259             | 9.27 | (76) |
| East    | 0.9x   | 1                        | x             | 5.56                                              | x           | 1          | 15.77       | ] x         | 0.85           | x      | 0.7            | =      | 26              | 5.41 | (76) |
| East    | 0.9x   | 1                        | x             | 5.56                                              | X           | 1          | 10.22       | ]/x         | 0.85           | x      | 0.7            | =      | 252             | 2.68 | (76) |
| East    | 0.9x   | 1                        | x             | 5.56                                              | X           | 9          | 4.68        | X           | 0.85           | x      | 0.7            |        | 217             | 7.05 | (76) |
| East    | 0.9x   | 1                        | x             | 5.56                                              | X           | 7          | 3.59        | x           | 0.85           | х      | 0.7            | =      | 168             | 3.71 | (76) |
| East    | 0.9x   | 1                        | x             | 5.56                                              | x           | 4          | 5.59        | X           | 0.85           | x      | 0.7            | =      | 104             | 4.52 | (76) |
| East    | 0.9x   | 1                        | x             | 5.56                                              | X           | 2          | 4.49        | x           | 0.85           | x      | 0.7            | =      | 56              | .14  | (76) |
| East    | 0.9x   | 1                        | x             | 5.56                                              | X           | 1          | 6.15        | x           | 0.85           | x      | 0.7            | =      | 37              | .03  | (76) |
| West    | 0.9x   | 0.77                     | X             | 1.21                                              | X           | 1          | 9.64        | X           | 0.85           | x      | 0.7            | =      | 9               | .8   | (80) |
| West    | 0.9x   | 0.77                     | x             | 1.21                                              | X           | 3          | 8.42        | X           | 0.85           | x      | 0.7            | =      | 19              | .17  | (80) |
| West    | 0.9x   | 0.77                     | X             | 1.21                                              | X           | 6          | 3.27        | X           | 0.85           | X      | 0.7            | =      | 31              | .57  | (80) |
| West    | 0.9x   | 0.77                     | X             | 1.21                                              | X           | 9          | 2.28        | X           | 0.85           | x      | 0.7            | =      | 46              | .04  | (80) |
| West    | 0.9x   | 0.77                     | x             | 1.21                                              | X           | 1          | 13.09       | x           | 0.85           | x      | 0.7            | =      | 56              | .42  | (80) |
| West    | 0.9x   | 0.77                     | X             | 1.21                                              | X           | 1          | 15.77       | X           | 0.85           | X      | 0.7            | =      | 57              | .76  | (80) |
| West    | 0.9x   | 0.77                     | X             | 1.21                                              | X           | 1          | 10.22       | X           | 0.85           | X      | 0.7            | =      | 54              | .99  | (80) |
| West    | 0.9x   | 0.77                     | x             | 1.21                                              | X           | 9          | 4.68        | X           | 0.85           | x      | 0.7            | =      | 47              | .24  | (80) |
| West    | 0.9x   | 0.77                     | x             | 1.21                                              | X           | 7          | '3.59       | x           | 0.85           | x      | 0.7            | =      | 36              | .72  | (80) |
| West    | 0.9x   | 0.77                     | x             | 1.21                                              | X           |            | 5.59        | x           | 0.85           | x      | 0.7            | =      | 22              | .75  | (80) |
| West    | 0.9x   | 0.77                     | x             | 1.21                                              | X           | 2          | 4.49        | x           | 0.85           | x      | 0.7            | =      | 12              | .22  | (80) |
| West    | 0.9x   | 0.77                     | x             | 1.21                                              | X           | 1          | 6.15        | x           | 0.85           | x      | 0.7            | =      | 8.              | 06   | (80) |
| T       |        | n watts, calcula         | $\overline{}$ |                                                   |             |            | ·           | <del></del> | ı = Sum(74)m   |        | 1              | T      | 7               |      | (00) |
| (83)m=  | 72.36  |                          |               | 349.08   438.                                     |             | 455.1      | 430.84      | 362         | .01 273.9      | 167.16 | 90             | 59.71  |                 |      | (83) |
| Ţ       |        | internal and s           |               | <del>` '                                   </del> |             | ` '        |             | 677         | 12 602.00      | 524 24 | 474.05         | 464.04 | 7               |      | (84) |
| (84)m=  | 485.59 | 9 550.13 626             | .05           | 717.3 782.                                        | 52 <u> </u> | 776.05     | 738.19      | 677         | .12 602.98     | 521.31 | 471.95         | 461.91 | J               |      | (04) |

| 7. Me  | an inter      | nal temp  | perature    | (heating                | season        | )                 |                   |                                |            |                |             |                        |           |        |
|--------|---------------|-----------|-------------|-------------------------|---------------|-------------------|-------------------|--------------------------------|------------|----------------|-------------|------------------------|-----------|--------|
|        |               |           |             |                         |               | •                 | from Tab          | ole 9, Th                      | 1 (°C)     |                |             |                        | 21        | (85)   |
| -      |               | _         |             | living are              |               | _                 |                   | ,                              | ( - /      |                |             |                        |           | ` ′    |
|        | Jan           | Feb       | Mar         | Apr                     | May           | Jun               | Jul               | Aug                            | Sep        | Oct            | Nov         | Dec                    |           |        |
| (86)m= | 1             | 1         | 1           | 0.99                    | 0.99          | 0.97              | 0.95              | 0.96                           | 0.99       | 1              | 1           | 1                      |           | (86)   |
| Mean   | interna       | l temner  | ature in    | living ar               | <br>aa T1 (fo | llow sta          | ns 3 to 7         | r in Table                     |            |                |             |                        | ı         |        |
| (87)m= | 17.47         | 17.64     | 18.04       | 18.65                   | 19.3          | 19.95             | 20.36             | 20.3                           | 19.76      | 18.94          | 18.14       | 17.47                  |           | (87)   |
|        |               |           | l           |                         |               |                   | Τ-                | l                              |            |                |             |                        | I         | , ,    |
| (88)m= | erature<br>18 | auring r  | 18.01       | 18.07                   | 18.08         | aweiling<br>18.13 | 18.13             | able 9, TI                     | 18.11      | 18.08          | 18.05       | 18.03                  |           | (88)   |
|        |               |           | l .         |                         |               | Į                 |                   | <u> </u>                       | 10.11      | 10.00          | 10.00       | 10.00                  |           | (00)   |
| 1      | tion fac      |           |             | rest of d               |               | <u>`</u>          |                   |                                |            |                |             | I .                    |           | (00)   |
| (89)m= | 1             | 1         | 1           | 0.99                    | 0.97          | 0.91              | 0.7               | 0.77                           | 0.96       | 0.99           | 1           | 1                      |           | (89)   |
| Mean   | interna       | l temper  | ature in    | the rest                | of dwelli     | ng T2 (f          | ollow ste         | eps 3 to 7                     | 7 in Tabl  | e 9c)          |             |                        | •         |        |
| (90)m= | 15.14         | 15.31     | 15.72       | 16.37                   | 17.02         | 17.69             | 18.04             | 18.01                          | 17.5       | 16.67          | 15.84       | 15.16                  |           | (90)   |
|        |               |           |             |                         |               |                   |                   |                                | f          | LA = Livin     | g area ÷ (4 | 4) =                   | 0.53      | (91)   |
| Mean   | interna       | l temper  | ature (fo   | r the wh                | ole dwel      | lling) = fl       | LA × T1           | + (1 – fL                      | .A) × T2   |                |             |                        |           |        |
| (92)m= | 16.38         | 16.55     | 16.95       | 17.58                   | 18.23         | 18.89             | 19.27             | 19.23                          | 18.7       | 17.88          | 17.06       | 16.39                  |           | (92)   |
| Apply  | adjustn       | nent to t | he mear     | internal                | temper        | ature fro         | m Table           | 4e, whe                        | ere appro  | opriate        |             |                        |           |        |
| (93)m= | 16.38         | 16.55     | 16.95       | 17.58                   | 18.23         | 18.89             | 19.27             | 19.23                          | 18.7       | 17.88          | 17.06       | 16.39                  |           | (93)   |
| 8. Spa | ace hea       | ting requ | uirement    |                         |               |                   |                   |                                |            |                |             |                        |           |        |
|        |               |           |             |                         |               | ed at ste         | ep 11 of          | Table 9                        | o, so tha  | t Ti,m=(       | 76)m an     | d re-calc              | ulate     |        |
| the ut |               |           |             | using Ta                |               |                   |                   |                                |            |                |             | I _                    |           |        |
| 1.1411 | Jan           | Feb       | Mar         | Apr                     | May           | Jun               | Jul               | Aug                            | Sep        | Oct            | Nov         | Dec                    |           |        |
|        |               | tor for g |             |                         | 0.07          | 0.04              | 0.07              |                                | 0.07       | 0.00           |             |                        |           | (04)   |
| (94)m= | 1             | 1         | 0.99        | 0.99                    | 0.97          | 0.94              | 0.87              | 0.9                            | 0.97       | 0.99           | 1           | 1                      |           | (94)   |
| ı      | 484.46        | 548.29    | 0.00 + 0.00 | 4)m x (84<br>708.92     | 762.04        | 728.53            | 640.12            | 606.56                         | 583.86     | 516.89         | 470.39      | 460.99                 |           | (95)   |
| (95)m= |               |           |             |                         |               |                   | 040.12            | 606.56                         | 303.00     | 516.69         | 470.39      | 460.99                 |           | (90)   |
| (96)m= | 4.3           | 4.9       | 6.5         | perature<br>8.9         | 11.7          | 14.6              | 16.6              | 16.4                           | 14.1       | 10.6           | 7.1         | 4.2                    |           | (96)   |
|        |               |           | <u> </u>    |                         |               |                   |                   | x [(93)m·                      |            |                | 7.1         | 4.2                    |           | (00)   |
| (97)m= |               | 5738.37   | 5128.98     |                         | 3131.71       | 2019.47           |                   |                                | 2180.79    | Ī —            | 4811.71     | 5934.28                |           | (97)   |
|        |               | l         |             |                         |               |                   |                   | 24 x [(97)                     |            |                |             | 00020                  |           | ( )    |
| (98)m= |               | 3487.73   | 3352.41     | 2496.85                 | 1763.04       | 0                 | 0                 | 0                              | 0          | <del>- `</del> | 3125.75     | 4072.12                |           |        |
| ` ′    |               |           | ļ           | ļ                       |               |                   |                   | LTota                          | l per year | l<br>(kWh/year | ) = Sum(9   | 8) <sub>15.912</sub> = | 24591.08  | (98)   |
| Space  | hoatin        | a roquir  | amont in    | kWh/m²                  | !/voar        |                   |                   |                                |            | ` ,            | , (         | ,                      |           | (99)   |
| ·      |               | •         |             |                         |               |                   |                   |                                |            |                |             |                        | 299.89    |        |
|        |               |           |             | mmunity                 |               |                   |                   |                                |            |                |             |                        |           |        |
|        |               |           |             |                         |               | -                 |                   | ting prov<br>(Table 1 <i>°</i> | -          |                | unity sch   | neme.                  | 0         | (301)  |
|        | •             |           |             | •                       | • •           | •                 |                   | (Table T                       | 1) 0 11 11 | OHE            |             |                        |           | =      |
|        | •             |           |             | mmunity                 | •             | ,                 | ,                 |                                |            |                |             |                        | 1         | (302)  |
|        |               |           |             |                         |               |                   |                   | allows for                     |            | up to four (   | other heat  | sources; t             | he latter |        |
|        |               |           | _           | narana wa<br>ity boiler |               | rom power         | งเสม <b>ป</b> กร. | See Apper                      | iuix U.    |                |             |                        | 1         | (303a) |
| 2.20   |               |           |             | ,                       |               |                   |                   |                                |            |                |             |                        | ·         | `      |

| Fraction of total space heat from Community boilers                                                          | S                                       | (302) x (303a) =                  | 1                        | (304a)             |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|--------------------------|--------------------|
| Factor for control and charging method (Table 4c(3)                                                          |                                         | m [                               | 1.05                     | (305)              |
| Distribution loss factor (Table 12c) for community he                                                        |                                         |                                   | 1.1                      | <u> </u><br> (306) |
| Space heating                                                                                                |                                         | L                                 | kWh/year                 | <b>_</b>           |
| Annual space heating requirement                                                                             |                                         |                                   | 24591.08                 |                    |
| Space heat from Community boilers                                                                            | (98) x (304a                            | a) x (305) x (306) =              | 28402.69                 | (307a)             |
| Efficiency of secondary/supplementary heating syst                                                           | em in % (from Table 4a or App           | pendix E)                         | 0                        | (308               |
| Space heating requirement from secondary/suppler                                                             | mentary system (98) x (301)             | x 100 ÷ (308) =                   | 0                        | (309)              |
| Water heating Annual water heating requirement                                                               |                                         | [                                 | 2123.03                  | _<br>]             |
| If DHW from community scheme: Water heat from Community boilers                                              | (64) x (303a                            | a) x (305) x (306) =              | 2452.1                   | (310a)             |
| Electricity used for heat distribution                                                                       | 0.01 × [(307a)(                         | 307e) + (310a)(310e)] =           | 308.55                   | (313)              |
| Cooling System Energy Efficiency Ratio                                                                       |                                         |                                   | 0                        | (314)              |
| Space cooling (if there is a fixed cooling system, if r                                                      | not enter 0) = $(107) \div (3)$         | 14) =                             | 0                        | (315)              |
| Electricity for pumps and fans within dwelling (Table mechanical ventilation - balanced, extract or positive |                                         |                                   | 0                        | (330a)             |
| warm air heating system fans                                                                                 |                                         |                                   | 0                        | (330b)             |
| pump for solar water heating                                                                                 |                                         |                                   | 0                        | (330g)             |
| Total electricity for the above, kWh/year                                                                    | =(330a) + (3                            | 330b) + (330g) =                  | 0                        | (331)              |
| Energy for lighting (calculated in Appendix L)                                                               |                                         | Ī                                 | 634.57                   | (332)              |
| 12b. CO2 Emissions - Community heating scheme                                                                |                                         |                                   |                          |                    |
|                                                                                                              | Energy<br>kWh/year                      | Emission factor I<br>kg CO2/kWh I | Emissions<br>kg CO2/year |                    |
| CO2 from other sources of space and water heating                                                            | •                                       |                                   | .g ===,=                 |                    |
| Efficiency of heat source 1 (%)                                                                              | ere is CHP using two fuels repeat (363) | ) to (366) for the second fuel    | 65                       | (367a)             |
| CO2 associated with heat source 1                                                                            | [(307b)+(310b)] x 100 ÷ (367b)          | x 0 =                             | 10253.29                 | (367)              |
| Electrical energy for heat distribution                                                                      | [(313) x                                | 0.52                              | 160.14                   | (372)              |
| Total CO2 associated with community systems                                                                  | (363)(366) + (368)(                     | (372) =                           | 10413.42                 | (373)              |
| CO2 associated with space heating (secondary)                                                                | (309) x                                 | 0 =                               | 0                        | (374)              |
| CO2 associated with water from immersion heater of                                                           | or instantaneous heater (312)           | x 0.22 =                          | 0                        | (375)              |
| Total CO2 associated with space and water heating                                                            | (373) + (374) + (375) =                 |                                   | 10413.42                 | (376)              |
| CO2 associated with electricity for pumps and fans                                                           | within dwelling (004)                   | 0.52 =                            | 0                        | _                  |
| CO2 associated with electricity for pumps and fails                                                          | within dwelling (331)) x                |                                   |                          | (378)              |
| CO2 associated with electricity for lighting                                                                 | (332))) x                               | 0.52 =                            | 329.34                   | (378)              |
| , , ,                                                                                                        | (332))) x                               | 0.52 =                            |                          |                    |
| CO2 associated with electricity for lighting                                                                 | (332))) x                               | 0.52 =                            | 329.34                   | (379)              |

|                                                                 |                         |                     | User D       | etails:                    |             |             |          |           |                       |      |
|-----------------------------------------------------------------|-------------------------|---------------------|--------------|----------------------------|-------------|-------------|----------|-----------|-----------------------|------|
| Assessor Name:<br>Software Name:                                | Stroma FSAP 20          |                     |              | Strom<br>Softwa<br>Address | are Vei     |             |          | Versio    | n: 1.0.3.4            |      |
| Address :                                                       | , london                | r                   | торену .     | Address                    | Offit 6     |             |          |           |                       |      |
| 1. Overall dwelling dimens                                      | ions:                   |                     |              |                            |             |             |          |           |                       |      |
| _                                                               |                         |                     | Area         | a(m²)                      |             | Av. He      | ight(m)  | ,         | Volume(m <sup>3</sup> | _    |
| Basement                                                        |                         |                     |              | 70                         | (1a) x      | 3           | 3.5      | (2a) =    | 245                   | (3a) |
| Total floor area TFA = (1a)+                                    | +(1b)+(1c)+(1d)+(1      | 1e)+(1r             | n)           | 70                         | (4)         |             |          |           |                       |      |
| Dwelling volume                                                 |                         |                     |              |                            | (3a)+(3b)   | )+(3c)+(3c  | d)+(3e)+ | .(3n) =   | 245                   | (5)  |
| 2. Ventilation rate:                                            |                         |                     |              |                            |             |             |          |           |                       |      |
|                                                                 | main<br>heating         | secondar<br>heating | У            | other                      |             | total       |          |           | m³ per hou            | r    |
| Number of chimneys                                              | 0 +                     | 0                   | + [          | 0                          | ] = [       | 0           | X 4      | 40 =      | 0                     | (6a) |
| Number of open flues                                            | 0 +                     | 0                   | Ī + Ē        | 0                          | Ī = [       | 0           | x 2      | 20 =      | 0                     | (6b) |
| Number of intermittent fans                                     |                         |                     |              |                            |             | 2           | x -      | 10 =      | 20                    | (7a) |
| Number of passive vents                                         |                         |                     |              |                            | Ė           | 0           | x -      | 10 =      | 0                     | (7b) |
| Number of flueless gas fires                                    | 6                       |                     |              |                            | F           | 0           | X 4      | 40 =      | 0                     | (7c) |
|                                                                 |                         |                     |              |                            | L           |             |          | Air ch    | nanges per ho         |      |
| Infiltration due to chimneys,                                   |                         |                     |              |                            |             | 20          |          | ÷ (5) =   | 0.08                  | (8)  |
| If a pressurisation test has been<br>Number of storeys in the   |                         | ded, procee         | d to (17), ( | otherwise (                | continue fr | om (9) to ( | (16)     |           | 0                     | (9)  |
| Additional infiltration                                         | dwelling (113)          |                     |              |                            |             |             | [(9)     | -1]x0.1 = | 0                     | (10) |
| Structural infiltration: 0.25                                   | for steel or timbe      | r frame or          | 0.35 fo      | r masonı                   | y constr    | uction      | ,        | •         | 0                     | (11) |
| if both types of wall are prese                                 |                         | esponding to        | the great    | ter wall are               | a (after    |             |          | '         |                       |      |
| deducting areas of openings  If suspended wooden floo           | •                       | aled) or 0          | .1 (seale    | ed). else                  | enter 0     |             |          |           | 0                     | (12) |
| If no draught lobby, enter                                      | ,                       | •                   | (000         | , c.cc                     |             |             |          |           | 0                     | (13) |
| Percentage of windows a                                         | nd doors draught        | stripped            |              |                            |             |             |          |           | 0                     | (14) |
| Window infiltration                                             |                         |                     |              | 0.25 - [0.2                | x (14) ÷ 1  | 00] =       |          |           | 0                     | (15) |
| Infiltration rate                                               |                         |                     |              | (8) + (10)                 | + (11) + (1 | 2) + (13) - | + (15) = |           | 0                     | (16) |
| Air permeability value, q5                                      | •                       |                     |              | •                          | •           | etre of e   | envelope | area      | 20                    | (17) |
| If based on air permeability  Air permeability value applies if | ·                       |                     |              |                            |             | is boing u  | sod      |           | 1.08                  | (18) |
| Number of sides sheltered                                       | a pressurisation test n | ias been doi        | ie or a det  | gree all pe                | meability   | is being u  | seu      |           | 1                     | (19) |
| Shelter factor                                                  |                         |                     |              | (20) = 1 -                 | (0.075 x (1 | 9)] =       |          |           | 0.92                  | (20) |
| Infiltration rate incorporating                                 | g shelter factor        |                     |              | (21) = (18                 | x (20) =    |             |          |           | 1                     | (21) |
| Infiltration rate modified for                                  | monthly wind spec       | ed                  |              |                            |             |             | -        |           | -                     |      |
| Jan Feb M                                                       | ar Apr May              | / Jun               | Jul          | Aug                        | Sep         | Oct         | Nov      | Dec       |                       |      |
| Monthly average wind spee                                       | d from Table 7          |                     |              |                            |             |             |          |           | 1                     |      |
| (22)m= 5.1 5 4.9                                                | 9 4.4 4.3               | 3.8                 | 3.8          | 3.7                        | 4           | 4.3         | 4.5      | 4.7       |                       |      |
| Wind Factor (22a)m = (22)r                                      | n ÷ 4                   |                     |              |                            |             |             |          |           |                       |      |
| (22a)m= 1.27 1.25 1.2                                           |                         | 0.95                | 0.95         | 0.92                       | 1           | 1.08        | 1.12     | 1.18      |                       |      |

| Adjusted infiltra                   | ation rate (a               | allowir | ng for sh  | nelter an   | d wind s    | peed) =         | (21a) x      | (22a)m                |                          |                                                  |                      |             |        |
|-------------------------------------|-----------------------------|---------|------------|-------------|-------------|-----------------|--------------|-----------------------|--------------------------|--------------------------------------------------|----------------------|-------------|--------|
| 1.28                                | 1.25 1                      | 1.23    | 1.1        | 1.08        | 0.95        | 0.95            | 0.93         | 1                     | 1.08                     | 1.13                                             | 1.18                 |             |        |
| Calculate effect                    |                             | -       | ate for t  | he appli    | cable ca    | se              |              |                       |                          |                                                  |                      | •           |        |
| If mechanica                        |                             |         | ndiv N. (2 | 2h) _ (22a  | ) Em. (a    | auation (N      | IE\\ otho    | nuico (22h            | ) - (225)                |                                                  |                      | 0           | (23a)  |
| If exhaust air he                   |                             |         |            |             |             |                 |              |                       | ) = (23a)                |                                                  |                      | 0           | (23b)  |
| If balanced with                    |                             |         |            |             |             |                 |              |                       | 21.) (                   |                                                  | 4 (00.)              | 0           | (23c)  |
| a) If balance                       | <del> </del>                |         |            |             |             | <u> </u>        | <u> </u>     | ŕ                     | <del> </del>             | <del></del>                                      | <del>```</del>       | ÷ 100]<br>I | (24a)  |
| (24a)m= 0                           | 0                           | 0       | 0          | 0           | 0           | 0               | 0            | 0                     | 0                        | 0                                                | 0                    |             | (24a)  |
| b) If balance                       |                             |         |            |             |             |                 |              | <del>í `</del>        | <del>r ´       `</del>   | <del>-                                    </del> | Ι ,                  | I           | (24b)  |
| (24b)m= 0                           | 0                           | 0       | 0          | 0           | 0           | 0               | 0            | 0                     | 0                        | 0                                                | 0                    |             | (240)  |
| c) If whole h                       | ouse extrac<br>n < 0.5 × (2 |         |            | •           | •           |                 |              |                       | 5 v (23k                 | <b>.</b> )                                       |                      |             |        |
| (24c)m = 0                          | 0.5 x (2.                   | 0       | 0          | 0           | 0           | 0               | 0 = (221)    | 0                     | 0                        | 0                                                | 0                    | 1           | (24c)  |
| ( - /                               |                             |         |            |             |             |                 |              |                       |                          |                                                  |                      |             | (= :0) |
| d) If natural if (22b)n             | n = 1, then (               |         |            | •           | •           |                 |              |                       | 0.5]                     |                                                  |                      |             |        |
| (24d)m= 1.28                        | 1.25 1                      | 1.23    | 1.1        | 1.08        | 0.95        | 0.95            | 0.93         | 1                     | 1.08                     | 1.13                                             | 1.18                 |             | (24d)  |
| Effective air                       | change rate                 | e - en  | ter (24a   | or (24b     | o) or (24   | c) or (24       | d) in box    | (25)                  | -                        | -                                                | -                    |             |        |
| (25)m= 1.28                         | 1.25 1                      | 1.23    | 1.1        | 1.08        | 0.95        | 0.95            | 0.93         | 1                     | 1.08                     | 1.13                                             | 1.18                 |             | (25)   |
| 3. Heat losse                       | s and heat                  | lose n  | aramete    | or.         |             |                 |              |                       |                          |                                                  |                      |             | _      |
| ELEMENT                             | Gross                       |         | Openin     |             | Net Ar      | ea              | U-valu       | IE.                   | AXU                      |                                                  | k-value              | j.          | AXk    |
|                                     | are <mark>a (m²</mark>      |         | m          |             | A ,r        |                 | W/m2         |                       | (W/                      | K)                                               | kJ/m <sup>2</sup> ·l |             | kJ/K   |
| Doors                               |                             |         |            |             | 1.9         | x               | 3            | =                     | 5.7                      |                                                  |                      |             | (26)   |
| Windows Type                        | e 1                         |         |            |             | 8.7         | x1/             | /[1/( 4.8 )+ | 0.04] =               | 35.03                    | Ħ                                                |                      |             | (27)   |
| Windows Type                        | 2                           |         |            |             | 6.5         | X1/             | /[1/( 4.8 )+ | 0.04] =               | 26.17                    | Ħ                                                |                      |             | (27)   |
| Windows Type                        | 3                           |         |            |             | 2.2         | x1/             | /[1/( 4.8 )+ | 0.04] =               | 8.86                     | 5                                                |                      |             | (27)   |
| Floor                               |                             |         |            |             | 70          | X               | 1.25         | ─                     | 87.5                     |                                                  |                      |             | (28)   |
| Walls                               | 116.5                       | 7       | 19.3       |             | 97.2        | x               | 2.1          | <b>=</b>              | 204.12                   |                                                  |                      | <b>i</b> i  | (29)   |
| Roof                                | 26.7                        | ╡       | 0          |             | 26.7        | X               | 2.3          | _                     | 61.41                    | =                                                |                      | ╡┝          | (30)   |
| Total area of e                     |                             | <br>2   |            |             | 213.2       | =               | 2.0          |                       | 01111                    |                                                  |                      |             | (31)   |
| Party wall                          | ,                           |         |            |             | 24.2        | =               | 0            |                       | 0                        |                                                  |                      |             | (32)   |
| Party wall                          |                             |         |            |             |             | =               |              | _                     |                          | <b>러</b> 片                                       |                      | ╡ 누         |        |
| * for windows and                   | roof windows                | usa at  | factive wi | ndow H-vs   | 8.6         | x<br>ated using | formula 1    | =  <br>               | 0                        |                                                  | naragrank            |             | (32)   |
| ** include the area                 |                             |         |            |             |             | aleu usirig     | TOTTIUIA 1   | /[( 1/ <b>O</b> -vaic | 1 <del>0)+0.04</del> ] 6 | as giveri iii                                    | paragrapi            | 1 3.2       |        |
| Fabric heat los                     | ss, W/K = S                 | (A x l  | J)         |             |             |                 | (26)(30)     | ) + (32) =            |                          |                                                  |                      | 428.8       | (33)   |
| Heat capacity                       | Cm = S(A x                  | (k)     |            |             |             |                 |              | ((28).                | (30) + (3                | 2) + (32a).                                      | (32e) =              | 0           | (34)   |
| Thermal mass                        | parameter                   | (TMP    | = Cm ÷     | - TFA) ir   | n kJ/m²K    |                 |              | Indica                | tive Value               | : High                                           |                      | 450         | (35)   |
| For design assess can be used inste |                             |         |            | construct   | ion are not | t known pr      | ecisely the  | e indicative          | values of                | TMP in Ta                                        | able 1f              |             |        |
| Thermal bridge                      | es : S (L x Y               | /) calc | ulated ι   | using Ap    | pendix ł    | <               |              |                       |                          |                                                  |                      | 84.8        | (36)   |
| if details of therma                |                             | not kno | own (36) = | = 0.15 x (3 | 1)          |                 |              | (33) +                | (36) =                   |                                                  |                      | 513.6       |        |
| Ventilation hea                     |                             | ılated  | monthly    | /           |             |                 |              |                       |                          | (25)m x (5)                                      | )                    | 313.0       | (01)   |
| Jan                                 |                             | Mar     | Apr        | May         | Jun         | Jul             | Aug          | Sep                   | Oct                      | Nov                                              | Dec                  |             |        |
| Jan                                 | 100   1                     | iviai   | , \pi      | iviay       | L           | Jui             | , lug        | L                     | 1 001                    | 1,404                                            | 1 200                |             |        |

| (38)m   103.14   103.11   90.09   83.88   85.56   76.95   76.95   76.95   76.95   80.88   86.96   91   95.05   (88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                       |           |            |              |              |             | î                      |          |         |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|-----------|------------|--------------|--------------|-------------|------------------------|----------|---------|--------|
| Signate   Sign      | ` '                                          | 3.98 86.96            | 76.95     | 76.95      | 75.05        | 80.89        | 86.96       | 91                     | 95.05    |         | (38)   |
| Heat loss parameter (HLP), W/m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                       |           |            |              | · · ·        |             | <del>_</del>           |          |         |        |
| Heat loss parameter (HLP), W/m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (39)m= 616.73 614.71 612.69 602              | 2.58   600.56         | 590.54    | 590.54     | 588.65       |              |             |                        | <u> </u> |         | 7(20)  |
| Average   Sum(40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Heat loss parameter (HLP), W/m²l             | <                     |           |            |              |              | _           |                        | 12 /12=  | 602.11  | (39)   |
| Number of days in month (Table 1a)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (40)m= 8.81 8.78 8.75 8.                     | .61 8.58              | 8.44      | 8.44       | 8.41         |              |             |                        |          |         | _      |
| 4. Water heating energy requirement:  **Note of the standard occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  **Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  **Hot water usage in litres per person per day (all water use, hot and cold)  **Hot water usage in litres per person per day (all water use, hot and cold)  **Hot water usage in litres per day for each month Vd, m = acron from Table To, (43)  **Hot water usage in litres per person per day (all water use, hot and cold)  **Hot water usage in litres per person per day (all water use, hot and cold)  **Hot water usage in litres per person per day (all water use, hot and cold)  **Hot water usage in litres per person per day (all water use, hot and cold)  **Hot water usage in litres per person per day (all water use, hot and cold)  **Hot water usage in litres per day for each month Vd, m = acron from Table To, (43)  **Hot water usage in litres per day for each month Vd, m = acron from Table To, (43)  **Hot water usage in litres per day for each month Vd, m = acron from Table To, (43)  **Hot water usage in litres per day for each month Vd, m = acron from Table To, (43)  **Hot water storage loss:**  **It instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  **Hot water storage loss:**  **It instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  **Water storage loss:**  **It instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  **Water storage loss acclared loss factor is known (kWh/day):**  **It instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  **Water storage loss:**  **It instantaneous water heati    | Number of days in month (Table 1             | a)                    |           |            |              | /            | Average =   | Sum(40) <sub>1</sub>   | 12 /12=  | 8.6     | (40)   |
| ### A. Water heating energy requirement.  ### Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd,average = (25 x N) + 36  *### Reduce the annual average hot water usage pto 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cot)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jan Feb Mar <i>F</i>                         | Apr May               | Jun       | Jul        | Aug          | Sep          | Oct         | Nov                    | Dec      |         |        |
| Assumed occupancy, N  If TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  If TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 128 litres per person per day (all water use, not and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table tox (43)  (44)m 96.3 92.8 89.3 85.79 82.29 78.79 78.79 78.79 82.29 85.79 88.3 92.8 96.3  Total = Sum(44) = 105.55 [44]  Energy content of hot water used - calculated monthly = 4,190 x Vd.m x mm x DTm / 3600 kWh/month (see Tables to, fc, fd)  (45)m 142.81 124.3 128.89 112.37 107.82 83.04 86.22 98.93 100.12 116.67 127.36 138.3  Total = Sum(45) = 1 105.55 [44]  Energy content of litres point of use (no hot water storage), enter 0 in boxes (46) to (61)  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  3) If manufacturer's declared cylinder loss factor is known (kWh/day):  0 (48)  Temperature factor from Table 2b  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (52)  Temperature factor from Table 2a (52)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (55)  Water storage loss calculated for each month (66) monthly (66) me (55) x (41)m                                                                                                                                                                                                                                                 | (41)m= 31 28 31 3                            | 30 31                 | 30        | 31         | 31           | 30           | 31          | 30                     | 31       |         | (41)   |
| Assumed occupancy, N  If TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  If TFA £ 13.9, N = 1  Annual average hot water usage in littres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 128 litres per person per day (all water use, not and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1cx (43)  (44)m 96.3 92.8 89.3 85.79 82.29 78.79 78.79 78.79 82.29 85.79 88.3 92.8 96.3  Total = Sum(44) = 1050.55 [44)  Energy content of hot water used - calculated monthly = 4,190 x Vd.m x mm x DTm / 3800 kWh/month (see Tables 16, 1c, 1d)  45)m 142.81 12.81 12.88 112.37 107.82 83.04 86.22 98.93 100.12 116.67 127.36 138.3  Total = Sum(45) = 137.43 [45)  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  Water Storage olume (litres) including any solar or WWHRS storage within same vessel 160 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss: 3 (48) (48) (49) = 110 (50)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a (1.03 (52) (53) (53) (55)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (52)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (55)  Water storage loss calculated for each month (65) month (65) = 1.03 (55)                                                                                                                                                                                                                                                      |                                              | •                     |           |            |              |              |             |                        |          |         |        |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]] + 0.0013 x (TFA - 13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1cx (43)  (44)m= 96.3 92.8 89.3 85.79 82.29 78.79 78.79 82.29 95.79 89.3 92.8 96.3  Energy content of hot water used - calculated monthly = 4,190 x Vd.m x pm x DTm 3600 kW/month (see Tables 1b, 1c, 1d)  (45)m= 142.81 124.9 128.89 112.37 107.82 93.04 86.22 98.93 100.12 116.67 127.36 138.3  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 160 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  If community heating see section 4.3  Volume factor from Table 2a 1.03 (52)  Energy lost from water storage, kWh/year (48) x (50) = 1.03 (52)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (52)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)                                                              | 4. Water heating energy requirem             | nent:                 |           |            |              |              |             |                        | kWh/ye   | ar:     |        |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2] + 0.0013 x (TFA - 13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd,average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1cx (43)  (44)m= 96.3 92.8 89.3 86.79 82.29 78.79 78.79 82.29 96.79 89.3 92.8 96.3  Energy content of hot water usage - calculated monthly = 4,190 x Vd.m x pm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 142.81 124.9 128.89 112.37 107.82 93.04 86.22 98.93 100.12 116.67 127.36 138.3  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 21.42 18.74 19.33 16.86 16.17 13.96 12.93 14.84 15.02 17.5 19.1 20.75  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 160 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  frommunity heating see section 4.3  Volume factor from Table 2b 0.6 (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (52)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) =     | Assumed occupancy. N                         |                       |           |            |              |              |             | 2                      | 25       |         | (42)   |
| Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per person per day. (all water use, hot and cold)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | if TFA > 13.9, N = 1 + 1.76 x [1 -           | - exp(-0.00034        | 19 x (TF  | FA -13.9)  | )2)] + 0.0   | 0013 x (     | ΓFA -13.    |                        | 2.5      |         | ( := / |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annual average hot water usage in            |                       |           |            |              |              |             |                        | .55      |         | (43)   |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·        |                       | •         | •          | o achieve    | a water us   | e target o  | f                      | _        |         |        |
| Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m = 96.3 92.8 89.3 85.79 82.29 78.79 78.79 82.29 85.79 83.3 92.8 96.3  Total = Sum(44)m = 1050.55 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x hm x DTm / 3600 kWh/month (see Tables tb, 1c, 1d)  (46)m = 142.81 123.9 128.89 112.37 107.82 93.04 86.22 98.93 100.12 116.67 127.36 138.3  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m = 21.42 18.74 19.33 16.86 16.17 13.96 12.93 14.84 15.02 17.5 19.1 20.75 (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 160 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  If community heating see section 4.3  Volume factor from Table 2a 1.03 (52)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (54)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 1.03 (55)  Water storage loss calculated for each month (56)m = (55) x (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                       |           | <i></i>    | Aug          | Con          | Oct         | Nov                    | Doo      |         |        |
| (44)m   96.3   92.8   89.3   85.79   82.29   78.79   78.79   82.29   85.79   89.3   92.8   96.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                       |           |            |              | Sep          | Oct         | INOV                   | Dec      |         |        |
| Total   Sum(44)   1.7 =   1050.55   (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                       |           |            |              | 85.79        | 89.3        | 92.8                   | 96.3     |         |        |
| (45)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (11)11.2 00.0 02.0 00.0                      | 02.20                 | 70.70     | 10.70      | OZ.ZO        |              |             |                        |          | 1050.55 | (44)   |
| Total = Sum(45)   =   1377.43   (45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Energy content of hot water used - calculat  | ted monthly = $4.19$  | 90 x Vd,n | n x nm x D | Tm / 3600    | kWh/mon      | th (see Ta  | bles 1b, 1             | c, 1d)   |         |        |
| ## instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ## (46)m= 21.42   18.74   19.33   16.86   16.17   13.96   12.93   14.84   15.02   17.5   19.1   20.75  ## Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel   160   (47)  ## Community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  ## Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (45)m= 142.81 124.9 128.89 11                | 2.37 107.82           | 93.04     | 86.22      | 98.93        | 100.12       | 116.67      | 127.36                 | 138.3    |         |        |
| (46)me       21.42       18.74       19.33       16.86       16.17       13.96       12.93       14.84       15.02       17.5       19.1       20.75         Water storage loss:         Storage volume (litres) including any solar or WWHRS storage within same vessel       160       (47)         If community heating and no tank in dwelling, enter 110 litres in (47)         Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)         Water storage loss:         a) If manufacturer's declared loss factor is known (kWh/day):       0       (48)         Temperature factor from Table 2b       0       (49)         Energy lost from water storage loss factor from Table 2 (kWh/litre/day)       0.02       (51)         If community heating see section 4.3         Volume factor from Table 2a       1.03       (52)         Temperature factor from Table 2b       0.6       (53)         Energy lost from water storage, kWh/year       (47) × (51) × (52) × (53) =       1.03       (54)         Energy lost from water storage, kWh/year       (47) × (51) × (52) × (53) =       1.03       (54)         Energy lost from water storage, kWh/year       (47) × (51) × (52) × (53) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | If instantaneous water heating at point of u | uso (no hot water s   | etorago)  | ontor 0 in | hovos (16    |              | Γotal = Su  | m(45) <sub>112</sub> = | -        | 1377.43 | (45)   |
| Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) =  1.03  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) =  1.03  (54)  Enter (50) or (54) in (55)  Water storage loss calculated for each month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | <del>.</del>          |           |            | ` '          |              | 47.5        | 10.1                   | 00.75    |         | (46)   |
| Storage volume (litres) including any solar or WWHRS storage within same vessel  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (48) × (49) =  110  (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) =  1.03  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) =  1.03  (54)  Enter (50) or (54) in (55)  Water storage loss calculated for each month  ((56)m = (55) × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( -/                                         | 5.86   16.17          | 13.96     | 12.93      | 14.84        | 15.02        | 17.5        | 19.1                   | 20.75    |         | (46)   |
| Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  C(47) × (51) × (52) × (53) =  Energy lost from water storage, kWh/year  Enter (50) or (54) in (55)  Water storage loss calculated for each month  ((56) m = (55) × (41) m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · ·                                          | ny solar or W\        | WHRS      | storage    | within sa    | ame ves      | sel         |                        | 160      |         | (47)   |
| Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  Energy lost from water storage, kWh/year  Energy lost from water storage, kWh/year  Enter (50) or (54) in (55)  Water storage loss calculated for each month  (48) × (49) =  0  0  (48)  0  (48) × (49) =  110  0  0.02  (51)  1.03  (52)  1.03  (54)  Enter (50) or (54) in (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If community heating and no tank i           | in dwelling, en       | ter 110   | litres in  | (47)         |              |             |                        |          |         |        |
| a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  Energy lost from water storage, kWh/year  Energy lost from water storage, kWh/year  Enter (50) or (54) in (55)  Water storage loss calculated for each month  ((56)m = (55) × (41)m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                            | his includes in       | stantan   | eous co    | mbi boil     | ers) ente    | er '0' in ( | 47)                    |          |         |        |
| Temperature factor from Table 2b $0$ $(49)$ Energy lost from water storage, kWh/year $(48) \times (49) = 110$ $(50)$ b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) $0.02$ $(51)$ If community heating see section 4.3  Volume factor from Table 2a $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ | •                                            | factor is know        | ın (k\A/k | \/day/\:   |              |              |             |                        |          |         | (40)   |
| Energy lost from water storage, kWh/year (48) x (49) = 110 (50) b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) $0.02$ (51) If community heating see section 4.3 (52) Temperature factor from Table 2b $0.6$ (53) Energy lost from water storage, kWh/year $0.02$ (54) in (55) $0.06$ (55) Water storage loss calculated for each month $0.06$ (56) $0.06$ (57) $0.06$ (58) $0.06$ (59) $0.06$ (59) $0.06$ (50) $0.06$ (50) $0.06$ (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                            | iacioi is kilow       | VII (KVVI | i/uay).    |              |              |             |                        |          |         | , ,    |
| b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  Enter (50) or (54) in (55)  Water storage loss calculated for each month  ((56)m = (55) × (41)m)  (51)  (52)  (53)  (54)  (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                            | Wh/vear               |           |            | (48) x (49)  | . =          |             |                        |          |         |        |
| If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  Enter (50) or (54) in (55)  Water storage loss calculated for each month $((52)$ $(47) \times (51) \times (52) \times (53) = (54)$ $(53)$ $(54)$ $(55)$ $(55)$ $((56)m = (55) \times (41)m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              | •                     | r is not  |            | (10) // (10) |              |             |                        | 10       |         | (30)   |
| Volume factor from Table 2a1.03(52)Temperature factor from Table 2b0.6(53)Energy lost from water storage, kWh/year $(47) \times (51) \times (52) \times (53) =$ 1.03(54)Enter (50) or (54) in (55)1.03(55)Water storage loss calculated for each month $((56)m = (55) \times (41)m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                            | •                     | /litre/da | y)         |              |              |             | 0.                     | 02       |         | (51)   |
| Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | 4.3                   |           |            |              |              |             |                        |          |         | (50)   |
| Energy lost from water storage, kWh/year $(47) \times (51) \times (52) \times (53) = 1.03$ (54)<br>Enter (50) or (54) in (55) 1.03 (55)<br>Water storage loss calculated for each month $((56)m = (55) \times (41)m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                       |           |            |              |              |             | -                      |          |         |        |
| Enter (50) or (54) in (55)  Water storage loss calculated for each month  ((56)m = (55) $\times$ (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                            | Mhlyear               |           |            | (47) v (51)  | v (52) v (l  | 23) -       |                        |          |         | . ,    |
| Water storage loss calculated for each month $((56)m = (55) \times (41)m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                            | vii/y <del>c</del> ai |           |            | (47) X (31)  | / X (32) X ( | 55) =       |                        |          |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , , , , , ,                                  | each month            |           |            | ((56)m = (   | 55) × (41)r  | n           |                        | 00       |         | ()     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                       | 30.98     | 32.01      | 32.01        | 30.98        | 32.01       | 30.98                  | 32.01    |         | (56)   |
| If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷ (50), else (57)m = (56)m where (H11) is from Appendix H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ` '                                          |                       |           |            |              |              |             |                        |          | хH      | . ,    |
| (57)m= 32.01 28.92 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01 (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (57)m= 32.01 28.92 32.01 30                  | 0.98 32.01            | 30.98     | 32.01      | 32.01        | 30.98        | 32.01       | 30.98                  | 32.01    |         | (57)   |

| Primary circuit loss (annual) from Table 3                                                                                                           | 0                      | (58)          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|
| Primary circuit loss calculated for each month (59)m = (58) ÷ 365 x (41)m                                                                            |                        |               |
| (modified by factor from Table H5 if there is solar water heating and a cylinder thermo                                                              | ostat)                 |               |
| (59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 22.51 23.26                                                                                   | 22.51 23.26            | (59)          |
| Combi loss calculated for each month (61)m = (60) $\div$ 365 × (41)m                                                                                 |                        |               |
| (61)m= 0 0 0 0 0 0 0 0 0 0                                                                                                                           | 0 0                    | (61)          |
| Total heat required for water heating calculated for each month (62)m = 0.85 × (45)m +                                                               | (46)m + (57)m +        | (59)m + (61)m |
| (62)m= 198.09 174.83 184.17 165.86 163.1 146.53 141.49 154.21 153.61 171.95                                                                          | 180.85 193.58          | (62)          |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribu'                                       | tion to water heating) |               |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                 | 3,                     |               |
| (63)m= 0 0 0 0 0 0 0 0 0                                                                                                                             | 0 0                    | (63)          |
| Output from water heater                                                                                                                             | <u> </u>               |               |
| (64)m= 198.09 174.83 184.17 165.86 163.1 146.53 141.49 154.21 153.61 171.95                                                                          | 180.85 193.58          | 1             |
| Output from water heate                                                                                                                              | ļļ                     | 2028.27 (64)  |
| Heat gains from water heating, kWh/month 0.25 $^{\prime}$ [0.85 $\times$ (45)m + (61)m] + 0.8 $\times$ [(46)m                                        |                        | , · · ·       |
| (65)m= 66.09 58.34 61.47 55.37 54.46 48.95 47.28 51.51 51.3 57.4                                                                                     | 60.36 64.6             | (65)          |
|                                                                                                                                                      |                        |               |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is f                                                          | rom community n        | eating        |
| 5. Internal gains (see Table 5 and 5a):                                                                                                              |                        |               |
| Metabolic gains (Table 5), Watts                                                                                                                     |                        |               |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct                                                                                                              | Nov Dec                |               |
| (66)m= 112.31 112.31 112.31 112.31 112.31 112.31 112.31 112.31 112.31 112.31                                                                         | 112.31 112.31          | (66)          |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5                                                                      |                        |               |
| (67)m= 29.9 26.56 21.6 16.35 12.22 10.32 11.15 14.49 19.45 24.7                                                                                      | 28.83 30.73            | (67)          |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5                                                                  |                        |               |
| (68)m= 197.3 199.34 194.19 183.2 169.34 156.31 147.6 145.55 150.71 161.7                                                                             | 175.56 188.59          | (68)          |
| Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5                                                                     | -                      |               |
| (69)m= 34.23 34.23 34.23 34.23 34.23 34.23 34.23 34.23 34.23 34.23 34.23                                                                             | 34.23 34.23            | (69)          |
| Pumps and fans gains (Table 5a)                                                                                                                      |                        |               |
| (70)m= 0 0 0 0 0 0 0 0 0                                                                                                                             | 0 0                    | (70)          |
| Losses e.g. evaporation (negative values) (Table 5)                                                                                                  |                        |               |
| (71)m= -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84                                      | -89.84 -89.84          | (71)          |
| Water heating gains (Table 5)                                                                                                                        |                        |               |
| (72)m= 88.84 86.81 82.61 76.91 73.2 67.98 63.54 69.23 71.25 77.16                                                                                    | 83.83 86.82            | (72)          |
|                                                                                                                                                      | <u> </u>               | ()            |
|                                                                                                                                                      | <del>, , , ,</del> , , | (73)          |
| (73)m= 372.73 369.41 355.09 333.15 311.45 291.3 278.99 285.97 298.11 320.24                                                                          | 344.91 362.84          | (13)          |
| <ol><li>Solar gains:</li><li>Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applical</li></ol> | ble orientation        |               |
|                                                                                                                                                      | FF                     | Gains         |
| <del>0=</del>                                                                                                                                        | able 6c                | (W)           |
|                                                                                                                                                      |                        |               |
| 0.00                                                                                                                                                 | 0.7 =                  | 38.15 (74)    |
| North 0.9x 0.77 x 8.7 x 20.32 x 0.85 x                                                                                                               | 0.7                    | 72.9 (74)     |

| -              |              | _         | _              | r li          | ving area, h1,                    | m (:                  |              |         | ı          | ug Sep       |          | Oct        | Nov    | Dec    |        |      |
|----------------|--------------|-----------|----------------|---------------|-----------------------------------|-----------------------|--------------|---------|------------|--------------|----------|------------|--------|--------|--------|------|
|                |              |           |                |               | heating seaso<br>eriods in the li |                       | area 1       | rom Tab | ole 9.     | Th1 (°C)     |          |            |        |        | 21     | (85) |
| (84)m=         | 505.92       | 614.74    | 737.02         | _             | 879.44 986.79                     |                       | 988.8        | 940.26  | 847        | 7.4 736.69   | 9 6      | 04.12      | 507.87 | 474.57 |        | (84) |
| _              |              |           |                | _             | (84)m = (73)n                     | _                     | ` '          |         |            |              |          |            |        |        | -<br>- |      |
| (83)m=         | 133.2        | 245.33    | 381.93         | $\overline{}$ | 546.29 675.3                      | _                     | 697.5        | 661.27  | 561        |              | _        | 83.88      | 162.96 | 111.73 |        | (83) |
| Solar o        | ains in v    | watts. ca | lculate        | ed            | for each mon                      | th                    |              |         | (83)m      | ı = Sum(74)m | n(8      | 32)m       |        |        |        |      |
| West           | 0.9x         | 0.77      |                | X             | 6.5                               | X                     | 1            | 6.15    | X          | 0.85         |          | X          | 0.7    | =      | 43.29  | (80) |
| West           | 0.9x         | 0.77      | =              | X             | 6.5                               | X                     | _            | 4.49    | X          | 0.85         | _        | x          | 0.7    | =      | 65.64  | (80) |
| West           | 0.9x         | 0.77      |                | X             | 6.5                               | X                     | 4            | 5.59    | x          | 0.85         |          | x          | 0.7    | =      | 122.19 | ==   |
| West           | 0.9x         | 0.77      |                | X             | 6.5                               | X                     | 7            | 3.59    | X          | 0.85         |          | x          | 0.7    | =      | 197.23 | (80) |
| West           | 0.9x         | 0.77      |                | X             | 6.5                               | x                     | 9            | 4.68    | x          | 0.85         |          | x          | 0.7    | =      | 253.75 | (80) |
| West           | 0.9x         | 0.77      |                | x             | 6.5                               | ×                     | 1            | 10.22   | x          | 0.85         |          | x          | 0.7    | =      | 295.4  | (80) |
| West           | 0.9x         | 0.77      |                | x             | 6.5                               | x                     | 1            | 15.77   | x          | 0.85         |          | x          | 0.7    | =      | 310.29 | (80) |
| West           | 0.9x         | 0.77      |                | x             | 6.5                               | x                     | 1            | 13.09   | x          | 0.85         |          | x          | 0.7    | =      | 303.11 | (80) |
| West           | 0.9x         | 0.77      | $\dashv$       | x             | 6.5                               | X                     |              | 2.28    | x          | 0.85         | 一        | x [        | 0.7    | =      | 247.33 | (80) |
| West           | 0.9x         | 0.77      | $\dashv$       | x             | 6.5                               | ×                     |              | 3.27    | X          | 0.85         |          | x          | 0.7    |        | 169.58 | (80) |
| West           | 0.9x         | 0.77      |                | x             | 6.5                               | X                     |              | 8.42    | X          | 0.85         | 一        | ×          | 0.7    | =      | 102.97 | (80) |
| West           | 0.9x         | 0.77      | #              | x             | 6.5                               | X                     | -            | 9.64    | X          | 0.85         | =        | × [        | 0.7    | = =    | 52.64  | (80) |
| South          | 0.9x         | 0.77      |                | X             | 2.2                               | X                     |              | 10.4    | X          | 0.85         | 一        | × [        | 0.7    | =      | 36.65  | (78) |
| South          | 0.9x         | 0.77      |                | x             | 2.2                               | ] ^<br>] <sub>X</sub> | <del> </del> | 5.42    | ^  <br>  x | 0.85         | $\dashv$ | x [        | 0.7    |        | 50.27  | (78) |
| South          | 0.9x         | 0.77      | $\blacksquare$ | x             | 2.2                               | ,<br>,                | -            | 2.59    | ^  <br>  x | 0.85         | $\dashv$ | x F        | 0.7    | ╣ -    | 74.92  | (78) |
| South          | 0.9x         | 0.77      |                | x             | 2.2                               | ]                     | <b>\</b>     | 04.89   | x          | 0.85         | $\dashv$ | x F        | 0.7    | = [    | 95.15  | (78) |
| South          | 0.9x         | 0.77      | =              | x<br>x        | 2.2                               | X                     |              | 08.01   | X          | 0.85         | $\dashv$ | x          | 0.7    |        | 97.98  | (78) |
| South          | 0.9x<br>0.9x | 0.77      | <del></del>    | X             | 2.2                               | X                     |              | 10.55   | X<br>I v   | 0.85         | $\dashv$ | × L        | 0.7    | ╡ -    | 100.28 | (78) |
| South          | 0.9x         | 0.77      | _              | X             | 2.2                               | l X                   |              | 14.87   | X          | 0.85         | $\dashv$ | × L        | 0.7    | ┥ -    | 104.2  | (78) |
| South          | 0.9x         | 0.77      | =              | X             | 2.2                               | X<br>L                |              | 10.23   | X<br>I     | 0.85         | 괵        | х <u>Г</u> | 0.7    | ╣ -    | 100    | (78) |
| South<br>South | 0.9x         | 0.77      | =              | X             | 2.2                               | X                     |              | 7.53    | X          | 0.85         |          | х<br>Г     | 0.7    | _  =   | 88.48  | (78) |
| South          | 0.9x         | 0.77      | _              | X             | 2.2                               | X                     |              | 6.57    | X          | 0.85         |          | X          | 0.7    | =      | 69.46  | (78) |
| South          | 0.9x         | 0.77      | _              | X             | 2.2                               | X                     | 4            | 6.75    | X          | 0.85         |          | x          | 0.7    | =      | 42.41  | (78) |
| North          | 0.9x         | 0.77      |                | X             | 8.7                               | x                     |              | 3.86    | X          | 0.85         |          | x          | 0.7    | =      | 31.8   | (74) |
| North          | 0.9x         | 0.77      |                | X             | 8.7                               | X                     | 1            | 3.12    | X          | 0.85         |          | x          | 0.7    | =      | 47.06  | (74) |
| North          | 0.9x         | 0.77      |                | X             | 8.7                               | X                     | 2            | 4.19    | X          | 0.85         |          | x          | 0.7    | =      | 86.78  | (74) |
| North          | 0.9x         | 0.77      |                | X             | 8.7                               | ×                     | 4            | 1.52    | x          | 0.85         |          | x          | 0.7    | =      | 148.93 | (74) |
| North          | 0.9x         | 0.77      |                | X             | 8.7                               | X                     | 5            | 9.25    | X          | 0.85         |          | x          | 0.7    | =      | 212.54 | (74) |
| North          | 0.9x         | 0.77      |                | X             | 8.7                               | x                     | 7            | 4.68    | x          | 0.85         |          | x          | 0.7    | =      | 267.89 | (74) |
| North          | 0.9x         | 0.77      |                | X             | 8.7                               | x                     | 7            | 9.99    | x          | 0.85         |          | x          | 0.7    | =      | 286.93 | (74) |
| North          | 0.9x         | 0.77      |                | x             | 8.7                               | x                     | 7            | 4.72    | x          | 0.85         |          | x          | 0.7    | =      | 268.03 | (74) |
| North          | 0.9x         | 0.77      |                | X             | 8.7                               | x                     | 5            | 5.46    | x          | 0.85         |          | x          | 0.7    | _ =    | 198.97 | (74) |
| North          | 0.9x         | 0.77      |                | X             | 8.7                               | x                     | 3            | 4.53    | x          | 0.85         |          | x          | 0.7    | =      | 123.87 | (74) |

| (86)m=   | 1         | 1                    | 0.99              | 0.99        | 0.97        | 0.95          | 0.91        | 0.93       | 0.97          | 0.99                            | 1            | 1           |           | (86)        |
|----------|-----------|----------------------|-------------------|-------------|-------------|---------------|-------------|------------|---------------|---------------------------------|--------------|-------------|-----------|-------------|
| Mean     | interna   | l temper             | ature in          | living are  | ea T1 (fo   | ollow ste     | ps 3 to 7   | in Table   | e 9c)         |                                 |              |             |           |             |
| (87)m=   | 16.67     | 16.89                | 17.38             | 18.12       | 18.92       | 19.71         | 20.21       | 20.13      | 19.47         | 18.47                           | 17.47        | 16.66       |           | (87)        |
| Temp     | erature   | during h             | neating p         | eriods ir   | rest of     | dwelling      | from Ta     | ble 9, Ti  | h2 (°C)       |                                 |              |             |           |             |
| (88)m=   | 18        | 18                   | 18                | 18          | 18          | 18            | 18          | 18         | 18            | 18                              | 18           | 18          |           | (88)        |
| Utilisa  | ition fac | tor for g            | ains for          | rest of d   | welling,    | h2,m (se      | e Table     | 9a)        |               |                                 |              |             |           |             |
| (89)m=   | 1         | 0.99                 | 0.99              | 0.98        | 0.95        | 0.86          | 0.62        | 0.7        | 0.93          | 0.98                            | 0.99         | 1           |           | (89)        |
| Mean     | interna   | l temper             | ature in          | the rest    | of dwelli   | ng T2 (f      | ollow ste   | ps 3 to 7  | 7 in Tabl     | e 9c)                           |              |             |           |             |
| (90)m=   | 14.49     | 14.7                 | 15.2              | 15.93       | 16.72       | 17.48         | 17.89       | 17.84      | 17.26         | 16.27                           | 15.28        | 14.47       |           | (90)        |
|          |           |                      |                   |             |             |               |             |            | f             | LA = Livin                      | g area ÷ (4  | 4) =        | 0.81      | (91)        |
| Mean     | interna   | l temper             | ature (fo         | r the wh    | ole dwe     | lling) = fl   | LA × T1     | + (1 – fL  | A) × T2       |                                 |              |             |           |             |
| (92)m=   | 16.25     | 16.47                | 16.96             | 17.7        | 18.5        | 19.28         | 19.77       | 19.69      | 19.05         | 18.05                           | 17.05        | 16.24       |           | (92)        |
|          |           | r                    |                   |             |             |               | m Table     |            |               | ·                               | 47.05        | 40.04       |           | (93)        |
| (93)m=   | 16.25     | 16.47                | 16.96<br>uirement | 17.7        | 18.5        | 19.28         | 19.77       | 19.69      | 19.05         | 18.05                           | 17.05        | 16.24       |           | (93)        |
| •        |           | · ·                  |                   |             | re obtain   | ed at ste     | ep 11 of    | Table 9    | o, so tha     | t Ti.m=(                        | 76)m an      | d re-calc   | culate    |             |
|          |           |                      | or gains          |             |             | ou ur ou      | ορ σ.       |            | , ooa         | ( ) ( )                         | , o, i i a i | a ro care   | diato     |             |
|          | Jan       | Feb                  | Mar               | Apr         | May         | Jun           | Jul         | Aug        | Sep           | Oct                             | Nov          | Dec         |           |             |
|          |           |                      | ains, hm          |             | 0.05        | 0.04          | 0.05        |            | 0.05          | 0.00                            | 0.00         |             |           | (04)        |
| (94)m=   | 0.99      | 0.99                 | 0.99<br>, W = (94 | 0.98        | 0.95        | 0.91          | 0.85        | 0.88       | 0.95          | 0.98                            | 0.99         | 1           |           | (94)        |
| (95)m=   | 503.35    | 609.98               | 727.44            | 857.98      | 940.63      | 902.61        | 803.57      | 747.04     | 700.58        | 594                             | 504.26       | 472.49      |           | (95)        |
| ` ′      |           |                      | rnal tem          |             | from Ta     | able 8        |             |            |               |                                 |              |             |           | , ,         |
| (96)m=   | 4.3       | 4.9                  | 6.5               | 8.9         | 11.7        | 14.6          | 16.6        | 16.4       | 14.1          | 10.6                            | 7.1          | 4.2         |           | (96)        |
| 1        |           |                      |                   |             |             | Lm , W =      | =[(39)m :   | x [(93)m   | – (96)m       | ]                               | 1            |             |           |             |
|          |           | L                    | 6410.78           |             |             |               | 1870.17     |            | 2942.15       |                                 | 6015.4       | 7326.33     |           | (97)        |
|          |           | g require<br>4368.95 |                   |             | 2339.63     | Wh/mont       | th = 0.02   | 24 x [(97) | )m – (95<br>0 | )m] x (4 <sup>-</sup><br>2884.9 | ŕ            | 5099.26     |           |             |
| (90)111= | 5109.16   | 4300.93              | 4220.4            | 3201.23     | 2339.03     | 0             | 0           |            | l per year    | l                               |              |             | 31199.58  | (98)        |
| Space    | , hoatin  | a roquir             | ement in          | k\Mh/m²     | 2/voor      |               |             | Tota       | i per year    | (KVVII/yeai                     | ) = Sum(9    | O)15,912 —  | 445.71    | (99)        |
| •        |           | •                    |                   |             |             | م داد د داد د |             |            |               |                                 |              |             | 445.71    | (55)        |
|          |           |                      | nts – Cor         |             | Ĭ           |               | ater heat   | ing prov   | ided by       | a comm                          | unity sch    | nama        |           |             |
|          |           |                      |                   |             |             |               | heating (   |            |               |                                 | urnity 301   |             | 0         | (301)       |
| Fractio  | n of spa  | ace heat             | from co           | mmunity     | system      | 1 – (30       | 1) =        |            |               |                                 |              |             | 1         | (302)       |
| The com  | munity so | cheme ma             | y obtain he       | eat from se | everal soul | ces. The p    | orocedure : | allows for | CHP and ι     | up to four (                    | other heat   | sources; tl | he latter |             |
|          |           |                      | -                 |             |             | rom powei     | r stations. | See Appei  | ndix C.       |                                 |              | ı           |           | <b>—</b> ,, |
| Fractio  | n of hea  | at from C            | Commun            | ity boiler  | S           |               |             |            |               |                                 |              | ļ           | 1         | (303a)      |
| Fractio  | n of tota | al space             | heat fro          | m Comn      | nunity bo   | oilers        |             |            |               | (3                              | 02) x (303   | a) =        | 1         | (304a)      |
| Factor   | for cont  | trol and             | charging          | method      | (Table      | 4c(3)) fo     | r commu     | unity hea  | iting sys     | tem                             |              |             | 1.05      | (305)       |
| Distribu | ution los | ss factor            | (Table 1          | 2c) for c   | commun      | ity heatii    | ng syste    | m          |               |                                 |              | ĺ           | 1.1       | (306)       |
| Space    | heating   | g                    |                   |             |             |               |             |            |               |                                 |              | '           | kWh/yea   | ar          |
| Annual   | space     | heating              | requiren          | nent        |             |               |             |            |               |                                 |              |             | 31199.58  |             |
|          |           |                      |                   |             |             |               |             |            |               |                                 |              |             |           |             |

| Space heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                     | (98) x (304a)                                                                                                                                                                                            | x (305) x (306) =                                                       | 36035.51                                        | (307a)                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|
| Efficiency of secondary/supplementary heating system in                                                                                                                                                                                                                                                                                                                                                                                               | % (from Table 4a or Appe                                                                                                                                                                                 | endix E)                                                                | 0                                               | (308                                                                 |
| Space heating requirement from secondary/supplementa                                                                                                                                                                                                                                                                                                                                                                                                  | ry system (98) x (301) x                                                                                                                                                                                 | ( 100 ÷ (308) =                                                         | 0                                               | (309)                                                                |
| Water heating Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                         | 2028.27                                         | ]                                                                    |
| If DHW from community scheme: Water heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                       | (64) x (303a)                                                                                                                                                                                            | x (305) x (306) =                                                       | 2342.65                                         | (310a)                                                               |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01 × [(307a)(30                                                                                                                                                                                        | 07e) + (310a)(310e)] =                                                  | 383.78                                          | (313)                                                                |
| Cooling System Energy Efficiency Ratio                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                         | 0                                               | (314)                                                                |
| Space cooling (if there is a fixed cooling system, if not en                                                                                                                                                                                                                                                                                                                                                                                          | ter 0) = (107) ÷ (31                                                                                                                                                                                     | 4) =                                                                    | 0                                               | (315)                                                                |
| Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input                                                                                                                                                                                                                                                                                                                               | ıt from outside                                                                                                                                                                                          |                                                                         | 0                                               | (330a)                                                               |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                         | 0                                               | (330b)                                                               |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                         | 0                                               | (330g)                                                               |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                             | =(330a) + (33                                                                                                                                                                                            | 30b) + (330g) =                                                         | 0                                               | (331)                                                                |
| Energy for lighting (calculated in Appendix L)                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                         | 528.07                                          | (332)                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                         |                                                 |                                                                      |
| 12b. CO2 Emissions – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                         | Energy<br>kWh/year                                                                                                                                                                                       | Emission factor<br>kg CO2/kWh                                           | Emiss <mark>ions</mark><br>kg CO2/year          |                                                                      |
| CO2 from other sources of space and water heating (not                                                                                                                                                                                                                                                                                                                                                                                                | kWh/year                                                                                                                                                                                                 | kg CO2/kWh                                                              | kg CO <mark>2/yea</mark> r                      | (367a)                                                               |
| CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%)  If there is C                                                                                                                                                                                                                                                                                                                                                 | kWh/year                                                                                                                                                                                                 | kg CO2/kWh to (366) for the second fuel                                 | kg CO <mark>2/yea</mark> r                      | (367a)<br>(367)                                                      |
| CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%)  If there is C                                                                                                                                                                                                                                                                                                                                                 | kWh/year CHP) HP using two fuels repeat (363)                                                                                                                                                            | kg CO2/kWh to (366) for the second fuel                                 | 65<br>12753.36                                  | `<br>                                                                |
| CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%)  CO2 associated with heat source 1                                                                                                                                                                                                                                                                                                                             | kWh/year  CHP)  HP using two fuels repeat (363)  ((307b)+(310b)] x 100 ÷ (367b) x                                                                                                                        | kg CO2/kWh to (366) for the second fuel  0 =  0.52 =                    | 65<br>12753.36<br>199.18                        | (367)                                                                |
| CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution                                                                                                                                                                                                                                                                                    | kWh/year  CHP)  HP using two fuels repeat (363)  ((307b)+(310b)] x 100 ÷ (367b) x  [(313) x                                                                                                              | kg CO2/kWh to (366) for the second fuel  0 =  0.52 =                    | 65<br>12753.36<br>199.18<br>12952.54            | (367)                                                                |
| CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems                                                                                                                                                                                                                                       | kWh/year<br>CHP)<br>HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x<br>[(313) x<br>(363)(366) + (368)(369) x                                                                             | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.72) = 0 = 0.52   | 65<br>12753.36<br>199.18<br>12952.54            | (367)<br>(372)<br>(373)                                              |
| CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)                                                                                                                                                                                        | kWh/year<br>CHP)<br>HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x<br>[(313) x<br>(363)(366) + (368)(369) x                                                                             | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.72) = 0 = 0.52   | 65<br>12753.36<br>199.18<br>12952.54            | (367)<br>(372)<br>(373)<br>(374)                                     |
| CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or inst                                                                                                                               | kWh/year  CHP)  HP using two fuels repeat (363) to (307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(369) x  (309) x  antaneous heater (312) x  (373) + (374) + (375) =                      | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.72) = 0 = 0.52   | 65 12753.36 199.18 12952.54 0 12952.54          | (367)<br>(372)<br>(373)<br>(374)<br>(375)                            |
| CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or instantal CO2 associated with space and water heating                                                                              | kWh/year  CHP)  HP using two fuels repeat (363) to (307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(369) x  (309) x  antaneous heater (312) x  (373) + (374) + (375) =                      | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.72) = 0 = 0.22   | 65 12753.36 199.18 12952.54 0 12952.54 0        | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)                   |
| CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or inst  Total CO2 associated with space and water heating  CO2 associated with electricity for pumps and fans within                 | kWh/year  CHP)  HP using two fuels repeat (363) to (307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(369) x  antaneous heater (312) x  (373) + (374) + (375) =  dwelling (331)) x  (332))) x | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.22 = 0.52 = 0.52 | 65 12753.36 199.18 12952.54 0 12952.54          | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)          |
| CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or instance and water heating  CO2 associated with electricity for pumps and fans within CO2 associated with electricity for lighting | kWh/year  CHP)  HP using two fuels repeat (363) to (307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(369) x  antaneous heater (312) x  (373) + (374) + (375) =  dwelling (331)) x  (332))) x | kg CO2/kWh  to (366) for the second fuel  0 = 0.52 = 0.22 = 0.52 = 0.52 | 65 12753.36 199.18 12952.54 0 12952.54 0 274.07 | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)<br>(379) |

|                                                            |                       |                     | User D      | Details:          |                     |              |            |           |                            |             |
|------------------------------------------------------------|-----------------------|---------------------|-------------|-------------------|---------------------|--------------|------------|-----------|----------------------------|-------------|
| Assessor Name:<br>Software Name:                           | Stroma FSAP           |                     |             | Strom<br>Softwa   | are Ve              |              |            | Versio    | n: 1.0.3.4                 |             |
| Address :                                                  | , london              | r                   | торену      | Address           | Onit 9              |              |            |           |                            |             |
| 1. Overall dwelling dime                                   | nsions:               |                     |             |                   |                     |              |            |           |                            |             |
| Decement                                                   |                       |                     |             | a(m²)             | 44.)                |              | ight(m)    | ٦,, ١     | Volume(m <sup>3</sup>      | <u>^</u>    |
| Basement                                                   |                       |                     |             | 124               | (1a) x              | 2            | .37        | (2a) =    | 293.88                     | (3a)        |
| Total floor area TFA = (1a                                 | a)+(1b)+(1c)+(1d)+    | +(1e)+(1r           | ገ) [        | 124               | (4)                 |              |            |           |                            |             |
| Dwelling volume                                            |                       |                     |             |                   | (3a)+(3b            | )+(3c)+(3c   | d)+(3e)+   | (3n) =    | 293.88                     | (5)         |
| 2. Ventilation rate:                                       | main                  | aaaan da            | * *         | other             |                     | 40401        |            |           | m3 nor hou                 |             |
|                                                            | main<br>heating       | secondar<br>heating | -           | other             | , –                 | total        |            |           | m³ per hou                 | _           |
| Number of chimneys                                         | 0 +                   | 0                   | _  +        | 0                 | ] = [               | 0            | X 4        | 40 =      | 0                          | (6a)        |
| Number of open flues                                       | 0 +                   | 0                   | +           | 0                 | =                   | 0            | x :        | 20 =      | 0                          | (6b)        |
| Number of intermittent far                                 | ns                    |                     |             |                   |                     | 2            | Χ.         | 10 =      | 20                         | (7a)        |
| Number of passive vents                                    |                       |                     |             |                   |                     | 0            | <b>X</b> ' | 10 =      | 0                          | (7b)        |
| Number of flueless gas fin                                 | res                   |                     |             |                   | Γ                   | 0            | X 4        | 40 =      | 0                          | (7c)        |
|                                                            |                       |                     |             |                   |                     |              |            | Air ch    | ange <mark>s per</mark> ho | our         |
| Infilt <mark>ration</mark> due to chimney                  | s, flues and fans     | = (6a)+(6b)+(7      | 7a)+(7b)+(  | (7c) =            | Г                   | 20           |            | ÷ (5) =   | 0.07                       | (8)         |
| If a pressurisation test has be                            |                       | tended, procee      | ed to (17), | otherwise (       | continue fr         | om (9) to (  | (16)       |           |                            |             |
| Number of storeys in the<br>Additional infiltration        | ie dweiling (ns)      |                     |             |                   |                     |              | [(9)       | -1]x0.1 = | 0                          | (9)<br>(10) |
| Structural infiltration: 0.                                | .25 for steel or timl | per frame or        | 0.35 fo     | r masoni          | y constr            | ruction      | 1(0)       | .,,       | 0                          | (11)        |
| if both types of wall are pr                               |                       | orresponding to     | the great   | ter wall are      | a (after            |              |            | !         |                            |             |
| deducting areas of opening<br>If suspended wooden f        | • ,. ,                | sealed) or 0        | 1 (seale    | ed) else          | enter 0             |              |            |           | 0                          | (12)        |
| If no draught lobby, ent                                   | ,                     | ,                   | . 1 (00010  | <i>3</i> 4), 0.00 | ontor o             |              |            |           | 0                          | (13)        |
| Percentage of windows                                      | s and doors draugh    | nt stripped         |             |                   |                     |              |            |           | 0                          | (14)        |
| Window infiltration                                        |                       |                     |             | 0.25 - [0.2       | x (14) ÷ 1          | 00] =        |            |           | 0                          | (15)        |
| Infiltration rate                                          |                       |                     |             | (8) + (10)        |                     |              |            |           | 0                          | (16)        |
| Air permeability value,                                    | •                     |                     | •           |                   | •                   | etre of e    | envelope   | area      | 20                         | (17)        |
| If based on air permeabili  Air permeability value applies | •                     |                     |             |                   |                     | is heina u   | sed        |           | 1.07                       | (18)        |
| Number of sides sheltere                                   |                       | i nao boon aoi      | 10 01 a ao  | groo an po        | mousinty            | io boiling a | 000        |           | 1                          | (19)        |
| Shelter factor                                             |                       |                     |             | (20) = 1 -        | [0.0 <b>75</b> x (1 | 19)] =       |            |           | 0.92                       | (20)        |
| Infiltration rate incorporat                               | •                     |                     |             | (21) = (18        | ) x (20) =          |              |            |           | 0.99                       | (21)        |
| Infiltration rate modified for                             | <del> </del>          |                     |             | 1                 |                     |              |            |           | 1                          |             |
| L 1                                                        |                       | lay Jun             | Jul         | Aug               | Sep                 | Oct          | Nov        | Dec       |                            |             |
| Monthly average wind sp                                    |                       | 0 1 00              |             | 1 0 -             | 4                   | 1 4 6        | 1 4 5      | 1 -       | I                          |             |
| (22)m= 5.1 5                                               | 4.9 4.4 4.            | 3 3.8               | 3.8         | 3.7               | 4                   | 4.3          | 4.5        | 4.7       |                            |             |
| Wind Factor (22a)m = (22                                   | 2)m ÷ 4               |                     |             |                   |                     |              |            |           |                            |             |
| (22a)m= 1.27 1.25                                          | 1.23 1.1 1.0          | 0.95                | 0.95        | 0.92              | 1                   | 1.08         | 1.12       | 1.18      |                            |             |

|                                                                                                                                    | 1.23                                                                                         | 1.21                                                                     | 1.09                                                             | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.94                    | 0.94       | 0.91         | 0.99                                           | 1.06                                         | 1.11                  | 1.16      |               |          |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|--------------|------------------------------------------------|----------------------------------------------|-----------------------|-----------|---------------|----------|
| Calculate effec                                                                                                                    |                                                                                              | -                                                                        | rate for t                                                       | he appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cable ca                | se         | ı            |                                                |                                              | l                     |           |               | <u> </u> |
| If mechanica If exhaust air he                                                                                                     |                                                                                              |                                                                          | andiv N. (2                                                      | 2h) _ (22a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) Em. /                 | auation (N | JE)) otho    | muino (22h                                     | \ _ (22a)                                    |                       |           | 0             | (23      |
| If balanced with                                                                                                                   |                                                                                              | 0                                                                        |                                                                  | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , ,                     | . ,        | ,, .         | ,                                              | ) = (23a)                                    |                       |           | 0             | (23      |
|                                                                                                                                    |                                                                                              | -                                                                        | -                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |            |              |                                                | 7h.\ (                                       | 00h) [/               | 1 (22 a)  | 0             | (23      |
| a) If balanced                                                                                                                     | o mecha                                                                                      | o l                                                                      | ntilation                                                        | o with nea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | at recove               |            | 1R) (248     | $\frac{1}{10} = \frac{22}{10}$                 | 0 (10)                                       | 23b) <b>x</b> [       | 0         | ÷ 100]<br>    | (24      |
| b) If balance                                                                                                                      |                                                                                              |                                                                          | -                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |            |              |                                                |                                              |                       |           |               | (-       |
| 24b)m= 0                                                                                                                           | 0                                                                                            | o lincal ve                                                              | 0                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                       | 0          | 0            | 0                                              | 0                                            | 0                     | 0         |               | (2       |
| c) If whole ho                                                                                                                     |                                                                                              |                                                                          |                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                |            |              |                                                |                                              |                       |           |               | •        |
| if (22b)m                                                                                                                          |                                                                                              |                                                                          |                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |            |              |                                                | 5 × (23b                                     | o)                    |           |               |          |
| 24c)m= 0                                                                                                                           | 0                                                                                            | 0                                                                        | 0                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                       | 0          | 0            | 0                                              | 0                                            | 0                     | 0         |               | (2       |
| d) If natural v                                                                                                                    | /entilatio                                                                                   | on or wh                                                                 | ole hous                                                         | e positiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /e input                | ventilatio | on from I    | oft                                            |                                              |                       |           | l             |          |
| if (22b)m                                                                                                                          | t = 1, the                                                                                   | en (24d)                                                                 | m = (22k)                                                        | )m othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rwise (2                | 4d)m =     | 0.5 + [(2    | 2b)m² x                                        | 0.5]                                         |                       |           | •             |          |
| 24d)m= 1.26                                                                                                                        | 1.23                                                                                         | 1.21                                                                     | 1.09                                                             | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.94                    | 0.94       | 0.92         | 0.99                                           | 1.06                                         | 1.11                  | 1.16      |               | (2       |
| Effective air                                                                                                                      | <del></del>                                                                                  | rate - en                                                                | <u> </u>                                                         | ) or (24b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o) or (24               | c) or (24  | d) in box    | x (25)                                         |                                              |                       |           | ı             |          |
| 25)m= 1.26                                                                                                                         | 1.23                                                                                         | 1.21                                                                     | 1.09                                                             | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.94                    | 0.94       | 0.92         | 0.99                                           | 1.06                                         | 1.11                  | 1.16      |               | (2       |
| 3. Heat losses                                                                                                                     | and he                                                                                       | at loss r                                                                | paramete                                                         | er:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |            |              |                                                |                                              |                       | _         |               |          |
| LEMENT                                                                                                                             | Gros                                                                                         |                                                                          | Openin                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Net Ar                  | ea         | U-val        | ue                                             | AXU                                          |                       | k-value   | ,             | ΑΧk      |
|                                                                                                                                    | area                                                                                         | (m²)                                                                     | m                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A ,r                    | n²         | W/m2         |                                                | (W/I                                         | K)                    | kJ/m²-k   |               | kJ/K     |
| oors                                                                                                                               |                                                                                              |                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6                     | X          | 1.4          | = [                                            | 2.24                                         |                       |           |               | (2       |
| /indows Type                                                                                                                       | 1                                                                                            |                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.49                    | x1.        | /[1/( 4.8 )+ | 0.04] =                                        | 22.11                                        |                       |           |               | (2       |
| Vindows Type                                                                                                                       | 2                                                                                            |                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7                     | x1.        | /[1/( 4.8 )+ | 0.04] =                                        | 18.93                                        |                       |           |               | (2       |
| Valls Type1                                                                                                                        | 11.8                                                                                         | 5                                                                        | 1.6                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.25                   | 5 X        | 2.1          | =                                              | 21.52                                        | ٦ [                   |           | $\neg \ \Box$ | (2       |
| Valls Type2                                                                                                                        | 122                                                                                          | 2                                                                        | 10.19                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111.8                   | 1 x        | 1.27         | =                                              | 142.22                                       |                       |           |               | (2       |
| loof                                                                                                                               | 68.1                                                                                         | 一                                                                        | 0                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.1                    | x          | 2.3          | =                                              | 156.63                                       |                       |           |               | (3       |
| otal area of el                                                                                                                    | ements                                                                                       | , m²                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201.9                   | 5          |              |                                                |                                              |                       |           |               | (3       |
| arty wall                                                                                                                          |                                                                                              |                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.8                     | x          | 0            | =                                              | 0                                            |                       |           |               | (3       |
| for windows and i                                                                                                                  | roof winda                                                                                   | ows, use e                                                               | ffective wi                                                      | ndow U-va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alue calcul             | ated using | formula 1    | <br>/[(1/U-valu                                | e)+0.04] a                                   | as given in           | paragraph | 3.2           |          |
| include the areas                                                                                                                  | s on both                                                                                    | sides of in                                                              | ternal wal                                                       | s and part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | titions                 |            |              |                                                |                                              |                       |           |               |          |
| abric heat loss                                                                                                                    |                                                                                              | ,                                                                        | U)                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |            | (26)(30)     | ) + (32) =                                     |                                              |                       |           | 363.65        | (3       |
|                                                                                                                                    |                                                                                              |                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |            |              |                                                |                                              |                       |           |               |          |
| leat capacity (                                                                                                                    | ,                                                                                            | •                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |            |              |                                                | .(30) + (32                                  | , , ,                 | (32e) =   | 0             | (3       |
| leat capacity (<br>hermal mass                                                                                                     | parame                                                                                       | ter (TMF                                                                 |                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |            |              | Indica                                         | tive Value                                   | : High                |           | 450           | == `     |
| leat capacity (hermal mass or design assession                                                                                     | parame                                                                                       | ter (TMF                                                                 | tails of the                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |            | ecisely the  | Indica                                         | tive Value                                   | : High                |           |               | == `     |
| leat capacity (<br>hermal mass por<br>for design assession<br>for design assession                                                 | parame<br>ments who                                                                          | ter (TMF<br>ere the det<br>tailed calcu                                  | tails of the<br>ulation.                                         | constructi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion are not             | t known pr | ecisely the  | Indica                                         | tive Value                                   | : High                |           | 450           | (3       |
| leat capacity (hermal mass por design assession be used instead hermal bridge                                                      | parame<br>ments who<br>ad of a det<br>es:S(L                                                 | ter (TMF<br>ere the det<br>tailed calcu<br>x Y) calc                     | tails of the<br>ulation.<br>culated u                            | constructius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion are not<br>pendix l | t known pr | ecisely the  | Indica                                         | tive Value                                   | : High                |           |               | == `     |
| eat capacity (hermal mass por design assession be used insteathermal bridge details of thermal                                     | parame<br>ments who<br>ad of a det<br>es:S(L<br>I bridging                                   | ter (TMF<br>ere the det<br>tailed calcu<br>x Y) calc                     | tails of the<br>ulation.<br>culated u                            | constructius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion are not<br>pendix l | t known pr | ecisely the  | Indica<br>indicative                           | tive Value                                   | : High                |           | 450           | (3       |
| leat capacity (<br>hermal mass                                                                                                     | parame<br>ments who<br>ad of a det<br>es : S (L<br>I bridging<br>at loss                     | ter (TMF<br>ere the dec<br>tailed calcu<br>x Y) calcu<br>are not kn      | tails of the<br>ulation.<br>culated u                            | constructi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion are not<br>pendix l | t known pr | ecisely the  | Indicative indicative                          | tive Value                                   | : High                | able 1f   | 450<br>30.4   | (3       |
| leat capacity (hermal mass por design assession be used instead hermal bridge details of thermal total fabric head                 | parame<br>ments who<br>ad of a det<br>es : S (L<br>I bridging<br>at loss                     | ter (TMF<br>ere the dec<br>tailed calcu<br>x Y) calcu<br>are not kn      | tails of the<br>ulation.<br>culated u                            | constructi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion are not<br>pendix l | t known pr | ecisely the  | Indicative indicative                          | tive Value values of                         | : High                | able 1f   | 450<br>30.4   | (3       |
| leat capacity (hermal mass por design assession be used instead hermal bridge details of thermal otal fabric head fentilation head | parame<br>ments who<br>ad of a det<br>es: S (L<br>I bridging<br>at loss<br>t loss ca         | ter (TMF<br>ere the de<br>tailed calcu<br>x Y) calc<br>are not kn        | tails of the<br>ulation.<br>culated u<br>own (36) =              | constructions and constructions are constructed as the construction of the constructio | ppendix I               | t known pr | ,<br>,       | Indica<br>e indicative<br>(33) +<br>(38)m      | (36) =<br>= 0.33 × (                         | : High<br>: TMP in Ta | able 1f   | 450<br>30.4   | (3       |
| eat capacity (hermal mass or design assession be used instead hermal bridge details of thermal otal fabric head entilation head    | parame<br>ments who<br>ad of a det<br>es : S (L<br>I bridging<br>at loss<br>t loss ca<br>Feb | ter (TMF ere the detailed calcul x Y) calcul are not known alculated Mar | tails of the<br>ulation.<br>culated u<br>own (36) =<br>I monthly | constructions are constructed using Ap = 0.15 x (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppendix I  Jun          | t known pr | Aug          | Indica e indicative  (33) +  (38)m  Sep  95.82 | tive Value values of  (36) = = 0.33 × (  Oct | 25)m x (5)<br>Nov     | able 1f   | 450<br>30.4   | (3       |

