

35-41 New Oxford Street, 10-12 Museum Street and 16 West Central Street.

SURFACE WATER DRAINAGE STATEMENT (STAGE -1)

Prepared by:	Stuart Pledge MEng, CENG MIStructE
Reviewed by:	Parag Sidhpura BEng
Job Number:	214312

Date	Version	Notes / Amendments / Issue Purpose
Feb 2016	-	Issued for planning
May 2016	P1	Issued for planning

Directors | David Mason BEng (Hons) CEng MIStructE MICE | Frank Navarro BSc (Eng) CEng MIStructE | Stuart Pledge BEng (Hons) CEng MIStructE

Mason Navarro Pledge Ltd Consulting Engineers. Registered Office as above. Reg No. 3729171 Offices in Belgravia, London & Hitchin, Hertfordshire. Consulting Civil and Structural Engineers

Contents

1.	INTRODUCTION	1
2.	REQUIREMENTS	2
3.	THE PROJECT	4
3.1	LOCATION	4
3.2	EXISTING BUILDINGS	6
3.3	PROPOSED DEVELOPMENT3.3.135-41 New Oxford Street3.3.210-12 Museum Street3.3.3West Central Street	8 8 8 8
4.	TOPOGRAPHY	9
5.	GROUND CONDITION	9
6.	GROUND WATER	9
7.	DRAINAGE RECORDS	9
8.	EXISTING SURFACE WATER DRAINAGE 1	11
9.	PROPOSED SURFACE WATER DRAINAGE 1	12

- APPENDIX A GREENFIELD RUN OFF RATES
- APPENDIX B EXISTING RUN OFF CALCS
- APPENDIX C PROPOSED RUN OFF CALCS WITH BLUEROOF SYSTEM
- APPENDIX D SURFACE DRAINAGE PROFORMA
- APPENDIX E GREEN ROOF DRAWING
- APPENDIX F BLUEROOF INFORMATION
- APPENDIX H PROPOSED DRAINAGE DRAWINGS
- APPENDIX G STRUCTURAL DRAWINGS

1. INTRODUCTION

Mason Navarro Pledge has been commissioned to prepare a surface water drainage statement to include a detailed SUDS strategy for the proposed redevelopment of 35-41 New Oxford Street, 10-12 Museum Street and 16 West Central Street. Reference should also be made to the Flood Risk Assessment (FRA).

The Government has strengthened planning policy on the provision of sustainable drainage and new consultation arrangements for 'major' planning applications came into force from 6 April 2015 as defined in the Written Ministerial Statement (18th Dec 2014).

The new requirements make Lead Local Flood Authorises statutory consultees with respect to flood risk and SuDS for all major applications. Previously the Environment Agency had that statutory responsibility for sites above 1ha in flood zone 1.

Therefore all 'major' planning applications submitted from 6 April 2015 are required demonstrate compliance with this policy and are required to prepare a Surface Water Drainage Statement.

2. REQUIREMENTS

It is essential that the type of Sustainable Drainage System (SuDS) for a site, along with details of its extent and position, is identified within the planning application to clearly demonstrate that the proposed SuDS can be accommodated within the development.

It will now not be acceptable to leave the design of SuDs to a later stage to be dealt with by planning conditions.

The NPPF paragraph 103 requires that developments do not increase flood risk elsewhere, and gives priority to the use of SuDS. Major developments must include SuDS for the management of run-off, unless demonstrated to be inappropriate. The proposed minimum standards of operation must be appropriate and as such, a maintenance plan should be included within the Surface Water Drainage Statement, clearly demonstrating that the SuDS have been designed to ensure that the maintenance and operation requirements are economically proportionate.

Camden Council will use planning conditions or obligations to ensure that there are clear arrangements in place for ongoing maintenance over the lifetime of the development.

Within Camden, SuDS systems must be designed in accordance with London Plan policy 5.13. This requires that developments should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy:

- 2 use infiltration techniques, such as porous surfaces in non-clay areas
- 3 attenuate rainwater in ponds or open water features for gradual release
- 4 attenuate rainwater by storing in tanks or sealed water features for gradual release
- 5 discharge rainwater direct to a watercourse
- 6 discharge rainwater to a surface water sewer/drain
- 7 discharge rainwater to the combined sewer.

The hierarchy above seeks to ensure that surface water run-off is controlled as near to its source as possible to mimic natural drainage systems and retain water on or near to the site, in contrast to traditional drainage approaches, which tend to pipe water off-site as quickly as possible.

Before disposal of surface water to the public sewer is considered all other options set out in the drainage hierarchy should be exhausted. When no other practicable alternative exists to dispose of surface water other than the public sewer, the Water Company or its agents should confirm that there is adequate spare capacity in the existing system taking future development requirements into account.

Best practice guidance within the non-statutory technical standards for the design, maintenance and operation of sustainable drainage systems will also need to be followed. Runoff volumes from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event.

¹ store rainwater for later use

Camden Development Policy 23 (Water) requires developments to reduce pressure on combined sewer network and the risk of flooding by limiting the rate of run-off through sustainable urban drainage systems. This policy also requires that developments in areas known to be at risk of surface water flooding are designed to cope with being flooded. Camden's SFRA surface water flood maps, updated SFRA figures 6 (LFRZs), and 4e (increased susceptibility to elevated groundwater), as well as the Environment Agency updated flood maps for surface water (ufmfsw), should be referred to when determining whether developments are in an area at risk of flooding.

Camden Planning Guidance 3 (CPG3) requires developments to achieve a greenfield run off rate once SuDS have been installed. Where it can be demonstrated that this is not feasible, a minimum 50% reduction in run off rate across the development is required. Further guidance on how to reduce the risk of flooding can be found in CPG3 paragraphs 11.4-11.8.

This drainage statement has been prepard in accordance with National Planning Policy Framework (NPPF), along with advice and guidance from the Environment Agency (EA), London Borough of Camden Strategic Flood Risk Assessment (SFRA) and CIRIA documents.

The NPPF states that an appropriate flood risk assessment will be required for all development proposals of 1Ha or greater in Flood Zone 1, or for any development within Flood Zones 2 or 3. The site is shown to lie within Flood Zone 1 (flood defended), is less than 1Ha but is considered a major development.

3. THE PROJECT

The project will consolidate several existing buildings into a new residential block with retail space at ground floor level.

3.1 LOCATION

New Oxford Street estate comprises 16a/b and 18 West Central Street (a single building), 35-41 New Oxford Street, and 10 to 12 Museum Street, (NGR 530182 181435: Fig 1). The site is bounded by New Oxford Street to the north, Museum Street to the east, and West Central Street and the 43 and 45 New Oxford Street to the east.

The site addresses are:

35, 37, 39, and 41 New Oxford Street WC1A 1BH & WC1A 1BN

10, 11, and 12 Museum Street WC1A 1JJ

16a, 18, and 16b West Central Street WC1A 1JJ

The site is located on the southern fringe of the Bloomsbury Conservation Area that was designated in 1968.

The nearest watercourse is the River Thames which runs from west to east approximately 900m to the southeast of the site.

The extent of the existing buildings is indicated in Figure 2.

Figure -1 Site Location

Figure -2 Site Boundary

3.2 EXISTING BUILDINGS

No. 35 & 37 New Oxford Street are three storey residential properties with retail at ground floor. Both buildings contain basements to the entire footprint, and appear to be of concrete construction.

No.10 Museum Street is a three story residential property with retail space at the ground floor. However No 11 - 12 have undergone modernisation and consolidation, as well as an addition of a full height rear extension.

Figure - 3 Existing Elevation along New Oxford Street

Figure - 4 Existing Elevation along Museum Street

18 West Central Street is a two and three storey building, with the lowest section of the building on the corner of West Central Street.

Figure - 5 Existing Elevation along West Central Street

Figure - 6 Existing Section along New Oxford Street & West Central Street

3.3 PROPOSED DEVELOPMENT

3.3.1 35-41 New Oxford Street

The proposal is to retain the existing façade, party walls and floors. A single storey light weight steel framed roof extension will be added to the entire footprint of the New Oxford street frontage

A new steel framed stair case will be created to the rear of No. 35 and 37.

3.3.2 10-12 Museum Street

The façade of No. 10 to 12 Museum Street will be retained including the existing floor construction. The existing stairs will be demolished and infilled with a new timber floor and new opening will be created through the existing walls to accommodate a new residential layout.

3.3.3 West Central Street

The existing properties along West Central Street will require partial demolition and a new residential block.

The substructure will be of concrete frame construction. Concentrated loads from the columns that support the multi-storey buildings over are to be transferred to the ground via a reinforced concrete raft. The superstructure will be of light weight steel framed construction, with precast hollow core floor slab.