| Heat loss para                                           | ameter (I      | HLP), W      | /m²K       |                |             |             |             | (40)m                 | = (39)m ÷      | - (4)                  |           |         |      |
|----------------------------------------------------------|----------------|--------------|------------|----------------|-------------|-------------|-------------|-----------------------|----------------|------------------------|-----------|---------|------|
| (40)m= 4.16                                              | 4.14           | 4.12         | 4.03       | 4.01           | 3.91        | 3.91        | 3.9         | 3.95                  | 4.01           | 4.05                   | 4.09      |         |      |
|                                                          | Į              |              | <u> </u>   | <u> </u>       | <u> </u>    | ļ           | ļ           |                       | L<br>Average = | Sum(40) <sub>1</sub>   | 12 /12=   | 4.02    | (40) |
| Number of day                                            | ys in mo       | nth (Tab     | le 1a)     |                |             |             |             |                       |                |                        |           |         |      |
| Jan                                                      | Feb            | Mar          | Apr        | May            | Jun         | Jul         | Aug         | Sep                   | Oct            | Nov                    | Dec       |         |      |
| (41)m= 31                                                | 28             | 31           | 30         | 31             | 30          | 31          | 31          | 30                    | 31             | 30                     | 31        |         | (41) |
|                                                          |                |              |            |                |             |             |             |                       |                |                        |           |         |      |
| 4. Water hea                                             | ting ene       | rgy requ     | irement:   |                |             |             |             |                       |                |                        | kWh/ye    | ear:    |      |
| Assumed occi<br>if TFA > 13.<br>if TFA £ 13.             | 9, N = 1       |              | [1 - exp   | (-0.0003       | 349 x (TF   | FA -13.9    | )2)] + 0.0  | 0013 x ( <sup>-</sup> | TFA -13.       |                        | 88        |         | (42) |
| Annual average<br>Reduce the annual<br>not more that 125 | al average     | hot water    | usage by   | 5% if the $c$  | lwelling is | designed t  |             |                       | se target o    |                        | 2.54      |         | (43) |
| Jan                                                      | Feb            | Mar          | Apr        | May            | Jun         | Jul         | Aug         | Sep                   | Oct            | Nov                    | Dec       |         |      |
| Hot water usage                                          | in litres pe   | r day for ea | ach month  | Vd,m = fa      | ctor from   | Table 1c x  | (43)        | !                     |                | •                      |           |         |      |
| (44)m= 112.8                                             | 108.69         | 104.59       | 100.49     | 96.39          | 92.29       | 92.29       | 96.39       | 100.49                | 104.59         | 108.69                 | 112.8     |         |      |
|                                                          |                | •            |            |                |             |             |             |                       |                | m(44) <sub>112</sub> = |           | 1230.5  | (44) |
| Energy content of                                        | f hot water    | used - cal   | culated m  | onthly = $4$ . | 190 x Vd,r  | n x nm x D  | Tm / 3600   | ) kWh/mor             | nth (see Ta    | ables 1b, 1            | c, 1d)    |         |      |
| (45)m= 167.27                                            | 146.3          | 150.97       | 131.62     | 126.29         | 108.98      | 100.98      | 115.88      | 117.26                | 136.66         | 149.18                 | 161.99    |         | _    |
| If ins <mark>tantane</mark> ous v                        | vator hoati    | na at noint  | of use (no | hot water      | r storage)  | enter () in | hoves (46   |                       | Total = Su     | m(45) <sub>112</sub> = |           | 1613.38 | (45) |
|                                                          | _              |              |            | -              |             |             |             |                       | 20.5           | 20.00                  | 24.2      |         | (46) |
| (46)m= 25.09<br>Water storage                            | 21.94<br>loss: | 22.64        | 19.74      | 18.94          | 16.35       | 15.15       | 17.38       | 17.59                 | 20.5           | 22.38                  | 24.3      |         | (40) |
| Storage volum                                            |                | ) includir   | ng any so  | olar or W      | /WHRS       | storage     | within sa   | ame ves               | sel            |                        | 160       |         | (47) |
| If community h                                           | neating a      | and no ta    | ınk in dw  | elling, e      | nter 110    | litres in   | (47)        |                       |                |                        |           |         |      |
| Otherwise if n                                           | •              |              |            | •              |             |             | ` '         | ers) ente             | er '0' in (    | (47)                   |           |         |      |
| Water storage                                            |                |              |            |                |             |             |             |                       |                |                        |           |         |      |
| a) If manufac                                            |                |              |            | or is kno      | wn (kWł     | n/day):     |             |                       |                |                        | 0         |         | (48) |
| Temperature f                                            | actor fro      | m Table      | 2b         |                |             |             |             |                       |                |                        | 0         |         | (49) |
| Energy lost fro                                          |                | •            |            |                |             |             | (48) x (49) | ) =                   |                | 1                      | 10        |         | (50) |
| b) If manufact<br>Hot water stor                         |                |              | -          |                |             |             |             |                       |                |                        | 02        |         | (51) |
| If community h                                           | -              |              |            | C 2 (KVV       | 11/11(10/00 | ·y /        |             |                       |                | 0.                     | 02        |         | (51) |
| Volume factor                                            | •              |              |            |                |             |             |             |                       |                | 1.                     | 03        |         | (52) |
| Temperature f                                            | actor fro      | m Table      | 2b         |                |             |             |             |                       |                | 0                      | .6        |         | (53) |
| Energy lost fro                                          | m wate         | r storage    | , kWh/ye   | ear            |             |             | (47) x (51) | ) x (52) x (          | 53) =          | 1.                     | 03        |         | (54) |
| Enter (50) or                                            | (54) in (      | 55)          |            |                |             |             |             |                       |                | 1.                     | 03        |         | (55) |
| Water storage                                            | loss cal       | culated t    | for each   | month          |             |             | ((56)m = (  | (55) × (41)           | m              |                        |           |         |      |
| (56)m= 32.01                                             | 28.92          | 32.01        | 30.98      | 32.01          | 30.98       | 32.01       | 32.01       | 30.98                 | 32.01          | 30.98                  | 32.01     |         | (56) |
| If cylinder contain                                      | s dedicate     | d solar sto  | rage, (57) | m = (56)m      | x [(50) – ( | H11)] ÷ (5  | 0), else (5 | 7)m = (56)            | m where (      | H11) is fro            | m Appendi | хН      |      |
| (57)m= 32.01                                             | 28.92          | 32.01        | 30.98      | 32.01          | 30.98       | 32.01       | 32.01       | 30.98                 | 32.01          | 30.98                  | 32.01     |         | (57) |
| Primary circuit                                          | t loss (ar     | nual) fro    | m Tahla    | ·              | •           | •           | •           | •                     | •              |                        | 0         |         | (58) |
| Primary circuit                                          | `              | ,            |            |                | 59)m = (    | (58) ÷ 36   | 65 × (41)   | ım                    |                |                        |           |         | . ,  |
| (modified by                                             |                |              |            | ,              | •           | . ,         | , ,         |                       | r thermo       | stat)                  |           |         |      |
| (59)m= 23.26                                             | 21.01          | 23.26        | 22.51      | 23.26          | 22.51       | 23.26       | 23.26       | 22.51                 | 23.26          | 22.51                  | 23.26     |         | (59) |

| Combi loss (                 | aclaulatad                | for ooob   | month (     | (61)m -   | (60) · 2( | SE v. (41) | ١m          |                |              |              |              |               |      |
|------------------------------|---------------------------|------------|-------------|-----------|-----------|------------|-------------|----------------|--------------|--------------|--------------|---------------|------|
| Combi loss $(61)$ m= $0$     | balculated 0              | or each    |             | 0 1)m =   | (60) ÷ 30 | 05 × (41)  | 0           | 0              | 0            | 0            | 0            | ]             | (61) |
|                              | _!                        |            |             |           |           |            | <u> </u>    | <u> </u>       | <u> </u>     | <u> </u>     | <u> </u>     | (50)m + (61)m | (01) |
| (62)m= 222.5                 | <del>-i</del>             | 206.24     | 185.11      | 181.57    | 162.47    | 156.26     | 171.16      | 170.76         | 191.94       | 202.67       | 217.27       | (59)m + (61)m | (62) |
| Solar DHW inpu               |                           | <u> </u>   | <u> </u>    |           |           |            |             |                |              |              |              |               | (02) |
| (add addition                |                           |            |             |           |           |            |             |                | ii contribut | ion to wate  | or ricating) |               |      |
| (63)m= 0                     | 0                         | 0          | 0           | 0         | 0         | 0          | 0           | 0              | 0            | 0            | 0            |               | (63) |
| Output from                  | water hea                 | ter        | l           |           |           |            | <u> </u>    | <u>I</u>       |              |              |              | l             |      |
| (64)m= 222.5                 |                           | 206.24     | 185.11      | 181.57    | 162.47    | 156.26     | 171.16      | 170.76         | 191.94       | 202.67       | 217.27       |               |      |
|                              |                           | •          |             |           |           | •          | Out         | put from w     | ater heate   | r (annual)₁  | I12          | 2264.22       | (64) |
| Heat gains f                 | rom water                 | heating,   | kWh/m       | onth 0.2  | 5 ´ [0.85 | × (45)m    | + (61)r     | n] + 0.8 x     | x [(46)m     | + (57)m      | + (59)m      | ]             |      |
| (65)m= 74.23                 | 1                         | 68.81      | 61.77       | 60.6      | 54.24     | 52.19      | 57.14       | 57             | 64.05        | 67.61        | 72.47        |               | (65) |
| include (5                   | 7)m in cal                | culation ( | of (65)m    | only if c | ylinder i | s in the o | dwelling    | or hot w       | ater is f    | om com       | munity h     | neating       |      |
| 5. Internal                  | gains (see                | e Table 5  | and 5a      | ):        | -         |            | _           |                |              |              |              |               |      |
| Metabolic ga                 | ains (Table               | e 5), Wat  | ts          |           |           |            |             |                |              |              |              |               |      |
| Jar                          |                           | Mar        | Apr         | May       | Jun       | Jul        | Aug         | Sep            | Oct          | Nov          | Dec          |               |      |
| (66)m= 143.8                 | 8 143.88                  | 143.88     | 143.88      | 143.88    | 143.88    | 143.88     | 143.88      | 143.88         | 143.88       | 143.88       | 143.88       |               | (66) |
| Ligh <mark>ting g</mark> air | ns (calcula               | ted in Ap  | pendix      | L, equati | ion L9 o  | r L9a), a  | lso see     | Table 5        |              |              |              |               |      |
| (67)m= 51.64                 | 45.87                     | 37.3       | 28.24       | 21.11     | 17.82     | 19.26      | 25.03       | 33.6           | 42.66        | 49.79        | 53.08        |               | (67) |
| App <mark>liance</mark> s g  | gains (ca <mark>lc</mark> | ulated ir  | Append      | dix L, eq | uation L  | 13 or L1   | 3a), als    | see Ta         | ble 5        |              |              |               |      |
| (68)m= 290.3                 | 3 293.35                  | 285.75     | 269.59      | 249.19    | 230.01    | 217.2      | 214.19      | 221.78         | 237.95       | 258.35       | 277.52       |               | (68) |
| Cooking gair                 | ns (calcula               | ated in A  | ppendix     | L, equat  | ion L15   | or L15a)   | ), also s   | ee Table       | 5            |              |              |               |      |
| (69)m= 37.39                 | 37.39                     | 37.39      | 37.39       | 37.39     | 37.39     | 37.39      | 37.39       | 37.39          | 37.39        | 37.39        | 37.39        |               | (69) |
| Pumps and                    | fans gains                | (Table 5   | <br>5a)     |           |           |            |             |                |              |              |              | •             |      |
| (70)m= 0                     | 0                         | 0          | 0           | 0         | 0         | 0          | 0           | 0              | 0            | 0            | 0            |               | (70) |
| Losses e.g.                  | evaporatio                | n (nega    | tive valu   | es) (Tab  | le 5)     |            | -           |                |              |              |              |               |      |
| (71)m= -115.                 | 1 -115.1                  | -115.1     | -115.1      | -115.1    | -115.1    | -115.1     | -115.1      | -115.1         | -115.1       | -115.1       | -115.1       |               | (71) |
| Water heating                | ng gains (1               | Table 5)   | -           | _         |           |            | -           | -              |              |              |              |               |      |
| (72)m= 99.77                 | 7 97.4                    | 92.48      | 85.79       | 81.45     | 75.34     | 70.14      | 76.8        | 79.17          | 86.09        | 93.9         | 97.41        |               | (72) |
| Total intern                 | al gains =                | •          |             |           | (66)      | )m + (67)m | n + (68)m   | + (69)m +      | (70)m + (7   | (1)m + (72)  | )m           |               |      |
| (73)m= 507.9                 | 1 502.78                  | 481.7      | 449.79      | 417.91    | 389.34    | 372.77     | 382.19      | 400.71         | 432.85       | 468.2        | 494.17       |               | (73) |
| 6. Solar gai                 | ins:                      |            |             |           |           |            |             |                |              |              |              |               |      |
| Solar gains ar               | e calculated              | using sola | r flux from | Table 6a  | and assoc | iated equa | itions to c | onvert to th   | ne applicat  | ole orientat | tion.        |               |      |
| Orientation:                 |                           |            | Area        |           | Flu       |            | _           | g_<br>Table 6b | _            | FF           |              | Gains         |      |
|                              | Table 6d                  |            | m²          |           | Ta        | ble 6a     | . —         | Table 6b       | _ '          | able 6c      |              | (W)           | ,    |
| North 0.9                    | × 0.77                    | X          | 5.4         | 19        | X 1       | 10.63      | x           | 0.85           | x            | 0.7          | =            | 24.07         | (74) |
| North 0.9                    | × 0.77                    | X          | 5.4         | 19        | x 2       | 20.32      | х           | 0.85           | x            | 0.7          | =            | 46            | (74) |
| North 0.9                    | × 0.77                    | х          | 5.4         | 19        | X 3       | 34.53      | х           | 0.85           | x            | 0.7          | =            | 78.17         | (74) |
| North 0.9                    | × 0.77                    | X          | 5.4         | 19        | X 5       | 55.46      | х           | 0.85           | x            | 0.7          | =            | 125.56        | (74) |
| North 0.9                    | × 0.77                    | X          | 5.4         | 19        | x         | 74.72      | x           | 0.85           | x            | 0.7          | =            | 169.14        | (74) |

| N 1 41                                                                                                                                 |                                                                                                                                                                                        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | _                                                                                                                                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              | _                                     |                                         |                             |        | _                                            |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------|--------|----------------------------------------------|
| North                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                     | 7                                                                                                                                                     | 79.99                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 181.06 | (74)                                         |
| North                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) ×                                                                                                   | 7                                                                                                                                                     | 74.68                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 169.05 | (74)                                         |
| North                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                     | 5                                                                                                                                                     | 59.25                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 134.12 | (74)                                         |
| North                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                     | 4                                                                                                                                                     | 11.52                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 93.98  | (74)                                         |
| North                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 x                                                                                                   | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                     | 2                                                                                                                                                     | 24.19                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 54.76  | (74)                                         |
| North                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                     | 1                                                                                                                                                     | 3.12                                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 29.69  | (74)                                         |
| North                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                     |                                                                                                                                                       | 8.86                                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 20.07  | (74)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 x                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х                                                                                                     | 4                                                                                                                                                     | 16.75                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 90.6   | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 x                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х                                                                                                     | 7                                                                                                                                                     | 6.57                                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 148.39 | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                     | 9                                                                                                                                                     | 7.53                                                                                                                    | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 189.02 | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 x                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х                                                                                                     | 1                                                                                                                                                     | 10.23                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | x                                     | 0.7                                     | =                           | 213.63 | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 x                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                     | 1                                                                                                                                                     | 14.87                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 222.62 | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 x                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | х                                                                                                     | 1                                                                                                                                                     | 10.55                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | x                                     | 0.7                                     | _                           | 214.24 | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х                                                                                                     | 1                                                                                                                                                     | 08.01                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | X                                     | 0.7                                     | =                           | 209.32 | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                     | 1                                                                                                                                                     | 04.89                                                                                                                   | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | x                                     | 0.7                                     |                             | 203.28 | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                     | 1                                                                                                                                                     | 01.89                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | x                                     | 0.7                                     | <u> </u>                    | 197.45 | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 ×                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | х                                                                                                     | 8                                                                                                                                                     | 32.59                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | x                                     | 0.7                                     | =                           | 160.05 | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 X                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                     | 5                                                                                                                                                     | 55.42                                                                                                                   | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | Х                                     | 0.7                                     | =                           | 107.4  | (78)                                         |
| South                                                                                                                                  | 0.9x 0.7                                                                                                                                                                               | 7 x                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                     |                                                                                                                                                       | 40.4                                                                                                                    | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                         | х                                     | 0.7                                     |                             | 78.29  | (78)                                         |
|                                                                                                                                        |                                                                                                                                                                                        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                       |                                         |                             |        |                                              |
| Solar gai                                                                                                                              | ins in watts,                                                                                                                                                                          | calculated                                                                                            | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month                                                                                                 |                                                                                                                                                       |                                                                                                                         | (83)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = Sum(74)m .                                                                                                 | (82)m                                 |                                         |                             |        |                                              |
| (83)m= 1                                                                                                                               | 114.68 194.39                                                                                                                                                                          | 207.40                                                                                                | 339.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 391.75                                                                                                | 395.3                                                                                                                                                 | 378.37                                                                                                                  | 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 004 40                                                                                                     | 0440                                  | 407.00                                  | 00.00                       |        | (00)                                         |
| (00)=                                                                                                                                  | 114.00 194.59                                                                                                                                                                          | 267.18                                                                                                | 339.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 391.73                                                                                                | 393.3                                                                                                                                                 | 3/0.3/                                                                                                                  | 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .4 291.43                                                                                                    | 214.8°                                | 1 137.09                                | 98.36                       |        | (83)                                         |
|                                                                                                                                        | ins – internal                                                                                                                                                                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                       |                                                                                                                         | 33/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .4 291.43                                                                                                    | 214.8                                 | 1 137.09                                | 98.36                       |        | (83)                                         |
| Total gai                                                                                                                              |                                                                                                                                                                                        | and solar                                                                                             | (84)m = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (73)m +                                                                                               |                                                                                                                                                       |                                                                                                                         | 719.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              | 647.66                                |                                         | 592.53                      | ]      | (84)                                         |
| Total gai                                                                                                                              | ins – internal                                                                                                                                                                         | and solar                                                                                             | (84)m = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (73)m +<br>809.67                                                                                     | (83)m                                                                                                                                                 | , watts                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                       |                                         | 1                           |        |                                              |
| Total gai<br>(84)m= 6                                                                                                                  | ins – internal<br>622.58 697.16                                                                                                                                                        | and solar<br>748.88                                                                                   | (84)m = (<br>788.98 (heating s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (73)m +<br>809.67                                                                                     | (83)m<br>784.64                                                                                                                                       | , watts                                                                                                                 | 719.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59 692.14                                                                                                    |                                       |                                         | 1                           | 21     |                                              |
| Total gai (84)m= 6  7. Mear Temper                                                                                                     | ins – internal<br>622.58   697.16<br>n internal tem                                                                                                                                    | 748.88 perature heating p                                                                             | (84)m = (<br>788.98 (heating seriods in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (73)m +<br>809.67<br>season)<br>the living                                                            | (83)m<br>784.64<br>g area                                                                                                                             | rom Tak                                                                                                                 | 719.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59 692.14                                                                                                    |                                       |                                         | 1                           | 21     | (84)                                         |
| Total gai (84)m= 6  7. Mear Temper                                                                                                     | ins – internal<br>622.58 697.16<br>n internal terr<br>rature during                                                                                                                    | 748.88 perature heating p                                                                             | (84)m = (<br>788.98 (heating seriods in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (73)m +<br>809.67<br>season)<br>the living                                                            | (83)m<br>784.64<br>g area                                                                                                                             | rom Tak                                                                                                                 | 719.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59 692.14<br>Th1 (°C)                                                                                        |                                       | 605.29                                  | 1                           | 21     | (84)                                         |
| Total gai (84)m= 6  7. Mear Temper                                                                                                     | ins – internal<br>622.58 697.16<br>In internal terr<br>rature during<br>ion factor for                                                                                                 | 748.88 perature heating p                                                                             | (84)m = (<br>788.98 (heating seriods in tiving area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (73)m +<br>809.67<br>season)<br>the living<br>a, h1,m (                                               | (83)m<br>784.64<br>g area                                                                                                                             | rom Table 9a)                                                                                                           | 719.<br>ole 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59 692.14  Th1 (°C)                                                                                          | 647.60                                | 605.29                                  | 592.53                      | 21     | (84)                                         |
| Total gai (84)m= 6  7. Mear Temper Utilisatio (86)m=                                                                                   | ins – internal 622.58 697.16 n internal tem rature during on factor for Jan Feb 1 1                                                                                                    | 748.88  perature heating p gains for I  Mar                                                           | (84)m = (heating seriods in triving area Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (73)m +<br>809.67<br>season)<br>the living<br>a, h1,m (<br>May                                        | (83)m<br>784.64<br>g area<br>(see Ta<br>Jun<br>0.99                                                                                                   | from Table 9a) Jul 0.98                                                                                                 | 719.<br>ole 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59 692.14  Th1 (°C)  ug Sep 8 0.99                                                                           | 647.60<br>Oct                         | 605.29<br>Nov                           | 592.53                      | 21     | (84)                                         |
| Total gai (84)m=  7. Mear Temper Utilisatio (86)m=  Mean ir                                                                            | ins – internal 622.58 697.16 n internal tem rature during on factor for Jan Feb                                                                                                        | 748.88  perature heating p gains for I  Mar                                                           | (84)m = (heating seriods in triving area Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (73)m +<br>809.67<br>season)<br>the living<br>a, h1,m (<br>May                                        | (83)m<br>784.64<br>g area<br>(see Ta<br>Jun<br>0.99                                                                                                   | from Table 9a) Jul 0.98                                                                                                 | 719.<br>ole 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59 692.14  Th1 (°C)  ug Sep 8 0.99  able 9c)                                                                 | 647.60<br>Oct                         | Nov 1                                   | 592.53                      | 21     | (84)                                         |
| Total gai (84)m=  7. Mear Temper Utilisatio (86)m=  Mean ir (87)m=                                                                     | ins – internal 222.58 697.16 n internal tem rature during on factor for Jan Feb 1 1 nternal tempe 18.22 18.37                                                                          | 748.88 perature heating p gains for I Mar 1 erature in 18.68                                          | (84)m = (788.98) (heating seriods in riving area Apr 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (73)m + 809.67   season) the living a, h1,m ( May                                                     | (83)m<br>784.64<br>g area<br>see Ta<br>Jun<br>0.99<br>low ste<br>20.17                                                                                | , watts 751.14  from Table 9a) Jul 0.98 ps 3 to 7 20.5                                                                  | 719. DIE 9, Au 0.9 7 in T 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59 692.14  Th1 (°C)  ug Sep 8 0.99  able 9c) 46 20.05                                                        | Oct                                   | Nov 1                                   | 592.53  Dec 1               | 21     | (84)                                         |
| Total gai (84)m= 6  7. Mear Temper Utilisati (86)m= Mean ir (87)m= Temper                                                              | ins – internal 22.58 697.16 In internal tem rature during on factor for Jan Feb 1 1 Internal tempe 18.22 18.37 rature during                                                           | 748.88  748.88  perature heating p gains for I Mar 1 erature in 18.68 heating p                       | (84)m = (heating seriods in fiving area 19.15 eriods in five residues in f | (73)m + 809.67  season) the living a, h1,m (                                                          | g area<br>g area<br>Jun<br>0.99<br>low ste<br>20.17<br>welling                                                                                        | from Takable 9a)  Jul  0.98  ps 3 to 7  20.5                                                                            | 719. DIE 9, O.9 7 in T 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Th1 (°C)  ug Sep 8 0.99  able 9c) 46 20.05  0, Th2 (°C)                                                      | Oct 1 19.41                           | Nov<br>1<br>18.77                       | 592.53  Dec 1               | 21     | (84)                                         |
| Total gai (84)m= 6  7. Mear Temper Utilisati (86)m=    Mean ir (87)m=    Temper (88)m=                                                 | ins – internal 622.58 697.16 In internal tem rature during on factor for Jan Feb 1 1 Internal tempe 18.22 18.37 rature during 18.92 18.93                                              | 748.88  748.88  perature heating p gains for I Mar 1 erature in 18.68 heating p 18.94                 | (84)m = ( 788.98  (heating seriods in the seriod in  | (73)m + 809.67  season) the living a, h1,m (                                                          | g area<br>g area<br>Jun<br>0.99<br>low ste<br>20.17<br>welling                                                                                        | ywatts 751.14  from Takable 9a) Jul 0.98 ps 3 to 7 20.5 from Takable 9a)                                                | 719.  Ole 9,  O.9  7 in T  20.4  able 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Th1 (°C)  ug Sep 8 0.99  able 9c) 46 20.05  0, Th2 (°C)                                                      | Oct                                   | Nov 1                                   | Dec 1 18.23                 | 21     | (84)<br>(85)<br>(86)<br>(87)                 |
| Total gai (84)m=  7. Mear Temper Utilisation (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisation                                        | ins – internal 222.58 697.16 In internal terrature during on factor for Jan Feb 1 1 Internal tempe 18.22 18.37 rature during 18.92 18.93 on factor for                                 | rature in 18.68 heating p 18.94 gains for I                                                           | (84)m = (788.98) (heating seriods in riving area 19.15) eriods in 18.99 rest of dwg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the living a, h1,m ( May 1  a T1 (foll 19.66 19  rest of d relling, h2                                | (83)m<br>784.64<br>g area<br>see Ta<br>Jun<br>0.99<br>low ste<br>20.17<br>welling<br>19.04<br>2,m (se                                                 | , watts 751.14  from Takable 9a) Jul 0.98 ps 3 to 7 20.5  from Ta                                                       | 719.  Ole 9,  Ole 9, | Th1 (°C)  ug Sep 8 0.99  able 9c) 46 20.05 0, Th2 (°C) 05 19.02                                              | Oct 1 19.41                           | Nov<br>1<br>18.77                       | Dec 1 18.23 18.96           | 21     | (84)<br>(85)<br>(86)<br>(87)<br>(88)         |
| Total gai (84)m=  7. Mear Temper Utilisation (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisation (89)m=                                 | ins – internal 222.58 697.16 In internal terrature during Ion factor for Jan Feb 1 1 Internal tempe 18.22 18.37 rature during 18.92 18.93 Ion factor for 1 1                           | rature in 18.68 heating p 18.94 gains for I 1                                                         | (84)m = (788.98) (heating seriods in riving area 19.15) eriods in 18.99 rest of dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (73)m + 809.67  season) the living a, h1,m ( May  1 19.66  rest of d 19 relling, h2 0.99              | (83)m<br>784.64<br>g area<br>see Ta<br>Jun<br>0.99<br>low ste<br>20.17<br>welling<br>19.04<br>2,m (se<br>0.97                                         | , watts 751.14  from Takable 9a) Jul 0.98 ps 3 to 7 20.5 from Ta 19.04 ee Table 0.9                                     | 719.  Ole 9,  Ole 9, | Th1 (°C)  ug Sep 8 0.99  able 9c) 46 20.05 0, Th2 (°C) 05 19.02                                              | Oct 1 19.41 19                        | Nov<br>1<br>18.77                       | Dec 1 18.23                 | 21     | (84)<br>(85)<br>(86)<br>(87)                 |
| Total gai (84)m=  7. Mear Temper Utilisati (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisati (89)m=  Mean ir                            | ins – internal continue during on factor for Jan Feb 1 1 nternal tempe 18.22 18.37 rature during 18.92 18.93 con factor for 1 1 nternal tempe                                          | rature in 18.94 perature in 19.94 prature in 19.94 prature in 19.94 prature in 19.94 prature in 19.94 | (84)m = ( 788.98  (heating seriods in fiving area  Apr 1  living area 19.15  eriods in fiving area 19.15  eriods in fiving area 19.15  the rest of dw 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (73)m + 809.67  season) the living a, h1,m ( May  1 19.66  rest of d 19 velling, h2 0.99  f dwellin   | (83)m<br>784.64<br>g area<br>See Ta<br>Jun<br>0.99<br>low ste<br>20.17<br>welling<br>19.04<br>2,m (se<br>0.97<br>g T2 (fi                             | from Take ble 9a)  Jul  0.98  ps 3 to 7  20.5  from Take ble 9a)  19.04  ee Table  0.9  ollow ste                       | 719.  Au  0.9  7 in T  20.4  able 9  19.0  9a)  0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Th1 (°C)  Ig Sep 8 0.99  able 9c) 46 20.05  9, Th2 (°C) 05 19.02  2 0.99  to 7 in Table                      | Oct<br>1<br>19.41<br>19<br>1<br>e 9c) | Nov<br>1<br>18.77<br>18.98              | Dec 1 18.23 18.96           | 21     | (84)<br>(85)<br>(86)<br>(87)<br>(88)<br>(89) |
| Total gai (84)m=  7. Mear Temper Utilisati (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisati (89)m=  Mean ir                            | ins – internal 222.58 697.16 In internal terrature during Ion factor for Jan Feb 1 1 Internal tempe 18.22 18.37 rature during 18.92 18.93 Ion factor for 1 1                           | rature in 18.68 heating p 18.94 gains for I 1                                                         | (84)m = (788.98) (heating seriods in riving area 19.15) eriods in 18.99 rest of dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (73)m + 809.67  season) the living a, h1,m ( May  1 19.66  rest of d 19 relling, h2 0.99              | (83)m<br>784.64<br>g area<br>see Ta<br>Jun<br>0.99<br>low ste<br>20.17<br>welling<br>19.04<br>2,m (se<br>0.97                                         | , watts 751.14  from Takable 9a) Jul 0.98 ps 3 to 7 20.5 from Ta 19.04 ee Table 0.9                                     | 719.  Ole 9,  Ole 9, | Th1 (°C)  Ig Sep 8 0.99  able 9c) 46 20.05 0, Th2 (°C) 20 0.99  to 7 in Table 33 18.41                       | Oct 1 19.41 19 1 e 9c) 17.76          | Nov 1 18.77 18.98                       | 592.53  Dec 1  18.23  18.96 |        | (84)<br>(85)<br>(86)<br>(87)<br>(88)<br>(89) |
| Total gai (84)m=  7. Mear Temper Utilisati (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisati (89)m=  Mean ir                            | ins – internal continue during on factor for Jan Feb 1 1 nternal tempe 18.22 18.37 rature during 18.92 18.93 con factor for 1 1 nternal tempe                                          | rature in 18.94 perature in 19.94 prature in 19.94 prature in 19.94 prature in 19.94 prature in 19.94 | (84)m = ( 788.98  (heating seriods in fiving area  Apr 1  living area 19.15  eriods in fiving area 19.15  eriods in fiving area 19.15  the rest of dw 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (73)m + 809.67  season) the living a, h1,m ( May  1 19.66  rest of d 19 velling, h2 0.99  f dwellin   | (83)m<br>784.64<br>g area<br>See Ta<br>Jun<br>0.99<br>low ste<br>20.17<br>welling<br>19.04<br>2,m (se<br>0.97<br>g T2 (fi                             | from Take ble 9a)  Jul  0.98  ps 3 to 7  20.5  from Take ble 9a)  19.04  ee Table  0.9  ollow ste                       | 719.  Au  0.9  7 in T  20.4  able 9  19.0  9a)  0.9  eps 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Th1 (°C)  Ig Sep 8 0.99  able 9c) 46 20.05 0, Th2 (°C) 20 0.99  to 7 in Table 33 18.41                       | Oct 1 19.41 19 1 e 9c) 17.76          | Nov<br>1<br>18.77<br>18.98              | 592.53  Dec 1  18.23  18.96 | 21     | (84)<br>(85)<br>(86)<br>(87)<br>(88)<br>(89) |
| Total gai (84)m=  7. Mear Temper Utilisation (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisation (89)m=  Mean ir (90)m=                 | ins – internal continue during on factor for Jan Feb 1 1 nternal tempe 18.22 18.37 rature during 18.92 18.93 con factor for 1 1 nternal tempe                                          | rature in 18.94 gains for I 18.94 gains for I 18.94 gains for I 18.94 gains for I 1 16.98             | (84)m = 6 788.98  (heating seriods in riving area Apr 1 living area 19.15 eriods in riving area 19.15 eriods in riving area 19.15 eriods in riving area 18.99 est of dw 1 the rest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (73)m + 809.67  season) the living a, h1,m ( May  1 19.66  rest of d 19 relling, h2 0.99 f dwellin 18 | (83)m<br>784.64<br>g area see Ta<br>Jun<br>0.99<br>low stee<br>20.17<br>welling<br>19.04<br>2,m (see<br>0.97<br>g T2 (find 18.55)                     | ywatts 751.14  from Takable 9a) Jul 0.98 ps 3 to 7 20.5 from Takable 19.04 ee Table 0.9 ollow stee                      | 719.  Ole 9,  Ole 9, | 59 692.14  Th1 (°C)  ug Sep 8 0.99  able 9c) 46 20.05 0, Th2 (°C) 05 19.02  2 0.99  to 7 in Tabl 33 18.41    | Oct 1 19.41 19 1 e 9c) 17.76          | Nov 1 18.77 18.98                       | 592.53  Dec 1  18.23  18.96 |        | (84)<br>(85)<br>(86)<br>(87)<br>(88)<br>(89) |
| Total gai (84)m=  7. Mear Temper Utilisation (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisation (89)m=  Mean ir (90)m=  Mean ir (90)m= | ins – internal c22.58 697.16 In internal terrature during on factor for Jan Feb 1 1 Internal tempe 18.22 18.37 rature during 18.92 18.93 Ion factor for 1 1 Internal tempe 16.51 16.66 | rature in 16.98                                                                                       | (84)m = (788.98) (heating seriods in riving area 19.15) eriods in 18.99 rest of dw 1 the rest of 17.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (73)m + 809.67  season) the living a, h1,m ( May  1 19.66 rest of d 19 relling, h2 0.99 f dwellin 18  | (83)m<br>784.64<br>g area see Ta<br>Jun<br>0.99<br>low stee<br>20.17<br>welling<br>19.04<br>2,m (see<br>0.97<br>g T2 (find 18.55)<br>ng) = find 19.04 | ywatts 751.14  from Takable 9a) Jul 0.98 ps 3 to 7 20.5 from Takable 19.04 ee Table 0.9 ollow stee 18.86  LA × T1 19.36 | 719.  719.  Au  0.9  7 in T  20.4  19.0  9a)  0.9  18.8  + (1 - 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Th1 (°C)  Ig Sep 8 0.99  able 9c) 46 20.05 0, Th2 (°C) 2 0.99  to 7 in Tabl 33 18.41 f  - fLA) × T2 32 18.91 | Oct 1 19.41 19 1 e 9c) 17.76 LA = Liv | Nov 1 18.77 18.98 1 17.1 ving area ÷ (- | 592.53  Dec 1  18.23  18.96 |        | (84)<br>(85)<br>(86)<br>(87)<br>(88)<br>(89) |

|                                                        | ı           |             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |             |           | 1                   | 1                  |              | 1                         |                                              |           | (00)     |
|--------------------------------------------------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------|---------------------|--------------------|--------------|---------------------------|----------------------------------------------|-----------|----------|
| (93)m= 17.03                                           | 17.18       | 17.49       | 17.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.5      | 19.04       | 19.36     | 19.32               | 18.91              | 18.25        | 17.6                      | 17.06                                        |           | (93)     |
| 8. Space hea                                           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o obtoin  | and at at   | on 11 of  | Table 0             | o co tha           | t Ti m_/     | 76)m an                   | d ro colo                                    | ulato     |          |
| the utilisation                                        |             |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | icu ai sii  | ър п ог   | i abic 3i           | J, 50 III <i>a</i> | ıt 11,111—(  | i Ojili ali               | u ie-caic                                    | uiate     |          |
| Jan                                                    | Feb         | Mar         | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May       | Jun         | Jul       | Aug                 | Sep                | Oct          | Nov                       | Dec                                          |           |          |
| Utilisation fac                                        | tor for g   | ains, hm    | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |             |           |                     |                    |              |                           |                                              |           |          |
| (94)m= 1                                               | 1           | 1           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99      | 0.97        | 0.92      | 0.94                | 0.98               | 1            | 1                         | 1                                            |           | (94)     |
| Useful gains,                                          |             | W = (94)    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4)m       |             |           |                     | T                  |              | T                         |                                              |           |          |
| (95)m= 622.1                                           | 696.35      | 747.41      | 785.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 802.09    | 763.16      | 691.52    | 674.31              | 681.21             | 645.35       | 604.58                    | 592.16                                       |           | (95)     |
| Monthly aver                                           |             |             | <del>.                                      </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |             |           |                     |                    |              |                           |                                              |           | (00)     |
| (96)m= 4.3                                             | 4.9         | 6.5         | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7      | 14.6        | 16.6      | 16.4                | 14.1               | 10.6         | 7.1                       | 4.2                                          |           | (96)     |
| Heat loss rate<br>(97)m= 6571.1                        | 6307.98     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |           | x [(93)m<br>1412.34 | <u> </u>           |              | 5270 1 <i>4</i>           | 6514.35                                      |           | (97)     |
| (97)m= 6571.1<br>Space heatin                          |             |             | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |             |           |                     | L                  |              | L                         | 0014.30                                      |           | (97)     |
| (98)m= 4426.05                                         | <del></del> |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0           | 0.02      | 0                   | 0                  | 2350.28      | r e                       | 4406.11                                      |           |          |
| (00)111= 1120.00                                       | 0771.02     | 0020.00     | 2701.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1010.00   |             |           |                     |                    | <u> </u>     | ) = Sum(9                 | <u>.                                    </u> | 26562.59  | (98)     |
| Chase bestin                                           | a roauir    | am ant in   | Is\A/b/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hioor     |             |           | 7010                | ii poi youi        | (ittiii) jou | ) = <b>Ga</b> m( <b>G</b> | <b>O</b> /15,912                             |           | ╡``      |
| Space heatin                                           | • .         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •         |             |           |                     |                    |              |                           |                                              | 214.21    | (99)     |
| 9b. Energy red                                         |             |             | The state of the s | Ĭ         |             |           |                     |                    |              |                           |                                              |           |          |
| This part is us<br>Fraction of spa                     |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |           |                     |                    |              | unity sch                 | neme.                                        | 0         | (301)    |
|                                                        |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |           | 1 0001              | ., 0               | OHO          |                           |                                              |           | =        |
| Fraction of spa                                        |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |           |                     |                    |              |                           | _                                            | 1         | (302)    |
| The c <mark>ommu</mark> nity so<br>includes boilers, h | _           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |           |                     |                    | up to four   | other heat                | sources; th                                  | ne latter |          |
| Fraction of hea                                        |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | iom power   | Stations. | осс Аррсі           | idix O.            |              |                           |                                              | 1         | (303a)   |
| Fraction of total                                      |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | oilers      |           |                     |                    | (3           | 02) x (303                | a) =                                         | 1         | (304a)   |
| Factor for con                                         |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | r commu   | unity hea           | ating sys          |              | )                         | <u> </u>                                     | 1.05      | (305)    |
| Distribution los                                       | ss factor   | (Table 1    | 2c) for c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | commun    | ity heatii  | ng syste  | m                   |                    |              |                           | ļ                                            | 1.1       | (306)    |
| Space heatin                                           | α           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |           |                     |                    |              |                           | ·                                            | kWh/yea   |          |
| Annual space                                           | _           | requiren    | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |             |           |                     |                    |              |                           |                                              | 26562.59  | 7        |
| Space heat fro                                         | om Comr     | nunity b    | oilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             |           |                     | (98) x (30         | 04a) x (30   | 5) x (306) :              | =                                            | 30679.79  | (307a)   |
| Efficiency of s                                        | econdary    | //supple    | mentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating   | system      | in % (fro | m Table             | 4a or A            | ppendix      | E)                        |                                              | 0         | (308     |
| Space heating                                          | require     | ment fro    | m secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dary/sup  | plemen      | tary syst | tem                 | (98) x (30         | 01) x 100 -  | ÷ (308) =                 | ĺ                                            | 0         | (309)    |
| Water heating                                          | <b>,</b>    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |           |                     |                    |              |                           | •                                            |           |          |
| Annual water                                           |             | equirem     | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |           |                     |                    |              |                           |                                              | 2264.22   | 7        |
| If DHW from c                                          | ommunit     | ty schem    | ne:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |           |                     |                    |              |                           |                                              |           | <b>-</b> |
| Water heat fro                                         | m Comn      | nunity bo   | oilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             |           |                     | (64) x (30         | 03a) x (30   | 5) x (306) :              | =                                            | 2615.17   | (310a)   |
| Electricity use                                        | d for hea   | ıt distribu | ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |             |           | 0.01                | × [(307a)          | (307e) +     | (310a)(                   | (310e)] =                                    | 332.95    | (313)    |
| Cooling Syste                                          | m Energ     | y Efficie   | ncy Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0         |             |           |                     |                    |              |                           |                                              | 0         | (314)    |
| Space cooling                                          | (if there   | is a fixe   | d cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g system  | n, if not e | enter 0)  |                     | = (107) ÷          | - (314) =    |                           |                                              | 0         | (315)    |
| Electricity for p                                      |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |           | ata!-l-             |                    |              |                           | Ī                                            |           | 7(200-)  |
| mechanical ve                                          | entilation  | - palanc    | ea, extra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | act or po | sitive in   | out from  | outside             |                    |              |                           |                                              | 0         | (330a)   |
|                                                        |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |           |                     |                    |              |                           |                                              |           |          |

| warm air heating system fans                                                                               |                                     |                          |        | 0                      | (330b)         |
|------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|--------|------------------------|----------------|
| pump for solar water heating                                                                               |                                     |                          |        | 0                      | (330g)         |
| Total electricity for the above, kWh/year                                                                  | =(330a) + (330                      | 0b) + (330g) =           |        | 0                      | (331)          |
| Energy for lighting (calculated in Appendix L)                                                             |                                     |                          |        | 911.99                 | (332)          |
| 12b. CO2 Emissions – Community heating scheme                                                              |                                     |                          |        |                        |                |
|                                                                                                            | Energy<br>kWh/year                  | Emission fact kg CO2/kWh |        | nissions<br>J CO2/year |                |
| CO2 from other sources of space and water heating (not CF Efficiency of heat source 1 (%)  If there is CHP | HP) using two fuels repeat (363) to | (366) for the second     | d fuel | 65                     | (367a)         |
|                                                                                                            | 7h) (240h)] y 400 + (267h) y        |                          | =      |                        | 」` ′           |
| Kees                                                                                                       | 7b)+(310b)] x 100 ÷ (367b) x        | 0                        |        | 11064.17               | <u> </u> (367) |
| Electrical energy for heat distribution                                                                    | [(313) x                            | 0.52                     | =      | 172.8                  | (372)          |
| Total CO2 associated with community systems                                                                | (363)(366) + (368)(37               | 2)                       | =      | 11236.97               | (373)          |
| CO2 associated with space heating (secondary)                                                              | (309) x                             | 0                        | =      | 0                      | (374)          |
| CO2 associated with water from immersion heater or instant                                                 | taneous heater (312) x              | 0.22                     | =      | 0                      | (375)          |
| Total CO2 associated with space and water heating                                                          | (373) + (374) + (375) =             |                          |        | 11236.97               | (376)          |
| CO2 associated with electricity for pumps and fans within do                                               | welling (331)) x                    | 0.52                     | =      | 0                      | (378)          |
| CO2 associated with electricity for lighting                                                               | (332))) x                           | 0.52                     | =      | 473.32                 | (379)          |
| Total CO2, kg/year sum of (376)(382) =                                                                     |                                     |                          |        | 11710.3                | (383)          |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                   |                                     |                          |        | 94.44                  | (384)          |
| El rating (section 14)                                                                                     |                                     |                          |        | 25.14                  | (385)          |

|                                                            |                                                  |                             | User D     | etails:                                       |              |                |                       |           |               |                                        |
|------------------------------------------------------------|--------------------------------------------------|-----------------------------|------------|-----------------------------------------------|--------------|----------------|-----------------------|-----------|---------------|----------------------------------------|
| Assessor Name:<br>Software Name:                           | Stroma FSAF                                      |                             | lron orb   | Strom<br>Softwa                               | are Ve       | rsion:         |                       | Versio    | on: 1.0.3.4   |                                        |
| Address :                                                  | , london                                         | P                           | roperty    | Address                                       | : Unit 10    | )              |                       |           |               |                                        |
| 1. Overall dwelling dime                                   | ensions:                                         |                             |            |                                               |              |                |                       |           |               |                                        |
| Basement                                                   |                                                  |                             | Area       | <b>a(m²)</b><br>79                            | (1a) x       |                | <b>ight(m)</b><br>2.6 | (2a) =    | Volume(m³)    | )<br>(3a)                              |
| Total floor area TFA = (1)                                 | a)+(1b)+(1c)+(1d                                 | \_(1 <u>0</u> \_ (1r        | , <u> </u> |                                               | (4)          |                |                       | ](=0)     | 200.4         |                                        |
| ·                                                          | a)+(1b)+(1c)+(1d                                 | )+(16)+(11                  | "          | 79                                            |              | ) . (20) . (20 | 1) . (20) .           | (2n)      | Г             | ٦                                      |
| Dwelling volume                                            |                                                  |                             |            |                                               | (3a)+(3b     | )+(3c)+(3c     | d)+(3e)+              | .(3n) =   | 205.4         | (5)                                    |
| 2. Ventilation rate:                                       | main                                             | secondar                    | ·v         | other                                         |              | total          |                       |           | m³ per hou    | r                                      |
| Number of chimneys                                         | heating                                          | heating<br>+ 0              | ,<br>  +   | 0                                             | 7 = F        | 0              | x                     | 40 =      | 0             | (6a)                                   |
| Number of open flues                                       | 0                                                | + 0                         | ┪╻         | 0                                             | 」            | 0              | x                     | 20 =      | 0             | (6b)                                   |
| Number of intermittent fa                                  |                                                  |                             |            |                                               | J <u>L</u>   |                |                       | 10 =      |               | 」 <sup>(05)</sup><br>] <sub>(7a)</sub> |
|                                                            |                                                  |                             |            |                                               | L            | 2              |                       | 10 =      | 20            | ╡`´                                    |
| Number of passive vents                                    |                                                  |                             |            |                                               | Ļ            | 0              |                       |           | 0             | (7b)                                   |
| Number of flueless gas fi                                  | res                                              |                             |            |                                               | L            | 0              | X 2                   | 40 =      | 0             | (7c)                                   |
|                                                            |                                                  |                             |            |                                               |              |                |                       | Air ch    | nanges per ho | ur                                     |
| Infiltration due to chimne                                 | vs. flues and fans                               | s = (6a) + (6b) + (7a)      | 7a)+(7b)+( | 7c) =                                         | Г            | 20             |                       | ÷ (5) =   | 0.1           | (8)                                    |
| If a pressurisation test has b                             |                                                  |                             |            |                                               | continue fr  |                |                       | . (5)     | 0.1           | (-/                                    |
| Number of storeys in the                                   | he dw <mark>elling</mark> (ns)                   |                             |            |                                               |              |                |                       |           | 0             | (9)                                    |
| Additional infiltration                                    |                                                  |                             | 2.25 (     |                                               |              |                | [(9)                  | -1]x0.1 = | 0             | (10)                                   |
| Structural infiltration: 0<br>if both types of wall are pa |                                                  |                             |            |                                               | •            | ruction        |                       |           | 0             | (11)                                   |
| deducting areas of opening                                 |                                                  |                             | the great  | or wall arc                                   | a (anti-     |                |                       |           |               |                                        |
| If suspended wooden f                                      | •                                                | ,                           | .1 (seale  | ed), else                                     | enter 0      |                |                       |           | 0             | (12)                                   |
| If no draught lobby, en                                    |                                                  |                             |            |                                               |              |                |                       |           | 0             | (13)                                   |
| Percentage of windows Window infiltration                  | s and doors drau                                 | gnt stripped                |            | 0.25 - [0.2                                   | ' x (14) ∸ 1 | 1001 =         |                       |           | 0             | (14)                                   |
| Infiltration rate                                          |                                                  |                             |            | (8) + (10)                                    |              | _              | + (15) =              |           | 0             | (15)                                   |
| Air permeability value,                                    | q50, expressed i                                 | n cubic metre               |            |                                               |              |                |                       | area      | 20            | (17)                                   |
| If based on air permeabil                                  | ity value, then (18                              | $B) = [(17) \div 20] + (8)$ | 8), otherw | ise (18) = (                                  | (16)         |                | ·                     |           | 1.1           | (18)                                   |
| Air permeability value applie                              |                                                  | est has been dor            | ne or a de | gree air pe                                   | rmeability   | is being u     | sed                   |           |               | _                                      |
| Number of sides sheltere<br>Shelter factor                 | ed                                               |                             |            | (20) = 1 -                                    | [0 075 x (*  | 19)] =         |                       |           | 1             | (19)                                   |
| Infiltration rate incorporat                               | ting shelter factor                              |                             |            | (21) = (18)                                   |              | . 0/] —        |                       |           | 1.02          | (20)                                   |
| Infiltration rate modified f                               | _                                                |                             |            | <b>( )</b>                                    | , ( -,       |                |                       |           | 1.02          | (21)                                   |
| Jan Feb                                                    |                                                  | May Jun                     | Jul        | Aug                                           | Sep          | Oct            | Nov                   | Dec       |               |                                        |
| Monthly average wind sp                                    |                                                  |                             |            | <u>.                                     </u> |              | •              | •                     |           | 1             |                                        |
| (22)m= 5.1 5                                               |                                                  | 4.3 3.8                     | 3.8        | 3.7                                           | 4            | 4.3            | 4.5                   | 4.7       |               |                                        |
| Wind Factor (CC-)                                          | 2) 1                                             | •                           |            | •                                             |              | •              | •                     |           | •             |                                        |
| Wind Factor $(22a)m = (22a)m = 1.27$                       | <del>'                                    </del> | .08 0.95                    | 0.95       | 0.92                                          | 1            | 1.08           | 1.12                  | 1.18      | 1             |                                        |
| (220)111= 1.21 1.25                                        | 1.23   1.1   1                                   | .08 0.95                    | 0.95       | 0.92                                          | <u> </u>     | 1.08           | 1.12                  | 1.10      | J             |                                        |

| 1.29                                  | 1.27         | 1.24         | 1.12        | 1.09        | 0.96           | 0.96         | 0.94           | (22a)m<br>1.02 | 1.09                  | 1.14        | 1.19               | 1        |               |
|---------------------------------------|--------------|--------------|-------------|-------------|----------------|--------------|----------------|----------------|-----------------------|-------------|--------------------|----------|---------------|
| Calculate effe                        |              | l            |             |             |                | l            | 0.94           | 1.02           | 1.09                  | 1.14        | 1.19               | J        |               |
| If mechanica                          | al ventila   | ition:       |             |             |                |              |                |                |                       |             |                    | 0        | (23           |
| If exhaust air h                      | eat pump     | using Appe   | endix N, (2 | 3b) = (23a  | a) × Fmv (e    | equation (N  | N5)) , othe    | rwise (23b     | ) = (23a)             |             |                    | 0        | (23           |
| If balanced with                      | heat reco    | overy: effic | iency in %  | allowing f  | or in-use f    | actor (from  | n Table 4h     | ) =            |                       |             |                    | 0        | (23           |
| a) If balance                         | d mech       | anical ve    | entilation  | with he     | at recove      | ery (MVI     | HR) (24a       | a)m = (22)     | 2b)m + (              | 23b) × [    | 1 – (23c)          | ÷ 100]   |               |
| 24a)m= 0                              | 0            | 0            | 0           | 0           | 0              | 0            | 0              | 0              | 0                     | 0           | 0                  |          | (24           |
| b) If balance                         | d mech       | anical ve    | entilation  | without     | heat red       | covery (N    | ЛV) (24b       | )m = (22       | 2b)m + (              | 23b)        |                    |          |               |
| 24b)m= 0                              | 0            | 0            | 0           | 0           | 0              | 0            | 0              | 0              | 0                     | 0           | 0                  |          | (24           |
| c) If whole h                         |              |              |             | •           | •              |              |                |                |                       |             |                    |          |               |
| if (22b)n                             |              | <u> </u>     | <u> </u>    | <u> </u>    | ŕ –            | · ` `        | ŕ              | ŕ              | · ` `                 | ŕ           | ı                  | 1        | (0.           |
| 24c)m= 0                              | 0            | 0            | 0           | 0           | 0              | 0            | 0              | 0              | 0                     | 0           | 0                  | ]        | (24           |
| d) If natural if (22b)n               |              |              |             |             |                |              |                |                | 0.51                  |             |                    |          |               |
| 24d)m= 1.29                           | 1.27         | 1.24         | 1.12        | 1.09        | 0.96           | 0.96         | 0.94           | 1.02           | 1.09                  | 1.14        | 1.19               | 1        | (24           |
| Effective air                         |              | <u> </u>     |             |             |                |              |                |                |                       |             |                    | J        | •             |
| 25)m= 1.29                            | 1.27         | 1.24         | 1.12        | 1.09        | 0.96           | 0.96         | 0.94           | 1.02           | 1.09                  | 1.14        | 1.19               | ]        | (25           |
|                                       |              |              |             |             |                |              |                |                |                       |             |                    | J        | `             |
| 3. Heat losse                         | s and he     | eat loss     |             |             |                |              |                |                | _                     |             |                    | _        |               |
| ELEMENT                               | Gros<br>area |              | Openin      | -           | Net Ar<br>A ,r |              | U-valı<br>W/m2 |                | A X U<br>(W/I         | K)          | k-value<br>kJ/m²-l |          | A X k<br>kJ/K |
| oors                                  | aroa         | (111)        |             |             | 1.6            | ×            | 1.4            | = [            | 2.24                  |             | 10/111             |          | (26           |
| Vindows Type                          | 1            |              |             |             | 3.12           | ╡.           | /[1/( 4.8 )+   |                | 12.56                 | Ħ           |                    |          | (27           |
| Vindows Type                          |              |              |             |             |                | <del>-</del> | /[1/( 4.8 )+   |                |                       | Ħ           |                    |          | `             |
|                                       | _            |              |             |             | 3.66           |              |                |                | 14.74                 | 븍 ,         |                    |          | (27           |
| Valls Type1                           | 89.2         | _            | 6.78        |             | 82.42          | =            | 1.27           | = <u> </u>     | 104.83                |             |                    | <b>-</b> | (29           |
| Valls Type2                           | 26.6         | =            | 1.6         |             | 25.03          | =            | 2.1            | = [            | 52.56                 | <u> </u>    |                    | ┥        | (29           |
| loof                                  | 46.          |              | 0           |             | 46.5           | X            | 2.3            | =              | 106.95                |             |                    |          | (30           |
| otal area of e                        | lements      | , m²         |             |             | 162.3          | 3            |                |                |                       |             |                    |          | (3′           |
| arty wall                             |              |              |             |             | 5.3            | X            | 0              | = [            | 0                     |             |                    |          | (32           |
| for windows and<br>' include the area |              |              |             |             |                | ated using   | ı formula 1    | /[(1/U-valu    | ıe)+0.04] a           | as given in | paragraph          | 1 3.2    |               |
| abric heat los                        |              |              |             | o ana pan   |                |              | (26)(30)       | ) + (32) =     |                       |             |                    | 293.8    | 9 (3:         |
| eat capacity                          |              | •            | -,          |             |                |              |                | ((28)          | (30) + (32            | 2) + (32a). | (32e) =            | 0        | (34           |
| hermal mass                           |              | ,            | P = Cm ÷    | - TFA) ir   | n kJ/m²K       |              |                |                | tive Value            | , , ,       | ,                  | 450      | (35           |
| or design assess                      | •            | `            |             | ,           |                |              | ecisely the    |                |                       |             | able 1f            | 400      | (0.           |
| an be used inste                      | ad of a de   | tailed calc  | ulation.    |             |                |              | -              |                |                       |             |                    |          |               |
| hermal bridge                         | es : S (L    | x Y) cal     | culated (   | using Ap    | pendix I       | <            |                |                |                       |             |                    | 24.8     | (36           |
| details of therma                     |              | are not kn   | own (36) =  | = 0.15 x (3 | 1)             |              |                | (00)           | (0.0)                 |             |                    |          |               |
| otal fabric he                        |              |              |             |             |                |              |                |                | (36) =                | ·           |                    | 318.6    | 9 (37         |
| entilation hea                        |              | i            |             |             |                | ·            |                | 1              | = 0.33 × (            |             | 1                  | 1        |               |
|                                       | Feb          | Mar          | Apr         | May         | Jun            | Jul          | Aug            | Sep            | Oct                   | Nov         | Dec                |          | (0)           |
| Jan                                   | 00           | 04.00        | 75.00       | 70.00       |                |              |                |                |                       |             |                    |          |               |
| 8)m= 87.72                            | 86           | 84.28        | 75.68       | 73.96       | 65.41          | 65.41        | 63.77          | 68.8           | 73.96                 | 77.4        | 80.84              | J        | (38           |
|                                       |              |              | 75.68       | 73.96       | 384.1          | 384.1        | 382.46         | <u> </u>       | = (37) + (3<br>392.65 |             | 399.53             | ]        | (38           |

| Heat loss para                                           | ımeter (l   | HLP), W     | ′m²K        |                       |                |             |             | (40)m                 | = (39)m ÷      | - (4)                  |           |         |      |
|----------------------------------------------------------|-------------|-------------|-------------|-----------------------|----------------|-------------|-------------|-----------------------|----------------|------------------------|-----------|---------|------|
| (40)m= 5.14                                              | 5.12        | 5.1         | 4.99        | 4.97                  | 4.86           | 4.86        | 4.84        | 4.9                   | 4.97           | 5.01                   | 5.06      |         |      |
|                                                          | !           | <u> </u>    |             | <u> </u>              | <u> </u>       | <u> </u>    | <u> </u>    |                       | L<br>Average = | Sum(40) <sub>1</sub>   | 12 /12=   | 4.99    | (40) |
| Number of day                                            | s in mo     | nth (Tab    | le 1a)      |                       |                |             |             |                       |                |                        |           |         |      |
| Jan                                                      | Feb         | Mar         | Apr         | May                   | Jun            | Jul         | Aug         | Sep                   | Oct            | Nov                    | Dec       |         |      |
| (41)m= 31                                                | 28          | 31          | 30          | 31                    | 30             | 31          | 31          | 30                    | 31             | 30                     | 31        |         | (41) |
|                                                          |             |             |             |                       |                |             |             |                       |                |                        |           |         |      |
| 4. Water heat                                            | ting ene    | rgy requi   | rement:     |                       |                |             |             |                       |                |                        | kWh/ye    | ear:    |      |
| Assumed occu<br>if TFA > 13.9<br>if TFA £ 13.9           | 9, N = 1    |             | [1 - exp    | (-0.0003              | 349 x (TF      | FA -13.9    | )2)] + 0.0  | 0013 x ( <sup>-</sup> | TFA -13        |                        | 44        |         | (42) |
| Annual averag<br>Reduce the annua<br>not more that 125   | al average  | hot water   | usage by    | $5\%$ if the $\alpha$ | lwelling is    | designed t  |             |                       | se target o    |                        | .24       |         | (43) |
| Jan                                                      | Feb         | Mar         | Apr         | May                   | Jun            | Jul         | Aug         | Sep                   | Oct            | Nov                    | Dec       |         |      |
| Hot water usage is                                       | n litres pe | day for ea  | ach month   | Vd,m = fa             | ctor from      | Table 1c x  | (43)        | !                     |                | •                      |           |         |      |
| (44)m= 101.46                                            | 97.77       | 94.08       | 90.39       | 86.7                  | 83.01          | 83.01       | 86.7        | 90.39                 | 94.08          | 97.77                  | 101.46    |         |      |
|                                                          |             |             |             |                       |                | •           |             |                       |                | m(44) <sub>112</sub> = |           | 1106.83 | (44) |
| Energy content of                                        | hot water   | used - cal  | culated mo  | onthly $= 4$ .        | 190 x Vd,r     | n x nm x D  | Tm / 3600   | ) kWh/mor             | nth (see Ta    | ables 1b, 1            | c, 1d)    |         |      |
| (45)m= 150.46                                            | 131.59      | 135.79      | 118.39      | 113.6                 | 98.02          | 90.83       | 104.23      | 105.48                | 122.93         | 134.18                 | 145.71    |         | _    |
| If inst <mark>antane</mark> ous w                        | vator hoati | na at noint | of use (no  | hot water             | r storage)     | enter () in | hoves (46   |                       | Total = Su     | m(45) <sub>112</sub> = |           | 1451.23 | (45) |
|                                                          |             |             |             | -                     |                | _           |             |                       | 40.44          | 00.40                  | 04.00     |         | (46) |
| (46)m= 22.57<br>Water storage                            | 19.74       | 20.37       | 17.76       | 17.04                 | 14.7           | 13.63       | 15.64       | 15.82                 | 18.44          | 20.13                  | 21.86     |         | (46) |
| Storage volum                                            |             | includir    | ig any so   | olar or W             | /WHRS          | storage     | within sa   | ame ves               | sel            |                        | 160       |         | (47) |
| If community h                                           | neating a   | and no ta   | nk in dw    | elling, e             | nter 110       | litres in   | (47)        |                       |                |                        |           |         |      |
| Otherwise if no                                          | stored      | hot wate    | er (this in | icludes i             | nstantar       | neous co    | mbi boil    | ers) ente             | er '0' in (    | (47)                   |           |         |      |
| Water storage                                            |             |             |             |                       |                |             |             |                       |                |                        |           |         |      |
| a) If manufact                                           |             |             |             | or is kno             | wn (kWł        | n/day):     |             |                       |                |                        | 0         |         | (48) |
| Temperature f                                            |             |             |             |                       |                |             |             |                       |                |                        | 0         |         | (49) |
| Energy lost fro                                          |             | •           |             |                       | !4             |             | (48) x (49) | ) =                   |                | 1                      | 10        |         | (50) |
| <ul><li>b) If manufact</li><li>Hot water stora</li></ul> |             |             | -           |                       |                |             |             |                       |                |                        | 02        |         | (51) |
| If community h                                           | -           |             |             | 0 2 (                 | . I, III O, GC | -97         |             |                       |                | 0.                     | 02        |         | (01) |
| Volume factor                                            | _           |             |             |                       |                |             |             |                       |                | 1.                     | 03        |         | (52) |
| Temperature f                                            | actor fro   | m Table     | 2b          |                       |                |             |             |                       |                | 0                      | .6        |         | (53) |
| Energy lost fro                                          | m watei     | storage     | , kWh/ye    | ear                   |                |             | (47) x (51) | ) x (52) x (          | 53) =          | 1.                     | 03        |         | (54) |
| Enter (50) or (                                          | (54) in (5  | 55)         |             |                       |                |             |             |                       |                | 1.                     | 03        |         | (55) |
| Water storage                                            | loss cal    | culated f   | or each     | month                 |                |             | ((56)m = (  | (55) × (41)           | m              |                        |           |         |      |
| (56)m= 32.01                                             | 28.92       | 32.01       | 30.98       | 32.01                 | 30.98          | 32.01       | 32.01       | 30.98                 | 32.01          | 30.98                  | 32.01     |         | (56) |
| If cylinder contains                                     | s dedicate  | d solar sto | rage, (57)  | m = (56)m             | x [(50) – (    | H11)] ÷ (5  | 0), else (5 | 7)m = (56)            | m where (      | H11) is fro            | m Appendi | хН      |      |
| (57)m= 32.01                                             | 28.92       | 32.01       | 30.98       | 32.01                 | 30.98          | 32.01       | 32.01       | 30.98                 | 32.01          | 30.98                  | 32.01     |         | (57) |
| Primary circuit                                          | loss (ar    | nual) fro   | m Table     | 3                     |                |             |             |                       |                |                        | 0         |         | (58) |
| Primary circuit                                          | `           | ,           |             |                       | 59)m = (       | (58) ÷ 36   | 65 × (41)   | m                     |                |                        |           |         |      |
| (modified by                                             |             |             |             | ,                     | •              | ` '         | , ,         |                       | r thermo       | stat)                  |           |         |      |
| (59)m= 23.26                                             | 21.01       | 23.26       | 22.51       | 23.26                 | 22.51          | 23.26       | 23.26       | 22.51                 | 23.26          | 22.51                  | 23.26     |         | (59) |

| Combi loss                   | alculated                 | for each    | month (     | (61)m –   | (60) · 3( | 65 × (41)              | \m          |                |             |               |          |                    |      |
|------------------------------|---------------------------|-------------|-------------|-----------|-----------|------------------------|-------------|----------------|-------------|---------------|----------|--------------------|------|
| (61)m= 0                     | 0 0                       | 0           | 0           | 0         | 00) + 3   | 05 x (41)              | 0           | 0              | 0           | 0             | 0        | 1                  | (61) |
|                              |                           |             |             | <u> </u>  |           |                        | <u> </u>    | ļ              |             | ļ             |          | J<br>(59)m + (61)m | , ,  |
| (62)m= 205.7                 | <del></del>               | 191.07      | 171.88      | 168.87    | 151.52    | 146.11                 | 159.51      | 158.97         | 178.2       | 187.68        | 200.99   | [                  | (62) |
| Solar DHW inpo               |                           |             |             |           |           | <u> </u>               |             |                |             | ion to wate   |          | l                  | ` '  |
| (add addition                |                           |             |             |           |           |                        |             |                |             |               | 3,       |                    |      |
| (63)m= 0                     | 0                         | 0           | 0           | 0         | 0         | 0                      | 0           | 0              | 0           | 0             | 0        | ]                  | (63) |
| Output from                  | water hea                 | ter         |             |           |           |                        |             | _              |             |               |          | 1                  |      |
| (64)m= 205.7                 | 4 181.52                  | 191.07      | 171.88      | 168.87    | 151.52    | 146.11                 | 159.51      | 158.97         | 178.2       | 187.68        | 200.99   | ]                  |      |
|                              |                           |             |             |           |           |                        | Ou          | put from w     | ater heate  | r (annual)₁   | 12       | 2102.07            | (64) |
| Heat gains f                 | rom water                 | heating,    | kWh/m       | onth 0.2  | 5 ´ [0.85 | × (45)m                | ı + (61)ı   | n] + 0.8 x     | k [(46)m    | + (57)m       | + (59)m  | 1]                 |      |
| (65)m= 68.64                 | 4 60.56                   | 63.76       | 57.37       | 56.38     | 50.6      | 48.81                  | 53.27       | 53.08          | 59.48       | 62.63         | 67.06    |                    | (65) |
| include (5                   | 7)m in cal                | culation of | of (65)m    | only if c | ylinder i | s in the o             | dwelling    | or hot w       | ater is f   | rom com       | munity h | neating            |      |
| 5. Internal                  | gains (see                | e Table 5   | and 5a      | ):        |           |                        |             |                |             |               |          |                    |      |
| Metabolic ga                 | ains (Table               | e 5), Wat   | ts          |           |           |                        |             |                |             |               |          |                    |      |
| Jar                          |                           | Mar         | Apr         | May       | Jun       | Jul                    | Aug         | Sep            | Oct         | Nov           | Dec      |                    |      |
| (66)m= 122.1                 | 8 122.18                  | 122.18      | 122.18      | 122.18    | 122.18    | 122.18                 | 122.18      | 122.18         | 122.18      | 122.18        | 122.18   |                    | (66) |
| Ligh <mark>ting g</mark> air | ns (calcula               | ted in Ap   | pendix      | L, equat  | on L9 o   | r L9a), <mark>a</mark> | lso see     | Table 5        |             |               |          |                    |      |
| (67)m= 38.3°                 | 1 34.03                   | 27.68       | 20.95       | 15.66     | 13.22     | 14.29                  | 18.57       | 24.93          | 31.65       | 36.94         | 39.38    |                    | (67) |
| App <mark>liance</mark> s (  | gains (ca <mark>lc</mark> | ulated in   | Append      | dix L, eq | uation L  | 13 or L1               | 3a), als    | o see Ta       | ble 5       |               |          |                    |      |
| (68)m= 217.3                 | 219.59                    | 213.91      | 201.81      | 186.54    | 172.18    | 162.59                 | 160.34      | 166.02         | 178.12      | 193.39        | 207.75   |                    | (68) |
| Cooking gair                 | ns (calcula               | nted in A   | ppendix     | L, equat  | ion L15   | or L15a)               | ), also s   | ee Table       | 5           |               |          |                    |      |
| (69)m= 35.22                 | 2 35.22                   | 35.22       | 35.22       | 35.22     | 35.22     | 35.22                  | 35.22       | 35.22          | 35.22       | 35.22         | 35.22    |                    | (69) |
| Pumps and                    | fans gains                | (Table 5    | 5a)         |           |           |                        |             |                |             | -             |          |                    |      |
| (70)m= 0                     | 0                         | 0           | 0           | 0         | 0         | 0                      | 0           | 0              | 0           | 0             | 0        |                    | (70) |
| Losses e.g.                  | evaporatio                | n (negat    | tive valu   | es) (Tab  | le 5)     |                        |             |                |             | -             | -        |                    |      |
| (71)m= -97.7                 | 4 -97.74                  | -97.74      | -97.74      | -97.74    | -97.74    | -97.74                 | -97.74      | -97.74         | -97.74      | -97.74        | -97.74   |                    | (71) |
| Water heating                | ng gains (T               | able 5)     |             | -         |           |                        | -           |                | -           |               | -        |                    |      |
| (72)m= 92.26                 | 90.13                     | 85.7        | 79.69       | 75.78     | 70.28     | 65.61                  | 71.6        | 73.72          | 79.95       | 86.98         | 90.13    |                    | (72) |
| Total intern                 | al gains =                | :           |             |           | (66)      | )m + (67)m             | n + (68)m   | + (69)m +      | (70)m + (7  | '1)m + (72)   | )m       |                    |      |
| (73)m= 407.5                 | 66 403.4                  | 386.94      | 362.1       | 337.64    | 315.34    | 302.14                 | 310.16      | 324.33         | 349.38      | 376.97        | 396.92   |                    | (73) |
| 6. Solar ga                  | ins:                      |             |             |           |           |                        |             |                |             |               |          |                    |      |
| Solar gains ar               |                           | •           | r flux from | Table 6a  |           |                        | itions to c | onvert to th   | ne applical |               | tion.    |                    |      |
| Orientation:                 | Access F<br>Table 6d      |             | Area<br>m²  |           | Flu       | ıx<br>ble 6a           |             | g_<br>Table 6b | т           | FF<br>able 6c |          | Gains              |      |
|                              |                           |             |             |           |           | DIE Ga                 | . –         | able ob        | _ '         | able 60       |          | (W)                | ,    |
| North 0.9                    |                           | X           | 3.6         | 66        | x 1       | 10.63                  | X           | 0.85           | x           | 0.7           | =        | 16.05              | (74) |
| North 0.9                    |                           | X           | 3.6         | 66        | X 2       | 20.32                  | X           | 0.85           | X           | 0.7           | =        | 30.67              | (74) |
| North 0.9                    |                           | X           | 3.6         | 66        | x 3       | 34.53                  | x           | 0.85           | x           | 0.7           | =        | 52.11              | (74) |
| North 0.9                    |                           | X           | 3.6         | 66        | x 5       | 55.46                  | x           | 0.85           | x           | 0.7           | =        | 83.7               | (74) |
| North 0.9                    | × 0.77                    | X           | 3.6         | 66        | x 7       | 74.72                  | X           | 0.85           | X           | 0.7           | =        | 112.76             | (74) |

| North $0.9x$ North $0.9x$ North $0.9x$                                    |                                            | 1                 |                                          | ٦.            |                                          | -      |                                     |                |          |        |        | _    |
|---------------------------------------------------------------------------|--------------------------------------------|-------------------|------------------------------------------|---------------|------------------------------------------|--------|-------------------------------------|----------------|----------|--------|--------|------|
|                                                                           | 0.77                                       | X                 | 3.66                                     | X             | 79.99                                    | X      | 0.85                                | ×              | 0.7      | =      | 120.71 | (74) |
| North 0.9x                                                                | 0.77                                       | X                 | 3.66                                     | X             | 74.68                                    | X      | 0.85                                | X              | 0.7      | =      | 112.7  | (74) |
| J.J.K                                                                     | 0.77                                       | X                 | 3.66                                     | X             | 59.25                                    | X      | 0.85                                | X              | 0.7      | =      | 89.41  | (74) |
| North 0.9x                                                                | 0.77                                       | X                 | 3.66                                     | X             | 41.52                                    | X      | 0.85                                | X              | 0.7      | =      | 62.65  | (74) |
| North 0.9x                                                                | 0.77                                       | X                 | 3.66                                     | x             | 24.19                                    | x      | 0.85                                | X              | 0.7      | =      | 36.51  | (74) |
| North 0.9x                                                                | 0.77                                       | X                 | 3.66                                     | X             | 13.12                                    | x      | 0.85                                | X              | 0.7      | =      | 19.8   | (74) |
| North 0.9x                                                                | 0.77                                       | X                 | 3.66                                     | x             | 8.86                                     | x      | 0.85                                | x              | 0.7      | =      | 13.38  | (74) |
| South 0.9x                                                                | 0.77                                       | X                 | 3.12                                     | X             | 46.75                                    | x      | 0.85                                | x              | 0.7      | =      | 60.15  | (78) |
| South 0.9x                                                                | 0.77                                       | X                 | 3.12                                     | X             | 76.57                                    | x      | 0.85                                | X              | 0.7      | =      | 98.5   | (78) |
| South 0.9x                                                                | 0.77                                       | X                 | 3.12                                     | x             | 97.53                                    | x      | 0.85                                | X              | 0.7      | =      | 125.48 | (78) |
| South 0.9x                                                                | 0.77                                       | x                 | 3.12                                     | X             | 110.23                                   | ×      | 0.85                                | x              | 0.7      | =      | 141.81 | (78) |
| South 0.9x                                                                | 0.77                                       | x                 | 3.12                                     | x             | 114.87                                   | T x    | 0.85                                | x              | 0.7      | =      | 147.78 | (78) |
| South 0.9x                                                                | 0.77                                       | x                 | 3.12                                     | Īx            | 110.55                                   | X      | 0.85                                | ×              | 0.7      | =      | 142.22 | (78) |
| South 0.9x                                                                | 0.77                                       | X                 | 3.12                                     | j x           | 108.01                                   | X      | 0.85                                | ×              | 0.7      |        | 138.96 | (78) |
| South 0.9x                                                                | 0.77                                       | X                 | 3.12                                     | ×             | 104.89                                   | i x    | 0.85                                | X              | 0.7      | =      | 134.95 | (78) |
| South 0.9x                                                                | 0.77                                       | X                 | 3.12                                     | i x           | 101.89                                   | i x    | 0.85                                | ٦ x            | 0.7      | =      | 131.07 | (78) |
| South 0.9x                                                                | 0.77                                       | X                 | 3.12                                     | X             | 82.59                                    | ×      | 0.85                                | = x            | 0.7      | =      | 106.25 | (78) |
| South 0.9x                                                                | 0.77                                       | X                 | 3.12                                     | X             | 55.42                                    | X      | 0.85                                | Х              | 0.7      | =      | 71.29  | (78) |
| South 0.9x                                                                | 0.77                                       | X                 | 3.12                                     | i x           | 40.4                                     | 7 x    | 0.85                                | x              | 0.7      |        | 51.97  | (78) |
| L .                                                                       |                                            | 1                 |                                          |               |                                          |        |                                     |                |          |        |        |      |
| Solar gains in                                                            | watts, calcul                              | ated              | for each mor                             | nth           |                                          | (83)m  | = Sum(74)m .                        | (82)m          |          |        |        |      |
| (83)m= 76.19                                                              | 129.17 177                                 | -                 | 225.52 260.5                             |               | 62.93 251.65                             | 224    | .36 193.73                          | 142.75         | 91.09    | 65.35  |        | (83) |
| Tota <mark>l gain</mark> s – i                                            | internal and s                             | solar             | (84)m = $(73)$                           | m + (         | 33)m , watts                             |        |                                     |                |          |        |        |      |
| (84)m= 483.76                                                             | 532.57 564                                 | .53               | 587.62 598.                              | 7 5           | 78.27 553.8                              | 534    | .52 518.06                          | 492.13         | 468.06   | 462.27 |        | (84) |
| 7. Mean inter                                                             | rnal temperat                              | ure (             | heating seas                             | on)           |                                          |        |                                     |                |          |        |        |      |
| Temperature                                                               |                                            |                   |                                          |               | area from Ta                             | ble 9, | Th1 (°C)                            |                |          |        | 21     | (85) |
| Utilisation fac                                                           | •                                          | •                 |                                          | •             |                                          |        | , ,                                 |                |          |        |        |      |
| Jan                                                                       | <del></del>                                | 1ar               | Apr Ma                                   | Ť             | Jun Jul                                  | A      | ug Sep                              | Oct            | Nov      | Dec    |        |      |
| (86)m= 1                                                                  | 1 '                                        | 1                 | 1 0.99                                   | ) (           | 0.98 0.97                                | 0.9    | 0.99                                | 1              | 1        | 1      |        | (86) |
| Mean interna                                                              | al temperatur                              | e in I            | iving area T1                            | (follo        | w stens 3 to                             | 7 in T | able 9c)                            |                | <u>'</u> |        |        |      |
| (87)m= 17.82                                                              | <del> </del>                               | .33               | 18.87 19.4                               | <u> </u>      | 0.03 20.41                               | 20.    |                                     | 19.17          | 18.44    | 17.83  |        | (87) |
| ` ′                                                                       | ! !                                        |                   | ļ.                                       |               | <u> </u>                                 |        |                                     |                |          |        |        |      |
| Taman a ratia                                                             | 18.44 18.                                  | <del></del>       | 18.5 18.5                                |               | 8.57 18.57                               | 18.5   | <u> </u>                            | 18.51          | 18.49    | 18.47  |        | (88) |
| Temperature                                                               |                                            | . <del>-</del> -> | 10.5                                     |               | !                                        |        | 10.55                               | 10.51          | 10.49    | 10.47  |        | (00) |
| (88)m= 18.43                                                              | <u> </u>                                   |                   |                                          | ~ 60          | m (see Table                             | e 9a)  |                                     |                |          |        |        |      |
| (88)m= 18.43 Utilisation fac                                              | ctor for gains                             |                   | 1                                        |               | <del>'</del>                             | T      |                                     |                |          |        |        | (00) |
| (88)m= 18.43                                                              | ctor for gains                             | for r             | est of dwellin<br>0.99 0.99              |               | 0.95 0.83                                | 0.8    | 0.97                                | 0.99           | 1        | 1      |        | (89) |
| Utilisation factors (89)m= 1  Mean internal                               | ctor for gains  1  1 ctor for gains        | e in t            | 0.99 0.99                                | elling        | 0.83 T2 (follow st                       | eps 3  | to 7 in Tabl                        |                | 1        | 1      |        | , ,  |
| (88)m= 18.43  Utilisation factors (89)m= 1                                | ctor for gains                             | e in t            | 0.99 0.99                                | elling        | 0.95 0.83                                | Į      | to 7 in Tabl                        | e 9c)<br>17.18 | 16.43    | 15.81  |        | (90) |
| Utilisation factors (89)m= 1  Mean internal                               | ctor for gains  1  1 ctor for gains        | e in t            | 0.99 0.99                                | elling        | 0.83 T2 (follow st                       | eps 3  | to 7 in Tabl                        | e 9c)<br>17.18 | 1        | 15.81  | 0.28   | , ,  |
| Utilisation factors (89)m= 1  Mean internal                               | ctor for gains  1  Al temperature 15.94 16 | e in t            | 0.99 0.99<br>he rest of dw<br>16.87 17.4 | elling        | 0.95 0.83<br>T2 (follow st<br>8.07 18.42 | eps 3  | to 7 in Tabl                        | e 9c)<br>17.18 | 16.43    | 15.81  | 0.28   | (90) |
| (88)m= 18.43  Utilisation factors (89)m= 1  Mean internation (90)m= 15.78 | ctor for gains  1  Al temperature 15.94 16 | e in t            | 0.99 0.99<br>he rest of dw<br>16.87 17.4 | elling<br>5 1 | 0.95 0.83<br>T2 (follow st<br>8.07 18.42 | eps 3  | to 7 in Tabl 39 17.92 f - fLA) × T2 | e 9c)<br>17.18 | 16.43    | 15.81  | 0.28   | (90) |

|                                      |           | •           | •            |                                         | •           | •         |                                |            |             | •            |                        |           |          |
|--------------------------------------|-----------|-------------|--------------|-----------------------------------------|-------------|-----------|--------------------------------|------------|-------------|--------------|------------------------|-----------|----------|
| (93)m= 16.34                         | 16.5      | 16.86       | 17.42        | 18                                      | 18.61       | 18.97     | 18.93                          | 18.47      | 17.73       | 16.99        | 16.37                  |           | (93)     |
| 8. Space hea                         |           |             |              |                                         |             |           | <b>T</b>                       | .1         | . —         | -0)          |                        |           |          |
| Set Ti to the rethe utilisation      |           |             | •            |                                         | ied at ste  | ep 11 of  | Table 9                        | o, so tha  | t II,m=(    | /6)m an      | d re-calc              | ulate     |          |
| Jan                                  | Feb       | Mar         | Apr          | May                                     | Jun         | Jul       | Aug                            | Sep        | Oct         | Nov          | Dec                    |           |          |
| Utilisation fac                      | tor for g | ains, hm    | <u> </u>     | ,                                       |             |           |                                |            |             |              |                        |           |          |
| (94)m= 1                             | 1         | 1           | 0.99         | 0.98                                    | 0.96        | 0.88      | 0.9                            | 0.97       | 0.99        | 1            | 1                      |           | (94)     |
| Useful gains,                        |           | , W = (94   | 4)m x (8     | 4)m                                     | r           | ı         | ī                              |            |             | ī            |                        |           |          |
| (95)m= 482.74                        | 531.02    | 562.01      | 583          | 587.96                                  | 552.27      | 486.72    | 481.18                         | 503.12     | 488.25      | 466.61       | 461.44                 |           | (95)     |
| Monthly avera                        |           | T T         | <del>-</del> |                                         | r           |           |                                |            |             |              |                        |           | (00)     |
| (96)m= 4.3                           | 4.9       | 6.5         | 8.9          | 11.7                                    | 14.6        | 16.6      | 16.4                           | 14.1       | 10.6        | 7.1          | 4.2                    |           | (96)     |
| Heat loss rate<br>(97)m= 4894.57     | 4696.37   |             | 3360.71      |                                         |             |           | x [(93)m<br>  <sub>968.7</sub> |            |             | 3916.09      | 4862.41                |           | (97)     |
| Space heating                        |           |             |              |                                         | l .         | l .       |                                |            |             | l .          | 4002.41                |           | (01)     |
| (98)m= 3282.4                        | 2799.11   |             | 1999.95      | 1402.58                                 | 0           | 0         | 0                              | 0          | 1718.57     |              | 3274.32                |           |          |
| ` /                                  |           | ļ           | ļ            |                                         |             |           | ITota                          | l per year | kWh/yeaı    | ) = Sum(9    | 8) <sub>15,912</sub> = | 19648.68  | (98)     |
| Space heating                        | a requir  | ement in    | k\/\/h/m²    | ?/vear                                  |             |           |                                |            | `           | ,            | ′                      | 248.72    | (99)     |
| ·                                    | • .       |             |              |                                         |             |           |                                |            |             |              | l                      | 240.72    |          |
| 9b. Energy records  This part is use |           |             | · ·          | Ĭ                                       |             |           | ting prov                      | idad by    | o comm      | unity cok    | nomo                   |           |          |
| Fraction of spa                      |           |             |              |                                         |             |           | <b>.</b>                       | •          |             | urnity SCI   | ienie.                 | 0         | (301)    |
| Fraction of spa                      | ace heat  | from co     | mmunity      | system                                  | 1 - (30)    | 1) =      |                                |            |             |              | [                      | 1         | (302)    |
| The community so                     |           |             |              |                                         |             |           | allows for                     | CHP and i  | ın to four  | other heat   | sources: th            |           | ` ′      |
| inclu <mark>des boi</mark> lers, h   |           |             |              |                                         |             |           |                                |            | ap to rour  | Janor Hoat   | -                      | io iditor |          |
| Fraction of hea                      | at from ( | Commun      | ity boiler   | s                                       |             |           |                                |            |             |              |                        | 1         | (303a)   |
| Fraction of tota                     | al space  | heat fro    | m Comn       | nunity bo                               | oilers      |           |                                |            | (3          | 02) x (303   | a) =                   | 1         | (304a)   |
| Factor for cont                      | rol and   | charging    | method       | (Table                                  | 4c(3)) fo   | r commu   | unity hea                      | iting sys  | tem         |              | j                      | 1.05      | (305)    |
| Distribution los                     |           |             |              | ,                                       | ` ,,        |           | •                              | 0,         |             |              |                        | 1.1       | (306)    |
|                                      |           | (10010      | . 20, 10. (  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ity modul   | .9 0,010  |                                |            |             |              | l                      | kWh/yea   | _        |
| Space heating Annual space           | -         | reauiren    | nent         |                                         |             |           |                                |            |             |              | [                      | 19648.68  | ٦        |
| Space heat fro                       | •         | •           |              |                                         |             |           |                                | (08) v (3( | 14a) v (30) | 5) x (306) : | _<br>_ [               | 22694.22  | (307a)   |
| •                                    |           | •           |              |                                         |             | . 0/ /    | <b>-</b>                       | , , ,      | , ,         | , , ,        | _ [<br>                |           | <u> </u> |
| Efficiency of se                     | econdar   | y/supple    | mentary      | neating                                 | system      | ın % (frc | m rable                        |            |             | ,            | إ                      | 0         | (308     |
| Space heating                        | require   | ment fro    | m secon      | dary/su                                 | oplemen     | tary syst | tem                            | (98) x (30 | 01) x 100 - | ÷ (308) =    |                        | 0         | (309)    |
| Water heating                        | I         |             |              |                                         |             |           |                                |            |             |              |                        |           |          |
| Annual water h                       |           | equirem     | ent          |                                         |             |           |                                |            |             |              |                        | 2102.07   |          |
| If DHW from co                       |           |             |              |                                         |             |           |                                |            |             |              | -                      |           | _<br>    |
| Water heat fro                       | m Comr    | nunity bo   | oilers       |                                         |             |           |                                | (64) x (30 | )3a) x (30  | 5) x (306) : | = [                    | 2427.89   | (310a)   |
| Electricity used                     | d for hea | at distribu | ution        |                                         |             |           | 0.01                           | × [(307a). | (307e) +    | · (310a)(    | [310e)] =              | 251.22    | (313)    |
| Cooling Syster                       | m Energ   | y Efficie   | ncy Rati     | 0                                       |             |           |                                |            |             |              |                        | 0         | (314)    |
| Space cooling                        | (if there | is a fixe   | d cooling    | g systen                                | n, if not e | enter 0)  |                                | = (107) ÷  | (314) =     |              | Ī                      | 0         | (315)    |
| Electricity for p                    | umps a    | nd fans v   | within dv    | vellina (1                              | Γable 4f)   | :         |                                |            |             |              | L                      |           | _        |
| mechanical ve                        |           |             |              |                                         |             |           | outside                        |            |             |              |                        | 0         | (330a)   |
|                                      |           |             |              |                                         |             |           |                                |            |             |              | L                      |           | _        |