Figure - 7 Proposed Section along New Oxford Street & West Central Street

4. TOPOGRAPHY

The topographical survey information shows the site to be relatively level. The existing pavement levels along New Oxford Street, Museum Street and West Central Street are approximately 25.30m AOD.

5. GROUND CONDITION

An assessment of geology and ground conditions has been made by using the online British Geological Survey historical borehole records and a site investigation undertaken by GEA Ltd in July 2015. The site was found to contain variable thickness of made ground over Lynch Hill Gravel over the London Clay Formation.

British Geological Record BH ref TQ38SW799 - reports the ground conditions as follows:

Depth below ground (garden)	Soil Type
From 0 to 3m	Made Ground
From 3m to 8m	Sandy gravel
8m to 18m plus	London Clay

The opportunity for ground percolation is limited.

6. GROUND WATER

Ground water level are noted on the GEA site investigation report close to the base of the gravel at a depth of approximately 5.0m

7. DRAINAGE RECORDS

Record of public sewer in the vicinity of the site have been provide by Thames Water. These shows that there is a main public combined sewer on New Oxford Street, Museum Street and West Central Street. The sewer is 1676x914 along New Oxford Street, 1727x914 along Museum Street and 1219x787 along West Central Street.

Figure - 8 Thames Water Asset Plan showing combined sewer to NOS

Manhole Reference	Manhole Cover Level	Manhole Invert Level
1427	n/a	n/a
0409	n/a	n/a
151A	n/a	n/a
151B	n/a	n/a
2501	n/a	n/a
1521	25.29	20.98
1505	n/a	n/a
9503	25.9	18.52
1508	25.51	n/a
3502	n/a	n/a
0505	n/a	n/a
0535	n/a	n/a
2602	24.88	21.8
36BC	n/a	n/a
36BD	n/a	n/a
2604	24.86	21.81
2605	n/a	n/a
1610	n/a	n/a
3605	24.74	20.67
3416	24.38	19.26
3503	n/a	n/a
3504	25.02	9.36
35DE	n/a	n/a
35DD	n/a	n/a
3501	n/a	n/a
35DG	n/a	n/a
35DH	n/a	n/a
3604	n/a	n/a
4505	n/a	n/a
451A	n/a	n/a
46DJ	n/a	n/a
46DI	n/a	n/a
1303	23.59	17.34
0303	n/a	n/a
1304	23.52	19.43
2301	n/a	n/a
3303	n/a	n/a
3304	22.68	n/a
1305	24.15	20.1
3306	22.7	18.79
2401	24.14	19.87
1402	25.13	21.01
1403	n/a	n/a
1404	25.2	21.73
2402	n/a	n/a
0406	25.56	n/a
2410	25.15	20.6
3403	23.9	20.21
3404	22.89	20.95
0410	25.36	9.49

Figure -9 Thames water manhole schedule

The sewer along New Oxford Street is located at approximately 19.56m AOD, the sewer along Museum Street is approximately 20.6m AOD and the sewer along West Central Street is approximately 21.73m AOD.

Risk of flooding due to pipe surcharging is very low based on the historical data. Due to the depth of the existing sewer relative to the basement level, non-return valves should be adopted on the outgoing sewer pipes.

8. EXISTING SURFACE WATER DRAINAGE

Existing surface water discharges to a connection on West Central Street to the south of the site. Other roof areas attached to the development (but not part of the application site) discharge to open base rainwater pipes directly on to the footpath. There may also be a connection in to Museum Street but at this stage we have been unable to locate a connection due to occupation and blind connections in the street that cannot be surveyed. The calculations have been modelled based on a single exit pipe on to West Central street of 2m length and 150mm diameter. If 2 pipes exist then the system will have some additional diversity but noting the flow all discharges to the same sewer on Museum Street.

The existing is a summary of the run-off rates as confirmed by Cole Easdon drainage consultants.

Storm event	Greenfield runoff rate	Greenfield runoff volume	Existing runoff rate
1:1 yr	0.1 l/s	-	-
1:30 yr	0.3 l/s	-	-
1:100 yr	0.4 l/s	13.6 m ³ (6 hour duration)	45 l/s

Summary of 'pre-development' results below:

Figure - 10 - pre-development flow rates

9. PROPOSED SURFACE WATER DRAINAGE

A range of SUDS components have been assessed in order to derive appropriate solution for this site. Below is a summary of the hierarchy of prevention, source control, site control and regional control with confirmation of which options are to be adopted:-

SUDS Component	Commentary	Suita	bility
Pervious surfaces	Limited opportunity to incorporate pervious pavements		No
Green roofs	Flat roof is compatible with green roof technology	Yes	
Attenuation tanks	The site cannot easily accommodate attenuation tanks		No
Rain water harvesting	Rainwater harvesting can be considered	Yes	
Infiltration devices	Soak-away solution are not suited to the inner city site		No
Filters	There is no change to the existing site strategy		No
Filter drains	Not appropriate to the site		No
Filter strips	Not appropriate to the site		No
Basin, ponds and wetlands	Not appropriate to the site		No
Swales	Not appropriate to the site		No
Bio-retention areas	Not appropriate to the site		No

Figure - 11 SUDS techniques

Each solution is now discussed in detail.

Pervious surfaces

The existing building is full footprint to the existing kerbs and so there is no external surfacing at ground level that could be utilised as pervious.

Green roofs

The existing roof footprint measures 809m² pertinent to this development. Certain areas of the roof need to be retained and are pitched and there is a requirement to install various service at roof level. However a good degree of roof area can be utilised for storage and attenuation. Typical green roof systems do not provide much attenuation however the Blueroof system by ABG has been designed to provide storage. Reference should be made to the MNP drawing 'Green roof areas' of which the following is an extract.

Figure - 12 Green roof areas.

The green roof system to be adopted will be 'Blueroof' by ABG and appended are their supporting documents confirming the storage feasibility, maintenance regime requirements and built in exceedance features.

ABG blueroof provides stormwater attenuation capacity at source within the green, ballasted or paved roof, or podium deck construction of a development.

It comprises a combined drainage and attenuation void within the roof structure and a series of roof restrictor chambers which sit over each roof outlet. The chambers are designed to release the attenuated water at a controlled discharge rate as permitted in the planning consent of the site. Designing a blue roof in this way allows storage capacities suitable for up to a one in 100 year storm event, plus an allowance (typically 30%) for the effects of climate change, to be achieved. The water is filtered several times as it passes through the system removing suspended solids thus improving the quality of water at discharge. This stored water, as with a 'traditional' storage system, can be released at a controlled rate or even used as grey water or irrigation for the vegetation across the development.

The blueroof system consists of two key components:

• A drainage geocomposite system with integral filter geotextiles which attenuates excess water not absorbed by the vegetation in soft landscape areas, or run off from

ballast or paving, in hard landscaped areas. Water filters through the green roof and builds up in to the drainage void formed by the geocomposite layers below.

• This water is gradually dispersed through the zero falls system to the restrictor chamber and discharged to the roof outlet at the rate permitted for the site. The storm water attenuation requirements are met within the roof construction; therefore the need for underground storage can often be reduced/eliminated.

Figure - 14 Green roof system schematic

By using the greenroof system over $189m^2$ the discharge rate can be limited to 5l/s under a 1:100 year + 30 climate change condition using a 6 hour rainfall event.

Attenuation tanks

The site has an excavation restriction by virtue of the post office tunnel network directly beneath the site. It is possible to install a tank within the existing basement level. However this may lead to the potential requirement of pumping meaning the tanks fill under gravity but then require energy to pump the stored volume. Overflow weirs could be used to discharge to the local sewer network to prevent against flood risk however at this stage tanks will not be used as sufficient attenuation capacity exists within the green roof.

Rainwater harvesting

The extent of landscaping means the demand for rainwater harvesting is low and therefore the attenuation opportunity is low. Although this system is viable it will be discounted.

Soakaways, swales and filter strips, basins, ponds and bio-retention areas.

The urban nature of this site precludes the use of any of these techniques.

Surface Water run off conclusions

The appended calculations confirm the run-off rates for the proposed system. The Blueroof will attenuate the water to 5l/s thus the system will comply with the local authority requirements for storm water attenuation.