| warm air heating system fans                                                             |                                        |                               |        | 0                      | (330b) |
|------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|--------|------------------------|--------|
| pump for solar water heating                                                             |                                        |                               |        | 0                      | (330g) |
| Total electricity for the above, kWh/year                                                | =(330a) + (330                         | b) + (330g) =                 |        | 0                      | (331)  |
| Energy for lighting (calculated in Appendix L)                                           |                                        |                               |        | 676.65                 | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                            |                                        |                               |        |                        |        |
|                                                                                          | Energy<br>kWh/year                     | Emission factoring kg CO2/kWh |        | nissions<br>J CO2/year |        |
| CO2 from other sources of space and water heating (not C Efficiency of heat source 1 (%) | CHP) P using two fuels repeat (363) to | (366) for the second          | d fuel | 65                     | (367a) |
| CO2 associated with heat source 1                                                        | 307b)+(310b)] x 100 ÷ (367b) x         | 0                             | =      | 8348.27                | (367)  |
| Electrical energy for heat distribution                                                  | [(313) x                               | 0.52                          | =      | 130.38                 | (372)  |
| Total CO2 associated with community systems                                              | (363)(366) + (368)(372                 | 2)                            | =      | 8478.65                | (373)  |
| CO2 associated with space heating (secondary)                                            | (309) x                                | 0                             | =      | 0                      | (374)  |
| CO2 associated with water from immersion heater or insta                                 | intaneous heater (312) x               | 0.22                          | =      | 0                      | (375)  |
| Total CO2 associated with space and water heating                                        | (373) + (374) + (375) =                |                               |        | 8478.65                | (376)  |
| CO2 associated with electricity for pumps and fans within                                | dwelling (331)) x                      | 0.52                          | =      | 0                      | (378)  |
| CO2 associated with electricity for lighting                                             | (332))) x                              | 0.52                          | =      | 351.18                 | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                   |                                        |                               |        | 8829.84                | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                 |                                        |                               |        | 111.77                 | (384)  |
| El rating (section 14)                                                                   |                                        |                               |        | 24.01                  | (385)  |

|                                                             |                                                                           | User D              | Details:         |             |                    |          |           |                       |               |
|-------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|------------------|-------------|--------------------|----------|-----------|-----------------------|---------------|
| Assessor Name:<br>Software Name:                            | Stroma FSAP 2012                                                          |                     | Stroma<br>Softwa |             |                    |          | Versio    | on: 1.0.3.4           |               |
|                                                             |                                                                           | Property            | Address:         | Unit 11     |                    |          |           |                       |               |
| Address: 1. Overall dwelling dimer                          | , london                                                                  |                     |                  |             |                    |          |           |                       |               |
| 1. Overall dwelling diffiel                                 | 1510115.                                                                  | Δre                 | a(m²)            |             | Av He              | ight(m)  |           | Volume(m <sup>3</sup> | )             |
| Basement                                                    |                                                                           | \(\frac{7.1.5}{1}\) | <u> </u>         | (1a) x      |                    | .9       | (2a) =    | 96.9                  | <b>)</b> (3a) |
| Total floor area TFA = (1a                                  | a)+(1b)+(1c)+(1d)+(1e)+(1                                                 | n)                  | 51               | (4)         |                    |          | _         |                       |               |
| Dwelling volume                                             |                                                                           |                     |                  |             | )+(3c)+(3d         | l)+(3e)+ | .(3n) =   | 96.9                  | (5)           |
| 2. Ventilation rate:                                        |                                                                           |                     |                  |             |                    |          |           |                       |               |
| <u> </u>                                                    | main seconda<br>heating heating                                           | ry                  | other            |             | total              |          |           | m³ per hou            | r             |
| Number of chimneys                                          |                                                                           | + [                 | 0                | =           | 0                  | x 4      | 40 =      | 0                     | (6a)          |
| Number of open flues                                        | 0 + 0                                                                     | <b>-</b> + -        | 0                | j = [       | 0                  | x 2      | 20 =      | 0                     | (6b)          |
| Number of intermittent far                                  | ns                                                                        |                     |                  |             | 2                  | <b>x</b> | 10 =      | 20                    | (7a)          |
| Number of passive vents                                     |                                                                           |                     |                  | Ī           | 0                  | x -      | 10 =      | 0                     | (7b)          |
| Number of flueless gas fir                                  | es                                                                        |                     |                  | Ī           | 0                  | X 4      | 40 =      | 0                     | (7c)          |
|                                                             |                                                                           |                     |                  | _           |                    |          | Air ch    | nanges per ho         |               |
| Infiltration due to objection                               | to fluor and fano (63) (6b) (7                                            | 7a) ı (7b) ı (      | (70) -           | _           |                    | _        |           |                       | _             |
|                                                             | s, flues and fans = (6a)+(6b)+(<br>een carried out or is intended, procee |                     |                  | ontinue fr  | 20<br>rom (9) to ( |          | ÷ (5) =   | 0.21                  | (8)           |
| Number of storeys in th                                     |                                                                           |                     |                  |             | (2) 22 (           |          |           | 0                     | (9)           |
| Additional infiltration                                     |                                                                           |                     |                  |             |                    | [(9)     | -1]x0.1 = | 0                     | (10)          |
|                                                             | 25 for steel or timber frame o                                            |                     |                  | •           | ruction            |          |           | 0                     | (11)          |
| if both types of wall are pre<br>deducting areas of opening | esent, use the value corresponding to                                     | o the great         | ter wall area    | a (after    |                    |          |           |                       |               |
| , ,                                                         | oor, enter 0.2 (unsealed) or 0                                            | .1 (seale           | ed), else        | enter 0     |                    |          |           | 0                     | (12)          |
| If no draught lobby, ento                                   | ,                                                                         | `                   | ,,               |             |                    |          |           | 0                     | (13)          |
| Percentage of windows                                       | and doors draught stripped                                                |                     |                  |             |                    |          |           | 0                     | (14)          |
| Window infiltration                                         |                                                                           |                     | 0.25 - [0.2      | x (14) ÷ 1  | 00] =              |          |           | 0                     | (15)          |
| Infiltration rate                                           |                                                                           |                     | (8) + (10)       | + (11) + (1 | 12) + (13) -       | + (15) = |           | 0                     | (16)          |
| •                                                           | q50, expressed in cubic metre                                             | •                   | •                | •           | etre of e          | nvelope  | area      | 20                    | (17)          |
| •                                                           | ty value, then $(18) = [(17) \div 20] + (18)$                             |                     |                  |             |                    |          |           | 1.21                  | (18)          |
|                                                             | s if a pressurisation test has been do                                    | ne or a de          | gree air pei     | meability   | is being us        | sed      |           |                       | ¬             |
| Number of sides sheltered<br>Shelter factor                 |                                                                           |                     | (20) = 1 - [     | 0.075 x (1  | 19)1 =             |          |           | 1                     | (19)          |
| Infiltration rate incorporati                               | ng shelter factor                                                         |                     | (21) = (18)      |             | - /1               |          |           | 0.92                  | (21)          |
| Infiltration rate modified for                              |                                                                           |                     | (= 1)            | (==)        |                    |          |           | 1.12                  | (21)          |
|                                                             | Mar Apr May Jun                                                           | Jul                 | Aug              | Sep         | Oct                | Nov      | Dec       |                       |               |
| Monthly average wind spe                                    | eed from Table 7                                                          |                     |                  |             |                    | •        |           | 1                     |               |
| <del> </del>                                                | 4.9 4.4 4.3 3.8                                                           | 3.8                 | 3.7              | 4           | 4.3                | 4.5      | 4.7       |                       |               |
| Wind Factor (OC.)                                           | ))                                                                        | 1                   | 1                |             | 1                  | 1        |           | I                     |               |
| Wind Factor $(22a)m = (22a)m = 1.27$ 1.25 1                 | 2)m ÷ 4<br>1.23 1.1 1.08 0.95                                             | 0.95                | 0.92             | 1           | 1.08               | 1.12     | 1.18      |                       |               |
| (22a)m= 1.27 1.25 1                                         | 1.1 1.00 0.95                                                             | 0.95                | 0.92             | ı           | 1.08               | 1.12     | 1.10      | I                     |               |

| 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.39         | 1.37                                         | 1.23            | 1.2         | 1.06                     | 1.06       | 1.03             | 1.12         | 1.2            | 1.26                                             | 1.31              |               |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------|-----------------|-------------|--------------------------|------------|------------------|--------------|----------------|--------------------------------------------------|-------------------|---------------|---------------|
| Calculate effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | •                                            | rate for t      | he appli    | cable ca                 | se         |                  |              |                | •                                                | •                 |               |               |
| If mechanicate of the street o |              |                                              | andiv N. (2     | 3h) - (22c  | a) × Emy (c              | auation (N | JEN otho         | nuico (22h   | \ _ (222)      |                                                  |                   | 0             | (2:           |
| If balanced with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0 11                                         |                 | , ,         | ,                        | . `        | ,, .             | •            | ) = (23a)      |                                                  |                   | 0             | (2:           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -                                            | -               | _           |                          |            |                  |              | 21- \ <i>(</i> | 005) [                                           | 4 (00-)           | 0             | (2:           |
| a) If balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a mecna      | anicai ve                                    | entilation<br>0 | with ne     | at recove                | ery (MVI   | 1R) (24a         | 0 = (22)     | 2b)m + (2<br>0 | 23b) × [                                         | 1 – (23c)         | i ÷ 100]<br>I | (24           |
| ′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | <u> </u>                                     | <u> </u>        |             |                          | <u> </u>   | <u> </u>         |              |                |                                                  |                   | J             | (2            |
| b) If balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ea mecha     | anicai ve                                    | entilation<br>0 | without     | neat rec                 | overy (N   | //V) (24b        | 0)m = $(22)$ | <u> </u>       | <del>-                                    </del> |                   | 1             | (2            |
| - /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>     | <u> </u>                                     |                 |             | <u> </u>                 | <u> </u>   | <u> </u>         |              | 0              | 0                                                | 0                 | J             | (2            |
| c) If whole h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                              |                 | •           | /e input v<br>o); otherv |            |                  |              | 5 v (23h       | <b>,</b> )                                       |                   |               |               |
| 24c)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5 7        | 0                                            | 0               | 0           | 0                        | 0          | 0                | 0            | 0              | 0                                                | 0                 | 1             | (2            |
| d) If natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | <u> </u>                                     |                 |             |                          |            |                  |              |                |                                                  |                   | J             | •             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                              |                 |             | erwise (2                |            |                  |              | 0.5]           |                                                  |                   |               |               |
| 24d)m= 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.39         | 1.37                                         | 1.23            | 1.2         | 1.06                     | 1.06       | 1.03             | 1.12         | 1.2            | 1.26                                             | 1.31              | ]             | (2            |
| Effective air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | change       | rate - er                                    | nter (24a       | or (24b     | o) or (24                | c) or (24  | d) in box        | (25)         |                |                                                  | !                 |               |               |
| 25)m= 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.39         | 1.37                                         | 1.23            | 1.2         | 1.06                     | 1.06       | 1.03             | 1.12         | 1.2            | 1.26                                             | 1.31              |               | (2            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 11         |                                              |                 |             |                          |            |                  |              |                |                                                  |                   |               |               |
| 3. Heat losse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                              |                 |             | Not Ar                   | 00         | LI voli          |              | A V I I        |                                                  | le volue          |               | A V I         |
| LEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gros<br>area |                                              | Openin<br>m     | -           | Net Ar<br>A ,r           |            | U-valu<br>W/m2   |              | A X U<br>(W/I  | K)                                               | k-value<br>kJ/m²- |               | A X k<br>kJ/K |
| oors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                              |                 |             | 1.9                      | x          | 1.4              | = [          | 2.66           |                                                  |                   |               | (2            |
| /indows Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e 1          |                                              |                 |             | 1.67                     | x1,        | <br>/[1/( 4.8 )+ | 0.04] =      | 6.72           | Ħ                                                |                   |               | (2            |
| Vindows Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                              |                 |             | 0.84                     |            | /[1/( 4.8 )+     | \ \ \ \ \    | 3.38           | Ħ                                                |                   |               | (2            |
| /alls Type1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.3         | <u>,                                    </u> | 2.51            |             | 42.79                    |            | 2.1              |              | 89.86          | ╡ ,                                              |                   |               | (2            |
| Valls Type1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                              |                 | _           |                          | =          |                  | =            |                | 북 남                                              |                   | ╣             |               |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.3         |                                              | 1.9             | _           | 13.49                    | =          | 2.1              | =            | 28.33          | ᆗ ¦                                              |                   | ┥             | (2            |
| loof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.9         |                                              | 0               |             | 31.9                     | ×          | 2.3              | =            | 73.37          |                                                  |                   |               | (3            |
| otal area of e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                              |                 |             | 92.59                    |            |                  |              |                |                                                  |                   |               | (3            |
| for windows and<br>include the area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                              |                 |             |                          | ated using | formula 1        | /[(1/U-valu  | e)+0.04] a     | as given in                                      | paragraph         | 1 3.2         |               |
| abric heat los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                              |                 |             |                          |            | (26)(30)         | + (32) =     |                |                                                  |                   | 204.33        | 3 (3          |
| eat capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | ,                                            | ,               |             |                          |            |                  | ((28)        | .(30) + (32    | 2) + (32a).                                      | (32e) =           | 0             | (3            |
| hermal mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | `            | ,                                            | P = Cm ÷        | - TFA) ir   | n kJ/m²K                 |            |                  |              | tive Value     |                                                  | ` ,               | 450           | (3            |
| or design assess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |                                              |                 |             |                          |            | ecisely the      | e indicative | values of      | TMP in Ta                                        | able 1f           | 100           | (             |
| an be used inste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ad of a de   | tailed calc                                  | ulation.        |             |                          |            | •                |              |                |                                                  |                   |               |               |
| hermal bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es : S (L    | x Y) cal                                     | culated (       | using Ap    | pendix ł                 | <          |                  |              |                |                                                  |                   | 14            | (3            |
| details of therma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | are not kn                                   | own (36) =      | = 0.15 x (3 | 31)                      |            |                  | (00)         | (0.0)          |                                                  |                   |               |               |
| otal fabric he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                              |                 |             |                          |            |                  |              | (36) =         |                                                  |                   | 218.33        | 3 (3          |
| entilation hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | i                                            | <u> </u>        |             |                          |            |                  | ` '          |                | 25)m x (5)                                       |                   | 1             |               |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb          | Mar                                          | Apr             | May         | Jun                      | Jul        | Aug              | Sep          | Oct            | Nov                                              | Dec               |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.6         | 43.71                                        | 39.25           | 38.36       | 33.9                     | 33.9       | 33.01            | 35.68        | 38.36          | 40.14                                            | 41.93             |               | (3            |
| 8)m= 45.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                              |                 |             |                          |            |                  |              |                |                                                  |                   |               |               |
| 8)m= 45.5<br>eat transfer of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | coefficier   | nt, W/K                                      |                 |             |                          |            |                  | (39)m        | = (37) + (3    | 38)m                                             |                   | _             |               |

| Heat Ic    | ss para     | meter (H     | HLP), W/                             | ′m²K        |             |              |             |              | (40)m                 | = (39)m ÷          | · (4)                  |           |         |      |
|------------|-------------|--------------|--------------------------------------|-------------|-------------|--------------|-------------|--------------|-----------------------|--------------------|------------------------|-----------|---------|------|
| (40)m=     | 5.17        | 5.16         | 5.14                                 | 5.05        | 5.03        | 4.95         | 4.95        | 4.93         | 4.98                  | 5.03               | 5.07                   | 5.1       |         |      |
|            |             |              | /=                                   |             |             |              | -           | -            | ,                     | Average =          | Sum(40) <sub>1</sub> . | 12 /12=   | 5.05    | (40) |
| Numbe      | i           |              | nth (Tab                             |             |             |              |             |              |                       |                    | l                      |           |         |      |
| (44)       | Jan         | Feb          | Mar                                  | Apr         | May         | Jun          | Jul         | Aug          | Sep                   | Oct                | Nov                    | Dec       |         | (44) |
| (41)m=     | 31          | 28           | 31                                   | 30          | 31          | 30           | 31          | 31           | 30                    | 31                 | 30                     | 31        |         | (41) |
| 4 207      |             |              |                                      |             |             |              |             |              |                       |                    |                        | 1.20/1./  |         |      |
| 4. VVa     | ter neat    | ing enei     | rgy requi                            | rement:     |             |              |             |              |                       |                    |                        | kWh/ye    | ar:     |      |
| if TF      |             |              | N<br>+ 1.76 x                        | [1 - exp    | (-0.0003    | 349 x (TF    | FA -13.9    | )2)] + 0.0   | 0013 x ( <sup>-</sup> | ΓFA -13.           |                        | 72        |         | (42) |
| Reduce     | the annua   | al average   | ater usaç<br>hot water<br>person per | usage by    | 5% if the d | lwelling is  | designed t  |              |                       | se target o        |                        | .04       |         | (43) |
|            | Jan         | Feb          | Mar                                  | Apr         | May         | Jun          | Jul         | Aug          | Sep                   | Oct                | Nov                    | Dec       |         |      |
| Hot wate   | er usage ii | n litres per | day for ea                           | ach month   | Vd,m = fa   | ctor from    | Table 1c x  | (43)         |                       |                    | •                      |           |         |      |
| (44)m=     | 82.54       | 79.54        | 76.54                                | 73.54       | 70.54       | 67.54        | 67.54       | 70.54        | 73.54                 | 76.54              | 79.54                  | 82.54     |         |      |
| Enorgy     | contant of  | hot water    | used - cal                           | culated me  | anthly = 1  | 100 v Vd r   | n v nm v F  | Tm / 2600    |                       |                    | m(44) <sub>112</sub> = |           | 900.48  | (44) |
|            | 122.41      | 107.06       | 110.48                               | 96.32       | 92.42       | 79.75        | 73.9        | 84.8         | 85.81                 | 100.01             | 109.17                 | 118.55    |         |      |
| (45)m=     | 122.41      | 107.00       | 110.40                               | 90.32       | 92.42       | 79.75        | 73.9        | 04.0         |                       |                    | m(45) <sub>112</sub> = | <u> </u>  | 1180.67 | (45) |
| If instant | aneous w    | ater heatii  | ng at point                          | of use (no  | hot water   | storage),    | enter 0 in  | boxes (46)   |                       | rotar – ou         | 111(40)112 -           |           | 1100.07 | (,   |
| (46)m=     | 18.36       | 16.06        | 16.57                                | 14.45       | 13.86       | 11.96        | 11.08       | 12.72        | 12.87                 | 15                 | 16.37                  | 17.78     |         | (46) |
|            | storage     |              | 7                                    |             | . \         |              |             |              |                       |                    |                        |           |         |      |
|            |             |              | includir                             |             |             |              |             |              | ame ves               | sel                |                        | 160       |         | (47) |
|            | -           | _            | ind no ta<br>hot wate                |             | _           |              |             | , ,          | ers) ente             | er 'O' in <i>(</i> | 47)                    |           |         |      |
|            | storage     |              | not wate                             | , (uno ii   | ioiaaoo ii  | notantai     | 10000 00    | THE ECH      | 010) 01110            | ) III (            | 11)                    |           |         |      |
| a) If m    | anufact     | urer's de    | eclared l                            | oss facto   | or is kno   | wn (kWł      | n/day):     |              |                       |                    |                        | 0         |         | (48) |
| Tempe      | rature fa   | actor fro    | m Table                              | 2b          |             |              |             |              |                       |                    |                        | 0         |         | (49) |
| •          |             |              | storage                              | -           |             |              |             | (48) x (49)  | ) =                   |                    | 1                      | 10        |         | (50) |
| •          |             |              | eclared of<br>factor fr              | -           |             |              |             |              |                       |                    |                        | 00        |         | (51) |
|            |             | _            | ee secti                             |             | C Z (KVVI   | ii/iiti G/GC | iy <i>)</i> |              |                       |                    | 0.                     | 02        |         | (31) |
|            | •           | from Ta      |                                      |             |             |              |             |              |                       |                    | 1.                     | 03        |         | (52) |
| Tempe      | rature fa   | actor fro    | m Table                              | 2b          |             |              |             |              |                       |                    | 0                      | .6        |         | (53) |
| •          |             |              | storage                              | , kWh/ye    | ear         |              |             | (47) x (51)  | ) x (52) x (          | 53) =              | 1.                     | 03        |         | (54) |
|            | ` ' '       | (54) in (5   | ,                                    |             |             |              |             |              |                       |                    | 1.                     | 03        |         | (55) |
| Water      | storage     | loss cal     | culated f                            | or each     | month       |              |             | ((56)m = (   | 55) × (41)ı           | m                  |                        |           |         |      |
| (56)m=     | 32.01       | 28.92        | 32.01                                | 30.98       | 32.01       | 30.98        | 32.01       | 32.01        | 30.98                 | 32.01              | 30.98                  | 32.01     |         | (56) |
| If cylinde | r contains  | dedicate     | d solar sto                          | rage, (57)ı | n = (56)m   | x [(50) – (  | H11)] ÷ (5  | 0), else (57 | 7)m = (56)            | m where (          | H11) is fro            | m Appendi | кH      |      |
| (57)m=     | 32.01       | 28.92        | 32.01                                | 30.98       | 32.01       | 30.98        | 32.01       | 32.01        | 30.98                 | 32.01              | 30.98                  | 32.01     |         | (57) |
| Primar     | y circuit   | loss (ar     | nual) fro                            | m Table     | 3           |              |             |              |                       |                    |                        | 0         |         | (58) |
|            |             |              | culated t                            |             | ,           | •            | . ,         | , ,          |                       | _                  |                        |           |         |      |
| `          |             |              | rom Tab                              |             |             |              | ı —         | <del></del>  |                       |                    | <u> </u>               |           |         | (50) |
| (59)m=     | 23.26       | 21.01        | 23.26                                | 22.51       | 23.26       | 22.51        | 23.26       | 23.26        | 22.51                 | 23.26              | 22.51                  | 23.26     |         | (59) |

| Combi loss calculated for each month (61)m = (60) - 365 x (41)m = (60) m = (61) m =  | Combines calculated for each month (61)m = (60) ÷ 365 x (41)m                                                                | (04) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------|
| Total heat required for water heating calculated for each month (62)m = 0.85 x (45)m + (46)m + (57)m + (59)m + (61)m (62)m = 177.88   169.08   166.76   149.81   147.09   133.24   129.18   140.08   139.31   156.28   162.66   173.82   (62)   Solar D-MV input calculated using Appendix G or Appendix H (negative quantity) (enter f) if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHS applies, see Appendix G) (63)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              |      |
| (62)   (62)   (77.69   156.99   105.75   149.81   147.69   133.24   129.18   140.08   139.31   155.28   162.66   173.82   (62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                              | (01) |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter for if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              | (62) |
| Casima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              | (62) |
| Column   C   |                                                                                                                              |      |
| Output from water heater  (64)m= 177.69   156.99   165.75   149.81   147.69   133.24   129.18   140.08   139.31   155.28   162.66   173.82    Output from water heater (annual):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              | (63) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              | (00) |
| Couput from water heater (annual)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |      |
| Heat gains from water heating, kWh/month 0.25 ´ [0.85 x (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m] (65)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | (64) |
| (65)ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              | (04) |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | (05) |
| Metabolic gains (Table 5), Watts   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   (66)m   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   85.98   8   |                                                                                                                              | (65) |
| Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  (66)nl= 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 | include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating             |      |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5. Internal gains (see Table 5 and 5a):                                                                                      |      |
| Cooking gains (calculated in Appendix L, equation L9 or L9a), also see Table 5   Cooking gains (calculated in Appendix L, equation L13 or L13a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metabolic gains (Table 5), Watts                                                                                             |      |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5  (67)m= 29.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                              |      |
| (67)   29.11   25.86   21.03   15.92   11.9   10.05   10.86   14.11   18.94   24.05   28.07   29.92   (67)   Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5   (68)   149.83   151.39   147.47   139.13   128.6   118.7   112.09   110.54   114.45   122.8   133.32   143.22   (68)   Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5   (69)   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6 | (66)m= 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98 85.98                                               | (66) |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5  (68)m= 149.83 151.39 147.47 139.13 128.6 118.7 112.09 110.54 114.45 122.8 133.32 143.22 (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5  (69)m= 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5                                              |      |
| (68)   149.83   151.39   147.47   138.13   128.6   118.7   112.09   110.54   114.45   122.8   133.32   143.22   (68)   Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5   (69)   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31.6   31. | (67)m= 29.11 25.86 21.03 15.92 11.9 10.05 10.86 14.11 18.94 24.05 28.07 29.92                                                | (67) |
| Cooking gains (calculated in Appendix L, equation L15 of L15a), also see Table 5  (69)m= 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | App <mark>liance</mark> s gains (ca <mark>lculat</mark> ed in Appendix L, equation L13 or L13a), also see Table 5            |      |
| Rest   Color   | (68)m= 149.83 151.39 147.47 139.13 128.6 118.7 112.09 110.54 114.45 122.8 133.32 143.22                                      | (68) |
| Pumps and fans gains (Table 5a) (70)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5                                             |      |
| (70)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (69)m= 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6                                                                               | (69) |
| Losses e.g. evaporation (negative values) (Table 5) (71)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pumps and fans gains (Table 5a)                                                                                              |      |
| (71)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (70)m= 0 0 0 0 0 0 0 0 0 0 0 0                                                                                               | (70) |
| Water heating gains (Table 5) (72)m= 79.72 77.99 74.39 69.49 66.32 61.84 58.04 62.91 64.64 69.71 75.43 77.99 (72)  Total internal gains = (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m (73)m= 307.46 304.02 291.68 273.33 255.61 239.38 229.78 236.35 246.83 265.35 285.61 299.93 (73)  6. Solar gains:  Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.  Orientation: Access Factor Table 6d Table 6b Table 6c (W)  East 0.9x 1 x 1.67 x 19.64 x 0.85 x 0.7 = 13.52 (76) East 0.9x 1 x 1.67 x 38.42 x 0.85 x 0.7 = 26.46 (76) East 0.9x 1 x 1.67 x 63.27 x 0.85 x 0.7 = 43.57 (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Losses e.g. evaporation (negative values) (Table 5)                                                                          |      |
| (72)m=       79.72       77.99       74.39       69.49       66.32       61.84       58.04       62.91       64.64       69.71       75.43       77.99       (72)         Total internal gains =       (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m         (73)m=       307.46       304.02       291.68       273.33       255.61       239.38       229.78       236.35       246.83       265.35       285.61       299.93       (73)         6. Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.         Orientation: Access Factor Table 6d       Area Table 6a Table 6b Table 6c       (W)         East 0.9x 1       x       1.67       x       19.64       x       0.85       x       0.7       =       13.52       (76)         East 0.9x 1       x       1.67       x       38.42       x       0.85       x       0.7       =       26.46       (76)         East 0.9x 1       x       1.67       x       63.27       x       0.85       x       0.7       =       43.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (71)m= -68.78 -68.78 -68.78 -68.78 -68.78 -68.78 -68.78 -68.78 -68.78 -68.78 -68.78 -68.78 -68.78                            | (71) |
| Total internal gains =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water heating gains (Table 5)                                                                                                |      |
| (73)m=       307.46       304.02       291.68       273.33       255.61       239.38       229.78       236.35       246.83       265.35       285.61       299.93       (73)         6. Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.         Orientation: Access Factor Table 6d       Area Table 6a       Flux Table 6b       Table 6b       FF Table 6c       Gains (W)         East 0.9x 1       x 1.67       x 19.64       x 0.85       x 0.7       = 13.52       (76)         East 0.9x 1       x 1.67       x 38.42       x 0.85       x 0.7       = 26.46       (76)         East 0.9x 1       x 1.67       x 63.27       x 0.85       x 0.7       = 43.57       (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (72)m= 79.72 77.99 74.39 69.49 66.32 61.84 58.04 62.91 64.64 69.71 75.43 77.99                                               | (72) |
| (73)m=       307.46       304.02       291.68       273.33       255.61       239.38       229.78       236.35       246.83       265.35       285.61       299.93       (73)         6. Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.         Orientation: Access Factor Table 6d       Area Table 6a       Flux Table 6b       Table 6b       FF Table 6c       Gains (W)         East 0.9x 1       x 1.67       x 19.64       x 0.85       x 0.7       = 13.52       (76)         East 0.9x 1       x 1.67       x 38.42       x 0.85       x 0.7       = 26.46       (76)         East 0.9x 1       x 1.67       x 63.27       x 0.85       x 0.7       = 43.57       (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$                                               |      |
| Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.  Orientation: Access Factor Area Flux $g_{-}$ FF Gains Table 6d $m^2$ Table 6a Table 6b Table 6c (W)  East $0.9x$ 1 x $1.67$ x $19.64$ x $0.85$ x $0.7$ = $13.52$ (76)  East $0.9x$ 1 x $1.67$ x $1.67$ x $18.42$ x $1.67$ x $19.64$ x $19.$ |                                                                                                                              | (73) |
| Orientation:       Access Factor Table 6d       Area m²       Flux Table 6a $g_{-}$ Table 6b       FF Table 6c       Gains (W)         East 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6. Solar gains:                                                                                                              |      |
| Table 6d m <sup>2</sup> Table 6a Table 6b Table 6c (W)  East 0.9x 1 x 1.67 x 19.64 x 0.85 x 0.7 = 13.52 (76)  East 0.9x 1 x 1.67 x 38.42 x 0.85 x 0.7 = 26.46 (76)  East 0.9x 1 x 1.67 x 63.27 x 0.85 x 0.7 = 43.57 (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. |      |
| East 0.9x 1 x 1.67 x 19.64 x 0.85 x 0.7 = 13.52 (76)  East 0.9x 1 x 1.67 x 38.42 x 0.85 x 0.7 = 26.46 (76)  East 0.9x 1 x 1.67 x 63.27 x 0.85 x 0.7 = 43.57 (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>0</b> –                                                                                                                   |      |
| East 0.9x 1 x 1.67 x 38.42 x 0.85 x 0.7 = 26.46 (76) East 0.9x 1 x 1.67 x 63.27 x 0.85 x 0.7 = 43.57 (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 6d m² Table 6a Table 6b Table 6c (W)                                                                                   |      |
| East 0.9x 1 x 1.67 x 63.27 x 0.85 x 0.7 = 43.57 (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | East 0.9x 1 x 1.67 x 19.64 x 0.85 x 0.7 = 13.52                                                                              | (76) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | East 0.9x 1 x 1.67 x 38.42 x 0.85 x 0.7 = 26.46                                                                              | (76) |
| East 0.9x 1 x 1.67 x 92.28 x 0.85 x 0.7 = 63.54 (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | East 0.9x 1 x 1.67 x 63.27 x 0.85 x 0.7 = 43.57                                                                              | (76) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | East 0.9x 1 x 1.67 x 92.28 x 0.85 x 0.7 = 63.54                                                                              | (76) |
| East 0.9x 1 x 1.67 x 113.09 x 0.85 x 0.7 = 77.88 (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | East 0.9x 1 x 1.67 x 113.09 x 0.85 x 0.7 = 77.88                                                                             | (76) |

|              |                                              |             |           |            |       |               | _ ,         |                                                  | _        |               |          |       |      |
|--------------|----------------------------------------------|-------------|-----------|------------|-------|---------------|-------------|--------------------------------------------------|----------|---------------|----------|-------|------|
| East         | 0.9x 1                                       | X           | 1.6       | 67         | x     | 115.77        | X           | 0.85                                             | X        | 0.7           | =        | 79.72 | (76) |
| East         | 0.9x 1                                       | x           | 1.6       | 67         | X     | 110.22        | x           | 0.85                                             | X        | 0.7           | =        | 75.9  | (76) |
| East         | 0.9x 1                                       | x           | 1.6       | 67         | X     | 94.68         | x           | 0.85                                             | X        | 0.7           | =        | 65.19 | (76) |
| East         | 0.9x 1                                       | x           | 1.6       | 67         | X     | 73.59         | X           | 0.85                                             | X        | 0.7           | =        | 50.67 | (76) |
| East         | 0.9x 1                                       | x           | 1.6       | 67         | X     | 45.59         | X           | 0.85                                             | X        | 0.7           | =        | 31.39 | (76) |
| East         | 0.9x 1                                       | x           | 1.6       | 67         | X     | 24.49         | x           | 0.85                                             | X        | 0.7           | =        | 16.86 | (76) |
| East         | 0.9x 1                                       | x           | 1.6       | 67         | X     | 16.15         | x           | 0.85                                             | X        | 0.7           | =        | 11.12 | (76) |
| West         | 0.9x 0.77                                    | x           | 3.0       | 34         | X     | 19.64         | x [         | 0.85                                             | x        | 0.7           | =        | 6.8   | (80) |
| West         | 0.9x 0.77                                    | x           | 3.0       | 34         | X     | 38.42         | x           | 0.85                                             | x        | 0.7           | =        | 13.31 | (80) |
| West         | 0.9x 0.77                                    | ×           | 0.8       | 34         | X     | 63.27         | x           | 0.85                                             | X        | 0.7           | =        | 21.92 | (80) |
| West         | 0.9x 0.77                                    | x           | 0.8       | 34         | x     | 92.28         | X           | 0.85                                             | x        | 0.7           |          | 31.96 | (80) |
| West         | 0.9x 0.77                                    | ×           | 0.8       | 34         | x     | 113.09        | ×           | 0.85                                             | x        | 0.7           |          | 39.17 | (80) |
| West         | 0.9x 0.77                                    | ×           | 0.0       | 34         | x     | 115.77        | x           | 0.85                                             | x        | 0.7           | =        | 40.1  | (80) |
| West         | 0.9x 0.77                                    | x           | 0.0       | 34         | x     | 110.22        | T x         | 0.85                                             | x        | 0.7           | =        | 38.18 | (80) |
| West         | 0.9x 0.77                                    | x           | 0.0       | 34         | x     | 94.68         | X           | 0.85                                             | x        | 0.7           | =        | 32.79 | (80) |
| West         | 0.9x 0.77                                    | x           | 0.0       | 34         | x     | 73.59         | X           | 0.85                                             | ×        | 0.7           | =        | 25.49 | (80) |
| West         | 0.9x 0.77                                    | x           | 0.0       | 34         | x     | 45.59         | X           | 0.85                                             | x        | 0.7           | =        | 15.79 | (80) |
| West         | 0.9x 0.77                                    | x           | 0.0       | 34         | X     | 24.49         | Х           | 0.85                                             | Х        | 0.7           | =        | 8.48  | (80) |
| West         | 0.9x 0.77                                    | x           | 0.8       | 34         | х     | 16.15         | 7 x         | 0.85                                             | x        | 0.7           |          | 5.59  | (80) |
|              |                                              |             |           |            |       |               |             |                                                  |          |               |          |       |      |
| Solar gai    | ns in watts, c                               | alculated   | for eac   | h month    |       |               | (83)m       | = Sum(74)m .                                     | (82)m    |               |          |       |      |
| (83)m= 2     | 20.33 39.76                                  | 65.49       | 95.51     | 117.05     | 11    | 19.82 114.07  | 97.9        | 76.16                                            | 47.18    | 25.35         | 16.72    |       | (83) |
| Total gair   | ns – internal                                | and solar   | (84)m =   | = (73)m    | 3) +  | 33)m , watts  |             |                                                  |          |               |          |       |      |
| (84)m = 3    | 27.78 343.79                                 | 357.16      | 368.84    | 372.65     | 3     | 59.2 343.85   | 334.        | 322.99                                           | 312.53   | 310.96        | 316.64   |       | (84) |
| 7. Mean      | n internal tem                               | perature    | (heating  | seasor     | n)    |               |             |                                                  |          |               |          |       |      |
| Temper       | ature during                                 | neating p   | eriods ir | n the livi | ng a  | area from Ta  | ıble 9,     | Th1 (°C)                                         |          |               |          | 21    | (85) |
| Utilisatio   | on factor for g                              | ains for l  | iving are | ea, h1,m   | า (ระ | ee Table 9a)  |             |                                                  |          |               |          |       | _    |
|              | Jan Feb                                      | Mar         | Apr       | May        |       | Jun Jul       | Αι          | ug Sep                                           | Oct      | Nov           | Dec      |       |      |
| (86)m=       | 1 1                                          | 1           | 1         | 0.99       | (     | 0.99          | 0.9         | 7 0.99                                           | 1        | 1             | 1        |       | (86) |
| Mean in      | iternal tempe                                | rature in   | living ar | ea T1 (f   | ollo  | w steps 3 to  | 7 in T      | able 9c)                                         |          |               |          |       |      |
| (87)m= 1     | 17.82 17.97                                  | 18.31       | 18.84     | 19.41      |       | 20 20.38      | 20.3        | 19.87                                            | 19.14    | 18.42         | 17.83    |       | (87) |
| Temper       | ature during                                 | neating p   | eriods ir | rest of    | dw    | elling from T | able 9      | ). Th2 (°C)                                      |          | •             | •        | •     |      |
| · · · · ·    | 18.41 18.42                                  | 18.43       | 18.47     | 18.48      | 1     | 8.53 18.53    | 18.5        | <del>`                                    </del> | 18.48    | 18.47         | 18.45    |       | (88) |
| Litilication | on factor for g                              | uaine for i | ract of d | wolling    | h2    | m (soo Table  | 2 (22)      |                                                  |          |               | <u> </u> |       |      |
| (89)m=       | 1 1                                          | 1           | 0.99      | 0.99       | 1     | 0.96 0.84     | 0.8         | 7 0.97                                           | 0.99     | 1             | 1        |       | (89) |
|              |                                              | ļ           |           | <u> </u>   |       | <u> </u>      | -           | !                                                |          |               | '        |       | ()   |
|              | iternal tempe                                | 1           |           | I          | Ť     | <u> </u>      | T T         |                                                  |          | 16.4          | 15.70    |       | (90) |
| (90)m= 1     | 15.77 15.92                                  | 16.27       | 16.82     | 17.4       | 1     | 8.01 18.37    | 18.3        |                                                  | 17.14    | 16.4          | 15.79    | 0.50  |      |
|              |                                              |             |           |            |       |               |             | I                                                | LA = LIV | ing area - (4 | +) =     | 0.56  | (91) |
|              |                                              |             |           |            |       |               |             |                                                  |          |               |          |       |      |
| _            | iternal tempe                                |             |           |            | _     | · ·           | <del></del> | <del>- i</del> -                                 |          |               |          | ı     |      |
| (92)m= 1     | nternal tempe<br>16.93 17.08<br>djustment to | 17.42       | 17.96     | 18.54      | 1     | 9.14 19.51    | 19.4        | 19                                               | 18.27    |               | 16.94    |       | (92) |

|                                      |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           |                    |                    |             | 1                | ·           |          |        |
|--------------------------------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------|--------------------|--------------------|-------------|------------------|-------------|----------|--------|
| (93)m= 16.93                         | 17.08     | 17.42       | 17.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.54      | 19.14       | 19.51     | 19.47              | 19                 | 18.27       | 17.54            | 16.94       |          | (93)   |
| 8. Space hea                         |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           |                    |                    |             |                  |             |          |        |
| Set Ti to the return the utilisation |           |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | ed at ste   | ep 11 of  | Table 9            | o, so tha          | t Ti,m=(    | 76)m an          | d re-calc   | ulate    |        |
| Jan                                  | Feb       | Mar         | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May        | Jun         | Jul       | Aug                | Sep                | Oct         | Nov              | Dec         |          |        |
| Utilisation fac                      |           | l           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |             |           | _ 3                |                    |             |                  |             |          |        |
| (94)m= 1                             | 1         | 1           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99       | 0.97        | 0.93      | 0.94               | 0.98               | 0.99        | 1                | 1           |          | (94)   |
| Useful gains,                        | hmGm      | , W = (94   | 4)m x (84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4)m        |             |           | •                  |                    |             |                  |             |          |        |
| (95)m= 327.09                        | 342.89    | 355.83      | 366.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 367.85     | 348.07      | 318.4     | 313.43             | 316.45             | 310.54      | 310.05           | 316.05      |          | (95)   |
| Monthly avera                        |           | T T         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |             |           |                    |                    |             | ·                | T 1         |          |        |
| (96)m= 4.3                           | 4.9       | 6.5         | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7       | 14.6        | 16.6      | 16.4               | 14.1               | 10.6        | 7.1              | 4.2         |          | (96)   |
| Heat loss rate                       |           |             | 2334.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |             |           | x [(93)m<br>771.75 | - (96)m<br>1244.54 |             | 2600 55          | 3315.79     |          | (97)   |
| . ,                                  |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           | l .                |                    |             |                  | 3315.79     |          | (97)   |
| Space heatin (98)m= 2235.7           | 1920.8    |             | 1416.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1032.13    | 0           | 0.02      | 0                  | 0                  | 1233.67     | r -              | 2231.8      |          |        |
| (66)                                 | .020.0    | 10000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0020      | Ů           |           |                    |                    |             | ) = Sum(9        | <u> </u>    | 13655.97 | (98)   |
| Space heatin                         | a roquir  | omont in    | k\\/b/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/voor     |             |           | . 01.0             | . poi you          | (           | <i>)</i> •••••(• | C)10,312    |          | (99)   |
| ·                                    | • .       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           |                    |                    |             |                  | Į           | 267.76   | (99)   |
| 9b. Energy rec                       |           |             | The state of the s | Ĭ          |             |           |                    |                    |             |                  |             |          |        |
| This part is use<br>Fraction of spa  |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _           |           | <b>.</b>           | •                  |             | unity scr        | neme.       | 0        | (301)  |
| Fraction of spa                      |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           |                    | , -                |             |                  |             | 1        | (302)  |
|                                      |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           | -// for            | CUID and           | un to form  | - 11 11 1        |             |          | (302)  |
| The community so includes boilers, h |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           |                    |                    | ip to tour  | otner neat       | sources; tr | ie iaπer |        |
| Fraction of hea                      | at from C | Commun      | ity boiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s          |             |           |                    |                    |             |                  |             | 1        | (303a) |
| Fraction of tota                     | al space  | heat fro    | m Comn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nunity bo  | oilers      |           |                    |                    | (3          | 02) x (303       | a) =        | 1        | (304a) |
| Factor for cont                      | rol and   | charging    | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Table     | 4c(3)) fo   | r commi   | unity hea          | ting sys           | tem         |                  | [           | 1.05     | (305)  |
| Distribution los                     | s factor  | (Table 1    | 12c) for c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | commun     | ity heatir  | ng syste  | m                  |                    |             |                  | [           | 1.1      | (306)  |
| Space heating                        |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | •           |           |                    |                    |             |                  | L           | kWh/yea  | <br>r  |
| Annual space                         | -         | requiren    | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |             |           |                    |                    |             |                  |             | 13655.97 | Ī      |
| Space heat fro                       | m Comi    | munity b    | oilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |             |           |                    | (98) x (30         | 04a) x (30  | 5) x (306) :     | <u> </u>    | 15772.65 | (307a) |
| Efficiency of se                     | econdar   | y/supple    | mentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating    | system      | in % (fro | om Table           | 4a or A            | ppendix     | E)               | [           | 0        | (308   |
| Space heating                        | require   | ment fro    | m secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dary/sur   | plemen      | tary sys  | tem                | (98) x (30         | 01) x 100 · | ÷ (308) =        | [           | 0        | (309)  |
| <b>18</b> /-4                        | _         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           |                    |                    |             |                  | L           |          | _      |
| Water heating<br>Annual water h      |           | equirem     | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |             |           |                    |                    |             |                  | [           | 1831.51  | ٦      |
| If DHW from co                       | _         | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           |                    |                    |             |                  | L           |          |        |
| Water heat fro                       |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           |                    | (64) x (30         | 03a) x (30  | 5) x (306) :     | = [         | 2115.39  | (310a) |
| Electricity used                     | d for hea | at distribu | ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |             |           | 0.01               | × [(307a).         | (307e) +    | · (310a)(        | [310e)] =   | 178.88   | (313)  |
| Cooling Syster                       | m Energ   | y Efficie   | ncy Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0          |             |           |                    |                    |             |                  |             | 0        | (314)  |
| Space cooling                        | (if there | is a fixe   | d cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g systen   | n, if not e | enter 0)  |                    | = (107) ÷          | (314) =     |                  | Ī           | 0        | (315)  |
| Electricity for p                    | umps a    | nd fans v   | within dv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | velling (1 | Γable 4f)   | :         |                    |                    |             |                  | _           |          | _      |
| mechanical ve                        |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           | outside            |                    |             |                  |             | 0        | (330a) |
|                                      |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |           |                    |                    |             |                  |             |          |        |

| warm air heating system fans                                                                                                         |                               | 0                           | (330b) |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|--------|
| pump for solar water heating                                                                                                         |                               | 0                           | (330g) |
| Total electricity for the above, kWh/year =(330a                                                                                     | a) + (330b) + (330g) =        | 0                           | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                                       |                               | 514.14                      | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                                        |                               |                             |        |
| Energy<br>kWh/year                                                                                                                   | Emission factor kg CO2/kWh    | or Emissions<br>kg CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)  Efficiency of heat source 1 (%)  If there is CHP using two fuels repeat | (363) to (366) for the second | fuel 65                     | (367a) |
| CO2 associated with heat source 1 [(307b)+(310b)] x 100 ÷ (3                                                                         | 367b) x 0                     | = 5944.33                   | (367)  |
| Electrical energy for heat distribution [(313) x                                                                                     | 0.52                          | 92.84                       | (372)  |
| Total CO2 associated with community systems (363)(366) + (3                                                                          | 68)(372)                      | = 6037.17                   | (373)  |
| CO2 associated with space heating (secondary) (309) x                                                                                | 0                             | = 0                         | (374)  |
| CO2 associated with water from immersion heater or instantaneous heater                                                              | (312) x 0.22                  | = 0                         | (375)  |
| Total CO2 associated with space and water heating (373) + (374) + (374)                                                              | 375) =                        | 6037.17                     | (376)  |
| CO2 associated with electricity for pumps and fans within dwelling (331)) x                                                          | 0.52                          | = 0                         | (378)  |
| CO2 associated with electricity for lighting (332))) x                                                                               | 0.52                          | = 266.84                    | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                               |                               | 6304.01                     | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                             |                               | 123.61                      | (384)  |
| El rating (section 14)                                                                                                               |                               | 27.35                       | (385)  |



# Appendix B - SAP outputs for the 'Be Lean' stage

The DER outputs from the FSAP modelling of the proposed development with the upgraded fabric and building services systems were used to calculate the 'Be Lean' stage  ${\rm CO_2}$  emissions of the development.



|                                                              |                                                                     | Lloor Dotaile:              |                           |                                   |       |
|--------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|---------------------------|-----------------------------------|-------|
|                                                              |                                                                     | User Details:               |                           |                                   |       |
| Assessor Name:                                               | 0. 5045.0040                                                        | Stroma Nu                   |                           |                                   |       |
| Software Name:                                               | Stroma FSAP 2012                                                    | Software \                  |                           | ersion: 1.0.3.4                   |       |
|                                                              |                                                                     | roperty Address: Unit       | 1                         |                                   |       |
| Address :                                                    | , london, NW3 4PB                                                   |                             |                           |                                   |       |
| 1. Overall dwelling dimen                                    | SIONS:                                                              | A ( 0)                      | A 11 1 1 4 1              | V 1 ( 2)                          |       |
| Basement                                                     |                                                                     | Area(m²)                    | Av. Height(m)             | Volume(m³)                        | (20)  |
|                                                              |                                                                     | 33 (1a)                     |                           |                                   | (3a)  |
| Ground floor                                                 |                                                                     | 19 (1b)                     | x 1.65 (2b                | ) = 31.35                         | (3b)  |
| Total floor area TFA = (1a)                                  | +(1b)+(1c)+(1d)+(1e)+(1n                                            | ) 52 (4)                    |                           |                                   |       |
| Dwelling volume                                              |                                                                     | (3a)+                       | -(3b)+(3c)+(3d)+(3e)+(3n) | 105.6                             | (5)   |
| 2. Ventilation rate:                                         |                                                                     |                             |                           |                                   |       |
|                                                              | main secondar<br>heating heating                                    | y other                     | total                     | m³ per hour                       |       |
| Number of chimneys                                           | 0 + 0                                                               | + 0 =                       | 0 x 40 =                  | 0                                 | (6a)  |
| Number of open flues                                         | 0 + 0                                                               | + 0 =                       | 0 x 20 =                  | 0                                 | (6b)  |
| Number of intermittent fans                                  | s                                                                   |                             | 2 x 10 =                  | 20                                | (7a)  |
| Number of passive vents                                      |                                                                     |                             | 0 x 10 =                  | 0                                 | (7b)  |
| Number of flueless gas fire                                  | es                                                                  |                             | 0 x 40 =                  |                                   | (7c)  |
|                                                              |                                                                     |                             |                           |                                   | (1.0) |
|                                                              |                                                                     |                             | A                         | ir change <mark>s per</mark> hour | r     |
| Infiltration due to chimneys                                 | s, flues and fans = $(6a)+(6b)+(7a)$                                | a)+(7b)+(7c) =              | 20 ÷ (5)                  | = 0.19                            | (8)   |
| If a pressurisation test has bee                             | en ca <mark>rried o</mark> ut or is int <mark>ended,</mark> proceed | to (17), otherwise continu  | ue from (9) to (16)       |                                   |       |
| Number of storeys in the                                     | e dw <mark>elling</mark> (ns)                                       |                             |                           | 0                                 | (9)   |
| Additional infiltration                                      |                                                                     |                             | [(9)-1]x0                 | 0.1 = 0                           | (10)  |
|                                                              | 5 for steel or timber frame or                                      | •                           |                           | 0                                 | (11)  |
| if both types of wall are pre-<br>deducting areas of opening | sent, use the value corresponding to<br>s): if equal user 0.35      | the greater wall area (afte | r                         |                                   |       |
|                                                              | or, enter 0.2 (unsealed) or 0.                                      | 1 (sealed), else enter      | . 0                       | 0                                 | (12)  |
| If no draught lobby, ente                                    | ,                                                                   | , , ,                       |                           |                                   | (13)  |
| • • • • • • • • • • • • • • • • • • • •                      | and doors draught stripped                                          |                             |                           |                                   | (14)  |
| Window infiltration                                          |                                                                     | 0.25 - [0.2 x (14)          | ÷ 100] =                  |                                   | (15)  |
| Infiltration rate                                            |                                                                     |                             | + (12) + (13) + (15) =    |                                   | (16)  |
|                                                              | 50, expressed in cubic metre                                        | s per hour per square       | e metre of envelope are   |                                   | (17)  |
|                                                              | $y$ value, then $(18) = [(17) \div 20] + (8)$                       |                             |                           |                                   | (18)  |
| ·                                                            | if a pressurisation test has been don                               |                             | ility is being used       |                                   | 1, -, |
| Number of sides sheltered                                    |                                                                     |                             |                           | 1                                 | (19)  |
| Shelter factor                                               |                                                                     | (20) = 1 - [0.075           | x (19)] =                 |                                   | (20)  |
| Infiltration rate incorporating                              | g shelter factor                                                    | $(21) = (18) \times (20)$   | ) =                       | 0.64                              | (21)  |
| Infiltration rate modified for                               | monthly wind speed                                                  |                             |                           |                                   |       |
| Jan Feb M                                                    | Mar Apr May Jun                                                     | Jul Aug Se                  | ep Oct Nov [              | Dec                               |       |
| Monthly average wind spe                                     | ed from Table 7                                                     |                             |                           |                                   |       |

4.9

4.4

4.3

3.8

3.8

3.7

4.3

4.5

4.7

5

| Wind Factor (2                                                                                                                                                                                                                   | 22a)m =                                                                                                           | (22)m ÷                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                                                                           |                                                  |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                  |                   |          |           |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|----------|-----------|----------------------------------------------------------------------|
| (22a)m= 1.27                                                                                                                                                                                                                     | 1.25                                                                                                              | 1.23                                                                                                                                                                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.08                                                                | 0.95                                                                      | 0.95                                             | 0.92                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.08                                                                                                  | 1.12                                             | 1.18              | ]        |           |                                                                      |
| A divisted infiltr                                                                                                                                                                                                               | otion rot                                                                                                         | e (allawi                                                                                                                                                              | na for ok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oltor on                                                            | d wind a                                                                  |                                                  | (210) 1                                                                                       | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                       | •                                                |                   | _        |           |                                                                      |
| Adjusted infiltr                                                                                                                                                                                                                 | 0.8                                                                                                               | 0.78                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.69                                                                | 0.61                                                                      | 0.61                                             | 0.59                                                                                          | (22a)III<br>0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.69                                                                                                  | 0.72                                             | 0.75              | 1        |           |                                                                      |
| Calculate effe                                                                                                                                                                                                                   |                                                                                                                   | 1                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l                                                                   |                                                                           | l                                                | 1 0.00                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                  | 0.72                                             | 0.70              | J        |           |                                                                      |
| If mechanic                                                                                                                                                                                                                      |                                                                                                                   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                                                           |                                                  |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                  |                   |          | 0         | (23a)                                                                |
| If exhaust air h                                                                                                                                                                                                                 |                                                                                                                   | 0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , ,                                                                 | , ,                                                                       | . ,                                              | ,, .                                                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) = (23a)                                                                                             |                                                  |                   |          | 0         | (23b)                                                                |
| If balanced with                                                                                                                                                                                                                 |                                                                                                                   | -                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                   |                                                                           |                                                  |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                  |                   |          | 0         | (23c)                                                                |
| a) If balance                                                                                                                                                                                                                    | 1                                                                                                                 | 1                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                                                           | <del>-                                    </del> | <del></del>                                                                                   | <del>í `</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del> </del>                                                                                          | <del>-                                    </del> | <del>1 ` ` </del> | ) ÷ 100] |           |                                                                      |
| (24a)m= 0                                                                                                                                                                                                                        | 0                                                                                                                 | 0                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                   | 0                                                                         | 0                                                | 0                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                     | 0                                                | 0                 |          |           | (24a)                                                                |
| b) If balance                                                                                                                                                                                                                    | 1                                                                                                                 |                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | i                                                                         | <del>-                                    </del> | <del>- ^ ` ` - </del>                                                                         | <del>í `</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del>r ´       `</del>                                                                                | <del></del>                                      | ı                 | 1        |           | (5.41)                                                               |
| (24b)m= 0                                                                                                                                                                                                                        | 0                                                                                                                 | 0                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                   | 0                                                                         | 0                                                | 0                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                     | 0                                                | 0                 |          |           | (24b)                                                                |
| c) If whole h<br>if (22b)r                                                                                                                                                                                                       |                                                                                                                   | tract ven<br>< (23b), t                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                   | -                                                                         |                                                  |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .5 × (23k                                                                                             | o)                                               |                   |          |           |                                                                      |
| (24c)m= 0                                                                                                                                                                                                                        | 0                                                                                                                 | 0                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                   | 0                                                                         | 0                                                | 0                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                     | 0                                                | 0                 | ]        |           | (24c)                                                                |
| d) If natural                                                                                                                                                                                                                    |                                                                                                                   | on or wh<br>en (24d)                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                   | •                                                                         |                                                  |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.51                                                                                                  | •                                                | •                 | _        |           |                                                                      |
| $(24d)_{m=}$ 0.83                                                                                                                                                                                                                | 0.82                                                                                                              | 0.81                                                                                                                                                                   | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.73                                                                | 0.68                                                                      | 0.68                                             | 0.5 + [(2                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                                                                                   | 0.76                                             | 0.78              |          |           | (24d)                                                                |
| Effective air                                                                                                                                                                                                                    |                                                                                                                   |                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                                                                           | _                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.70                                                                                                  | 0.70                                             | 0.10              | J        |           |                                                                      |
| (25)m= 0.83                                                                                                                                                                                                                      | 0.82                                                                                                              | 0.81                                                                                                                                                                   | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.73                                                                | 0.68                                                                      | 0.68                                             | 0.67                                                                                          | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.73                                                                                                  | 0.76                                             | 0.78              | 1        |           | (25)                                                                 |
| _                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                                                           |                                                  |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                  |                   |          |           |                                                                      |
| 2 Hoot loops                                                                                                                                                                                                                     | o and by                                                                                                          | oot loog r                                                                                                                                                             | ooromot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or:                                                                 |                                                                           |                                                  |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                     | _                                                | _                 |          | _         |                                                                      |
| 3. Heat losse                                                                                                                                                                                                                    |                                                                                                                   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     | Net Ar                                                                    | rea                                              | I I-val                                                                                       | III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ΔXII                                                                                                  | _                                                | k-valu            | Δ        | Δ)        | ( k                                                                  |
| 3. Heat losse ELEMENT                                                                                                                                                                                                            | es and he<br>Gros<br>area                                                                                         | ss                                                                                                                                                                     | oaramet<br>Openin<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gs                                                                  | Net Ar<br>A ,r                                                            |                                                  | U-val<br>W/m2                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A X U<br>(W/                                                                                          | K)                                               | k-valu<br>kJ/m²·  |          | A >       |                                                                      |
|                                                                                                                                                                                                                                  | Gros                                                                                                              | ss                                                                                                                                                                     | Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gs                                                                  |                                                                           |                                                  |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | K)                                               |                   |          |           |                                                                      |
| ELEMENT                                                                                                                                                                                                                          | Gros                                                                                                              | ss                                                                                                                                                                     | Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gs                                                                  | A ,r                                                                      | m²                                               | W/m2                                                                                          | 2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (W/                                                                                                   | K)                                               |                   |          |           | ′K                                                                   |
| ELEMENT  Doors Type 1                                                                                                                                                                                                            | Gros<br>area                                                                                                      | ss                                                                                                                                                                     | Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gs                                                                  | A ,r                                                                      | m² x x                                           | W/m2                                                                                          | =  <br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (W/<br>10.22                                                                                          | K)                                               |                   |          |           | (26)                                                                 |
| Doors Type 1 Doors Type 2                                                                                                                                                                                                        | Gros<br>area                                                                                                      | ss                                                                                                                                                                     | Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gs                                                                  | A ,r<br>7.3<br>4.3                                                        | m <sup>2</sup>                                   | 1.4                                                                                           | = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.22<br>6.02                                                                                         | K)                                               |                   |          |           | (26)<br>(26)                                                         |
| Doors Type 1 Doors Type 2 Windows Type                                                                                                                                                                                           | Gros<br>area                                                                                                      | ss                                                                                                                                                                     | Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gs                                                                  | A ,r<br>7.3<br>4.3                                                        | x x x1 x1                                        | W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+                                                            | = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/<br>10.22<br>6.02<br>3.1                                                                           | <)<br>                                           |                   |          |           | (26)<br>(26)<br>(27)                                                 |
| Doors Type 1 Doors Type 2 Windows Type Windows Type                                                                                                                                                                              | Gros<br>area                                                                                                      | ss<br>(m²)                                                                                                                                                             | Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gs<br>1 <sup>2</sup>                                                | A ,r<br>7.3<br>4.3<br>1.6                                                 | x x x1 x1 x                                      | W/m <sup>2</sup> 1.4 1.4 1.4 /[1/( 2.1 )+ /[1/( 2.1 )+                                        | = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/<br>10.22<br>6.02<br>3.1<br>3.82                                                                   | K)                                               |                   |          |           | (K (26) (26) (27) (27)                                               |
| Doors Type 1 Doors Type 2 Windows Type Windows Type Floor                                                                                                                                                                        | Gros<br>area                                                                                                      | ss (m²)                                                                                                                                                                | Openin<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gs<br>1 <sup>2</sup>                                                | A ,r 7.3 4.3 1.6 1.97 34.3                                                | x x x1 x1 x                                      | W/m <sup>2</sup> 1.4 1.4 /[1/( 2.1 )+ /[1/( 2.1 )+                                            | = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546                                                          | k)                                               |                   |          |           | (K (26) (26) (27) (27) (28)                                          |
| Doors Type 1 Doors Type 2 Windows Type Windows Type Floor Walls Type1                                                                                                                                                            | Gros<br>area                                                                                                      | (m²)                                                                                                                                                                   | Openin m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gs<br>1 <sup>2</sup>                                                | A ,r 7.3 4.3 1.6 1.97 34.3 14.23                                          | x x x1 x1 x x x x x x x x x x x x x x x          | W/m <sup>2</sup> 1.4 1.4 /[1/( 2.1 )+ /[1/( 2.1 )+ 0.22 0.28                                  | = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98                                                  | K)                                               |                   |          |           | (K (26) (26) (27) (27) (28) (29)                                     |
| Doors Type 1 Doors Type 2 Windows Type Windows Type Floor Walls Type1 Walls Type2                                                                                                                                                | Gros area 2 29.                                                                                                   | 4<br>1                                                                                                                                                                 | 15.1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gs<br>1 <sup>2</sup>                                                | A ,r 7.3 4.3 1.6 1.97 34.3 14.23                                          | x x x1 x1 x x x x x x x x x x x x x x x          | W/m <sup>2</sup> 1.4 1.4 /[1/( 2.1 )+ /[1/( 2.1 )+ 0.22 0.28 0.28                             | = 0.04] = 0.04] = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (W/<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35                                         | K)                                               |                   |          |           | (26) (26) (27) (27) (28) (29) (29)                                   |
| Doors Type 1 Doors Type 2 Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof                                                                                                                                           | Gros area 2 29.                                                                                                   | 4<br>1                                                                                                                                                                 | 15.1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gs<br>1 <sup>2</sup>                                                | A ,r 7.3 4.3 1.6 1.97 34.3 14.23 44.1                                     | x x x1 x1 x x x1 x x x x x x x x x x x           | W/m <sup>2</sup> 1.4 1.4 /[1/( 2.1 )+ /[1/( 2.1 )+ 0.22 0.28 0.28                             | = 0.04] = 0.04] = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (W/<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35                                         | K)                                               |                   |          |           | (26)<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)         |
| Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and                                                                                 | Gros area  e 1  e 2  29.  44.  19 elements                                                                        | 4<br>1<br>3, m <sup>2</sup><br>dows, use e                                                                                                                             | 15.1  0  effective wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gs<br>7<br>7                                                        | A ,r 7.3 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9                       | x x x1 x1 x1 x x x x x x x x x x x x x           | W/m <sup>2</sup> 1.4  1.4  /[1/( 2.1 )+  /[1/( 2.1 )+  0.22  0.28  0.28  0.16                 | = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                                 |                                                  | kJ/m²-            | K        |           | (26)<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)<br>(31) |
| Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area                                                             | Gros area  e 1  e 2  29.  44.  19  elements  d roof wind as on both                                               | 4<br>1<br>0<br>1, m <sup>2</sup><br>ows, use e                                                                                                                         | 15.1 0 0 effective winternal wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gs<br>7<br>7                                                        | A ,r 7.3 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9                       | x x x1 x1 x1 x x x x x x x x x x x x x           | W/m <sup>2</sup> 1.4  1.4  /[1/( 2.1 )+  /[1/( 2.1 )+  0.22  0.28  0.28  0.16                 | =   -0.04  =   -0.04  =   =   =   =   =   =   =   =   =   =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (W/<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                                 |                                                  | kJ/m²-            | h 3.2    | kJ/       | (K (26) (26) (27) (27) (28) (29) (30) (31) (32)                      |
| Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area Fabric heat los                                             | Gros area  e 1  e 2  29.  44.  19  elements  d roof wind as on both as on both as s, W/K                          | 4<br>1<br>1<br>3, m <sup>2</sup><br>lows, use e<br>sides of in<br>= S (A x                                                                                             | 15.1 0 0 effective winternal wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gs<br>7<br>7                                                        | A ,r 7.3 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9                       | x x x1 x1 x1 x x x x x x x x x x x x x           | W/m <sup>2</sup> 1.4  1.4  /[1/( 2.1 )+  /[1/( 2.1 )+  0.22  0.28  0.16  0  formula 1         | = \bigcup 0.04] = \bigcup 0.04 | (W/<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>(e)+0.04] &             |                                                  | kJ/m²-            | h 3.2    | 0.07      | (26) (26) (27) (27) (28) (29) (30) (31) (32)                         |
| Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area                                                             | Gros area  e 1  e 2  29.  44.  19 elements d roof wind as on both ss, W/K  Cm = Si                                | 4<br>1<br>2<br>3<br>3<br>4<br>1<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                        | Openin m  15.1  0  offective winternal wall U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gs<br>7<br>Indow U-vals and part                                    | A ,r 7.3 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9 14.9 titions          | x x x1 x1 x1 x2 x x x1 x1 x1 x x x x x x         | W/m <sup>2</sup> 1.4  1.4  /[1/( 2.1 )+  /[1/( 2.1 )+  0.22  0.28  0.16  0  formula 1         | 2K =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>(e)+0.04] &             | as given in [2] + (32a).                         | kJ/m²-            | h 3.2    | kJ/       | (26) (26) (27) (27) (28) (29) (30) (31) (32)                         |
| Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area Fabric heat los Heat capacity Thermal mass For design asses | Gros area  e 1  e 2  29.  44.  19  elements  froof wind as on both as on both ss, W/K  Cm = So parame sments wh   | 4<br>1<br>1<br>2<br>3<br>3<br>4<br>1<br>1<br>3<br>3<br>3<br>5<br>4<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Openin m  15.1  0  offective with the internal walk  U)  P = Cm - internal soft the | gs<br>7<br>7<br>Indow U-va<br>Is and part                           | A ,r 7.3 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9 14.9 kJ/m²K           | x x x1 x1 x1 x2 x x2 x1 x1 x1 x x x x x          | W/m <sup>2</sup> 1.4  1.4  /[1/( 2.1 )+ /[1/( 2.1 )+  0.22  0.28  0.16  0  formula 1  (26)(30 | 2K =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>ue)+0.04] at tive Value | as given in (2) + (32a).                         | kJ/m²-            | h 3.2    | 0.07<br>0 | (26) (26) (27) (27) (28) (29) (30) (31) (32)                         |
| Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the are Fabric heat los Heat capacity Thermal mass                   | Gros area  e 1  e 2  29.  44.  19 elements d roof wind as on both ss, W/K  Cm = So s parame sments whe ad of a de | 4 1 2 3 3 4 1 3 5 5 6 6 7 7 8 7 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9                                                                                                        | Openin m  15.1  0  offective winternal wall U)  P = Cm - tails of the pulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gs<br>7<br>7<br>Indow U-valls and part<br>E-TFA) in<br>construction | A ,r 7.3 4.3 4.3 1.6 1.97 34.3 14.23 44.1 19 126.8 14.9 alue calculations | x x x1 x1 x1 x2 x x x x x x x x x x x x          | W/m <sup>2</sup> 1.4  1.4  /[1/( 2.1 )+ /[1/( 2.1 )+  0.22  0.28  0.16  0  formula 1  (26)(30 | 2K =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>ue)+0.04] at tive Value | as given in (2) + (32a).                         | kJ/m²-            | h 3.2    | 0.07<br>0 | (26) (26) (27) (27) (28) (29) (30) (31) (32)                         |

| if details of therma               | 0 0         | are not kn  | own (36) =  | = 0.15 x (3    | 1)          |            |             |              | 4                      |                        |          |         | _            |
|------------------------------------|-------------|-------------|-------------|----------------|-------------|------------|-------------|--------------|------------------------|------------------------|----------|---------|--------------|
| Total fabric hea                   |             |             |             |                |             |            |             | • •          | (36) =                 | (a=) (=)               |          | 70.07   | (37)         |
| Ventilation hea                    |             |             | · ·         | <u> </u>       |             |            | _           | · · ·        |                        | (25)m x (5)            | )<br>    |         |              |
| Jan                                | Feb         | Mar         | Apr         | May            | Jun         | Jul        | Aug         | Sep          | Oct                    | Nov                    | Dec      |         | (00)         |
| (38)m= 28.94                       | 28.49       | 28.06       | 26          | 25.61          | 23.82       | 23.82      | 23.49       | 24.51        | 25.61                  | 26.39                  | 27.21    |         | (38)         |
| Heat transfer of                   | oefficier   | nt, W/K     |             |                |             |            |             | (39)m        | = (37) + (             | 38)m                   |          |         |              |
| (39)m= 99.02                       | 98.57       | 98.13       | 96.07       | 95.69          | 93.89       | 93.89      | 93.56       | 94.58        | 95.69                  | 96.47                  | 97.28    |         | _            |
| lleet lees name                    |             | II D) \\\   | /ma 21/     |                |             |            |             |              | Average =<br>= (39)m ÷ | Sum(39) <sub>1</sub>   | 12 /12=  | 96.07   | (39)         |
| Heat loss para                     | 1.9         | 1.89        | 1.85        | 1.84           | 1.81        | 1.81       | 1.8         | 1.82         | 1.84                   | 1.86                   | 1.87     |         |              |
| (40)m= 1.9                         | 1.9         | 1.09        | 1.00        | 1.04           | 1.01        | 1.01       | 1.0         |              |                        | Sum(40) <sub>1</sub>   |          | 1.85    | (40)         |
| Number of day                      | s in moi    | nth (Tab    | le 1a)      |                |             |            |             |              | -verage =              | 3um(40)1               | 12 / 12= | 1.03    | (40)         |
| Jan                                | Feb         | Mar         | Apr         | May            | Jun         | Jul        | Aug         | Sep          | Oct                    | Nov                    | Dec      |         |              |
| (41)m= 31                          | 28          | 31          | 30          | 31             | 30          | 31         | 31          | 30           | 31                     | 30                     | 31       |         | (41)         |
|                                    |             |             |             |                |             |            |             |              |                        |                        |          |         |              |
| 4. Water heat                      | ing ener    | rgy requi   | irement:    |                |             |            |             |              |                        |                        | kWh/ye   | ear:    |              |
| Assumed occu                       | inanov I    | NI.         |             |                |             |            |             |              |                        |                        | 75       | 1       | (40)         |
| if TFA > 13.9                      |             |             | [1 - exp    | (-0.0003       | 349 x (TF   | FA -13.9   | )2)] + 0.(  | 0013 x (     | ΓFA -13                |                        | .75      |         | (42)         |
| if TFA £ 13.9                      |             |             |             |                | ,           |            |             | ,            |                        |                        |          |         |              |
| Annual averag                      |             |             |             |                |             |            |             |              | o torget c             |                        | 5.74     |         | (43)         |
| not more that 125                  | 1           |             |             |                | _           | -          | o acriieve  | a water us   | se largel o            | "                      |          |         |              |
| Jan                                | Feb         | Mar         | Apr         | May            | Jun         | Jul        | Aug         | Sep          | Oct                    | Nov                    | Dec      |         |              |
| Hot water usage in                 |             |             |             |                | l .         |            | Aug<br>(43) | Sep          | Oct                    | INOV                   | Dec      |         |              |
| (44)m= 83.31                       | 80.28       | 77.26       | 74.23       | 71.2           | 68.17       | 68.17      | 71.2        | 74.23        | 77.26                  | 80.28                  | 83.31    |         |              |
| (11)= 66.61                        | 00.20       | 11.20       | 7 1.20      | 1 11.          | 00.11       | 00.11      | , <u>.</u>  |              |                        | m(44) <sub>112</sub> = |          | 908.89  | (44)         |
| Energy content of                  | hot water   | used - cal  | culated m   | onthly $= 4$ . | 190 x Vd,r  | m x nm x E | 0Tm / 3600  |              |                        |                        |          |         | ` ′          |
| (45)m= 123.55                      | 108.06      | 111.51      | 97.22       | 93.28          | 80.49       | 74.59      | 85.59       | 86.62        | 100.94                 | 110.19                 | 119.65   |         |              |
|                                    |             |             |             |                |             |            |             |              | Γotal = Su             | m(45) <sub>112</sub> = | =        | 1191.69 | (45)         |
| If instantaneous w                 | ater heatii | ng at point | of use (no  | hot water      | r storage), | enter 0 in | boxes (46   | ) to (61)    |                        |                        |          | •       |              |
| (46)m= 18.53                       | 16.21       | 16.73       | 14.58       | 13.99          | 12.07       | 11.19      | 12.84       | 12.99        | 15.14                  | 16.53                  | 17.95    |         | (46)         |
| Water storage Storage volum        |             | includin    | na any c    | olar or M      | WHDC        | ctorogo    | within co   | amo voc      | col                    |                        | 100      | l       | (47)         |
| If community h                     | ` ,         |             | •           |                |             | •          |             | airie ves    | 3 <b>C</b> I           |                        | 160      |         | (47)         |
| Otherwise if no                    | •           |             |             | •              |             |            | ` '         | ers) ente    | er 'O' in <i>(</i>     | (47)                   |          |         |              |
| Water storage                      |             | not wate    | » (u.iio ii | 10144001       | notanta     | 10000      | 11101 0011  | 010) 01110   | )                      | . 17)                  |          |         |              |
| a) If manufact                     |             | eclared l   | oss facto   | or is kno      | wn (kWł     | n/day):    |             |              |                        |                        | 0        |         | (48)         |
| Temperature fa                     | actor fro   | m Table     | 2b          |                |             |            |             |              |                        |                        | 0        |         | (49)         |
| Energy lost fro                    | m water     | storage     | , kWh/ye    | ear            |             |            | (48) x (49) | ) =          |                        | 1                      | 10       |         | (50)         |
| b) If manufact                     |             |             | •           |                |             |            |             |              |                        |                        |          |         | , ,          |
| Hot water stora                    | -           |             |             | e 2 (kW        | h/litre/da  | ay)        |             |              |                        | 0.                     | .02      |         | (51)         |
| If community h Volume factor       | _           |             | on 4.3      |                |             |            |             |              |                        |                        | 20       | 1       | (50)         |
| Temperature fa                     |             |             | 2b          |                |             |            |             |              |                        |                        | .03      |         | (52)<br>(53) |
| ·                                  |             |             |             | oor            |             |            | (A7) v (E4) | \ v (E2\ v / | 53) –                  |                        | 0.6      |         | . ,          |
| Energy lost fro<br>Enter (50) or ( |             | _           | ;, KVVII/Y  | zai            |             |            | (47) x (51) | )            | JJ) =                  |                        | .03      |         | (54)<br>(55) |
| (55) 51 (                          | / (0        | -,          |             |                |             |            |             |              |                        | <u> </u>               |          | I       | (55)         |

| Water storage loss calculated for each month $((56)m = (55) \times (41)m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| (56)m= 32.01 28.92 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (56)                         |
| If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷ (50), else (57)m = (56)m where (H11) is from Appendix H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
| (57)m= 32.01 28.92 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (57)                         |
| Primary circuit loss (annual) from Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (58)                         |
| Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |
| (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| (59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26 22.51 23.26 22.51 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (59)                         |
| Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
| (61)m= 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (61)                         |
| Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m + (61)m$ | )m                           |
| (62)m= 178.83 157.99 166.79 150.71 148.56 133.99 129.87 140.87 140.11 156.22 163.68 174.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (62)                         |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| (63)m= 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (63)                         |
| Output from water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| (64)m= 178.83 157.99 166.79 150.71 148.56 133.99 129.87 140.87 140.11 156.22 163.68 174.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
| Output from water heater (annual) <sub>112</sub> 1842.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (64)                         |
| Heat gains from water heating, kWh/month 0.25 [0.85 x (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| (65)m= 59.69 52.74 55.69 50.33 49.63 44.77 43.41 47.07 46.81 52.17 54.65 58.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (65)                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (66)                         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (66)                         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (66)<br>(67)                 |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87      | ` ,                          |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ` ,                          |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87      | (67)                         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87      | (67)                         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87      | (67)<br>(68)                 |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87      | (67)<br>(68)                 |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (67)<br>(68)<br>(69)         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (67)<br>(68)<br>(69)         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87      | (67)<br>(68)<br>(69)<br>(70) |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87      | (67)<br>(68)<br>(69)<br>(70) |
| Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (67)<br>(68)<br>(69)<br>(70) |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Ju Aug Sep Oct Nov Dec (66)m= 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.45 87.      | (67)<br>(68)<br>(69)<br>(70) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta        | ition:          | Access Fa<br>Table 6d | actor          |               | Area<br>m²        |                  |             | Flu<br>Tal      | x<br>ole 6a       |              | Т             | g_<br>able 6b             |                            | Т   | FF<br>able 6c |     |     | Gains<br>(W) |      |
|----------------|-----------------|-----------------------|----------------|---------------|-------------------|------------------|-------------|-----------------|-------------------|--------------|---------------|---------------------------|----------------------------|-----|---------------|-----|-----|--------------|------|
| North          | 0.9x            | 0.77                  |                | x             | 1.9               | 7                | X           | 1               | 0.63              | x            |               | 0.76                      | ×                          |     | 0.7           |     | =   | 7.72         | (74) |
| North          | 0.9x            | 0.77                  |                | X             | 1.9               | 7                | X           | 2               | 0.32              | X            |               | 0.76                      | x                          | Ī   | 0.7           |     | =   | 14.76        | (74) |
| North          | 0.9x            | 0.77                  |                | x             | 1.9               | 7                | X           | 3               | 4.53              | ×            |               | 0.76                      | x                          |     | 0.7           |     | =   | 25.08        | (74) |
| North          | 0.9x            | 0.77                  |                | x             | 1.9               | 7                | X           | 5               | 5.46              | ×            |               | 0.76                      | X                          |     | 0.7           |     | =   | 40.28        | (74) |
| North          | 0.9x            | 0.77                  |                | X             | 1.9               | 7                | X           | 7               | 4.72              | X            |               | 0.76                      | X                          |     | 0.7           |     | =   | 54.27        | (74) |
| North          | 0.9x            | 0.77                  |                | X             | 1.9               | 7                | X           | 7               | 9.99              | X            |               | 0.76                      | x                          |     | 0.7           |     | =   | 58.09        | (74) |
| North          | 0.9x            | 0.77                  |                | X             | 1.9               | 7                | X           | 7               | 4.68              | X            |               | 0.76                      | x                          |     | 0.7           |     | =   | 54.24        | (74) |
| North          | 0.9x            | 0.77                  |                | X             | 1.9               | 7                | X           | 5               | 9.25              | X            |               | 0.76                      | x                          |     | 0.7           |     | =   | 43.03        | (74) |
| North          | 0.9x            | 0.77                  |                | X             | 1.9               | 7                | X           | 4               | 1.52              | X            |               | 0.76                      | X                          |     | 0.7           |     | =   | 30.15        | (74) |
| North          | 0.9x            | 0.77                  |                | X             | 1.9               | 7                | X           | 2               | 4.19              | X            |               | 0.76                      | х                          |     | 0.7           |     | =   | 17.57        | (74) |
| North          | 0.9x            | 0.77                  |                | X             | 1.9               | 7                | X           | 1               | 3.12              | X            |               | 0.76                      | х                          |     | 0.7           |     | =   | 9.53         | (74) |
| North          | 0.9x            | 0.77                  |                | x             | 1.9               | 7                | X           | 8               | 3.86              | X            |               | 0.76                      | X                          |     | 0.7           |     | =   | 6.44         | (74) |
| South          | 0.9x            | 0.77                  |                | x             | 1.0               | 6                | X           | 4               | 6.75              | ×            |               | 0.76                      | x                          |     | 0.7           |     | =   | 27.58        | (78) |
| South          | 0.9x            | 0.77                  |                | x             | 1.0               | 6                | X           | 7               | 6.57              | ×            |               | 0.76                      | x                          |     | 0.7           |     | =   | 45.17        | (78) |
| South          | 0.9x            | 0.77                  |                | X             | 1.0               | 6                | X           | 9               | 7.53              | ×            |               | 0.76                      | x                          |     | 0.7           |     | =   | 57.53        | (78) |
| South          | 0.9x            | 0.77                  |                | X             | 1.0               | 6                | X           | 1               | 10.23             | X            |               | 0.76                      | X                          |     | 0.7           |     | =   | 65.03        | (78) |
| South          | 0.9x            | 0.77                  |                | x             | 1.0               | 5                | х           | 1               | 14.87             | ] x          |               | 0.76                      | X                          |     | 0.7           |     | -   | 67.76        | (78) |
| South          | 0.9x            | 0.77                  |                | x             | 1.0               | 3                | х           | 1               | 10.55             | x            |               | 0.76                      | Х                          |     | 0.7           |     | =   | 65.21        | (78) |
| South          | 0.9x            | 0.77                  |                | x             | 1.0               | 3                | x           | 10              | 08.01             | x            |               | 0.76                      | Х                          |     | 0.7           |     | =   | 63.71        | (78) |
| South          | 0.9x            | 0.77                  |                | x             | 1.0               | 6                | X           | 10              | 04.89             | X            |               | 0.76                      | Х                          | Ī   | 0.7           |     | =   | 61.88        | (78) |
| South          | 0.9x            | 0.77                  |                | x             | 1.0               | 5                | X           | 10              | 01.89             | ×            |               | 0.76                      | X                          | Ē   | 0.7           |     | =   | 60.1         | (78) |
| South          | 0.9x            | 0.77                  |                | x             | 1.0               | 6                | Х           | 8               | 2.59              | ×            |               | 0.76                      | x                          | Ē   | 0.7           |     | =   | 48.72        | (78) |
| South          | 0.9x            | 0.77                  |                | X             | 1.0               | 6                | x           | 5               | 5.42              | X            |               | 0.76                      | x                          |     | 0.7           |     | =   | 32.69        | (78) |
| South          | 0.9x            | 0.77                  |                | X             | 1.0               | 6                | x           |                 | 10.4              | ×            |               | 0.76                      | X                          | Ī   | 0.7           |     | =   | 23.83        | (78) |
|                |                 |                       |                |               |                   |                  |             |                 |                   | _            |               |                           | _                          |     |               |     |     |              |      |
| Solar g        | ains ir<br>35.3 | watts, ca             | llcula<br>82.6 | $\neg$        | for eac<br>105.31 | n mont<br>122.03 | $\neg$      | 123.3           | 117.95            | <del>–</del> | n = S<br>1.91 | um(74)m<br>90.25          | ( <mark>82)</mark><br>66.2 |     | 42.22         | 30. | 27  |              | (83) |
|                |                 | internal a            |                | -             |                   |                  |             |                 |                   | 10.          | +.91          | 90.23                     | 00.2                       |     | 42.22         | 30. | 21  |              | (00) |
| (84)m=         | 333.85          |                       | 368.7          | _             | 375.1             | 375.6            | <del></del> | 61.23           | 345.78            | 33           | 7.93          | 331.78                    | 324.                       | 33  | 319.05        | 320 | .82 |              | (84) |
| ` ′            |                 |                       |                |               |                   |                  |             |                 |                   |              |               |                           |                            |     |               |     |     |              |      |
|                |                 | ernal temp            |                |               |                   |                  |             | oroo f          | rom Tok           | olo C        | Th            | 1 (°C)                    |                            |     |               |     |     | 0.4          | (05) |
| -              |                 | e during h            |                | •             |                   |                  | _           |                 |                   | ole s        | , 111         | I ( C)                    |                            |     |               |     |     | 21           | (85) |
| Otilisa        | Jan             | ctor for ga           | Ma             | $\overline{}$ | Apr               | May              | Ť           | Jun             | Jul               | Γ,           | ша            | Sep                       | 00                         | ot. | Nov           |     | ес  |              |      |
| (86)m=         | 1               | 1                     | 1              | +             | <b>Дрі</b><br>1   | 1 1              | +           | 0.98            | 0.91              | _            | ug<br>93      | 0.99                      | 1                          |     | 1             | 1   |     |              | (86) |
|                |                 |                       |                | <u> </u>      |                   |                  |             |                 |                   | <u> </u>     |               | <u> </u>                  |                            |     |               | '   |     |              | (33) |
| Mean<br>(87)m= | intern<br>19.65 | al tempera            | 19.9           | _             | 20.19             | 20.47            |             | ow ste<br>20.74 | ps 3 to 7<br>20.9 | 1            | 88 able       | e 9c)<br><sub>20.67</sub> | 20.3                       | 31  | 19.95         | 19. | 65  |              | (87) |
|                |                 | e during h            |                | !             |                   |                  |             |                 |                   |              |               |                           |                            |     | 1             |     |     |              | ` '  |
| (88)m=         | 19.4            | 19.4                  | 19.4           | <del></del>   | 19.44             | 19.44            | _           | 19.47           | 19.47             | 1            | .47           | 19.46                     | 19.4                       | 14  | 19.43         | 19. | 42  |              | (88) |
|                |                 |                       |                |               |                   |                  |             |                 |                   |              |               |                           |                            |     |               |     |     |              |      |
| (89)m=         | ition ta        | ctor for ga           | ains to        | ונ<br>אונ     | est of a          | veiling<br>0.99  | $\neg$      | ,m (se<br>0.93  | 0.73              | T            | 77            | 0.97                      | 1                          |     | 1             | 1   |     |              | (89) |
| (00)111–       | 1               | 1 '                   | '              | [             | ,                 | 0.00             |             | 0.00            | 0.73              | <u> </u>     | . ,           | 0.07                      | - 1                        |     |               |     | •   |              | (55) |

| Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| (90)m= 17.66 17.8 18.06 18.48 18.89 19.28 19.44 19.43 19.18 18.66 18.12 17.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (90)                                                                                                        |
| fLA = Living area ÷ (4) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.66 (91)                                                                                                   |
| Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                             |
| (92)m= 18.98 19.08 19.29 19.61 19.93 20.25 20.4 20.39 20.16 19.75 19.33 18.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (92)                                                                                                        |
| Apply adjustment to the mean internal temperature from Table 4e, where appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                           |
| (93)m= 18.98 19.08 19.29 19.61 19.93 20.25 20.4 20.39 20.16 19.75 19.33 18.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (93)                                                                                                        |
| 8. Space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                             |
| Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-cal-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | culate                                                                                                      |
| the utilisation factor for gains using Table 9a  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                           |
| Utilisation factor for gains, hm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                           |
| (94)m= 1 1 1 1 0.99 0.96 0.86 0.89 0.98 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (94)                                                                                                        |
| Useful gains, hmGm , W = (94)m x (84)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                           |
| (95)m= 333.76 356.28 368.41 374.18 372.3 346.74 298.09 300.02 324.98 323.49 318.87 320.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (95)                                                                                                        |
| Monthly average external temperature from Table 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                           |
| (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (96)                                                                                                        |
| Heat loss rate for mean internal temperature, Lm, W =[(39)m x [(93)m-(96)m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 (07)                                                                                                      |
| (97)m= 1453.12 1397.82 1255.08 1028.73 787.57 530.19 357.02 373.04 573.05 875.26 1179.74 1438.11 Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (97)                                                                                                        |
| (98)m= 832.81 699.91 659.68 471.27 308.96 0 0 0 410.52 619.82 831.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                           |
| Total per year (kWh/year) = Sum(98) <sub>15,912</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4834.29 (98)                                                                                                |
| Space heating requirement in kWh/m²/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92.97 (99)                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.97                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             |
| 9b. Energy requirements – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             |
| 9b. Energy requirements – Community heating scheme  This part is used for space heating, space cooling or water heating provided by a community scheme.  Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 (301                                                                                                      |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 (302)                                                                                                     |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 (302)                                                                                                     |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 (302)                                                                                                     |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (302)                                                                                                     |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 (302) the latter 1 (303)                                                                                  |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  (302) x (303a) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (302) the latter  1 (303) 1 (304)                                                                         |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system $1 - (301) = $ The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Fractor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system                                                                                                                                                                                                                                                                                                                         | 1 (302 the latter  1 (303 1 (304 1 ) (305 1.05 (306 )                                                       |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Fractor for control and charging method (Table 4c(3)) for community heating system                                                                                                                                                                                                                                                                                                                                                                                              | 1 (302) the latter  1 (303) 1 (304) 1 (305)                                                                 |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system $1 - (301) = $ The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Factor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating                                                                                                                                                                                                                                                                                                           | 1 (302  the latter  1 (303  1 (304  1 (305)  1.05 (306)  kWh/year                                           |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Factor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating  Annual space heating requirement                                                                                                                                                                                                                                                                           | 1 (302  the latter  1 (303  1 (304  1 (305)  1.05 (306)  kWh/year  4834.29                                  |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Fractor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating  Annual space heating requirement  Space heat from Community boilers  (98) x (304a) x (305) x (306) =                                                                                                                                                                                                      | 1 (302  the latter  1 (303  1 (304  1 (305)  1.05 (306)  kWh/year  4834.29  5076.01 (307)                   |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Fractor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating  Annual space heating requirement  Space heat from Community boilers  (98) × (304a) × (305) × (306) =  Efficiency of secondary/supplementary heating system in % (from Table 4a or Appendix E)  Space heating requirement from secondary/supplementary system                                              | 1 (302  the latter  1 (303  1 (304  1 (305  1.05 (306)  kWh/year  4834.29  5076.01 (307  0 (308)            |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Fractor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating  Annual space heating requirement  Space heat from Community boilers  (98) × (304a) × (305) × (306) =  Efficiency of secondary/supplementary heating system in % (from Table 4a or Appendix E)                                                                                                             | 1 (302  the latter  1 (303  1 (304  1 (305  1.05 (306)  kWh/year  4834.29  5076.01 (307  0 (308)            |
| This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none  Fraction of space heat from community system 1 – (301) =  The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.  Fraction of heat from Community boilers  Fraction of total space heat from Community boilers  Fractor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system  Space heating  Annual space heating requirement  Space heat from Community boilers  (98) x (304a) x (305) x (306) =  Efficiency of secondary/supplementary heating system in % (from Table 4a or Appendix E)  Space heating requirement from secondary/supplementary system  (98) x (301) x 100 ÷ (308) =  Water heating | 1 (302  the latter  1 (303  1 (304  1 (305)  1.05 (306)  kWh/year  4834.29  5076.01 (307)  0 (308)  0 (309) |

|                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        | _                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| (64) x (303a) x                                                                                                                                             | (305) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1934.66                                                                                | (310a)                                                                                                                               |
| 0.01 × [(307a)(307                                                                                                                                          | 7e) + (310a)(310e)] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.11                                                                                  | (313)                                                                                                                                |
|                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                      | (314)                                                                                                                                |
| = (107) ÷ (314)                                                                                                                                             | ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                      | (315)                                                                                                                                |
| outside                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                      | (330a)                                                                                                                               |
|                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                      | (330b)                                                                                                                               |
|                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                      | (330g)                                                                                                                               |
| =(330a) + (330                                                                                                                                              | 0b) + (330g) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                      | (331)                                                                                                                                |
|                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 294.24                                                                                 | (332)                                                                                                                                |
|                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |                                                                                                                                      |
| Energy                                                                                                                                                      | <b>Emission factor</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |                                                                                                                                      |
| kWh/year                                                                                                                                                    | kg CO2/kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kg CO2/year                                                                            |                                                                                                                                      |
| kWh/year two fuels repeat (363) to                                                                                                                          | (366) for the second fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | el 90                                                                                  | (367a)                                                                                                                               |
| kWh/year                                                                                                                                                    | (366) for the second fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        | (367a)<br>(367)                                                                                                                      |
| kWh/year two fuels repeat (363) to                                                                                                                          | (366) for the second fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | el 90                                                                                  | <u></u>                                                                                                                              |
| kWh/year<br>two fuels repeat (363) to<br>(10b)] x 100 ÷ (367b) x                                                                                            | 0 (366) for the second full 0 (0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | el 90<br>= 1682.56                                                                     | (367)                                                                                                                                |
| kWh/year<br>two fuels repeat (363) to<br>(10b)] x 100 ÷ (367b) x                                                                                            | 0 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | el 90<br>= 1682.56<br>= 36.39                                                          | (367)                                                                                                                                |
| kWh/year<br>two fuels repeat (363) to<br>(10b)] x 100 ÷ (367b) x<br>(313) x<br>(63)(366) + (368)(372                                                        | 0 0.52 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | el 90<br>= 1682.56<br>= 36.39<br>= 1718.95                                             | (367) (372) (373)                                                                                                                    |
| kWh/year<br>two fuels repeat (363) to<br>(10b)] x 100 ÷ (367b) x<br>(313) x<br>(63)(366) + (368)(373                                                        | 0 0.52 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | el 90<br>= 1682.56<br>= 36.39<br>= 1718.95<br>= 0                                      | (367)<br>(372)<br>(373)<br>(374)                                                                                                     |
| kWh/year<br>two fuels repeat (363) to<br>(10b)] x 100 ÷ (367b) x<br>(313) x<br>(63)(366) + (368)(37369) x<br>(309) x<br>(312) x                             | 0 0.52 0 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | el 90<br>= 1682.56<br>= 36.39<br>= 1718.95<br>= 0                                      | (367)<br>(372)<br>(373)<br>(374)<br>(375)                                                                                            |
| kWh/year<br>two fuels repeat (363) to<br>(10b)] x 100 ÷ (367b) x<br>(313) x<br>(63)(366) + (368)(37369) x<br>(312) x<br>(312) x<br>(373) + (374) + (375) =  | 0 0.52 0.52 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | el 90<br>= 1682.56<br>= 36.39<br>= 1718.95<br>= 0<br>= 0                               | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)                                                                                   |
| kWh/year  two fuels repeat (363) to  (10b)] x 100 ÷ (367b) x  (313) x  (63)(366) + (368)(37369) x  (us heater (312) x  (373) + (374) + (375) =  (9 (331)) x | 0 0.52 0.52 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | el 90<br>= 1682.56<br>= 36.39<br>= 1718.95<br>= 0<br>= 0<br>1718.95<br>= 0             | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)                                                                          |
| kWh/year  two fuels repeat (363) to  (10b)] x 100 ÷ (367b) x  (313) x  (63)(366) + (368)(37369) x  (us heater (312) x  (373) + (374) + (375) =  (9 (331)) x | 0 0.52 0.52 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | el 90<br>= 1682.56<br>= 36.39<br>= 1718.95<br>= 0<br>= 0<br>1718.95<br>= 0<br>= 152.71 | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)<br>(379)                                                                 |
|                                                                                                                                                             | 0.01 × [(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307a)(307 | = (107) ÷ (314) =  utside  =(330a) + (330b) + (330g) =                                 | $0.01 \times [(307a)(307e) + (310a)(310e)] =$ $= (107) \div (314) =$ $0$ $0$ $0$ $0$ $0$ $= (330a) + (330b) + (330g) =$ $0$ $294.24$ |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | User D        | etails:          |             |              |          |           |                             |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------|------------------|-------------|--------------|----------|-----------|-----------------------------|--------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stroma FSAP 2012                                      |               | Stroma<br>Softwa | re Ve       |              |          | Versic    | on: 1.0.3.4                 |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | Property /    | Address:         | Unit 2      |              |          |           |                             |        |
| Address: 1. Overall dwelling dimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , London                                              |               |                  |             |              |          |           |                             |        |
| 1. Overall awelling aimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1010110.                                              | Area          | a(m²)            |             | Av. He       | ight(m)  |           | Volume(m³                   | )      |
| Basement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |               | <u> </u>         | (1a) x      |              | .17      | (2a) =    | 119.35                      | (3a)   |
| Total floor area TFA = (1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a)+(1b)+(1c)+(1d)+(1e)+(1                             | n)            | 55               | (4)         |              |          | _         |                             |        |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |               |                  | (3a)+(3b    | )+(3c)+(3c   | d)+(3e)+ | (3n) =    | 119.35                      | (5)    |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |               |                  |             |              |          |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | main seconda<br>heating heating                       | ry            | other            |             | total        |          |           | m³ per hou                  | r      |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | +             | 0                | ] = [       | 0            | X 4      | 40 =      | 0                           | (6a)   |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 + 0                                                 | <b>-</b> + -  | 0                | Ī = [       | 0            | x        | 20 =      | 0                           | (6b)   |
| Number of intermittent far                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns                                                    |               |                  | Ī           | 2            | x -      | 10 =      | 20                          | (7a)   |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |               |                  | Ī           | 0            | x -      | 10 =      | 0                           | (7b)   |
| Number of flueless gas fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | res                                                   |               |                  | Ī           | 0            | X 4      | 40 =      | 0                           | (7c)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |               |                  | _           |              |          | Air ch    | nanges <mark> per</mark> ho | our    |
| Infiltration due to chimney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vs, flues and fans = $(6a)+(6b)+($                    | 7a)+(7b)+(7   | 7c) =            | Г           | 20           |          | ÷ (5) =   | 0.17                        | (8)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | een ca <mark>rried o</mark> ut or is intended, procee | ed to (17), o | otherwise o      | ontinue fr  | om (9) to    | (16)     |           |                             | _      |
| Number of storeys in the<br>Additional infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e dw <mark>elling</mark> (ns)                         |               |                  |             |              | [(0)     | 11v0 1 -  | 0                           | (9)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 for steel or timber frame o                        | r 0.35 for    | masonr           | v consti    | ruction      | [(9)     | -1]x0.1 = | 0                           | (10)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | esent, use the value corresponding t                  |               |                  | •           |              |          |           |                             |        |
| deducting areas of opening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>5</b> /·                                           | 1 (222)       | مار مامم         | antar O     |              |          |           | _                           | 7(40)  |
| If no draught lobby, ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oor, enter 0.2 (unsealed) or 0                        | ).1 (seale    | ea), eise        | enter 0     |              |          |           | 0                           | (12)   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and doors draught stripped                            |               |                  |             |              |          |           | 0                           | = (13) |
| Window infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and doors dradgin suipped                             |               | 0.25 - [0.2      | x (14) ÷ 1  | 00] =        |          |           | 0                           | (15)   |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |               | (8) + (10)       | + (11) + (1 | 12) + (13) - | + (15) = |           | 0                           | (16)   |
| Air permeability value,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | q50, expressed in cubic metro                         | es per ho     | our per so       | quare m     | etre of e    | nvelope  | area      | 10                          | (17)   |
| If based on air permeabili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ty value, then $(18) = [(17) \div 20] + (18)$         | (8), otherwi  | se (18) = (      | 16)         |              |          |           | 0.67                        | (18)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s if a pressurisation test has been do                | ne or a deg   | gree air pei     | meability   | is being u   | sed      |           |                             | _      |
| Number of sides sheltered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d                                                     |               | (20) = 1 -       | n 075 v (*  | 10)1 –       |          |           | 2                           | (19)   |
| Shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng chaltar factor                                     |               | (20) = 13        |             | 19)] =       |          |           | 0.85                        | (20)   |
| Infiltration rate incorporati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |               | (21) - (10)      | X (20) =    |              |          |           | 0.57                        | (21)   |
| Infiltration rate modified fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mar Apr May Jun                                       | Jul           | Aug              | Sep         | Oct          | Nov      | Dec       | ]                           |        |
| Monthly average wind spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | Oui           | _ / tag          | ОСР         | 1 000        | 1 1404   | 1 000     | J                           |        |
| <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9 4.4 4.3 3.8                                       | 3.8           | 3.7              | 4           | 4.3          | 4.5      | 4.7       | ]                           |        |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | 1             |                  |             | 1            | <u> </u> | I         | J                           |        |
| Wind Factor $(22a)m = (22a)m $ | <del> </del>                                          | 1             |                  |             | T            | T        |           | 1                           |        |
| (22a)m= 1.27 1.25 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.23 1.1 1.08 0.95                                    | 0.95          | 0.92             | 1           | 1.08         | 1.12     | 1.18      |                             |        |

| Adjusted infiltr                      | ation rate              | e (allowir  | ng for sh   | nelter an   | d wind s    | peed) =   | (21a) x      | (22a)m         |                        |                                                  |                  |                    |             |
|---------------------------------------|-------------------------|-------------|-------------|-------------|-------------|-----------|--------------|----------------|------------------------|--------------------------------------------------|------------------|--------------------|-------------|
| 0.72                                  | 0.71                    | 0.7         | 0.62        | 0.61        | 0.54        | 0.54      | 0.52         | 0.57           | 0.61                   | 0.64                                             | 0.67             |                    |             |
| Calculate effe                        |                         | -           | ate for t   | he appli    | cable ca    | se        |              | !              |                        |                                                  |                  |                    | <del></del> |
| If mechanic                           |                         |             | andia N. (O | ah) (aa-    | · \         |           | IT\\         |                | ) (00-)                |                                                  |                  | 0                  | (23a)       |
| If exhaust air h                      |                         |             |             |             |             |           |              |                | ) = (23a)              |                                                  |                  | 0                  | (23b)       |
| If balanced with                      |                         |             |             |             |             |           |              |                |                        |                                                  |                  | 0                  | (23c)       |
| a) If balance                         |                         | -           |             |             |             | <u> </u>  |              | ŕ              | <del>r ´       `</del> | <del></del>                                      | <del>- ` ´</del> | ÷ 100]<br>I        | (240)       |
| (24a)m= 0                             | 0                       | 0           | 0           | 0           | 0           | 0         | 0            | 0              | 0                      | 0                                                | 0                |                    | (24a)       |
| b) If balance                         |                         | r           |             |             |             |           |              | <del>í `</del> | <del> </del>           | <del>-                                    </del> | · ·              | Ī                  | (O.4F.)     |
| (24b)m= 0                             | 0                       | 0           | 0           | 0           | 0           | 0         | 0            | 0              | 0                      | 0                                                | 0                |                    | (24b)       |
| c) If whole h                         | iouse exti<br>n < 0.5 × |             |             | •           | •           |           |              |                | 5 v (22k               | <b>5)</b>                                        |                  |                    |             |
| (24c)m = 0                            | 0.5 x                   | 0           | 0           | 0           | 0           | 0         | 0            | 0              | 0                      | 0                                                | 0                |                    | (24c)       |
| d) If natural                         | ا                       |             |             |             |             |           |              |                |                        |                                                  |                  |                    | (= :0)      |
| ,                                     | n = 1, the              |             |             | •           | •           |           |              |                | 0.5]                   |                                                  |                  |                    |             |
| (24d)m= 0.76                          | 0.75                    | 0.74        | 0.69        | 0.69        | 0.65        | 0.65      | 0.64         | 0.66           | 0.69                   | 0.7                                              | 0.72             |                    | (24d)       |
| Effective air                         | change r                | rate - en   | ter (24a    | or (24b     | o) or (24   | c) or (24 | d) in box    | (25)           |                        |                                                  |                  | _                  |             |
| (25)m= 0.76                           | 0.75                    | 0.74        | 0.69        | 0.69        | 0.65        | 0.65      | 0.64         | 0.66           | 0.69                   | 0.7                                              | 0.72             |                    | (25)        |
| 3. Heat losse                         | s and hea               | at loss p   | aramete     | er:         |             |           |              |                |                        |                                                  | _                |                    | _           |
| ELEMENT                               | Gross                   |             | Openin      |             | Net Ar      | ea        | U-valu       | ue             | ΑXU                    |                                                  | k-value          | 9                  | AXk         |
|                                       | are <mark>a</mark> (    | (m²)        | · m         |             | A ,r        | n²        | W/m2         | !K             | (W/                    | K)                                               | kJ/m²-l          | <                  | kJ/K        |
| Doors                                 |                         |             |             |             | 1.9         | X         | 1.4          | =              | 2.66                   |                                                  |                  |                    | (26)        |
| Windows Type                          | e 1                     | 7           |             |             | 9.03        | x1/       | /[1/( 1.6 )+ | 0.04] =        | 13.58                  |                                                  |                  |                    | (27)        |
| Windows Type                          | 2                       |             |             |             | 1.82        | X1/       | /[1/( 4.8 )+ | 0.04] =        | 7.33                   |                                                  |                  |                    | (27)        |
| Windows Type                          | e 3                     |             |             |             | 0.87        | x1/       | /[1/( 4.8 )+ | 0.04] =        | 3.5                    |                                                  |                  |                    | (27)        |
| Floor                                 |                         |             |             |             | 55          | X         | 0.93         | =              | 51.15                  |                                                  |                  |                    | (28)        |
| Walls Type1                           | 28.9                    |             | 10.8        | 5           | 18.05       | 5 x       | 2.1          | =              | 37.9                   |                                                  |                  | $\exists$ $\vdash$ | (29)        |
| Walls Type2                           | 7.81                    |             | 2.77        |             | 5.04        | x         | 2.1          | ₹ - i          | 10.58                  | ₹ i                                              |                  | 7 F                | (29)        |
| Total area of e                       | elements,               | m²          |             |             | 91.71       |           |              |                |                        |                                                  |                  |                    | (31)        |
| Party wall                            |                         |             |             |             | 27.9        | X         | 0            |                | 0                      |                                                  |                  | $\neg$ $\vdash$    | (32)        |
| Party wall                            |                         |             |             |             | 1.13        | x         | 0            | =              | 0                      | Ħ i                                              |                  | <b>=</b>   =       | (32)        |
| * for windows and ** include the area |                         |             |             |             | alue calcul |           |              | /[(1/U-valu    |                        | as given in                                      | paragraph        | <br>1 3.2          | ` ′         |
| Fabric heat los                       |                         |             |             | - a.ia paii |             |           | (26)(30)     | ) + (32) =     |                        |                                                  |                  | 126.7              | (33)        |
| Heat capacity                         |                         | •           | -,          |             |             |           |              | ((28).         | (30) + (3              | 2) + (32a).                                      | (32e) =          | 0                  | (34)        |
| Thermal mass                          | ,                       | ,           | ) = Cm ÷    | - TFA) ir   | n kJ/m²K    |           |              | ,              | tive Value             | , , ,                                            | ` '              | 450                | (35)        |
| For design assess                     | sments whe              | ere the det | ails of the | ,           |             |           | ecisely the  |                |                        | · ·                                              | able 1f          | 730                | (55)        |
| Thermal bridg                         |                         |             |             | ısina An    | pendix k    | <         |              |                |                        |                                                  |                  | 14.4               | (36)        |
| if details of therma                  | al bridging a           | ,           |             | • .         | •           | -         |              | (00)           | (00)                   |                                                  |                  |                    |             |
| Total fabric he                       |                         | ا الاعادات  |             |             |             |           |              |                | (36) =                 | (OE) (E)                                         |                  | 141.1              | 1 (37)      |
| Ventilation hea                       | <del> </del>            | r           |             |             |             |           |              |                |                        | (25)m x (5)                                      | 1                | 1                  |             |
| Jan                                   | Feb                     | Mar         | Apr         | May         | Jun         | Jul       | Aug          | Sep            | Oct                    | Nov                                              | Dec              |                    |             |

| (00)                             | T                         | T                |              |                       |             |                   |             |              |             |                                       | T        |         | (00)         |
|----------------------------------|---------------------------|------------------|--------------|-----------------------|-------------|-------------------|-------------|--------------|-------------|---------------------------------------|----------|---------|--------------|
| (38)m= 30                        | 29.6                      | 29.21            | 27.37        | 27.02                 | 25.42       | 25.42             | 25.12       | 26.03        | 27.02       | 27.72                                 | 28.45    |         | (38)         |
| Heat transfer                    |                           | <del></del>      | 1,00,40      | 100.10                | 100.50      | 400.50            | 1,00,00     |              | = (37) + (3 | •                                     | 100.50   |         |              |
| (39)m= 171.11                    | 170.71                    | 170.32           | 168.48       | 168.13                | 166.53      | 166.53            | 166.23      | 167.14       | 168.13      | 168.83                                | 169.56   | 400.47  | (39)         |
| Heat loss para                   | ameter (I                 | HLP), W          | /m²K         |                       |             |                   |             |              | = (39)m ÷   | Sum(39) <sub>1</sub><br>(4)           | 12 /12=  | 168.47  | (39)         |
| (40)m= 3.11                      | 3.1                       | 3.1              | 3.06         | 3.06                  | 3.03        | 3.03              | 3.02        | 3.04         | 3.06        | 3.07                                  | 3.08     |         | _            |
| Number of da                     | vs in mo                  | nth <i>(</i> Tah | le 1a)       |                       |             |                   |             | /            | Average =   | Sum(40) <sub>1</sub>                  | 12 /12=  | 3.06    | (40)         |
| Jan                              | Feb                       | Mar              | Apr          | May                   | Jun         | Jul               | Aug         | Sep          | Oct         | Nov                                   | Dec      |         |              |
| (41)m= 31                        | 28                        | 31               | 30           | 31                    | 30          | 31                | 31          | 30           | 31          | 30                                    | 31       |         | (41)         |
|                                  | !                         | !                | !            |                       |             |                   | !           |              |             | <u> </u>                              | <u> </u> |         |              |
| 4. Water hea                     | atina ene                 | rav reau         | irement:     |                       |             |                   |             |              |             |                                       | kWh/ye   | ear:    |              |
|                                  |                           |                  |              |                       |             |                   |             |              |             |                                       |          |         |              |
| Assumed occ<br>if TFA > 13.      | .9, N = 1                 |                  | [1 - exp     | (-0.0003              | 349 x (TF   | FA -13.9          | )2)] + 0.0  | 0013 x (     | ΓFA -13.    |                                       | 84       |         | (42)         |
| if TFA £ 13. Annual average      | ,                         | ater usad        | ae in litre  | es per da             | ıv Vd.av    | erage =           | (25 x N)    | + 36         |             | 77                                    | 7.84     |         | (43)         |
| Reduce the annu                  | al average                | hot water        | usage by     | $5\%$ if the $\alpha$ | lwelling is | designed t        |             |              | se target o |                                       | .01      |         | (10)         |
| not more that 125                |                           | person pe        |              | ater use, I           | not and co  |                   |             |              |             |                                       |          |         |              |
| Jan<br>Hot water usage           | Feb<br>in litrog po       | Mar              | Apr          | May                   | Jun         | Jul<br>Table 10 v | Aug         | Sep          | Oct         | Nov                                   | Dec      |         |              |
|                                  |                           |                  |              |                       |             |                   |             |              |             |                                       |          |         |              |
| (44)m= 85.62                     | 82.51                     | 79.39            | 76.28        | 73.17                 | 70.05       | 70.05             | 73.17       | 76.28        | 79.39       | 82.51                                 | 85.62    | 004.05  | 7(44)        |
| Ener <mark>gy cont</mark> ent o  | f hot wa <mark>ter</mark> | used - ca        | culated mo   | onthly $= 4$ .        | 190 x Vd,r  | m x nm x E        | OTm / 3600  |              |             | m(44) <sub>112</sub> =<br>ables 1b, 1 | L        | 934.05  | (44)         |
| (45)m= 126.97                    | 111.05                    | 114.6            | 99.91        | 95.86                 | 82.72       | 76.65             | 87.96       | 89.01        | 103.74      | 113.24                                | 122.97   |         |              |
| If instantaneous                 | water boot                | ing of poin      | t of upo (no | bot water             | t atamana)  | antar O in        | havaa (46   |              | Total = Su  | m(45) <sub>112</sub> =                | =        | 1224.68 | (45)         |
| If instantaneous                 |                           | · ·              |              | 1                     |             | 1                 |             | , ,          |             |                                       |          |         | (40)         |
| (46)m= 19.05<br>Water storage    | 16.66<br>loss:            | 17.19            | 14.99        | 14.38                 | 12.41       | 11.5              | 13.19       | 13.35        | 15.56       | 16.99                                 | 18.45    |         | (46)         |
| Storage volun                    |                           | ) includir       | ng any so    | olar or W             | /WHRS       | storage           | within sa   | ame ves      | sel         |                                       | 160      |         | (47)         |
| If community                     | heating a                 | and no ta        | ank in dw    | elling, e             | nter 110    | litres in         | (47)        |              |             |                                       |          |         |              |
| Otherwise if n                   |                           | hot water        | er (this in  | icludes i             | nstantar    | neous co          | mbi boil    | ers) ente    | er '0' in ( | 47)                                   |          |         |              |
| Water storage                    |                           | a alarad l       | ana fant     | ar ia kaa             |             | 2/dox/\           |             |              |             |                                       |          |         | (40)         |
| a) If manufac                    |                           |                  |              | JI IS KIIO            | WII (KVVI   | i/uay).           |             |              |             |                                       | 0        |         | (48)         |
| Temperature                      |                           |                  |              | 201                   |             |                   | (40) × (40) |              |             |                                       | 0        |         | (49)         |
| Energy lost from b) If manufact  |                           | _                | -            |                       | or is not   |                   | (48) x (49) | ) =          |             | 1                                     | 10       |         | (50)         |
| Hot water stor                   |                           |                  | -            |                       |             |                   |             |              |             | 0.                                    | .02      |         | (51)         |
| If community                     | _                         |                  | on 4.3       |                       |             |                   |             |              |             |                                       |          |         |              |
| Volume factor                    |                           |                  | . Oh         |                       |             |                   |             |              |             | <b>—</b>                              | .03      |         | (52)         |
| Temperature                      |                           |                  |              |                       |             |                   | ·           | >            | >           | 0                                     | .6       |         | (53)         |
| Energy lost from Enter (50) or   |                           | -                | e, KVVh/ye   | ear                   |             |                   | (47) x (51) | ) x (52) x ( | 53) =       |                                       | 03       |         | (54)<br>(55) |
| Water storage                    | , , ,                     | •                | for each     | month                 |             |                   | ((56)m = (  | 55) × (41)r  | m           | 1.                                    | .03      |         | (33)         |
|                                  | 28.92                     | 32.01            | 30.98        | 32.01                 | 30.98       | 32.01             | 32.01       | 30.98        | 32.01       | 30.98                                 | 32.01    |         | (56)         |
| (56)m= 32.01 If cylinder contain |                           |                  |              |                       |             |                   |             |              |             |                                       |          | x H     | (50)         |
|                                  | 28.92                     | 32.01            | 30.98        | 32.01                 | 30.98       | 32.01             | 32.01       | 30.98        | 32.01       | 30.98                                 | 32.01    |         | (57)         |
| (57)m= 32.01                     | 20.92                     | J2.01            | 30.90        | JZ.U1                 | 50.30       | JZ.U1             | JZ.U1       | 50.90        | JZ.U1       | 30.90                                 | JZ.U1    |         | (01)         |

| Primary circuit loss (annual) from Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 (58)                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |
| (modified by factor from Table H5 if there is solar water heating and a cylinder t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hermostat)                                     |
| (59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 22.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.26 22.51 23.26 (59)                         |
| Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| (61)m= 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0 (61)                                     |
| Total heat required for water heating calculated for each month $(62)$ m = $0.85 \times (48)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5)m + (46)m + (57)m + (59)m + (61)m            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 159.01                                         |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g,                                             |
| (63)m= 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0 (63)                                     |
| Output from water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 159.01 166.73 178.24                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er heater (annual) <sub>112</sub> 1875.52 (64) |
| Heat gains from water heating, kWh/month 0.25 $^{\prime}$ [0.85 × (45)m + (61)m] + 0.8 x [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| (65)m= 60.83 53.73 56.71 51.23 50.48 45.51 44.1 47.86 47.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.1 55.66 59.5 (65)                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                            |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er is from community heating                   |
| 5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |
| Metabolic gains (Table 5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| Jan Feb Mar Apr May Jun Jul Aug Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oct Nov Dec                                    |
| (66)m= 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91.87 91.87 (66)                               |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| (67)m= 14.29 12.69 10.32 7.81 5.84 4.93 5.33 6.93 9.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.8 13.77 14.68 (67)                          |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e 5                                            |
| (68)m= 160.19 161.85 157.66 148.74 137.49 126.91 119.84 118.18 122.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131.28 142.54 153.12 (68)                      |
| Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·          |
| (69)m= 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.19 32.19 32.19 (69)                         |
| Pumps and fans gains (Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| (70)m= 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0 0 (70)                                     |
| Losses e.g. evaporation (negative values) (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -73.49 -73.49 -73.49 (71)                      |
| Water heating gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71.37 77.31 79.97 (72)                         |
| Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (60)m + (60)m$ |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 265.02 284.18 298.33 (73)                      |
| 6. Solar gains:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 205.02 204.10 290.55                           |
| Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | applicable orientation                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FF Gains                                       |
| Orientation: Access Factor Area Flux g_ Table 6d m² Table 6a Table 6b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 6c (W)                                   |
| North 0.9x 0.77 x 1.82 x 10.63 x 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |
| 0.00 A 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |
| North 0.9x 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X 0.7 = 3.81 (74)                              |

|                   |                     |            |                | (heating s                                          |                |            | rea from Tab                 | olo O                 | Th1 (°C)     | ,                   | •        | •              | 21               | (85)                  |
|-------------------|---------------------|------------|----------------|-----------------------------------------------------|----------------|------------|------------------------------|-----------------------|--------------|---------------------|----------|----------------|------------------|-----------------------|
| (84)m=            | 474.23              |            | 657.77         | <del>` ´                                     </del> | 727.04         | ·          | 2.36 677.41                  | 654                   | .91 633.58   | 566.79              | 9 483.22 | 442.65         | ]                | (84)                  |
| (83)m=<br>Total q |                     |            |                |                                                     |                |            | 6.75   442.42<br>3)m , watts | 414                   | .92 385.24   | 301.7               | 199.04   | 144.32         | J                | (03)                  |
| 1                 | ains in \<br>167.44 | watts, cal | culated<br>363 | for each<br>428.51                                  | month<br>465.3 |            | i                            | (83)m                 | .92 385.24   | ( <mark>82)m</mark> | 7 199.04 | 144.32         | 1                | (83)                  |
|                   | _                   |            | _              |                                                     |                | _          |                              |                       |              |                     |          | _              |                  |                       |
| South             | 0.9x                | 0.77       | ×              | 9.03                                                |                | x          | 40.4                         | x                     | 0.76         | ×                   | 0.7      | =              | 134.49           | (78)                  |
| South             | 0.9x                | 0.77       | ×              | 9.03                                                |                | x [        | 55.42                        | ×                     | 0.76         | ×                   | 0.7      |                | 184.49           | (78)                  |
| South             | 0.9x                | 0.77       | ×              | 9.03                                                | _              | x          | 82.59                        | X                     | 0.76         | ×                   | 0.7      | _ =            | 274.94           | (78)                  |
| South             | 0.9x                | 0.77       | ×              | 9.03                                                |                | x          | 101.89                       | ) x                   | 0.76         | ×                   | 0.7      |                | 339.19           | (78)                  |
| South             | 0.9x                | 0.77       | ⊢ ^            | 9.03                                                |                | ^ L<br>x [ | 104.89                       | ] ^<br>] x            | 0.76         | =  ^                | 0.7      | = =            | 349.21           | (78)                  |
| South             | 0.9x<br>0.9x        | 0.77       |                | 9.03                                                | =              | ^ L<br>x Г | 108.01                       | ]                     | 0.76         |                     | 0.7      | ╡ ፟፟           | 359.59           | (78)                  |
| South             | 0.9x<br>0.9x        | 0.77       | x              | 9.03                                                |                | x L        | 114.87                       | ] x<br>] x            | 0.76<br>0.76 | X x                 | 0.7      | =              | 382.42<br>368.03 | (78)                  |
| South<br>South    | 0.9x                | 0.77       | ×              | 9.03                                                |                | х <u>Г</u> | 110.23                       | X                     | 0.76         | →   ×     →         | 0.7      | =              | 366.99           | (78)                  |
| South             | 0.9x                | 0.77       | ×              | 9.03                                                | _              | х<br>      | 97.53                        | X                     | 0.76         | X                   | 0.7      | ╡ =            | 324.7            | (78)                  |
| South             | 0.9x                | 0.77       | ×              | 9.03                                                | =              | X          | 76.57                        | X                     | 0.76         | X                   | 0.7      | =              | 254.91           | (78)                  |
| South             | 0.9x                | 0.77       | ×              | 9.03                                                |                | x          | 46.75                        | X                     | 0.76         | ×                   | 0.7      | =              | 155.64           | (78)                  |
| North             | 0.9x                | 0.77       | ×              | 0.87                                                |                | ×          | 8.86                         | Х                     | 0.85         | X                   | 0.7      | =              | 3.18             | (74)                  |
| North             | 0.9x                | 0.77       | ×              | 1.82                                                |                | X          | 8.86                         | X                     | 0.85         | х                   | 0.7      | =              | 6.65             | (74)                  |
| North             | 0.9x                | 0.77       | ×              | 0.87                                                |                | x          | 13.12                        | ×                     | 0.85         | ×                   | 0.7      | =              | 4.71             | (74)                  |
| North             | 0.9x                | 0.77       | x              | 1.82                                                |                | x          | 13.12                        | ×                     | 0.85         | х                   | 0.7      | =              | 9.84             | (74)                  |
| North             | 0.9x                | 0.77       | ×              | 0.87                                                |                | x [        | 24.19                        | X                     | 0.85         | Х                   | 0.7      | =              | 8.68             | (74)                  |
| North             | 0.9x                | 0.77       | x              | 1.82                                                |                | x [        | 24.19                        | ×                     | 0.85         | x                   | 0.7      | =              | 18.15            | (74)                  |
| North             | 0.9x                | 0.77       | ×              | 0.87                                                |                | x [        | 41.52                        | x                     | 0.85         | x                   | 0.7      | =              | 14.89            | (74)                  |
| North             | 0.9x                | 0.77       | ×              | 1.82                                                |                | x [        | 41.52                        | x                     | 0.85         | ×                   | 0.7      | =              | 31.16            | (74)                  |
| North             | 0.9x                | 0.77       | ×              | 0.87                                                |                | x          | 59.25                        | x                     | 0.85         | ×                   | 0.7      |                | 21.25            | (74)                  |
| North             | 0.9x                | 0.77       | ×              | 1.82                                                | =              | x          | 59.25                        | X                     | 0.85         | ×                   | 0.7      | _ =            | 44.46            | (74)                  |
| North             | 0.9x                | 0.77       | ×              | 0.87                                                |                | ~ L<br>х [ | 74.68                        | ]                     | 0.85         | ×                   | 0.7      | = =            | 26.79            | (74)                  |
| North             | 0.9x                | 0.77       | ☐ x            | 1.82                                                | ==             | ^ L<br>x Г | 74.68                        | ] ^<br>] <sub>x</sub> | 0.85         | `x                  | 0.7      | _              | 56.04            | (74)                  |
| North             | 0.9x                | 0.77       | $=$ $\hat{x}$  | 0.87                                                |                | ^ L<br>x [ | 79.99                        | ] ^<br>] x            | 0.85         | $=$ $\frac{1}{x}$   | 0.7      | <del>-</del> - | 28.69            | (74)                  |
| North             | 0.9x                | 0.77       | ⊢ ^            | 1.82                                                | ==             | ^ L<br>x [ | 79.99                        | ] ^<br>] x            | 0.85         | $=$ $\frac{1}{x}$   | 0.7      | = -            | 60.02            | (74)                  |
| North             | 0.9x                | 0.77       | $=$ $\hat{x}$  | 0.87                                                | _              | ^ L<br>x Г | 74.72                        | ] ^<br>] <sub>x</sub> | 0.85<br>0.85 | $=$ $\frac{1}{x}$   | 0.7      | = -            | 26.8             | (74)                  |
| North             | 0.9x<br>0.9x        | 0.77       | x<br>x         | 1.82                                                |                | x L        | 55.46                        | ] x<br>] x            | 0.85         | x x                 | 0.7      | <b>- </b>      | 19.9             | (74)                  |
| North             | 0.9x<br>0.9x        | 0.77       | ×              | 1.82                                                | _              | х <u>Г</u> | 55.46                        | ] X<br>] v            | 0.85         | X                   | 0.7      | ╡ -            | 41.62            | (74)                  |
| North             | 0.9x                | 0.77       | ×              | 0.87                                                |                | х<br>., Г  | 34.53                        | X<br>l                | 0.85         | _ x                 | 0.7      | _ =            | 12.39            | $= \frac{(74)}{(74)}$ |
| North<br>North    | 0.9x                | 0.77       | ×              | 1.82                                                | _              | X          | 34.53                        | X                     | 0.85         | X                   | 0.7      | =              | 25.91            | (74)                  |
| North             | 0.9x                | 0.77       | ×              | 0.87                                                | ==             | X          | 20.32                        | X                     | 0.85         | ×                   | 0.7      | _  =           | 7.29             | (74)                  |
|                   | 0.9x                | 0.77       | ×              | 1.82                                                |                | × L        | 20.32                        | X                     | 0.85         | ×                   | 0.7      | =              | 15.25            | (74)                  |

| (86)m=   | 1                | 1                    | 0.99                | 0.99       | 0.97      | 0.92        | 0.82         | 0.85       | 0.95          | 0.99         | 1            | 1            |                        | (86)   |
|----------|------------------|----------------------|---------------------|------------|-----------|-------------|--------------|------------|---------------|--------------|--------------|--------------|------------------------|--------|
| Mean     | interna          | l temper             | ature in            | living are | ea T1 (fo | ollow ste   | ps 3 to 7    | in Tabl    | e 9c)         |              |              |              |                        |        |
| (87)m=   | 18.95            | 19.14                | 19.44               | 19.84      | 20.26     | 20.64       | 20.85        | 20.82      | 20.52         | 19.98        | 19.39        | 18.93        |                        | (87)   |
| Temp     | erature          | during h             | neating p           | eriods ir  | rest of   | dwelling    | from Ta      | ble 9, T   | h2 (°C)       |              |              |              |                        |        |
| (88)m=   | 18.7             | 18.7                 | 18.7                | 18.72      | 18.72     | 18.74       | 18.74        | 18.74      | 18.73         | 18.72        | 18.72        | 18.71        |                        | (88)   |
| Utilisa  | ation fac        | tor for g            | ains for            | rest of d  | welling,  | h2,m (se    | e Table      | 9a)        |               |              |              |              |                        |        |
| (89)m=   | 1                | 1                    | 0.99                | 0.98       | 0.93      | 0.78        | 0.5          | 0.56       | 0.86          | 0.98         | 1            | 1            |                        | (89)   |
| Mean     | interna          | l temper             | ature in            | the rest   | of dwelli | na T2 (f    | ollow ste    | ps 3 to    | 7 in Tabl     | e 9c)        |              |              |                        |        |
| (90)m=   | 16.19            | 16.47                | 16.91               | 17.5       | 18.08     | 18.56       | 18.72        | 18.71      | 18.44         | 17.7         | 16.85        | 16.17        |                        | (90)   |
|          |                  |                      |                     |            |           |             |              |            | f             | LA = Livin   | g area ÷ (4  | 1) =         | 0.55                   | (91)   |
| Mean     | interna          | l temper             | ature (fo           | r the wh   | ole dwe   | llina) = fl | A × T1       | + (1 – fl  | A) x T2       |              |              |              |                        |        |
| (92)m=   | 17.71            | 17.93                | 18.3                | 18.79      | 19.28     | 19.7        | 19.89        | 19.87      | 19.58         | 18.95        | 18.25        | 17.68        |                        | (92)   |
| Apply    | adjustr          | nent to t            | he mear             | interna    | temper    | ature fro   | m Table      | 4e, whe    | ere appro     | priate       |              |              |                        |        |
| (93)m=   | 17.71            | 17.93                | 18.3                | 18.79      | 19.28     | 19.7        | 19.89        | 19.87      | 19.58         | 18.95        | 18.25        | 17.68        |                        | (93)   |
| 8. Sp    | ace hea          | iting requ           | uirement            |            |           |             |              |            |               |              |              |              |                        |        |
|          |                  |                      |                     |            |           | ed at ste   | ep 11 of     | Table 9    | o, so tha     | t Ti,m=(     | 76)m an      | d re-calc    | ulate                  |        |
| the u    |                  |                      | or gains            |            |           | live        | l. d         | A          | Con           | Oct          | Nev          | Dag          |                        |        |
| Utilis   | Jan<br>ation fac | Feb                  | Mar<br>ains, hm     | Apr        | May       | Jun         | Jul          | Aug        | Sep           | Oct          | Nov          | Dec          |                        |        |
| (94)m=   | 1                | 0.99                 | 0.99                | 0.98       | 0.94      | 0.86        | 0.7          | 0.74       | 0.91          | 0.98         | 1            | 1            |                        | (94)   |
|          | ıl gains,        | hmGm                 | , W = (94           | 1)m x (8   | 4)m       |             |              |            |               |              |              |              |                        |        |
| (95)m=   | 473.09           | 579.42               | 650.56              | 689.72     | 685.51    | 602.12      | 473.11       | 482.39     | 574.15        | 555.11       | 480.92       | 441.84       |                        | (95)   |
| Montl    | nly aver         | age exte             | rnal tem            | perature   | from Ta   | able 8      |              |            |               |              |              |              |                        |        |
| (96)m=   | 4.3              | 4.9                  | 6.5                 | 8.9        | 11.7      | 14.6        | 16.6         | 16.4       | 14.1          | 10.6         | 7.1          | 4.2          |                        | (96)   |
|          |                  | T                    | an intern           |            |           | 1           |              |            |               | i –          |              |              |                        | (07)   |
|          |                  | 2224.91              | 2009.32             |            | 1274.13   |             | 547.18       | 576.24     | 916.65        | 1403.57      | 1881.75      | 2286.19      |                        | (97)   |
| -        |                  | g require<br>1105.77 | ement fo<br>1010.92 |            | 437.93    | /vn/mon     | $\ln = 0.02$ | 24 X [(97] | )m – (95<br>0 | 631.26       | 1008.6       | 1372.2       |                        |        |
| (50)111= | 1000.10          | 1100.77              | 1010.02             | 102.11     | 407.00    |             | Ů            |            |               | (kWh/year    |              |              | 7624.6                 | (98)   |
| Space    | o hootin         | a roquir             | omant in            | k\\/\b/m2  | Woor      |             |              | 7010       | ii poi youi   | (KVVIII) Gai | ) – Gam(G    | O / 15,912 — |                        |        |
| •        |                  | · .                  | ement in            |            |           |             |              |            |               |              |              |              | 138.63                 | (99)   |
|          |                  |                      | nts – Cor           |            |           |             |              | lina nua.  | برجا لم جاء:  |              | الممانية     |              |                        |        |
|          |                  |                      | ace hea<br>from se  |            |           |             |              |            |               |              | unity Scr    | ieme.        | 0                      | (301)  |
|          | •                |                      | from co             | •          |           | -           |              |            | ,             |              |              |              | 1                      | (302)  |
|          | •                |                      |                     | •          | •         | ,           | ,            | allows for | CUD and       | un to four   | other heat   | nouroon: H   |                        | (002)  |
|          | -                |                      | s, geotherr         |            |           |             |              |            |               | ир то тоит с | otrier rieat | sources; tl  | ie iallei              |        |
| Fractio  | n of hea         | at from C            | Commun              | ity boile  | 'S        |             |              |            |               |              |              |              | 1                      | (303a) |
| Fractio  | n of tota        | al space             | heat fro            | m Comn     | nunity bo | oilers      |              |            |               | (3           | 02) x (303   | a) =         | 1                      | (304a) |
| Factor   | for cont         | trol and             | charging            | method     | (Table    | 4c(3)) fo   | r commu      | unity hea  | ating sys     | tem          |              |              | 1                      | (305)  |
|          |                  |                      | (Table 1            |            | ,         | ` ''        |              | •          | 5 ,           |              |              | [<br>[       | 1.05                   | (306)  |
|          |                  |                      | , , , , , , , ,     |            |           | , 1100111   | .9 5,510     | •••        |               |              |              |              |                        |        |
| -        | heating          | _                    | requirem            | nent       |           |             |              |            |               |              |              | ĺ            | <b>kWh/y</b><br>7624.6 | ear    |
| ,aa      | . 56400          | oamig                | . 54411011          | .5         |           |             |              |            |               |              |              |              | 7.024.0                |        |

| Space heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (98) x (304a) x                                                                                                                                                                                                                 | (305) x (306) =                                                  | 8005.83                                     | (307a)                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Efficiency of secondary/supplementary heating system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n in % (from Table 4a or Apper                                                                                                                                                                                                  | ndix E)                                                          | 0                                           | (308                                                                 |
| Space heating requirement from secondary/suppleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ntary system (98) x (301) x                                                                                                                                                                                                     | 100 ÷ (308) =                                                    | 0                                           | (309)                                                                |
| Water heating Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 |                                                                  | 1875.52                                     | ]                                                                    |
| If DHW from community scheme: Water heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (64) x (303a) x                                                                                                                                                                                                                 | (305) x (306) =                                                  | 1969.3                                      | (310a)                                                               |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01 × [(307a)(30                                                                                                                                                                                                               | 7e) + (310a)(310e)] =                                            | 99.75                                       | (313)                                                                |
| Cooling System Energy Efficiency Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 |                                                                  | 0                                           | (314)                                                                |
| Space cooling (if there is a fixed cooling system, if not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | enter 0) = $(107) \div (314)$                                                                                                                                                                                                   | ) =                                                              | 0                                           | (315)                                                                |
| Electricity for pumps and fans within dwelling (Table 4 mechanical ventilation - balanced, extract or positive i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                 | ]                                                                | 0                                           | (330a)                                                               |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                 | [                                                                | 0                                           | (330b)                                                               |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                 | ĺ                                                                | 0                                           | (330g)                                                               |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =(330a) + (330                                                                                                                                                                                                                  | 0b) + (330g) =                                                   | 0                                           | (331)                                                                |
| Energy for lighting (calculated in Appendix L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 |                                                                  | 252.32                                      | (332)                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                  |                                             | _                                                                    |
| 12b. CO2 Emissions – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                 |                                                                  |                                             |                                                                      |
| 12b. CO2 Emissions – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Energy<br>kWh/year                                                                                                                                                                                                              | Emission factor kg CO2/kWh                                       | Emissions<br>kg CO2/year                    | •                                                                    |
| CO2 from other sources of space and water heating (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kWh/year                                                                                                                                                                                                                        | kg CO2/kWh                                                       | kg CO <mark>2/yea</mark> r                  | (367a)                                                               |
| CO2 from other sources of space and water heating (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kWh/year<br>not CHP)                                                                                                                                                                                                            | kg CO2/kWh                                                       | kg CO2/year                                 | (367a)<br>(367)                                                      |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kWh/year not CHP) is CHP using two fuels repeat (363) to                                                                                                                                                                        | kg CO2/kWh                                                       | kg CO2/year                                 | ``<br>¬                                                              |
| CO2 from other sources of space and water heating (In Efficiency of heat source 1 (%)  CO2 associated with heat source 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/year  not CHP) is CHP using two fuels repeat (363) to  [(307b)+(310b)] x 100 ÷ (367b) x                                                                                                                                     | kg CO2/kWh  0 (366) for the second fuel  0 =  0.52 =             | 90<br>2394.03                               | (367)                                                                |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kWh/year  not CHP) is CHP using two fuels repeat (363) to  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x                                                                                                                           | kg CO2/kWh  0 (366) for the second fuel  0 =  0.52 =             | 90<br>2394.03<br>51.77                      | (367)                                                                |
| CO2 from other sources of space and water heating (In Efficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kWh/year  not CHP) is CHP using two fuels repeat (363) to  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(376)                                                                                                  | 0 (366) for the second fuel 0 = 0.52 = 22) =                     | 90<br>2394.03<br>51.77<br>2445.8            | (367)<br>(372)<br>(373)                                              |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kWh/year  not CHP) is CHP using two fuels repeat (363) to  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(376)                                                                                                  | 0 (366) for the second fuel 0 = 0.52 = 22) = =                   | 90<br>2394.03<br>51.77<br>2445.8            | (367)<br>(372)<br>(373)<br>(374)                                     |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | kWh/year  not CHP) is CHP using two fuels repeat (363) to  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(37  (309) x  instantaneous heater (312) x  (373) + (374) + (375) =                                    | 0 (366) for the second fuel 0 = 0.52 = 22) = =                   | 90 2394.03 51.77 2445.8 0                   | (367)<br>(372)<br>(373)<br>(374)<br>(375)                            |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or into total CO2 associated with space and water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kWh/year  not CHP) is CHP using two fuels repeat (363) to  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(37  (309) x  instantaneous heater (312) x  (373) + (374) + (375) =                                    | 0 (366) for the second fuel 0 = 0.52 = 0.52 = 0.22 = 0.22 = 0.22 | 90 2394.03 51.77 2445.8 0 0 2445.8          | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)                   |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or in the control of | kWh/year  not CHP) is CHP using two fuels repeat (363) to  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(37  (309) x  instantaneous heater (312) x  (373) + (374) + (375) =  thin dwelling (331)) x  (332))) x | 0 (366) for the second fuel 0 = 0.52 = 0.52 = 0.52 = 0.52 = 0.52 | 90 2394.03 51.77 2445.8 0 2445.8            | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)          |
| CO2 from other sources of space and water heating (refficiency of heat source 1 (%)  CO2 associated with heat source 1  Electrical energy for heat distribution  Total CO2 associated with community systems  CO2 associated with space heating (secondary)  CO2 associated with water from immersion heater or in the control of | kWh/year  not CHP) is CHP using two fuels repeat (363) to  [(307b)+(310b)] x 100 ÷ (367b) x  [(313) x  (363)(366) + (368)(37  (309) x  instantaneous heater (312) x  (373) + (374) + (375) =  thin dwelling (331)) x  (332))) x | 0 (366) for the second fuel 0 = 0.52 = 0.52 = 0.52 = 0.52 = 0.52 | 90 2394.03 51.77 2445.8 0 0 2445.8 0 130.95 | (367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)<br>(379) |

|                                                          |                             |                     | User D       | etails:                     |                     |             |          |           |                       |           |
|----------------------------------------------------------|-----------------------------|---------------------|--------------|-----------------------------|---------------------|-------------|----------|-----------|-----------------------|-----------|
| Assessor Name:<br>Software Name:                         | Stroma FSAP 20              |                     | roperty      | Stroma<br>Softwa<br>Address | are Ve              |             |          | Versic    | on: 1.0.3.4           |           |
| Address :                                                | , london                    |                     | Toperty .    | Addiess                     | Offic 5             |             |          |           |                       |           |
| 1. Overall dwelling dime                                 | ensions:                    |                     |              |                             |                     |             |          |           |                       |           |
|                                                          |                             |                     | Area         | a(m²)                       |                     | Av. He      | ight(m)  | _         | Volume(m <sup>3</sup> | <u>')</u> |
| Basement                                                 |                             |                     |              | 51                          | (1a) x              | 2           | .17      | (2a) =    | 110.67                | (3a)      |
| Total floor area TFA = (1                                | a)+(1b)+(1c)+(1d)+(1        | e)+(1r              | ۱)           | 51                          | (4)                 |             |          |           |                       |           |
| Dwelling volume                                          |                             |                     |              |                             | (3a)+(3b            | )+(3c)+(3c  | d)+(3e)+ | .(3n) =   | 110.67                | (5)       |
| 2. Ventilation rate:                                     |                             |                     |              |                             |                     |             |          |           |                       |           |
|                                                          |                             | secondar<br>heating | у            | other                       |                     | total       |          |           | m³ per hou            | ır        |
| Number of chimneys                                       | 0 +                         | 0                   | + [          | 0                           | =                   | 0           | X e      | 40 =      | 0                     | (6a)      |
| Number of open flues                                     | 0 +                         | 0                   | Ī + Ē        | 0                           | Ī = Ē               | 0           | x :      | 20 =      | 0                     | (6b)      |
| Number of intermittent fa                                | ıns                         |                     |              |                             | , <u> </u>          | 2           | x        | 10 =      | 20                    | (7a)      |
| Number of passive vents                                  | <b>;</b>                    |                     |              |                             | F                   | 0           | x        | 10 =      | 0                     | (7b)      |
| Number of flueless gas fi                                | ires                        |                     |              |                             | F                   | 0           | X e      | 40 =      | 0                     | (7c)      |
|                                                          |                             |                     |              |                             | L                   |             |          | Air ch    | nanges per ho         |           |
| Infiltration due to chimne                               |                             |                     |              |                             |                     | 20          |          | ÷ (5) =   | 0.18                  | (8)       |
| If a pressurisation test has b<br>Number of storeys in t |                             | ded, procee         | d to (17), ( | otherwise (                 | continue fr         | om (9) to ( | (16)     |           | 0                     | (9)       |
| Additional infiltration                                  | ne awening (113)            |                     |              |                             |                     |             | [(9)     | -1]x0.1 = | 0                     | (10)      |
| Structural infiltration: 0                               | .25 for steel or timbe      | r frame or          | 0.35 fo      | r masonı                    | y constr            | uction      | •        |           | 0                     | (11)      |
| •••                                                      | resent, use the value corre | esponding to        | the great    | ter wall are                | a (after            |             |          |           |                       |           |
| deducting areas of openii  If suspended wooden t         | <i>5</i> // 1               | aled) or 0          | 1 (seale     | ed) else                    | enter 0             |             |          |           | 0                     | (12)      |
| If no draught lobby, en                                  | •                           | alca) of o          | . 1 (3001)   | <i>Ju)</i> , 0100           | Cittor o            |             |          |           | 0                     | (13)      |
| Percentage of windows                                    |                             | stripped            |              |                             |                     |             |          |           | 0                     | (14)      |
| Window infiltration                                      | _                           |                     |              | 0.25 - [0.2                 | x (14) ÷ 1          | 00] =       |          |           | 0                     | (15)      |
| Infiltration rate                                        |                             |                     |              | (8) + (10)                  | + (11) + (1         | 12) + (13)  | + (15) = |           | 0                     | (16)      |
| Air permeability value,                                  | •                           |                     | •            | •                           | •                   | etre of e   | envelope | area      | 10                    | (17)      |
| If based on air permeabil                                |                             |                     |              |                             |                     |             |          |           | 0.68                  | (18)      |
| Air permeability value applie Number of sides sheltere   |                             | as been dor         | ne or a de   | gree air pe                 | rmeability          | is being u  | sed      |           | 3                     | (19)      |
| Shelter factor                                           | , u                         |                     |              | (20) = 1 -                  | [0.0 <b>75</b> x (1 | 19)] =      |          |           | 0.78                  | (20)      |
| Infiltration rate incorporat                             | ting shelter factor         |                     |              | (21) = (18                  | ) x (20) =          |             |          |           | 0.53                  | (21)      |
| Infiltration rate modified f                             | or monthly wind spec        | ed                  |              |                             |                     |             |          |           |                       |           |
| Jan Feb                                                  | Mar Apr May                 | Jun                 | Jul          | Aug                         | Sep                 | Oct         | Nov      | Dec       |                       |           |
| Monthly average wind sp                                  | eed from Table 7            |                     |              |                             |                     |             |          |           |                       |           |
| (22)m= 5.1 5                                             | 4.9 4.4 4.3                 | 3.8                 | 3.8          | 3.7                         | 4                   | 4.3         | 4.5      | 4.7       |                       |           |
| Wind Faster (22a) (2)                                    | 2)m : 4                     |                     |              |                             |                     |             |          |           |                       |           |
| Wind Factor $(22a)m = (22a)m = 1.27$ 1.25                | 2)m ÷ 4<br>1.23             | 0.95                | 0.95         | 0.92                        | 1                   | 1.08        | 1.12     | 1.18      | ]                     |           |
| (224)111- 1.21 1.23                                      | 1.20 1.1 1.00               | 0.33                | 0.90         | 0.92                        | '                   | 1.00        | 1.14     | 1.10      | J                     |           |

| 0.67                            | 0.66         | 0.65                    | 0.58       | 0.57        | 0.5            | 0.5        | 0.49                                               | 0.53        | 0.57          | 0.59                                             | 0.62               |               |               |
|---------------------------------|--------------|-------------------------|------------|-------------|----------------|------------|----------------------------------------------------|-------------|---------------|--------------------------------------------------|--------------------|---------------|---------------|
| Calculate effe                  |              | •                       | rate for t | he appli    | cable ca       | se         | <u> </u>                                           |             | <u> </u>      | ļ                                                | <u>ļ</u>           |               |               |
| If mechanica                    |              |                         | l' N. (0   | OL) (00     | \ <b>.</b>     | (1         | 15// (1                                            | . (20)      | \ (00 \       |                                                  |                    | 0             | (23           |
| If exhaust air h                |              | 0                       |            | , ,         | ,              | . `        | ,, .                                               | •           | ) = (23a)     |                                                  |                    | 0             | (23           |
| If balanced with                |              | -                       | -          | _           |                |            |                                                    |             |               |                                                  |                    | 0             | (23           |
| a) If balance                   |              |                         |            |             |                | <u> </u>   | <del>- ´ `                                  </del> | <u> </u>    | <del> </del>  | <del>-                                    </del> | <del>1 ` ` `</del> | ) ÷ 100]<br>7 | (2)           |
| 24a)m= 0                        |              | 0                       | 0          | 0           | 0              | 0          | 0                                                  | 0           | 0             | 0                                                | 0                  |               | (24           |
| b) If balance                   |              |                         |            |             |                |            | <del></del>                                        | <u> </u>    | <del> </del>  | <del></del>                                      | Ι ,                | 7             | (2            |
| 24b)m= 0                        | 0            | 0                       | 0          | 0           | . ,            | 0          | 0                                                  | 0           | 0             | 0                                                | 0                  | _             | (2            |
| c) If whole h                   |              | tract ver<br>‹ (23b), t |            | •           |                |            |                                                    |             | 5 v (23h      | <b>,</b> )                                       |                    |               |               |
| 4c)m = 0                        | 0.5 7        | 0                       | 0          | 0           | 0              | 0          | 0                                                  | 0           | 0             | 0                                                | 0                  | 1             | (2            |
| d) If natural                   |              |                         |            |             |                |            |                                                    |             |               |                                                  |                    | _             | (-            |
| ,                               |              | en (24d)                |            | •           | •              |            |                                                    |             | 0.5]          |                                                  |                    |               |               |
| 4d)m= 0.73                      | 0.72         | 0.71                    | 0.67       | 0.66        | 0.63           | 0.63       | 0.62                                               | 0.64        | 0.66          | 0.68                                             | 0.69               | 1             | (2            |
| Effective air                   | change       | rate - er               | nter (24a  | ) or (24k   | o) or (24      | c) or (24  | d) in box                                          | (25)        | !             |                                                  |                    | _             |               |
| 25)m= 0.73                      | 0.72         | 0.71                    | 0.67       | 0.66        | 0.63           | 0.63       | 0.62                                               | 0.64        | 0.66          | 0.68                                             | 0.69               |               | (2            |
|                                 |              |                         |            |             |                |            |                                                    |             |               |                                                  |                    |               | _             |
| B. Heat losse                   |              |                         |            |             |                |            |                                                    |             |               | _                                                |                    | _             |               |
| LEMENT                          | Gros<br>area |                         | Openin     |             | Net Ar<br>A ,r |            | U-valu<br>W/m2                                     |             | A X U<br>(W/I | K)                                               | k-valu<br>kJ/m²·   |               | A X k<br>kJ/K |
| oors                            | 4.04         | ()                      |            |             | 1.9            | x          | 1.4                                                | = [         | 2.66          |                                                  | 110/111            |               | (2            |
| in <mark>dows</mark> Type       | 1            |                         |            |             | 9.03           | _          | /[1/( 1.6 )+                                       |             | 13.58         | Ħ                                                |                    |               | (2            |
| indows Type                     |              |                         |            |             | 2.89           |            | /[1/( 4.8 )+                                       | L           | 11.64         | Ħ                                                |                    |               | (2            |
| oor                             |              |                         |            |             | 51             | ×          |                                                    | = [         |               | <del>╡</del> ┌                                   |                    |               | (2            |
| /alls Type1                     | 40.4         |                         | 0.00       |             |                | =          | 0.99                                               | =           | 50.49         | 亅                                                |                    | _             |               |
| /alls Type1<br>/alls Type2      | 16.1         |                         | 9.03       | =           | 7.11           | X          | 2.1                                                | = [         | 14.93         | 믁 ¦                                              |                    |               | (2            |
|                                 | 16.          |                         | 4.79       |             | 11.31          | =          | 2.1                                                | =           | 23.75         |                                                  |                    |               | (2            |
| otal area of e                  | iements      | , III²                  |            |             | 83.24          | <u>-</u>   |                                                    |             |               |                                                  |                    |               | (3            |
| arty wall                       |              |                         |            |             | 33.3           | Х          | 0                                                  | = [         | 0             |                                                  |                    |               | (3            |
| or windows and include the area |              |                         |            |             |                | ated using | formula 1                                          | /[(1/U-valu | ie)+0.04] a   | as given in                                      | paragrapi          | h 3.2         |               |
| abric heat los                  |              |                         |            | o arra par  |                |            | (26)(30)                                           | + (32) =    |               |                                                  |                    | 117.0         | 5 (3          |
| eat capacity                    | •            | •                       | -,         |             |                |            |                                                    | ((28)       | (30) + (32    | 2) + (32a).                                      | (32e) =            | 0             | (3            |
| nermal mass                     |              | ,                       | P = Cm ÷   | - TFA) ir   | n kJ/m²K       |            |                                                    |             | tive Value    | , , ,                                            | , ,                | 450           | (3            |
| or design assess                | •            | •                       |            | •           |                |            | ecisely the                                        |             |               | · ·                                              | able 1f            | 400           |               |
| n be used inste                 |              |                         |            |             |                | ,          | ,                                                  |             |               |                                                  |                    |               |               |
| nermal bridge                   | es : S (L    | x Y) cal                | culated (  | using Ap    | pendix ł       | <          |                                                    |             |               |                                                  |                    | 12.8          | (3            |
| details of therma               |              | are not kn              | own (36) = | = 0.15 x (3 | 1)             |            |                                                    |             |               |                                                  |                    |               |               |
| otal fabric he                  |              |                         |            |             |                |            |                                                    |             | (36) =        |                                                  |                    | 129.8         | 5 (3          |
| entilation hea                  |              |                         |            |             | _              |            |                                                    |             | = 0.33 × (    |                                                  | 1                  | ٦             |               |
| Jan                             | Feb          | Mar                     | Apr        | May         | Jun            | Jul        | Aug                                                | Sep         | Oct           | Nov                                              | Dec                | 4             |               |
|                                 | 26.2         | 25.89                   | 24.41      | 24.13       | 22.85          | 22.85      | 22.61                                              | 23.34       | 24.13         | 24.69                                            | 25.28              |               | (3            |
|                                 | 20.2         | <u> </u>                |            |             |                |            | •                                                  |             | •             | •                                                | •                  | _             |               |
|                                 |              | <u> </u>                |            |             |                |            |                                                    | (39)m       | = (37) + (3   | 38)m                                             |                    | _             |               |

| leat lo       | oss para               | meter (F     | HLP), W/                | m²K         |              |             |             |                       | (40)m      | = (39)m ÷   | (4)                  |           |         |    |
|---------------|------------------------|--------------|-------------------------|-------------|--------------|-------------|-------------|-----------------------|------------|-------------|----------------------|-----------|---------|----|
| 10)m=         | 3.07                   | 3.06         | 3.05                    | 3.02        | 3.02         | 2.99        | 2.99        | 2.99                  | 3          | 3.02        | 3.03                 | 3.04      |         |    |
| ممسا          | or of dov              | o in mar     | ath /Tabl               | lo 1o\      |              |             |             |                       | ,          | Average =   | Sum(40) <sub>1</sub> | 12 /12=   | 3.02    | (4 |
| iumbe         | Jan                    | Feb          | nth (Tabl<br>Mar        | Apr         | May          | Jun         | Jul         | Aug                   | Sep        | Oct         | Nov                  | Dec       |         |    |
| l1)m=         | 31                     | 28           | 31                      | 30          | 31           | 30          | 31          | 31                    | 30         | 31          | 30                   | 31        |         | (4 |
| .,            | <u> </u>               |              | 0.                      |             | <b>.</b>     |             |             |                       |            |             |                      |           |         | •  |
| 4. Wa         | ater heat              | ing ener     | gy requi                | rement:     |              |             |             |                       |            |             |                      | kWh/ye    | ar:     |    |
| ssum          | ed occu                | pancy, I     | N                       |             |              |             |             |                       |            |             | 1                    | 72        |         | (4 |
| if TF         |                        | 9, N = 1     |                         | [1 - exp    | (-0.0003     | 349 x (TF   | FA -13.9    | )2)] + 0.0            | 0013 x (   | TFA -13.    |                      | 12        |         | (  |
|               |                        |              |                         |             |              |             |             | (25 x N)              |            | 44          |                      | 5.04      |         | (4 |
|               |                        | _            | not water<br>berson per |             |              | _           | _           | to achieve            | a water us | se target o | Ť                    |           |         |    |
|               | Jan                    | Feb          | Mar                     | Apr         | May          | Jun         | Jul         | Aug                   | Sep        | Oct         | Nov                  | Dec       |         |    |
| ot wate       | er usage ii            | n litres per | day for ea              |             | Vd,m = fa    | ctor from T | Table 1c x  |                       | •          |             |                      |           |         |    |
| 4)m=          | 82.54                  | 79.54        | 76.54                   | 73.54       | 70.54        | 67.54       | 67.54       | 70.54                 | 73.54      | 76.54       | 79.54                | 82.54     |         | _  |
| nerav (       | content of             | hot water    | used - cal              | culated mo  | onthly = $4$ | 190 x Vd.r  | n x nm x F. | Tm / 3600             |            | Total = Su  | , ,                  |           | 900.48  |    |
| 5)m=          | 122.41                 | 107.06       | 110.48                  | 96.32       | 92.42        | 79.75       | 73.9        | 84.8                  | 85.81      | 100.01      | 109.17               | 118.55    |         |    |
|               |                        |              | 1.00                    | 00.02       | 02.1.2       |             |             | 9.10                  |            | Total = Su  |                      | L .       | 1180.67 |    |
| instanı       | taneous w              | ater heatii  | ng at point             | of use (no  | hot water    | storage),   | enter 0 in  | boxes (46)            | ) to (61)  |             |                      |           |         |    |
| 6)m=          | 18.36                  | 16.06        | 16.57                   | 14.45       | 13.86        | 11.96       | 11.08       | 12.72                 | 12.87      | 15          | 16.37                | 17.78     |         | (  |
|               | storage<br>e volum     |              | includin                | ng any so   | olar or W    | /WHRS       | storage     | within sa             | me ves     | sel         |                      | 160       |         | (  |
|               |                        | ,            | nd no ta                |             |              |             |             |                       |            |             |                      | 100       |         | (  |
|               | •                      | -            |                         |             | _            |             |             | mbi boil              | ers) ente  | er '0' in ( | 47)                  |           |         |    |
|               | storage                |              |                         |             |              | 4.144       | / I \       |                       |            |             |                      | 1         |         |    |
| •             |                        |              | eclared lo              |             | or is kno    | wn (kWh     | n/day):     |                       |            |             |                      | 0         |         | (  |
|               |                        |              | m Table                 |             |              |             |             |                       |            |             |                      | 0         |         | (  |
|               |                        |              | storage<br>clared c     | -           |              | or io not   |             | (48) x (49)           | =          |             | 1                    | 10        |         | (  |
|               |                        |              | factor fr               | -           |              |             |             |                       |            |             | 0                    | 02        |         | (  |
|               |                        | _            | ee sectio               |             | - (          |             | 77          |                       |            |             |                      | .02       |         | Ì  |
| olum          | e factor               | from Tal     | ble 2a                  |             |              |             |             |                       |            |             | 1.                   | .03       |         | (  |
| empe          | erature fa             | actor fro    | m Table                 | 2b          |              |             |             |                       |            |             | 0                    | .6        |         | (  |
| nergy         | / lost fro             | m water      | storage                 | , kWh/ye    | ear          |             |             | (47) x (51)           | x (52) x ( | 53) =       | 1.                   | .03       |         | (  |
| nter          | (50) or (              | 54) in (5    | 55)                     |             |              |             |             |                       |            |             | 1.                   | .03       |         | (  |
| ater          | storage                | loss cal     | culated f               | or each     | month        |             |             | ((56)m = (            | 55) × (41) | m           |                      |           |         |    |
| 6)m=          | 32.01                  | 28.92        | 32.01                   | 30.98       | 32.01        | 30.98       | 32.01       | 32.01                 | 30.98      | 32.01       | 30.98                | 32.01     |         | (  |
| ylinde        | er contains            | dedicated    | d solar sto             | rage, (57)ı | m = (56)m    | x [(50) – ( | H11)] ÷ (5  | 0), else (5           | 7)m = (56) | m where (   | H11) is fro          | m Appendi | хН      |    |
|               | 32.01                  | 28.92        | 32.01                   | 30.98       | 32.01        | 30.98       | 32.01       | 32.01                 | 30.98      | 32.01       | 30.98                | 32.01     |         | (  |
| ")m=          |                        | 1 (          |                         |             |              |             |             |                       |            |             |                      |           |         | (  |
| 7)m=<br>rimar | v circuit              | ioss (an     | inual) fro              | om Table    | 3            |             |             |                       |            |             |                      | 0         |         | (  |
| imar          | y circuit<br>y circuit | ,            |                         |             |              | 59)m = (    | (58) ÷ 36   | 65 × (41)             | m          |             |                      | 0         |         | ,  |
| imar<br>imar  | y circuit              | loss cal     | culated f               | for each    | month (      | •           | . ,         | 65 × (41)<br>ng and a |            | r thermo    |                      | 0         |         |    |

| Combi loca                  | ooloulotod                | for cook   | month      | (64)m     | (CO) + 20  | GE (41       | ١,,,,       |                |             |                         |              |               |                            |
|-----------------------------|---------------------------|------------|------------|-----------|------------|--------------|-------------|----------------|-------------|-------------------------|--------------|---------------|----------------------------|
| Combi loss (61)m= 0         | 0 0                       | Tor each   |            | 0         | (6U) ÷ 30  | 05 × (41)    | )m<br>  0   | 0              | 0           | Ιο                      | 0            | 1             | (61)                       |
| ( )                         | !                         |            |            | <u> </u>  |            |              |             | ļ              | <u> </u>    | ļ                       | <u> </u>     | (50)m + (61)m | (01)                       |
| (62)m= 177.6                | <del></del>               | 165.75     | 149.81     | 147.69    | 133.24     | 129.18       | 140.08      | 139.31         | 155.28      | 162.66                  | 173.82       | (59)m + (61)m | (62)                       |
| Solar DHW inp               |                           | I          | <u> </u>   |           |            |              |             |                |             |                         |              | J             | (02)                       |
| (add additio                |                           |            |            |           |            |              |             |                | ii ooniinba | ion to wate             | or ricating) |               |                            |
| (63)m= 0                    | 0                         | 0          | 0          | 0         | 0          | 0            | 0           | 0              | 0           | 0                       | 0            | 1             | (63)                       |
| Output from                 | water hea                 | ıter       | <u> </u>   | <u> </u>  |            | <u> </u>     | <u> </u>    |                | <u>!</u>    | ļ                       | <u> </u>     | J             |                            |
| (64)m= 177.6                |                           | 165.75     | 149.81     | 147.69    | 133.24     | 129.18       | 140.08      | 139.31         | 155.28      | 162.66                  | 173.82       | ]             |                            |
|                             |                           |            |            |           |            | •            | Out         | put from w     | ater heate  | r (annual) <sub>1</sub> | 112          | 1831.51       | (64)                       |
| Heat gains f                | rom water                 | heating,   | kWh/m      | onth 0.2  | 5 ´ [0.85  | × (45)m      | ı + (61)r   | n] + 0.8 x     | x [(46)m    | + (57)m                 | + (59)m      | <br>.]        |                            |
| (65)m= 59.3                 | 1 52.41                   | 55.34      | 50.03      | 49.34     | 44.53      | 43.18        | 46.81       | 46.54          | 51.86       | 54.31                   | 58.03        |               | (65)                       |
| include (5                  | 7)m in cal                | culation ( | of (65)m   | only if c | ylinder i  | s in the     | dwelling    | or hot w       | ater is f   | rom com                 | munity h     | neating       |                            |
| 5. Internal                 | gains (see                | e Table 5  | and 5a     | ):        |            |              |             |                |             |                         |              | -             |                            |
| Metabolic ga                | ains (Table               | e 5), Wat  | ts         |           |            |              |             |                |             |                         |              |               |                            |
| Jai                         |                           | Mar        | Apr        | May       | Jun        | Jul          | Aug         | Sep            | Oct         | Nov                     | Dec          | ]             |                            |
| (66)m= 85.9                 | 8 85.98                   | 85.98      | 85.98      | 85.98     | 85.98      | 85.98        | 85.98       | 85.98          | 85.98       | 85.98                   | 85.98        |               | (66)                       |
| Ligh <mark>ting g</mark> ai | ns (calcula               | ted in Ap  | pendix     | L, equat  | on L9 o    | r L9a), a    | lso see     | Table 5        |             |                         |              |               |                            |
| (67)m= 13.3                 | 6 11.86                   | 9.65       | 7.3        | 5.46      | 4.61       | 4.98         | 6.47        | 8.69           | 11.03       | 12.88                   | 13.73        |               | (67)                       |
| Appliances                  | gains (ca <mark>lc</mark> | culated ir | Append     | dix L, eq | uation L   | 13 or L1     | 3a), als    | o see Ta       | ble 5       |                         |              |               |                            |
| (68)m= 149.8                | 33 151.39                 | 147.47     | 139.13     | 128.6     | 118.7      | 112.09       | 110.54      | 114.45         | 122.8       | 133.32                  | 143.22       |               | (68)                       |
| Cooking gai                 | ns (calcula               | ated in A  | ppendix    | L, equat  | ion L15    | or L15a      | ), also s   | ee Table       | 5           |                         | -            |               |                            |
| (69)m= 31.6                 | 31.6                      | 31.6       | 31.6       | 31.6      | 31.6       | 31.6         | 31.6        | 31.6           | 31.6        | 31.6                    | 31.6         |               | (69)                       |
| Pumps and                   | fans gains                | (Table 5   | 5a)        |           |            |              |             |                |             |                         |              | _             |                            |
| (70)m= 0                    | 0                         | 0          | 0          | 0         | 0          | 0            | 0           | 0              | 0           | 0                       | 0            |               | (70)                       |
| Losses e.g.                 | evaporation               | on (nega   | tive valu  | es) (Tab  | le 5)      |              |             |                |             |                         |              | _             |                            |
| (71)m= -68.7                | 78 -68.78                 | -68.78     | -68.78     | -68.78    | -68.78     | -68.78       | -68.78      | -68.78         | -68.78      | -68.78                  | -68.78       |               | (71)                       |
| Water heati                 | ng gains (1               | Table 5)   |            |           |            |              |             |                |             |                         |              | _             |                            |
| (72)m= 79.7                 | 2 77.99                   | 74.39      | 69.49      | 66.32     | 61.84      | 58.04        | 62.91       | 64.64          | 69.71       | 75.43                   | 77.99        | ]             | (72)                       |
| Total intern                | al gains =                | •          |            |           | (66)       | )m + (67)m   | n + (68)m   | + (69)m +      | (70)m + (7  | '1)m + (72)             | )m           | _             |                            |
| (73)m= 291.                 | 7 290.03                  | 280.3      | 264.72     | 249.17    | 233.95     | 223.91       | 228.72      | 236.58         | 252.33      | 270.42                  | 283.74       |               | (73)                       |
| 6. Solar ga                 |                           |            |            |           |            |              |             |                |             |                         |              |               |                            |
| Solar gains a               |                           | •          |            |           |            | •            | itions to c |                | ne applical |                         | tion.        |               |                            |
| Orientation:                | Access F<br>Table 6d      |            | Area<br>m² |           | Flu<br>Tal | ıx<br>ble 6a | -           | g_<br>Fable 6b | Т           | FF<br>able 6c           |              | Gains<br>(W)  |                            |
| North 0.9                   |                           |            |            |           |            |              | , –         |                |             |                         |              | ` '           | 1(74)                      |
|                             |                           |            | 2.8        |           |            | 10.63        | ]           | 0.85           | ×           | 0.7                     | =            | 12.67         | (74)                       |
|                             |                           |            | 2.8        |           |            | 20.32        | ]           | 0.85           |             | 0.7                     | =            | 24.22         | ](74)<br>] <sub>(74)</sub> |
|                             |                           | _          | 2.8        |           |            | 34.53        | ]           | 0.85           | ×           | 0.7                     | _ =          | 41.15         | ](74)<br>] <sub>(74)</sub> |
|                             |                           | _          | 2.8        |           | -          | 55.46        | ]           | 0.85           |             | 0.7                     | _ =          | 66.09         | (74)                       |
| North 0.9                   | X 0.77                    | X          | 2.8        | 39        | x          | 74.72        | X           | 0.85           | X           | 0.7                     | =            | 89.03         | (74)                       |

| North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                        |                                                                                                                            | _                                                                  |                                                            |                            |        | _                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|----------------------------|--------|------------------------------------------------------|
| North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.89                                                                              | 9                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79.99                                                                                                                                      | X                                                                      | 0.85                                                                                                                       | X                                                                  | 0.7                                                        | =                          | 95.31  | (74)                                                 |
| North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.89                                                                              | 9                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.68                                                                                                                                      | X                                                                      | 0.85                                                                                                                       | X                                                                  | 0.7                                                        | =                          | 88.99  | (74)                                                 |
| North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.89                                                                              | 9                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59.25                                                                                                                                      | X                                                                      | 0.85                                                                                                                       | X                                                                  | 0.7                                                        | =                          | 70.6   | (74)                                                 |
| North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.89                                                                              | Э                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.52                                                                                                                                      | X                                                                      | 0.85                                                                                                                       | X                                                                  | 0.7                                                        | =                          | 49.47  | (74)                                                 |
| North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.89                                                                              | Э                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.19                                                                                                                                      | x                                                                      | 0.85                                                                                                                       | X                                                                  | 0.7                                                        | =                          | 28.83  | (74)                                                 |
| North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.89                                                                              | 9                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.12                                                                                                                                      | x                                                                      | 0.85                                                                                                                       | X                                                                  | 0.7                                                        | =                          | 15.63  | (74)                                                 |
| North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.89                                                                              | 9                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.86                                                                                                                                       | x                                                                      | 0.85                                                                                                                       | X                                                                  | 0.7                                                        | =                          | 10.56  | (74)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.75                                                                                                                                      | x                                                                      | 0.76                                                                                                                       | x                                                                  | 0.7                                                        | =                          | 155.64 | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76.57                                                                                                                                      | x                                                                      | 0.76                                                                                                                       | x                                                                  | 0.7                                                        | =                          | 254.91 | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.53                                                                                                                                      | x                                                                      | 0.76                                                                                                                       | x                                                                  | 0.7                                                        | =                          | 324.7  | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.23                                                                                                                                     | x                                                                      | 0.76                                                                                                                       | x                                                                  | 0.7                                                        | =                          | 366.99 | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114.87                                                                                                                                     | x                                                                      | 0.76                                                                                                                       | ×                                                                  | 0.7                                                        | =                          | 382.42 | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.55                                                                                                                                     | x                                                                      | 0.76                                                                                                                       | x                                                                  | 0.7                                                        | =                          | 368.03 | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.01                                                                                                                                     | x                                                                      | 0.76                                                                                                                       | x                                                                  | 0.7                                                        | =                          | 359.59 | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.89                                                                                                                                     | x                                                                      | 0.76                                                                                                                       | x                                                                  | 0.7                                                        | <del>-</del>               | 349.21 | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101.89                                                                                                                                     | x                                                                      | 0.76                                                                                                                       | ×                                                                  | 0.7                                                        | =                          | 339.19 | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.59                                                                                                                                      | x                                                                      | 0.76                                                                                                                       | x                                                                  | 0.7                                                        | =                          | 274.94 | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55.42                                                                                                                                      | Х                                                                      | 0.76                                                                                                                       | X                                                                  | 0.7                                                        |                            | 184.49 | (78)                                                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9x                                                                                                                | 0.77                                                                                                                                            | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.03                                                                              | 3                                                                                                    | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.4                                                                                                                                       | 7 x                                                                    | 0.76                                                                                                                       | х                                                                  | 0.7                                                        |                            | 134.49 | (78)                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                        |                                                                                                                            |                                                                    |                                                            |                            |        |                                                      |
| Solar ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ains in wa                                                                                                          | atts, <mark>calcu</mark> la                                                                                                                     | ated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for each                                                                          | month                                                                                                | )_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                            | (83)m                                                                  | = Sum(74)m                                                                                                                 | .(82)m                                                             |                                                            |                            |        |                                                      |
| (83)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 168.32                                                                                                              | 279.12 365                                                                                                                                      | .85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 433.08                                                                            | 471.46                                                                                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.34 448.58                                                                                                                               | 419                                                                    | .81 388.67                                                                                                                 | 303.70                                                             | 200.12                                                     | 145.05                     |        | (83)                                                 |
| Total ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ains – inte                                                                                                         | ernal and s                                                                                                                                     | olar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (84)m =                                                                           | (73)m                                                                                                | 3) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83)m , watts                                                                                                                               | ,                                                                      |                                                                                                                            |                                                                    |                                                            |                            |        |                                                      |
| (84)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 460.02                                                                                                              | 646                                                                                                                                             | .15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 697.8                                                                             | 720.62                                                                                               | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97.29 672.48                                                                                                                               | 648                                                                    |                                                                                                                            | 556.1                                                              | 470.55                                                     | 428.79                     |        |                                                      |
| 7. Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                     |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                            | 040                                                                    | .53 625.25                                                                                                                 | 550.1                                                              | 470.00                                                     | 0 0                        |        | (84)                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an interna                                                                                                          | al temperat                                                                                                                                     | ure (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | heating                                                                           | season                                                                                               | n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                            | 040.                                                                   | .53 625.25                                                                                                                 | 550.1                                                              | 470.00                                                     | .200                       |        | (84)                                                 |
| Tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area from Ta                                                                                                                               |                                                                        |                                                                                                                            | 330.1                                                              | 470.00                                                     | .200                       | 21     | (84)                                                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | erature d                                                                                                           | uring heatir                                                                                                                                    | ng pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eriods in                                                                         | the livi                                                                                             | ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | area from Ta<br>ee Table 9a)                                                                                                               | able 9,                                                                |                                                                                                                            | 330.1                                                              | 470.00                                                     | .20.10                     | 21     |                                                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | erature d                                                                                                           | uring heatir                                                                                                                                    | ng pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eriods in                                                                         | the livi                                                                                             | ng<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                            | able 9,                                                                |                                                                                                                            | Oct                                                                |                                                            | Dec                        | 21     |                                                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | erature di                                                                                                          | uring heatir                                                                                                                                    | ng pe<br>for li<br>ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eriods in ving area                                                               | the livi<br>a, h1,m                                                                                  | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee Table 9a)                                                                                                                               | able 9,                                                                | Th1 (°C)                                                                                                                   |                                                                    |                                                            |                            | 21     |                                                      |
| Utilisat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erature di<br>tion facto<br>Jan<br>1                                                                                | uring heating for gains Feb M 1 0.9                                                                                                             | ng pe<br>for li<br>ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eriods in<br>ving area<br>Apr                                                     | the livi<br>a, h1,m<br>May                                                                           | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee Table 9a)<br>Jun Jul                                                                                                                    | Au 0.8                                                                 | Th1 (°C) ug Sep                                                                                                            | Oct                                                                | Nov                                                        | Dec                        | 21     | (85)                                                 |
| Utilisat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erature di<br>tion facto<br>Jan<br>1                                                                                | uring heating for gains Feb M 1 0.9                                                                                                             | ng pe<br>for li<br>ar<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eriods in<br>ving area<br>Apr                                                     | the livi<br>a, h1,m<br>May                                                                           | ing<br>n (sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ee Table 9a) Jun Jul 0.9 0.79                                                                                                              | Au 0.8                                                                 | Th1 (°C)  ug Sep  2 0.94  Table 9c)                                                                                        | Oct                                                                | Nov<br>1                                                   | Dec                        | 21     | (85)                                                 |
| (86)m= (87)m= (8 | erature do tion facto Jan 1 internal to                                                                             | uring heating for gains Feb M 1 0.9 emperature 19.19 19                                                                                         | for li<br>ar<br>99<br>e in li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eriods in ving are: Apr 0.98 iving are 19.9                                       | the livi a, h1,m May 0.96 ea T1 (for 20.31                                                           | ing<br>n (se<br>ollo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Table 9a) Jun Jul 0.9 0.79 w steps 3 to 20.67 20.87                                                                                     | Au 0.8                                                                 | Th1 (°C)  ug Sep 2 0.94  Table 9c) 84 20.56                                                                                | Oct<br>0.99                                                        | Nov<br>1                                                   | Dec<br>1                   | 21     | (85)                                                 |
| (86)m= (87)m= (8 | tion facto  Jan  1  internal to 19  erature descriptions                                                            | uring heating for gains Feb M 1 0.9 emperature 19.19 19                                                                                         | for li<br>ar<br>99<br>e in li<br>.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eriods in ving are: Apr 0.98 iving are 19.9                                       | the livi a, h1,m May 0.96 ea T1 (for 20.31                                                           | ng (se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ee Table 9a) Jun Jul 0.9 0.79 w steps 3 to                                                                                                 | Au 0.8                                                                 | Th1 (°C)  ug Sep 2 0.94  Table 9c) 84 20.56  9, Th2 (°C)                                                                   | Oct<br>0.99                                                        | Nov<br>1<br>19.43                                          | Dec<br>1                   | 21     | (85)                                                 |
| (86)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion factors Jan  1  internal to 19  erature do 18.72                                                               | uring heating for gains Feb M 1 0.9 emperature 19.19 19 uring heating 18.72 18.                                                                 | for li<br>ar<br>99<br>e in li<br>.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eriods in ving are Apr 0.98 iving are 19.9 eriods in 18.74                        | the livi a, h1,m May 0.96 ea T1 (for 20.31 rest of 18.74                                             | ollo dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ee Table 9a) Jun Jul 0.9 0.79 w steps 3 to 20.67 20.87 relling from T 8.75 18.75                                                           | Au 0.8 7 in T 20.6 20.6 18.7                                           | Th1 (°C)  ug Sep 2 0.94  Table 9c) 84 20.56  9, Th2 (°C)                                                                   | Oct 0.99                                                           | Nov<br>1<br>19.43                                          | Dec<br>1                   | 21     | (85)                                                 |
| Utilisation (86)m=  Mean (87)m=  Tempe (88)m=  Utilisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | internal to 18.72                                                                                                   | uring heating for gains Feb M 1 0.9 emperature 19.19 19 uring heating 18.72 18. or for gains                                                    | for li<br>ar 29<br>e in li<br>.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eriods in ving are 0.98 iving are 19.9 eriods in 18.74 est of dw                  | the livi a, h1,m May 0.96 ea T1 (for 20.31 rest of 18.74 velling,                                    | ng (so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ee Table 9a) Jun Jul 0.9 0.79 w steps 3 to 0.67 20.87 relling from T 8.75 18.75 m (see Table                                               | Au 0.8 7 in T 20.6 able 9 18.6 e 9a)                                   | Th1 (°C)  ug Sep 2 0.94  Table 9c) 84 20.56 9, Th2 (°C) 76 18.75                                                           | Oct 0.99 20.02                                                     | Nov<br>1<br>19.43                                          | Dec<br>1<br>18.97          | 21     | (85)<br>(86)<br>(87)<br>(88)                         |
| (86)m= [  Mean (87)m= [  Tempe (88)m= [  Utilisar (89)m= [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | internal to 18.72 tion facto 1                                                                                      | uring heating for gains Feb M 1 0.9 emperature 19.19 19 uring heating 18.72 18. ur for gains 0.99 0.9                                           | for liling per in liling per i | eriods in ving are 0.98 iving are 19.9 eriods in 18.74 est of dw                  | the livi a, h1,m May 0.96 ea T1 (for 20.31 rest of 18.74 velling, 0.92                               | ollo<br>2<br>h (si<br>dw<br>1<br>h2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Table 9a) Jun Jul 0.9 0.79 w steps 3 to 0.67 20.87 relling from T 8.75 18.75 m (see Table 0.75 0.47                                     | Au 0.8 7 in T 20.6 20.6 18.1 29.0 0.5                                  | Th1 (°C)  ug Sep 2 0.94  Table 9c) 84 20.56 0, Th2 (°C) 76 18.75                                                           | Oct 0.99 20.02 18.74 0.97                                          | Nov<br>1<br>19.43                                          | Dec<br>1                   | 21     | (85)                                                 |
| Utilisar  (86)m=  Mean  (87)m=  Tempe  (88)m=  Utilisar  (89)m=  Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | internal to 18.72 tion factor 1 internal to 1 | uring heating refor gains  Feb M  1 0.9  emperature 19.19 19  uring heating 18.72 18.  or for gains 0.99 0.9  emperature                        | for line ar li | eriods in ving are 0.98 iving are 19.9 eriods in 18.74 est of dw 0.97 he rest c   | the livi a, h1,m May 0.96 ea T1 (for 20.31 rest of 18.74 velling, 0.92 of dwell                      | ollo 2 h2, ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ee Table 9a) Jun Jul 0.9 0.79 w steps 3 to 20.67 20.87 velling from T 8.75 18.75 m (see Table 0.75 0.47 T2 (follow st                      | Au 0.8 7 in T 20.6 [able 9] 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19 | Th1 (°C)  ug Sep 2 0.94  Table 9c) 84 20.56  9, Th2 (°C) 76 18.75  3 0.84  to 7 in Table                                   | Oct<br>0.99<br>20.02<br>18.74<br>0.97                              | Nov<br>1<br>19.43                                          | Dec<br>1<br>18.97<br>18.73 | 21     | (85)<br>(86)<br>(87)<br>(88)<br>(89)                 |
| (86)m= [  Mean (87)m= [  Tempe (88)m= [  Utilisar (89)m= [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | internal to 18.72 tion factor 1 internal to 1 | uring heating for gains Feb M 1 0.9 emperature 19.19 19 uring heating 18.72 18. ur for gains 0.99 0.9                                           | for line ar li | eriods in ving are 0.98 iving are 19.9 eriods in 18.74 est of dw                  | the livi a, h1,m May 0.96 ea T1 (for 20.31 rest of 18.74 velling, 0.92                               | ollo 2 h2, ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ee Table 9a) Jun Jul 0.9 0.79 w steps 3 to 0.67 20.87 relling from T 8.75 18.75 m (see Table 0.75 0.47                                     | Au 0.8 7 in T 20.6 20.6 18.1 29.0 0.5                                  | Th1 (°C)  ug Sep 2 0.94  Table 9c) 84 20.56  9, Th2 (°C) 76 18.75  13 0.84  to 7 in Table 73 18.49                         | Oct<br>0.99<br>20.02<br>18.74<br>0.97<br>9 9c)                     | Nov<br>1<br>19.43<br>18.73                                 | Dec<br>1<br>18.97<br>18.73 |        | (85)<br>(86)<br>(87)<br>(88)<br>(89)                 |
| Utilisar  (86)m=  Mean  (87)m=  Tempe  (88)m=  Utilisar  (89)m=  Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | internal to 18.72 tion factor 1 internal to 1 | uring heating refor gains  Feb M  1 0.9  emperature 19.19 19  uring heating 18.72 18.  or for gains 0.99 0.9  emperature                        | for line ar li | eriods in ving are 0.98 iving are 19.9 eriods in 18.74 est of dw 0.97 he rest c   | the livi a, h1,m May 0.96 ea T1 (for 20.31 rest of 18.74 velling, 0.92 of dwell                      | ollo 2 h2, ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ee Table 9a) Jun Jul 0.9 0.79 w steps 3 to 20.67 20.87 relling from T 8.75 18.75 m (see Table 0.75 0.47 T2 (follow st                      | Au 0.8 7 in T 20.6 [able 9] 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19 | Th1 (°C)  ug Sep 2 0.94  Table 9c) 84 20.56  9, Th2 (°C) 76 18.75  13 0.84  to 7 in Table 73 18.49                         | Oct<br>0.99<br>20.02<br>18.74<br>0.97<br>9 9c)                     | Nov<br>1<br>19.43                                          | Dec<br>1<br>18.97<br>18.73 | 0.55   | (85)<br>(86)<br>(87)<br>(88)<br>(89)                 |
| (86)m= [  Mean (87)m= [  Tempe (88)m= [  Utilisar (89)m= [  Mean (90)m= [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | internal to 16.27                                                                                                   | uring heating refor gains Feb M 1 0.9 emperature 19.19 19 uring heating 18.72 18. ur for gains 0.99 0.9 emperature 16.55 1                      | ng perfor li ar     ar     be in li 55   72   for ro 99   e in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Apr 0.98 iving are 19.9 eriods in 18.74 est of dw 0.97 he rest of 17.59           | the livi a, h1,m May 0.96 ea T1 (for 20.31 rest of 18.74 velling, 0.92 of dwell 18.16                | ng (second of the second of th | ee Table 9a)  Jun Jul  0.9 0.79  w steps 3 to  20.67 20.87  relling from T  8.75 18.75  m (see Table  0.75 0.47  T2 (follow st  18.6 18.74 | Au 0.8 7 in T 20.8 7 able 9 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19 | Th1 (°C)  ug Sep 2 0.94  Table 9c) 84 20.56  9, Th2 (°C) 76 18.75  3 0.84  to 7 in Table 73 18.49  ft  - fLA) × T2         | Oct<br>0.99<br>20.02<br>18.74<br>0.97<br>e 9c)<br>17.77<br>A = Liv | Nov<br>1<br>19.43<br>18.73<br>1<br>16.92<br>ring area ÷ (4 | Dec<br>1<br>18.97<br>18.73 |        | (85)<br>(86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91) |
| (86)m= [  Mean (87)m= [  Tempe (88)m= [  Utilisar (89)m= [  Mean (90)m= [  Mean (92)m= [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erature de tion facto Jan 1 1 internal te 18.72 tion facto 1 16.27 internal te 17.79                                | uring heating refor gains Feb M 1 0.9 emperature 19.19 19 uring heatin 18.72 18. or for gains 0.99 0.9 emperature 16.55 11 emperature 18.02 18. | for li ar   ar   be in li 5 for re ge in t 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eriods in ving are 19.9 eriods in 18.74 est of dw 0.97 he rest of 17.59 r the who | the livi a, h1,m May 0.96 ea T1 (for 20.31 rest of 18.74 velling, 0.92 of dwell 18.16  ole dwe 19.35 | ollo dw 1 h2, ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ee Table 9a) Jun Jul 0.9 0.79 w steps 3 to 20.67 20.87 relling from T 8.75 18.75 m (see Table 0.75 0.47 T2 (follow st                      | Au 0.8 7 in T 20.6 able 9 18. e 9a) 0.5 eps 3 18. 1 + (1 19.           | Th1 (°C)  ug Sep 2 0.94  Table 9c) 84 20.56  0, Th2 (°C) 76 18.75  3 0.84  to 7 in Table 73 18.49  fl  — fLA) × T2 9 19.64 | Oct 0.99  20.02  18.74  0.97  9 9c)  17.77  A = Liv                | Nov 1 19.43 18.73 1 16.92 ring area ÷ (4                   | Dec<br>1<br>18.97<br>18.73 |        | (85)<br>(86)<br>(87)<br>(88)<br>(89)                 |

|                                      |           |            |                                                    |           | •           |           |           |            |             | ,              | <del></del> |          |          |
|--------------------------------------|-----------|------------|----------------------------------------------------|-----------|-------------|-----------|-----------|------------|-------------|----------------|-------------|----------|----------|
| (93)m= 17.79                         | 18.02     | 18.38      | 18.87                                              | 19.35     | 19.75       | 19.92     | 19.9      | 19.64      | 19.02       | 18.31          | 17.76       |          | (93)     |
| 8. Space hea                         |           |            |                                                    |           |             |           |           |            |             |                |             |          |          |
| Set Ti to the return the utilisation |           |            | •                                                  |           | ed at ste   | ep 11 of  | Table 9   | o, so tha  | t Ti,m=(    | 76)m an        | d re-calc   | ulate    |          |
| Jan                                  | Feb       | Mar        | Apr                                                | May       | Jun         | Jul       | Aug       | Sep        | Oct         | Nov            | Dec         |          |          |
| Utilisation fac                      |           |            |                                                    |           |             |           |           |            |             |                |             |          |          |
| (94)m= 1                             | 0.99      | 0.99       | 0.97                                               | 0.93      | 0.84        | 0.67      | 0.71      | 0.89       | 0.98        | 0.99           | 1           |          | (94)     |
| Useful gains,                        | hmGm      | , W = (9   | 4)m x (8                                           | 4)m       |             |           |           |            |             | •              |             |          |          |
| (95)m= 458.76                        | 565.64    | 637.78     | 677.73                                             | 671.88    | 582.75      | 449.14    | 459.36    | 557.53     | 542.67      | 467.96         | 427.9       |          | (95)     |
| Monthly avera                        | _         | 1          | <del>i                                      </del> |           | r           | i         | ·         |            |             |                | 1           |          |          |
| (96)m= 4.3                           | 4.9       | 6.5        | 8.9                                                | 11.7      | 14.6        | 16.6      | 16.4      | 14.1       | 10.6        | 7.1            | 4.2         |          | (96)     |
| Heat loss rate                       |           | 1          | <del> </del>                                       |           |             |           | · · ·     | <u> </u>   |             | 4700.45        | 0400.70     |          | (07)     |
| (97)m= 2108.88                       |           |            |                                                    |           | 786.6       | 506.95    | 533.92    | 848.6      | 1295.9      |                | 2102.73     |          | (97)     |
| Space heatin<br>(98)m= 1227.68       | <u> </u>  | 902.55     | 619.48                                             | 376.88    | 0           | 0.02      | 0         | 0 0        | 560.4       | 910.94         | 1246.08     |          |          |
| (00)111= 1227.00                     | 000.11    | 002.00     | 010.10                                             | 010.00    |             |           |           |            |             | r) = Sum(9     | L           | 6839.48  | (98)     |
| Space heatin                         | a roquir  | omont in   | k\\/h/m2                                           | 2/voor    |             |           | . 0.10    | . poi youi | (           | , <b>Ga</b> (6 | C)15,512    |          | (99)     |
| ·                                    | • .       |            |                                                    |           |             |           |           |            |             |                | L           | 134.11   | (99)     |
| 9b. Energy rec                       | •         |            | · ·                                                | Ĭ         |             |           |           |            |             |                |             |          |          |
| This part is use<br>Fraction of spa  |           |            |                                                    |           |             |           | <b>.</b>  | •          |             | unity scr      | neme.       | 0        | (301)    |
| Fraction of spa                      |           |            |                                                    |           |             |           |           | , -        |             |                |             | 1        | (302)    |
|                                      |           |            |                                                    |           |             |           | -// for   | CLID and   | un to form  | - 4l 11 l 4    |             |          | (302)    |
| The community so includes boilers, h |           |            |                                                    |           |             |           |           |            | ip to rour  | otner neat     | sources; tr | ne iaπer |          |
| Fraction of hea                      | at from ( | Commun     | ity boiler                                         | s         |             |           |           |            |             |                | [           | 1        | (303a)   |
| Fraction of tota                     | al space  | heat fro   | m Comn                                             | nunity bo | oilers      |           |           |            | (3          | 02) x (303     | a) =        | 1        | (304a)   |
| Factor for cont                      | rol and   | charging   | method                                             | (Table    | 4c(3)) fo   | r commu   | unity hea | ting sys   | tem         |                | [           | 1        | (305)    |
| Distribution los                     | s factor  | (Table 1   | 12c) for (                                         | commun    | ity heatii  | ng syste  | m         |            |             |                | [           | 1.05     | (306)    |
| Space heating                        |           |            |                                                    |           |             |           |           |            |             |                | L           | kWh/yea  | <br>r    |
| Annual space                         | -         | requiren   | nent                                               |           |             |           |           |            |             |                |             | 6839.48  | <u> </u> |
| Space heat fro                       | m Com     | munity b   | oilers                                             |           |             |           |           | (98) x (30 | 04a) x (30  | 5) x (306) :   | = [         | 7181.45  | (307a)   |
| Efficiency of se                     | econdar   | y/supple   | mentary                                            | heating   | system      | in % (fro | m Table   | 4a or A    | ppendix     | E)             |             | 0        | (308)    |
| Space heating                        | require   | ment fro   | m secon                                            | dary/su   | plemen      | tary syst | tem       | (98) x (30 | 01) x 100 · | ÷ (308) =      | Ī           | 0        | (309)    |
| Water beating                        |           |            |                                                    |           |             |           |           |            |             |                | L           |          |          |
| Water heating<br>Annual water h      |           | equirem    | ent                                                |           |             |           |           |            |             |                |             | 1831.51  | $\neg$   |
| If DHW from c                        | _         | •          |                                                    |           |             |           |           |            |             |                | L           |          |          |
| Water heat fro                       |           |            |                                                    |           |             |           |           | (64) x (30 | 03a) x (30  | 5) x (306)     | =           | 1923.08  | (310a)   |
| Electricity used                     | d for hea | at distrib | ution                                              |           |             |           | 0.01      | × [(307a). | (307e) +    | - (310a)(      | (310e)] =   | 91.05    | (313)    |
| Cooling Syster                       | m Energ   | y Efficie  | ncy Rati                                           | 0         |             |           |           |            |             |                |             | 0        | (314)    |
| Space cooling                        | (if there | is a fixe  | d coolin                                           | g systen  | n, if not e | enter 0)  |           | = (107) ÷  | (314) =     |                |             | 0        | (315)    |
| Electricity for p                    |           |            |                                                    |           |             |           |           |            |             |                | -           |          | _        |
| mechanical ve                        | ntilation | - balanc   | ed, extra                                          | act or po | sitive in   | put from  | outside   |            |             |                |             | 0        | (330a)   |
|                                      |           |            |                                                    |           |             |           |           |            |             |                |             |          |          |

| warm air heating system fans                                  |                                |                     |        | 0                    | (330b) |
|---------------------------------------------------------------|--------------------------------|---------------------|--------|----------------------|--------|
| pump for solar water heating                                  |                                |                     |        | 0                    | (330g) |
| Total electricity for the above, kWh/year                     | =(330a) + (330                 | b) + (330g) =       |        | 0                    | (331)  |
| Energy for lighting (calculated in Appendix L)                |                                |                     |        | 235.9                | (332)  |
| 12b. CO2 Emissions – Community heating scheme                 |                                |                     |        |                      |        |
|                                                               | Energy<br>kWh/year             | Emission fac        |        | nissions<br>CO2/year |        |
| CO2 from other sources of space and water heating (not CHF    |                                | (222) ()            |        |                      | _      |
| Efficiency of heat source 1 (%) If there is CHP us            | sing two fuels repeat (363) to | (366) for the secon | d fuel | 90                   | (367a) |
| CO2 associated with heat source 1 [(307b)                     | o)+(310b)] x 100 ÷ (367b) x    | 0                   | = [    | 2185.09              | (367)  |
| Electrical energy for heat distribution                       | [(313) x                       | 0.52                | = [    | 47.25                | (372)  |
| Total CO2 associated with community systems                   | (363)(366) + (368)(372         | 2)                  | = [    | 2232.34              | (373)  |
| CO2 associated with space heating (secondary)                 | (309) x                        | 0                   | =      | 0                    | (374)  |
| CO2 associated with water from immersion heater or instanta   | neous heater (312) x           | 0.22                | = [    | 0                    | (375)  |
| Total CO2 associated with space and water heating             | (373) + (374) + (375) =        |                     | [      | 2232.34              | (376)  |
| CO2 associated with electricity for pumps and fans within dwe | elling (331)) x                | 0.52                | = [    | 0                    | (378)  |
| CO2 associated with electricity for lighting                  | (332))) x                      | 0.52                | =      | 122.43               | (379)  |
| Total CO2, kg/year sum of (376)(382) =                        |                                |                     |        | 2354.77              | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                      |                                |                     |        | 46.17                | (384)  |
| El rating (section 14)                                        |                                |                     |        | 67.13                | (385)  |

|                                       |                                                       | User D        | etails:          |             |             |          |           |               |      |
|---------------------------------------|-------------------------------------------------------|---------------|------------------|-------------|-------------|----------|-----------|---------------|------|
| Assessor Name:<br>Software Name:      | Stroma FSAP 2012                                      |               | Stroma<br>Softwa | re Ve       |             |          | Versio    | on: 1.0.3.4   |      |
|                                       |                                                       | Property A    | Address:         | Unit 4      |             |          |           |               |      |
| Address: 1. Overall dwelling dime     | , london                                              |               |                  |             |             |          |           |               |      |
| 1. Overall dwelling diffle            | 11310113.                                             | Area          | a(m²)            |             | Av. He      | ight(m)  |           | Volume(m³     | )    |
| Basement                              |                                                       |               | <u> </u>         | (1a) x      |             | .18      | (2a) =    | 111.18        | (3a) |
| Total floor area TFA = (1a            | a)+(1b)+(1c)+(1d)+(1e)+(1                             | n)            | 51               | (4)         |             |          | J         |               |      |
| Dwelling volume                       |                                                       |               |                  | (3a)+(3b    | )+(3c)+(3c  | d)+(3e)+ | (3n) =    | 111.18        | (5)  |
| 2. Ventilation rate:                  |                                                       |               |                  |             |             |          |           |               |      |
|                                       | main seconda<br>heating heating                       | ry            | other            |             | total       |          |           | m³ per hou    | r    |
| Number of chimneys                    |                                                       | +             | 0                | ] = [       | 0           | X 4      | 40 =      | 0             | (6a) |
| Number of open flues                  | 0 + 0                                                 | T + F         | 0                | j = [       | 0           | x 2      | 20 =      | 0             | (6b) |
| Number of intermittent far            | ns                                                    |               |                  | Ī           | 2           | x -      | 10 =      | 20            | (7a) |
| Number of passive vents               |                                                       |               |                  | Ī           | 0           | x -      | 10 =      | 0             | (7b) |
| Number of flueless gas fin            | res                                                   |               |                  | Ī           | 0           | X 4      | 40 =      | 0             | (7c) |
|                                       |                                                       |               |                  | _           |             |          | Air ch    | nanges per ho |      |
| Infiltration due to chimney           | /s, flues and fans = (6a)+(6b)+(                      | 7a)+(7b)+(    | 7c) =            | Г           | 20          |          | ÷ (5) =   | 0.18          | (8)  |
| If a pressurisation test has b        | een ca <mark>rried o</mark> ut or is intended, procee | ed to (17), o | otherwise o      | ontinue fr  | om (9) to ( | (16)     |           |               | _    |
| Number of storeys in the              | ne dw <mark>elling</mark> (ns)                        |               |                  |             |             |          |           | 0             | (9)  |
| Additional infiltration               | 25 for steel or timber frame of                       | r 0.25 for    | r maaan          | v const     | untion      | [(9)     | -1]x0.1 = | 0             | (10) |
|                                       | esent, use the value corresponding to                 |               |                  | •           | uction      |          |           | 0             | (11) |
| deducting areas of opening            | gs); if equal user 0.35                               |               |                  |             |             |          |           |               | _    |
| ·                                     | loor, enter 0.2 (unsealed) or 0                       | .1 (seale     | ed), else        | enter 0     |             |          |           | 0             | (12) |
| If no draught lobby, ent              | ·                                                     |               |                  |             |             |          |           | 0             | (13) |
| <u>-</u>                              | s and doors draught stripped                          |               | 0.25 - [0.2      | v (1.4) · 4 | 001 -       |          |           | 0             | (14) |
| Window infiltration Infiltration rate |                                                       |               | (8) + (10)       | , ,         | -           | ± (15) = |           | 0             | (15) |
|                                       | q50, expressed in cubic metre                         |               |                  |             |             |          | aroa      | 0             | (16) |
| •                                     | ity value, then $(18) = [(17) \div 20] + (18)$        | -             | •                | •           | elle oi e   | invelope | aica      | 0.68          | (17) |
| ·                                     | s if a pressurisation test has been do                |               |                  |             | is being u  | sed      |           | 0.00          | (10) |
| Number of sides sheltere              |                                                       |               |                  |             | -           |          |           | 2             | (19) |
| Shelter factor                        |                                                       |               | (20) = 1 -       | 0.075 x (′  | 19)] =      |          |           | 0.85          | (20) |
| Infiltration rate incorporat          | ing shelter factor                                    |               | (21) = (18)      | x (20) =    |             |          |           | 0.58          | (21) |
| Infiltration rate modified for        | or monthly wind speed                                 |               |                  |             |             |          |           | _             |      |
| Jan Feb                               | Mar Apr May Jun                                       | Jul           | Aug              | Sep         | Oct         | Nov      | Dec       |               |      |
| Monthly average wind sp               | eed from Table 7                                      |               |                  |             |             |          |           |               |      |
| (22)m= 5.1 5                          | 4.9 4.4 4.3 3.8                                       | 3.8           | 3.7              | 4           | 4.3         | 4.5      | 4.7       |               |      |
| Wind Factor (22a)m = (22              | 2\m ÷ 4                                               |               |                  |             |             |          |           |               |      |
|                                       | 1.23 1.1 1.08 0.95                                    | 0.95          | 0.92             | 1           | 1.08        | 1.12     | 1.18      | ]             |      |
|                                       |                                                       |               |                  |             | <u> </u>    |          |           | ı             |      |

| 0.74                               | 0.72         | e (allowi               | 0.64             | 0.62        | 0.55           | 0.55                                             | 0.53             | 0.58           | 0.62          | 0.65                                             | 0.68              | 7                 |               |
|------------------------------------|--------------|-------------------------|------------------|-------------|----------------|--------------------------------------------------|------------------|----------------|---------------|--------------------------------------------------|-------------------|-------------------|---------------|
| Calculate effe                     |              | _                       | rate for t       | he appli    | cable ca       | se                                               |                  |                |               | l                                                |                   | J<br>,            |               |
| If mechanic                        |              |                         |                  |             |                |                                                  |                  |                |               |                                                  |                   | 0                 | (23           |
| If exhaust air h                   |              | 0                       |                  | , ,         | ,              | . ,                                              | ,, .             | ,              | ) = (23a)     |                                                  |                   | 0                 | (23           |
| If balanced wit                    |              | -                       | -                | _           |                |                                                  |                  |                |               |                                                  |                   | 0                 | (23           |
| a) If balance                      | 1            |                         |                  |             |                | <del>-                                    </del> | <del>- ^ `</del> | ŕ              | <u> </u>      | <del>-                                    </del> | <del>` ` ` </del> | :) ÷ 100]<br>¬    | (0            |
| 24a)m= 0                           | 0            | 0                       | 0                | 0           | 0              | 0                                                | 0                | 0              | 0             | 0                                                | 0                 |                   | (24           |
| b) If balance                      | 1            |                         |                  |             |                | <del>-                                    </del> | <del>É Ì</del>   | <del>i `</del> | <u> </u>      | · ·                                              |                   | 7                 | (2)           |
| 24b)m= 0                           | 0            | 0                       | 0                | 0           | . ,            | 0                                                | 0                | 0              | 0             | 0                                                | 0                 | J                 | (2            |
| c) If whole h                      |              | tract ven<br>‹ (23b), t |                  | •           |                |                                                  |                  |                | 5 v (23h      | <b>,</b> )                                       |                   |                   |               |
| $\frac{11(220)1}{(24c)m} = 0$      | 0.5 7        | 0                       | 0                | 0           | 0              | 0                                                | 0                | 0              | 0             | 0                                                | 0                 | 7                 | (2            |
| d) If natural                      |              |                         | , i              |             |                |                                                  |                  |                | Ů             |                                                  |                   | _                 | (-            |
| ,                                  |              | en (24d)                |                  | •           | •              |                                                  |                  |                | 0.5]          |                                                  |                   |                   |               |
| 24d)m= 0.77                        | 0.76         | 0.75                    | 0.7              | 0.69        | 0.65           | 0.65                                             | 0.64             | 0.67           | 0.69          | 0.71                                             | 0.73              | 1                 | (2            |
| Effective air                      | change       | rate - er               | nter (24a        | ) or (24b   | o) or (24      | c) or (24                                        | d) in box        | x (25)         |               |                                                  |                   | -                 |               |
| 25)m= 0.77                         | 0.76         | 0.75                    | 0.7              | 0.69        | 0.65           | 0.65                                             | 0.64             | 0.67           | 0.69          | 0.71                                             | 0.73              |                   | (2            |
|                                    |              |                         |                  |             |                |                                                  |                  |                |               |                                                  |                   |                   | _             |
| 3. Heat losse                      |              |                         |                  |             |                |                                                  |                  |                |               |                                                  |                   | _                 |               |
| LEMENT                             | Gros<br>area |                         | Openin           |             | Net Ar<br>A ,r |                                                  | U-valı<br>W/m2   |                | A X U<br>(W/I | K)                                               | k-valu<br>kJ/m².  |                   | A X k<br>kJ/K |
| oors                               | aroa         | (111)                   |                  |             | 1.9            | x                                                | 1.4              | = [            | 2.66          |                                                  | 10/111            |                   | (2            |
| /indows Type                       | e 1          |                         |                  |             | 9.03           | _                                                | /[1/( 1.6 )+     |                | 13.58         | Ħ                                                |                   |                   | (2            |
| /indows Type                       |              |                         |                  |             | 0.39           |                                                  | /[1/( 4.8 )+     | L .            | 1.57          | Ħ                                                |                   |                   | (2            |
| loor                               |              |                         |                  |             | 51             | ×                                                |                  | ] = [          |               | <del>╡</del> ┌                                   |                   |                   | (2            |
| /alls Type1                        |              |                         | 0.00             |             |                | =                                                | 0.97             | <b>-</b>       | 49.47         | 亅                                                |                   | _                 |               |
| Valls Type1                        | 39.2         |                         | 0.39             | _           | 38.81          | =                                                | 2.1              | <u> </u>       | 81.5          | 믁 ¦                                              |                   | ၂ 는               | (2            |
|                                    | 10.9         |                         | 10.93            | 3           | 0.06           | x                                                | 2.1              | = [            | 0.13          |                                                  |                   |                   | (2            |
| otal area of e                     | ements       | , III²                  |                  |             | 101.1          | 9                                                |                  |                |               |                                                  |                   |                   | (3            |
| arty wall                          |              |                         |                  |             | 16.1           | Х                                                | 0                | = [            | 0             |                                                  |                   |                   | (3            |
| for windows and<br>include the are |              |                         |                  |             |                | ated using                                       | formula 1        | /[(1/U-valu    | e)+0.04] a    | as given in                                      | n paragrap        | h 3.2             |               |
| abric heat lo                      |              |                         |                  | o arra par  |                |                                                  | (26)(30)         | ) + (32) =     |               |                                                  |                   | 148.91            | (3            |
| eat capacity                       |              |                         | -,               |             |                |                                                  |                  | ((28)          | .(30) + (32   | 2) + (32a).                                      | (32e) =           | 0                 | (3            |
| hermal mass                        |              |                         | P = Cm ÷         | - TFA) ir   | n kJ/m²K       |                                                  |                  |                | tive Value:   | , , ,                                            | ,                 | 450               | (3            |
| or design asses                    | •            | •                       |                  | ,           |                |                                                  | ecisely the      | e indicative   | values of     | TMP in T                                         | able 1f           | 400               | (             |
| an be used inste                   |              |                         |                  |             |                | ·                                                | ĺ                |                |               |                                                  |                   |                   |               |
| hermal bridg                       | es : S (L    | x Y) cal                | culated (        | using Ap    | pendix ł       | <                                                |                  |                |               |                                                  |                   | 15.2              | (3            |
|                                    |              | are not kn              | own (36) =       | = 0.15 x (3 | 1)             |                                                  |                  | 4              |               |                                                  |                   |                   |               |
|                                    | at loss      |                         |                  |             |                |                                                  |                  |                | (36) =        |                                                  |                   | 164.11            | (3            |
| otal fabric he                     |              |                         | دا ما 4 من مصر ، |             |                |                                                  |                  | (38)m          | = 0.33 × (    | 25)m x (5                                        | 5)                | 7                 |               |
| details of thermotal fabric he     | i            | i                       |                  |             |                |                                                  | I -              |                |               |                                                  |                   |                   |               |
| otal fabric he<br>entilation hea   | Feb          | Mar                     | Apr              | May         | Jun            | Jul                                              | Aug              | Sep            | Oct           | Nov                                              | Dec               | 4                 | ,-            |
| otal fabric he<br>entilation hea   | i            | i                       |                  |             | Jun<br>23.87   | Jul<br>23.87                                     | Aug<br>23.59     | Sep<br>24.47   | Oct<br>25.42  | Nov<br>26.1                                      | 26.8              | _                 | (3            |
| otal fabric he<br>entilation hea   | Feb 27.92    | Mar<br>27.54            | Apr              | May         |                |                                                  | ⊢ <u> </u>       | 24.47          |               | 26.1                                             | +                 | <del>]</del><br>- | (3            |

| at loss para                  | ameter (F                  | ILP), W/    | m²K         |                | г           | Г                | Г           | (40)m        | = (39)m ÷   | - (4)                                 |          |         |    |
|-------------------------------|----------------------------|-------------|-------------|----------------|-------------|------------------|-------------|--------------|-------------|---------------------------------------|----------|---------|----|
| )m= 3.77                      | 3.77                       | 3.76        | 3.72        | 3.72           | 3.69        | 3.69             | 3.68        | 3.7          | 3.72        | 3.73                                  | 3.74     |         |    |
| ımber of day                  | vs in moi                  | nth (Tabl   | le 1a)      |                |             |                  |             |              | Average =   | Sum(40) <sub>1</sub>                  | 12 /12=  | 3.72    | (4 |
| Jan                           | Feb                        | Mar         | Apr         | May            | Jun         | Jul              | Aug         | Sep          | Oct         | Nov                                   | Dec      |         |    |
| )m= 31                        | 28                         | 31          | 30          | 31             | 30          | 31               | 31          | 30           | 31          | 30                                    | 31       |         | (4 |
|                               | •                          |             |             |                |             |                  |             | •            | •           | •                                     |          |         |    |
| . Water hea                   | ting ener                  | gy requi    | rement:     |                |             |                  |             |              |             |                                       | kWh/ye   | ar:     |    |
| sumed occi                    | upancy. I                  | N           |             |                |             |                  |             |              |             | 1                                     | 72       |         | (4 |
| if TFA > 13.                  | 9, N = 1                   |             | [1 - exp    | (-0.0003       | 849 x (TF   | A -13.9          | )2)] + 0.0  | 0013 x (     | TFA -13     |                                       | ,,,      |         | `  |
| f TFA £ 13.<br>nual averag    | •                          | iter iisad  | ne in litre | s ner da       | y Vd av     | erane –          | (25 x N)    | + 36         |             | 75                                    | .04      |         | (4 |
| duce the annu                 | al average                 | hot water   | usage by    | 5% if the a    | lwelling is | designed t       |             |              | se target o |                                       | .04      |         | (  |
| more that 125                 | litres per p               | person per  | day (all w  | ater use, l    | not and co  | ld)              | •           |              |             |                                       |          |         |    |
| Jan                           | Feb                        | Mar         | Apr         | May            | Jun         | Jul              | Aug         | Sep          | Oct         | Nov                                   | Dec      |         |    |
| water usage                   |                            |             | ach month   |                | 1           | 1                | · <i>'</i>  |              | •           |                                       |          |         |    |
| )m= 82.54                     | 79.54                      | 76.54       | 73.54       | 70.54          | 67.54       | 67.54            | 70.54       | 73.54        | 76.54       | 79.54                                 | 82.54    |         |    |
| ergy content of               | f hot water                | used - cal  | culated mo  | onthly = $4$ . | 190 x Vd.r  | n x nm x D       | Tm / 3600   |              |             | m(44) <sub>112</sub> =<br>ables 1b. 1 |          | 900.48  | (  |
| m= 122.41                     | 107.06                     | 110.48      | 96.32       | 92.42          | 79.75       | 73.9             | 84.8        | 85.81        | 100.01      | 109.17                                | 118.55   |         |    |
| 122.41                        | 107.00                     | 110.40      | 90.52       | 32.42          | 79.75       | 73.9             | 04.0        |              |             | m(45) <sub>112</sub> =                | l        | 1180.67 |    |
| stantaneous v                 | vater he <mark>atii</mark> | ng at point | of use (no  | hot water      | storage),   | enter 0 in       | boxes (46   |              | rotal – oa  | 111(40)112                            |          | 1100.07 |    |
| )m= 18.36                     | 16.06                      | 16.57       | 14.45       | 13.86          | 11.96       | 11.08            | 12.72       | 12.87        | 15          | 16.37                                 | 17.78    |         | (  |
| ater storage                  | loss:                      | 7           |             |                |             |                  |             |              |             |                                       |          |         |    |
| orage volum                   | ne (litres)                | includin    | ig any so   | olar or W      | /WHRS       | storage          | within sa   | ame ves      | sel         |                                       | 160      |         | (  |
| community h                   | _                          |             |             | -              |             |                  | ' '         |              | (01 : . /   | · 4 ¬ \                               |          |         |    |
| nerwise if na<br>ater storage |                            | not wate    | er (tnis in | iciuaes i      | nstantar    | eous co          | ilod idmo   | ers) ente    | er o in (   | (47)                                  |          |         |    |
| If manufac                    |                            | eclared le  | oss facto   | or is kno      | wn (kWh     | n/day):          |             |              |             |                                       | 0        |         | (  |
| mperature f                   |                            |             |             |                | `           | • ,              |             |              |             |                                       | 0        |         | (  |
| ergy lost fro                 | m water                    | storage     | , kWh/ye    | ear            |             |                  | (48) x (49) | ) =          |             | 1                                     | 10       |         | (  |
| If manufac                    | turer's de                 | eclared o   | ylinder l   | oss fact       |             |                  |             |              |             |                                       |          |         | ·  |
| t water stor                  | •                          |             |             | e 2 (kW        | h/litre/da  | ıy)              |             |              |             | 0.                                    | 02       |         | (  |
| ommunity home factor          | _                          |             | on 4.3      |                |             |                  |             |              |             |                                       | 00       |         | ,  |
| mperature f                   |                            |             | 2b          |                |             |                  |             |              |             | -                                     | .6       |         | (  |
| ergy lost fro                 |                            |             |             | ear            |             |                  | (47) x (51) | ) x (52) x ( | 53) =       |                                       | 03       |         | (  |
| nter (50) or                  |                            | -           | , 1         | Jui            |             |                  | ( ) ( ,     | , (==, (     | ,           |                                       | 03       |         | (  |
| iter storage                  | loss cal                   | culated f   | or each     | month          |             |                  | ((56)m = (  | 55) × (41)   | m           |                                       |          |         |    |
| )m= 32.01                     | 28.92                      | 32.01       | 30.98       | 32.01          | 30.98       | 32.01            | 32.01       | 30.98        | 32.01       | 30.98                                 | 32.01    |         | (  |
| linder contain                |                            |             |             |                |             |                  |             |              |             |                                       |          | хH      | ·  |
| )m= 32.01                     | 28.92                      | 32.01       | 30.98       | 32.01          | 30.98       | 32.01            | 32.01       | 30.98        | 32.01       | 30.98                                 | 32.01    |         | (  |
|                               |                            | امریما/ فرم | m Tabla     | . 2            |             |                  | <u> </u>    | ļ            | !           |                                       | 0        |         | (  |
| mary circuit<br>mary circuit  | •                          |             |             |                | 59)m = 1    | (58) <u>–</u> 36 | 65 × (41)   | m            |             |                                       | <u> </u> |         | (  |
| ary on our                    |                            |             |             | ,              | •           | . ,              | , ,         |              |             |                                       |          |         |    |
| modified by                   | / factor fi                | om Tabl     | le H5 if t  | here is s      | solar wat   | er heatii        | ng and a    | ı cylinde    | r thermo    | stat)                                 |          |         |    |

| Combi loss of  | alculated                 | for each    | month (     | (61)m –                | (60) ·   | 265 v (41      | \m                  |             |               |           |                  |              |                    |      |
|----------------|---------------------------|-------------|-------------|------------------------|----------|----------------|---------------------|-------------|---------------|-----------|------------------|--------------|--------------------|------|
| (61)m= 0       | 0 0                       | 0           | 0           | 0 1)111 =              | 00) +    | 0 0 0          | 0                   | Т           | 0             | 0         | 0                | 0            | 1                  | (61) |
|                |                           |             |             |                        |          |                |                     | <u> </u>    |               |           |                  |              | J<br>(59)m + (61)m | (0.) |
| (62)m= 177.6   | <del>-i</del>             | 165.75      | 149.81      | 147.69                 | 133.2    |                | 140.                | _           | 139.31        | 155.28    | 162.66           | 173.82       | (39)111 + (01)111  | (62) |
| Solar DHW inpu |                           |             |             |                        |          |                | ļ                   |             |               |           |                  |              |                    | (02) |
| (add addition  |                           |             |             |                        |          |                |                     |             |               | CONTINUE  | mon to wat       | or ricating) |                    |      |
| (63)m= 0       | 0                         | 0           | 0           | 0                      | 0        | 0              | 0                   | Ī           | 0             | 0         | 0                | 0            | 1                  | (63) |
| Output from    | water hea                 | ter         |             |                        |          | _!             | I                   |             |               |           | Į.               | <u> </u>     | ı                  |      |
| (64)m= 177.6   |                           | 165.75      | 149.81      | 147.69                 | 133.2    | 129.18         | 140.                | 08          | 139.31        | 155.28    | 162.66           | 173.82       |                    |      |
|                | I                         | <u> </u>    | <u> </u>    | ļ.                     |          |                | (                   | Outpu       | ut from wa    | ater heat | <br>er (annual)₁ | l12          | 1831.51            | (64) |
| Heat gains f   | rom water                 | heating,    | kWh/m       | onth 0.2               | 3.0] ` 5 | 85 × (45)m     | า + (6 <sup>-</sup> | 1)m         | ] + 0.8 x     | (46)m     | n + (57)m        | + (59)m      | ]                  | -    |
| (65)m= 59.3°   |                           | 55.34       | 50.03       | 49.34                  | 44.53    | <del></del>    | 46.8                | <del></del> | 46.54         | 51.86     | 54.31            | 58.03        | ]                  | (65) |
| include (5     | 7)m in cal                | culation of | of (65)m    | only if c              | vlinde   | is in the      | dwelli              | ng c        | or hot w      | ater is t | from com         | munity h     | ı<br>neating       |      |
| 5. Internal    | <u> </u>                  |             |             |                        | •        |                |                     |             |               |           |                  | ,            |                    |      |
| Metabolic ga   |                           |             |             |                        |          |                |                     |             |               |           |                  |              |                    |      |
| Jar            | T                         | Mar         | Apr         | May                    | Jun      | Jul            | Αι                  | ıg T        | Sep           | Oct       | Nov              | Dec          |                    |      |
| (66)m= 85.98   | 85.98                     | 85.98       | 85.98       | 85.98                  | 85.98    | 85.98          | 85.9                | 98          | 85.98         | 85.98     | 85.98            | 85.98        |                    | (66) |
| Lighting gair  | ns (calcula               | ted in Ap   | pendix      | L, equ <mark>at</mark> | ion L9   | or L9a),       | lso se              | ee T        | able 5        |           |                  |              |                    |      |
| (67)m= 13.58   | 3 12.06                   | 9.81        | 7.43        | 5.55                   | 4.69     | 5.06           | 6.5                 | 8           | 8.83          | 11.22     | 13.09            | 13.96        |                    | (67) |
| Appliances (   | gains (ca <mark>lc</mark> | ulated ir   | Append      | dix L, eq              | uation   | L13 or L1      | 3a), a              | also        | see Tal       | ble 5     |                  |              |                    |      |
| (68)m= 149.8   | 3 151.39                  | 147.47      | 139.13      | 128.6                  | 118.7    | 112.09         | 110.                | 54          | 114.45        | 122.8     | 133.32           | 143.22       |                    | (68) |
| Cooking gair   | ns (calcula               | ted in A    | ppendix     | L, equat               | ion L1   | 5 or L15a      | ), also             | se          | e Table       | 5         |                  | •            | •                  |      |
| (69)m= 31.6    | 31.6                      | 31.6        | 31.6        | 31.6                   | 31.6     | 31.6           | 31.0                | 6           | 31.6          | 31.6      | 31.6             | 31.6         |                    | (69) |
| Pumps and      | fans gains                | (Table 5    | 5a)         |                        |          |                |                     |             |               |           | •                | •            |                    |      |
| (70)m= 0       | 0                         | 0           | 0           | 0                      | 0        | 0              | 0                   |             | 0             | 0         | 0                | 0            |                    | (70) |
| Losses e.g.    | evaporatio                | n (nega     | tive valu   | es) (Tab               | le 5)    | _              |                     |             |               |           | •                |              | •                  |      |
| (71)m= -68.7   | 8 -68.78                  | -68.78      | -68.78      | -68.78                 | -68.78   | -68.78         | -68.                | 78          | -68.78        | -68.78    | -68.78           | -68.78       |                    | (71) |
| Water heating  | ng gains (T               | able 5)     |             |                        |          | -              |                     |             |               |           | •                |              | •                  |      |
| (72)m= 79.72   | 2 77.99                   | 74.39       | 69.49       | 66.32                  | 61.84    | 58.04          | 62.9                | 91          | 64.64         | 69.71     | 75.43            | 77.99        |                    | (72) |
| Total intern   | al gains =                |             |             |                        | (6       | 66)m + (67)n   | n + (68)            | )m +        | (69)m + (     | (70)m + ( | 71)m + (72)      | )m           | •                  |      |
| (73)m= 291.9   | 2 290.23                  | 280.46      | 264.84      | 249.26                 | 234.0    | 2 223.99       | 228.                | 82          | 236.72        | 252.51    | 270.64           | 283.96       |                    | (73) |
| 6. Solar gai   | ins:                      |             |             |                        |          |                |                     |             |               |           |                  |              |                    |      |
| Solar gains ar | e calculated              | using sola  | r flux from | Table 6a               | and ass  | ociated equa   | ations t            | o cor       | nvert to th   | e applica |                  | tion.        |                    |      |
| Orientation:   | Access F<br>Table 6d      |             | Area<br>m²  |                        |          | lux<br>able 6a |                     |             | g_<br>able 6b | -         | FF<br>Table 6c   |              | Gains              |      |
|                |                           |             |             |                        |          | able ba        | , ,                 | 1 6         | able ob       |           | able 60          |              | (W)                | ,    |
| North 0.9      |                           | X           | 0.3         | 39                     | X        | 10.63          | ] x [               |             | 0.85          | x         | 0.7              | =            | 1.71               | (74) |
| North 0.9      |                           | X           | 0.3         | 39                     | X        | 20.32          | _ x [               |             | 0.85          | x [       | 0.7              | =            | 3.27               | (74) |
| North 0.9      |                           | X           | 0.3         | 39                     | x        | 34.53          | X                   |             | 0.85          | x [       | 0.7              | =            | 5.55               | (74) |
| North 0.93     |                           | X           | 0.3         | 39                     | X        | 55.46          | X                   |             | 0.85          | x [       | 0.7              | =            | 8.92               | (74) |
| North 0.9      | × 0.77                    | X           | 0.3         | 39                     | X        | 74.72          | X                   |             | 0.85          | X         | 0.7              | =            | 12.02              | (74) |

|           |                |             |            |            | -            |                                        | _            |                | _        |               |        |        | _    |
|-----------|----------------|-------------|------------|------------|--------------|----------------------------------------|--------------|----------------|----------|---------------|--------|--------|------|
| North     | 0.9x 0.7       | 7 ×         | 0.3        | 39         | X            | 79.99                                  | X            | 0.85           | X        | 0.7           | =      | 12.86  | (74) |
| North     | 0.9x 0.7       | 7 ×         | 0.3        | 39         | x            | 74.68                                  | X            | 0.85           | X        | 0.7           | =      | 12.01  | (74) |
| North     | 0.9x 0.7       | 7 ×         | 0.3        | 39         | x [          | 59.25                                  | X            | 0.85           | X        | 0.7           | =      | 9.53   | (74) |
| North     | 0.9x 0.7       | 7 ×         | 0.3        | 39         | x [          | 41.52                                  | X            | 0.85           | X        | 0.7           | =      | 6.68   | (74) |
| North     | 0.9x 0.7       | 7 ×         | 0.3        | 39         | x            | 24.19                                  | X            | 0.85           | X        | 0.7           | =      | 3.89   | (74) |
| North     | 0.9x 0.7       | 7 ×         | 0.3        | 39         | <b>x</b> [   | 13.12                                  | X            | 0.85           | X        | 0.7           | =      | 2.11   | (74) |
| North     | 0.9x 0.7       | 7 ×         | 0.3        | 39         | x            | 8.86                                   | X            | 0.85           | X        | 0.7           | =      | 1.43   | (74) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | x            | 46.75                                  | X            | 0.76           | X        | 0.7           | =      | 155.64 | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | x            | 76.57                                  | X            | 0.76           | X        | 0.7           | =      | 254.91 | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | x            | 97.53                                  | X            | 0.76           | х        | 0.7           | =      | 324.7  | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | x            | 110.23                                 | X            | 0.76           | x        | 0.7           | =      | 366.99 | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | x            | 114.87                                 | x            | 0.76           | x        | 0.7           | =      | 382.42 | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | x            | 110.55                                 | ×            | 0.76           | x        | 0.7           | =      | 368.03 | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | x            | 108.01                                 | x            | 0.76           | x        | 0.7           | =      | 359.59 | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | x            | 104.89                                 | x            | 0.76           | x        | 0.7           | =      | 349.21 | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | ×            | 101.89                                 | ×            | 0.76           | x        | 0.7           | =      | 339.19 | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | ×            | 82.59                                  | x            | 0.76           | x        | 0.7           | =      | 274.94 | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | ×            | 55.42                                  | X            | 0.76           | Х        | 0.7           | =      | 184.49 | (78) |
| South     | 0.9x 0.7       | 7 ×         | 9.0        | )3         | x            | 40.4                                   | x            | 0.76           | X        | 0.7           | = -    | 134.49 | (78) |
|           |                |             |            |            |              |                                        |              |                |          |               |        |        | _    |
| Solar ga  | ins in watts,  | calculated  | d for eac  | h month    | 1            |                                        | (83)n        | n = Sum(74)m   | (82)m    |               |        |        |      |
| (83)m= 1  | 157.35 258.17  | 330.26      | 375.91     | 394.44     | 38           | 30.89 371.                             | 6 358        | 345.87         | 278.8    | 3 186.6       | 135.92 |        | (83) |
| Total gai | ins – internal | and sola    | r (84)m =  | = (73)m    | 8) +         | 33)m , watt                            | S            |                |          |               |        |        |      |
| (84)m= 4  | 449.28 548.4   | 610.71      | 640.74     | 643.7      | 61           | 4.92 595.5                             | 8 587        | 7.56 582.59    | 531.3    | 4 457.24      | 419.88 |        | (84) |
| 7. Mear   | n internal tem | perature    | (heating   | seasor     | n)           |                                        |              |                |          |               |        |        |      |
| Tempe     | rature during  | heating p   | eriods i   | n the livi | ng a         | area from <sup>-</sup>                 | Table 9      | , Th1 (°C)     |          |               |        | 21     | (85) |
| Utilisati | on factor for  | gains for   | living are | ea, h1,m   | n (se        | ee Table 9a                            | a)           |                |          |               |        |        |      |
|           | Jan Feb        | Mar         | Apr        | May        | Γ,           | Jun Ju                                 | I A          | ug Sep         | Oct      | Nov           | Dec    |        |      |
| (86)m=    | 1 1            | 0.99        | 0.99       | 0.98       | 0            | 0.87                                   | 7 0.8        | 0.96           | 0.99     | 1             | 1      |        | (86) |
| Mean ir   | nternal tempe  | erature in  | living ar  | ea T1 (f   | ollo         | w steps 3 t                            | o 7 in 7     | Fable 9c)      |          | -             |        |        |      |
|           | 18.59 18.78    | 19.1        | 19.54      | 20         | 1            | 0.45 20.7                              |              |                | 19.73    | 19.08         | 18.56  |        | (87) |
| L         | rature during  | heating r   | ariode ii  | rest of    | dw           | elling from                            | Table        | <br>0 Th2 (°C) | !        |               | !      |        |      |
| · -       | 18.41 18.42    | 18.42       | 18.43      | 18.43      | 1            | 8.45 18.4                              |              |                | 18.43    | 18.43         | 18.42  |        | (88) |
| ` '       | l l            | 1           |            | <u> </u>   |              | !                                      |              | 1              | 1        | 1             | 1      |        | ` '  |
|           | on factor for  | <u> </u>    | 1          |            | 1            |                                        |              | 50 000         | 1 0 00   | 0.00          | T 4    |        | (89) |
| (89)m=    | 1 0.99         | 0.99        | 0.98       | 0.94       |              | 0.54                                   | 1 0.         | 59 0.88        | 0.98     | 0.99          | 1      |        | (09) |
|           | nternal tempe  | i e         | 1          | i          | Ť            | <u> </u>                               | i            |                | T        | 1             | Ι      | 1      | /a=1 |
| (90)m=    | 15.52 15.79    | 16.27       | 16.91      | 17.57      | 18           | 8.17 18.4                              | 1 18         |                | 17.19    |               | 15.48  |        | (90) |
| _         |                |             |            |            |              |                                        |              |                | tLA = Li | ving area ÷ ( | 4) =   | 0.47   | (91) |
| _         |                |             |            |            |              |                                        |              |                |          |               |        |        |      |
| Mean_ir   | nternal tempe  | erature (fo | or the wh  | ole dwe    | elling       | g) = fLA ×                             | T1 + (1      | – fLA) × T2    |          |               |        |        |      |
| _         | nternal tempe  | erature (fo | or the wh  | ole dwe    | <del> </del> | g) = fLA × <sup>-</sup><br>9.25   19.5 | <del> </del> | <del></del>    | 18.39    | 17.59         | 16.94  | ]      | (92) |

|                                            | •         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | •           | •                   |           | ı          | •           | 1                                              |             |           |        |
|--------------------------------------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|---------------------|-----------|------------|-------------|------------------------------------------------|-------------|-----------|--------|
| (93)m= 16.97                               | 17.2      | 17.61       | 18.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.72     | 19.25       | 19.51               | 19.48     | 19.13      | 18.39       | 17.59                                          | 16.94       |           | (93)   |
| 8. Space hea                               |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                     |           |            |             |                                                |             |           |        |
| Set Ti to the i<br>the utilisation         |           |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | ed at ste   | ep 11 of            | Table 9   | o, so tha  | t Ti,m=(    | 76)m an                                        | d re-calc   | ulate     |        |
| Jan                                        | Feb       | Mar         | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May       | Jun         | Jul                 | Aug       | Sep        | Oct         | Nov                                            | Dec         |           |        |
| Utilisation fac                            | l         |             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |             |                     |           | 1          |             |                                                |             |           |        |
| (94)m= 1                                   | 0.99      | 0.99        | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95      | 0.88        | 0.73                | 0.76      | 0.91       | 0.98        | 0.99                                           | 1           |           | (94)   |
| Useful gains,                              | hmGm      | , W = (94   | 4)m x (84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4)m       |             |                     |           |            |             |                                                |             |           |        |
| (95)m= 447.66                              | 544.53    | 602.84      | 625.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 610.66    | 540.22      | 435.55              | 446.46    | 530.02     | 518.82      | 454.23                                         | 418.68      |           | (95)   |
| Monthly avera                              |           | 1           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | r           | ī                   | ·         | i          | Ī           | ·                                              | 1           |           |        |
| (96)m= 4.3                                 | 4.9       | 6.5         | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7      | 14.6        | 16.6                | 16.4      | 14.1       | 10.6        | 7.1                                            | 4.2         |           | (96)   |
| Heat loss rate                             |           |             | 1757.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1331.1    |             | =[(39)m :<br>546.37 | · · ·     | <u> </u>   | <del></del> | 1994.9                                         | 2424 55     |           | (97)   |
| (97)m= 2437.25<br>Space heatin             | l         |             | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 873.45      | <u> </u>            | 579.02    | 949.06     | 1477.12     |                                                | 2431.55     |           | (97)   |
|                                            |           | 1135.28     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 536.01    | 0           | 0.02                | 0         | 0          | 712.98      | ·                                              | 1497.58     |           |        |
| (66)111= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1221110   | 1100.20     | 010.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000.01    |             |                     |           | l per year | <u> </u>    | <u> </u>                                       | <del></del> | 8508.34   | (98)   |
| Space heatin                               | a roquir  | omont in    | k\\/b/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/voor    |             |                     | . 0.10    | por you.   | (           | <i>)</i> • • • • • • • • • • • • • • • • • • • | 710,512     |           | (99)   |
| ·                                          | • .       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •         |             |                     |           |            |             |                                                | <u> </u>    | 166.83    | (99)   |
| 9b. Energy rec                             |           |             | The state of the s | Ĭ         |             |                     |           |            |             |                                                |             |           |        |
| This part is use<br>Fraction of spa        |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                     | <b>.</b>  | •          |             | unity scr                                      | neme.       | 0         | (301)  |
| Fraction of spa                            |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                     |           | ĺ          |             |                                                | [           | 1         | (302)  |
|                                            |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                     | -// for   | OUD and    | 45 65       | - 41 11 1 4                                    |             |           | (302)  |
| The community so includes boilers, h       |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                     |           |            | up to rour  | otner neat                                     | sources; tr | ne latter |        |
| Fraction of hea                            | at from C | Commun      | ity boiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s         |             |                     |           |            |             |                                                |             | 1         | (303a) |
| Fraction of total                          | al space  | heat fro    | m Comn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nunity bo | oilers      |                     |           |            | (3          | 02) x (303                                     | sa) =       | 1         | (304a) |
| Factor for cont                            | rol and   | charging    | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Table    | 4c(3)) fo   | r commu             | unity hea | ating sys  | tem         |                                                | [           | 1         | (305)  |
| Distribution los                           | ss factor | (Table 1    | 12c) for d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | commun    | ity heatii  | ng syste            | m         |            |             |                                                | [           | 1.05      | (306)  |
| Space heating                              |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                     |           |            |             |                                                | L           | kWh/yea   | <br>r  |
| Annual space                               | _         | requiren    | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |             |                     |           |            |             |                                                |             | 8508.34   | _      |
| Space heat fro                             | m Comi    | munity b    | oilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             |                     |           | (98) x (30 | 04a) x (30  | 5) x (306)                                     | = [         | 8933.76   | (307a) |
| Efficiency of se                           | econdar   | y/supple    | mentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating   | system      | in % (fro           | m Table   | 4a or A    | ppendix     | E)                                             | ĺ           | 0         | (308)  |
| Space heating                              | require   | ment fro    | m secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dary/su   | plemen      | tary syst           | tem       | (98) x (30 | 01) x 100 · | ÷ (308) =                                      | ĺ           | 0         | (309)  |
| Water heating                              |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                     |           |            |             |                                                | L           |           |        |
| Annual water h                             |           | equirem     | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |                     |           |            |             |                                                |             | 1831.51   | 7      |
| If DHW from c                              | ommuni    | ty schem    | ne:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |                     |           |            |             |                                                | L           |           |        |
| Water heat fro                             |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                     |           | (64) x (30 | 03a) x (30  | 5) x (306)                                     | =           | 1923.08   | (310a) |
| Electricity used                           | d for hea | at distribu | ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |             |                     | 0.01      | × [(307a). | (307e) +    | · (310a)                                       | (310e)] =   | 108.57    | (313)  |
| Cooling System                             | m Energ   | y Efficie   | ncy Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0         |             |                     |           |            |             |                                                |             | 0         | (314)  |
| Space cooling                              | (if there | is a fixe   | d cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g systen  | n, if not e | enter 0)            |           | = (107) ÷  | (314) =     |                                                |             | 0         | (315)  |
| Electricity for p                          |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                     |           |            |             |                                                | -           |           | _      |
| mechanical ve                              | ntilation | - balanc    | ed, extra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | act or po | sitive in   | put from            | outside   |            |             |                                                |             | 0         | (330a) |
|                                            |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                     |           |            |             |                                                |             |           |        |

| warm air heating system fans                                                              |                                      |                             |        | 0                      | (330b) |
|-------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------|--------|------------------------|--------|
| pump for solar water heating                                                              |                                      |                             |        | 0                      | (330g) |
| Total electricity for the above, kWh/year                                                 | =(330a) + (330                       | b) + (330g) =               |        | 0                      | (331)  |
| Energy for lighting (calculated in Appendix L)                                            |                                      |                             |        | 239.8                  | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                             |                                      |                             |        |                        |        |
|                                                                                           | Energy<br>kWh/year                   | Emission fact<br>kg CO2/kWh |        | nissions<br>  CO2/year |        |
| CO2 from other sources of space and water heating (not Cl Efficiency of heat source 1 (%) | HP) Pusing two fuels repeat (363) to | (366) for the second        | d fuel | 90                     | (367a) |
| CO2 associated with heat source 1 [(30                                                    | 07b)+(310b)] x 100 ÷ (367b) x        | 0                           | = [    | 2605.64                | (367)  |
| Electrical energy for heat distribution                                                   | [(313) x                             | 0.52                        | = [    | 56.35                  | (372)  |
| Total CO2 associated with community systems                                               | (363)(366) + (368)(37                | 2)                          | = [    | 2661.99                | (373)  |
| CO2 associated with space heating (secondary)                                             | (309) x                              | 0                           | = [    | 0                      | (374)  |
| CO2 associated with water from immersion heater or instar                                 | ntaneous heater (312) x              | 0.22                        | = [    | 0                      | (375)  |
| Total CO2 associated with space and water heating                                         | (373) + (374) + (375) =              |                             |        | 2661.99                | (376)  |
| CO2 associated with electricity for pumps and fans within d                               | welling (331)) x                     | 0.52                        | = [    | 0                      | (378)  |
| CO2 associated with electricity for lighting                                              | (332))) x                            | 0.52                        | =      | 124.46                 | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                    |                                      |                             |        | 2786.44                | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                  |                                      |                             |        | 54.64                  | (384)  |
| El rating (section 14)                                                                    |                                      |                             |        | 61.04                  | (385)  |

|                                                        |                                                    |                        | User D         | etails:                     |                     |             |          |           |                       |             |
|--------------------------------------------------------|----------------------------------------------------|------------------------|----------------|-----------------------------|---------------------|-------------|----------|-----------|-----------------------|-------------|
| Assessor Name:<br>Software Name:                       | Stroma FSAF                                        |                        |                | Stroma<br>Softwa<br>Address | are Ve              |             |          | Versio    | n: 1.0.3.4            |             |
| Address :                                              | , london                                           |                        | Toperty        | Address                     | Onit 5              |             |          |           |                       |             |
| 1. Overall dwelling dime                               | ensions:                                           |                        |                |                             |                     |             |          |           |                       |             |
| Basement                                               |                                                    |                        |                | a(m²)                       | (1a) x              |             | ight(m)  | (2a) =    | Volume(m <sup>3</sup> | (3a)        |
|                                                        | a) . (1b) . (1a) . (1d                             | (1)                    |                |                             |                     |             | .00      | ](Zu) =   | 322.24                | (ou)        |
| Total floor area TFA = (1                              | a)+(1b)+(1c)+(1d                                   | )+(1e)+(1              | <sup>(1)</sup> | 128                         | (4)                 | \           | n (5 )   | (a.)      |                       | _           |
| Dwelling volume                                        |                                                    |                        |                |                             | (3a)+(3b            | )+(3c)+(3c  | d)+(3e)+ | .(3n) =   | 522.24                | (5)         |
| 2. Ventilation rate:                                   | main                                               | seconda                | r\/            | other                       |                     | total       |          |           | m³ per hou            | r           |
|                                                        | heating                                            | heating                | ·<br>          | Other                       | , –                 | lotai       |          | 40        | m per nou             | _           |
| Number of chimneys                                     | 0                                                  | + 0                    | _] +           | 0                           | ] = [               | 0           |          | 40 =      | 0                     | (6a)        |
| Number of open flues                                   | 0                                                  | + 0                    | +              | 0                           | ] = <u>L</u>        | 0           | x :      | 20 =      | 0                     | (6b)        |
| Number of intermittent fa                              | ns                                                 |                        |                |                             |                     | 3           | X ·      | 10 =      | 30                    | (7a)        |
| Number of passive vents                                |                                                    |                        |                |                             |                     | 0           | X ·      | 10 =      | 0                     | (7b)        |
| Number of flueless gas fi                              | res                                                |                        |                |                             |                     | 0           | X 4      | 40 =      | 0                     | (7c)        |
|                                                        |                                                    |                        |                |                             |                     |             |          | Air ch    | nanges per ho         | our         |
| Infilt <mark>ration</mark> due to chimne               | ys, flues and fans                                 | s = (6a) + (6b) + (6b) | 7a)+(7b)+(     | (7c) =                      | Г                   | 30          |          | ÷ (5) =   | 0.06                  | (8)         |
| If a pressurisation test has b                         |                                                    | intended, procee       | ed to (17),    | otherwise o                 | continue fr         | om (9) to ( | (16)     |           |                       |             |
| Number of storeys in the Additional infiltration       | ne dw <mark>elling</mark> (ns)                     |                        |                |                             |                     |             | [(0)     | -1]x0.1 = | 0                     | (9)<br>(10) |
| Structural infiltration: 0                             | 25 for steel or tir                                | mber frame o           | r 0.35 fo      | r masoni                    | v constr            | uction      | [(9)     | -1]XU.1 = | 0                     | (10)        |
| if both types of wall are p                            |                                                    |                        |                |                             | •                   | dollor.     |          |           | 0                     | (/          |
| deducting areas of opening                             | · ,                                                |                        | 1 (000)        | ad) alaa                    | ontor O             |             |          | 1         |                       | 7(40)       |
| If suspended wooden f If no draught lobby, en          | •                                                  | ŕ                      | . i (Seale     | ea), eise                   | enter 0             |             |          |           | 0                     | (12)        |
| Percentage of windows                                  | ·                                                  |                        |                |                             |                     |             |          |           | 0                     | (14)        |
| Window infiltration                                    |                                                    | 9                      |                | 0.25 - [0.2                 | x (14) ÷ 1          | 00] =       |          |           | 0                     | (15)        |
| Infiltration rate                                      |                                                    |                        |                | (8) + (10)                  | + (11) + (1         | 12) + (13)  | + (15) = |           | 0                     | (16)        |
| Air permeability value,                                | q50, expressed i                                   | n cubic metre          | es per ho      | our per s                   | quare m             | etre of e   | envelope | area      | 10                    | (17)        |
| If based on air permeabil                              | •                                                  |                        |                |                             |                     |             |          |           | 0.56                  | (18)        |
| Air permeability value applie Number of sides sheltere |                                                    | est has been do        | ne or a de     | gree air pe                 | rmeability          | is being u  | sed      |           | 2                     | (19)        |
| Shelter factor                                         | , u                                                |                        |                | (20) = 1 -                  | [0.0 <b>75</b> x (1 | 19)] =      |          |           | 0.85                  | (20)        |
| Infiltration rate incorporat                           | ing shelter factor                                 |                        |                | (21) = (18                  | ) x (20) =          |             |          |           | 0.47                  | (21)        |
| Infiltration rate modified f                           | or monthly wind s                                  | speed                  |                |                             |                     |             |          |           |                       |             |
| Jan Feb                                                | Mar Apr                                            | May Jun                | Jul            | Aug                         | Sep                 | Oct         | Nov      | Dec       |                       |             |
| Monthly average wind sp                                | eed from Table 7                                   | 7                      |                |                             |                     |             |          |           | _                     |             |
| (22)m= 5.1 5                                           | 4.9 4.4                                            | 4.3 3.8                | 3.8            | 3.7                         | 4                   | 4.3         | 4.5      | 4.7       |                       |             |
| Wind Factor (22a)m = (2                                | 2\m <i>÷ 4</i>                                     |                        |                |                             |                     |             |          |           |                       |             |
|                                                        | <del>·                                      </del> | 1.08 0.95              | 0.95           | 0.92                        | 1                   | 1.08        | 1.12     | 1.18      |                       |             |
|                                                        |                                                    |                        |                |                             |                     | <u> </u>    |          |           | I                     |             |

| Adjusted infiltra                      | ation rate (all                   | owing for s   | helter an  | nd wind s   | speed) =    | (21a) x             | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |                       |               |               |
|----------------------------------------|-----------------------------------|---------------|------------|-------------|-------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|-----------------------|---------------|---------------|
| 0.6                                    | 0.59 0.5                          | 8 0.52        | 0.51       | 0.45        | 0.45        | 0.44                | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.51             | 0.53          | 0.56                  | ]             |               |
| Calculate effect                       |                                   | ge rate for   | the appli  | cable ca    | ise         | •                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                | •             | •                     | -             |               |
|                                        | al ventilation:<br>eat pump using | Annendiy N (1 | 23h) - (23 | a) × Emy (4 | aguation (  | N5N othe            | rwice (23h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n) = (23a)       |               |                       | 0             |               |
|                                        | n heat recovery:                  |               |            |             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) = (23a)        |               |                       | 0             |               |
|                                        | -                                 | -             | _          |             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Oh\m ı (         | 22h) [:       | 1 (220                | 0             | (230          |
| (24a)m= 0                              | ed mechanica                      |               | T with he  | at recov    | ery (MV)    | $\int_{0}^{\infty}$ | $\frac{a)m = (2a)}{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2b)m + (.<br>  0 | 23b) × [      | $\frac{1 - (230)}{0}$ | ) ÷ 100]<br>] | (24a          |
|                                        |                                   |               |            |             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |               |                       | J             | (210          |
| (24b)m= 0                              | ed mechanica                      |               | T o        | near rec    |             | 0 (24)              | $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ | 0                | 230)          | 0                     | 1             | (24b          |
|                                        |                                   |               |            |             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |               |                       | ]             | (240          |
| •                                      | ouse extract $0.5 \times (23)$    |               | •          | •           |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 × (23h         | ))            |                       |               |               |
| (24c)m = 0                             | 0 0                               | <del></del>   | 0          | 0           | 0           | 0) - (22)           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                | 0             | 0                     | 1             | (240          |
|                                        | ventilation or                    | whole hous    | se nositi  | ve innut    | ventilati   | on from             | loft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |               |                       | J             | •             |
| ,                                      | n = 1, then (2)                   |               |            |             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5]             |               |                       |               |               |
| (24d)m= 0.68                           | 0.68 0.6                          | 7 0.64        | 0.63       | 0.6         | 0.6         | 0.6                 | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.63             | 0.64          | 0.65                  | ]             | (24d          |
| Effective air                          | change rate                       | - enter (24a  | a) or (24l | b) or (24   | c) or (24   | d) in bo            | x (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |                       | _             |               |
| (25)m= 0.68                            | 0.68 0.6                          | 7 0.64        | 0.63       | 0.6         | 0.6         | 0.6                 | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.63             | 0.64          | 0.65                  |               | (25)          |
| 3. Heat losse                          | c and heat lo                     | ee paramet    | or:        |             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |               |                       |               |               |
| ELEMENT                                | Gross                             | Openir        |            | Net Ar      |             | U-val<br>W/m2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A X U            |               | k-valu-<br>kJ/m²-     | -             | A X k<br>kJ/K |
| Doors Type 1                           | area (m²)                         | 11            | -          | A ,r        | _           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (W/I             | N)            | KJ/III~•              | N.            |               |
|                                        |                                   |               |            | 2.8         | X           | 1.4                 | _\=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.92             | H             |                       |               | (26)          |
| Doors Type 2                           | 1                                 |               |            | 1.5         | X           | 1.4                 | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.1              | H             |                       |               | (26)          |
| Windows Type                           |                                   |               |            | 17.35       |             | /[1/( 4.8 )+        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69.87            | 닉             |                       |               | (27)          |
| Windows Type                           |                                   |               |            | 2.48        | _           | /[1/( 1.6 )+        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.73             | _             |                       |               | (27)          |
| Windows Type                           | 9 3                               |               |            | 1.5         | x1          | /[1/( 4.8 )+        | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.04             | ╛.            |                       |               | (27)          |
| Floor                                  |                                   |               |            | 128         | X           | 0.79                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101.12           |               |                       |               | (28)          |
| Walls Type1                            | 74.26                             | 18.8          | 5          | 55.4        | 1 X         | 2.1                 | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116.36           |               |                       |               | (29)          |
| Walls Type2                            | 46.4                              | 5.28          | 3          | 41.12       | 2 X         | 0.28                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.51            |               |                       |               | (29)          |
| Walls Type3                            | 71.16                             | 1.5           |            | 69.66       | 6 X         | 2.1                 | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 146.29           |               |                       |               | (29)          |
| Walls Type4                            | 5.34                              | 0             |            | 5.34        | . <b>X</b>  | 0.3                 | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6              |               |                       |               | (29)          |
| Roof                                   | 17                                | 0             |            | 17          | x           | 2.3                 | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39.1             | $\overline{}$ |                       |               | (30)          |
| Total area of e                        | lements, m <sup>2</sup>           |               |            | 342.1       | 6           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |               |                       |               | (31)          |
| Party wall                             |                                   |               |            | 22.1        | x           | 0                   | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                |               |                       |               | (32)          |
| * for windows and  ** include the area |                                   |               |            |             | lated using | g formula 1         | 1/[(1/U-valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ue)+0.04] a      | as given in   | paragrap              | h 3.2         |               |
| Fabric heat los                        | ss, W/K = S (                     | A x U)        |            |             |             | (26)(30             | ) + (32) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |               |                       | 501.          | .64 (33)      |
| Heat capacity                          | Cm = S(A x l                      | ()            |            |             |             |                     | ((28).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (30) + (32       | 2) + (32a).   | (32e) =               | 0             |               |
| Thermal mass                           | ,                                 | •             | ÷ TFA) ir  | n kJ/m²K    |             |                     | Indica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tive Value       | : High        |                       | 45            |               |
| For design assess                      | . ,                               |               | ,          |             |             | recisely the        | e indicative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e values of      | TMP in Ta     | able 1f               |               |               |
| can be used instead                    |                                   |               |            |             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |               |                       |               |               |
| Thermal bridge                         | es:S(LxY)                         | caiculated    | using Ap   | ppendix I   | ĸ           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |               |                       | 52            | (36)          |

| otal fa               | bric he              | at loss     |                         |            |                |            |                   |              | (33) +       | (36) =      |                        |          | 553.64  | (37      |
|-----------------------|----------------------|-------------|-------------------------|------------|----------------|------------|-------------------|--------------|--------------|-------------|------------------------|----------|---------|----------|
| entila <u>'</u>       | tion hea             | t loss ca   | alculated               | monthly    | У              |            |                   |              | (38)m        | = 0.33 × (  | 25)m x (5)             |          |         |          |
| Į                     | Jan                  | Feb         | Mar                     | Apr        | May            | Jun        | Jul               | Aug          | Sep          | Oct         | Nov                    | Dec      |         |          |
| 88)m=                 | 117.62               | 116.4       | 115.2                   | 109.58     | 108.53         | 103.63     | 103.63            | 102.72       | 105.52       | 108.53      | 110.65                 | 112.88   |         | (38      |
| leat tra              | ansfer c             | oefficier   | nt, W/K                 |            |                |            |                   |              | (39)m        | = (37) + (3 | 38)m                   |          |         |          |
| 89)m=                 | 671.26               | 670.04      | 668.84                  | 663.22     | 662.16         | 657.27     | 657.27            | 656.36       | 659.15       | 662.16      | 664.29                 | 666.52   |         |          |
| -                     |                      |             |                         |            |                |            | •                 | •            |              | _           | Sum(39) <sub>1</sub>   | 12 /12=  | 663.21  | (39      |
| г                     | <u> </u>             |             | HLP), W/                | 1          |                | i          | i                 | i            | ·            | = (39)m ÷   | · /                    |          |         |          |
| l0)m=                 | 5.24                 | 5.23        | 5.23                    | 5.18       | 5.17           | 5.13       | 5.13              | 5.13         | 5.15         | 5.17        | 5.19                   | 5.21     |         | <b>–</b> |
| lumbe                 | r of day             | s in mor    | nth (Tab                | le 1a)     |                |            |                   |              | ,            | Average =   | Sum(40) <sub>1</sub>   | 12 /12=  | 5.18    | (4       |
| Ĺ                     | Jan                  | Feb         | Mar                     | Apr        | May            | Jun        | Jul               | Aug          | Sep          | Oct         | Nov                    | Dec      |         |          |
| l1)m=                 | 31                   | 28          | 31                      | 30         | 31             | 30         | 31                | 31           | 30           | 31          | 30                     | 31       |         | (4       |
|                       |                      |             |                         |            |                |            |                   |              |              |             |                        |          |         |          |
| . Wa                  | ter heat             | ing ener    | gy requi                | irement:   |                |            |                   |              |              |             |                        | kWh/ye   | ar:     |          |
| 201100                | ad aggu              | pancy, I    | NI.                     |            |                |            |                   |              |              |             |                        |          |         |          |
|                       |                      |             |                         | [1 - exp   | (-0.0003       | 349 x (TF  | FA -13.9          | )2)] + 0.0   | 0013 x (     | ΓFA -13.    |                        | 89       |         | (4       |
|                       | A £ 13.9             |             |                         |            | ,              | `          |                   |              | `            |             | ,                      |          |         |          |
|                       |                      |             |                         |            |                |            |                   | (25 x N)     |              |             |                        | 2.83     |         | (4       |
|                       |                      | \_          | hot water<br>person per |            |                |            | -                 | to achieve   | a water us   | se target o | †                      |          |         |          |
| 7                     | . 1                  |             |                         |            |                |            |                   |              | 0            | 0.1         | NI.                    | <b>5</b> |         |          |
| ot wate               | Jan<br>r usage ir    | Feb         | Mar<br>day for ea       | Apr        | Vd.m = fa      | Jun        | Jul<br>Table 1c x | Aug<br>(43)  | Sep          | Oct         | Nov                    | Dec      |         |          |
| г                     |                      | 109         | 104.88                  | 100.77     | 96.66          | 92.55      | 92.55             | · /          | 100.77       | 104.88      | 109                    | 112.11   |         |          |
| 4)m= [                | 113.11               | 109         | 104.00                  | 100.77     | 90.00          | 92.55      | 92.55             | 96.66        |              |             | m(44) <sub>112</sub> = | 113.11   | 1233.94 | (4       |
| nergy c               | ontent of            | hot water   | used - cal              | culated mo | onthly $= 4$ . | 190 x Vd,r | n x nm x D        | OTm / 3600   |              |             | · /                    | L        | 1233.94 | (-,      |
| 5)m=                  | 167.74               | 146.71      | 151.39                  | 131.98     | 126.64         | 109.28     | 101.27            | 116.2        | 117.59       | 137.04      | 149.59                 | 162.45   |         |          |
|                       |                      |             |                         |            |                |            | l                 | l            |              | Γotal = Su  | m(45) <sub>112</sub> = | <u> </u> | 1617.89 | (4       |
| instanta              | aneous w             | ater heatii | ng at point             | of use (no | hot water      | storage),  | enter 0 in        | boxes (46    | ) to (61)    |             | •                      |          |         |          |
| 6)m=                  | 25.16                | 22.01       | 22.71                   | 19.8       | 19             | 16.39      | 15.19             | 17.43        | 17.64        | 20.56       | 22.44                  | 24.37    |         | (4       |
|                       | storage              |             | الماريطانم              |            | مامت مت ۸۸     | WHDC       | otoro ao          | within or    | .m.o. 1/00   | - o l       |                        |          |         |          |
| •                     |                      | ,           |                         |            |                |            | •                 | within sa    | ame ves      | sei         |                        | 160      |         | (4       |
|                       | •                    | •           | nd no ta                |            | •              |            |                   | ` '          | oro) onto    | or 'O' in ( | 47)                    |          |         |          |
|                       | ise ii no<br>storage |             | not wate                | er (uns ir | iciudes i      | nstantar   | ieous cc          | mbi boil     | ers) erite   | er o in (   | 47)                    |          |         |          |
|                       | •                    |             | eclared l               | oss facto  | or is kno      | wn (kWł    | n/day):           |              |              |             |                        | 0        |         | (4       |
|                       |                      |             | m Table                 |            |                | •          | ,                 |              |              |             |                        | 0        |         | (4       |
|                       |                      |             | storage                 |            | ear            |            |                   | (48) x (49)  | ) =          |             | _                      | 10       |         | (5       |
|                       |                      |             | eclared o               | -          |                | or is not  |                   | (1-) // (10) | •            |             |                        | 10       |         | (0       |
| ,                     | ter stora            | age loss    | factor fr               | om Tabl    |                |            |                   |              |              |             | 0.                     | 02       |         | (5       |
|                       | -                    | _           | ee secti                | on 4.3     |                |            |                   |              |              |             |                        |          |         |          |
| comn                  | factor               | from Tal    |                         |            |                |            |                   |              |              |             | 1.                     | 03       |         | (5       |
| comn<br>olume         |                      |             |                         |            |                |            |                   |              |              |             | 1 ^                    | _        |         | (5       |
| comn<br>olume         | rature fa            | actor fro   | m Table                 | 2b         |                |            |                   |              |              |             |                        | .6       |         | (-       |
| comn<br>olume<br>empe |                      |             | m Table<br>storage      |            | ear            |            |                   | (47) x (51)  | ) x (52) x ( | 53) =       |                        | 03       |         | (5       |