APPENDIX A

GREENFIELD RUN OFF RATES

Cole Easdon Consultants		Page 1
160 Aztec	5188 New Oxford Street	
Aztec West	Greenfield Runoff Rate	<u> </u>
Bristol BS32 4TU		Micco
Date 22/04/2016 15:01	Designed by jpockett	
File 5188 Proposed Model.srcx	Checked by	Diamacje
XP Solutions	Source Control 2015.1	

ICP SUDS Mean Annual Flood

Input

Return Period (yea	rs)	1		Soil	0.30	00
Area (1	ha)	0.090		Urban	0.00	00
SAAR (1	mm)	600	Region	Number	Region	6

Results 1/s

QBAR Rural 0.1 QBAR Urban 0.1

Q1 year 0.1

Q1 year 0.1 Q30 years 0.3 Q100 years 0.4

Cole Easdon Consultants		Page 1
160 Aztec	5188 New Oxford Street	
Aztec West	Greenfield Runoff Volume	<u> </u>
Bristol BS32 4TU	1:1 year 6 hour duration	Micco
Date 11/05/2016 09:56	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by	Diamaye
XP Solutions	Source Control 2015.1	

Greenfield Runoff Volume

FSR Data

Return Period (years)	1
Storm Duration (mins)	360
Region	England and Wales
M5-60 (mm)	20.700
Ratio R	0.442
Areal Reduction Factor	1.00
Area (ha)	0.090
SAAR (mm)	600
CWI	87.000
Urban	0.000
SPR	30.000

Results

Percentage Runoff (%) 20.50 Greenfield Runoff Volume (m³) 3.987

Cole Easdon Consultants		Page 1
160 Aztec	5188 New Oxford Street	
Aztec West	Greenfield Runoff Volume	<u> </u>
Bristol BS32 4TU	1:30 yr 6 hour duration	Micco
Date 11/05/2016 09:57	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by	Dialitage
XP Solutions	Source Control 2015.1	

Greenfield Runoff Volume

FSR Data

30
360
England and Wales
20.700
0.442
1.00
0.090
600
87.000
0.000
30.000

Results

Percentage Runoff (%) 22.38 Greenfield Runoff Volume (m³) 9.611

Cole Easdon Consultants					
160 Aztec	5188 New Oxford Street				
Aztec West	Greenfield Runoff Volume	<u> </u>			
Bristol BS32 4TU	100 year 6 hour event	Micco			
Date 22/04/2016 15:03	Designed by jpockett				
File 5188 Proposed Model.srcx	Checked by	Diamaye			
XP Solutions	Source Control 2015.1				

Greenfield Runoff Volume

FSR Data

Return Period (years)	100
Storm Duration (mins)	360
Region	England and Wales
M5-60 (mm)	20.700
Ratio R	0.442
Areal Reduction Factor	1.00
Area (ha)	0.090
SAAR (mm)	600
CWI	87.000
Urban	0.000
SPR	30.000

Results

Percentage Runoff (%) 24.41 Greenfield Runoff Volume (m³) 13.598

APPENDIX B

EXISTING RUN OFF CALCS

Cole Easdon Consultants		Page 1
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u> </u>
Bristol BS32 4TU	1:1 year	Micco
Date 11/05/2016 09:42	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamaye
XP Solutions	Source Control 2015.1	

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(l/s)	(m³)	
15	min	Summer	10.849	0.199	14.6	0.2	ΟK
30	min	Summer	10.833	0.183	12.5	0.2	ΟK
60	min	Summer	10.813	0.163	9.1	0.2	ΟK
120	min	Summer	10.783	0.133	5.6	0.2	ΟK
180	min	Summer	10.755	0.105	4.5	0.1	ΟK
240	min	Summer	10.737	0.087	3.6	0.1	ΟK
360	min	Summer	10.720	0.070	2.7	0.1	ΟK
480	min	Summer	10.712	0.062	2.2	0.1	ΟK
600	min	Summer	10.706	0.056	1.8	0.1	ΟK
720	min	Summer	10.702	0.052	1.6	0.1	ΟK
960	min	Summer	10.697	0.047	1.3	0.1	ΟK
1440	min	Summer	10.690	0.040	1.0	0.0	ΟK
2160	min	Summer	10.685	0.035	0.7	0.0	ΟK
2880	min	Summer	10.681	0.031	0.6	0.0	ΟK
4320	min	Summer	10.677	0.027	0.4	0.0	ΟK
5760	min	Summer	10.674	0.024	0.3	0.0	ΟK
7200	min	Summer	10.672	0.022	0.3	0.0	ΟK
8640	min	Summer	10.669	0.019	0.2	0.0	ОК
10080	min	Summer	10.668	0.018	0.2	0.0	ОК
15	min	Winter	10.848	0.198	14.4	0.2	ΟK
30	min	Winter	10.821	0.171	10.5	0.2	ОК

	Stor	m	Rain	Floo	bded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Vol	ume	Volume	(mins)	
				(m	3)	(m³)		
15	min	Summer	32.914		0.0	5.6	10	
30	min	Summer	21.228		0.0	7.2	17	
60	min	Summer	13.233		0.0	8.9	34	
120	min	Summer	8.073		0.0	10.9	62	
180	min	Summer	6.014		0.0	12.2	92	
240	min	Summer	4.874		0.0	13.2	118	
360	min	Summer	3.603		0.0	14.6	182	
480	min	Summer	2.900		0.0	15.7	244	
600	min	Summer	2.450		0.0	16.5	300	
720	min	Summer	2.134		0.0	17.3	358	
960	min	Summer	1.717		0.0	18.5	476	
1440	min	Summer	1.264		0.0	20.5	716	
2160	min	Summer	0.931		0.0	22.6	1100	
2880	min	Summer	0.749		0.0	24.3	1432	
4320	min	Summer	0.551		0.0	26.8	2204	
5760	min	Summer	0.443		0.0	28.7	2920	
7200	min	Summer	0.375		0.0	30.3	3544	
8640	min	Summer	0.326		0.0	31.7	4400	
10080	min	Summer	0.291		0.0	33.0	5040	
15	min	Winter	32.914		0.0	6.2	10	
30	min	Winter	21.228		0.0	8.0	18	
		©198	2-2015	ХP	Sol	utions		

Cole Easdon Consultants		Page 2
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u> </u>
Bristol BS32 4TU	1:1 year	Micco
Date 11/05/2016 09:42	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamaye
XP Solutions	Source Control 2015.1	

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level (m)	Depth (m)	Control (1/s)	Volume (m³)	
60	min	Winter	10.803	0.153	6.8	0.2	ΟK
120	min	Winter	10.754	0.104	4.4	0.1	ΟK
180	min	Winter	10.732	0.082	3.3	0.1	ΟK
240	min	Winter	10.719	0.069	2.6	0.1	ΟK
360	min	Winter	10.708	0.058	1.9	0.1	ΟK
480	min	Winter	10.702	0.052	1.6	0.1	ΟK
600	min	Winter	10.698	0.048	1.3	0.1	ΟK
720	min	Winter	10.695	0.045	1.1	0.0	ΟK
960	min	Winter	10.690	0.040	0.9	0.0	ΟK
1440	min	Winter	10.684	0.034	0.7	0.0	ΟK
2160	min	Winter	10.679	0.029	0.5	0.0	ΟK
2880	min	Winter	10.676	0.026	0.4	0.0	ΟK
4320	min	Winter	10.672	0.022	0.3	0.0	ΟK
5760	min	Winter	10.669	0.019	0.2	0.0	ΟK
7200	min	Winter	10.667	0.017	0.2	0.0	ΟK
8640	min	Winter	10.666	0.016	0.2	0.0	ΟK
0080	min	Winter	10.665	0.015	0.2	0.0	ОК

	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
60	min	Winter	13.233	0.0	10.0	32
120	min	Winter	8.073	0.0	12.2	60
180	min	Winter	6.014	0.0	13.6	86
240	min	Winter	4.874	0.0	14.7	118
360	min	Winter	3.603	0.0	16.3	186
480	min	Winter	2.900	0.0	17.5	232
600	min	Winter	2.450	0.0	18.5	300
720	min	Winter	2.134	0.0	19.4	360
960	min	Winter	1.717	0.0	20.8	476
1440	min	Winter	1.264	0.0	22.9	714
2160	min	Winter	0.931	0.0	25.3	1084
2880	min	Winter	0.749	0.0	27.2	1436
4320	min	Winter	0.551	0.0	30.0	2200
5760	min	Winter	0.443	0.0	32.2	2864
7200	min	Winter	0.375	0.0	34.0	3624
8640	min	Winter	0.326	0.0	35.5	4424
10080	min	Winter	0.291	0.0	36.9	5088

Cole Easdon Consultants		Page 3
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u> </u>
Bristol BS32 4TU	1:1 year	Micro
Date 11/05/2016 09:42	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamacje
XP Solutions	Source Control 2015.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	1	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+0

<u>Time Area Diagram</u>

Total Area (ha) 0.090

Time (mins) Area From: To: (ha)

0 4 0.090

Cole Easdon Consultants		Page 4
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u> </u>
Bristol BS32 4TU	1:1 year	Micco
Date 11/05/2016 09:42	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamacje
XP Solutions	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 12.000