| Water storage loss cale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or each                                                                                    | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                               | ((56)m = (                                                                      | 55) × (41)                                                                   | m                                                 |                                         |                                 |               |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------------|---------------|--------------------------------------|
| (56)m= 32.01 28.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.98                                                                                      | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                        | 32.01                                                                         | 32.01                                                                           | 30.98                                                                        | 32.01                                             | 30.98                                   | 32.01                           |               | (56)                                 |
| If cylinder contains dedicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rage, (57)ı                                                                                | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                  | H11)] ÷ (5                                                                    | 0), else (5                                                                     | 7)m = (56)                                                                   | m where (                                         | H11) is fro                             | m Append                        | ix H          |                                      |
| (57)m= 32.01 28.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.98                                                                                      | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                        | 32.01                                                                         | 32.01                                                                           | 30.98                                                                        | 32.01                                             | 30.98                                   | 32.01                           |               | (57)                                 |
| Primary circuit loss (an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m Table                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                                                               |                                                                                 |                                                                              |                                                   |                                         | 0                               |               | (58)                                 |
| Primary circuit loss cale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or each                                                                                    | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59)m = (                                                                     | (58) ÷ 36                                                                     | 65 × (41)                                                                       | m                                                                            |                                                   |                                         |                                 |               |                                      |
| (modified by factor fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | om Tabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e H5 if t                                                                                  | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                    | ter heatii                                                                    | ng and a                                                                        | cylinde                                                                      | r thermo                                          | stat)                                   |                                 |               |                                      |
| (59)m= 23.26 21.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.51                                                                                      | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.51                                                                        | 23.26                                                                         | 23.26                                                                           | 22.51                                                                        | 23.26                                             | 22.51                                   | 23.26                           |               | (59)                                 |
| Combi loss calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | month (                                                                                    | 61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (60) ÷ 36                                                                    | 65 × (41)                                                                     | )m                                                                              |                                                                              |                                                   |                                         |                                 |               |                                      |
| (61)m= 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                             | 0                                                                               | 0                                                                            | 0                                                 | 0                                       | 0                               |               | (61)                                 |
| Total heat required for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eating ca                                                                                  | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I for eac                                                                    | h month                                                                       | (62)m =                                                                         | 0.85 ×                                                                       | (45)m +                                           | (46)m +                                 | (57)m +                         | (59)m + (61)m |                                      |
| (62)m= 223.02 196.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 206.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 185.48                                                                                     | 181.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 162.78                                                                       | 156.54                                                                        | 171.48                                                                          | 171.09                                                                       | 192.32                                            | 203.09                                  | 217.72                          |               | (62)                                 |
| Solar DHW input calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | endix G or                                                                                 | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                    | ve quantity                                                                   | /) (enter '0                                                                    | ' if no sola                                                                 | r contribut                                       | ion to wate                             | er heating)                     | •             |                                      |
| (add additional lines if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and/or V                                                                                   | VWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                      | , see Ap                                                                      | pendix (                                                                        | 3)                                                                           |                                                   |                                         |                                 |               |                                      |
| (63)m= 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                             | 0                                                                               | 0                                                                            | 0                                                 | 0                                       | 0                               |               | (63)                                 |
| Output from water hear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                            | -                                                                             | -                                                                               | -                                                                            |                                                   | -                                       | -                               |               |                                      |
| (64)m= 223.02 196.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 206.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 185.48                                                                                     | 181.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 162.78                                                                       | 156.54                                                                        | 171.48                                                                          | 171.09                                                                       | 192.32                                            | 203.09                                  | 217.72                          |               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                               | Outp                                                                            | out from w                                                                   | ater heate                                        | r (annual)                              | 12                              | 2268.73       | (64)                                 |
| Heat gains from water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kWh/mo                                                                                     | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 [0.85                                                                      | × (45)m                                                                       | + (61)m                                                                         | า] + 0.8 ว                                                                   | c [(46)m                                          | + (57)m                                 | + (59)m                         | 1             |                                      |
| (65)m= 74.38 65.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61.89                                                                                      | 60.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.35                                                                        | 52.28                                                                         | 57.25                                                                           | 57.44                                                                        | 04.40                                             | 07.75                                   | 70.00                           |               | (65)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01.00                                                                                      | 00.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J4.55                                                                        | 32.20                                                                         | 97.25                                                                           | 57.11                                                                        | 64.18                                             | 67.75                                   | 72.62                           |               | (03)                                 |
| in <mark>clude</mark> (57)m in calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                            |                                                                               |                                                                                 |                                                                              |                                                   |                                         |                                 | eating        | (00)                                 |
| include (57)m in calc<br>5. Internal gains (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | culation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of (65)m                                                                                   | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                            |                                                                               |                                                                                 |                                                                              |                                                   |                                         |                                 | eating        | (00)                                 |
| 5. Internal gains (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | culation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of (65)m<br>and 5a                                                                         | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                            |                                                                               |                                                                                 |                                                                              |                                                   |                                         |                                 | eating        | (00)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | culation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of (65)m<br>and 5a                                                                         | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                            |                                                                               |                                                                                 |                                                                              |                                                   |                                         |                                 | eating        | (00)                                 |
| 5. Internal gains (see<br>Metabolic gains (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m<br>and 5a)                                                                        | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                    | s in the o                                                                    | dwelling                                                                        | or hot w                                                                     | ater is fr                                        | om com                                  | munity h                        | eating        | (66)                                 |
| 5. Internal gains (see<br>Metabolic gains (Table<br>Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Table 5<br>5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>and 5a<br>ts<br>Apr<br>144.48                                                  | only if controls:  May 144.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun<br>144.48                                                                | Jul 144.48                                                                    | Aug<br>144.48                                                                   | Sep                                                                          | ater is fr                                        | om com                                  | munity h                        | eating        |                                      |
| 5. Internal gains (see<br>Metabolic gains (Table<br>Jan Feb<br>(66)m= 144.48 144.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table 5<br>5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>and 5a<br>ts<br>Apr<br>144.48                                                  | only if controls:  May 144.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun<br>144.48                                                                | Jul 144.48                                                                    | Aug<br>144.48                                                                   | Sep                                                                          | ater is fr                                        | om com                                  | munity h                        | eating        |                                      |
| 5. Internal gains (see  Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculated) (67)m= 26.77 23.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 5 Table | of (65)m<br>and 5a<br>ts<br>Apr<br>144.48<br>opendix<br>14.64                              | May 144.48 L, equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun<br>144.48<br>ion L9 o                                                    | Jul<br>144.48<br>r L9a), a<br>9.98                                            | Aug<br>144.48<br>Iso see                                                        | Sep<br>144.48<br>Table 5                                                     | Oct 144.48                                        | Nov                                     | Dec                             | eating        | (66)                                 |
| 5. Internal gains (see  Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 5 Table | of (65)m<br>and 5a<br>ts<br>Apr<br>144.48<br>opendix<br>14.64                              | May 144.48 L, equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun<br>144.48<br>ion L9 o                                                    | Jul<br>144.48<br>r L9a), a<br>9.98                                            | Aug<br>144.48<br>Iso see                                                        | Sep<br>144.48<br>Table 5                                                     | Oct 144.48                                        | Nov                                     | Dec                             | eating        | (66)                                 |
| Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculated to the color of the color o | Table 5 5), Wat Mar 144.48 ted in Ap 19.34 ulated in 290.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr<br>144.48<br>ppendix<br>14.64<br>Append<br>274.2                                       | May 144.48  L, equati 10.94  dix L, eq 253.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun<br>144.48<br>ion L9 o<br>9.24<br>uation L<br>233.94                      | Jul<br>144.48<br>r L9a), a<br>9.98<br>13 or L1<br>220.91                      | Aug<br>144.48<br>Iso see<br>12.98<br>3a), also<br>217.85                        | Sep<br>144.48<br>Table 5<br>17.42<br>see Ta<br>225.57                        | Oct 144.48  22.12 ble 5 242.01                    | Nov<br>144.48<br>25.81                  | Dec 144.48                      | eating        | (66)<br>(67)                         |
| 5. Internal gains (see  Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculat (67)m= 26.77 23.78  Appliances gains (calculated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 5 5), Wat Mar 144.48 ted in Ap 19.34 ulated in 290.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr<br>144.48<br>ppendix<br>14.64<br>Append<br>274.2                                       | May 144.48  L, equati 10.94  dix L, eq 253.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun<br>144.48<br>ion L9 o<br>9.24<br>uation L<br>233.94                      | Jul<br>144.48<br>r L9a), a<br>9.98<br>13 or L1<br>220.91                      | Aug<br>144.48<br>Iso see<br>12.98<br>3a), also<br>217.85                        | Sep<br>144.48<br>Table 5<br>17.42<br>see Ta<br>225.57                        | Oct 144.48  22.12 ble 5 242.01                    | Nov<br>144.48<br>25.81                  | Dec 144.48                      | eating        | (66)<br>(67)                         |
| Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculat (67)m= 26.77 23.78  Appliances gains (calculat (68)m= 295.29 298.36  Cooking gains (calculat (69)m= 37.45 37.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 5 5), Wat Mar 144.48 ted in Ap 19.34 ulated in 290.64 ted in Ap 37.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr<br>144.48<br>opendix<br>14.64<br>Appendix<br>274.2<br>opendix<br>37.45                 | May 144.48 L, equati 10.94 dix L, eq 253.45 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun<br>144.48<br>ion L9 of<br>9.24<br>uation L<br>233.94<br>ion L15          | Jul<br>144.48<br>r L9a), a<br>9.98<br>13 or L1<br>220.91<br>or L15a)          | Aug<br>144.48<br>Iso see<br>12.98<br>3a), also<br>217.85                        | Sep 144.48 Table 5 17.42 See Ta 225.57 ee Table                              | Oct 144.48  22.12 ble 5 242.01 5                  | Nov<br>144.48<br>25.81<br>262.76        | Dec 144.48 27.52 282.26         | eating        | (66)<br>(67)<br>(68)                 |
| Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculat (67)m= 26.77 23.78  Appliances gains (calculat (68)m= 295.29 298.36  Cooking gains (calculat (ca | Table 5 5), Wat Mar 144.48 ted in Ap 19.34 ulated in 290.64 ted in Ap 37.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr<br>144.48<br>opendix<br>14.64<br>Appendix<br>274.2<br>opendix<br>37.45                 | May 144.48 L, equati 10.94 dix L, eq 253.45 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun<br>144.48<br>ion L9 of<br>9.24<br>uation L<br>233.94<br>ion L15          | Jul<br>144.48<br>r L9a), a<br>9.98<br>13 or L1<br>220.91<br>or L15a)          | Aug<br>144.48<br>Iso see<br>12.98<br>3a), also<br>217.85                        | Sep 144.48 Table 5 17.42 See Ta 225.57 ee Table                              | Oct 144.48  22.12 ble 5 242.01 5                  | Nov<br>144.48<br>25.81<br>262.76        | Dec 144.48 27.52 282.26         | eating        | (66)<br>(67)<br>(68)                 |
| Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculated (67)m= 26.77 23.78  Appliances gains (calculated (68)m= 295.29 298.36  Cooking gains (calculated (69)m= 37.45 37.45  Pumps and fans gains (70)m= 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mar 144.48 ted in Ap 19.34 ulated in 290.64 ted in Ap 37.45 (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Apr<br>144.48<br>ppendix<br>14.64<br>Appendix<br>274.2<br>opendix<br>37.45<br>5a)          | only if control is the control is control in the control is control in the control in the control is control in the control in | Jun<br>144.48<br>ion L9 of<br>9.24<br>uation L<br>233.94<br>ion L15<br>37.45 | Jul<br>144.48<br>r L9a), a<br>9.98<br>13 or L1<br>220.91<br>or L15a)<br>37.45 | Aug<br>144.48<br>Iso see<br>12.98<br>3a), also<br>217.85<br>), also se<br>37.45 | Sep<br>144.48<br>Table 5<br>17.42<br>o see Ta<br>225.57<br>ee Table<br>37.45 | Oct 144.48  22.12 ble 5 242.01 5 37.45            | Nov<br>144.48<br>25.81<br>262.76        | Dec 144.48 27.52 282.26 37.45   | eating        | (66)<br>(67)<br>(68)<br>(69)         |
| Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculat (67)m= 26.77 23.78  Appliances gains (calculat (68)m= 295.29 298.36  Cooking gains (calculat (69)m= 37.45 37.45  Pumps and fans gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mar 144.48 ted in Ap 19.34 ulated in 290.64 ted in Ap 37.45 (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Apr<br>144.48<br>ppendix<br>14.64<br>Appendix<br>274.2<br>opendix<br>37.45<br>5a)          | only if control is the control is control in the control is control in the control in the control is control in the control in | Jun<br>144.48<br>ion L9 of<br>9.24<br>uation L<br>233.94<br>ion L15<br>37.45 | Jul<br>144.48<br>r L9a), a<br>9.98<br>13 or L1<br>220.91<br>or L15a)<br>37.45 | Aug<br>144.48<br>Iso see<br>12.98<br>3a), also<br>217.85<br>), also se<br>37.45 | Sep<br>144.48<br>Table 5<br>17.42<br>o see Ta<br>225.57<br>ee Table<br>37.45 | Oct 144.48  22.12 ble 5 242.01 5 37.45            | Nov<br>144.48<br>25.81<br>262.76        | Dec 144.48 27.52 282.26 37.45   | eating        | (66)<br>(67)<br>(68)<br>(69)         |
| Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculated (67)m= 26.77 23.78  Appliances gains (calculated (68)m= 295.29 298.36  Cooking gains (calculated (69)m= 37.45 37.45  Pumps and fans gains (70)m= 0 0  Losses e.g. evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Apr<br>144.48<br>opendix<br>14.64<br>Appendix<br>274.2<br>opendix<br>37.45<br>opendix<br>0 | only if control is the second of the second  | Jun<br>144.48<br>ion L9 of<br>9.24<br>uation L<br>233.94<br>ion L15<br>37.45 | Jul<br>144.48<br>r L9a), a<br>9.98<br>13 or L1<br>220.91<br>or L15a)<br>37.45 | Aug<br>144.48<br>Iso see<br>12.98<br>3a), also<br>217.85<br>), also se<br>37.45 | Sep<br>144.48<br>Table 5<br>17.42<br>See Ta<br>225.57<br>ee Table<br>37.45   | Oct 144.48  22.12 ble 5 242.01 5 37.45            | Nov<br>144.48<br>25.81<br>262.76        | Dec 144.48 27.52 282.26 37.45   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculated (67)m= 26.77 23.78  Appliances gains (calculated (68)m= 295.29 298.36  Cooking gains (calculated (69)m= 37.45 37.45  Pumps and fans gains (70)m= 0 0  Losses e.g. evaporatio (71)m= -115.58 -115.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Apr<br>144.48<br>opendix<br>14.64<br>Appendix<br>274.2<br>opendix<br>37.45<br>opendix<br>0 | only if control is the second of the second  | Jun<br>144.48<br>ion L9 of<br>9.24<br>uation L<br>233.94<br>ion L15<br>37.45 | Jul<br>144.48<br>r L9a), a<br>9.98<br>13 or L1<br>220.91<br>or L15a)<br>37.45 | Aug<br>144.48<br>Iso see<br>12.98<br>3a), also<br>217.85<br>), also se<br>37.45 | Sep<br>144.48<br>Table 5<br>17.42<br>See Ta<br>225.57<br>ee Table<br>37.45   | Oct 144.48  22.12 ble 5 242.01 5 37.45            | Nov<br>144.48<br>25.81<br>262.76        | Dec 144.48 27.52 282.26 37.45   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculat (67)m= 26.77 23.78  Appliances gains (calculat (68)m= 295.29 298.36  Cooking gains (calculat (69)m= 37.45 37.45  Pumps and fans gains (70)m= 0 0  Losses e.g. evaporatio (71)m= -115.58 -115.58  Water heating gains (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 5 5), Wat Mar 144.48 ted in Ap 19.34 ulated in 290.64 ted in Ap 37.45 (Table 5 0 In (negat -115.58 Table 5) 92.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m and 5a ts Apr 144.48 ppendix 14.64 Appendix 37.45 5a) 0 tive valu -115.58         | only if control of the control of th | Jun 144.48 ion L9 of 9.24 uation L 233.94 ion L15 37.45  0 lle 5) -115.58    | Jul<br>144.48<br>r L9a), a<br>9.98<br>13 or L1<br>220.91<br>or L15a)<br>37.45 | Aug<br>144.48<br>Iso see<br>12.98<br>3a), also<br>217.85<br>), also se<br>37.45 | Sep<br>144.48<br>Table 5<br>17.42<br>See Ta<br>225.57<br>ee Table<br>37.45   | Oct 144.48  22.12 ble 5 242.01 5 37.45  0 -115.58 | Nov 144.48 25.81 262.76 37.45 0 -115.58 | Dec 144.48 27.52 282.26 37.45 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| 5. Internal gains (see  Metabolic gains (Table  Jan Feb  (66)m= 144.48 144.48  Lighting gains (calculated (67)m= 26.77 23.78  Appliances gains (calculated (68)m= 295.29 298.36)  Cooking gains (calculated (69)m= 37.45 37.45)  Pumps and fans gains (70)m= 0 0  Losses e.g. evaporation (71)m= -115.58 -115.58  Water heating gains (T  (72)m= 99.98 97.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Table 5 5), Wat Mar 144.48 ted in Ap 19.34 ulated in 290.64 ted in Ap 37.45 (Table 5 0 In (negat -115.58 Table 5) 92.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m and 5a ts Apr 144.48 ppendix 14.64 Appendix 37.45 5a) 0 tive valu -115.58         | only if control of the control of th | Jun 144.48 ion L9 of 9.24 uation L 233.94 ion L15 37.45  0 lle 5) -115.58    | Jul<br>144.48<br>r L9a), a<br>9.98<br>13 or L1<br>220.91<br>or L15a)<br>37.45 | Aug<br>144.48<br>Iso see<br>12.98<br>3a), also<br>217.85<br>), also se<br>37.45 | Sep<br>144.48<br>Table 5<br>17.42<br>See Ta<br>225.57<br>ee Table<br>37.45   | Oct 144.48  22.12 ble 5 242.01 5 37.45  0 -115.58 | Nov 144.48 25.81 262.76 37.45 0 -115.58 | Dec 144.48 27.52 282.26 37.45 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta |        | Access Factor<br>Table 6d | or   | Area<br>m²                                       |       |    | Flux<br>Table 6a |      | g_<br>Table (  | 6b                   | ٦    | FF<br>Table 6c                                   |          |   | Gains<br>(W)         |       |
|---------|--------|---------------------------|------|--------------------------------------------------|-------|----|------------------|------|----------------|----------------------|------|--------------------------------------------------|----------|---|----------------------|-------|
| North   | 0.9x   | 0.77                      | x    | 2.48                                             |       | X  | 10.63            | x    | 0.76           |                      | x    | 0.7                                              | =        | Γ | 9.72                 | (74)  |
| North   | 0.9x   | 0.77                      | x    | 2.48                                             |       | X  | 20.32            | x    | 0.76           |                      | x    | 0.7                                              | <b>=</b> | Ī | 18.58                | (74)  |
| North   | 0.9x   | 0.77                      | x    | 2.48                                             |       | X  | 34.53            | x    | 0.76           |                      | x    | 0.7                                              | _ =      |   | 31.57                | (74)  |
| North   | 0.9x   | 0.77                      | x    | 2.48                                             |       | X  | 55.46            | x    | 0.76           |                      | x [  | 0.7                                              | _ =      | Ē | 50.71                | (74)  |
| North   | 0.9x   | 0.77                      | x    | 2.48                                             |       | X  | 74.72            | x    | 0.76           |                      | x    | 0.7                                              | _ =      |   | 68.31                | (74)  |
| North   | 0.9x   | 0.77                      | x    | 2.48                                             |       | X  | 79.99            | x    | 0.76           |                      | x [  | 0.7                                              | =        |   | 73.13                | (74)  |
| North   | 0.9x   | 0.77                      | x    | 2.48                                             |       | X  | 74.68            | x    | 0.76           |                      | x    | 0.7                                              | =        |   | 68.28                | (74)  |
| North   | 0.9x   | 0.77                      | x    | 2.48                                             |       | X  | 59.25            | x    | 0.76           |                      | x    | 0.7                                              | =        |   | 54.17                | (74)  |
| North   | 0.9x   | 0.77                      | x    | 2.48                                             |       | X  | 41.52            | x    | 0.76           |                      | x    | 0.7                                              | =        |   | 37.96                | (74)  |
| North   | 0.9x   | 0.77                      | X    | 2.48                                             |       | X  | 24.19            | x    | 0.76           |                      | x    | 0.7                                              | =        |   | 22.12                | (74)  |
| North   | 0.9x   | 0.77                      | X    | 2.48                                             |       | X  | 13.12            | x    | 0.76           |                      | x    | 0.7                                              | =        |   | 11.99                | (74)  |
| North   | 0.9x   | 0.77                      | x    | 2.48                                             |       | X  | 8.86             | x    | 0.76           |                      | x    | 0.7                                              | =        |   | 8.1                  | (74)  |
| South   | 0.9x   | 0.77                      | x    | 17.35                                            |       | X  | 46.75            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 334.46               | (78)  |
| South   | 0.9x   | 0.77                      | x    | 17.35                                            |       | X  | 76.57            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 547.77               | (78)  |
| South   | 0.9x   | 0.77                      | x    | 17.35                                            |       | X  | 97.53            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 697.76               | (78)  |
| South   | 0.9x   | 0.77                      | X    | 17.35                                            |       | X  | 110.23           | X    | 0.85           |                      | Х    | 0.7                                              | =        |   | 788.62               | (78)  |
| South   | 0.9x   | 0.77                      | x    | 17.35                                            |       | х  | 114.87           | x    | 0.85           |                      | x [  | 0.7                                              |          |   | 821.79               | (78)  |
| South   | 0.9x   | 0.77                      | x    | 17.35                                            |       | х  | 110.55           | ] x  | 0.85           |                      | х    | 0.7                                              | =        |   | 790.86               | (78)  |
| South   | 0.9x   | 0.77                      | x    | 17.35                                            |       | X  | 108.01           | x    | 0.85           |                      | х    | 0.7                                              | =        |   | 772.72               | (78)  |
| South   | 0.9x   | 0.77                      | x    | 17.35                                            |       | X  | 104.89           | х    | 0.85           |                      | х    | 0.7                                              | _ =      |   | 750.42               | (78)  |
| South   | 0.9x   | 0.77                      | x    | 17.35                                            |       | x  | 101.89           | x    | 0.85           |                      | х    | 0.7                                              | =        |   | 7 <mark>28.89</mark> | (78)  |
| South   | 0.9x   | 0.77                      | x    | 17.35                                            |       | х  | 82.59            | x    | 0.85           |                      | х    | 0.7                                              | =        |   | 590.82               | (78)  |
| South   | 0.9x   | 0.77                      | x    | 17.35                                            |       | x  | 55.42            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 396.45               | (78)  |
| South   | 0.9x   | 0.77                      | X    | 17.35                                            |       | X  | 40.4             | x    | 0.85           |                      | x [  | 0.7                                              | =        |   | 289.01               | (78)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 19.64            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 12.15                | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 38.42            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 23.76                | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 63.27            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 39.13                | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 92.28            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 57.08                | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 113.09           | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 69.95                | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 115.77           | X    | 0.85           |                      | x    | 0.7                                              | =        |   | 71.6                 | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 110.22           | X    | 0.85           |                      | x    | 0.7                                              | =        |   | 68.17                | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 94.68            | X    | 0.85           |                      | x    | 0.7                                              | =        |   | 58.56                | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 73.59            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 45.52                | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 45.59            | X    | 0.85           |                      | x    | 0.7                                              | =        |   | 28.2                 | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 24.49            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 15.15                | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.5                                              |       | X  | 16.15            | x    | 0.85           |                      | x    | 0.7                                              | =        |   | 9.99                 | (80)  |
|         |        |                           |      |                                                  |       |    |                  |      |                |                      |      |                                                  |          |   |                      |       |
| Ť       |        | watts, calcul             | _    |                                                  |       | _  | <u> </u>         | _    | n = Sum(74)    | <del></del>          |      | <del>                                     </del> |          | _ |                      |       |
| (83)m=  | 356.33 |                           | 3.46 |                                                  | 60.05 |    | 35.6 909.17      | 863  | .14 812.3      | 37   64 <sup>-</sup> | 1.13 | 423.6                                            | 307.1    |   |                      | (83)  |
| Ī       |        | internal and              |      | <del>`                                    </del> |       | Ť  | <del></del>      |      | 7 00 1 4 2 2 2 | 00   10-             |      | 1 070 01                                         | 70000    | П |                      | (0.4) |
| (84)m=  | 844.72 | 1076.2 123                | 7.45 | 1337.55 1                                        | 372.4 | 1; | 320.6 1276.68    | 1237 | 7.26 1201.     | 02   105             | 7.86 | 872.61                                           | 780.84   |   |                      | (84)  |

| 7. Me           | an inter                | nal temp               | perature       | (heating            | season    | )           |           |             |             |                |             |             |           |        |
|-----------------|-------------------------|------------------------|----------------|---------------------|-----------|-------------|-----------|-------------|-------------|----------------|-------------|-------------|-----------|--------|
|                 |                         |                        |                | eriods ir           |           | •           | from Tab  | ole 9. Th   | 1 (°C)      |                |             |             | 21        | (85)   |
| -               |                         | _                      |                | living are          |           | _           |           | ··· • , ··· | . ( -)      |                |             |             |           | ` ′    |
|                 | Jan                     | Feb                    | Mar            | Apr                 | May       | Jun         | Jul       | Aug         | Sep         | Oct            | Nov         | Dec         |           |        |
| (86)m=          | 1                       | 1                      | 1              | 0.99                | 0.98      | 0.97        | 0.93      | 0.94        | 0.98        | 0.99           | 1           | 1           |           | (86)   |
| Mean            | intorna                 | l<br>I tompor          | aturo in       | living are          | 22 T1 /fc | llow eta    | ns 3 to 7 | in Tabl     | ) Oc)       |                |             |             | I         |        |
| (87)m=          | 17.8                    | 18                     | 18.38          | 18.92               | 19.51     | 20.09       | 20.47     | 20.42       | 19.95       | 19.19          | 18.41       | 17.78       |           | (87)   |
|                 |                         |                        |                |                     |           |             |           |             |             |                |             |             |           | (- )   |
| 1 emp<br>(88)m= | 18.05                   | 18.05                  | 18.05          | eriods ir<br>18.06  | 18.06     | 18.06       | 18.06     | 18.06       | 18.06       | 18.06          | 18.05       | 18.05       |           | (88)   |
|                 |                         |                        |                |                     |           |             |           |             | 10.00       | 10.00          | 10.00       | 10.00       |           | (00)   |
|                 | tion fac                | tor for g              |                | rest of d           |           |             |           |             |             |                |             |             | I         |        |
| (89)m=          | 1                       | 1                      | 0.99           | 0.98                | 0.96      | 0.88        | 0.62      | 0.68        | 0.92        | 0.99           | 1           | 1           |           | (89)   |
| Mean            | interna                 | l temper               | ature in       | the rest            | of dwelli | ng T2 (f    | ollow ste | ps 3 to 7   | 7 in Tabl   | e 9c)          |             |             |           |        |
| (90)m=          | 14.26                   | 14.55                  | 15.11          | 15.9                | 16.75     | 17.56       | 17.98     | 17.95       | 17.38       | 16.29          | 15.15       | 14.22       |           | (90)   |
|                 |                         |                        |                |                     |           |             |           |             | f           | LA = Livin     | g area ÷ (4 | 4) =        | 0.36      | (91)   |
| Mean            | interna                 | l temper               | ature (fc      | r the wh            | ole dwel  | lling) = fl | _A × T1   | + (1 – fL   | A) × T2     |                |             |             |           | _      |
| (92)m=          | 15.54                   | 15.8                   | 16.29          | 16.99               | 17.74     | 18.47       | 18.88     | 18.84       | 18.31       | 17.33          | 16.32       | 15.5        |           | (92)   |
| Apply           | adjustn                 | nent to t              | he mear        | internal            | temper    | ature fro   | m Table   | 4e, whe     | re appro    | priate         |             |             |           |        |
| (93)m=          | 15.54                   | 15.8                   | 16.29          | 16.99               | 17.74     | 18.47       | 18.88     | 18.84       | 18.31       | 17.33          | 16.32       | 15.5        |           | (93)   |
| 8. Spa          | ace hea                 | ting requ              | uirement       |                     |           |             |           |             |             |                |             |             |           |        |
| Set Ti          | to the r                | mean i <mark>nt</mark> | ternal te      | mperatui            | e obtain  | ed at ste   | ep 11 of  | Table 9     | o, so tha   | t Ti,m=(7      | 76)m an     | d re-calc   | ulate     |        |
| the ut          | <mark>ilis</mark> ation | factor fo              | or gains       | using Ta            | ble 9a    |             |           |             |             |                |             | 1           |           |        |
|                 | Jan                     | Feb                    | Mar            | Apr                 | May       | Jun         | Jul       | Aug         | Sep         | Oct            | Nov         | Dec         |           |        |
|                 |                         |                        | ains, hm       |                     |           |             |           | ı           |             |                |             | ı           |           | (5.1)  |
| (94)m=          | 1                       | 0.99                   | 0.99           | 0.98                | 0.96      | 0.91        | 0.78      | 0.81        | 0.93        | 0.98           | 0.99        | 1           |           | (94)   |
| ı               |                         |                        | <del>- `</del> | 4)m x (84           |           |             |           |             |             |                |             |             | 1         | (05)   |
| (95)m=          | 842.13                  |                        |                | 1310.56             |           |             | 994.79    | 1002.17     | 1120.99     | 1038.9         | 867.95      | 778.91      |           | (95)   |
| ı               | _                       | <u> </u>               | 1              | perature            |           | i           | 40.0      | 10.4        |             | 40.0           |             | 4.0         | l         | (06)   |
| (96)m=          | 4.3                     | 4.9                    | 6.5            | 8.9                 | 11.7      | 14.6        | 16.6      | 16.4        | 14.1        | 10.6           | 7.1         | 4.2         |           | (96)   |
| ı               |                         | 7300.23                | 1              | al tempe            |           |             |           |             |             | _              | 0407.70     | 75040       |           | (97)   |
| (97)m=          | 7543.21                 |                        | 6549.17        | 5364.93             | 4001.2    | 2543.96     |           | 1602.18     |             |                | 6127.76     | 7534.9      |           | (97)   |
| (98)m=          | 4985.6                  | 4186.87                | 3961.84        | r each n<br>2919.14 | 1997.76   | 0           | 0.02      | 0           | 0 0         | <del>- `</del> | 3787.07     | 5026.45     | 1         |        |
| (30)111=        | 4303.0                  | 4100.07                | 3901.04        | 2919.14             | 1991.70   |             | U         |             |             |                |             |             | 29409.76  | (98)   |
|                 |                         |                        |                |                     |           |             |           | Tota        | i per year  | (kWh/year      | ) = Sum(9   | O)15,912 =  | 29409.76  | ╡      |
| Space           | e heatin                | g require              | ement in       | kWh/m²              | /year     |             |           |             |             |                |             |             | 229.76    | (99)   |
| 9b. Ene         | ergy rec                | quiremer               | nts – Coi      | mmunity             | heating   | scheme      |           |             |             |                |             |             |           |        |
|                 |                         |                        |                | iting, spa          |           | -           |           | • .         | -           |                | unity sch   | neme.       |           | ¬      |
| Fractio         | n of spa                | ace heat               | from se        | condary/            | 'supplen  | nentary i   | neating ( | Table 1     | 1) '0' if n | one            |             |             | 0         | (301)  |
| Fractio         | n of spa                | ace heat               | from co        | mmunity             | system    | 1 – (301    | 1) =      |             |             |                |             |             | 1         | (302)  |
|                 |                         |                        |                | eat from se         |           |             |           |             |             | up to four o   | other heat  | sources; ti | he latter |        |
|                 |                         |                        | _              | mal and wa          |           | rom powei   | stations. | See Apper   | ndix C.     |                |             | 1           |           | 7,000  |
| ractio          | n of hea                | at trom C              | ommun          | ity boiler          | S         |             |           |             |             |                |             |             | 1         | (303a) |

| Fraction of total space heat from Community boilers                                                                 |                                                | (302) x (303a) =                       | 1                        | (304a) |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|--------------------------|--------|
| Factor for control and charging method (Table 4c(3)) for                                                            | community heating system                       |                                        | 1                        | (305)  |
| Distribution loss factor (Table 12c) for community heating                                                          | ng system                                      |                                        | 1.05                     | (306)  |
| Space heating                                                                                                       |                                                |                                        | kWh/year                 |        |
| Annual space heating requirement                                                                                    |                                                |                                        | 29409.76                 |        |
| Space heat from Community boilers                                                                                   | (98) x (304a) x                                | (305) x (306) =                        | 30880.24                 | (307a) |
| Efficiency of secondary/supplementary heating system                                                                | in % (from Table 4a or Apper                   | ndix E)                                | 0                        | (308   |
| Space heating requirement from secondary/supplement                                                                 | eary system (98) x (301) x                     | 100 ÷ (308) =                          | 0                        | (309)  |
| Water heating Annual water heating requirement                                                                      |                                                |                                        | 2268.73                  | 7      |
| If DHW from community scheme: Water heat from Community boilers                                                     | (64) x (303a) x                                | (305) x (306) =                        | 2382.17                  | (310a) |
| Electricity used for heat distribution                                                                              | 0.01 × [(307a)(30                              | 7e) + (310a)(310e)] =                  | 332.62                   | (313)  |
| Cooling System Energy Efficiency Ratio                                                                              |                                                |                                        | 0                        | (314)  |
| Space cooling (if there is a fixed cooling system, if not e                                                         | enter 0) = $(107) \div (314)$                  | ) =                                    | 0                        | (315)  |
| Electricity for pumps and fans within dwelling (Table 4f) mechanical ventilation - balanced, extract or positive in |                                                |                                        | 0                        | (330a) |
| warm air heating system fans                                                                                        |                                                |                                        | 0                        | (330b) |
| pump for solar water heating                                                                                        |                                                |                                        | 0                        | (330g) |
| Total electricity for the above, kWh/year                                                                           | =(330a) + (330                                 | 0b) + (330g) =                         | 0                        | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                      |                                                |                                        | 472.83                   | (332)  |
| 12b. CO2 Emissions - Community heating scheme                                                                       |                                                |                                        |                          |        |
|                                                                                                                     | Energy<br>kWh/year                             | Emission factor<br>kg CO2/kWh          | Emissions<br>kg CO2/year |        |
| CO2 from other sources of space and water heating (no Efficiency of heat source 1 (%)                               | ot CHP)<br>CHP using two fuels repeat (363) to | o (366) for the second fue             | 90                       | (367a) |
| CO2 associated with heat source 1                                                                                   | [(307b)+(310b)] x 100 ÷ (367b) x               | 0 =                                    | 7982.98                  | (367)  |
| Electrical energy for heat distribution                                                                             | [(313) x                                       | 0.52                                   | 172.63                   | (372)  |
| Total CO2 associated with community systems                                                                         | (363)(366) + (368)(37                          | ······································ | 8155.61                  | (373)  |
| CO2 associated with space heating (secondary)                                                                       | (309) x                                        | 0 =                                    | 0                        | (374)  |
| CO2 associated with water from immersion heater or in:                                                              | stantaneous heater (312) x                     | 0.22                                   | 0                        | (375)  |
| Total CO2 associated with space and water heating                                                                   | (373) + (374) + (375) =                        |                                        | 8155.61                  | (376)  |
| CO2 associated with electricity for pumps and fans with                                                             | in dwelling (331)) x                           | 0.52                                   | 0                        | (378)  |
|                                                                                                                     |                                                |                                        |                          |        |
| CO2 associated with electricity for lighting                                                                        | (332))) x                                      | 0.52                                   | 245.4                    | (379)  |
| CO2 associated with electricity for lighting  Total CO2, kg/year sum of (376)(38                                    |                                                | 0.52                                   | 245.4<br>8401.01         | (379)  |
|                                                                                                                     |                                                | 0.52                                   | 243.4                    |        |
| Total CO2, kg/year sum of (376)(38                                                                                  |                                                | 0.52                                   | 8401.01                  | (383)  |

|                                                             |                      |                     | User D       | etails: _                  |             |               |          |           |                       |          |
|-------------------------------------------------------------|----------------------|---------------------|--------------|----------------------------|-------------|---------------|----------|-----------|-----------------------|----------|
| Assessor Name:<br>Software Name:                            | Stroma FSAP 2        |                     |              | Strom<br>Softwa<br>Address | are Vei     |               |          | Versio    | n: 1.0.3.4            |          |
| Address :                                                   | , london             | Г                   | roperty.     | Address                    | Offile 7    |               |          |           |                       |          |
| 1. Overall dwelling dime                                    | nsions:              |                     |              |                            |             |               |          |           |                       |          |
| 5                                                           |                      |                     | Area         | a(m²)                      |             |               | ight(m)  | <b>1</b>  | Volume(m <sup>3</sup> | <u>-</u> |
| Basement                                                    |                      |                     |              |                            | (1a) x      | 3             | .05      | (2a) =    | 250.1                 | (3a)     |
| Total floor area TFA = (1a                                  | a)+(1b)+(1c)+(1d)+   | ·(1e)+(1ı           | ר)           | 82                         | (4)         |               |          |           |                       |          |
| Dwelling volume                                             |                      |                     |              |                            | (3a)+(3b)   | )+(3c)+(3c    | d)+(3e)+ | .(3n) =   | 250.1                 | (5)      |
| 2. Ventilation rate:                                        |                      |                     |              | -41                        |             | 4-4-1         |          |           |                       | -        |
|                                                             | main<br>heating      | secondar<br>heating | ту<br>       | other                      |             | total         |          | i         | m³ per hou            | r<br>—   |
| Number of chimneys                                          | 0 +                  | 0                   | _            | 0                          | ] = [       | 0             | X 4      | 40 =      | 0                     | (6a)     |
| Number of open flues                                        | 0 +                  | 0                   | ] + [        | 0                          | =           | 0             | x 2      | 20 =      | 0                     | (6b)     |
| Number of intermittent far                                  | ns                   |                     |              |                            |             | 2             | X '      | 10 =      | 20                    | (7a)     |
| Number of passive vents                                     |                      |                     |              |                            | Γ           | 0             | X ·      | 10 =      | 0                     | (7b)     |
| Number of flueless gas fin                                  | res                  |                     |              |                            | Ī           | 0             | X 4      | 40 =      | 0                     | (7c)     |
|                                                             |                      |                     |              |                            |             |               |          | Air ch    | nanges per ho         | our      |
| Infiltration due to chimney                                 |                      |                     |              |                            |             | 20            |          | ÷ (5) =   | 0.08                  | (8)      |
| If a pressurisation test has be<br>Number of storeys in the |                      | ended, procee       | d to (17), ( | otherwise (                | continue fr | om (9) to (   | (16)     |           | 0                     | (9)      |
| Additional infiltration                                     | ic aweiling (113)    |                     |              |                            |             |               | [(9)     | -1]x0.1 = | 0                     | (10)     |
| Structural infiltration: 0.                                 | 25 for steel or timb | per frame of        | 0.35 fo      | r masonı                   | y constr    | uction        | ,        | •         | 0                     | (11)     |
| if both types of wall are pr                                |                      | erresponding to     | the great    | ter wall are               | a (after    |               |          | '         |                       |          |
| deducting areas of opening<br>If suspended wooden f         | · ,                  | sealed) or 0        | .1 (seale    | ed). else                  | enter 0     |               |          |           | 0                     | (12)     |
| If no draught lobby, ent                                    | ,                    | •                   | (000         | , c.cc                     |             |               |          |           | 0                     | (13)     |
| Percentage of windows                                       | and doors draugh     | nt stripped         |              |                            |             |               |          |           | 0                     | (14)     |
| Window infiltration                                         |                      |                     |              | 0.25 - [0.2                | x (14) ÷ 1  | 00] =         |          |           | 0                     | (15)     |
| Infiltration rate                                           |                      |                     |              | (8) + (10)                 |             |               |          |           | 0                     | (16)     |
| Air permeability value,                                     |                      |                     | •            | •                          | •           | etre of e     | envelope | area      | 10                    | (17)     |
| If based on air permeabili  Air permeability value applies  | •                    |                     |              |                            |             | is heina u    | sed      |           | 0.58                  | (18)     |
| Number of sides sheltere                                    |                      | rnao boori aoi      | io oi a aog  | groo an po                 | moubling    | io boiling at | 304      |           | 2                     | (19)     |
| Shelter factor                                              |                      |                     |              | (20) = 1 -                 | 0.075 x (1  | 19)] =        |          |           | 0.85                  | (20)     |
| Infiltration rate incorporat                                | ing shelter factor   |                     |              | (21) = (18                 | x (20) =    |               |          |           | 0.49                  | (21)     |
| Infiltration rate modified for                              | or monthly wind sp   | eed                 |              |                            |             |               |          | 1         | Ī                     |          |
| Jan Feb                                                     | Mar Apr M            | ay Jun              | Jul          | Aug                        | Sep         | Oct           | Nov      | Dec       |                       |          |
| Monthly average wind sp                                     |                      |                     |              | •                          |             |               | •        | 1         | 1                     |          |
| (22)m= 5.1 5                                                | 4.9 4.4 4.3          | 3.8                 | 3.8          | 3.7                        | 4           | 4.3           | 4.5      | 4.7       |                       |          |
| Wind Factor (22a)m = (22                                    | 2)m ÷ 4              |                     |              |                            |             |               |          |           |                       |          |
| (22a)m= 1.27 1.25                                           | 1.23 1.1 1.0         | 8 0.95              | 0.95         | 0.92                       | 1           | 1.08          | 1.12     | 1.18      |                       |          |

| 0.63                                                                                | 0.62                                          | 0.6                                                           | 0.54                      | 0.53      | 0.47           | 0.47                                              | 0.46                                         | 0.49            | 0.53                      | 0.55                                             | 0.58               | ]             |               |
|-------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|---------------------------|-----------|----------------|---------------------------------------------------|----------------------------------------------|-----------------|---------------------------|--------------------------------------------------|--------------------|---------------|---------------|
| Calculate effec                                                                     |                                               | -                                                             | rate for t                | he appli  | cable ca       | se                                                | <u>.                                    </u> |                 |                           | ļ.                                               | ļ.                 | J             |               |
| If mechanica                                                                        |                                               |                                                               |                           |           |                |                                                   |                                              |                 |                           |                                                  |                    | 0             | (2            |
| If exhaust air h                                                                    |                                               |                                                               |                           |           |                |                                                   |                                              |                 | ) = (23a)                 |                                                  |                    | 0             | (2            |
| If balanced with                                                                    |                                               |                                                               |                           |           |                |                                                   |                                              |                 |                           |                                                  |                    | 0             | (2            |
| a) If balance                                                                       |                                               | i                                                             | 1                         |           | i              | <del>- ` `                                 </del> | <del></del>                                  | <del>í `</del>  | <u> </u>                  | <del></del>                                      | <del>1 ` ´</del>   | i ÷ 100]<br>I | (2)           |
| 24a)m= 0                                                                            | 0                                             |                                                               | 0                         | 0         | 0              | 0                                                 | 0                                            | 0               | 0                         | 0                                                | 0                  |               | (2            |
| b) If balance                                                                       | ed mecha                                      | anical ve                                                     |                           |           | neat red       | <del></del>                                       | <del>- ^ ` ` - </del>                        | 0  m = (22)     | 2b)m + (2<br>0            | <del>-                                    </del> | Ι ,                | 1             | (2            |
| 24b)m= 0                                                                            |                                               |                                                               | 0                         | 0         |                | 0                                                 | 0                                            |                 | 0                         | 0                                                | 0                  | J             | (2            |
| c) If whole h<br>if (22b)n                                                          |                                               |                                                               | ntilation of<br>then (24d | •         | •              |                                                   |                                              |                 | .5 × (23b                 | o)                                               |                    |               |               |
| 24c)m= 0                                                                            | 0                                             | 0                                                             | 0                         | 0         | 0              | 0                                                 | 0                                            | 0               | 0                         | 0                                                | 0                  |               | (2            |
| d) If natural                                                                       |                                               |                                                               |                           |           | •              |                                                   |                                              |                 | 0.51                      | •                                                |                    | •             |               |
| 4d)m= 0.7                                                                           | 0.69                                          | 0.68                                                          | m = (221)<br>0.65         | 0.64      | 0.61           | 0.61                                              | $\frac{0.5 + [(2)]{0.6}}{1}$                 | 0.62            | 0.5]                      | 0.65                                             | 0.67               | 1             | (2            |
| , r                                                                                 | <u> </u>                                      | <u> </u>                                                      | ļ                         |           |                | <u> </u>                                          | <u> </u>                                     |                 | 0.04                      | 0.03                                             | 0.07               | J             | (2            |
| Effective air                                                                       | 0.69                                          | 0.68                                                          | 0.65                      | 0.64      | 0.61           | 0.61                                              | 0.6                                          | 0.62            | 0.64                      | 0.65                                             | 0.67               | 1             | (2            |
| 0.7                                                                                 | 0.00                                          | 0.00                                                          | 0.00                      | 0.04      | 0.01           | 0.01                                              | 0.0                                          | 0.02            | 0.04                      | 0.00                                             | 0.07               |               | (-            |
| 3. Heat losse                                                                       | s and he                                      | at loss                                                       |                           |           |                |                                                   |                                              |                 | _                         |                                                  |                    | _             |               |
| LEMENT                                                                              | Gros<br>are <mark>a</mark>                    |                                                               | Openin<br>m               |           | Net Ar<br>A ,r |                                                   | U-val<br>W/m2                                |                 | A X U<br>(W/I             | K)                                               | k-value<br>kJ/m²-l |               | A X k<br>kJ/K |
| oo <mark>rs Ty</mark> pe 1                                                          |                                               |                                                               |                           |           | 1.8            | x                                                 | 3                                            | = [             | 5.4                       |                                                  |                    |               | (2            |
| oo <mark>rs Ty</mark> pe 2                                                          |                                               |                                                               |                           |           | 1.6            | x                                                 | 1.4                                          | <b>⋽</b> \- i   | 2.24                      | Ħ                                                |                    |               | (2            |
| Vindows Type                                                                        | 1                                             |                                                               |                           |           | 5.56           | x1                                                | /[1/( 4.8 )+                                 | 0.04] =         | 22.39                     | Ħ                                                |                    |               | (2            |
| Vindows Type                                                                        | 2                                             |                                                               |                           |           | 4              | x1                                                | /[1/( 4.8 )+                                 | 0.04] =         | 16.11                     | 5                                                |                    |               | (2            |
| Vindows Type                                                                        | 3                                             |                                                               |                           |           | 1.21           | x1                                                | /[1/( 4.8 )+                                 | 0.04] =         | 4.87                      | =                                                |                    |               | (2            |
| loor                                                                                |                                               |                                                               |                           |           | 82             | x                                                 | 1.25                                         | ─ i             | 102.5                     | Ħ ſ                                              |                    |               | (2            |
| Valls Type1                                                                         | 79.8                                          | 5                                                             | 12.5                      | 7         | 67.28          | 3 x                                               | 2.1                                          | ╡┇              | 141.29                    | Ħ i                                              |                    | <b>=</b>   =  | (2            |
| /alls Type2                                                                         | 20.2                                          |                                                               | 1.6                       | =         | 18.63          | =                                                 | 2.1                                          | ≓ ₌¦            | 39.12                     | <b>=</b>                                         |                    | 7 F           | (2            |
| loof                                                                                | 19.7                                          |                                                               | 0                         | =         | 19.77          | =                                                 | 0.28                                         | <del>-</del>    | 5.54                      | <b>=</b>                                         |                    | <b>i</b> i    | `             |
| otal area of e                                                                      |                                               |                                                               |                           |           | 201.8          |                                                   |                                              |                 |                           |                                                  |                    |               | )`<br>(3      |
| arty wall                                                                           |                                               | ,                                                             |                           |           | 16.8           | =                                                 | 0                                            |                 | 0                         |                                                  |                    |               | (3            |
|                                                                                     |                                               |                                                               |                           |           | 5.8            | x                                                 | 0                                            | ╡┇              | 0                         | 륵 ¦                                              |                    | -             | (3            |
| •                                                                                   |                                               | ows use 6                                                     | effective wi              | ndow U-va |                |                                                   |                                              |                 | _                         | L<br>as aiven in                                 | paragraph          |               | (             |
| arty wall                                                                           | roof winde                                    |                                                               |                           |           |                |                                                   | ,                                            | ,1( .,          | ,                         | J. 1                                             | ,                  |               |               |
| arty wall<br>for windows and                                                        |                                               |                                                               | nternal wal               | o ana par |                |                                                   |                                              |                 |                           |                                                  |                    |               |               |
| arty wall<br>for windows and<br>include the area                                    | as on both                                    | sides of ir                                                   |                           | o ana par |                |                                                   | (26)(30                                      | ) + (32) =      |                           |                                                  |                    | 339.4         | 6 (3          |
| arty wall for windows and include the area abric heat los                           | as on both<br>ss, W/K =                       | sides of ir<br>= S (A x                                       |                           | o ana par |                |                                                   | (26)(30                                      |                 | (30) + (32                | 2) + (32a).                                      | (32e) =            | 339.4         | 6 (;          |
| arty wall for windows and include the area abric heat los leat capacity hermal mass | as on both<br>ss, W/K =<br>Cm = S(            | sides of ir<br>= S (A x<br>(A x k )                           | U)                        | ·         |                |                                                   | (26)(30                                      | ((28)           | (30) + (32<br>tive Value: | , , ,                                            | (32e) =            |               | (;            |
| arty wall for windows and include the area abric heat los eat capacity              | as on both ss, W/K = Cm = S( parame sments wh | sides of ir<br>= S (A x<br>(A x k )<br>ter (TMF<br>ere the de | U) P = Cm ÷               | - TFA) ir | n kJ/m²K       |                                                   |                                              | ((28)<br>Indica | tive Value:               | : High                                           | , ,                | 0             |               |

| Total fabric heat loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (33) + (36) =                                                 | Г                        | 357.86  | (37)         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------|---------|--------------|
| Ventilation heat loss calculated monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(38)$ m = $0.33 \times (25)$ m                               | L<br>x (5)               | 337.00  |              |
| Jan Feb Mar Apr May Jun Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del> </del>                                                  | lov Dec                  |         |              |
| (38)m= 57.57 56.94 56.32 53.4 52.86 50.32 50.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                                  | .96 55.11                |         | (38)         |
| Heat transfer coefficient, W/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (39)m = $(37)$ + $(38)$ m                                     |                          |         |              |
| (39)m= 415.43 414.79 414.17 411.26 410.71 408.17 408.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 407.7 409.15 410.71 41                                        | 1.81 412.97              |         |              |
| Heat loss parameter (HLP), W/m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Average = Sum $(40)$ m = $(39)$ m $\div$ $(4)$                | (39) <sub>112</sub> /12= | 411.25  | (39)         |
| (40)m= 5.07 5.06 5.05 5.02 5.01 4.98 4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.97 4.99 5.01 5.                                             | 02 5.04                  |         | _            |
| Number of days in month (Table 1a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average = Sum                                                 | (40) <sub>112</sub> /12= | 5.02    | (40)         |
| Jan Feb Mar Apr May Jun Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aug Sep Oct N                                                 | lov Dec                  |         |              |
| (41)m= 31 28 31 30 31 30 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31 30 31 3                                                    | 31                       |         | (41)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                          |         |              |
| 4. Water heating energy requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               | kWh/yea                  | ar:     |              |
| Assessment N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |                          |         |              |
| Assumed occupancy, N<br>if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2)] + 0.0013 x (TFA -13.9)                                    | 2.5                      |         | (42)         |
| if TFA £ 13.9, N = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                          |         |              |
| Annual average hot water usage in litres per day Vd,average =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               | 93.57                    |         | (43)         |
| Reduce the annual average hot water usage by 5% if the dwelling is designed to not more that 125 litres per person per day (all water use, hot and cold)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o acrileve a water use larget of                              |                          |         |              |
| Jan Feb Mar Apr May Jun Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aug Sep Oct N                                                 | lov Dec                  |         |              |
| Hot water usage in litres per day for each month $Vd$ , $m = factor from Table 1c x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               | 10V   DC0                |         |              |
| (44)m= 102.93 99.18 95.44 91.7 87.95 84.21 84.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87.95 91.7 95.44 99                                           | .18 102.93               |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total = Sum(44                                                | )112 =                   | 1122.82 | (44)         |
| Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tm / 3600 k <mark>Wh/mo</mark> nth ( <mark>see Ta</mark> bles | 1b, 1c, 1d)              |         | _            |
| (45)m= 152.63 133.5 137.76 120.1 115.24 99.44 92.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105.74 107 124.7 136                                          | 6.12 147.82              |         | _            |
| Mineter de la contra del la contra d | Total = Sum(45                                                | )112 =                   | 1472.19 | (45)         |
| If instantaneous water heating at point of use (no hot water storage), enter 0 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                          |         | (40)         |
| (46)m=     22.9     20.02     20.66     18.01     17.29     14.92     13.82       Water storage loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.86 16.05 18.71 20                                          | .42 22.17                |         | (46)         |
| Storage volume (litres) including any solar or WWHRS storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | within same vessel                                            | 160                      |         | (47)         |
| If community heating and no tank in dwelling, enter 110 litres in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                          |         | ` '          |
| Otherwise if no stored hot water (this includes instantaneous co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ` '                                                           |                          |         |              |
| Water storage loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |                          |         |              |
| a) If manufacturer's declared loss factor is known (kWh/day):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               | 0                        |         | (48)         |
| Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               | 0                        |         | (49)         |
| - g,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (48) x (49) =                                                 | 110                      |         | (50)         |
| b) If manufacturer's declared cylinder loss factor is not known:<br>Hot water storage loss factor from Table 2 (kWh/litre/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               | 0.02                     |         | (51)         |
| If community heating see section 4.3  Volume factor from Table 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                             |                          |         | (50)         |
| Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               | 0.6                      |         | (52)<br>(53) |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (47) x (51) x (52) x (53) =                                   |                          |         | , ,          |
| Enter (50) or (54) in (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (-1/ ^ (01/ ^ (02/ ^ (00/ -                                   | 1.03                     |         | (54)<br>(55) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                          |         | . ,          |

| Water storage loss calculated for each month $((56)m = (55) \times (41)m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| (56)m= 32.01 28.92 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (56)                                 |
| If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷ (50), else (57)m = (56)m where (H11) is from Appendix H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
| (57)m= 32.01 28.92 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (57)                                 |
| Primary circuit loss (annual) from Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (58)                                 |
| Primary circuit loss calculated for each month $(59)$ m = $(58) \div 365 \times (41)$ m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
| (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| (59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26 22.51 23.26 22.51 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (59)                                 |
| Combi loss calculated for each month (61)m = $(60) \div 365 \times (41)$ m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| (61)m= 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (61)                                 |
| Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| (62)m= 207.91 183.42 193.03 173.59 170.51 152.93 147.42 161.02 160.5 179.98 189.61 203.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (62)                                 |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |
| (63)m= 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (63)                                 |
| Output from water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |
| (64)m= 207.91 183.42 193.03 173.59 170.51 152.93 147.42 161.02 160.5 179.98 189.61 203.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |
| Output from water heater (annual) <sub>112</sub> 2123.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (64)                                 |
| Heat gains from water heating, kWh/month $0.25$ [0.85 × (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
| (65)m= 69.36 61.2 64.41 57.94 56.93 51.07 49.25 53.77 53.59 60.07 63.27 67.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (65)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (66)                                 |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (66)                                 |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (66)<br>(67)                         |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124 | ` ,                                  |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ` ,                                  |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (67)                                 |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (67)                                 |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124 | (67)<br>(68)                         |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124 | (67)<br>(68)                         |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (67)<br>(68)<br>(69)                 |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.9 | (67)<br>(68)<br>(69)                 |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (67)<br>(68)<br>(69)<br>(70)         |
| 5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.99 124.9 | (67)<br>(68)<br>(69)<br>(70)         |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (67)<br>(68)<br>(69)<br>(70)<br>(71) |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta | ation: | Access Factor<br>Table 6d | or   | Area<br>m²                                   |                                                    | Flu<br>Tal | x<br>ole 6a |             | g_<br>Table 6b |        | FF<br>Table 6c |        |   | Gains<br>(W) |       |
|---------|--------|---------------------------|------|----------------------------------------------|----------------------------------------------------|------------|-------------|-------------|----------------|--------|----------------|--------|---|--------------|-------|
| North   | 0.9x   | 0.77                      | x    | 4                                            | x                                                  | 1          | 0.63        | x           | 0.85           | x      | 0.7            |        | Г | 17.54        | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | ×                                                  | 2          | 0.32        | x           | 0.85           | x      | 0.7            |        | Ē | 33.52        | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | X                                                  | 3          | 4.53        | x           | 0.85           | x      | 0.7            |        | Ē | 56.95        | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | ×                                                  | 5          | 5.46        | x           | 0.85           | x      | 0.7            |        | Ē | 91.48        | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | ×                                                  | 7          | 4.72        | x           | 0.85           | X      | 0.7            |        | Ē | 123.23       | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | X                                                  | 7          | 9.99        | x           | 0.85           | x      | 0.7            |        |   | 131.92       | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | X                                                  | 7          | 4.68        | x           | 0.85           | x      | 0.7            |        |   | 123.17       | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | X                                                  | 5          | 9.25        | x           | 0.85           | x      | 0.7            |        |   | 97.72        | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | X                                                  | 4          | 1.52        | x           | 0.85           | x      | 0.7            |        |   | 68.47        | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | ×                                                  | 2          | 4.19        | x           | 0.85           | x      | 0.7            | =      |   | 39.9         | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | X                                                  | 1          | 3.12        | x           | 0.85           | X      | 0.7            |        |   | 21.64        | (74)  |
| North   | 0.9x   | 0.77                      | x    | 4                                            | X                                                  |            | 3.86        | x           | 0.85           | x      | 0.7            |        |   | 14.62        | (74)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | ×                                                  | 1          | 9.64        | x           | 0.85           | x      | 0.7            |        |   | 45.03        | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | X                                                  | 3          | 8.42        | x           | 0.85           | X      | 0.7            |        |   | 88.08        | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | ×                                                  | 6          | 3.27        | x           | 0.85           | x      | 0.7            |        |   | 145.06       | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | X                                                  | 9          | 2.28        | Х           | 0.85           | X      | 0.7            | =      |   | 211.56       | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | x                                                  | 1          | 13.09       | х           | 0.85           | x      | 0.7            |        |   | 259.27       | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | х                                                  | 1          | 15.77       |             | 0.85           | x      | 0.7            |        |   | 265.41       | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | ×                                                  | 1          | 10.22       | x           | 0.85           | X      | 0.7            | =      | Ē | 252.68       | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | x                                                  | 9          | 4.68        | х           | 0.85           | X      | 0.7            |        | Ē | 217.05       | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | ×                                                  | 7          | 3.59        | х           | 0.85           | X      | 0.7            |        |   | 168.71       | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | х                                                  | 4          | 5.59        | х           | 0.85           | x      | 0.7            |        | Ē | 104.52       | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | ×                                                  | 2          | 4.49        | x           | 0.85           | х      | 0.7            |        |   | 56.14        | (76)  |
| East    | 0.9x   | 1                         | x    | 5.56                                         | X                                                  | 1          | 6.15        | x           | 0.85           | x      | 0.7            |        |   | 37.03        | (76)  |
| West    | 0.9x   | 0.77                      | x    | 1.21                                         | ×                                                  | 1          | 9.64        | x           | 0.85           | X      | 0.7            |        |   | 9.8          | (80)  |
| West    | 0.9x   | 0.77                      | x    | 1.21                                         | X                                                  | 3          | 8.42        | x           | 0.85           | x      | 0.7            |        |   | 19.17        | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.21                                         | X                                                  | 6          | 3.27        | x           | 0.85           | x      | 0.7            | _      |   | 31.57        | (80)  |
| West    | 0.9x   | 0.77                      | x    | 1.21                                         | X                                                  | 9          | 2.28        | X           | 0.85           | X      | 0.7            |        |   | 46.04        | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.21                                         | X                                                  | 1          | 13.09       | x           | 0.85           | X      | 0.7            |        |   | 56.42        | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.21                                         | X                                                  | 1          | 15.77       | x           | 0.85           | X      | 0.7            | =      |   | 57.76        | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.21                                         | X                                                  | 1          | 10.22       | x           | 0.85           | X      | 0.7            | -      |   | 54.99        | (80)  |
| West    | 0.9x   | 0.77                      | X    | 1.21                                         | X                                                  | 9          | 4.68        | x           | 0.85           | X      | 0.7            |        |   | 47.24        | (80)  |
| West    | 0.9x   | 0.77                      | x    | 1.21                                         | X                                                  | 7          | 3.59        | x           | 0.85           | X      | 0.7            | =      |   | 36.72        | (80)  |
| West    | 0.9x   | 0.77                      | x    | 1.21                                         | X                                                  | 4          | 5.59        | x           | 0.85           | X      | 0.7            |        |   | 22.75        | (80)  |
| West    | 0.9x   | 0.77                      | x    | 1.21                                         | ×                                                  | 2          | 4.49        | x           | 0.85           | x      | 0.7            |        |   | 12.22        | (80)  |
| West    | 0.9x   | 0.77                      | x    | 1.21                                         | X                                                  | 1          | 6.15        | х           | 0.85           | x      | 0.7            |        | Ē | 8.06         | (80)  |
|         |        |                           | _    |                                              |                                                    |            |             | _           |                |        |                |        |   |              | _     |
| ו       |        | n watts, calcul           | _    |                                              | -                                                  |            |             | <del></del> | n = Sum(74)m . |        | _              | 1      | _ |              |       |
| (83)m=  | 72.36  |                           | 3.58 |                                              | 3.93                                               | 455.1      | 430.84      | 362         | .01 273.9      | 167.16 | 90             | 59.71  |   |              | (83)  |
| Ī       |        | internal and              |      | <u>`                                    </u> | <del>.                                      </del> |            |             |             |                | Γ_     |                | Ι.     | _ |              | (0.1) |
| (84)m=  | 470.79 | 536.99 615                | 5.96 | 709.21 776                                   | 5.47                                               | 770.94     | 732.67      | 669         | .95 593.36     | 509.09 | 9 457.68       | 446.71 | Ш |              | (84)  |

| 7. Me    | an inter   | nal temp  | perature  | (heating   | season     | )          |           |             |               |                       |            |                        |           |        |
|----------|------------|-----------|-----------|------------|------------|------------|-----------|-------------|---------------|-----------------------|------------|------------------------|-----------|--------|
|          |            |           |           |            |            |            | from Tah  | ole 9, Th   | 1 (°C)        |                       |            | ı                      | 21        | (85)   |
| -        |            | _         |           | living are |            | _          |           | ), O O, 111 | . ( 0)        |                       |            | l                      | 21        |        |
| Otilise  | Jan        | Feb       | Mar       | Apr        | May        | Jun        | Jul       | Aug         | Sep           | Oct                   | Nov        | Dec                    |           |        |
| (86)m=   | 1          | 1         | 1         | Дрі<br>1   | 0.99       | 0.97       | 0.94      | 0.96        | 0.99          | 1                     | 1          | 1                      |           | (86)   |
|          |            |           |           |            |            |            |           |             |               | '                     | '          | '                      |           | (00)   |
|          |            |           |           |            | ·          |            |           | in Table    |               | - I                   |            | -                      |           | (n=)   |
| (87)m=   | 17.84      | 18        | 18.36     | 18.91      | 19.5       | 20.08      | 20.46     | 20.39       | 19.9          | 19.15                 | 18.42      | 17.82                  |           | (87)   |
| Temp     | erature    | during h  | eating p  | eriods ir  | rest of    | dwelling   | from Ta   | ble 9, Tl   | n2 (°C)       |                       |            |                        |           |        |
| (88)m=   | 18.07      | 18.07     | 18.08     | 18.08      | 18.08      | 18.09      | 18.09     | 18.09       | 18.09         | 18.08                 | 18.08      | 18.08                  |           | (88)   |
| Utilisa  | tion fac   | tor for a | ains for  | rest of d  | wellina. I | h2.m (se   | e Table   | 9a)         |               |                       |            |                        |           |        |
| (89)m=   | 1          | 1         | 1         | 0.99       | 0.97       | 0.9        | 0.66      | 0.74        | 0.96          | 0.99                  | 1          | 1                      |           | (89)   |
| Maan     | intorno    | ltompor   | oturo in  | the rest   | of dwalli  | na T2 /f   | ollow oto | no 2 to -   | 7 in Tabl     | 00)                   |            |                        |           |        |
| (90)m=   | 14.32      | 14.55     | 15.08     | 15.87      | 16.74      | 17.56      | 18        | ps 3 to 7   | 17.32         | 16.24                 | 15.16      | 14.29                  |           | (90)   |
| (50)111= | 14.02      | 14.00     | 15.00     | 10.07      | 10.74      | 17.50      | 10        | 17.55       |               | LA = Livin            |            |                        | 0.53      | (91)   |
|          |            |           |           |            |            |            |           |             |               |                       | g aroa . ( | ., –                   | 0.55      | (31)   |
| Mean     | interna    | temper    | ature (fo | r the wh   | ole dwe    | ling) = fl | _A × T1   | + (1 – fL   | A) × T2       |                       |            |                        |           |        |
| (92)m=   | 16.19      | 16.38     | 16.83     | 17.49      | 18.21      | 18.9       | 19.3      | 19.25       | 18.69         | 17.79                 | 16.89      | 16.17                  |           | (92)   |
| Apply    | adjustn    | nent to t | he mear   | internal   | temper     | ature fro  | m Table   | 4e, whe     | re appro      | opri <mark>ate</mark> |            |                        |           |        |
| (93)m=   | 16.19      | 16.38     | 16.83     | 17.49      | 18.21      | 18.9       | 19.3      | 19.25       | 18.69         | 17.79                 | 16.89      | 16.17                  |           | (93)   |
| 8. Spa   | ace hea    | ting requ | uirement  |            |            |            |           |             |               | _                     |            | _                      | _         |        |
|          |            |           |           |            |            | ed at ste  | ep 11 of  | Table 9     | o, so tha     | t Ti,m=(7             | 76)m an    | d re-calc              | ulate     |        |
| the ut   |            |           |           | using Ta   |            |            |           |             |               | 0 /                   |            |                        |           |        |
| 1.1611   | Jan        | Feb       | Mar       | Apr        | May        | Jun        | Jul       | Aug         | Sep           | Oct                   | Nov        | Dec                    |           |        |
|          |            |           | ains, hm  |            | 0.07       | 0.00       | 0.00      | 0.00        | 0.07          | 0.00                  | 4          |                        |           | (04)   |
| (94)m=   | 1          | 1         | 0.99      | 0.99       | 0.97       | 0.93       | 0.86      | 0.89        | 0.97          | 0.99                  | 1          | 1                      |           | (94)   |
|          | _          |           |           | 4)m x (84  | _          | 700.07     | 000.00    | 504.00      | 574.00        | 505.40                | 450.44     | 440.00                 |           | (OE)   |
| (95)m=   | 469.94     | 535.52    | 612.86    | 701.28     | 755.79     | 720.67     | 626.89    | 594.99      | 574.38        | 505.18                | 456.44     | 446.02                 |           | (95)   |
|          |            |           | 1         | perature   |            |            | 40.0      | 40.4        | 444           | 40.0                  | 7.4        | 40                     |           | (96)   |
| (96)m=   | 4.3        | 4.9       | 6.5       | 8.9        | 11.7       | 14.6       | 16.6      | 16.4        | 14.1          | 10.6                  | 7.1        | 4.2                    |           | (90)   |
|          |            |           |           |            |            |            |           | x [(93)m    | <u> </u>      |                       | 1000 10    | 4040.50                |           | (97)   |
| (97)m=   | 4940.07    | 4762.98   | 4277.34   |            |            | 1756.47    |           | 1161.27     | 1879.05       |                       | 4033.49    | 4942.52                |           | (91)   |
|          |            | 2840.86   | 2726.37   |            |            |            |           | 24 x [(97)  | )m – (95<br>0 |                       | _          | 2245.4                 |           |        |
| (98)m=   | 3323.76    | 2640.66   | 2120.31   | 2037.63    | 1426.88    | 0          | 0         | 0           |               | 1820.68               | 2575.48    | 3345.4                 |           | 7(00)  |
|          |            |           |           |            |            |            |           | lota        | l per year    | (kWh/year             | ) = Sum(9  | 8) <sub>15,912</sub> = | 20099.07  | (98)   |
| Space    | e heatin   | g require | ement in  | kWh/m²     | /year      |            |           |             |               |                       |            |                        | 245.11    | (99)   |
| 9b. En   | ergy rec   | uiremer   | nts – Cor | mmunity    | heating    | scheme     |           |             |               |                       |            |                        |           |        |
| This pa  | art is use | ed for sp | ace hea   | iting, spa | ace cooli  | ng or wa   | ater heat | ing prov    | ided by       | a commi               | unity sch  | neme.                  |           |        |
| Fractio  | n of spa   | ce heat   | from se   | condary/   | supplen/   | nentary I  | neating ( | Table 1     | 1) '0' if n   | one                   |            |                        | 0         | (301)  |
| Fractio  | n of spa   | ce heat   | from co   | mmunity    | system     | 1 – (301   | 1) =      |             |               |                       |            | j                      | 1         | (302)  |
|          | •          |           |           | •          | •          | ,          | ,         | allows for  | CHP and i     | up to four a          | other heat | sources; tl            | he latter | _      |
|          | -          | -         |           |            |            |            |           | See Appei   |               |                       |            | _ Ju. Joo, ti          |           |        |
| Fractio  | n of hea   | at from C | Commun    | ity boiler | 'S         |            |           |             |               |                       |            |                        | 1         | (303a) |

| Fraction of total space heat from Community boilers                                                                 |                                     | (302) x (303a) =             | 1                        | (304a)     |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------|--------------------------|------------|
| Factor for control and charging method (Table 4c(3)) for                                                            | r community heating system          |                              | 1                        | 」<br>(305) |
| Distribution loss factor (Table 12c) for community heati                                                            | , , ,                               |                              | 1.05                     | (306)      |
| Space heating                                                                                                       | <b>0</b> ,                          | L                            | kWh/year                 | <b>,</b>   |
| Annual space heating requirement                                                                                    |                                     | [                            | 20099.07                 |            |
| Space heat from Community boilers                                                                                   | (98) x (304a)                       | x (305) x (306) =            | 21104.02                 | (307a)     |
| Efficiency of secondary/supplementary heating system                                                                | in % (from Table 4a or Appe         | ndix E)                      | 0                        | (308       |
| Space heating requirement from secondary/supplement                                                                 | tary system (98) x (301) x          | 100 ÷ (308) =                | 0                        | (309)      |
| Water heating Annual water heating requirement                                                                      |                                     | -                            | 2123.03                  | -<br>]     |
| If DHW from community scheme: Water heat from Community boilers                                                     | (64) x (303a) x                     | (305) x (306) =              | 2229.18                  | (310a)     |
| Electricity used for heat distribution                                                                              | 0.01 × [(307a)(30                   | 7e) + (310a)(310e)] =        | 233.33                   | (313)      |
| Cooling System Energy Efficiency Ratio                                                                              |                                     |                              | 0                        | (314)      |
| Space cooling (if there is a fixed cooling system, if not                                                           | enter 0) = (107) ÷ (314             | ) =                          | 0                        | (315)      |
| Electricity for pumps and fans within dwelling (Table 4f) mechanical ventilation - balanced, extract or positive in |                                     |                              | 0                        | (330a)     |
| warm air heating system fans                                                                                        |                                     |                              | 0                        | (330b)     |
| pump for solar water heating                                                                                        |                                     |                              | 0                        | (330g)     |
| Total electricity for the above, kWh/year                                                                           | =(330a) + (330                      | 0b) + (330g) =               | 0                        | (331)      |
| Energy for lighting (calculated in Appendix L)                                                                      |                                     | Ī                            | 373.27                   | (332)      |
| 12b. CO2 Emissions - Community heating scheme                                                                       |                                     |                              |                          |            |
|                                                                                                                     | Energy<br>kWh/year                  | Emission factor I kg CO2/kWh | Emissions<br>kg CO2/year |            |
| CO2 from other sources of space and water heating (no                                                               | -                                   | Ng 002/NVIII                 | (g 002/) oui             |            |
| Efficiency of heat source 1 (%)                                                                                     | CHP using two fuels repeat (363) to | o (366) for the second fuel  | 90                       | (367a)     |
| CO2 associated with heat source 1                                                                                   | [(307b)+(310b)] x 100 ÷ (367b) x    | 0 =                          | 5599.97                  | (367)      |
| Electrical energy for heat distribution                                                                             | [(313) x                            | 0.52                         | 121.1                    | (372)      |
| Total CO2 associated with community systems                                                                         | (363)(366) + (368)(37               | (2) =                        | 5721.07                  | (373)      |
| CO2 associated with space heating (secondary)                                                                       | (309) x                             | 0 =                          | 0                        | (374)      |
| CO2 associated with water from immersion heater or in                                                               | stantaneous heater (312) x          | 0.22                         | 0                        | (375)      |
| Total CO2 associated with space and water heating                                                                   | (373) + (374) + (375) =             |                              | 5721.07                  | (376)      |
| CO2 associated with electricity for pumps and fans with                                                             | nin dwelling (331)) x               | 0.52                         | 0                        | (378)      |
| CO2 associated with electricity for lighting                                                                        | (332))) x                           | 0.52                         | 193.73                   | (379)      |
|                                                                                                                     | ```                                 |                              |                          | (379)      |
| Total CO2, kg/year sum of (376)(38                                                                                  |                                     |                              | 5914.8                   |            |
| Total CO2, kg/year sum of (376)(38  Dwelling CO2 Emission Rate (383) ÷ (4) =                                        |                                     | <br>[<br>]                   | 5914.8<br>72.13          | _          |

|                                                                 |                          |                    | User D       | etails: _                    |             |             |          |           |                       |      |
|-----------------------------------------------------------------|--------------------------|--------------------|--------------|------------------------------|-------------|-------------|----------|-----------|-----------------------|------|
| Assessor Name:<br>Software Name:                                | Stroma FSAP 20           |                    |              | Stroma<br>Softwa<br>Address: | are Vei     |             |          | Versio    | n: 1.0.3.4            |      |
| Address :                                                       | , london                 | Г                  | торену ,     | Address                      | Offit 6     |             |          |           |                       |      |
| 1. Overall dwelling dimens                                      | sions:                   |                    |              |                              |             |             |          |           |                       |      |
| _                                                               |                          |                    | Area         | a(m²)                        |             | Av. He      | ight(m)  | ,         | Volume(m <sup>3</sup> | _    |
| Basement                                                        |                          |                    |              | 70                           | (1a) x      | 3           | 3.5      | (2a) =    | 245                   | (3a) |
| Total floor area TFA = (1a)-                                    | +(1b)+(1c)+(1d)+(1       | e)+(1r             | n)           | 70                           | (4)         |             |          |           |                       |      |
| Dwelling volume                                                 |                          |                    |              |                              | (3a)+(3b)   | )+(3c)+(3c  | d)+(3e)+ | .(3n) =   | 245                   | (5)  |
| 2. Ventilation rate:                                            |                          |                    |              |                              |             |             |          |           |                       |      |
|                                                                 | main s<br>heating        | econdar<br>heating | У            | other                        |             | total       |          |           | m³ per hou            | ır   |
| Number of chimneys                                              | 0 +                      | 0                  | +            | 0                            | ] = [       | 0           | X 4      | 40 =      | 0                     | (6a) |
| Number of open flues                                            | 0 +                      | 0                  | ] + [        | 0                            | ] = [       | 0           | x 2      | 20 =      | 0                     | (6b) |
| Number of intermittent fans                                     |                          |                    |              |                              | Ī           | 2           | <b>x</b> | 10 =      | 20                    | (7a) |
| Number of passive vents                                         |                          |                    |              |                              | Ī           | 0           | x -      | 10 =      | 0                     | (7b) |
| Number of flueless gas fire                                     | S                        |                    |              |                              | Ė           | 0           | X 4      | 40 =      | 0                     | (7c) |
|                                                                 |                          |                    |              |                              | L           |             |          | Air ch    | nanges per ho         | our  |
| Infiltration due to chimneys                                    |                          |                    |              |                              |             | 20          |          | ÷ (5) =   | 0.08                  | (8)  |
| If a pressurisation test has been Number of storeys in the      |                          | led, procee        | d to (17), o | otherwise (                  | ontinue fr  | om (9) to ( | (16)     |           | 0                     | (9)  |
| Additional infiltration                                         | dwelling (113)           |                    |              |                              |             |             | [(9)     | -1]x0.1 = | 0                     | (10) |
| Structural infiltration: 0.28                                   | 5 for steel or timber    | frame or           | 0.35 for     | r masonr                     | y constr    | uction      | ,        | •         | 0                     | (11) |
| if both types of wall are pres                                  |                          | sponding to        | the great    | er wall are                  | a (after    |             |          | '         |                       |      |
| deducting areas of openings  If suspended wooden floor          | ,· •                     | iled) or 0.        | .1 (seale    | ed). else                    | enter 0     |             |          |           | 0                     | (12) |
| If no draught lobby, enter                                      | ,                        |                    | (000         | ,, 0.00                      |             |             |          |           | 0                     | (13) |
| Percentage of windows a                                         | and doors draught s      | tripped            |              |                              |             |             |          |           | 0                     | (14) |
| Window infiltration                                             |                          |                    |              | 0.25 - [0.2                  | x (14) ÷ 1  | 00] =       |          |           | 0                     | (15) |
| Infiltration rate                                               |                          |                    |              | (8) + (10)                   | + (11) + (1 | 2) + (13) - | + (15) = |           | 0                     | (16) |
| Air permeability value, q5                                      | •                        |                    | •            |                              | •           | etre of e   | envelope | area      | 10                    | (17) |
| If based on air permeability  Air permeability value applies ii | •                        |                    |              |                              |             | is boing u  | sod      |           | 0.58                  | (18) |
| Number of sides sheltered                                       | a pressurisation test ne | is been dor        | ie or a deg  | gree all per                 | meability   | is being u  | seu      |           | 1                     | (19) |
| Shelter factor                                                  |                          |                    |              | (20) = 1 -                   | (0.075 x (1 | 9)] =       |          |           | 0.92                  | (20) |
| Infiltration rate incorporating                                 | g shelter factor         |                    |              | (21) = (18)                  | x (20) =    |             |          |           | 0.54                  | (21) |
| Infiltration rate modified for                                  | monthly wind spee        | d                  |              |                              |             |             | -        |           | -                     |      |
| Jan Feb M                                                       | ar Apr May               | Jun                | Jul          | Aug                          | Sep         | Oct         | Nov      | Dec       |                       |      |
| Monthly average wind spee                                       | ed from Table 7          |                    |              |                              |             |             |          |           | •                     |      |
| (22)m= 5.1 5 4.5                                                | 9 4.4 4.3                | 3.8                | 3.8          | 3.7                          | 4           | 4.3         | 4.5      | 4.7       |                       |      |
| Wind Factor (22a)m = (22)r                                      | n ÷ 4                    |                    |              |                              |             |             |          |           |                       |      |
| (22a)m= 1.27 1.25 1.2                                           |                          | 0.95               | 0.95         | 0.92                         | 1           | 1.08        | 1.12     | 1.18      |                       |      |

| Adjusted infilt                      | ration rate              | e (allowir  | ng for sh    | nelter an     | ıd wind s | peed) =    | (21a) x      | (22a)m         |                   |                                                   |               |               |                                         |
|--------------------------------------|--------------------------|-------------|--------------|---------------|-----------|------------|--------------|----------------|-------------------|---------------------------------------------------|---------------|---------------|-----------------------------------------|
| 0.69                                 | 0.67                     | 0.66        | 0.59         | 0.58          | 0.51      | 0.51       | 0.5          | 0.54           | 0.58              | 0.61                                              | 0.63          | ]             |                                         |
| Calculate effe                       |                          | _           | ate for t    | he appli      | cable ca  | se         |              | !              |                   |                                                   |               |               |                                         |
| If mechanic                          |                          |             | andiv N. (2  | 2h) _ (22a    | a) Em. /  | auation (N | IE\\ otho    | muino (22h     | ·) - (22a)        |                                                   |               | 0             |                                         |
| If exhaust air                       |                          |             |              |               |           |            |              |                | )) = (23a)        |                                                   |               | 0             |                                         |
| If balanced wi                       |                          |             |              |               |           |            |              |                | <b>01</b>         | (001)                                             | . (00.)       | 1007          | (23)                                    |
| a) If balance                        | 1                        | 1           |              |               | i         | <u> </u>   | <u> </u>     | ŕ              | <del>r ´</del>    | <del>`                                    </del>  | <del>``</del> | ) ÷ 100]<br>1 | (0.4                                    |
| (24a)m= 0                            | 0                        | 0           | 0            | 0             | . 0       | 0          | 0            | 0              | 0                 | 0                                                 | 0             | ]             | (24                                     |
| b) If balance                        |                          |             |              |               |           |            |              | <del>í `</del> | <del> </del>      | <del>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </del> |               | 1             | (0.4                                    |
| (24b)m= 0                            | 0                        | 0           | 0            | 0             | 0         | 0          | 0            | 0              | 0                 | 0                                                 | 0             | ]             | (24)                                    |
| c) If whole                          |                          |             |              | •             | •         |            |              |                | E (00k            | ٠,                                                |               |               |                                         |
|                                      | $m < 0.5 \times 10^{-6}$ | (23b), ti   | nen (240     | (230) = (230) | o); otner | wise (24)  | (220)        | 0) m + 0       | .5 × (231         | )<br>  0                                          | Ι ,           | 1             | (24                                     |
| ( 1)                                 | لــنـــلـ                |             |              |               |           |            |              |                | 0                 | 0                                                 | 0             | J             | (24)                                    |
| d) If natura<br>if (22b)             | m = 1, the               |             |              |               |           |            |              |                | 0.5]              |                                                   |               | -             |                                         |
| (24d)m= 0.74                         | 0.73                     | 0.72        | 0.68         | 0.67          | 0.63      | 0.63       | 0.62         | 0.64           | 0.67              | 0.68                                              | 0.7           |               | (24                                     |
| Effective ai                         | r change                 | rate - en   | iter (24a    | ) or (24b     | o) or (24 | c) or (24  | d) in box    | x (25)         |                   |                                                   |               | _             |                                         |
| (25)m= 0.74                          | 0.73                     | 0.72        | 0.68         | 0.67          | 0.63      | 0.63       | 0.62         | 0.64           | 0.67              | 0.68                                              | 0.7           |               | (25)                                    |
| 3. Heat loss                         | es and he                | at loss r   | paramete     | jr.           |           |            |              |                |                   |                                                   | _             | _             |                                         |
| ELEMENT                              | Gros                     |             | Openin       |               | Net Ar    | ea         | U-valu       | ue             | AXU               |                                                   | k-value       | е             | ΑΧk                                     |
|                                      | area                     |             | m            |               | A ,r      |            | W/m2         |                | (W/               |                                                   | kJ/m².        |               | kJ/K                                    |
| Doors                                |                          |             |              |               | 1.9       | x          | 3            | =              | 5.7               |                                                   |               |               | (26)                                    |
| Win <mark>dows</mark> Typ            | e 1                      |             |              |               | 8.7       | x1/        | /[1/( 4.8 )+ | 0.04] =        | 35.03             |                                                   |               |               | (27)                                    |
| Windows Typ                          | e 2                      |             |              |               | 6.5       | X1/        | /[1/( 4.8 )+ | 0.04] =        | 26.17             | П                                                 |               |               | (27)                                    |
| Windows Typ                          | e 3                      |             |              |               | 2.2       | x1/        | /[1/( 4.8 )+ | 0.04] =        | 8.86              | =                                                 |               |               | (27)                                    |
| Floor                                |                          |             |              |               | 70        | x          | 1.25         | <b>─</b>       | 87.5              | =                                                 |               | — г           | (28)                                    |
| Walls                                | 116.                     | 5           | 19.3         |               | 97.2      |            | 2.1          | = :            | 204.12            | <u> </u>                                          |               | ≓ F           | (29)                                    |
| Roof                                 | 26.7                     | =           | 0            | _             | 26.7      |            | 0.28         | =              | 7.48              |                                                   |               | <b>-</b>      | (30)                                    |
| Total area of                        |                          |             |              |               |           | =          | 0.20         |                | 7.40              | [                                                 |               |               |                                         |
|                                      | eieirieriis,             | , 111-      |              |               | 213.2     | =          |              |                |                   |                                                   |               |               | (31)                                    |
| Party wall                           |                          |             |              |               | 24.2      | ×          | 0            | =              | 0                 | ᆜ !                                               |               | <u> </u>      | (32)                                    |
| Party wall                           |                          |             |              |               | 8.6       | X          | 0            | =              | 0                 |                                                   |               |               | (32)                                    |
| * for windows an  ** include the are |                          |             |              |               |           | ated using | formula 1    | /[(1/U-valu    | ıe)+0.04] a       | as given in                                       | paragrapi     | 1 3.2         |                                         |
| Fabric heat lo                       | ss, W/K =                | = S (A x    | U)           |               |           |            | (26)(30)     | ) + (32) =     |                   |                                                   |               | 374           | .86 (33)                                |
| Heat capacity                        |                          | •           | •            |               |           |            |              | ((28).         | (30) + (3         | 2) + (32a).                                       | (32e) =       | 0             | <del></del>                             |
| Thermal mas                          | •                        | ,           | ? = Cm ÷     | - TFA) ir     | n kJ/m²K  |            |              | Indica         | itive Value       | : High                                            |               | 45            |                                         |
| For design assec                     | ssments whe              | ere the det | tails of the | ,             |           |            | ecisely the  | e indicative   | e values of       | f TMP in Ta                                       | able 1f       |               | ` ′                                     |
| Thermal bridg                        |                          |             |              | usina Ar      | pendix k  | <          |              |                |                   |                                                   |               | 31.           | 98 (36)                                 |
| if details of them                   | ,                        | ,           |              |               | -         | -          |              |                |                   |                                                   |               | <u>J1.</u>    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Total fabric h                       |                          |             | (20)         |               | ,         |            |              | (33) +         | (36) =            |                                                   |               | 406           | .84 (37)                                |
| Ventilation he                       | at loss ca               | alculated   | monthly      | ,             |           |            |              | (38)m          | - 0 33 <b>v</b> 1 | (25)m x (5)                                       | ١             |               |                                         |
|                                      |                          | a.ou.u.ou   | 1 1110111111 | ,             |           |            |              | (00)           | - 0.55 X          |                                                   | ,             |               |                                         |

| (38)m= 59.45 58.71 57.98 54.58 53.95 50.99 50.99 50.44 52.13 53.95 55.23 56.58  Heat transfer coefficient, W/K (39)m = (37) + (38)m  (39)m= 466.29 465.55 464.83 461.43 460.79 457.83 457.83 457.28 458.97 460.79 462.08 463.42  Average = Sum(39) <sub>112</sub> /12= 461.42  Heat loss parameter (HLP), W/m²K (40)m = (39)m ÷ (4) | (38)  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (39)m= 466.29 465.55 464.83 461.43 460.79 457.83 457.83 457.28 458.97 460.79 462.08 463.42  Average = Sum(39) <sub>112</sub> /12= 461.42  Heat loss parameter (HLP), W/m²K (40)m = (39)m ÷ (4)                                                                                                                                      |       |
| Average = Sum(39) <sub>112</sub> /12= 461.42<br>Heat loss parameter (HLP), W/m <sup>2</sup> K (40)m = (39)m $\div$ (4)                                                                                                                                                                                                              |       |
| Heat loss parameter (HLP), W/m <sup>2</sup> K $ (40)m = (39)m \div (4) $                                                                                                                                                                                                                                                            | 7(20) |
|                                                                                                                                                                                                                                                                                                                                     | (39)  |
| (40)m= 6.66 6.65 6.64 6.59 6.58 6.54 6.54 6.53 6.56 6.58 6.6 6.62                                                                                                                                                                                                                                                                   | _     |
| Average = $Sum(40)_{112}/12=$ 6.59<br>Number of days in month (Table 1a)                                                                                                                                                                                                                                                            | (40)  |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                     |       |
| (41)m= 31 28 31 30 31 30 31 30 31 30 31                                                                                                                                                                                                                                                                                             | (41)  |
|                                                                                                                                                                                                                                                                                                                                     |       |
| 4. Water heating energy requirement: kWh/year:                                                                                                                                                                                                                                                                                      |       |
| Assumed occupancy, N 2.25                                                                                                                                                                                                                                                                                                           | (40)  |
| Assumed occupancy, N $= 1.76 \times [1 - \exp(-0.000349 \times (TFA - 13.9)2)] + 0.0013 \times (TFA - 13.9)$ if TFA £ 13.9, N = 1                                                                                                                                                                                                   | (42)  |
| Annual average hot water usage in litres per day Vd,average = (25 x N) + 36                                                                                                                                                                                                                                                         | (43)  |
| Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of                                                                                                                                                                                                                        | . ,   |
| not more that 125 litres per person per day (all water use, hot and cold)                                                                                                                                                                                                                                                           |       |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                     |       |
| Hot water usage in litres per day for each month $Vd,m = factor$ from Table 1c x (43)                                                                                                                                                                                                                                               |       |
| (44)m= 96.3 92.8 89.3 85.79 82.29 78.79 78.79 82.29 85.79 89.3 92.8 96.3                                                                                                                                                                                                                                                            | ٦,,,, |
| Total = Sum $(44)_{112}$ = 1050.55<br>Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)                                                                                                                                                                      | (44)  |
| (45)m= 142.81 124.9 128.89 112.37 107.82 93.04 86.22 98.93 100.12 116.67 127.36 138.3                                                                                                                                                                                                                                               |       |
| Total = Sum(45) <sub>112</sub> = 1377.43                                                                                                                                                                                                                                                                                            | (45)  |
| If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)                                                                                                                                                                                                                                |       |
| (46)m= 21.42   18.74   19.33   16.86   16.17   13.96   12.93   14.84   15.02   17.5   19.1   20.75   Water storage loss:                                                                                                                                                                                                            | (46)  |
| Storage volume (litres) including any solar or WWHRS storage within same vessel  160                                                                                                                                                                                                                                                | (47)  |
| If community heating and no tank in dwelling, enter 110 litres in (47)                                                                                                                                                                                                                                                              | (41)  |
| Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)                                                                                                                                                                                                                                      |       |
| Water storage loss:                                                                                                                                                                                                                                                                                                                 |       |
| a) If manufacturer's declared loss factor is known (kWh/day):                                                                                                                                                                                                                                                                       | (48)  |
| Temperature factor from Table 2b 0                                                                                                                                                                                                                                                                                                  | (49)  |
| Energy lost from water storage, kWh/year (48) x (49) = 110                                                                                                                                                                                                                                                                          | (50)  |
| b) If manufacturer's declared cylinder loss factor is not known:                                                                                                                                                                                                                                                                    | (54)  |
| Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3                                                                                                                                                                                                                                    | (51)  |
| Volume factor from Table 2a 1.03                                                                                                                                                                                                                                                                                                    | (52)  |
| Temperature factor from Table 2b 0.6                                                                                                                                                                                                                                                                                                | (53)  |
| Energy lost from water storage, kWh/year $(47) \times (51) \times (52) \times (53) = 1.03$                                                                                                                                                                                                                                          | (54)  |
| Enter (50) or (54) in (55)                                                                                                                                                                                                                                                                                                          | (55)  |
| Water storage loss calculated for each month $((56)m = (55) \times (41)m)$                                                                                                                                                                                                                                                          |       |
| (56)m= 32.01 28.92 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01                                                                                                                                                                                                                                                | (56)  |
| If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷ (50), else (57)m = (56)m where (H11) is from Appendix H                                                                                                                                                                                              |       |
| (57)m= 32.01 28.92 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01 30.98 32.01                                                                                                                                                                                                                                                | (57)  |

| Primary circuit loss (annual) from Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                      | (58)         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|
| Primary circuit loss calculated for each month (59)m = (58) ÷ 365 x (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |              |
| (modified by factor from Table H5 if there is solar water heating and a cylinder thermo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ostat)                 |              |
| (59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 22.51 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.51 23.26            | (59)         |
| Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |              |
| (61)m= 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                    | (61)         |
| Total heat required for water heating calculated for each month (62)m = 0.85 × (45)m +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (46)m + (57)m + (      | 59)m + (61)m |
| (62)m= 198.09 174.83 184.17 165.86 163.1 146.53 141.49 154.21 153.61 171.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180.85 193.58          | (62)         |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion to water heating) |              |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,                     |              |
| (63)m= 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                    | (63)         |
| Output from water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |              |
| (64)m= 198.09 174.83 184.17 165.86 163.1 146.53 141.49 154.21 153.61 171.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180.85 193.58          |              |
| Output from water heate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | !                      | 2028.27 (64) |
| Heat gains from water heating, kWh/month 0.25 $^{\prime}$ [0.85 $\times$ (45)m + (61)m] + 0.8 $\times$ [(46)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                      |              |
| (65)m= 66.09 58.34 61.47 55.37 54.46 48.95 47.28 51.51 51.3 57.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60.36 64.6             | i<br>(65)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | , ,          |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rom community ne       | aung         |
| 5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |              |
| Metabolic gains (Table 5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |              |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nov Dec                | (00)         |
| (66)m= 112.31 112.31 112.31 112.31 112.31 112.31 112.31 112.31 112.31 112.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 112.31 112.31          | (66)         |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |              |
| (67)m= 17.59 15.62 12.71 9.62 7.19 6.07 6.56 8.53 11.44 14.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.96 18.08            | (67)         |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |              |
| (68)m= 197.3 199.34 194.19 183.2 169.34 156.31 147.6 145.55 150.71 161.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 175.56 188.59          | (68)         |
| Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |              |
| (69)m= 34.23 34.23 34.23 34.23 34.23 34.23 34.23 34.23 34.23 34.23 34.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.23 34.23            | (69)         |
| Pumps and fans gains (Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                      |              |
| (70)m= 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                    | (70)         |
| Losses e.g. evaporation (negative values) (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>               |              |
| (71)m= -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84 -89.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -89.84 -89.84          | (71)         |
| Water heating gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |              |
| (72)m= 88.84 86.81 82.61 76.91 73.2 67.98 63.54 69.23 71.25 77.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83.83 86.82            | (72)         |
| Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (70)m$ |                        |              |
| (73)m= 360.41 358.47 346.2 326.42 306.42 287.05 274.4 280 290.1 310.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 333.04 350.18          | (73)         |
| 6. Solar gains:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333.04 330.10          | (. 0)        |
| Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ole orientation.       |              |
| Orientation: Access Factor Area Flux g_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FF                     | Gains        |
| <del>0-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | able 6c                | (W)          |
| North 0.9x 0.77 x 8.7 x 10.63 x 0.85 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7 =                  | 38.15 (74)   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |              |
| North 0.9x 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7                    | 72.9 (74)    |

|              | _      |        |       |     |                                        | _            |       |        |             |              |             |        |         |    |        | _    |
|--------------|--------|--------|-------|-----|----------------------------------------|--------------|-------|--------|-------------|--------------|-------------|--------|---------|----|--------|------|
| North        | 0.9x   | 0.77   |       | X   | 8.7                                    | X            | 3     | 4.53   | X           | 0.85         | X           | 0.7    |         | =  | 123.87 | (74) |
| North        | 0.9x   | 0.77   |       | X   | 8.7                                    | x            | 5     | 5.46   | X           | 0.85         | X           | 0.7    |         | =  | 198.97 | (74) |
| North        | 0.9x   | 0.77   |       | X   | 8.7                                    | X            | 7     | 4.72   | X           | 0.85         | X           | 0.7    |         | =  | 268.03 | (74) |
| North        | 0.9x   | 0.77   |       | X   | 8.7                                    | x            | 7     | 9.99   | X           | 0.85         | X           | 0.7    |         | =  | 286.93 | (74) |
| North        | 0.9x   | 0.77   |       | X   | 8.7                                    | x            | 7     | 4.68   | X           | 0.85         | X           | 0.7    |         | =  | 267.89 | (74) |
| North        | 0.9x   | 0.77   |       | X   | 8.7                                    | X            | 5     | 9.25   | X           | 0.85         | X           | 0.7    |         | =  | 212.54 | (74) |
| North        | 0.9x   | 0.77   |       | X   | 8.7                                    | x            | 4     | 1.52   | X           | 0.85         | X           | 0.7    |         | =  | 148.93 | (74) |
| North        | 0.9x   | 0.77   |       | X   | 8.7                                    | x            | 2     | 4.19   | X           | 0.85         | X           | 0.7    |         | =  | 86.78  | (74) |
| North        | 0.9x   | 0.77   |       | X   | 8.7                                    | x            | 1     | 3.12   | x           | 0.85         | X           | 0.7    |         | =  | 47.06  | (74) |
| North        | 0.9x   | 0.77   |       | X   | 8.7                                    | X            | 8     | 3.86   | X           | 0.85         | X           | 0.7    |         | =  | 31.8   | (74) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | X            | 4     | 6.75   | X           | 0.85         | X           | 0.7    |         | =  | 42.41  | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | x            | 7     | 6.57   | X           | 0.85         | X           | 0.7    |         | =  | 69.46  | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | x            | 9     | 7.53   | X           | 0.85         | X           | 0.7    |         | =  | 88.48  | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | X            | 11    | 0.23   | X           | 0.85         | X           | 0.7    |         | =  | 100    | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | x            | 11    | 4.87   | X           | 0.85         | X           | 0.7    |         | =  | 104.2  | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | x            | 11    | 0.55   | X           | 0.85         | X           | 0.7    |         | =  | 100.28 | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | X            | 10    | 8.01   | X           | 0.85         | X           | 0.7    |         | =  | 97.98  | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | X            | 10    | )4.89  | Х           | 0.85         | X           | 0.7    |         | =  | 95.15  | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | х            | 10    | 1.89   | x           | 0.85         | X           | 0.7    |         | =  | 92.42  | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | х            | 8     | 2.59   | x           | 0.85         | X           | 0.7    |         | =  | 74.92  | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | x            | 5     | 5.42   | <b>x</b>    | 0.85         | X           | 0.7    |         | =  | 50.27  | (78) |
| South        | 0.9x   | 0.77   |       | X   | 2.2                                    | x            | 4     | 0.4    | Х           | 0.85         | X           | 0.7    |         | =  | 36.65  | (78) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | x            | 1     | 9.64   | X           | 0.85         | X           | 0.7    |         | =  | 52.64  | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | x            | 3     | 8.42   | X           | 0.85         | X           | 0.7    |         | =  | 102.97 | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | x            | 6     | 3.27   | X           | 0.85         | X           | 0.7    |         | =  | 169.58 | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | x            | 9     | 2.28   | X           | 0.85         | X           | 0.7    |         | =  | 247.33 | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | X            | 11    | 3.09   | X           | 0.85         | X           | 0.7    |         | =  | 303.11 | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | X            | 11    | 5.77   | X           | 0.85         | X           | 0.7    |         | =  | 310.29 | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | x            | 11    | 0.22   | X           | 0.85         | X           | 0.7    |         | =  | 295.4  | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | X            | 9     | 4.68   | x           | 0.85         | X           | 0.7    |         | =  | 253.75 | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | x            | 7     | 3.59   | X           | 0.85         | X           | 0.7    |         | =  | 197.23 | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | x            | 4     | 5.59   | X           | 0.85         | X           | 0.7    |         | =  | 122.19 | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | x            | 2     | 4.49   | x           | 0.85         | X           | 0.7    |         | =  | 65.64  | (80) |
| West         | 0.9x   | 0.77   |       | X   | 6.5                                    | x            | 1     | 6.15   | X           | 0.85         | X           | 0.7    |         | =  | 43.29  | (80) |
|              |        |        |       |     |                                        |              |       |        |             |              |             |        |         |    |        |      |
| T            |        |        |       | _   | for each mon                           | _            |       |        | <del></del> | = Sum(74)m . | <del></del> | -      |         |    | ı      |      |
| (83)m=       | 133.2  | 245.33 | 381.9 |     | 546.29 675.3                           |              | 697.5 | 661.27 | 561         | 44 438.59    | 283.        | 162.96 | 5 111.7 | 73 |        | (83) |
| Ī            |        |        |       | _   | $\frac{(84)m = (73)r}{973.74 + 984.7}$ | <del>`</del> |       |        | 044         | 44 700.00    | - F00       | DE 100 | 404.6   | 20 | 1      | (84) |
| (84)m=       | 493.61 | 603.8  | 728.  | _   | 872.71 981.7                           |              | 84.55 | 935.67 | 841.        | 728.68       | 593.        | 95 496 | 461.9   | 92 |        | (04) |
|              |        |        |       | •   | heating seas                           |              |       |        |             |              |             |        |         |    |        | 7.   |
| •            |        | _      |       | • . | eriods in the li                       | _            |       |        | ole 9,      | Th1 (°C)     |             |        |         |    | 21     | (85) |
| Utilisa<br>г |        | Ť      |       | -   | ving area, h1                          | Ť            |       |        |             |              |             | .      | Τ_      |    | Ī      |      |
| L            | Jan    | Feb    | Ma    | ar  | Apr Ma                                 | у [          | Jun   | Jul    | L A         | ug Sep       | Oc          | t Nov  | / De    | C  |        |      |
|              |        |        |       |     |                                        |              |       |        |             |              |             |        |         |    |        |      |

|                                                                                                                                                                                              | _                    |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|
| (86)m= 1 1 0.99 0.99 0.97 0.94 0.9 0.92 0.97 0.99 1 1                                                                                                                                        |                      | (86)       |
| Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)                                                                                                                |                      |            |
| (87)m= 17.29 17.49 17.93 18.59 19.3 19.97 20.4 20.32 19.74 18.85 17.97 17.26                                                                                                                 | ]                    | (87)       |
| Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)                                                                                                                |                      |            |
| (88)m= 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                |                      | (88)       |
| Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)                                                                                                                       | _                    |            |
| (89)m= 1 1 0.99 0.98 0.94 0.83 0.56 0.64 0.92 0.98 1 1                                                                                                                                       | 7                    | (89)       |
| Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                       | _                    |            |
| (90)m= 13.61 13.9 14.55 15.49 16.52 17.45 17.91 17.86 17.16 15.88 14.6 13.57                                                                                                                 | 7                    | (90)       |
| fLA = Living area ÷ (4) =                                                                                                                                                                    | 0.81                 | (91)       |
| Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$                                                                                                   |                      | 1          |
| (92)m= 16.58 16.8 17.29 17.99 18.76 19.49 19.92 19.85 19.25 18.28 17.33 16.55                                                                                                                | 7                    | (92)       |
| Apply adjustment to the mean internal temperature from Table 4e, where appropriate                                                                                                           | _                    |            |
| (93)m= 16.58 16.8 17.29 17.99 18.76 19.49 19.92 19.85 19.25 18.28 17.33 16.55                                                                                                                | ]                    | (93)       |
| 8. Space heating requirement                                                                                                                                                                 |                      |            |
| Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-ca                                                                                        | culate               |            |
| the utilisation factor for gains using Table 9a  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                             |                      |            |
| Utilisation factor for gains, hm:                                                                                                                                                            | _                    |            |
| (94)m= 1 0.99 0.99 0.98 0.95 0.91 0.84 0.87 0.95 0.99 0.99 1                                                                                                                                 | 7                    | (94)       |
| Useful gains, hmGm , W = (94)m x (84)m                                                                                                                                                       | _                    |            |
| (95)m= 491.8 600.15 720.09 852.85 935.49 893.15 785.81 733.63 693.05 585.27 493.29 460.48                                                                                                    |                      | (95)       |
| Monthly average external temperature from Table 8                                                                                                                                            | _                    |            |
| (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2                                                                                                                                 | _                    | (96)       |
| Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m-(96)m]                                                                                                                 | л                    | (07)       |
| (97)m= 5727.59 5541.17 5013.65 4196.15 3254.99 2238.36 1520.54 1576.29 2361.74 3539.62 4724.93 5725.34 Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m | <u>'</u>             | (97)       |
| (98)m= 3895.43 3320.36 3194.41 2407.18 1725.71 0 0 0 0 2198.04 3046.78 3917.06                                                                                                               | 3]                   |            |
| Total per year (kWh/year) = Sum(98) <sub>15912</sub> =                                                                                                                                       | +                    | (98)       |
| Space heating requirement in kWh/m²/year                                                                                                                                                     |                      | (99)       |
| <u> </u>                                                                                                                                                                                     | 330.04               | (00)       |
| 9b. Energy requirements – Community heating scheme  This part is used for space heating, space cooling or water heating provided by a community scheme.                                      |                      |            |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none                                                                                                           | 0                    | (301)      |
| Fraction of space heat from community system 1 – (301) =                                                                                                                                     | 1                    | (302)      |
| The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources;                                                                   |                      | ,          |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.                                                                                                 |                      | _          |
| Fraction of heat from Community boilers                                                                                                                                                      | 1                    | (303a)     |
| Fraction of total space heat from Community boilers (302) x (303a) =                                                                                                                         | 1                    | (304a)     |
| Factor for control and charging method (Table 4c(3)) for community heating system                                                                                                            | 1                    | (305)      |
| Distribution loss factor (Table 12c) for community heating system                                                                                                                            | 1.05                 | l<br>(306) |
|                                                                                                                                                                                              |                      | ,          |
| Space heating Annual space heating requirement                                                                                                                                               | kWh/year<br>23704.96 |            |
| , 9 - 1                                                                                                                                                                                      | _3.000               | İ          |

| Space heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                   | (98) x (304a) x (                                                                                          | (305) x (306) =            | 24890.21                                               | (307a)                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| Efficiency of secondary/supplementary h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eating system in % (fron                                                          |                                                                                                            |                            | 0                                                      | 」`<br>☐(308                                                 |
| Space heating requirement from second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                            | •                          | 0                                                      | 」`<br>□(309)                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,                                                                                | , , , ,                                                                                                    | ,                          |                                                        | 」` ′                                                        |
| Water heating Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                                                                                            |                            | 2028.27                                                | 7                                                           |
| If DHW from community scheme: Water heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   | (64) x (303a) x (                                                                                          | (305) x (306) =            | 2129.68                                                | (310a)                                                      |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   | 0.01 × [(307a)(307e                                                                                        | e) + (310a)(310e)] =       | 270.2                                                  | (313)                                                       |
| Cooling System Energy Efficiency Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                                                                                            |                            | 0                                                      | (314)                                                       |
| Space cooling (if there is a fixed cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | system, if not enter 0)                                                           | = (107) ÷ (314)                                                                                            | =                          | 0                                                      | (315)                                                       |
| Electricity for pumps and fans within dwe mechanical ventilation - balanced, extract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>.</b> ,                                                                        | outside                                                                                                    |                            | 0                                                      | (330a)                                                      |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                                                                                            |                            | 0                                                      | (330b)                                                      |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                                                                                            |                            | 0                                                      | (330g)                                                      |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   | =(330a) + (330b                                                                                            | o) + (330g) =              | 0                                                      | (331)                                                       |
| Energy for lighting (calculated in Append                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ix L)                                                                             |                                                                                                            |                            | 310.63                                                 | (332)                                                       |
| 12b. CO2 Emissions - Community heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng scheme                                                                         |                                                                                                            |                            |                                                        |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   | Energy<br>kWh/year                                                                                         | Emission factor kg CO2/kWh | Emiss <mark>ions</mark><br>kg CO <mark>2/yea</mark> r  |                                                             |
| CO2 from other sources of space and wa<br>Efficiency of heat source 1 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   | two fuels repeat (363) to (                                                                                | (366) for the second fue   | el 90                                                  | (367a)                                                      |
| CO2 associated with heat source 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [(307b)+(3                                                                        |                                                                                                            |                            |                                                        |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   | 310b)] x 100 ÷ (367b) x                                                                                    | 0 =                        | 6484.77                                                | (367)                                                       |
| Electrical energy for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [(                                                                                | 310b)] x 100 ÷ (367b) x<br>(313) x                                                                         |                            | = 6484.77<br>= 140.23                                  | (367)                                                       |
| Total CO2 associated with community sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                                                                                            | 0.52                       | 0404.77                                                |                                                             |
| <b>0.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vstems (3                                                                         | (313) x                                                                                                    | 0.52                       | 140.23                                                 | (372)                                                       |
| Total CO2 associated with community sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vstems (3<br>ondary) (3                                                           | (313) x<br>(363)(366) + (368)(372<br>(309) x                                                               | 0.52                       | 140.23                                                 | (372)                                                       |
| Total CO2 associated with community sy CO2 associated with space heating (sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ondary) (3                                                                        | (313) x<br>(363)(366) + (368)(372<br>(309) x                                                               | 0.52                       | 140.23                                                 | (372)<br>(373)<br>(374)                                     |
| Total CO2 associated with community sy CO2 associated with space heating (sec CO2 associated with water from immersi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ondary) (3 on heater or instantaneo ater heating (3                               | (313) x<br>(363)(366) + (368)(372)<br>(309) x<br>(309) bus heater (312) x<br>(373) + (374) + (375) =       | 0.52                       | = 140.23<br>= 6625.01<br>= 0                           | (372)<br>(373)<br>(374)<br>(375)                            |
| Total CO2 associated with community sy CO2 associated with space heating (sec CO2 associated with water from immersi Total CO2 associated with space and water from immersion control  | ondary) (3 on heater or instantaneo ater heating (3 s and fans within dwelling    | (313) x<br>(363)(366) + (368)(372)<br>(309) x<br>(309) bus heater (312) x<br>(373) + (374) + (375) =       | 0.52                       | = 140.23<br>= 6625.01<br>= 0<br>= 0                    | (372)<br>(373)<br>(374)<br>(375)<br>(376)                   |
| Total CO2 associated with community sy CO2 associated with space heating (second CO2 associated with water from immersing Total CO2 associated with space and was CO2 associated with electricity for pumps CO2 associated with electricity for lighting CO2 associated with electricity for lighti | ondary) (3 on heater or instantaneo ater heating (3 s and fans within dwelling    | (313) x<br>(363)(366) + (368)(372)<br>(309) x<br>(309) x<br>(312) x<br>(373) + (374) + (375) =<br>(331)) x | 0.52                       | = 140.23<br>= 6625.01<br>= 0<br>= 0<br>= 0<br>= 0      | (372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)          |
| Total CO2 associated with community sy CO2 associated with space heating (second CO2 associated with water from immersion Total CO2 associated with space and was CO2 associated with electricity for pumps CO2 associated with electricity for lighting Total CO2, kg/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ondary) (3 on heater or instantaneo ater heating (3 s and fans within dwelling (3 | (313) x<br>(363)(366) + (368)(372)<br>(309) x<br>(309) x<br>(312) x<br>(373) + (374) + (375) =<br>(331)) x | 0.52                       | 6625.01<br>0<br>6625.01<br>0<br>6625.01<br>0<br>161.22 | (372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)<br>(379) |

|                                                             |                      |                     | User D       | etails: _                  |                     |              |            |           |                       |              |
|-------------------------------------------------------------|----------------------|---------------------|--------------|----------------------------|---------------------|--------------|------------|-----------|-----------------------|--------------|
| Assessor Name:<br>Software Name:                            | Stroma FSAP          |                     |              | Strom<br>Softwa<br>Address | are Ve              |              |            | Versio    | n: 1.0.3.4            |              |
| Address :                                                   | , london             | r                   | roperty.     | Address                    | Onit 9              |              |            |           |                       |              |
| 1. Overall dwelling dime                                    | nsions:              |                     |              |                            |                     |              |            |           |                       |              |
| Decement                                                    |                      |                     |              | a(m²)                      |                     |              | ight(m)    | ٦,, ١     | Volume(m <sup>3</sup> | <u>^</u>     |
| Basement                                                    |                      |                     |              |                            | (1a) x              | 2            | .37        | (2a) =    | 293.88                | (3a)         |
| Total floor area TFA = (1a                                  | a)+(1b)+(1c)+(1d)-   | +(1e)+(1r           | า) [         | 124                        | (4)                 |              |            |           |                       |              |
| Dwelling volume                                             |                      |                     |              |                            | (3a)+(3b            | )+(3c)+(3c   | d)+(3e)+   | .(3n) =   | 293.88                | (5)          |
| 2. Ventilation rate:                                        | main                 | oo oo n day         |              | other                      |                     | 40401        |            |           | m3 nor hou            |              |
|                                                             | main<br>heating      | secondar<br>heating | ·<br>- –     | otner                      | , –                 | total        |            |           | m³ per hou            | _            |
| Number of chimneys                                          | 0                    | 0                   | ╛╵┖          | 0                          | <u> </u>            | 0            | X 4        | 40 =      | 0                     | (6a)         |
| Number of open flues                                        | 0                    | 0                   | +            | 0                          | =                   | 0            | x :        | 20 =      | 0                     | (6b)         |
| Number of intermittent far                                  | ns                   |                     |              |                            |                     | 2            | X '        | 10 =      | 20                    | (7a)         |
| Number of passive vents                                     |                      |                     |              |                            |                     | 0            | <b>X</b> ' | 10 =      | 0                     | (7b)         |
| Number of flueless gas fin                                  | res                  |                     |              |                            | Ī                   | 0            | X 4        | 40 =      | 0                     | (7c)         |
|                                                             |                      |                     |              |                            | _                   |              |            | Air ch    | anges per ho          | our          |
| Infiltration due to chimney                                 |                      |                     |              |                            |                     | 20           |            | ÷ (5) =   | 0.07                  | (8)          |
| If a pressurisation test has be<br>Number of storeys in the |                      | tended, procee      | d to (17), ( | otherwise (                | continue fr         | rom (9) to ( | (16)       |           | 0                     | <b>—</b> (0) |
| Additional infiltration                                     | ie dweiling (115)    |                     |              |                            |                     |              | [(9)       | -1]x0.1 = | 0                     | (9)<br>(10)  |
| Structural infiltration: 0.                                 | .25 for steel or tim | ber frame or        | 0.35 fo      | r masoni                   | y constr            | uction       | ,          |           | 0                     | (11)         |
| if both types of wall are pr                                |                      | orresponding to     | the great    | ter wall are               | a (after            |              |            | '         |                       |              |
| deducting areas of opening<br>If suspended wooden f         | • ,. ,               | sealed) or 0        | .1 (seale    | ed). else                  | enter 0             |              |            |           | 0                     | (12)         |
| If no draught lobby, ent                                    | •                    | •                   | (000         | , c.cc                     |                     |              |            |           | 0                     | (13)         |
| Percentage of windows                                       | s and doors draugl   | nt stripped         |              |                            |                     |              |            |           | 0                     | (14)         |
| Window infiltration                                         |                      |                     |              | 0.25 - [0.2                | x (14) ÷ 1          | 00] =        |            |           | 0                     | (15)         |
| Infiltration rate                                           |                      |                     |              | (8) + (10)                 |                     |              |            |           | 0                     | (16)         |
| Air permeability value,                                     |                      |                     | •            | •                          | •                   | etre of e    | envelope   | area      | 10                    | (17)         |
| If based on air permeabili  Air permeability value applies  | •                    |                     |              |                            |                     | is heina u   | sed        |           | 0.57                  | (18)         |
| Number of sides sheltere                                    |                      | n nao boon ao       | io oi a aos  | groo an po                 | mousinty            | io boiling a | 000        |           | 1                     | (19)         |
| Shelter factor                                              |                      |                     |              | (20) = 1 -                 | [0.0 <b>75</b> x (1 | 19)] =       |            |           | 0.92                  | (20)         |
| Infiltration rate incorporat                                | •                    |                     |              | (21) = (18                 | ) x (20) =          |              |            |           | 0.53                  | (21)         |
| Infiltration rate modified for                              |                      |                     | 1            |                            |                     |              |            |           | 1                     |              |
| Jan Feb                                                     | Mar   Apr   M        | lay Jun             | Jul          | Aug                        | Sep                 | Oct          | Nov        | Dec       |                       |              |
| Monthly average wind sp                                     |                      |                     |              | T                          |                     | T            | T          | T         | 1                     |              |
| (22)m= 5.1 5                                                | 4.9 4.4 4.           | 3 3.8               | 3.8          | 3.7                        | 4                   | 4.3          | 4.5        | 4.7       |                       |              |
| Wind Factor (22a)m = (22                                    | 2)m ÷ 4              |                     |              |                            |                     |              |            |           |                       |              |
| (22a)m= 1.27 1.25                                           | 1.23 1.1 1.0         | 0.95                | 0.95         | 0.92                       | 1                   | 1.08         | 1.12       | 1.18      |                       |              |

| 0.67                            | 0.66         | 0.64         | 0.58          | 0.56           | d wind s       | 0.5          | 0.49           | 0.53         | 0.56          | 0.59         | 0.62               | ]        |               |
|---------------------------------|--------------|--------------|---------------|----------------|----------------|--------------|----------------|--------------|---------------|--------------|--------------------|----------|---------------|
| alculate effec                  |              | •            | rate for t    | he appli       | cable ca       | se           | <u> </u>       | <u> </u>     | <u> </u>      | !            | <u>l</u>           | J<br>    |               |
| If mechanica                    | al ventila   | ition:       |               |                |                |              |                |              |               |              |                    | 0        | (2:           |
| If exhaust air he               | eat pump i   | using Appe   | endix N, (2   | 3b) = (23a     | a) × Fmv (e    | equation (N  | N5)) , othe    | rwise (23b   | ) = (23a)     |              |                    | 0        | (2:           |
| If balanced with                | heat reco    | overy: effic | iency in %    | allowing f     | or in-use f    | actor (from  | n Table 4h     | ) =          |               |              |                    | 0        | (2:           |
| a) If balance                   | d mecha      | anical ve    | entilation    | with he        | at recove      | ery (MVI     | HR) (24a       | a)m = (22)   | 2b)m + (      | 23b) × [     | 1 – (23c)          | ÷ 100]   |               |
| 4a)m= 0                         | 0            | 0            | 0             | 0              | 0              | 0            | 0              | 0            | 0             | 0            | 0                  |          | (24           |
| b) If balance                   | d mecha      | anical ve    | ntilation     | without        | heat red       | overy (N     | ЛV) (24b       | p)m = (22)   | 2b)m + (      | 23b)         |                    | 1        |               |
| 4b)m= 0                         | 0            | 0            | 0             | 0              | 0              | 0            | 0              | 0            | 0             | 0            | 0                  |          | (24           |
| c) If whole h                   |              |              |               | •              | •              |              |                |              | <b>5</b> (00) | ,            |                    |          |               |
| if (22b)n                       |              | <u> </u>     | · ` `         | <u> </u>       | ŕ              | · ·          | ŕ              | ŕ –          | · ` `         | ŕ            | Ι ,                | 1        | (2)           |
| 4c)m= 0                         | 0            | 0            |               | 0              | 0              | 0            | 0              | 0            | 0             | 0            | 0                  | J        | (24           |
| d) If natural if (22b)n         |              |              |               |                |                |              |                |              | 0.51          |              |                    |          |               |
| 4d)m= 0.72                      | 0.72         | 0.71         | 0.67          | 0.66           | 0.62           | 0.62         | 0.62           | 0.64         | 0.66          | 0.67         | 0.69               | 1        | (2            |
| Effective air                   | change       | rate - er    | ter (24a      | L<br>) or (24b | o) or (24)     | c) or (24    | d) in box      | (25)         | ļ             | ļ.           | ļ                  | J        |               |
| 5)m= 0.72                       | 0.72         | 0.71         | 0.67          | 0.66           | 0.62           | 0.62         | 0.62           | 0.64         | 0.66          | 0.67         | 0.69               |          | (2            |
|                                 |              |              |               |                |                |              |                |              |               |              |                    |          |               |
| 3. Heat losse                   |              |              |               |                |                |              |                |              |               |              |                    | _        |               |
| LEMENT                          | Gros<br>area |              | Openin        | -              | Net Ar<br>A ,r |              | U-valı<br>W/m2 |              | A X U<br>(W/I | K)           | k-value<br>kJ/m²-l |          | A X k<br>kJ/K |
| oors                            |              | ()           | , i           |                | 1.6            | ×            | 1.4            | = 1          | 2.24          |              |                    |          | (2            |
| in <mark>dows</mark> Type       | 1            |              |               |                | 5.49           | _            | /[1/( 4.8 )+   | \            | 22.11         | Ħ            |                    |          | (2            |
| indows Type                     |              |              |               |                | 4.7            |              | /[1/( 4.8 )+   |              | 18.93         | Ħ            |                    |          | (2            |
| alls Type1                      |              |              | 4.0           | \ <b>\</b>     |                |              |                |              |               | ╡ ,          |                    |          | (2            |
| alls Type1                      | 11.8         |              | 1.6           |                | 10.25          | =            | 2.1            | =            | 21.52         |              |                    |          |               |
|                                 | 122          |              | 10.19         | =              | 111.8          | =            | 1.27           | =            | 142.22        |              |                    | <b>-</b> | (2            |
| oof                             | 68.          |              | 0             |                | 68.1           | X            | 0.28           | =            | 19.07         |              |                    |          | (3            |
| otal area of e                  | iements      | , m²         |               |                | 201.9          | 5            |                |              |               |              |                    |          | (3            |
| arty wall                       |              |              |               |                | 4.8            | X            | 0              | =            | 0             |              |                    |          | (3            |
| or windows and include the area |              |              |               |                |                | ated using   | ı formula 1    | /[(1/U-valu  | ie)+0.04] a   | as given in  | paragraph          | 1 3.2    |               |
| abric heat los                  |              |              |               |                |                |              | (26)(30)       | ) + (32) =   |               |              |                    | 226.0    | 8 (3          |
| eat capacity                    |              | •            | ,             |                |                |              |                | ((28)        | (30) + (32    | 2) + (32a).  | (32e) =            | 0        | (3            |
| nermal mass                     |              |              | P = Cm -      | - TFA) ir      | n kJ/m²K       |              |                | Indica       | tive Value    | : High       | , ,                | 450      | (3            |
| or design assess                | •            | •            |               | ,              |                |              | ecisely the    | e indicative | values of     | TMP in T     | able 1f            |          | (-            |
| n be used inste                 | ad of a de   | tailed calc  | ulation.      |                |                |              |                |              |               |              |                    |          |               |
| nermal bridge                   | es : S (L    | x Y) cal     | culated (     | using Ap       | pendix l       | <            |                |              |               |              |                    | 30.4     | (3            |
| details of therma               |              | are not kn   | own (36) =    | = 0.15 x (3    | 11)            |              |                | (22)         | (20)          |              |                    |          |               |
| otal fabric he                  |              | _     _ 4    | l a .a 41a 1. |                |                |              |                |              | (36) =        | (DE) (E)     | <b>.</b>           | 256.4    | .8 (3         |
| entilation hea                  |              | i            |               |                | · .            |              |                |              | = 0.33 × (    |              | 1                  | 1        |               |
|                                 | Feb          | Mar          | Apr           | May            | Jun            | Jul<br>60.57 | Aug<br>59.95   | Sep<br>61.88 | Oct 63.96     | Nov<br>65.43 | Dec<br>66.97       |          | /2            |
| Jan                             | 60.44        | 60.50        | 64.00         | 62.00          |                |              |                | . nixx       |               |              |                    |          |               |
| 3)m= 70.25                      | 69.41        | 68.58        | 64.69         | 63.96          | 60.57          | 00.37        | 59.95          | 01.00        | 03.90         | 00.43        | 00.97              | J        | (3            |
|                                 |              | <u> </u>     | 64.69         | 63.96          | 60.57          | 00.57        | 39.93          | <u> </u>     | = (37) + (37) |              | 00.97              | ]        | (3            |

| Heat loss para                                           | ımeter (I             | HLP), W      | /m²K        |                |              |             |             | (40)m                 | = (39)m ÷   | · (4)                  |          |         |      |
|----------------------------------------------------------|-----------------------|--------------|-------------|----------------|--------------|-------------|-------------|-----------------------|-------------|------------------------|----------|---------|------|
| (40)m= 2.63                                              | 2.63                  | 2.62         | 2.59        | 2.58           | 2.56         | 2.56        | 2.55        | 2.57                  | 2.58        | 2.6                    | 2.61     |         |      |
|                                                          | l .                   |              |             |                |              | ı           | ı           | ,                     | Average =   | Sum(40) <sub>1</sub> . | 12 /12=  | 2.59    | (40) |
| Number of day                                            | /s in mo              | nth (Tab     | le 1a)      |                |              |             |             | 1                     |             | 1                      |          |         |      |
| Jan                                                      | Feb                   | Mar          | Apr         | May            | Jun          | Jul         | Aug         | Sep                   | Oct         | Nov                    | Dec      |         |      |
| (41)m= 31                                                | 28                    | 31           | 30          | 31             | 30           | 31          | 31          | 30                    | 31          | 30                     | 31       |         | (41) |
|                                                          |                       |              |             |                |              |             |             |                       |             |                        |          |         |      |
| 4. Water heat                                            | ting ene              | rgy requi    | irement:    |                |              |             |             |                       |             |                        | kWh/ye   | ear:    |      |
| Assumed occu<br>if TFA > 13.9<br>if TFA £ 13.9           | 9, N = 1              |              | [1 - exp    | (-0.0003       | 349 x (TF    | FA -13.9    | )2)] + 0.0  | 0013 x ( <sup>-</sup> | TFA -13.    |                        | 88       |         | (42) |
| Annual averag<br>Reduce the annua<br>not more that 125   | al average            | hot water    | usage by    | 5% if the $c$  | lwelling is  | designed t  |             |                       | se target o |                        | 2.54     |         | (43) |
| Jan                                                      | Feb                   | Mar          | Apr         | May            | Jun          | Jul         | Aug         | Sep                   | Oct         | Nov                    | Dec      |         |      |
| Hot water usage i                                        | n litres pe           | r day for ea | ach month   | Vd,m = fa      | ctor from    | Table 1c x  | (43)        | •                     | •           | •                      |          |         |      |
| (44)m= 112.8                                             | 108.69                | 104.59       | 100.49      | 96.39          | 92.29        | 92.29       | 96.39       | 100.49                | 104.59      | 108.69                 | 112.8    |         |      |
|                                                          |                       |              |             |                |              |             |             |                       |             | m(44) <sub>112</sub> = |          | 1230.5  | (44) |
| Energy content of                                        | hot water             | used - cal   | culated mo  | onthly = $4$ . | 190 x Vd,r   | n x nm x D  | Tm / 3600   | ) kWh/mor             | nth (see Ta | ables 1b, 1            | c, 1d)   |         |      |
| (45)m= 167.27                                            | 146.3                 | 150.97       | 131.62      | 126.29         | 108.98       | 100.98      | 115.88      | 117.26                | 136.66      | 149.18                 | 161.99   |         | _    |
| If instantaneous w                                       | vator hoati           | ng at naint  | of use (no  | hot water      | r etorago)   | ontor () in | haves (46   |                       | Total = Su  | m(45) <sub>112</sub> = |          | 1613.38 | (45) |
|                                                          |                       |              |             | -              |              | _           |             |                       |             |                        |          |         | (40) |
| (46)m= 25.09<br>Water storage                            | 21.94<br>loss:        | 22.64        | 19.74       | 18.94          | 16.35        | 15.15       | 17.38       | 17.59                 | 20.5        | 22.38                  | 24.3     |         | (46) |
| Storage volum                                            |                       | includir     | ng any so   | olar or W      | /WHRS        | storage     | within sa   | ame ves               | sel         |                        | 160      |         | (47) |
| If community h                                           | ,                     |              |             |                |              |             |             |                       |             |                        |          |         | , ,  |
| Otherwise if no                                          | •                     |              |             | •              |              |             | ` '         | ers) ente             | er '0' in ( | 47)                    |          |         |      |
| Water storage                                            |                       |              |             |                |              |             |             |                       |             |                        |          |         |      |
| <ul><li>a) If manufact</li></ul>                         | urer's d              | eclared I    | oss facto   | or is kno      | wn (kWł      | n/day):     |             |                       |             |                        | 0        |         | (48) |
| Temperature f                                            | actor fro             | m Table      | 2b          |                |              |             |             |                       |             |                        | 0        |         | (49) |
| Energy lost fro                                          |                       | •            |             |                |              |             | (48) x (49) | ) =                   |             | 1                      | 10       |         | (50) |
| <ul><li>b) If manufact</li><li>Hot water stora</li></ul> |                       |              | -           |                |              |             |             |                       |             |                        | 00       |         | (51) |
| If community h                                           | -                     |              |             | G Z (KVV       | ii/iiti G/GC | , y )       |             |                       |             | 0.                     | 02       |         | (31) |
| Volume factor                                            | •                     |              |             |                |              |             |             |                       |             | 1.                     | 03       |         | (52) |
| Temperature f                                            | actor fro             | m Table      | 2b          |                |              |             |             |                       |             | 0                      | .6       |         | (53) |
| Energy lost fro                                          | m watei               | r storage    | , kWh/ye    | ear            |              |             | (47) x (51) | ) x (52) x (          | 53) =       | 1.                     | 03       |         | (54) |
| Enter (50) or (                                          | (54) in ( <del></del> | 55)          |             |                |              |             |             |                       |             | 1.                     | 03       |         | (55) |
| Water storage                                            | loss cal              | culated t    | for each    | month          |              |             | ((56)m = (  | (55) × (41)           | m           |                        |          |         |      |
| (56)m= 32.01                                             | 28.92                 | 32.01        | 30.98       | 32.01          | 30.98        | 32.01       | 32.01       | 30.98                 | 32.01       | 30.98                  | 32.01    |         | (56) |
| If cylinder contains                                     | s dedicate            | d solar sto  | rage, (57)ı | m = (56)m      | x [(50) – (  | H11)] ÷ (5  | 0), else (5 | 7)m = (56)            | m where (   | H11) is fro            | m Append | ix H    |      |
| (57)m= 32.01                                             | 28.92                 | 32.01        | 30.98       | 32.01          | 30.98        | 32.01       | 32.01       | 30.98                 | 32.01       | 30.98                  | 32.01    |         | (57) |
| Primary circuit                                          | loss (ar              | nual) fro    | m Table     |                |              |             |             |                       |             |                        | 0        |         | (58) |
| Primary circuit                                          | `                     | ,            |             |                | 59)m = (     | (58) ÷ 36   | 65 × (41)   | m                     |             |                        |          |         |      |
| (modified by                                             |                       |              |             | ,              | •            | ` '         | , ,         |                       | r thermo    | stat)                  |          |         |      |
| (59)m= 23.26                                             | 21.01                 | 23.26        | 22.51       | 23.26          | 22.51        | 23.26       | 23.26       | 22.51                 | 23.26       | 22.51                  | 23.26    |         | (59) |

| Combi loss (             | aclaulatad                | for ooob   | month (     | (61)m -   | (60) · 2  | GE v. (41              | ١m          |                |             |              |           |                   |      |
|--------------------------|---------------------------|------------|-------------|-----------|-----------|------------------------|-------------|----------------|-------------|--------------|-----------|-------------------|------|
| Combi loss $(61)$ m= $0$ | 0 0                       | 0          | 0           | 0         | 00) + 3   | 05 x (41)              | 0           | 0              | 0           | 0            | 0         |                   | (61) |
|                          | _!                        |            |             |           |           |                        | <u> </u>    | <u> </u>       | <u> </u>    | ļ            | <u> </u>  | (59)m + (61)m     | ` '  |
| (62)m= 222.5             | <del></del>               | 206.24     | 185.11      | 181.57    | 162.47    | 156.26                 | 171.16      | 170.76         | 191.94      | 202.67       | 217.27    | (53)111 + (61)111 | (62) |
| Solar DHW inpo           |                           | <u> </u>   | <u> </u>    |           |           |                        |             |                |             |              |           | I                 | ` '  |
| (add addition            |                           |            |             |           |           |                        |             |                |             | o to mate    | 51 1.0ag/ |                   |      |
| (63)m= 0                 | 0                         | 0          | 0           | 0         | 0         | 0                      | 0           | 0              | 0           | 0            | 0         |                   | (63) |
| Output from              | water hea                 | ter        | Į.          |           |           | •                      | Į.          | ·              |             | •            |           | l                 |      |
| (64)m= 222.5             |                           | 206.24     | 185.11      | 181.57    | 162.47    | 156.26                 | 171.16      | 170.76         | 191.94      | 202.67       | 217.27    |                   |      |
|                          | Į                         |            | ı           |           |           |                        | Out         | put from w     | ater heate  | r (annual)₁  | 112       | 2264.22           | (64) |
| Heat gains f             | rom water                 | heating,   | kWh/m       | onth 0.2  | 5 ´ [0.85 | × (45)m                | + (61)r     | n] + 0.8 x     | x [(46)m    | + (57)m      | + (59)m   | ]                 |      |
| (65)m= 74.23             | 1                         | 68.81      | 61.77       | 60.6      | 54.24     | 52.19                  | 57.14       | 57             | 64.05       | 67.61        | 72.47     |                   | (65) |
| include (5               | 7)m in cal                | culation ( | of (65)m    | only if c | ylinder i | s in the               | dwelling    | or hot w       | ater is f   | rom com      | munity h  | neating           |      |
| 5. Internal              | gains (see                | e Table 5  | and 5a      | ):        |           |                        |             |                |             |              |           | -                 |      |
| Metabolic ga             |                           |            |             |           |           |                        |             |                |             |              |           |                   |      |
| Jar                      |                           | Mar        | Apr         | May       | Jun       | Jul                    | Aug         | Sep            | Oct         | Nov          | Dec       |                   |      |
| (66)m= 143.8             | 8 143.88                  | 143.88     | 143.88      | 143.88    | 143.88    | 143.88                 | 143.88      | 143.88         | 143.88      | 143.88       | 143.88    |                   | (66) |
| Lighting gair            | ns (calcula               | ted in Ap  | pendix      | L, equati | on L9 o   | r L9a), <mark>a</mark> | lso see     | Table 5        |             |              |           |                   |      |
| (67)m= 30.38             | 3 26.98                   | 21.94      | 16.61       | 12.42     | 10.48     | 11.33                  | 14.72       | 19.76          | 25.09       | 29.29        | 31.22     |                   | (67) |
| Appliances (             | gains (ca <mark>lc</mark> | ulated ir  | Append      | dix L, eq | uation L  | 13 or L1               | 3a), als    | see Ta         | ble 5       |              |           |                   |      |
| (68)m= 290.3             | 3 293.35                  | 285.75     | 269.59      | 249.19    | 230.01    | 217.2                  | 214.19      | 221.78         | 237.95      | 258.35       | 277.52    |                   | (68) |
| Cooking gair             | ns (calcula               | ated in A  | ppendix     | L, equat  | ion L15   | or L15a                | ), also s   | ee Table       | 5           |              | •         |                   |      |
| (69)m= 37.39             | 37.39                     | 37.39      | 37.39       | 37.39     | 37.39     | 37.39                  | 37.39       | 37.39          | 37.39       | 37.39        | 37.39     |                   | (69) |
| Pumps and                | fans gains                | (Table 5   | <br>5а)     |           |           |                        |             |                |             |              | •         | <u> </u>          |      |
| (70)m= 0                 | 0                         | 0          | 0           | 0         | 0         | 0                      | 0           | 0              | 0           | 0            | 0         |                   | (70) |
| Losses e.g.              | evaporatio                | n (nega    | tive valu   | es) (Tab  | le 5)     | •                      | •           |                |             | •            |           | •                 |      |
| (71)m= -115.             | 1 -115.1                  | -115.1     | -115.1      | -115.1    | -115.1    | -115.1                 | -115.1      | -115.1         | -115.1      | -115.1       | -115.1    |                   | (71) |
| Water heatir             | ng gains (1               | Table 5)   |             |           |           | •                      |             |                |             | •            |           | •                 |      |
| (72)m= 99.7              | 7 97.4                    | 92.48      | 85.79       | 81.45     | 75.34     | 70.14                  | 76.8        | 79.17          | 86.09       | 93.9         | 97.41     |                   | (72) |
| Total intern             | al gains =                | :          | •           |           | (66       | )m + (67)m             | n + (68)m   | + (69)m +      | (70)m + (7  | (1)m + (72)  | )m        | •                 |      |
| (73)m= 486.6             | 4 483.89                  | 466.34     | 438.16      | 409.22    | 382       | 364.84                 | 371.88      | 386.87         | 415.29      | 447.7        | 472.32    |                   | (73) |
| 6. Solar ga              | ins:                      |            |             |           |           |                        |             |                |             |              |           |                   |      |
| Solar gains ar           | e calculated              | using sola | r flux from | Table 6a  | and assoc | ciated equa            | itions to c | onvert to th   | ne applicat | ole orientat | tion.     |                   |      |
| Orientation:             |                           |            | Area        |           | Flu       |                        | _           | g_<br>Fabla 6b | _           | FF           |           | Gains             |      |
|                          | Table 6d                  |            | m²          |           | Ta        | ble 6a                 | . —         | Table 6b       | _ '         | able 6c      |           | (W)               | ,    |
| North 0.9                | × 0.77                    | X          | 5.4         | 19        | χ         | 10.63                  | x           | 0.85           | x           | 0.7          | =         | 24.07             | (74) |
| North 0.9                | × 0.77                    | X          | 5.4         | 19        | x         | 20.32                  | х           | 0.85           | x           | 0.7          | =         | 46                | (74) |
| North 0.9                | × 0.77                    | X          | 5.4         | 19        | x;        | 34.53                  | x           | 0.85           | x           | 0.7          | =         | 78.17             | (74) |
| North 0.9                |                           | X          | 5.4         | 19        | x (       | 55.46                  | x           | 0.85           | x           | 0.7          | =         | 125.56            | (74) |
| North 0.9                | × 0.77                    | X          | 5.4         | 19        | x         | 74.72                  | x           | 0.85           | x           | 0.7          | =         | 169.14            | (74) |

|                                                                            | _                                                                           |                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                   | 1 1                                                       |                                                                                                                     | _                                                     |                                        | _                                        |        | _                                            |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|------------------------------------------|--------|----------------------------------------------|
| North                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4                                                                       | 19                                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                      | 9.99                                                                              | X                                                         | 0.85                                                                                                                | X                                                     | 0.7                                    | =                                        | 181.06 | (74)                                         |
| North                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4                                                                       | <b>!</b> 9                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                      | 4.68                                                                              | X                                                         | 0.85                                                                                                                | X                                                     | 0.7                                    | =                                        | 169.05 | (74)                                         |
| North                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4                                                                       | 19                                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                      | 9.25                                                                              | X                                                         | 0.85                                                                                                                | X                                                     | 0.7                                    | =                                        | 134.12 | (74)                                         |
| North                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4                                                                       | <b>1</b> 9                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                      | 1.52                                                                              | X                                                         | 0.85                                                                                                                | X                                                     | 0.7                                    | =                                        | 93.98  | (74)                                         |
| North                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4                                                                       | 19                                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                      | 4.19                                                                              | X                                                         | 0.85                                                                                                                | X                                                     | 0.7                                    | =                                        | 54.76  | (74)                                         |
| North                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4                                                                       | 19                                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                      | 3.12                                                                              | X                                                         | 0.85                                                                                                                | X                                                     | 0.7                                    | =                                        | 29.69  | (74)                                         |
| North                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4                                                                       | 19                                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                      | 3.86                                                                              | X                                                         | 0.85                                                                                                                | X                                                     | 0.7                                    | =                                        | 20.07  | (74)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                      | 6.75                                                                              | x                                                         | 0.85                                                                                                                | ×                                                     | 0.7                                    | =                                        | 90.6   | (78)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                      | 6.57                                                                              | X                                                         | 0.85                                                                                                                | x                                                     | 0.7                                    | =                                        | 148.39 | (78)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                      | 7.53                                                                              | X                                                         | 0.85                                                                                                                | x                                                     | 0.7                                    | =                                        | 189.02 | (78)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                      | 10.23                                                                             | x                                                         | 0.85                                                                                                                | x                                                     | 0.7                                    | =                                        | 213.63 | (78)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                      | 14.87                                                                             | x                                                         | 0.85                                                                                                                | ×                                                     | 0.7                                    | =                                        | 222.62 | (78)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                      | 10.55                                                                             | x                                                         | 0.85                                                                                                                | x                                                     | 0.7                                    | =                                        | 214.24 | (78)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                     | 08.01                                                                             | x                                                         | 0.85                                                                                                                | ×                                                     | 0.7                                    | _ =                                      | 209.32 | (78)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                     | 04.89                                                                             | x                                                         | 0.85                                                                                                                | x                                                     | 0.7                                    |                                          | 203.28 | (78)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                     | 01.89                                                                             | x                                                         | 0.85                                                                                                                | ×                                                     | 0.7                                    |                                          | 197.45 | (78)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                      | 2.59                                                                              | x                                                         | 0.85                                                                                                                | ×                                                     | 0.7                                    | _ =                                      | 160.05 | (78)                                         |
| South                                                                      | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                      | 5.42                                                                              | Х                                                         | 0.85                                                                                                                | X                                                     | 0.7                                    | =                                        | 107.4  | (78)                                         |
| Sout <mark>h</mark>                                                        | 0.9x                                                                        | 0.77                                                                                                                                                                                                                                                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                        | 7                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                      | 10.4                                                                              | х                                                         | 0.85                                                                                                                | x                                                     | 0.7                                    | _                                        | 78.29  | (78)                                         |
|                                                                            |                                                                             |                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                   |                                                           |                                                                                                                     |                                                       |                                        |                                          |        |                                              |
| Sola <mark>r g</mark>                                                      | ains in y                                                                   | watts, <mark>calcu</mark>                                                                                                                                                                                                                            | lated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | for eacl                                                                  | h mont                                                                                              | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                   | (83)m                                                     | = Sum(74)m                                                                                                          | .(82)m                                                |                                        |                                          |        |                                              |
| (83)m=                                                                     | 114.68                                                                      | 194.39 26                                                                                                                                                                                                                                            | 7.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 339.19                                                                    | 391.75                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 895.3                                                                                  | 378.37                                                                            | 337                                                       | 291.43                                                                                                              | 214.8                                                 | 137.09                                 | 98.36                                    |        | (83)                                         |
|                                                                            |                                                                             | nternal and                                                                                                                                                                                                                                          | solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (84)m =                                                                   | = (73)m                                                                                             | + (8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83)m                                                                                   | , watts                                                                           |                                                           |                                                                                                                     |                                                       |                                        |                                          |        |                                              |
| (84)m=                                                                     | 601.32                                                                      | 678.28 733                                                                                                                                                                                                                                           | 3.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 777.35                                                                    | 800.97                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77.3                                                                                   | 743.21                                                                            | 709.                                                      | .28 678.31                                                                                                          | 630.1                                                 | 584.79                                 | 570.67                                   |        | (84)                                         |
| 7. Mea                                                                     | an interi                                                                   | nal tempera                                                                                                                                                                                                                                          | ture (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (heating                                                                  | seaso                                                                                               | n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                                                                   |                                                           |                                                                                                                     |                                                       |                                        |                                          |        |                                              |
| Tempe                                                                      | erature                                                                     | during heat                                                                                                                                                                                                                                          | ina n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ariads ir                                                                 | 41 12                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                   |                                                           |                                                                                                                     |                                                       |                                        |                                          |        |                                              |
| Utilisa                                                                    | tion fac                                                                    |                                                                                                                                                                                                                                                      | 9 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHOUS II                                                                  | n the liv                                                                                           | /ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | area f                                                                                 | from Tab                                                                          | ole 9,                                                    | Th1 (°C)                                                                                                            |                                                       |                                        |                                          | 21     | (85)                                         |
|                                                                            | tion ido                                                                    | tor for gains                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                   | ole 9,                                                    | Th1 (°C)                                                                                                            |                                                       |                                        |                                          | 21     | (85)                                         |
| Į                                                                          | Jan                                                                         | <u>`</u> _                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                     | n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |                                                                                   | ole 9,                                                    | · · ·                                                                                                               | Oct                                                   | Nov                                    | Dec                                      | 21     | (85)                                         |
| (86)m=                                                                     |                                                                             | Feb N                                                                                                                                                                                                                                                | for li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iving are                                                                 | ea, h1,r                                                                                            | m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Ta                                                                                  | ble 9a)                                                                           |                                                           | ug Sep                                                                                                              | Oct                                                   | Nov<br>1                               | Dec<br>1                                 | 21     | (85)                                         |
| L                                                                          | Jan<br>1                                                                    | Feb N                                                                                                                                                                                                                                                | for li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iving are<br>Apr                                                          | ea, h1,r<br>May                                                                                     | m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Ta<br>Jun<br><sup>0.99</sup>                                                        | ble 9a)<br>Jul<br>0.97                                                            | Au<br>0.9                                                 | ug Sep                                                                                                              |                                                       |                                        |                                          | 21     |                                              |
| L                                                                          | Jan<br>1                                                                    | Feb N                                                                                                                                                                                                                                                | for li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iving are<br>Apr                                                          | ea, h1,r<br>May                                                                                     | m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Ta<br>Jun<br><sup>0.99</sup>                                                        | ble 9a)<br>Jul<br>0.97                                                            | Au<br>0.9                                                 | ug Sep                                                                                                              |                                                       | 1                                      |                                          | 21     |                                              |
| Mean<br>(87)m=                                                             | Jan<br>1<br>internal                                                        | Feb N 1 temperatur 19.18 19                                                                                                                                                                                                                          | of for lings for | Apr<br>1<br>iving are                                                     | ea, h1,r<br>May<br>1<br>ea T1 (<br>20.13                                                            | m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Ta<br>Jun<br>0.99<br>w ste                                                          | Jul<br>0.97<br>ps 3 to 7<br>20.73                                                 | 0.9 in T                                                  | ug Sep<br>8 1<br>able 9c)                                                                                           | 1                                                     | 1                                      | 1                                        | 21     | (86)                                         |
| Mean<br>(87)m=                                                             | Jan<br>1<br>internal                                                        | Feb N 1 temperatur 19.18 19                                                                                                                                                                                                                          | of for lings for | Apr<br>1<br>iving are                                                     | ea, h1,r<br>May<br>1<br>ea T1 (<br>20.13                                                            | m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Ta<br>Jun<br>0.99<br>w ste                                                          | Jul<br>0.97<br>ps 3 to 7<br>20.73                                                 | 0.9 in T                                                  | ug Sep 8 1 20.39 0, Th2 (°C)                                                                                        | 1                                                     | 19.45                                  | 1                                        | 21     | (86)                                         |
| Mean (87)m= [ Tempe (88)m= [                                               | Jan 1 internal 19.07 erature 18.94                                          | Feb N 1 temperatur 19.18 19 during heat 18.95 18                                                                                                                                                                                                     | for limited from 1 and 1 | Apr 1 iving are 19.76 eriods ir 18.97                                     | ea, h1,r<br>May<br>1<br>ea T1 (<br>20.13<br>n rest o                                                | follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ee Ta<br>Jun<br>0.99<br>w ste<br>20.49<br>velling<br>8.99                              | Jul<br>0.97<br>ps 3 to 7<br>20.73<br>from Ta                                      | Au 0.97 in T 20.69 hble 9                                 | ug Sep 8 1 20.39 0, Th2 (°C)                                                                                        | 19.92                                                 | 19.45                                  | 19.06                                    | 21     | (86)                                         |
| Mean (87)m=  Tempo (88)m=  Utilisa                                         | Jan 1 internal 19.07 erature 18.94                                          | Feb N 1 temperatur 19.18 19 during heat 18.95 18 tor for gains                                                                                                                                                                                       | for ling positions for residual for the second seco | Apr 1 iving are 19.76 eriods ir 18.97 est of deciving are                 | ea, h1,r<br>May<br>1<br>ea T1 (<br>20.13<br>n rest o<br>18.97<br>welling                            | m (s<br>follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ee Ta<br>Jun<br>0.99<br>ww ste<br>20.49<br>velling<br>8.99<br>,m (se                   | Jul 0.97 ps 3 to 7 20.73 from Ta 18.99 ee Table                                   | Au 0.97 in T 20.69 able 9 18.9                            | ug Sep  8 1  able 9c)  99 20.39  0, Th2 (°C)  99 18.98                                                              | 19.92                                                 | 19.45                                  | 19.06                                    | 21     | (86)<br>(87)<br>(88)                         |
| Mean (87)m=  Tempe (88)m=  Utilisa (89)m=                                  | Jan  1 internal 19.07 erature 18.94 ition fac                               | Feb N 1 temperatur 19.18 19 during heat 18.95 18 tor for gains                                                                                                                                                                                       | for limited and the second and the s | Apr 1 iving are 19.76 eriods ir 18.97 est of dent                         | ea, h1,r<br>May<br>1<br>ea T1 (<br>20.13<br>n rest o<br>18.97<br>welling<br>0.99                    | m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Ta Jun 0.99 ww ste 20.49 velling 8.99 ,m (se 0.96                                   | Jul 0.97 ps 3 to 7 20.73 from Ta 18.99 ee Table 0.82                              | Au 0.9 7 in T 20.6 able 9 18.9 9a) 0.8                    | ug Sep  8 1  able 9c)  99 20.39  0, Th2 (°C)  99 18.98                                                              | 19.92                                                 | 19.45                                  | 19.06                                    | 21     | (86)                                         |
| Mean (87)m=  Tempo (88)m=  Utilisa (89)m=  Mean                            | Jan  1 internal 19.07 erature 18.94 tion fac 1 internal                     | Feb N 1 temperatur 19.18 19 during heat 18.95 18 tor for gains 1 temperatur                                                                                                                                                                          | for limited and li | Apr 1 iving are 19.76 eriods ir 18.97 eest of decide the rest             | ea, h1,r<br>May<br>1<br>ea T1 (<br>20.13<br>n rest o<br>18.97<br>welling<br>0.99<br>of dwe          | m (s / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ee Ta Jun 0.99 w ste 20.49 velling 8.99 m (se 0.96                                     | Jul 0.97 ps 3 to 7 20.73 from Ta 18.99 ee Table 0.82 collow ste                   | Au 0.97 in T 20.6 able 9 18.9 9a) 0.8                     | ug Sep  8 1  Fable 9c) 69 20.39  9, Th2 (°C) 99 18.98  6 0.98  to 7 in Table                                        | 1<br>19.92<br>18.97<br>1<br>2 9c)                     | 19.45                                  | 1<br>19.06<br>18.96                      | 21     | (86)<br>(87)<br>(88)<br>(89)                 |
| Mean (87)m=  Tempe (88)m=  Utilisa (89)m=                                  | Jan  1 internal 19.07 erature 18.94 ition fac                               | Feb N 1 temperatur 19.18 19 during heat 18.95 18 tor for gains 1 temperatur                                                                                                                                                                          | for limited and the second and the s | Apr 1 iving are 19.76 eriods ir 18.97 est of dent                         | ea, h1,r<br>May<br>1<br>ea T1 (<br>20.13<br>n rest o<br>18.97<br>welling<br>0.99                    | m (s / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ee Ta Jun 0.99 ww ste 20.49 velling 8.99 ,m (se 0.96                                   | Jul 0.97 ps 3 to 7 20.73 from Ta 18.99 ee Table 0.82                              | Au 0.9 7 in T 20.6 able 9 18.9 9a) 0.8                    | ug Sep  8 1  6able 9c) 69 20.39  9, Th2 (°C) 99 18.98  to 7 in Table 87 18.46                                       | 1<br>19.92<br>18.97<br>1<br>= 9c)<br>17.77            | 19.45<br>18.97<br>1 1 17.07            | 1<br>19.06<br>18.96                      |        | (86)<br>(87)<br>(88)<br>(89)                 |
| Mean (87)m=  Tempo (88)m=  Utilisa (89)m=  Mean                            | Jan  1 internal 19.07 erature 18.94 tion fac 1 internal                     | Feb N 1 temperatur 19.18 19 during heat 18.95 18 tor for gains 1 temperatur                                                                                                                                                                          | for limited and li | Apr 1 iving are 19.76 eriods ir 18.97 eest of decide the rest             | ea, h1,r<br>May<br>1<br>ea T1 (<br>20.13<br>n rest o<br>18.97<br>welling<br>0.99<br>of dwe          | m (s / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ee Ta Jun 0.99 w ste 20.49 velling 8.99 m (se 0.96                                     | Jul 0.97 ps 3 to 7 20.73 from Ta 18.99 ee Table 0.82 collow ste                   | Au 0.97 in T 20.6 able 9 18.9 9a) 0.8                     | ug Sep  8 1  6able 9c) 69 20.39  9, Th2 (°C) 99 18.98  to 7 in Table 87 18.46                                       | 1<br>19.92<br>18.97<br>1<br>= 9c)<br>17.77            | 19.45                                  | 1<br>19.06<br>18.96                      | 0.3    | (86)<br>(87)<br>(88)<br>(89)                 |
| Mean (87)m=  Tempo (88)m=  Utilisa (89)m=  Mean (90)m=  Mean               | Jan  1 internal 19.07 erature 18.94 tion fac 1 internal 16.5 internal       | Feb N 1 temperatur 19.18 19 during heat 18.95 18 tor for gains 1 temperatur 16.67 17                                                                                                                                                                 | for limited in the second seco | Apr 1 iving are 19.76 eriods ir 18.97 est of deriods 1 the rest 17.53     | ea, h1,r<br>May<br>1<br>ea T1 (<br>20.13<br>n rest o<br>18.97<br>welling<br>0.99<br>of dwe<br>18.07 | follo  fo | ee Ta  Jun  0.99  w ste 20.49  velling 8.99  m (se 0.96  T2 (fo 8.61                   | Jul 0.97 ps 3 to 7 20.73 from Ta 18.99 ee Table 0.82 collow ste 18.9              | Au 0.9 7 in T 20.6 able 9 18.9 0.8 eps 3 18.8             | ug Sep  8 1  able 9c) 69 20.39  9, Th2 (°C) 99 18.98  to 7 in Table 87 18.46  ft  ft  ft  ft  ft  ft  ft  ft  ft  f | 1<br>19.92<br>18.97<br>1<br>e 9c)<br>17.77<br>A = Liv | 1 19.45 18.97 1 17.07                  | 1<br>19.06<br>18.96<br>1<br>16.5<br>4) = |        | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91) |
| Mean (87)m= [ Tempe (88)m= [ Utilisa (89)m= [ Mean (90)m= [  Mean (92)m= [ | Jan  1 internal 19.07 erature 18.94 tion fac 1 internal 16.5 internal 17.28 | Feb         M           1         temperatur           19.18         19           during heat         18.95         18           tor for gains         1           temperatur         16.67         17           temperatur         17.43         17 | for ling per second of the sec | Apr 1 iving are 19.76 eriods ir 18.97 est of dr 1 the rest 17.53 r the wh | ea, h1,r<br>May<br>1<br>ea T1 (<br>20.13<br>n rest o<br>18.97<br>welling<br>0.99<br>of dwe<br>18.07 | follo  2  f dw  1  1  1  elling  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ee Ta  Jun  0.99  w ste  0.49  velling  8.99  m (se  0.96  T2 (fo  8.61  g) = fl  9.18 | Jul 0.97 ps 3 to 7 20.73 from Ta 18.99 ee Table 0.82 ollow ste 18.9  A × T1 19.45 | Au 0.9 7 in T 20.6 able 9 18.9 0.8 pps 3 18.6 + (1 - 19.6 | ug Sep  8 1  able 9c) 69 20.39  9, Th2 (°C) 99 18.98  to 7 in Table 87 18.46  ft  ft  ft  ft  ft  ft  ft  ft  ft  f | 1<br>19.92<br>18.97<br>1<br>= 9c)<br>17.77<br>A = Liv | 1 19.45 18.97 1 1 17.07 ring area ÷ (4 | 1<br>19.06<br>18.96                      |        | (86)<br>(87)<br>(88)<br>(89)                 |

|                                                                            |             | 1        | 1            | Ι              | Ι          | 1                        | 1         |                   | i                | i            |             |           | (00)   |
|----------------------------------------------------------------------------|-------------|----------|--------------|----------------|------------|--------------------------|-----------|-------------------|------------------|--------------|-------------|-----------|--------|
| (93)m= 17.28                                                               | 17.43       | 17.74    | 18.2         | 18.69          | 19.18      | 19.45                    | 19.42     | 19.04             | 18.42            | 17.79        | 17.27       |           | (93)   |
| 8. Space hea                                                               |             |          |              | ro obtain      | and at et  | on 11 of                 | Table 0   | o so tha          | nt Ti m-(        | 76)m an      | d re-calc   | ulato     |        |
| the utilisation                                                            |             |          |              |                | icu ai sii | ър птог                  | i abic 3i | J, 50 II IA       | ıı 11,111—(      | rojili ali   | u ie-caic   | uiate     |        |
| Jan                                                                        | Feb         | Mar      | Apr          | May            | Jun        | Jul                      | Aug       | Sep               | Oct              | Nov          | Dec         |           |        |
| Utilisation fac                                                            | ctor for g  | ains, hm | 1:           |                |            |                          |           |                   |                  |              |             |           |        |
| (94)m= 1                                                                   | 1           | 1        | 1            | 0.99           | 0.97       | 0.88                     | 0.91      | 0.98              | 1                | 1            | 1           |           | (94)   |
| Useful gains                                                               |             | W = (94) | ŕ            | 4)m            | T          | T                        |           |                   | 1                | 1            | , ,         |           |        |
| (95)m= 601.17                                                              | 677.96      | 732.81   | 775.38       | 794.28         | 751.07     | 653.96                   | 644.51    | 667.34            | 628.71           | 584.51       | 570.56      |           | (95)   |
| Monthly aver                                                               | <del></del> | T T      | <del>-</del> | r              | r          |                          |           |                   |                  |              | · 1         |           | (00)   |
| (96)m= 4.3                                                                 | 4.9         | 6.5      | 8.9          | 11.7           | 14.6       | 16.6                     | 16.4      | 14.1              | 10.6             | 7.1          | 4.2         |           | (96)   |
| Heat loss rat                                                              | e for me    |          | 2987.43      |                |            | =[(39) <b>m</b><br>904.1 | x [(93)m  | - (96)m<br>1573.7 | 2505.1           | 3440.8       | 4228.68     |           | (97)   |
| (97)m= 4240.35<br>Space heating                                            | l           | l        | l            | L              | L          | l                        |           |                   | l                | l .          | 4220.00     |           | (97)   |
| (98)m= 2707.55                                                             | <del></del> |          |              |                | 0          | 0.02                     | 0         | 0                 | <del>í - `</del> | 2056.52      | 2721 64     |           |        |
| (00)111=   27 07 .00                                                       | 12200.21    | 2170.00  | 1002.00      | 1070.10        |            |                          |           |                   | ļ                | r) = Sum(9   | <u> </u>    | 16011.93  | (98)   |
| Chase bestin                                                               | a roquir    | omont in | Id M/b/pp?   | 2/voor         |            |                          | 7010      | i poi you         | (ittili y cai    | ) – Cam(c    | 715,512 —   |           | = ' '  |
| Space heatir                                                               | • •         |          |              |                |            |                          |           |                   |                  |              | L           | 129.13    | (99)   |
| 9b. Energy re                                                              | •           |          | · ·          | Ĭ              |            |                          |           |                   |                  |              |             |           |        |
| This part is us<br>Fraction of sp                                          |             |          |              |                |            |                          |           |                   |                  | unity sch    | neme.<br>[  | 0         | (301)  |
|                                                                            |             |          |              |                |            |                          | (Table I  | ., 0              | OHO              |              | l           |           | =      |
| Fraction of sp                                                             |             |          |              |                |            |                          |           |                   |                  |              |             | 1         | (302)  |
| The c <mark>ommu</mark> nity s<br>includes boilers, l                      |             |          |              |                |            |                          |           |                   | up to four       | other heat   | sources; th | ne latter |        |
| Fraction of he                                                             |             |          |              |                | iom power  | Stations.                | осс Аррсі | idix O.           |                  |              |             | 1         | (303a) |
| Fraction of tot                                                            |             |          |              |                | nilers     |                          |           |                   | (3               | 02) x (303   | ا<br>ا – ا  | 1         | (304a) |
|                                                                            |             |          |              |                |            |                          |           |                   |                  | 02) X (303   | [           |           | ╡`     |
| Factor for con                                                             |             |          |              | ,              | . ,,       |                          | •         | iting sys         | tem              |              |             | 1         | (305)  |
| Distribution lo                                                            | ss factor   | (Table 1 | 12c) for d   | commun         | ity heatii | ng syste                 | m         |                   |                  |              |             | 1.05      | (306)  |
| Space heatin                                                               | _           |          |              |                |            |                          |           |                   |                  |              |             | kWh/yea   | r      |
| Annual space                                                               | heating     | requiren | nent         |                |            |                          |           |                   |                  |              |             | 16011.93  |        |
| Space heat fro                                                             | om Comi     | munity b | oilers       |                |            |                          |           | (98) x (30        | 04a) x (30       | 5) x (306)   | = [         | 16812.52  | (307a) |
| Efficiency of s                                                            | econdar     | y/supple | mentary      | heating        | system     | in % (fro                | m Table   | 4a or A           | ppendix          | E)           |             | 0         | (308   |
| Space heating                                                              | require     | ment fro | m secon      | darv/sur       | pplemen    | tarv svst                | tem       | (98) x (30        | 01) x 100 ·      | ÷ (308) =    | [           | 0         | (309)  |
|                                                                            |             |          |              | , <sub>.</sub> |            | , -, -                   |           |                   | ,                | ,            | L           |           | `      |
| Water heating                                                              | _           | oguirom  | ont          |                |            |                          |           |                   |                  |              | Γ           | 0004.00   |        |
| Annual water                                                               | •           | •        |              |                |            |                          |           |                   |                  |              | Į           | 2264.22   |        |
| If DHW from o                                                              |             | •        |              |                |            |                          |           | (64) x (30        | 03a) x (30       | 5) x (306) : | _ [         | 2377.43   | (310a) |
| Electricity use                                                            |             | •        |              |                |            |                          | 0.01      |                   |                  | · (310a)(    | l<br>r      | 191.9     | (313)  |
| Cooling Syste                                                              |             |          |              | 0              |            |                          |           | L(cc sy           | (22 2)           | (5 5 5)      | [           | 0         | (314)  |
| Space cooling                                                              | _           | •        | •            |                | n if not a | anter (1)                |           | = (107) ÷         | - (314) –        |              | ]<br>]      | 0         | (315)  |
|                                                                            | •           |          |              | •              |            | ,                        |           | - (101) -         | (014) =          |              |             | U         | (313)  |
| Electricity for proceed the mechanical version of the mechanical versions. |             |          |              |                |            |                          | outside   |                   |                  |              | [           | 0         | (330a) |
| Silainoai V                                                                |             | Jaian    | . 5 m, OAH   | o. po          | 3          | 0.111                    | 22.0100   |                   |                  |              | l           |           |        |
|                                                                            |             |          |              |                |            |                          |           |                   |                  |              |             |           |        |

| warm air heating system fans                                                             |                                           |                      |        | 0                      | (330b) |
|------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|--------|------------------------|--------|
| pump for solar water heating                                                             |                                           |                      |        | 0                      | (330g) |
| Total electricity for the above, kWh/year                                                | =(330a) + (330                            | b) + (330g) =        |        | 0                      | (331)  |
| Energy for lighting (calculated in Appendix L)                                           |                                           |                      |        | 536.46                 | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                            |                                           |                      |        |                        |        |
|                                                                                          | Energy<br>kWh/year                        | Emission fac         |        | nissions<br>  CO2/year |        |
| CO2 from other sources of space and water heating (not C Efficiency of heat source 1 (%) | CHP)<br>P using two fuels repeat (363) to | (366) for the second | d fuel | 90                     | (367a) |
| CO2 associated with heat source 1                                                        | 807b)+(310b)] x 100 ÷ (367b) x            | 0                    | =      | 4605.59                | (367)  |
| Electrical energy for heat distribution                                                  | [(313) x                                  | 0.52                 | =      | 99.6                   | (372)  |
| Total CO2 associated with community systems                                              | (363)(366) + (368)(37                     | 2)                   | =      | 4705.18                | (373)  |
| CO2 associated with space heating (secondary)                                            | (309) x                                   | 0                    | =      | 0                      | (374)  |
| CO2 associated with water from immersion heater or insta                                 | ntaneous heater (312) x                   | 0.22                 | =      | 0                      | (375)  |
| Total CO2 associated with space and water heating                                        | (373) + (374) + (375) =                   |                      |        | 4705.18                | (376)  |
| CO2 associated with electricity for pumps and fans within o                              | dwelling (331)) x                         | 0.52                 | =      | 0                      | (378)  |
| CO2 associated with electricity for lighting                                             | (332))) x                                 | 0.52                 | =      | 278.42                 | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                   |                                           |                      |        | 4983.61                | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                 |                                           |                      |        | 40.19                  | (384)  |
| El rating (section 14)                                                                   |                                           |                      |        | 60.38                  | (385)  |

|                                                                            | Usei                                         | Details:                  |                      |            |               |                            |
|----------------------------------------------------------------------------|----------------------------------------------|---------------------------|----------------------|------------|---------------|----------------------------|
| Assessor Name: Software Name: Strom                                        | a FSAP 2012                                  | Stroma Nur<br>Software Ve |                      | Versio     | n: 1.0.3.4    |                            |
|                                                                            | · ·                                          | y Address: Unit 1         | 0                    |            |               |                            |
| Address: , londo  1. Overall dwelling dimensions:                          | on                                           |                           |                      |            |               |                            |
| 1. Overall awelling aimensions.                                            | A                                            | rea(m²)                   | Av. Height(m)        |            | Volume(m³)    |                            |
| Basement                                                                   |                                              | 79 (1a) x                 | 2.6                  | (2a) =     | 205.4         | (3a)                       |
| Total floor area TFA = (1a)+(1b)+                                          | (1c)+(1d)+(1e)+(1n)                          | 79 (4)                    |                      |            |               | _                          |
| Dwelling volume                                                            |                                              | (3a)+(3                   | 8b)+(3c)+(3d)+(3e)+  | (3n) =     | 205.4         | (5)                        |
| 2. Ventilation rate:                                                       |                                              |                           |                      |            |               |                            |
| ma                                                                         | nin secondary<br>nating heating              | other                     | total                |            | m³ per hour   |                            |
| Number of chimneys                                                         |                                              | 0 =                       | 0 x                  | 40 =       | 0             | (6a)                       |
| Number of open flues                                                       | 0 + 0 +                                      | 0 =                       | 0 x                  | 20 =       | 0             | (6b)                       |
| Number of intermittent fans                                                |                                              |                           | 2 X                  | 10 =       | 20            | (7a)                       |
| Number of passive vents                                                    |                                              |                           | 0 x                  | 10 =       | 0             | (7b)                       |
| Number of flueless gas fires                                               |                                              |                           | 0 x                  | 40 =       | 0             | (7c)                       |
|                                                                            |                                              |                           |                      | Air ch     | anges per hou | ır                         |
|                                                                            |                                              | (75)                      |                      |            | anges per hou | _                          |
| Infiltration due to chimneys, flues                                        |                                              |                           | 20 from (9) to (16)  | ÷ (5) =    | 0.1           | (8)                        |
| Number of storeys in the dwelling                                          |                                              | ), carermee continue      | 113111 (b) to (113)  | ĺ          | 0             | (9)                        |
| Additional infiltration                                                    |                                              |                           | [(9                  | )-1]x0.1 = | 0             | (10)                       |
| Structural infiltration: 0.25 for st                                       | eel or timber frame or 0.35                  | for masonry cons          | truction             | į          | 0             | (11)                       |
| if both types of wall are present, use                                     | , ,                                          | eater wall area (after    |                      |            |               | _                          |
| deducting areas of openings); if equal<br>If suspended wooden floor, enter |                                              | aled), else enter (       | )                    | ſ          | 0             | (12)                       |
| If no draught lobby, enter 0.05,                                           | , , , , , , , , , , , , , , , , , , , ,      | 2.00), 0.00 0.1101 0      | •                    |            | 0             | (13)                       |
| Percentage of windows and do                                               |                                              |                           |                      | ļ          | 0             | 1\                         |
| Window infiltration                                                        |                                              | 0.25 - [0.2 x (14) ÷      | 100] =               | İ          | 0             | (15)                       |
| Infiltration rate                                                          |                                              | (8) + (10) + (11) +       | (12) + (13) + (15) = | İ          | 0             | (16)                       |
| Air permeability value, q50, exp                                           | ressed in cubic metres per                   | hour per square r         | metre of envelope    | e area     | 10            | (17)                       |
| If based on air permeability value,                                        | , then $(18) = [(17) \div 20] + (8)$ , other | rwise (18) = (16)         |                      | Ī          | 0.6           | (18)                       |
| Air permeability value applies if a press                                  | surisation test has been done or a           | degree air permeabilit    | y is being used      |            |               | 7                          |
| Number of sides sheltered Shelter factor                                   |                                              | (20) = 1 - [0.075 x       | (19)] =              |            | 1             | (19)                       |
| Infiltration rate incorporating shelt                                      | er factor                                    | (21) = (18) x (20) =      |                      | [<br>[     | 0.92          | ](20)<br>] <sub>(24)</sub> |
| Infiltration rate modified for month                                       |                                              | (21) = (10) x (20) =      |                      | l          | 0.55          | (21)                       |
|                                                                            | Apr May Jun Jul                              | Aug Sep                   | Oct Nov              | Dec        |               |                            |
| Monthly average wind speed from                                            | · · · · · ·                                  | 1 7.09                    | 1 001   1101         | 1 200      |               |                            |
| <del> </del>                                                               | 4.4 4.3 3.8 3.8                              | 3.7 4                     | 4.3 4.5              | 4.7        |               |                            |
|                                                                            |                                              | 1 1                       | 1 1                  |            | I             |                            |
| Wind Factor (22a)m = $(22)$ m ÷ 4                                          | 11 100 005 005                               | 0.00 4                    | 1.00 1.40            | 140        | ĺ             |                            |
| (22a)m= 1.27 1.25 1.23                                                     | 1.1 1.08 0.95 0.95                           | 0.92 1                    | 1.08 1.12            | 1.18       |               |                            |

| 0.7                                                                          | ation rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68             | 0.61             | 0.59      | 0.52         | 0.52                                              | 0.51                                             | 0.55           | 0.59              | 0.62                                             | 0.65             | ]                                            |      |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-----------|--------------|---------------------------------------------------|--------------------------------------------------|----------------|-------------------|--------------------------------------------------|------------------|----------------------------------------------|------|
| Calculate effe                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                | rate for t       | he appli  | cable ca     | se                                                |                                                  |                |                   |                                                  |                  | <u>,                                    </u> |      |
| If mechanic                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |           |              |                                                   |                                                  |                |                   |                                                  |                  | 0                                            | (2   |
| If exhaust air h                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                |                  | , ,       | ,            | . ,                                               | ,, .                                             | ,              | ) = (23a)         |                                                  |                  | 0                                            | (2   |
| If balanced with                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                | •                | _         |              |                                                   |                                                  |                |                   |                                                  |                  | 0                                            | (2   |
| a) If balance                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i                |                  |           |              | <del>- ` `                                 </del> | <del>,                                    </del> | <del>í `</del> | <del> </del>      | <del>,                                    </del> | <del>1 ` '</del> | ) ÷ 100]<br>1                                | (0   |
| 24a)m= 0                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 0                | 0         | 0            | 0                                                 | 0                                                | 0              | 0                 | 0                                                | 0                | ]                                            | (2   |
| b) If balance                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anicai ve        | ntilation        | without   | heat red     |                                                   | <del>-                                    </del> | <del>``</del>  | <del>- ` `</del>  | <del></del>                                      | Ι ,              | 1                                            | (2   |
| ,                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                  |           | <u> </u>     | 0                                                 | 0                                                | 0              | 0                 | 0                                                | 0                | J                                            | (2   |
| c) If whole h                                                                | iouse ex<br>n < 0.5 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                  | •         | •            |                                                   |                                                  |                | 5 v (23h          | <i>)</i>                                         |                  |                                              |      |
| $\frac{(225)^{1}}{(24c)m} = 0$                                               | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                | 0                | 0         | 0            | 0                                                 | 0) = (22.                                        | 0              | 0 7 (20)          | 0                                                | 0                | ]                                            | (2   |
| d) If natural                                                                | ventilatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n or wh          | ole hous         | L nositiv | /e input     | L<br>ventilatio                                   | n from l                                         | oft            |                   | <u>!</u>                                         | ļ                | J                                            |      |
| ,                                                                            | n = 1, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |           | •            |                                                   |                                                  |                | 0.5]              |                                                  |                  |                                              |      |
| 24d)m= 0.75                                                                  | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.73             | 0.68             | 0.68      | 0.64         | 0.64                                              | 0.63                                             | 0.65           | 0.68              | 0.69                                             | 0.71             | ]                                            | (2   |
| Effective air                                                                | change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rate - er        | iter (24a        | ) or (24b | o) or (24    | c) or (24                                         | d) in box                                        | (25)           |                   | -                                                |                  | _                                            |      |
| 25)m= 0.75                                                                   | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.73             | 0.68             | 0.68      | 0.64         | 0.64                                              | 0.63                                             | 0.65           | 0.68              | 0.69                                             | 0.71             |                                              | (2   |
| 3. Heat losse                                                                | s and he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | at loss r        | naramete         | or.       |              |                                                   |                                                  |                |                   |                                                  | _                | _                                            |      |
| LEMENT                                                                       | Gros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Openin           |           | Net Ar       | ea                                                | U-val                                            | IE             | AXU               |                                                  | k-value          | 9                                            | ΑΧk  |
| FFIMEIAI                                                                     | area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | m                |           | A ,r         |                                                   | W/m2                                             |                | (W/I              | K)                                               | kJ/m².           |                                              | kJ/K |
| oo <mark>rs</mark>                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |           | 1.6          | x                                                 | 1.4                                              | = [            | 2.24              |                                                  |                  |                                              | (:   |
| in <mark>dows</mark> Type                                                    | e 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                  |           | 3.12         | x1.                                               | /[1/( 4.8 )+                                     | 0.04] =        | 12.56             | П                                                |                  |                                              | (2   |
| indows Type                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                  |           | 3.66         | x1.                                               | /[1/( 4.8 )+                                     | 0.04] =        | 14.74             | Ħ                                                |                  |                                              | (:   |
| /alls Type1                                                                  | 89.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                | 6.78             |           | 82.42        | 2 x                                               | 1.27                                             | =              | 104.83            |                                                  |                  |                                              | (2   |
| /alls Type2                                                                  | 26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                | 1.6              | =         | 25.03        | 3 x                                               | 2.1                                              | <b>=</b> i     | 52.56             | Ħ i                                              |                  |                                              | (2   |
| oof                                                                          | 46.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                | 0                |           | 46.5         | x                                                 | 0.28                                             | <u> </u>       | 13.02             |                                                  |                  | 7                                            | (;   |
| otal area of e                                                               | elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , m²             |                  |           | 162.3        | 3                                                 |                                                  |                |                   |                                                  |                  |                                              | (    |
| arty wall                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |           | 5.3          | ×                                                 | 0                                                |                | 0                 | <b>—</b> [                                       |                  |                                              | (;   |
| for windows and                                                              | l roof wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ows, use e       | ffective wi      | ndow U-va |              |                                                   |                                                  |                |                   | as given in                                      | paragrapl        |                                              |      |
| include the area                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |           |              | _                                                 |                                                  |                | , -               |                                                  |                  |                                              |      |
| abric heat lo                                                                | ss, W/K :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = S (A x         | U)               |           |              |                                                   | (26)(30)                                         | + (32) =       |                   |                                                  |                  | 199.96                                       | (    |
| eat capacity                                                                 | Cm = S(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Axk)            |                  |           |              |                                                   |                                                  | ((28)          | .(30) + (32       | 2) + (32a)                                       | (32e) =          | 0                                            | (    |
| hermal mass                                                                  | parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ter (TMF         | P = Cm -         | - TFA) ir | n kJ/m²K     |                                                   |                                                  | Indica         | tive Value        | : High                                           |                  | 450                                          | (:   |
| or design asses:                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  | construct | ion are no   | t known pr                                        | ecisely the                                      | indicative     | values of         | TMP in T                                         | able 1f          |                                              |      |
| n ha waad inata                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  | ısina Ar  | nendix k     | <                                                 |                                                  |                |                   |                                                  |                  | 24.8                                         | (;   |
|                                                                              | C3 . O (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                |                  |           | •            | `                                                 |                                                  |                |                   |                                                  |                  | 24.0                                         | (,   |
| hermal bridg                                                                 | al bridaina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | ()               |           | •/           |                                                   |                                                  | (33) +         | (36) =            |                                                  |                  | 224.76                                       | (:   |
| nermal bridg                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |           |              |                                                   |                                                  |                |                   |                                                  |                  |                                              |      |
| nermal bridg<br>details of therma<br>otal fabric he                          | at loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | alculated        | l monthly        | y         |              |                                                   |                                                  | (38)m          | $= 0.33 \times ($ | (25)m x (5                                       | )                |                                              |      |
| n be used insternal bridgedetails of thermal otal fabric heatilation heat    | at loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | alculated<br>Mar | l monthly<br>Apr | /<br>May  | Jun          | Jul                                               | Aug                                              | (38)m<br>Sep   | = 0.33 × (        | 25)m x (5<br>Nov                                 | Dec              | ]                                            |      |
| hermal bridg<br>details of thermand<br>otal fabric hea                       | at loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i                |                  |           | Jun<br>43.23 | Jul<br>43.23                                      | Aug<br>42.74                                     |                |                   |                                                  | 1                |                                              | (:   |
| nermal bridg<br>details of therma<br>otal fabric he<br>entilation hea<br>Jan | at loss cat | Mar<br>49.42     | Apr              | May       | -            |                                                   | <del>-</del>                                     | Sep<br>44.24   | Oct               | Nov<br>46.99                                     | Dec              |                                              | (3   |