<u>Pipe Structure</u>

Diameter (m) 0.150 Length (m) 1.000 Slope (1:X) 100.000 Invert Level (m) 10.650

<u>Pipe Outflow Control</u>

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 1.000 Upstream Invert Level (m) 10.650 Roughness k (mm) 0.600

Cole Easdon Consultants		Page 1
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u> </u>
Bristol BS32 4TU	1:30 year	Micco
Date 11/05/2016 09:35	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamaye
XP Solutions	Source Control 2015.1	

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m ³)	
15	min	Summer	11.280	0.630	35.0	0.6	ОК
30	min	Summer	11.115	0.465	29.3	0.5	ΟK
60	min	Summer	10.918	0.268	20.6	0.3	ΟK
120	min	Summer	10.839	0.189	13.3	0.2	ΟK
180	min	Summer	10.817	0.167	9.8	0.2	ΟK
240	min	Summer	10.808	0.158	8.1	0.2	ΟK
360	min	Summer	10.794	0.144	5.9	0.2	ΟK
480	min	Summer	10.759	0.109	4.7	0.1	ΟK
600	min	Summer	10.747	0.097	4.0	0.1	ΟK
720	min	Summer	10.737	0.087	3.6	0.1	ΟK
960	min	Summer	10.721	0.071	2.8	0.1	ΟK
1440	min	Summer	10.708	0.058	1.9	0.1	ΟK
2160	min	Summer	10.699	0.049	1.4	0.1	ΟK
2880	min	Summer	10.694	0.044	1.1	0.0	ΟK
4320	min	Summer	10.687	0.037	0.8	0.0	ΟK
5760	min	Summer	10.683	0.033	0.7	0.0	ΟK
7200	min	Summer	10.680	0.030	0.5	0.0	ΟK
8640	min	Summer	10.678	0.028	0.5	0.0	ΟK
10080	min	Summer	10.677	0.027	0.4	0.0	ΟK
15	min	Winter	11.280	0.630	35.0	0.6	ΟK
30	min	Winter	11.024	0.374	25.7	0.4	ОК

	Stor	m	Rain	Floc	ded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Vol	ume	Volume	(mins)	
				(m	3)	(m³)		
15	min	Summer	80.827		0.0	13.6	10	
30	min	Summer	51.838		0.0	17.5	17	
60	min	Summer	31.749		0.0	21.4	32	
120	min	Summer	18.872		0.0	25.5	62	
180	min	Summer	13.779		0.0	27.9	92	
240	min	Summer	10.980		0.0	29.6	118	
360	min	Summer	7.955		0.0	32.2	182	
480	min	Summer	6.327		0.0	34.2	246	
600	min	Summer	5.294		0.0	35.7	302	
720	min	Summer	4.575		0.0	37.1	360	
960	min	Summer	3.633		0.0	39.2	492	
1440	min	Summer	2.622		0.0	42.5	730	
2160	min	Summer	1.890		0.0	45.9	1100	
2880	min	Summer	1.498		0.0	48.5	1436	
4320	min	Summer	1.078		0.0	52.4	2140	
5760	min	Summer	0.853		0.0	55.3	2864	
7200	min	Summer	0.712		0.0	57.6	3672	
8640	min	Summer	0.613		0.0	59.6	4320	
10080	min	Summer	0.541		0.0	61.3	4992	
15	min	Winter	80.827		0.0	15.3	10	
30	min	Winter	51.838		0.0	19.6	17	
		©198	82-2015	ХP	Sol	utions		

Cole Easdon Consultants		Page 2
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u> </u>
Bristol BS32 4TU	1:30 year	Micco
Date 11/05/2016 09:35	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamaye
XP Solutions	Source Control 2015.1	

Summaı	r <u>y</u> o	<u>f Res</u> ı	ilts f	<u>or 30</u>	year F	Return	Period
	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(l/s)	(m³)	
60	min	Winter	10.864	0.214	16.4	0.2	ΟK
120	min	Winter	10.817	0.167	9.9	0.2	ΟK
180	min	Winter	10.806	0.156	7.5	0.2	ΟK
240	min	Winter	10.792	0.142	5.8	0.2	ΟK
360	min	Winter	10.754	0.104	4.4	0.1	ΟK
480	min	Winter	10.737	0.087	3.6	0.1	ΟK
600	min	Winter	10.724	0.074	2.9	0.1	ΟK
720	min	Winter	10.717	0.067	2.5	0.1	ΟK
960	min	Winter	10.709	0.059	2.0	0.1	ΟK
1440	min	Winter	10.699	0.049	1.4	0.1	ΟK
2160	min	Winter	10.692	0.042	1.0	0.0	ΟK
2880	min	Winter	10.687	0.037	0.8	0.0	ΟK
4320	min	Winter	10.682	0.032	0.6	0.0	ОК
5760	min	Winter	10.678	0.028	0.5	0.0	ОК
7200	min	Winter	10.676	0.026	0.4	0.0	ОК
8640	min	Winter	10.674	0.024	0.4	0.0	ОК
10080	min	Winter	10.672	0.022	0.3	0.0	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
						2.2
60	mın	Winter	31.749	0.0	24.0	32
120	min	Winter	18.872	0.0	28.5	64
180	min	Winter	13.779	0.0	31.3	100
240	min	Winter	10.980	0.0	33.2	124
360	min	Winter	7.955	0.0	36.1	182
480	min	Winter	6.327	0.0	38.3	224
600	min	Winter	5.294	0.0	40.0	290
720	min	Winter	4.575	0.0	41.5	366
960	min	Winter	3.633	0.0	43.9	472
1440	min	Winter	2.622	0.0	47.6	718
2160	min	Winter	1.890	0.0	51.4	1104
2880	min	Winter	1.498	0.0	54.3	1432
4320	min	Winter	1.078	0.0	58.7	2140
5760	min	Winter	0.853	0.0	61.9	2896
7200	min	Winter	0.712	0.0	64.5	3592
8640	min	Winter	0.613	0.0	66.8	4304
10080	min	Winter	0.541	0.0	68.7	5008

Cole Easdon Consultants		Page 3
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	L.
Bristol BS32 4TU	1:30 year	Micco
Date 11/05/2016 09:35	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Dialitaye
XP Solutions	Source Control 2015.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	30	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+0

<u>Time Area Diagram</u>

Total Area (ha) 0.090

Time (mins) Area From: To: (ha)

0 4 0.090

Cole Easdon Consultants		Page 4
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u>Y</u>
Bristol BS32 4TU	1:30 year	Micro
Date 11/05/2016 09:35	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamacje
XP Solutions	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 12.000

<u>Pipe Structure</u>

Diameter (m) 0.150 Length (m) 1.000 Slope (1:X) 100.000 Invert Level (m) 10.650

<u>Pipe Outflow Control</u>

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 1.000 Upstream Invert Level (m) 10.650 Roughness k (mm) 0.600

Cole Easdon Consultants		Page 1
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u> </u>
Bristol BS32 4TU	1:100 year	Micco
Date 22/04/2016 15:17	Designed by jpockett	
File 5188 Existing Model.srcx	Checked by DF	Diamaye
XP Solutions	Source Control 2015.1	

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(l/s)	(m³)	
15	min	Summer	11.641	0.991	45.0	1.0	ОК
30	min	Summer	11.384	0.734	38.1	0.8	ΟK
60	min	Summer	11.061	0.411	27.2	0.4	ΟK
120	min	Summer	10.876	0.226	17.6	0.2	ΟK
180	min	Summer	10.837	0.187	13.1	0.2	ΟK
240	min	Summer	10.820	0.170	10.5	0.2	ΟK
360	min	Summer	10.807	0.157	7.9	0.2	ΟK
480	min	Summer	10.801	0.151	6.1	0.2	ΟK
600	min	Summer	10.770	0.120	5.2	0.1	ΟK
720	min	Summer	10.754	0.104	4.4	0.1	ΟK
960	min	Summer	10.734	0.084	3.5	0.1	ΟK
1440	min	Summer	10.717	0.067	2.5	0.1	ΟK
2160	min	Summer	10.705	0.055	1.8	0.1	ΟK
2880	min	Summer	10.699	0.049	1.4	0.1	ΟK
4320	min	Summer	10.692	0.042	1.0	0.0	ΟK
5760	min	Summer	10.687	0.037	0.8	0.0	ΟK
7200	min	Summer	10.684	0.034	0.7	0.0	ΟK
8640	min	Summer	10.681	0.031	0.6	0.0	ОК
10080	min	Summer	10.679	0.029	0.5	0.0	ОК
15	min	Winter	11.643	0.993	45.0	1.0	ОК
30	min	Winter	11.232	0.582	33.4	0.6	ОК

Storm		Rain	Flooded	Discharge	Time-Peak		
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	105.122	0.0	17.7	10	
30	min	Summer	67.935	0.0	22.9	18	
60	min	Summer	41.754	0.0	28.2	32	
120	min	Summer	24.792	0.0	33.5	62	
180	min	Summer	18.043	0.0	36.5	92	
240	min	Summer	14.324	0.0	38.7	122	
360	min	Summer	10.321	0.0	41.8	180	
480	min	Summer	8.179	0.0	44.2	242	
600	min	Summer	6.825	0.0	46.1	300	
720	min	Summer	5.884	0.0	47.7	360	
960	min	Summer	4.653	0.0	50.2	470	
1440	min	Summer	3.338	0.0	54.1	724	
2160	min	Summer	2.391	0.0	58.1	1100	
2880	min	Summer	1.885	0.0	61.1	1456	
4320	min	Summer	1.347	0.0	65.5	2188	
5760	min	Summer	1.061	0.0	68.7	2856	
7200	min	Summer	0.881	0.0	71.3	3672	
8640	min	Summer	0.756	0.0	73.5	4344	
10080	min	Summer	0.665	0.0	75.4	5112	
15	min	Winter	105.122	0.0	19.9	10	
30	min	Winter	67.935	0.0	25.7	17	
		©198	32-2015	XP Sol	lutions		

Cole Easdon Consultants				
160 Aztec	5188 New Oxford Street			
Aztec West	Existing Runoff Calculation	L.		
Bristol BS32 4TU	1:100 year	Micco		
Date 22/04/2016 15:17	Designed by jpockett			
File 5188 Existing Model.srcx	Checked by DF	Diamacje		
XP Solutions	Source Control 2015.1	1		

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level (m)	Depth (m)	Control (1/s)	Volume (m³)	
60	min	Winter	10.939	0.289	21.7	0.3	ОК
120	min	Winter	10.837	0.187	13.1	0.2	ΟK
180	min	Winter	10.816	0.166	9.6	0.2	ΟK
240	min	Winter	10.807	0.157	7.9	0.2	ΟK
360	min	Winter	10.781	0.131	5.5	0.1	ΟK
480	min	Winter	10.754	0.104	4.4	0.1	ΟK
600	min	Winter	10.739	0.089	3.6	0.1	ΟK
720	min	Winter	10.732	0.082	3.3	0.1	ΟK
960	min	Winter	10.717	0.067	2.5	0.1	ΟK
1440	min	Winter	10.706	0.056	1.8	0.1	ΟK
2160	min	Winter	10.697	0.047	1.3	0.1	ΟK
2880	min	Winter	10.692	0.042	1.0	0.0	ΟK
4320	min	Winter	10.685	0.035	0.7	0.0	ΟK
5760	min	Winter	10.681	0.031	0.6	0.0	ΟK
7200	min	Winter	10.679	0.029	0.5	0.0	ΟK
8640	min	Winter	10.676	0.026	0.4	0.0	ΟK
10080	min	Winter	10.675	0.025	0.4	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	41.754	0.0	31.6	32
120	min	Winter	24.792	0.0	37.5	60
180	min	Winter	18.043	0.0	40.9	94
240	min	Winter	14.324	0.0	43.3	116
360	min	Winter	10.321	0.0	46.8	184
480	min	Winter	8.179	0.0	49.5	238
600	min	Winter	6.825	0.0	51.6	308
720	min	Winter	5.884	0.0	53.4	370
960	min	Winter	4.653	0.0	56.3	490
1440	min	Winter	3.338	0.0	60.6	732
2160	min	Winter	2.391	0.0	65.1	1084
2880	min	Winter	1.885	0.0	68.4	1456
4320	min	Winter	1.347	0.0	73.3	2204
5760	min	Winter	1.061	0.0	77.0	2720
7200	min	Winter	0.881	0.0	79.9	3632
8640	min	Winter	0.756	0.0	82.4	4128
10080	min	Winter	0.665	0.0	84.5	4920

Cole Easdon Consultants		Page 3
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u>Y</u>
Bristol BS32 4TU	1:100 year	Micco
Date 22/04/2016 15:17	Designed by jpockett	
File 5188 Existing Model.srcx	Checked by DF	Diamaye
XP Solutions	Source Control 2015.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+0

<u>Time Area Diagram</u>

Total Area (ha) 0.090

Time (mins) Area From: To: (ha)

0 4 0.090

Cole Easdon Consultants		Page 4
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u> </u>
Bristol BS32 4TU	1:100 year	Micco
Date 22/04/2016 15:17	Designed by jpockett	
File 5188 Existing Model.srcx	Checked by DF	Diamacje
XP Solutions	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 12.000

<u>Pipe Structure</u>

Diameter (m) 0.150 Length (m) 1.000 Slope (1:X) 100.000 Invert Level (m) 10.650

<u>Pipe Outflow Control</u>

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 1.000 Upstream Invert Level (m) 10.650 Roughness k (mm) 0.600

Cole Easdon Consultants		Page 1
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u> </u>
Bristol BS32 4TU	1:100 year + 30%	Micco
Date 11/05/2016 09:33	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamaye
XP Solutions	Source Control 2015.1	•

Summary of Results for 100 year Return Period (+30%)

	Stor Even	m t	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	12.000	1.350	53.0	1.8	FLOOD
30	min	Summer	11.830	1.180	49.4	1.2	Flood Risk
60	min	Summer	11.283	0.633	35.1	0.7	ОК
120	min	Summer	10.959	0.309	22.7	0.3	ОК
180	min	Summer	10.871	0.221	17.1	0.2	ОК
240	min	Summer	10.842	0.192	13.7	0.2	ОК
360	min	Summer	10.817	0.167	9.8	0.2	ОК
480	min	Summer	10.807	0.157	7.9	0.2	ОК
600	min	Summer	10.802	0.152	6.5	0.2	ОК
720	min	Summer	10.786	0.136	5.7	0.2	ОК
960	min	Summer	10.759	0.109	4.7	0.1	ОК
1440	min	Summer	10.734	0.084	3.5	0.1	ОК
2160	min	Summer	10.714	0.064	2.3	0.1	ОК
2880	min	Summer	10.706	0.056	1.8	0.1	ОК
4320	min	Summer	10.698	0.048	1.3	0.1	ОК
5760	min	Summer	10.693	0.043	1.1	0.0	ОК
7200	min	Summer	10.688	0.038	0.9	0.0	ОК
8640	min	Summer	10.686	0.036	0.8	0.0	ОК
10080	min	Summer	10.684	0.034	0.7	0.0	ОК
15	min	Winter	12.000	1.350	53.0	1.8	FLOOD
30	min	Winter	11.580	0.930	43.4	0.9	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	136.659	0.4	23.1	11
30	min	Summer	88.315	0.0	29.8	18
60	min	Summer	54.281	0.0	36.6	32
120	min	Summer	32.230	0.0	43.5	62
180	min	Summer	23.456	0.0	47.5	92
240	min	Summer	18.621	0.0	50.3	122
360	min	Summer	13.418	0.0	54.3	182
480	min	Summer	10.633	0.0	57.4	246
600	min	Summer	8.872	0.0	59.9	294
720	min	Summer	7.649	0.0	62.0	360
960	min	Summer	6.048	0.0	65.3	474
1440	min	Summer	4.339	0.0	70.3	710
2160	min	Summer	3.108	0.0	75.5	1100
2880	min	Summer	2.451	0.0	79.4	1432
4320	min	Summer	1.752	0.0	85.1	2184
5760	min	Summer	1.379	0.0	89.4	2920
7200	min	Summer	1.145	0.0	92.8	3632
8640	min	Summer	0.983	0.0	95.6	4376
10080	min	Summer	0.864	0.0	98.0	4984
15	min	Winter	136.659	0.5	25.8	11
30	min	Winter	88.315	0.0	33.4	18
		©198	82-2015	XP Sol	utions	

Cole Easdon Consultants		Page 2
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u> </u>
Bristol BS32 4TU	1:100 year + 30%	Micco
Date 11/05/2016 09:33	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamacje
XP Solutions	Source Control 2015.1	•