| Heat loss para                                         | ımeter (l      | HLP), W     | ′m²K        |                |              |             |             | (40)m        | = (39)m ÷      | - (4)                  |         |         |      |
|--------------------------------------------------------|----------------|-------------|-------------|----------------|--------------|-------------|-------------|--------------|----------------|------------------------|---------|---------|------|
| (40)m= 3.49                                            | 3.48           | 3.47        | 3.43        | 3.43           | 3.39         | 3.39        | 3.39        | 3.41         | 3.43           | 3.44                   | 3.45    |         |      |
|                                                        | <u> </u>       | l .         |             |                |              | ļ           | ļ           |              | L<br>Average = | Sum(40) <sub>1</sub> . | 12 /12= | 3.43    | (40) |
| Number of day                                          | s in mo        | nth (Tab    | le 1a)      |                |              |             |             |              |                |                        |         |         | _    |
| Jan                                                    | Feb            | Mar         | Apr         | May            | Jun          | Jul         | Aug         | Sep          | Oct            | Nov                    | Dec     |         |      |
| (41)m= 31                                              | 28             | 31          | 30          | 31             | 30           | 31          | 31          | 30           | 31             | 30                     | 31      |         | (41) |
|                                                        |                |             |             |                |              |             |             |              |                |                        |         |         |      |
| 4. Water heat                                          | ting ene       | rgy requi   | rement:     |                |              |             |             |              |                |                        | kWh/ye  | ar:     |      |
| Assumed occu<br>if TFA > 13.9<br>if TFA £ 13.9         | 9, N = 1       |             | [1 - exp    | (-0.0003       | 349 x (TF    | FA -13.9    | )2)] + 0.0  | 0013 x (¯    | TFA -13.       |                        | 44      |         | (42) |
| Annual averag<br>Reduce the annua<br>not more that 125 | al average     | hot water   | usage by    | 5% if the a    | lwelling is  | designed t  |             |              | se target o    |                        | .24     |         | (43) |
| Jan                                                    | Feb            | Mar         | Apr         | May            | Jun          | Jul         | Aug         | Sep          | Oct            | Nov                    | Dec     |         |      |
| Hot water usage is                                     | n litres pe    | day for ea  | ach month   | Vd,m = fa      | ctor from    | Table 1c x  | (43)        | •            | •              | •                      |         |         |      |
| (44)m= 101.46                                          | 97.77          | 94.08       | 90.39       | 86.7           | 83.01        | 83.01       | 86.7        | 90.39        | 94.08          | 97.77                  | 101.46  |         |      |
|                                                        |                |             |             |                |              |             |             |              |                | m(44) <sub>112</sub> = |         | 1106.83 | (44) |
| Energy content of                                      | hot water      | used - cal  | culated mo  | onthly = $4$ . | 190 x Vd,r   | n x nm x D  | Tm / 3600   | ) kWh/mor    | nth (see Ta    | ables 1b, 1            | c, 1d)  |         |      |
| (45)m= 150.46                                          | 131.59         | 135.79      | 118.39      | 113.6          | 98.02        | 90.83       | 104.23      | 105.48       | 122.93         | 134.18                 | 145.71  |         | _    |
| If instantaneous w                                     | vater heati    | na at noint | of use (no  | hot water      | storage)     | enter () in | hoves (46   |              | Total = Su     | m(45) <sub>112</sub> = |         | 1451.23 | (45) |
|                                                        |                |             |             |                |              | _           |             |              | 40.44          | 00.40                  | 04.00   |         | (46) |
| (46)m= 22.57<br>Water storage                          | 19.74<br>IOSS: | 20.37       | 17.76       | 17.04          | 14.7         | 13.63       | 15.64       | 15.82        | 18.44          | 20.13                  | 21.86   |         | (46) |
| Storage volum                                          |                | includir    | ig any so   | olar or W      | /WHRS        | storage     | within sa   | ame ves      | sel            |                        | 160     |         | (47) |
| If community h                                         | neating a      | and no ta   | nk in dw    | elling, e      | nter 110     | litres in   | (47)        |              |                |                        |         |         |      |
| Otherwise if no                                        | stored         | hot wate    | er (this in | cludes i       | nstantar     | neous co    | mbi boil    | ers) ente    | er '0' in (    | 47)                    |         |         |      |
| Water storage                                          |                |             |             |                |              |             |             |              |                |                        |         |         |      |
| a) If manufact                                         | turer's de     | eclared I   | oss facto   | or is kno      | wn (kWł      | n/day):     |             |              |                |                        | 0       |         | (48) |
| Temperature f                                          | actor fro      | m Table     | 2b          |                |              |             |             |              |                |                        | 0       |         | (49) |
| Energy lost fro                                        |                | •           |             |                |              |             | (48) x (49) | ) =          |                | 1                      | 10      |         | (50) |
| b) If manufact                                         |                |             | -           |                |              |             |             |              |                |                        | 1       |         | (54) |
| Hot water storal If community h                        | -              |             |             | e z (KVV       | ii/iiti e/ua | iy)         |             |              |                | 0.                     | 02      |         | (51) |
| Volume factor                                          | _              |             | 011 1.0     |                |              |             |             |              |                | 1.                     | 03      |         | (52) |
| Temperature f                                          | actor fro      | m Table     | 2b          |                |              |             |             |              |                | -                      | .6      |         | (53) |
| Energy lost fro                                        | m water        | storage     | , kWh/ye    | ear            |              |             | (47) x (51) | ) x (52) x ( | 53) =          | 1.                     | 03      |         | (54) |
| Enter (50) or (                                        |                | _           | ,           |                |              |             |             |              |                |                        | 03      |         | (55) |
| Water storage                                          | loss cal       | culated t   | or each     | month          |              |             | ((56)m = (  | (55) × (41)  | m              |                        |         |         |      |
| (56)m= 32.01                                           | 28.92          | 32.01       | 30.98       | 32.01          | 30.98        | 32.01       | 32.01       | 30.98        | 32.01          | 30.98                  | 32.01   |         | (56) |
| If cylinder contains                                   |                |             |             |                |              |             |             |              |                |                        |         | x H     | ` '  |
| (57)m= 32.01                                           | 28.92          | 32.01       | 30.98       | 32.01          | 30.98        | 32.01       | 32.01       | 30.98        | 32.01          | 30.98                  | 32.01   |         | (57) |
| Primary circuit                                        | loss (ar       | nual) fro   | m Table     | 3              |              |             |             |              |                |                        | 0       |         | (58) |
| Primary circuit                                        | `              | ,           |             |                | 59)m = (     | (58) ÷ 36   | 65 × (41)   | m            |                |                        |         |         |      |
| (modified by                                           |                |             |             | ,              |              | ` '         | , ,         |              | r thermo       | stat)                  |         |         |      |
| (59)m= 23.26                                           | 21.01          | 23.26       | 22.51       | 23.26          | 22.51        | 23.26       | 23.26       | 22.51        | 23.26          | 22.51                  | 23.26   |         | (59) |

| Combi loss (                 | aclaulatad                | for oach    | month (     | (61)m -   | (60) · 2( | SE v. (41)             | ١m          |                |             |              |          |                      |      |
|------------------------------|---------------------------|-------------|-------------|-----------|-----------|------------------------|-------------|----------------|-------------|--------------|----------|----------------------|------|
| Combi loss $(61)$ m= $0$     | 0 0                       | 0           | 0           | 0         | 00) + 3   | 05 x (41)              | 0           | 0              | 0           | 0            | 0        | ]                    | (61) |
|                              | !                         |             |             |           |           |                        | <u> </u>    |                | <u> </u>    | ļ.           |          | J<br>· (59)m + (61)m | , ,  |
| (62)m= 205.7                 | <del>-</del>              | 191.07      | 171.88      | 168.87    | 151.52    | 146.11                 | 159.51      | 158.97         | 178.2       | 187.68       | 200.99   | ]                    | (62) |
| Solar DHW inpo               |                           |             |             |           |           | <u> </u>               |             |                |             | tion to wate |          | ]                    | ` '  |
| (add addition                |                           |             |             |           |           |                        |             |                |             |              |          |                      |      |
| (63)m= 0                     | 0                         | 0           | 0           | 0         | 0         | 0                      | 0           | 0              | 0           | 0            | 0        | ]                    | (63) |
| Output from                  | water hea                 | ter         |             |           |           |                        | Į.          | _              |             |              | l        | 1                    |      |
| (64)m= 205.7                 |                           | 191.07      | 171.88      | 168.87    | 151.52    | 146.11                 | 159.51      | 158.97         | 178.2       | 187.68       | 200.99   | ]                    |      |
|                              |                           |             |             |           |           |                        | Ou          | tput from w    | ater heate  | r (annual)   | 12       | 2102.07              | (64) |
| Heat gains f                 | rom water                 | heating,    | kWh/mo      | onth 0.2  | 5 ´ [0.85 | × (45)m                | + (61)      | m] + 0.8 x     | x [(46)m    | + (57)m      | + (59)m  | ı ]                  |      |
| (65)m= 68.64                 | 4 60.56                   | 63.76       | 57.37       | 56.38     | 50.6      | 48.81                  | 53.27       | 53.08          | 59.48       | 62.63        | 67.06    | ]                    | (65) |
| include (5                   | 7)m in cal                | culation of | of (65)m    | only if c | ylinder i | s in the o             | dwelling    | or hot w       | ater is f   | rom com      | munity h | neating              |      |
| 5. Internal                  | gains (see                | e Table 5   | and 5a      | ):        |           |                        |             |                |             |              |          |                      |      |
| Metabolic ga                 | ains (Table               | e 5), Wat   | ts          |           |           |                        |             |                |             |              |          |                      |      |
| Jar                          |                           | Mar         | Apr         | May       | Jun       | Jul                    | Aug         | Sep            | Oct         | Nov          | Dec      |                      |      |
| (66)m= 122.1                 | 8 122.18                  | 122.18      | 122.18      | 122.18    | 122.18    | 122.18                 | 122.18      | 122.18         | 122.18      | 122.18       | 122.18   |                      | (66) |
| Ligh <mark>ting g</mark> air | ns (calcula               | ted in Ap   | pendix      | L, equati | on L9 o   | r L9a), <mark>a</mark> | lso see     | Table 5        |             |              |          |                      |      |
| (67)m= 22.54                 | 4 20.02                   | 16.28       | 12.32       | 9.21      | 7.78      | 8.4                    | 10.92       | 14.66          | 18.62       | 21.73        | 23.16    |                      | (67) |
| App <mark>liance</mark> s (  | gains (ca <mark>lc</mark> | ulated ir   | Append      | dix L, eq | uation L  | 13 or L1               | 3a), als    | o see Ta       | ble 5       |              |          | •                    |      |
| (68)m= 217.3                 | 4 219.59                  | 213.91      | 201.81      | 186.54    | 172.18    | 162.59                 | 160.34      | 166.02         | 178.12      | 193.39       | 207.75   |                      | (68) |
| Cooking gair                 | ns (calcula               | ated in A   | ppendix     | L, equat  | ion L15   | or L15a)               | ), also s   | ee Table       | 5           |              |          | •                    |      |
| (69)m= 35.22                 | 2 35.22                   | 35.22       | 35.22       | 35.22     | 35.22     | 35.22                  | 35.22       | 35.22          | 35.22       | 35.22        | 35.22    |                      | (69) |
| Pumps and                    | fans gains                | (Table 5    | 5a)         |           |           |                        |             | -              |             |              |          | •                    |      |
| (70)m= 0                     | 0                         | 0           | 0           | 0         | 0         | 0                      | 0           | 0              | 0           | 0            | 0        |                      | (70) |
| Losses e.g.                  | evaporatio                | n (negat    | tive valu   | es) (Tab  | le 5)     |                        |             | -              | -           | -            | -        | •                    |      |
| (71)m= -97.7                 | 4 -97.74                  | -97.74      | -97.74      | -97.74    | -97.74    | -97.74                 | -97.74      | -97.74         | -97.74      | -97.74       | -97.74   | ]                    | (71) |
| Water heating                | ng gains (T               | Table 5)    |             |           |           |                        | -           |                |             |              | -        |                      |      |
| (72)m= 92.26                 | 90.13                     | 85.7        | 79.69       | 75.78     | 70.28     | 65.61                  | 71.6        | 73.72          | 79.95       | 86.98        | 90.13    | ]                    | (72) |
| Total intern                 | al gains =                |             | -           | -         | (66)      | )m + (67)m             | n + (68)m   | + (69)m +      | (70)m + (7  | '1)m + (72)  | )m       | •                    |      |
| (73)m= 391.7                 | 9 389.39                  | 375.54      | 353.48      | 331.19    | 309.9     | 296.26                 | 302.51      | 314.06         | 336.34      | 361.76       | 380.7    | ]                    | (73) |
| 6. Solar ga                  | ins:                      |             |             |           |           |                        |             |                |             |              |          |                      |      |
| Solar gains ar               | e calculated              | using sola  | r flux from | Table 6a  | and assoc | iated equa             | itions to d | onvert to th   | ne applical | ole orientat | tion.    |                      |      |
| Orientation:                 |                           |             | Area        |           | Flu       |                        |             | g_<br>Tabla 6b | _           | FF           |          | Gains                |      |
|                              | Table 6d                  |             | m²          |           | Ta        | ble 6a                 | . –         | Table 6b       | _ '         | able 6c      |          | (W)                  | ,    |
| North 0.9                    | × 0.77                    | X           | 3.6         | 66        | X 1       | 10.63                  | X           | 0.85           | x           | 0.7          | =        | 16.05                | (74) |
| North 0.9                    | × 0.77                    | X           | 3.6         | 66        | x 2       | 20.32                  | X           | 0.85           | X           | 0.7          | =        | 30.67                | (74) |
| North 0.9                    | × 0.77                    | X           | 3.6         | 66        | x 3       | 34.53                  | x           | 0.85           | x           | 0.7          | =        | 52.11                | (74) |
| North 0.9                    | × 0.77                    | X           | 3.6         | 66        | X 5       | 55.46                  | x           | 0.85           | x           | 0.7          | =        | 83.7                 | (74) |
| North 0.9                    | × 0.77                    | X           | 3.6         | 66        | x         | 74.72                  | x           | 0.85           | x           | 0.7          | =        | 112.76               | (74) |

|               |                 |                     | _           |                       |                  |           |        |           |        |                          |                     |                        |          |               |      |
|---------------|-----------------|---------------------|-------------|-----------------------|------------------|-----------|--------|-----------|--------|--------------------------|---------------------|------------------------|----------|---------------|------|
| North         | 0.9x            | 0.77                | X           | 3.6                   | 66               | X         | 7      | '9.99     | X      | 0.85                     | X                   | 0.7                    | =        | 120.71        | (74) |
| North         | 0.9x            | 0.77                | X           | 3.6                   | 66               | X         | 7      | 74.68     | X      | 0.85                     | X                   | 0.7                    | =        | 112.7         | (74) |
| North         | 0.9x            | 0.77                | X           | 3.6                   | 66               | x         | 5      | 9.25      | X      | 0.85                     | X                   | 0.7                    | =        | 89.41         | (74) |
| North         | 0.9x            | 0.77                | X           | 3.6                   | 6                | x         | 4      | 1.52      | x      | 0.85                     | X                   | 0.7                    | =        | 62.65         | (74) |
| North         | 0.9x            | 0.77                | x           | 3.6                   | 6                | x         | 2      | 24.19     | x      | 0.85                     | X                   | 0.7                    | =        | 36.51         | (74) |
| North         | 0.9x            | 0.77                | X           | 3.6                   | 66               | x         | 1      | 3.12      | X      | 0.85                     | X                   | 0.7                    | =        | 19.8          | (74) |
| North         | 0.9x            | 0.77                | х           | 3.6                   | 66               | x         | 3      | 8.86      | x      | 0.85                     | X                   | 0.7                    | =        | 13.38         | (74) |
| South         | 0.9x            | 0.77                | x           | 3.1                   | 2                | x         | 4      | 6.75      | x      | 0.85                     | X                   | 0.7                    | =        | 60.15         | (78) |
| South         | 0.9x            | 0.77                | х           | 3.1                   | 2                | x         | 7      | 6.57      | x      | 0.85                     | X                   | 0.7                    | =        | 98.5          | (78) |
| South         | 0.9x            | 0.77                | x           | 3.1                   | 2                | x         | 9      | 7.53      | x      | 0.85                     | x                   | 0.7                    | =        | 125.48        | (78) |
| South         | 0.9x            | 0.77                | x           | 3.1                   | 2                | x         | 1      | 10.23     | x      | 0.85                     | x                   | 0.7                    |          | 141.81        | (78) |
| South         | 0.9x            | 0.77                | x           | 3.1                   | 2                | x         | 1      | 14.87     | x      | 0.85                     | x                   | 0.7                    |          | 147.78        | (78) |
| South         | 0.9x            | 0.77                | x           | 3.1                   | 2                | x         | 1      | 10.55     | х      | 0.85                     | X                   | 0.7                    |          | 142.22        | (78) |
| South         | 0.9x            | 0.77                | x           | 3.1                   | 2                | X         | 1      | 08.01     | x      | 0.85                     | x                   | 0.7                    |          | 138.96        | (78) |
| South         | 0.9x            | 0.77                | x           | 3.1                   | 2                | x         | 1      | 04.89     | x      | 0.85                     | x                   | 0.7                    | =        | 134.95        | (78) |
| South         | 0.9x            | 0.77                | X           | 3.1                   | 2                | x         | 1      | 01.89     | x      | 0.85                     | x                   | 0.7                    |          | 131.07        | (78) |
| South         | 0.9x            | 0.77                | x           | 3.1                   | 2                | x         | 8      | 32.59     | x      | 0.85                     | x                   | 0.7                    | =        | 106.25        | (78) |
| South         | 0.9x            | 0.77                | x           | 3.1                   | 2                | X         | 5      | 55.42     | Х      | 0.85                     | X                   | 0.7                    | =        | 71.29         | (78) |
| South         | 0.9x            | 0.77                | j x         | 3.1                   | 2                | х         | ,      | 40.4      | Х      | 0.85                     | X                   | 0.7                    |          | 51.97         | (78) |
|               |                 |                     | 1           |                       |                  |           |        |           |        |                          |                     |                        |          |               |      |
| Solar ga      | ains in w       | atts, calcul        | lated       | for eacl              | n montl          | 1         |        |           | (83)m  | = Sum(74)r               | m(82)m              | 1                      |          |               |      |
| T T           |                 |                     | 7.59        | 225.52                | 260.54           | _         | 62.93  | 251.65    | 224    | .36 193.7                | 3 142.7             | 5 91.09                | 65.35    | ]             | (83) |
| Total ga      | ains – int      | ernal and           | solar       | (84)m =               | (73)m            | + (8      | 33)m   | , watts   |        |                          |                     |                        | •        | -             |      |
| (84)m=        | 467.98          | 518.56 553          | 3.13        | 578.99                | 591.72           | 5         | 72.83  | 547.91    | 526    | .87 507.7                | 9 479.0             | 9 452.85               | 446.05   |               | (84) |
| 7. Mea        | ın interna      | al tempera          | ture (      | heating               | seaso            | n)        |        |           |        |                          |                     |                        |          |               |      |
|               |                 | uring heati         |             |                       |                  |           | area   | from Tab  | ole 9, | Th1 (°C)                 |                     |                        |          | 21            | (85) |
| •             |                 | or for gains        | •           |                       |                  | _         |        |           |        | , ,                      |                     |                        |          |               |      |
| Γ             | Jan             | Feb N               | /lar        | Apr                   | May              | Ť         | Jun    | Jul       | Aı     | ug Ser                   | o Oc                | t Nov                  | Dec      |               |      |
| (86)m=        | 1               | 1                   | 1           | 1                     | 0.99             | (         | 0.98   | 0.96      | 0.9    | 7 0.99                   | 1                   | 1                      | 1        |               | (86) |
| Mean i        | internal t      | emperatur           | e in I      | iving are             | ea T1 (          | follo     | w ste  | ns 3 to 7 | 7 in T | able 9c)                 | •                   | •                      | •        | _             |      |
| (87)m=        | T I             |                     | .02         | 19.43                 | 19.88            |           | 20.33  | 20.62     | 20.    |                          | 1 19.6              | 4 19.07                | 18.6     | 1             | (87) |
|               | roturo d        | uring booti         | na n        | oriodo ir             | root o           | -L        | منالم  | from To   | hlo (  |                          |                     | <u> </u>               | <u>I</u> | _             |      |
| (88)m=        | T I             | uring heati         | .53         | 18.55                 | 18.55            | 1         | 8.57   | 18.57     | 18.5   | `_                       | <u> </u>            | 5 18.55                | 18.54    | Ī             | (88) |
| (00)          | 10.00           | Į                   |             |                       |                  |           |        | <u> </u>  |        | 10.00                    | 10.0                | 7 10.00                | 10.01    | _             | ()   |
|               |                 |                     |             | est ot di             | welling,         | h2,       | •      | T         | T      | 4 0 07                   | 1 4                 | 1 4                    | 1 4      | 7             | (90) |
|               | tion facto      |                     |             |                       | 0.00             |           |        | 0.76      | 0.8    | 1 0.97                   | 1                   | 1                      | 1        |               | (89) |
| (89)m=        | 1               | 1                   | 1           | 1                     | 0.99             |           | 0.94   | <u> </u>  |        |                          | -                   | •                      |          | -             |      |
| (89)m= Mean i | 1<br>internal t | 1<br>emperatur      | e in t      | 1<br>he rest          | of dwel          | ling      | T2 (f  | ollow ste | Ė      |                          |                     | · ·                    |          | <u>.</u><br>1 |      |
| (89)m=        | 1               | 1<br>emperatur      | 1           | 1                     |                  | ling      |        | <u> </u>  | eps 3  |                          | 5 17.1              |                        | 15.6     | -<br>]        | (90) |
| (89)m= Mean i | 1<br>internal t | 1<br>emperatur      | e in t      | 1<br>he rest          | of dwel          | ling      | T2 (f  | ollow ste | Ė      |                          | 5 17.1              | 3 16.29<br>ving area ÷ |          | 0.28          | (90) |
| (89)m= Mean i | 1<br>internal t | 1<br>emperatur      | 1<br>e in t | 1<br>he rest<br>16.81 | of dwel<br>17.47 | ling<br>1 | T2 (fo | ollow ste | 18.4   | 17.96                    | 5 17.13<br>fLA = Li |                        |          | 0.28          | `    |
| (89)m= Mean i | 1 internal t    | 1 emperatur 15.8 16 | 1<br>e in t | 1<br>he rest<br>16.81 | of dwel<br>17.47 | ling<br>1 | T2 (fo | ollow ste | 18.4   | 44   17.96<br>– fLA) × T | 6 17.13<br>fLA = Li | ving area ÷            |          | 0.28          | `    |

|                                      | •         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | •           | •                  |           |            | •           |                  |             |          |              |
|--------------------------------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|--------------------|-----------|------------|-------------|------------------|-------------|----------|--------------|
| (93)m= 16.44                         | 16.61     | 16.98       | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.14     | 18.73       | 19.07              | 19.03     | 18.58      | 17.82       | 17.06            | 16.43       |          | (93)         |
| 8. Space hea                         |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    |           |            |             |                  |             |          |              |
| Set Ti to the i<br>the utilisation   |           |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | ed at ste   | ep 11 of           | Table 9   | o, so tha  | t Ti,m=(    | 76)m an          | d re-calc   | ulate    |              |
| Jan                                  | Feb       | Mar         | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May       | Jun         | Jul                | Aug       | Sep        | Oct         | Nov              | Dec         |          |              |
| Utilisation fac                      | l         |             | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |             |                    |           |            |             |                  |             |          |              |
| (94)m= 1                             | 1         | 1           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98      | 0.95        | 0.84               | 0.87      | 0.97       | 0.99        | 1                | 1           |          | (94)         |
| Useful gains,                        | hmGm      | , W = (94   | 4)m x (84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4)m       |             |                    |           |            |             |                  |             |          |              |
| (95)m= 467.47                        | 517.68    | 551.49      | 575.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 582.04    | 542.87      | 461.32             | 459.76    | 492.54     | 476.19      | 452.02           | 445.65      |          | (95)         |
| Monthly avera                        |           | 1           | <del>.                                      </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | r           |                    |           |            | 1           |                  |             |          | 4            |
| (96)m= 4.3                           | 4.9       | 6.5         | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7      | 14.6        | 16.6               | 16.4      | 14.1       | 10.6        | 7.1              | 4.2         |          | (96)         |
| Heat loss rate (97)m= 3343.15        | i         | an intern   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Lm , W =    | =[(39)m :<br>660.6 |           |            |             | 2705 52          | 2227.00     |          | (97)         |
| ` '                                  |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | <u> </u>           | 703.52    | 1205.2     | l .         | 2705.53          | 3337.08     |          | (97)         |
| Space heatin<br>(98)m= 2139.51       |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 862.78    | 0           | 0.02               | 0         | 0 0        | 1099.68     | r -              | 2151.23     |          |              |
| (66)111= [2166.61                    | 1011.00   | 1727.00     | 1272.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 002.70    |             |                    |           |            | l           | ) = Sum(9        | <u> </u>    | 12690.34 | (98)         |
| Space heatin                         | a roquir  | omont in    | k\\/\b/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/voor    |             |                    | . 0.10    | . poi youi | (           | <i>)</i> •••••(• |             |          | (99)         |
| ·                                    | • .       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    |           |            |             |                  | Ĺ           | 160.64   | (99)         |
| 9b. Energy rec                       |           |             | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Ĭ         |             |                    |           |            |             |                  |             |          |              |
| This part is use<br>Fraction of spa  |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    | <b>.</b>  | •          |             | unity scr        | neme.       | 0        | (301)        |
| Fraction of spa                      |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    |           |            |             |                  |             | 1        | (302)        |
|                                      |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    | -// for   | CUID and   | 45 65       | - 11 11 1        |             |          | (302)        |
| The community so includes boilers, h |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    |           |            | up to rour  | otner neat       | sources; tr | ie iaπer |              |
| Fraction of hea                      | at from C | Commun      | ity boiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s         |             |                    |           |            |             |                  |             | 1        | (303a)       |
| Fraction of total                    | al space  | heat fro    | m Comn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nunity bo | oilers      |                    |           |            | (3          | 02) x (303       | a) =        | 1        | (304a)       |
| Factor for cont                      | rol and   | charging    | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Table    | 4c(3)) fo   | r commu            | unity hea | iting sys  | tem         |                  | [           | 1        | (305)        |
| Distribution los                     | ss factor | (Table 1    | 2c) for c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | commun    | ity heatii  | ng syste           | m         |            |             |                  | [           | 1.05     | (306)        |
| Space heating                        |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    |           |            |             |                  | L           | kWh/yea  | <del>r</del> |
| Annual space                         | _         | requiren    | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |             |                    |           |            |             |                  |             | 12690.34 | _            |
| Space heat fro                       | m Comi    | munity b    | oilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             |                    |           | (98) x (30 | 04a) x (30  | 5) x (306) :     | = [         | 13324.86 | (307a)       |
| Efficiency of se                     | econdar   | y/supple    | mentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating   | system      | in % (fro          | m Table   | 4a or A    | ppendix     | E)               | Ī           | 0        | (308         |
| Space heating                        | require   | ment fro    | m secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dary/sur  | plemen      | tary syst          | tem       | (98) x (30 | 01) x 100 · | ÷ (308) =        | Ī           | 0        | (309)        |
| Water heating                        |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    |           |            |             |                  | L           |          | _            |
| Annual water h                       |           | equirem     | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |                    |           |            |             |                  | ſ           | 2102.07  | 7            |
| If DHW from c                        | ommuni    | ty schem    | ne:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |                    |           |            |             |                  | L           |          | _            |
| Water heat fro                       |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    |           | (64) x (30 | 03a) x (30  | 5) x (306) :     | =           | 2207.17  | (310a)       |
| Electricity used                     | d for hea | at distribu | ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |             |                    | 0.01      | × [(307a). | (307e) +    | · (310a)(        | [310e)] =   | 155.32   | (313)        |
| Cooling System                       | m Energ   | y Efficie   | ncy Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0         |             |                    |           |            |             |                  | [           | 0        | (314)        |
| Space cooling                        | (if there | is a fixe   | d cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g systen  | n, if not e | enter 0)           |           | = (107) ÷  | (314) =     |                  |             | 0        | (315)        |
| Electricity for p                    |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    |           |            |             |                  | -           |          | _            |
| mechanical ve                        | ntilation | - balanc    | ed, extra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | act or po | sitive in   | put from           | outside   |            |             |                  |             | 0        | (330a)       |
|                                      |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                    |           |            |             |                  |             |          |              |

| warm air heating system fans                                                              |                                     |                          |        | 0                      | (330b) |
|-------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|--------|------------------------|--------|
| pump for solar water heating                                                              |                                     |                          |        | 0                      | (330g) |
| Total electricity for the above, kWh/year                                                 | =(330a) + (330                      | b) + (330g) =            |        | 0                      | (331)  |
| Energy for lighting (calculated in Appendix L)                                            |                                     |                          |        | 398.03                 | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                             |                                     |                          |        |                        |        |
|                                                                                           | Energy<br>kWh/year                  | Emission fact kg CO2/kWh |        | nissions<br>  CO2/year |        |
| CO2 from other sources of space and water heating (not CI Efficiency of heat source 1 (%) | HP) using two fuels repeat (363) to | (366) for the second     | d fuel | 90                     | (367a) |
| CO2 associated with heat source 1 [(30                                                    | 07b)+(310b)] x 100 ÷ (367b) x       | 0                        | = [    | 3727.69                | (367)  |
| Electrical energy for heat distribution                                                   | [(313) x                            | 0.52                     | = [    | 80.61                  | (372)  |
| Total CO2 associated with community systems                                               | (363)(366) + (368)(37               | 2)                       | = [    | 3808.3                 | (373)  |
| CO2 associated with space heating (secondary)                                             | (309) x                             | 0                        | = [    | 0                      | (374)  |
| CO2 associated with water from immersion heater or instan                                 | taneous heater (312) x              | 0.22                     | = [    | 0                      | (375)  |
| Total CO2 associated with space and water heating                                         | (373) + (374) + (375) =             |                          |        | 3808.3                 | (376)  |
| CO2 associated with electricity for pumps and fans within d                               | welling (331)) x                    | 0.52                     | = [    | 0                      | (378)  |
| CO2 associated with electricity for lighting                                              | (332))) x                           | 0.52                     | =      | 206.58                 | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                    |                                     |                          |        | 4014.88                | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                  |                                     |                          |        | 50.82                  | (384)  |
| El rating (section 14)                                                                    |                                     |                          |        | 56.53                  | (385)  |

| User Details:                                                                                                                                                                                                    |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Assessor Name: Stroma Number: Software Name: Stroma FSAP 2012 Software Version: Version:                                                                                                                         | 1.0.3.4       |
| Property Address: Unit 11                                                                                                                                                                                        |               |
| Address: , london  1. Overall dwelling dimensions:                                                                                                                                                               |               |
| Š                                                                                                                                                                                                                | Volume(m³)    |
| Basement 51 (1a) x 1.9 (2a) =                                                                                                                                                                                    | 96.9 (3a)     |
| Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ [4]                                                                                                                                                       |               |
| Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =$                                                                                                                                                                | 96.9 (5)      |
| 2. Ventilation rate:                                                                                                                                                                                             |               |
|                                                                                                                                                                                                                  | m³ per hour   |
| Number of chimneys $0 + 0 = 0 \times 40 =$                                                                                                                                                                       | 0 (6a)        |
| Number of open flues $0 + 0 + 0 = 0 \times 20 =$                                                                                                                                                                 | 0 (6b)        |
| Number of intermittent fans  2 x 10 =                                                                                                                                                                            | 20 (7a)       |
| Number of passive vents  0 x 10 =                                                                                                                                                                                | 0 (7b)        |
| Number of flueless gas fires                                                                                                                                                                                     | 0 (7c)        |
| Airahan                                                                                                                                                                                                          | and hour      |
|                                                                                                                                                                                                                  | nges per hour |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) =$ 20 $\div (5) =$ 1 If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) | 0.21 (8)      |
| Number of storeys in the dwelling (ns)                                                                                                                                                                           | 0 (9)         |
| Additional infiltration [(9)-1]x0.1 =                                                                                                                                                                            | 0 (10)        |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction                                                                                                                         | 0 (11)        |
| if both types of wall are present, use the value corresponding to the greater wall area (after                                                                                                                   |               |
| deducting areas of openings); if equal user 0.35  If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0                                                                                  | 0 (12)        |
| If no draught lobby, enter 0.05, else enter 0                                                                                                                                                                    | 0 (13)        |
| Percentage of windows and doors draught stripped                                                                                                                                                                 | 0 (14)        |
| Window infiltration 0.25 - [0.2 x (14) ÷ 100] =                                                                                                                                                                  | 0 (15)        |
| Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =                                                                                                                                                       | 0 (16)        |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area                                                                                                                | 10 (17)       |
| If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$                                                                                                                 | 0.71 (18)     |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used                                                                                                 |               |
| Number of sides sheltered                                                                                                                                                                                        | 1 (19)        |
| Shelter factor (20) = 1 - [0.075 x (19)] =                                                                                                                                                                       | 0.92 (20)     |
| Infiltration rate incorporating shelter factor (21) = (18) x (20) =                                                                                                                                              | 0.65 (21)     |
| Infiltration rate modified for monthly wind speed                                                                                                                                                                |               |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                  |               |
| Monthly average wind speed from Table 7                                                                                                                                                                          |               |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7                                                                                                                                                               |               |
| Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                   |               |
| (22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                  |               |

| 0.83                                 | 0.82       | 0.8         | 0.72           | 0.7        | 0.62        | 0.62            | 0.6          | 0.65                                            | 0.7              | 0.74        | 0.77                  |               |          |
|--------------------------------------|------------|-------------|----------------|------------|-------------|-----------------|--------------|-------------------------------------------------|------------------|-------------|-----------------------|---------------|----------|
| alculate effec                       |            | _           | rate for t     | he appli   | cable ca    | se              | !            | !                                               | !                | !           | !                     | <b>-</b>      |          |
| If mechanical If exhaust air he      |            |             | andiv N (2     | 3h) - (23a | a) × Emy (e | aguation (1     | VSV) othe    | nvica (23h                                      | ) = (23a)        |             |                       | 0             | (2       |
| If balanced with                     |            |             |                |            |             |                 |              |                                                 | ) = (23a)        |             |                       | 0             | (2       |
|                                      |            | -           | -              | _          |             |                 |              |                                                 | Ola \            | 005) [      | 4 (00-                | 0             | (2       |
| a) If balance                        | a mecn     | anicai ve   | ntilation      | with ne    | at recove   | ery (MV)        | 1R) (248     | $\frac{a)m = (2a)}{a}$                          | 2b)m + (<br>0    | 23b) × [    | $\frac{1 - (230)}{0}$ | ) ÷ 100]<br>] | (2       |
|                                      |            |             |                |            |             |                 |              |                                                 |                  |             |                       | _             | (2       |
| b) If balance                        | o mech     | anicai ve   | niliation<br>0 | without    | neat rec    | overy (r        | 0            | $\int_{0}^{\infty} \int_{0}^{\infty} dx = (22)$ | 20)m + (.<br>  0 | 230)        | 0                     | 1             | (2       |
|                                      |            |             |                |            |             |                 |              |                                                 |                  |             |                       | _             | (2       |
| c) If whole h<br>if (22b)n           |            |             |                | •          | •           |                 |              |                                                 | 5 × (23h         | n)          |                       |               |          |
| 4c)m= 0                              | 0          | 0           | 0              | 0          | 0           | 0               | 0            | 0                                               | 0                | 0           | 0                     | ]             | (2       |
| d) If natural                        | ventilatio | n or wh     | ole hous       | e nositiv  | ve input    | L<br>ventilatio | n from I     | L<br>loft                                       | <u> </u>         | <u> </u>    | <u> </u>              | J             |          |
| if (22b)n                            |            |             |                |            | •           |                 |              |                                                 | 0.5]             |             |                       |               |          |
| 4d)m= 0.85                           | 0.83       | 0.82        | 0.76           | 0.75       | 0.69        | 0.69            | 0.68         | 0.71                                            | 0.75             | 0.77        | 0.79                  |               | (2       |
| Effective air                        | change     | rate - er   | nter (24a      | ) or (24k  | o) or (24   | c) or (24       | d) in box    | x (25)                                          | -                | -           | -                     | _             |          |
| 5)m= 0.85                            | 0.83       | 0.82        | 0.76           | 0.75       | 0.69        | 0.69            | 0.68         | 0.71                                            | 0.75             | 0.77        | 0.79                  |               | (2       |
| 3. Heat losse                        | s and he   | at loss i   | naramet        | or.        |             |                 |              |                                                 |                  |             |                       |               |          |
| LEMENT                               | Gros       |             | Openin         |            | Net Ar      | ea              | U-val        | IIE                                             | AXU              |             | k-valu                | e             | ΑΧk      |
|                                      | area       |             | m              |            | A ,r        |                 | W/m2         |                                                 | (W/I             | K)          | kJ/m².                |               | kJ/K     |
| oo <mark>rs</mark>                   |            |             |                |            | 1.9         | х               | 1.4          | = [                                             | 2.66             |             |                       |               | (2       |
| /in <mark>dows</mark> Type           | 1          |             |                |            | 1.67        | x1              | /[1/( 4.8 )+ | 0.04] =                                         | 6.72             | П           |                       |               | (2       |
| indows Type                          | 2          |             |                |            | 0.84        | x1.             | /[1/( 4.8 )+ | 0.04] =                                         | 3.38             | П           |                       |               | (2       |
| /alls Type1                          | 45.        | 3           | 2.51           |            | 42.79       | ) x             | 2.1          |                                                 | 89.86            | Ē [         |                       | $\neg$        | (2       |
| alls Type2                           | 15.3       | 39          | 1.9            | =          | 13.49       | x               | 2.1          | <b>=</b> i                                      | 28.33            | Ħ i         |                       | 7 F           | (2       |
| oof                                  | 31.5       | 9           | 0              |            | 31.9        | x               | 0.28         | <b>=</b>                                        | 8.93             | F i         |                       | <b>=</b>      | (3       |
| otal area of e                       |            |             |                |            | 92.59       |                 |              |                                                 |                  |             |                       |               | ^`<br>(; |
| or windows and                       |            |             | effective wi   | ndow U-va  |             |                 | ı formula 1  | /[(1/U-valu                                     | ıe)+0.04] a      | as given in | paragrapi             | h 3.2         | (        |
| include the area                     | as on both | sides of ir | nternal wal    | ls and par | titions     |                 |              |                                                 |                  |             |                       |               |          |
| abric heat los                       | s, W/K     | = S (A x    | U)             |            |             |                 | (26)(30)     | ) + (32) =                                      |                  |             |                       | 139.          | 89 (3    |
| eat capacity                         | Cm = S(    | (A x k )    |                |            |             |                 |              | ((28)                                           | (30) + (32       | 2) + (32a). | (32e) =               | 0             | (        |
| hermal mass                          | parame     | ter (TMF    | P = Cm -       | - TFA) ir  | n kJ/m²K    |                 |              | Indica                                          | tive Value       | : High      |                       | 450           | ) (3     |
| or design assess<br>an be used inste |            |             |                | construct  | ion are no  | t known pr      | ecisely the  | e indicative                                    | values of        | TMP in T    | able 1f               |               |          |
| hermal bridge                        |            |             |                | ısina Ar   | nendiy l    | <b>~</b>        |              |                                                 |                  |             |                       | 14            | · (3     |
| details of therma                    | •          | ,           |                |            | •           | `               |              |                                                 |                  |             |                       | 14            | (        |
| otal fabric he                       |            |             | ()             |            | ,           |                 |              | (33) +                                          | (36) =           |             |                       | 153.          | 89 (3    |
| entilation hea                       | at loss ca | alculated   | l monthly      | /          |             |                 |              | (38)m                                           | = 0.33 × (       | (25)m x (5) | )                     |               |          |
| Jan                                  | Feb        | Mar         | Apr            | May        | Jun         | Jul             | Aug          | Sep                                             | Oct              | Nov         | Dec                   |               |          |
| 8)m= 27.09                           | 26.65      | 26.23       | 24.25          | 23.88      | 22.15       | 22.15           | 21.83        | 22.81                                           | 23.88            | 24.63       | 25.41                 |               | (3       |
|                                      | o officio  | o+ \\//k    |                |            | -           | -               | -            | (39)m                                           | = (37) + (37)    | 38)m        | -                     | -             |          |
| eat transfer o                       | ;oemciei   | II, VV/T    |                |            |             |                 |              | (00)                                            | (0.) . (         |             |                       |               |          |

| eat lo          | ss para            | meter (F             | HLP), W/                | m²K              |                  | •                  | •                 |                  | (40)m              | = (39)m ÷          | (4)                    |           |         |            |
|-----------------|--------------------|----------------------|-------------------------|------------------|------------------|--------------------|-------------------|------------------|--------------------|--------------------|------------------------|-----------|---------|------------|
| -0)m=           | 3.55               | 3.54                 | 3.53                    | 3.49             | 3.49             | 3.45               | 3.45              | 3.45             | 3.46               | 3.49               | 3.5                    | 3.52      |         | _          |
| umbe            | or of day          | re in mor            | nth (Tabl               | 0 12)            |                  |                    |                   |                  | ,                  | Average =          | Sum(40) <sub>1</sub> . | 12 /12=   | 3.49    | (4         |
| umbe            | Jan                | Feb                  | Mar                     | Apr              | May              | Jun                | Jul               | Aug              | Sep                | Oct                | Nov                    | Dec       |         |            |
| 1)m=            | 31                 | 28                   | 31                      | 30               | 31               | 30                 | 31                | 31               | 30                 | 31                 | 30                     | 31        |         | (4         |
|                 |                    |                      |                         |                  |                  |                    |                   |                  |                    |                    |                        |           |         |            |
| 4. Wa           | iter heat          | ing ener             | gy requi                | rement:          |                  |                    |                   |                  |                    |                    |                        | kWh/ye    | ar:     |            |
| ssum            | ied occu           | pancy, N             | N                       |                  |                  |                    |                   |                  |                    |                    | 1.                     | 72        |         | (4         |
| if TF           |                    | 9, N = 1             |                         | [1 - exp         | (-0.0003         | 849 x (TF          | FA -13.9          | )2)] + 0.0       | 0013 x (           | ΓFA -13.           |                        |           |         | ·          |
|                 |                    | •                    | iter usac               | e in litre       | s per da         | ay Vd,av           | erage =           | (25 x N)         | + 36               |                    | 75                     | .04       |         | (4         |
| educe           | the annua          | ıl average           |                         | usage by         | 5% if the a      | lwelling is        | designed t        | to achieve       |                    | se target o        |                        |           |         | `          |
| or more         |                    |                      |                         | - '              |                  |                    |                   | ۸۰۰۵             | Con                | Oct                | Nov                    | Doo       |         |            |
| ot wate         | Jan<br>er usage ir | Feb<br>n litres per  | Mar<br>day for ea       | Apr<br>ach month | May $Vd, m = fa$ | Jun<br>ctor from 7 | Jul<br>Table 1c x | Aug<br>(43)      | Sep                | Oct                | Nov                    | Dec       |         |            |
| 4)m=            | 82.54              | 79.54                | 76.54                   | 73.54            | 70.54            | 67.54              | 67.54             | 70.54            | 73.54              | 76.54              | 79.54                  | 82.54     |         |            |
|                 |                    |                      |                         |                  |                  |                    |                   |                  |                    |                    | m(44) <sub>112</sub> = |           | 900.48  | (-         |
| nergy (         |                    |                      | used - cal              |                  |                  |                    |                   | Tm / 3600        | kWh/mor            |                    |                        |           |         |            |
| 5)m=            | 122.41             | 107.06               | 110.48                  | 96.32            | 92.42            | <b>7</b> 9.75      | 73.9              | 84.8             | 85.81              | 100.01             | 109.17                 | 118.55    |         | <b>—</b> , |
| instant         | taneous w          | ater heatir          | ng at point             | of use (no       | hot water        | storage),          | enter 0 in        | boxes (46)       |                    | Total = Su         | m(45) <sub>112</sub> = |           | 1180.67 | (          |
| 6)m=            | 18.36              | 16.06                | 16.57                   | 14.45            | 13.86            | 11.96              | 11.08             | 12.72            | 12.87              | 15                 | 16.37                  | 17.78     |         | (          |
|                 | storage            |                      |                         |                  |                  |                    |                   |                  |                    |                    |                        |           |         |            |
|                 |                    | ,                    |                         |                  |                  |                    |                   | within sa        | ime ves            | sel                |                        | 160       |         | (          |
|                 | •                  | _                    | nd no ta<br>hot wate    |                  | -                |                    |                   | (47)<br>mbi boil | ers) ente          | er 'O' in <i>(</i> | <i>4</i> 7)            |           |         |            |
|                 | storage            |                      | not wate                | 7 (tillo 11)     | 1014405 1        | notantai           | 10000 00          | THOI DOIL        | 010) 0110          | 51 O III (         | 71)                    |           |         |            |
| ) If m          | anufact            | urer's de            | eclared le              | oss facto        | or is kno        | wn (kWh            | n/day):           |                  |                    |                    |                        | 0         |         | (          |
| empe            | erature fa         | actor fro            | m Table                 | 2b               |                  |                    |                   |                  |                    |                    |                        | 0         |         | (          |
|                 |                    |                      | storage                 | -                |                  | :_                 |                   | (48) x (49)      | =                  |                    | 1                      | 10        |         | (          |
|                 |                    |                      | eclared of<br>factor fr | -                |                  |                    |                   |                  |                    |                    | 0.                     | 02        |         | (          |
|                 |                    | _                    | ee sectio               |                  | `                |                    | ,                 |                  |                    |                    |                        |           |         |            |
|                 |                    | from Tal             |                         | 01               |                  |                    |                   |                  |                    |                    |                        | 03        |         | (          |
| •               |                    |                      | m Table                 |                  |                  |                    |                   |                  |                    |                    | 0                      | .6        |         | (          |
| ٠,              |                    | m water<br>54) in (5 | storage                 | , kWh/ye         | ear              |                    |                   | (47) x (51)      | x (52) x (         | 53) =              |                        | 03        |         | (          |
|                 | ` ,                | , ,                  | culated f               | or each          | month            |                    |                   | ((56)m = (       | 55) <b>v</b> (41): | m                  | 1.                     | 03        |         | (          |
|                 | 32.01              | 28.92                | 32.01                   | 30.98            | 32.01            | 30.98              | 32.01             | 32.01            | 30.98              | 32.01              | 30.98                  | 32.01     |         | (          |
| s)m=<br>cylinde |                    |                      |                         |                  |                  |                    |                   |                  |                    |                    |                        | m Appendi | хH      | ,          |
| 7)m=            | 32.01              | 28.92                | 32.01                   | 30.98            | 32.01            | 30.98              | 32.01             | 32.01            | 30.98              | 32.01              | 30.98                  | 32.01     |         | (          |
| <i>*</i>        |                    |                      |                         |                  |                  |                    |                   | I                |                    | <u> </u>           | <u> </u>               | 0         |         | (          |
|                 | •                  | •                    | nual) fro<br>culated f  |                  |                  | 59)m = (           | (58) ÷ 36         | 65 × (41)        | m                  |                    |                        | •         |         | (          |
|                 | •                  |                      |                         |                  | ,                | •                  | . ,               | , ,              |                    | . (1               |                        |           |         |            |
|                 | dified by          | factor fr            | om Tabl                 | e H5 if t        | here is s        | solar wat          | er heatii         | ng and a         | cylinde            | r tnermo           | stat)                  |           |         |            |

| Combi loss     | calculated                | Combi loss calculated for each month $(61)m = (60) \div 365 \times (41)m$ |             |                        |           |                        |           |                |            |               |              |                    |      |  |  |
|----------------|---------------------------|---------------------------------------------------------------------------|-------------|------------------------|-----------|------------------------|-----------|----------------|------------|---------------|--------------|--------------------|------|--|--|
| (61)m= 0       | 0 0                       | 0                                                                         | 0           | 0 1)111 =              | 00) + 3   | 05 x (41)              | 0         | T 0            | 0          | 0             | 0            | 1                  | (61) |  |  |
|                |                           |                                                                           |             |                        |           |                        |           |                |            |               |              | J<br>(59)m + (61)m | (0.) |  |  |
| (62)m= 177.6   | <del>-i</del>             | 165.75                                                                    | 149.81      | 147.69                 | 133.24    | 129.18                 | 140.08    |                | 155.28     | 162.66        | 173.82       | (39)111 + (01)111  | (62) |  |  |
| Solar DHW inp  |                           |                                                                           |             |                        |           |                        |           |                |            |               |              |                    | (02) |  |  |
| (add addition  |                           |                                                                           |             |                        |           |                        |           |                | CONTINU    | non to wat    | or ricating) |                    |      |  |  |
| (63)m= 0       | 0                         | 0                                                                         | 0           | 0                      | 0         | 0                      | 0         | 0              | 0          | 0             | 0            | 1                  | (63) |  |  |
| Output from    | water hea                 | ter                                                                       | Į           |                        |           |                        | <u> </u>  |                |            |               |              | l                  |      |  |  |
| (64)m= 177.6   |                           | 165.75                                                                    | 149.81      | 147.69                 | 133.24    | 129.18                 | 140.08    | 139.31         | 155.28     | 162.66        | 173.82       | ]                  |      |  |  |
|                | Į                         | <u> </u>                                                                  | <u> </u>    |                        |           | <u> </u>               | Ou        | tput from w    | ter heate  | r (annual)₁   | l12          | 1831.51            | (64) |  |  |
| Heat gains f   | rom water                 | heating.                                                                  | , kWh/m     | onth 0.2               | 5 ′ [0.85 | × (45)m                | + (61)    | m] + 0.8 x     | k [(46)m   | + (57)m       | + (59)m      | 1                  | -    |  |  |
| (65)m= 59.3    |                           | 55.34                                                                     | 50.03       | 49.34                  | 44.53     | 43.18                  | 46.81     | 46.54          | 51.86      | 54.31         | 58.03        | ĺ                  | (65) |  |  |
| include (5     | 7)m in cal                | culation                                                                  | of (65)m    | only if c              | vlinder i | s in the               | dwellin   | or hot w       | ater is f  | rom com       | munity h     | ı<br>neating       |      |  |  |
| 5. Internal    | •                         |                                                                           |             |                        | -         |                        |           |                |            |               | ,            | <u> </u>           |      |  |  |
| Metabolic ga   |                           |                                                                           |             | ,                      |           |                        |           |                |            |               |              |                    |      |  |  |
| Jar            |                           | Mar                                                                       | Apr         | May                    | Jun       | Jul                    | Aug       | Sep            | Oct        | Nov           | Dec          | ]                  |      |  |  |
| (66)m= 85.9    | 8 85.98                   | 85.98                                                                     | 85.98       | 85.98                  | 85.98     | 85.98                  | 85.98     | 85.98          | 85.98      | 85.98         | 85.98        |                    | (66) |  |  |
| Lighting gair  | ns (calcula               | ted in Ap                                                                 | pendix      | L, equ <mark>at</mark> | ion L9 o  | r L9a), <mark>a</mark> | lso see   | Table 5        |            |               |              |                    |      |  |  |
| (67)m= 17.1    | 3 15.21                   | 12.37                                                                     | 9.36        | 7                      | 5.91      | 6.39                   | 8.3       | 11.14          | 14.15      | 16.51         | 17.6         |                    | (67) |  |  |
| Appliances     | gains (ca <mark>lc</mark> | ulated ir                                                                 | Append      | dix L, eq              | uation L  | 13 or L1               | 3a), als  | o see Ta       | ble 5      |               |              |                    |      |  |  |
| (68)m= 149.8   | 33 151.39                 | 147.47                                                                    | 139.13      | 128.6                  | 118.7     | 112.09                 | 110.54    | 114.45         | 122.8      | 133.32        | 143.22       |                    | (68) |  |  |
| Cooking gai    | ns (calcula               | ated in A                                                                 | ppendix     | L, equat               | ion L15   | or L15a                | ), also   | see Table      | 5          |               | •            | •                  |      |  |  |
| (69)m= 31.6    | 31.6                      | 31.6                                                                      | 31.6        | 31.6                   | 31.6      | 31.6                   | 31.6      | 31.6           | 31.6       | 31.6          | 31.6         |                    | (69) |  |  |
| Pumps and      | fans gains                | (Table 5                                                                  | <br>5a)     |                        |           |                        |           |                |            |               | •            |                    |      |  |  |
| (70)m= 0       | 0                         | 0                                                                         | 0           | 0                      | 0         | 0                      | 0         | 0              | 0          | 0             | 0            |                    | (70) |  |  |
| Losses e.g.    | evaporatio                | n (nega                                                                   | tive valu   | es) (Tab               | le 5)     | •                      | •         | •              |            | •             |              | •                  |      |  |  |
| (71)m= -68.7   | 8 -68.78                  | -68.78                                                                    | -68.78      | -68.78                 | -68.78    | -68.78                 | -68.78    | -68.78         | -68.78     | -68.78        | -68.78       |                    | (71) |  |  |
| Water heating  | ng gains (1               | Table 5)                                                                  |             |                        |           | •                      |           | •              | •          |               |              | •                  |      |  |  |
| (72)m= 79.7    | 2 77.99                   | 74.39                                                                     | 69.49       | 66.32                  | 61.84     | 58.04                  | 62.91     | 64.64          | 69.71      | 75.43         | 77.99        |                    | (72) |  |  |
| Total intern   | al gains =                |                                                                           |             |                        | (66       | )m + (67)m             | n + (68)m | ı + (69)m +    | (70)m + (7 | 71)m + (72)   | )m           | •                  |      |  |  |
| (73)m= 295.4   | 7 293.38                  | 283.02                                                                    | 266.78      | 250.71                 | 235.25    | 225.31                 | 230.54    | 239.03         | 255.44     | 274.06        | 287.61       |                    | (73) |  |  |
| 6. Solar ga    | ins:                      |                                                                           |             |                        |           |                        |           |                |            |               |              |                    |      |  |  |
| Solar gains ar | e calculated              | using sola                                                                | r flux from | Table 6a               | and assoc | iated equa             | tions to  | convert to th  | ne applica |               | tion.        |                    |      |  |  |
| Orientation:   | Access F<br>Table 6d      |                                                                           | Area<br>m²  |                        | Flu       | ıx<br>ble 6a           |           | g_<br>Table 6b | т          | FF<br>able 6c |              | Gains              |      |  |  |
| _              |                           |                                                                           |             |                        |           | DIE Ga                 | . –       | Table 6b       | _ '        | able oc       |              | (W)                | ,    |  |  |
| East 0.9       |                           | X                                                                         | 1.6         | 67                     | X .       | 19.64                  | x         | 0.85           | X          | 0.7           | =            | 13.52              | (76) |  |  |
| East 0.9       |                           | X                                                                         | 1.6         | 67                     | x ;       | 38.42                  | ×         | 0.85           | X          | 0.7           | =            | 26.46              | (76) |  |  |
| East 0.9       |                           | X                                                                         | 1.6         | 67                     | ×         | 63.27                  | ×         | 0.85           | x          | 0.7           | =            | 43.57              | (76) |  |  |
| East 0.9       |                           | х                                                                         | 1.6         | 67                     | x 9       | 92.28                  | x         | 0.85           | x          | 0.7           | =            | 63.54              | (76) |  |  |
| East 0.9       | <b>x</b> 1                | х                                                                         | 1.6         | I                      | x   1     | 13.09                  | X         | 0.85           | X          | 0.7           | =            | 77.88              | (76) |  |  |

| East                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           | <b>-</b> 1                                                        |                                                                                                       | _                                        |                                                            |                             |       | _                                            |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|-----------------------------|-------|----------------------------------------------|
|                                                                                                        | 0.9x                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                                                            | 57                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115.77                                                                                                                                                    | X                                                                 | 0.85                                                                                                  | ×                                        | 0.7                                                        | =                           | 79.72 | (76)                                         |
| East                                                                                                   | 0.9x                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                                                            | 67                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.22                                                                                                                                                    | X                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 75.9  | (76)                                         |
| East                                                                                                   | 0.9x                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                                                            | 67                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94.68                                                                                                                                                     | X                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 65.19 | (76)                                         |
| East                                                                                                   | 0.9x                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                                                            | 67                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73.59                                                                                                                                                     | X                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 50.67 | (76)                                         |
| East                                                                                                   | 0.9x                                                                                                                                   | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                                                            | 67                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.59                                                                                                                                                     | x                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 31.39 | (76)                                         |
| East                                                                                                   | 0.9x                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                                                            | 67                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.49                                                                                                                                                     | X                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 16.86 | (76)                                         |
| East                                                                                                   | 0.9x                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                                                            | 67                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.15                                                                                                                                                     | X                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 11.12 | (76)                                         |
| West                                                                                                   | 0.9x 0.7                                                                                                                               | 77 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                            | 34                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.64                                                                                                                                                     | x                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 6.8   | (80)                                         |
| West                                                                                                   | 0.9x 0.7                                                                                                                               | 77 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                            | 34                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.42                                                                                                                                                     | x                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 13.31 | (80)                                         |
| West                                                                                                   | 0.9x 0.7                                                                                                                               | 77 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                            | 34                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63.27                                                                                                                                                     | x                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 21.92 | (80)                                         |
| West                                                                                                   | 0.9x 0.7                                                                                                                               | 77 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                            | 34                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92.28                                                                                                                                                     | x                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 31.96 | (80)                                         |
| West                                                                                                   | 0.9x                                                                                                                                   | 7 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                                            | 34                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113.09                                                                                                                                                    | X                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 39.17 | (80)                                         |
| West                                                                                                   | 0.9x 0.7                                                                                                                               | 77 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8                                                                                            | 34                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115.77                                                                                                                                                    | x                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 40.1  | (80)                                         |
| West                                                                                                   | 0.9x 0.7                                                                                                                               | 7 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                                            | 34                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.22                                                                                                                                                    | x                                                                 | 0.85                                                                                                  | X                                        | 0.7                                                        | =                           | 38.18 | (80)                                         |
| West                                                                                                   | 0.9x                                                                                                                                   | 7 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                                            | 34                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94.68                                                                                                                                                     | x                                                                 | 0.85                                                                                                  | x                                        | 0.7                                                        | =                           | 32.79 | (80)                                         |
| West                                                                                                   | 0.9x                                                                                                                                   | 77 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                            | 34                                                                                                       | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73.59                                                                                                                                                     | x                                                                 | 0.85                                                                                                  | ×                                        | 0.7                                                        | =                           | 25.49 | (80)                                         |
| West                                                                                                   | 0.9x 0.7                                                                                                                               | 77 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8                                                                                            | 34                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.59                                                                                                                                                     | x                                                                 | 0.85                                                                                                  | ×                                        | 0.7                                                        | =                           | 15.79 | (80)                                         |
| West                                                                                                   | 0.9x                                                                                                                                   | 7 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                            | 34                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.49                                                                                                                                                     | Х                                                                 | 0.85                                                                                                  | Х                                        | 0.7                                                        | =                           | 8.48  | (80)                                         |
| West                                                                                                   | 0.9x 0.7                                                                                                                               | 7 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8                                                                                            | 34                                                                                                       | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.15                                                                                                                                                     | x                                                                 | 0.85                                                                                                  | х                                        | 0.7                                                        |                             | 5.59  | (80)                                         |
|                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                   |                                                                                                       |                                          |                                                            |                             |       |                                              |
| Solar ga                                                                                               | ains in watts,                                                                                                                         | calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d for eac                                                                                      | h month                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           | (83)m                                                             | = Sum(74)m .                                                                                          | (82)m                                    |                                                            |                             |       |                                              |
| (83)m=                                                                                                 | 20.33 39.76                                                                                                                            | 65.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95.51                                                                                          | 117.05                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.82 114.07                                                                                                                                              | 97.9                                                              | 99 76.16                                                                                              | 47.18                                    | 25.35                                                      | 16.72                       |       | (83)                                         |
| Total ga                                                                                               | ains – interna                                                                                                                         | and solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r (84)m =                                                                                      | = (7 <mark>3)</mark> m                                                                                   | 3) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33)m , watts                                                                                                                                              |                                                                   |                                                                                                       |                                          |                                                            |                             |       |                                              |
| (84)m=                                                                                                 | 315.8 333.1                                                                                                                            | 348.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 362.28                                                                                         | 367.75                                                                                                   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.07 339.38                                                                                                                                              | 328                                                               |                                                                                                       | 202 0                                    | 20004                                                      | 00400                       |       |                                              |
| 7. Mea                                                                                                 | an internal ter                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                   | .53 315.19                                                                                            | 302.63                                   | 3 299.4                                                    | 304.32                      |       | (84)                                         |
|                                                                                                        | an internal ter                                                                                                                        | nperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (heating                                                                                       | seasor                                                                                                   | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                           |                                                                   | .53 315.19                                                                                            | 302.6                                    | 3 299.4                                                    | 304.32                      |       | (84)                                         |
|                                                                                                        | an internal ter<br>erature durinç                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | `                                                                                              |                                                                                                          | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | area from Ta                                                                                                                                              |                                                                   |                                                                                                       | 302.6                                    | 3 299.4                                                    | 304.32                      | 21    | (84)                                         |
| Tempe                                                                                                  |                                                                                                                                        | heating p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eriods ir                                                                                      | n the livi                                                                                               | ng a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                   |                                                                                                       | 302.6                                    | 3 299.4                                                    | 304.32                      | 21    |                                              |
| Tempe                                                                                                  | erature during                                                                                                                         | heating p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eriods ir                                                                                      | n the livi                                                                                               | ng a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                           | ble 9,                                                            |                                                                                                       | Oct                                      |                                                            | Dec                         | 21    |                                              |
| Tempe                                                                                                  | erature during                                                                                                                         | heating p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eriods ir                                                                                      | n the livi<br>ea, h1,m                                                                                   | ng a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Table 9a)                                                                                                                                              | ble 9,                                                            | Th1 (°C)                                                                                              |                                          |                                                            |                             | 21    |                                              |
| Tempe<br>Utilisat<br>(86)m=                                                                            | erature during<br>tion factor for<br>Jan Fet                                                                                           | heating pains for Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | periods in<br>living are<br>Apr                                                                | n the livi<br>ea, h1,m<br>May                                                                            | ng a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun Jul 0.99 0.97                                                                                                                                         | ble 9,                                                            | Th1 (°C)  ug Sep  0.99                                                                                | Oct                                      | Nov                                                        | Dec                         | 21    | (85)                                         |
| Tempe<br>Utilisat<br>(86)m=                                                                            | erature during<br>tion factor for<br>Jan Feb<br>1 1                                                                                    | heating p gains for Mar 1 erature in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | periods in<br>living are<br>Apr                                                                | n the livi<br>ea, h1,m<br>May                                                                            | ng a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun Jul 0.99 0.97                                                                                                                                         | ble 9,                                                            | Th1 (°C)  ug Sep  17 0.99  Table 9c)                                                                  | Oct                                      | Nov<br>1                                                   | Dec                         | 21    | (85)                                         |
| Tempe<br>Utilisat<br>(86)m=<br>Mean                                                                    | tion factor for  Jan Fet  1 1  internal temp  18.59 18.71                                                                              | pains for Mar 1 erature in 18.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | periods in<br>living are<br>Apr<br>1<br>living are                                             | n the livi<br>ea, h1,m<br>May<br>1<br>ea T1 (fo                                                          | ng a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dun Jul D.99 0.97 W steps 3 to 20.3 20.6                                                                                                                  | Au 0.9 7 in T 20.9                                                | Th1 (°C)  ug Sep  17 0.99  Table 9c)  56 20.19                                                        | Oct                                      | Nov<br>1                                                   | Dec 1                       | 21    | (85)                                         |
| Tempe<br>Utilisat<br>(86)m=<br>Mean                                                                    | erature during tion factor for Jan Fet 1 1 internal temp                                                                               | pains for Mar 1 erature in 18.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | periods in<br>living are<br>Apr<br>1<br>living are                                             | n the livi<br>ea, h1,m<br>May<br>1<br>ea T1 (fo                                                          | ng and (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dun Jul D.99 0.97 W steps 3 to 20.3 20.6                                                                                                                  | Au 0.9 7 in T 20.9                                                | Th1 (°C)  ug Sep  7 0.99  Table 9c)  56 20.19  9, Th2 (°C)                                            | Oct                                      | Nov<br>1                                                   | Dec 1                       | 21    | (85)                                         |
| Tempe  Utilisat  (86)m=  Mean (87)m=  Tempe (88)m=                                                     | tion factor for  Jan Fet  1 1  internal temp  18.59 18.71  erature during  18.5 18.5                                                   | pains for Mar  1 erature in 18.98 heating pains for 18.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | living are Apr 1 living are 19.4 periods ir 18.52                                              | n the livi<br>ea, h1,m<br>May<br>1<br>ea T1 (for<br>19.85<br>n rest of                                   | ng a (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see | Dun Jul D.99 0.97  w steps 3 to 20.3 20.6  elling from Ta 8.54 18.54                                                                                      | Au 0.9 7 in T 20.9 able 9                                         | Th1 (°C)  ug Sep  7 0.99  Table 9c)  56 20.19  9, Th2 (°C)                                            | Oct 1 19.62                              | Nov<br>1                                                   | Dec 1 1 18.58               | 21    | (85)<br>(86)<br>(87)                         |
| Tempe  Utilisat  (86)m=  Mean i  (87)m=  Tempe (88)m=  Utilisat                                        | tion factor for  Jan Fet  1 1  internal temp  18.59 18.71  erature during  18.5 18.5  tion factor for                                  | gains for Mar 1 erature in 18.98 heating p 18.51 gains for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | living are Apr 1 living are 19.4 periods ir 18.52 rest of d                                    | n the livies, h1,m May 1 ea T1 (for 19.85 n rest of 18.53 welling,                                       | ng a (see see see see see see see see see se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ee Table 9a) Jun Jul 0.99 0.97 w steps 3 to 20.3 20.6 elling from Ta 8.54 18.54 m (see Table                                                              | ble 9,  O.9  7 in T  20.9  able 9  18.9                           | Th1 (°C)  ug Sep  17 0.99  Table 9c)  56 20.19  9, Th2 (°C)  54 18.54                                 | Oct 1 19.62 18.53                        | Nov<br>1<br>19.05                                          | Dec 1 18.58 18.51           | 21    | (85)<br>(86)<br>(87)<br>(88)                 |
| Tempe  Utilisat  (86)m=  Mean i  (87)m=  Tempe (88)m=  Utilisat (89)m=                                 | tion factor for  Jan Fet  1 1  internal temp  18.59 18.71  erature during  18.5 18.5  tion factor for                                  | gains for Mar  1 erature in 18.98 heating p 18.51 gains for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | living are Apr 1 living are 19.4 periods ir 18.52 rest of d                                    | n the livies, h1,m May 1 ea T1 (for 19.85 n rest of 18.53 welling, 0.99                                  | ng (se ) (c) (dw ) 1. h2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dun Jul D.99 0.97  w steps 3 to D.03 20.6  elling from Ta 8.54 18.54  m (see Table D.95 0.78                                                              | ble 9,  Au  0.9  7 in T  20.9  able 9  18.9  9a)  0.8             | Th1 (°C)  ug Sep  17 0.99  Table 9c)  56 20.19  9, Th2 (°C)  54 18.54                                 | Oct 1 19.62 18.53                        | Nov<br>1                                                   | Dec 1 1 18.58               | 21    | (85)<br>(86)<br>(87)                         |
| Tempe  Utilisat  (86)m=  Mean i (87)m=  Tempe (88)m=  Utilisat (89)m=  Mean i                          | tion factor for  Jan Fet  1 1  internal temp  18.59 18.71  erature during  18.5 18.5  tion factor for  1 1  internal temp              | pains for Mar 1 erature in 18.98 heating pains for 18.51 gains for 1 erature in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | living are Apr 1 living are 19.4 periods ir 18.52 rest of deriods ir the rest                  | n the livies, h1,m May 1 ea T1 (for 19.85 n rest of 18.53 welling, 0.99 of dwell                         | ng a (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see | Dun Jul D.99 0.97  w steps 3 to D.93 20.6  elling from Ta 8.54 18.54  m (see Table D.95 0.78  T2 (follow steps)                                           | Au 0.9 7 in T 20.9 able 9 9a) 0.8 eps 3                           | Th1 (°C)  ug Sep  17 0.99  Table 9c)  56 20.19  9, Th2 (°C)  54 18.54  10 7 in Table                  | Oct<br>1<br>19.62<br>18.53<br>1<br>e 9c) | Nov<br>1<br>19.05<br>18.52                                 | Dec 1 18.58 18.51           | 21    | (85)<br>(86)<br>(87)<br>(88)<br>(89)         |
| Tempe  Utilisat  (86)m=  Mean i  (87)m=  Tempe (88)m=  Utilisat (89)m=                                 | tion factor for  Jan Fet  1 1  internal temp  18.59 18.71  erature during  18.5 18.5  tion factor for                                  | pains for Mar 1 erature in 18.98 heating pains for 18.51 gains for 1 erature in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | living are Apr 1 living are 19.4 periods ir 18.52 rest of d                                    | n the livies, h1,m May 1 ea T1 (for 19.85 n rest of 18.53 welling, 0.99                                  | ng a (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see | Dun Jul D.99 0.97  w steps 3 to D.03 20.6  elling from Ta 8.54 18.54  m (see Table D.95 0.78                                                              | ble 9,  Au  0.9  7 in T  20.9  able 9  18.9  9a)  0.8             | Th1 (°C)  ug Sep  17 0.99  Table 9c)  56 20.19  9, Th2 (°C)  54 18.54  12 0.97  to 7 in Tabl  4 17.91 | Oct 1 19.62 18.53 1 e 9c) 17.07          | Nov<br>1<br>19.05<br>18.52                                 | Dec 1 18.58 18.51 1 1 15.56 |       | (85)<br>(86)<br>(87)<br>(88)<br>(89)<br>(90) |
| Tempe  Utilisat  (86)m=  Mean i (87)m=  Tempe (88)m=  Utilisat (89)m=  Mean i                          | tion factor for  Jan Fet  1 1  internal temp  18.59 18.71  erature during  18.5 18.5  tion factor for  1 1  internal temp              | pains for Mar 1 erature in 18.98 heating pains for 18.51 gains for 1 erature in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | living are Apr 1 living are 19.4 periods ir 18.52 rest of deriods ir the rest                  | n the livies, h1,m May 1 ea T1 (for 19.85 n rest of 18.53 welling, 0.99 of dwell                         | ng a (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see ) (see | Dun Jul D.99 0.97  w steps 3 to D.93 20.6  elling from Ta 8.54 18.54  m (see Table D.95 0.78  T2 (follow steps)                                           | Au 0.9 7 in T 20.9 able 9 9a) 0.8 eps 3                           | Th1 (°C)  ug Sep  17 0.99  Table 9c)  56 20.19  9, Th2 (°C)  54 18.54  12 0.97  to 7 in Tabl  4 17.91 | Oct 1 19.62 18.53 1 e 9c) 17.07          | Nov<br>1<br>19.05<br>18.52                                 | Dec 1 18.58 18.51 1 1 15.56 | 0.56  | (85)<br>(86)<br>(87)<br>(88)<br>(89)         |
| Tempe Utilisat  (86)m=  Mean i (87)m=  Tempe (88)m=  Utilisat (89)m=  Mean i (90)m=                    | tion factor for  Jan Fet  1 1  internal temp  18.59 18.71  erature during  18.5 18.5  tion factor for  1 1  internal temp  15.56 15.73 | pains for Mar  1 erature in 18.98 heating pains for 18.51 gains for 1 erature in 16.14 erature (for a series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of th | living are living are 1 living are 19.4 eriods ir 18.52 rest of de 1 the rest 16.75            | n the livies, h1,m May  1 ea T1 (for 19.85) n rest of 18.53 welling, 0.99 of dwell 17.41                 | ng a (see collow) of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collow of the collo | Dun Jul D.99 0.97  w steps 3 to D.0.3 20.6  elling from Ta 8.54 18.54  m (see Table D.95 0.78  T2 (follow ste 8.07 18.44                                  | ble 9, 0.9 7 in T 20.9 18.9 9a) 0.8 eps 3 18.                     | Th1 (°C)  ug Sep  7 0.99  Table 9c)  56 20.19  9, Th2 (°C)  54 18.54  10 7 in Table  4 17.91          | Oct 1 19.62 18.53 1 e 9c) 17.07          | Nov<br>1<br>19.05<br>18.52<br>1<br>16.24<br>Ving area ÷ (- | Dec 1 18.58 18.51 1 1 15.56 |       | (85)<br>(86)<br>(87)<br>(88)<br>(89)<br>(90) |
| Tempe  Utilisat  (86)m=  Mean i  (87)m=  Tempe (88)m=  Utilisat (89)m=  Mean i  (90)m=  Mean i  (90)m= | tion factor for  Jan Fet  1 1  internal temp  18.59 18.71  erature during  18.5 18.5  tion factor for  1 1  internal temp  15.56 15.73 | pains for Mar 1 erature in 18.98 heating pains for 18.51 gains for 1 erature in 16.14 erature (for 17.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | living are living are 1 living are 19.4 leriods ir 18.52 rest of de 1 the rest 16.75 or the wh | n the livies, h1,m May 1 ea T1 (for 19.85) n rest of 18.53 welling, 0.99 of dwell 17.41 cole dwell 18.79 | ng a (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowed) (se collowe | ee Table 9a) Jun Jul 0.99 0.97 w steps 3 to 20.3 20.6 elling from Ta 8.54 18.54 m (see Table 0.95 0.78 T2 (follow ste 8.07 18.44 g) = fLA × T1 9.33 19.66 | ble 9,  O.9  7 in T  20.9  18.9  9a)  0.8  eps 3  18.  + (1  19.0 | Th1 (°C)  ug Sep  7 0.99  Table 9c)  66 20.19  9, Th2 (°C)  54 18.54  17.91  f  fLA) x T2  62 19.2    | Oct 1 19.62 18.53 1 e 9c) 17.07 LA = Liv | Nov 1 19.05 18.52 16.24 //ing area ÷ (                     | Dec 1 18.58 18.51 1 1 15.56 |       | (85)<br>(86)<br>(87)<br>(88)<br>(89)<br>(90) |

|                                    | 1           | 1          | ·                                                  | 1         | ı           | ı         |                    |                   | 1           | ı            | <del></del>            | l         | (22)   |
|------------------------------------|-------------|------------|----------------------------------------------------|-----------|-------------|-----------|--------------------|-------------------|-------------|--------------|------------------------|-----------|--------|
| (93)m= 17.27                       | 17.41       | 17.74      | 18.24                                              | 18.79     | 19.33       | 19.66     | 19.62              | 19.2              | 18.51       | 17.83        | 17.27                  |           | (93)   |
| 8. Space hea                       |             |            |                                                    |           |             | 44 -4     | Table O            | 41                | .t T: /     | 70)          | -ll-                   |           |        |
| Set Ti to the<br>the utilisation   |             |            |                                                    |           | ied at st   | ер 11 от  | rable 9            | o, so tna         | it 11,m=(   | 76)m an      | a re-caic              | culate    |        |
| Jan                                | Feb         | Mar        | Apr                                                | May       | Jun         | Jul       | Aug                | Sep               | Oct         | Nov          | Dec                    |           |        |
| Utilisation fac                    | ctor for g  | ains, hm   | 1:                                                 |           |             |           |                    |                   |             |              |                        |           |        |
| (94)m= 1                           | 1           | 1          | 1                                                  | 0.99      | 0.97        | 0.91      | 0.93               | 0.98              | 1           | 1            | 1                      |           | (94)   |
| Useful gains                       | , hmGm      | , W = (9   | 4)m x (8                                           | 4)m       |             | •         |                    |                   |             |              |                        | 1         |        |
| (95)m= 315.47                      |             | 347.72     | 360.66                                             | 363.73    | 343.72      | 309.53    | 304.95             | 309.39            | 301.33      | 298.92       | 304.05                 |           | (95)   |
| Monthly ave                        | <del></del> | 1          | <del>i                                      </del> | r         | r           |           |                    |                   |             |              |                        |           | (00)   |
| (96)m= 4.3                         | 4.9         | 6.5        | 8.9                                                | 11.7      | 14.6        | 16.6      | 16.4               | 14.1              | 10.6        | 7.1          | 4.2                    |           | (96)   |
| Heat loss rat<br>(97)m= 2347.74    | 2259.23     |            | <del></del>                                        |           | 832.96      | 538.38    | x [(93)m<br>566.18 | - (96)m<br>900.41 | 1406.09     | 1915.15      | 2342.71                |           | (97)   |
| Space heatir                       | ļ           | l          | l                                                  | L         |             | <u> </u>  | ļ                  |                   | l .         | <u> </u>     | 2042.71                |           | (0.)   |
| (98)m= 1512.01                     | <del></del> |            |                                                    | 666.8     | 0           | 0         | 0                  | 0                 | 821.95      | <del> </del> | 1516.76                |           |        |
| . ,                                |             | <u> </u>   | <u> </u>                                           |           | <u> </u>    |           | Tota               | l per year        | (kWh/yea    | r) = Sum(9   | 8) <sub>15,912</sub> = | 9162.85   | (98)   |
| Space heatir                       | na requir   | ement in   | kWh/m²                                             | 2/vear    |             |           |                    |                   |             |              | ′ .<br>[               | 179.66    | (99)   |
| ·                                  | • ,         |            |                                                    |           | achama      |           |                    |                   |             |              |                        | 170.00    |        |
| 9b. Energy re This part is us      |             |            | · ·                                                | Ĭ         |             |           | ting prov          | ided by           | a comm      | unity sch    | nomo                   |           |        |
| Fraction of sp                     |             |            |                                                    |           |             |           |                    |                   |             | unity 301    | ieilie.                | 0         | (301)  |
| Fraction of sp                     | ace heat    | from co    | mmunity                                            | svstem    | 1 - (30     | 1) =      |                    |                   |             |              | ļ                      | 1         | (302)  |
| The community s                    |             |            |                                                    |           | ,           |           | allows for         | CHP and           | un to four  | other heat   | sources: th            | he latter | `      |
| inclu <mark>des boi</mark> lers, i |             |            |                                                    |           |             |           |                    |                   | up to rour  | Junor mode   |                        | 70 Iditor |        |
| Fraction of he                     | at from C   | Commun     | ity boiler                                         | s         |             |           |                    |                   |             |              |                        | 1         | (303a) |
| Fraction of tot                    | al space    | heat fro   | m Comn                                             | nunity bo | oilers      |           |                    |                   | (3          | 02) x (303   | a) =                   | 1         | (304a) |
| Factor for con                     | trol and    | charging   | method                                             | (Table    | 4c(3)) fo   | r commu   | unity hea          | iting sys         | tem         |              | İ                      | 1         | (305)  |
| Distribution lo                    | ss factor   | (Table 1   | 12c) for (                                         | commun    | ity heati   | ng syste  | m                  |                   |             |              | [                      | 1.05      | (306)  |
| Space heatin                       | a           |            |                                                    |           |             |           |                    |                   |             |              | I                      | kWh/yea   | <br>r  |
| Annual space                       | _           | requiren   | nent                                               |           |             |           |                    |                   |             |              |                        | 9162.85   |        |
| Space heat from                    | om Comi     | munity b   | oilers                                             |           |             |           |                    | (98) x (30        | 04a) x (30  | 5) x (306) : | <b>-</b>               | 9620.99   | (307a) |
| Efficiency of s                    | econdar     | y/supple   | mentary                                            | heating   | system      | in % (fro | om Table           | 4a or A           | ppendix     | E)           |                        | 0         | (308)  |
| Space heating                      | g require   | ment fro   | m secon                                            | dary/su   | oplemen     | tary syst | tem                | (98) x (30        | 01) x 100 · | ÷ (308) =    |                        | 0         | (309)  |
| Water beatin                       | <b>a</b>    |            |                                                    |           |             |           |                    |                   |             |              | ·                      |           |        |
| Water heating Annual water         | _           | equirem    | ent                                                |           |             |           |                    |                   |             |              | ĺ                      | 1831.51   | $\neg$ |
| If DHW from o                      | •           | •          |                                                    |           |             |           |                    |                   |             |              | ı                      |           |        |
| Water heat fro                     | om Comr     | nunity b   | oilers                                             |           |             |           |                    | (64) x (30        | 03a) x (30  | 5) x (306) : | =                      | 1923.08   | (310a) |
| Electricity use                    | d for hea   | at distrib | ution                                              |           |             |           | 0.01               | × [(307a).        | (307e) +    | · (310a)(    | [310e)] =              | 115.44    | (313)  |
| Cooling Syste                      | m Energ     | y Efficie  | ncy Rati                                           | 0         |             |           |                    |                   |             |              |                        | 0         | (314)  |
| Space cooling                      | g (if there | is a fixe  | d coolin                                           | g systen  | n, if not e | enter 0)  |                    | = (107) ÷         | - (314) =   |              |                        | 0         | (315)  |
| Electricity for                    |             |            |                                                    |           |             |           |                    |                   |             |              | •                      |           | _      |
| mechanical ve                      | entilation  | - baland   | ced, extra                                         | act or po | sitive in   | put from  | outside            |                   |             |              |                        | 0         | (330a) |
|                                    |             |            |                                                    |           |             |           |                    |                   |             |              |                        |           |        |

| warm air heating system fans                                  |                               |                               |        | 0                    | (330b) |
|---------------------------------------------------------------|-------------------------------|-------------------------------|--------|----------------------|--------|
| pump for solar water heating                                  |                               |                               |        | 0                    | (330g) |
| Total electricity for the above, kWh/year                     | =(330a) + (330b) + (330g) =   |                               |        | 0                    | (331)  |
| Energy for lighting (calculated in Appendix L)                |                               |                               |        | 302.44               | (332)  |
| 12b. CO2 Emissions – Community heating scheme                 |                               |                               |        |                      |        |
|                                                               | Energy<br>kWh/year            | Emission factoring kg CO2/kWh |        | nissions<br>CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)   |                               |                               |        |                      |        |
| Efficiency of heat source 1 (%)  If there is CHP us           | ing two fuels repeat (363) to | (366) for the secon           | d fuel | 90                   | (367a) |
| CO2 associated with heat source 1 [(307b                      | )+(310b)] x 100 ÷ (367b) x    | 0                             | =      | 2770.58              | (367)  |
| Electrical energy for heat distribution                       | [(313) x                      | 0.52                          | =      | 59.91                | (372)  |
| Total CO2 associated with community systems                   | (363)(366) + (368)(372        | 2)                            | =      | 2830.49              | (373)  |
| CO2 associated with space heating (secondary)                 | (309) x                       | 0                             | =      | 0                    | (374)  |
| CO2 associated with water from immersion heater or instantant | neous heater (312) x          | 0.22                          | =      | 0                    | (375)  |
| Total CO2 associated with space and water heating             | (373) + (374) + (375) =       |                               |        | 2830.49              | (376)  |
| CO2 associated with electricity for pumps and fans within dwe | elling (331)) x               | 0.52                          | =      | 0                    | (378)  |
| CO2 associated with electricity for lighting                  | (332))) x                     | 0.52                          | =      | 156.96               | (379)  |
| Total CO2, kg/year sum of (376)(382) =                        |                               |                               |        | 2987.46              | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                      |                               |                               |        | 58.58                | (384)  |
| El rating (section 14)                                        |                               |                               |        | 58.16                | (385)  |