Summary of Results for 100 year Return Period (+30%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
60	min	Winter	11.084	0.434	28.1	0.5	ОК
120	min	Winter	10.870	0.220	17.0	0.2	ОК
180	min	Winter	10.833	0.183	12.5	0.2	ОК
240	min	Winter	10.817	0.167	9.9	0.2	ΟK
360	min	Winter	10.805	0.155	7.2	0.2	ΟK
480	min	Winter	10.786	0.136	5.7	0.2	ΟK
600	min	Winter	10.764	0.114	4.9	0.1	ΟK
720	min	Winter	10.749	0.099	4.1	0.1	ΟK
960	min	Winter	10.734	0.084	3.5	0.1	ΟK
1440	min	Winter	10.715	0.065	2.3	0.1	ΟK
2160	min	Winter	10.704	0.054	1.7	0.1	ΟK
2880	min	Winter	10.698	0.048	1.3	0.1	ΟK
4320	min	Winter	10.690	0.040	1.0	0.0	ΟK
5760	min	Winter	10.686	0.036	0.8	0.0	ΟK
7200	min	Winter	10.683	0.033	0.6	0.0	ΟK
8640	min	Winter	10.680	0.030	0.5	0.0	ОК
10080	min	Winter	10.678	0.028	0.5	0.0	ΟK

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	54.281	0.0	41.0	32
120	min	Winter	32.230	0.0	48.7	64
180	min	Winter	23.456	0.0	53.2	90
240	min	Winter	18.621	0.0	56.3	118
360	min	Winter	13.418	0.0	60.9	182
480	min	Winter	10.633	0.0	64.3	242
600	min	Winter	8.872	0.0	67.1	300
720	min	Winter	7.649	0.0	69.4	372
960	min	Winter	6.048	0.0	73.2	508
1440	min	Winter	4.339	0.0	78.7	720
2160	min	Winter	3.108	0.0	84.6	1072
2880	min	Winter	2.451	0.0	88.9	1444
4320	min	Winter	1.752	0.0	95.3	2188
5760	min	Winter	1.379	0.0	100.1	2840
7200	min	Winter	1.145	0.0	103.9	3728
8640	min	Winter	0.983	0.0	107.1	4120
10080	min	Winter	0.864	0.0	109.8	4752

Cole Easdon Consultants		Page 3
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u>Y</u>
Bristol BS32 4TU	1:100 year + 30%	Micco
Date 11/05/2016 09:33	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamaye
XP Solutions	Source Control 2015.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+30

<u>Time Area Diagram</u>

Total Area (ha) 0.090

Time	(mins)	Area
From:	To:	(ha)

0 4 0.090

Cole Easdon Consultants		Page 4
160 Aztec	5188 New Oxford Street	
Aztec West	Existing Runoff Calculation	<u>Y</u>
Bristol BS32 4TU	1:100 year + 30%	Micco
Date 11/05/2016 09:33	Designed by jpockett	
File 5188 EXISTING MODEL.SRCX	Checked by DF	Diamacje
XP Solutions	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 12.000

<u>Pipe Structure</u>

Diameter (m) 0.150 Length (m) 1.000 Slope (1:X) 100.000 Invert Level (m) 10.650

<u>Pipe Outflow Control</u>

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 1.000 Upstream Invert Level (m) 10.650 Roughness k (mm) 0.600 APPENDIX C

PROPOSED RUN OFF CALCS WITH BLUEROOF SYSTEM

Cole Easdon Consultants		Page 1
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 5.01/s	<u> </u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 22/04/2016 15:14	Designed by jpockett	
File 5188 Proposed Model.srcx	Checked by	Diamaye
XP Solutions	Source Control 2015.1	L

	Stor		Maw	Maw	Max	Maw	8+2+110
	Even	t	Level (m)	Depth (m)	Control (1/s)	Volume (m ³)	Status
15	min	Summer	10.834	0.334	4.0	20.7	ΟK
30	min	Summer	10.903	0.403	4.4	25.0	ΟK
60	min	Summer	10.936	0.436	4.6	27.0	ΟK
120	min	Summer	10.937	0.437	4.6	27.1	ΟK
180	min	Summer	10.918	0.418	4.5	25.9	ΟK
240	min	Summer	10.893	0.393	4.4	24.4	ΟK
360	min	Summer	10.847	0.347	4.1	21.5	ΟK
480	min	Summer	10.808	0.308	3.8	19.1	ΟK
600	min	Summer	10.775	0.275	3.6	17.1	ΟK
720	min	Summer	10.748	0.248	3.4	15.4	ΟK
960	min	Summer	10.706	0.206	3.1	12.8	ΟK
1440	min	Summer	10.651	0.151	2.5	9.4	ΟK
2160	min	Summer	10.608	0.108	2.0	6.7	ΟK
2880	min	Summer	10.586	0.086	1.7	5.3	ΟK
4320	min	Summer	10.569	0.069	1.3	4.3	ΟK
5760	min	Summer	10.559	0.059	1.0	3.7	ΟK
7200	min	Summer	10.553	0.053	0.8	3.3	ΟK
8640	min	Summer	10.549	0.049	0.7	3.0	ΟK
10080	min	Summer	10.545	0.045	0.6	2.8	ΟK
15	min	Winter	10.876	0.376	4.3	23.3	ОК
30	min	Winter	10 956	0 456	17	28 3	ΟK

Storm		Rain	Flooded	Discharge	Time-Peak		
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	136.659	0.0	22.9	17	
30	min	Summer	88.315	0.0	29.7	31	
60	min	Summer	54.281	0.0	36.6	50	
120	min	Summer	32.230	0.0	43.5	84	
180	min	Summer	23.456	0.0	47.4	118	
240	min	Summer	18.621	0.0	50.2	152	
360	min	Summer	13.418	0.0	54.3	218	
480	min	Summer	10.633	0.0	57.4	282	
600	min	Summer	8.872	0.0	59.8	344	
720	min	Summer	7.649	0.0	61.9	406	
960	min	Summer	6.048	0.0	65.2	528	
1440	min	Summer	4.339	0.0	70.2	766	
2160	min	Summer	3.108	0.0	75.5	1124	
2880	min	Summer	2.451	0.0	79.4	1472	
4320	min	Summer	1.752	0.0	85.0	2204	
5760	min	Summer	1.379	0.0	89.3	2936	
7200	min	Summer	1.145	0.0	92.7	3672	
8640	min	Summer	0.983	0.0	95.5	4408	
10080	min	Summer	0.864	0.0	97.9	5128	
15	min	Winter	136.659	0.0	25.7	17	
30	min	Winter	88.315	0.0	33.3	31	
		©198	32-2015	XP Sol	Lutions		

Cole Easdon Consultants		Page 2
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 5.01/s	<u> </u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 22/04/2016 15:14	Designed by jpockett	
File 5188 Proposed Model.srcx	Checked by	Diamaye
XP Solutions	Source Control 2015.1	1

Summary	of Results	for 1	<u>100 ye</u>	ar Retu	irn Pei	riod ((+30%)
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth	Control	Volume		
		(m)	(m)	(1/s)	(m³)		

			(,	(11)	(1)0)	()		
60	min	Winter	10.993	0.493	4.9	30.6	0	K
120	min	Winter	10.987	0.487	4.9	30.2	0	K
180	min	Winter	10.955	0.455	4.7	28.2	0	K
240	min	Winter	10.919	0.419	4.5	26.0	0	K
360	min	Winter	10.852	0.352	4.1	21.8	0	K
480	min	Winter	10.799	0.299	3.8	18.5	0	K
600	min	Winter	10.757	0.257	3.5	15.9	0	K
720	min	Winter	10.723	0.223	3.2	13.8	0	K
960	min	Winter	10.674	0.174	2.8	10.8	0	K
1440	min	Winter	10.617	0.117	2.2	7.3	0	K
2160	min	Winter	10.582	0.082	1.6	5.1	0	K
2880	min	Winter	10.570	0.070	1.3	4.3	0	K
4320	min	Winter	10.556	0.056	0.9	3.5	0	K
5760	min	Winter	10.549	0.049	0.7	3.0	0	K
7200	min	Winter	10.543	0.043	0.6	2.7	0	K
8640	min	Winter	10.539	0.039	0.5	2.4	0	K
10080	min	Winter	10.536	0.036	0.5	2.2	0	K

	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
60	min	Winter	54.281	0.0	41.0	56
120	min	Winter	32.230	0.0	48.7	90
180	min	Winter	23.456	0.0	53.1	126
240	min	Winter	18.621	0.0	56.3	162
360	min	Winter	13.418	0.0	60.8	232
480	min	Winter	10.633	0.0	64.3	296
600	min	Winter	8.872	0.0	67.0	360
720	min	Winter	7.649	0.0	69.3	422
960	min	Winter	6.048	0.0	73.1	542
1440	min	Winter	4.339	0.0	78.6	780
2160	min	Winter	3.108	0.0	84.6	1108
2880	min	Winter	2.451	0.0	88.9	1468
4320	min	Winter	1.752	0.0	95.2	2204
5760	min	Winter	1.379	0.0	100.1	2936
7200	min	Winter	1.145	0.0	103.9	3640
8640	min	Winter	0.983	0.0	107.0	4288
10080	min	Winter	0.864	0.0	109.7	5080

Cole Easdon Consultants		Page 3
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 5.01/s	<u>Y</u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 22/04/2016 15:14	Designed by jpockett	
File 5188 Proposed Model.srcx	Checked by	Diamaye
XP Solutions	Source Control 2015.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+30

<u>Time Area Diagram</u>

Total Area (ha) 0.090

Time (mins) Area From: To: (ha)

0 4 0.090

Cole Easdon Consultants		Page 4
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 5.01/s	<u> </u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 22/04/2016 15:14	Designed by jpockett	
File 5188 Proposed Model.srcx	Checked by	Diamaye
XP Solutions	Source Control 2015.1	·

Model Details

Storage is Online Cover Level (m) 12.000

Tank or Pond Structure

Invert Level (m) 10.500

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m) A	Area (m²)	Depth (m)	Area (m²)
	<u> </u>	0 500		1 100	0.0	0 100	
0.000	62.0	0./00	0.0	1.400	0.0	2.100	0.0
0.100	62.0	0.800	0.0	1.500	0.0	2.200	0.0
0.200	62.0	0.900	0.0	1.600	0.0	2.300	0.0
0.300	62.0	1.000	0.0	1.700	0.0	2.400	0.0
0.400	62.0	1.100	0.0	1.800	0.0	2.500	0.0
0.500	62.0	1.200	0.0	1.900	0.0		
0.600	0.0	1.300	0.0	2.000	0.0		

Orifice Outflow Control

Diameter (m) 0.059 Discharge Coefficient 0.600 Invert Level (m) 10.500

Cole Easdon Consultants		Page 1
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 22.51/s	<u> </u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 22/04/2016 15:07	Designed by jpockett	
File 5188 Proposed Model.srcx	Checked by	Diamaye
XP Solutions	Source Control 2015.1	L

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(l/s)	(m³)	
15	min	Summer	10.939	0.439	20.6	14.1	OF
30	min	Summer	10.959	0.459	21.2	14.7	Οŀ
60	min	Summer	10.899	0.399	19.5	12.8	Οŀ
120	min	Summer	10.796	0.296	16.2	9.5	Οŀ
180	min	Summer	10.730	0.230	13.7	7.4	Οŀ
240	min	Summer	10.691	0.191	12.0	6.1	Οŀ
360	min	Summer	10.655	0.155	9.3	5.0	Οŀ
480	min	Summer	10.635	0.135	7.5	4.3	Οŀ
600	min	Summer	10.622	0.122	6.4	3.9	Οŀ
720	min	Summer	10.612	0.112	5.5	3.6	Οŀ
960	min	Summer	10.597	0.097	4.4	3.1	Οŀ
1440	min	Summer	10.577	0.077	3.2	2.5	Οŀ
2160	min	Summer	10.566	0.066	2.3	2.1	Οŀ
2880	min	Summer	10.560	0.060	1.8	1.9	Οŀ
4320	min	Summer	10.550	0.050	1.3	1.6	Οŀ
5760	min	Summer	10.544	0.044	1.0	1.4	Οŀ
7200	min	Summer	10.540	0.040	0.9	1.3	Οŀ
8640	min	Summer	10.537	0.037	0.7	1.2	Οŀ
10080	min	Summer	10.534	0.034	0.6	1.1	Οŀ
15	min	Winter	10.986	0.486	21.9	15.6	Οŀ
30	min	Winter	10,987	0.487	21.9	15.6	OF

Storm		Rain	Flooded	Discharge	Time-Peak			
		Even	t	(mm/hr)	Volume	Volume	(mins)	
					(m³)	(m³)		
	15	min	Summor	136 650	0 0	23 0	13	
	20		Gummen	100.009	0.0	23.0	10	
	50		Summer	00.JIJ	0.0	29.0	21	
	60	mın	Summer	54.281	0.0	36.6	38	
	120	min	Summer	32.230	0.0	43.5	68	
	180	min	Summer	23.456	0.0	47.5	98	
	240	min	Summer	18.621	0.0	50.3	126	
	360	min	Summer	13.418	0.0	54.3	186	
	480	min	Summer	10.633	0.0	57.4	246	
	600	min	Summer	8.872	0.0	59.9	308	
	720	min	Summer	7.649	0.0	61.9	368	
	960	min	Summer	6.048	0.0	65.3	490	
	1440	min	Summer	4.339	0.0	70.3	734	
	2160	min	Summer	3.108	0.0	75.5	1096	
	2880	min	Summer	2.451	0.0	79.4	1468	
	4320	min	Summer	1.752	0.0	85.1	2188	
	5760	min	Summer	1.379	0.0	89.3	2936	
	7200	min	Summer	1.145	0.0	92.7	3632	
	8640	min	Summer	0.983	0.0	95.6	4336	
	10080	min	Summer	0.864	0.0	98.0	5136	
	15	min	Winter	136.659	0.0	25.8	13	
	30	min	Winter	88.315	0.0	33.4	22	
			©198	82-2015	XP Sol	utions		

Cole Easdon Consultants		Page 2
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 22.51/s	<u> </u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 22/04/2016 15:07	Designed by jpockett	
File 5188 Proposed Model.srcx	Checked by	Diamaye
XP Solutions	Source Control 2015.1	•

Summary of Results for 100 year Return Period (+30%)

	Stor Even	m t	Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
60	min	Winter	10.892	0.392	19.3	12.5	ОК
120	min	Winter	10.755	0.255	14.7	8.2	ΟK
180	min	Winter	10.687	0.187	11.8	6.0	ΟK
240	min	Winter	10.659	0.159	9.6	5.1	ΟK
360	min	Winter	10.630	0.130	7.0	4.1	ΟK
480	min	Winter	10.613	0.113	5.6	3.6	ΟK
600	min	Winter	10.602	0.102	4.7	3.2	ΟK
720	min	Winter	10.591	0.091	4.0	2.9	ΟK
960	min	Winter	10.578	0.078	3.2	2.5	ΟK
1440	min	Winter	10.566	0.066	2.3	2.1	ΟK
2160	min	Winter	10.557	0.057	1.7	1.8	ΟK
2880	min	Winter	10.550	0.050	1.3	1.6	ΟK
4320	min	Winter	10.542	0.042	0.9	1.3	ΟK
5760	min	Winter	10.537	0.037	0.7	1.2	ΟK
7200	min	Winter	10.534	0.034	0.6	1.1	ΟK
8640	min	Winter	10.531	0.031	0.5	1.0	ΟK
L0080	min	Winter	10.529	0.029	0.5	0.9	ΟK

	Storm	R	ain	Flooded	Discharg	e Time-Peak
	Event	(m	n/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
C 0						
60	min Wil	nter 54	4.281	0.0	41.	0 38
120	min Wi	nter 32	2.230	0.0	48.	7 70
180	min Wi	nter 23	3.456	0.0	53.	2 98
240	min Wi	nter 18	8.621	0.0	56.	3 128
360	min Wi	nter 13	3.418	0.0	60.	8 188
480	min Wi	nter 10	0.633	0.0	64.	3 246
600	min Wi	nter 8	8.872	0.0	67.	1 308
720	min Wi	nter '	7.649	0.0	69.	4 370
960	min Wi	nter	6.048	0.0	73.	1 490
1440	min Wi	nter (4.339	0.0	78.	7 734
2160	min Wi	nter 3	3.108	0.0	84.	6 1084
2880	min Wi	nter 2	2.451	0.0	88.	9 1444
4320	min Wi	nter 1	1.752	0.0	95.	3 2204
5760	min Wi	nter 1	1.379	0.0	100.	1 2936
7200	min Wi	nter 1	1.145	0.0	103.	9 3672
8640	min Wi	nter (0.983	0.0	107.	0 4304
10080	min Wi	nter (0.864	0.0	109.	8 4992

Cole Easdon Consultants		Page 3
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 22.51/s	<u>Y</u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 22/04/2016 15:07	Designed by jpockett	
File 5188 Proposed Model.srcx	Checked by	Diamacje
XP Solutions	Source Control 2015.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+30

<u>Time Area Diagram</u>

Total Area (ha) 0.090

Time (mins) Area From: To: (ha)

0 4 0.090

Cole Easdon Consultants		Page 4
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 22.51/s	<u>Y</u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 22/04/2016 15:07	Designed by jpockett	
File 5188 Proposed Model.srcx	Checked by	Diamaye
XP Solutions	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 12.000

Tank or Pond Structure

Invert Level (m) 10.500

Depth (m)	Area (m²)						
0.000	32.0	0.700	0.0	1.400	0.0	2.100	0.0
0.100	32.0	0.800	0.0	1.500	0.0	2.200	0.0
0.200	32.0	0.900	0.0	1.600	0.0	2.300	0.0
0.300	32.0	1.000	0.0	1.700	0.0	2.400	0.0
0.400	32.0	1.100	0.0	1.800	0.0	2.500	0.0
0.500	32.0	1.200	0.0	1.900	0.0		
0.600	0.0	1.300	0.0	2.000	0.0		

Orifice Outflow Control

Diameter (m) 0.127 Discharge Coefficient 0.600 Invert Level (m) 10.500

Cole Easdon Consultants		Page 1
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 45.01/s	<u> </u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 11/05/2016 10:10	Designed by jpockett	
File 5188 PROPOSED MODEL.SRCX	Checked by	Diamacje
XP Solutions	Source Control 2015.1	•

Summary o	f Re	sults	for 1	<u>00 ye</u>	ar Retu	irn Pei	riod (+30%)
	Stor Even	m It	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m ³)	Status
15	min	Summer	10.987	0.487	44.0	6.8	ОК
30	min	Summer	10.931	0.431	40.7	6.0	0 K
60 120	min	Summer	10.804	0.304	32.2	4.3	OK
120	min	Summer	10.716	0.216	16.6	3.U 2.5	OK
240	min	Summer	10.658	0.158	13.4	2.2	0 K
360	min	Summer	10.629	0.129	9.8	1.8	O K
480	min	Summer	10.610	0.110	7.8	1.5	O K
600	min	Summer	10.601	0.101	6.6	1.4	0 K
720	min	Summer	10.594	0.094	5.7	1.3	ОК
960	min	Summer	10.586	0.086	4.5	1.2	OK
2160	min	Summer	10.560	0.060	2.3	0.8	0 K 0 K
2880	min	Summer	10.553	0.053	1.8	0.7	0 K
4320	min	Summer	10.545	0.045	1.3	0.6	0 K
5760	min	Summer	10.540	0.040	1.0	0.6	O K
7200	min	Summer	10.536	0.036	0.9	0.5	O K
8640	min	Summer	10.533	0.033	0.7	0.5	ОК
10080	min	Summer	10.531	0.031	0.7	0.4	OK
15 30	min min	Winter Winter	10.895	0.395	45.1 38.5	/.1 5.5	O K

Storm		Rain	Floo	bded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Vol	ume	Volume	(mins)
				(m	3)	(m³)	
15	min	Summer	136.659		0.0	23.1	11
30	min	Summer	88.315		0.0	29.8	19
60	min	Summer	54.281		0.0	36.6	34
120	min	Summer	32.230		0.0	43.5	64
180	min	Summer	23.456		0.0	47.5	94
240	min	Summer	18.621		0.0	50.3	124
360	min	Summer	13.418		0.0	54.3	184
480	min	Summer	10.633		0.0	57.4	244
600	min	Summer	8.872		0.0	59.9	304
720	min	Summer	7.649		0.0	61.9	360
960	min	Summer	6.048		0.0	65.3	484
1440	min	Summer	4.339		0.0	70.3	732
2160	min	Summer	3.108		0.0	75.5	1080
2880	min	Summer	2.451		0.0	79.4	1428
4320	min	Summer	1.752		0.0	85.1	2184
5760	min	Summer	1.379		0.0	89.4	2856
7200	min	Summer	1.145		0.0	92.7	3592
8640	min	Summer	0.983		0.0	95.6	4368
10080	min	Summer	0.864		0.0	98.0	4992
15	min	Winter	136.659		0.0	25.8	11
30	min	Winter	88.315		0.0	33.4	19
		©198	82-2015	ХP	Sol	utions	

Cole Easdon Consultants		Page 2
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 45.01/s	<u> </u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 11/05/2016 10:10	Designed by jpockett	
File 5188 PROPOSED MODEL.SRCX	Checked by	Diamaye
XP Solutions	Source Control 2015.1	1

Summary of Results for 100 year Return Period (+30%) Storm Max Max Max Max Status

	0 COLIM						bcacab
Event		Level	Depth	Control	Volume		
			(m)	(m)	(1/s)	(m³)	
60	min	Winter	10.753	0.253	27.6	3.5	ΟK
120	min	Winter	10.682	0.182	16.9	2.6	ΟK
180	min	Winter	10.651	0.151	12.4	2.1	ΟK
240	min	Winter	10.630	0.130	9.9	1.8	ΟK
360	min	Winter	10.605	0.105	7.1	1.5	ΟK
480	min	Winter	10.594	0.094	5.7	1.3	ΟK
600	min	Winter	10.588	0.088	4.8	1.2	ΟK
720	min	Winter	10.582	0.082	4.1	1.1	ΟK
960	min	Winter	10.571	0.071	3.2	1.0	ΟK
1440	min	Winter	10.560	0.060	2.3	0.8	ΟK
2160	min	Winter	10.551	0.051	1.7	0.7	ΟK
2880	min	Winter	10.545	0.045	1.3	0.6	ΟK
4320	min	Winter	10.538	0.038	0.9	0.5	ΟK
5760	min	Winter	10.533	0.033	0.7	0.5	ΟK
7200	min	Winter	10.530	0.030	0.6	0.4	ΟK
8640	min	Winter	10.528	0.028	0.5	0.4	ΟK
10080	min	Winter	10.526	0.026	0.5	0.4	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	54.281	0.0	41.0	34
120	min	Winter	32.230	0.0	48.7	64
180	min	Winter	23.456	0.0	53.2	94
240	min	Winter	18.621	0.0	56.3	124
360	min	Winter	13.418	0.0	60.9	182
480	min	Winter	10.633	0.0	64.3	244
600	min	Winter	8.872	0.0	67.1	306
720	min	Winter	7.649	0.0	69.4	364
960	min	Winter	6.048	0.0	73.2	480
1440	min	Winter	4.339	0.0	78.7	732
2160	min	Winter	3.108	0.0	84.6	1072
2880	min	Winter	2.451	0.0	88.9	1464
4320	min	Winter	1.752	0.0	95.3	2172
5760	min	Winter	1.379	0.0	100.1	2888
7200	min	Winter	1.145	0.0	103.9	3624
8640	min	Winter	0.983	0.0	107.1	4408
10080	min	Winter	0.864	0.0	109.8	5008

Cole Easdon Consultants		Page 3
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 45.01/s	<u>Y</u>
Bristol BS32 4TU	100yr CC Event	Micco
Date 11/05/2016 10:10	Designed by jpockett	
File 5188 PROPOSED MODEL.SRCX	Checked by	Diamaye
XP Solutions	Source Control 2015.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+30

<u>Time Area Diagram</u>

Total Area (ha) 0.090

Time (mins) Area From: To: (ha)

0 4 0.090

Cole Easdon Consultants		Page 4
160 Aztec	5188 New Oxford Street	
Aztec West	Required storage at 45.01/s	<u>Y</u>
Bristol BS32 4TU	100yr CC Event	Micro
Date 11/05/2016 10:10	Designed by jpockett	
File 5188 PROPOSED MODEL.SRCX	Checked by	Diamacje
XP Solutions	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 12.000

Tank or Pond Structure

Invert Level (m) 10.500

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m) A	rea (m²)	Depth (m)	Area (m²)
0 000	14 0	0 700	0 0	1 400	0 0	2 100	0 0
0.100	14.0	0.800	0.0	1.500	0.0	2.200	0.0
0.200	14.0	0.900	0.0	1.600	0.0	2.300	0.0
0.300	14.0	1.000	0.0	1.700	0.0	2.400	0.0
0.400	14.0	1.100	0.0	1.800	0.0	2.500	0.0
0.500	14.0	1.200	0.0	1.900	0.0		
0.600	0.0	1.300	0.0	2.000	0.0		

Orifice Outflow Control

Diameter (m) 0.183 Discharge Coefficient 0.600 Invert Level (m) 10.500

APPENDIX D

SURFACE DRAINAGE PROFORMA

Section 4 - Discharge rates

Existing peak runoff rates are based on the critical duration storm for each return period.

If the orifice plate flow control is designed to restrict the flows to 5.0l/s for the 1:100 year + 30% event then the rate will be less than 5.0l/s for smaller duration events due to the reduced head behind the orifice plate. As we can't model the blueroof system in MicroDrainage we are unable to provide a more definitive figure for these events but betterment would still be provided in comparison to the existing situation.

Section 5 - storage volumes

Existing and greenfield runoff volumes are based upon the 6 hour duration storm event for each return period.

Again, as MicroDrainage can't model the blueroof system we are unable to provide the proposed runoff volumes. Presumably ABG would be able to provide this information? The proposed runoff volume should be less as the blueroof system provides interception and attenuation storage but we are unable to quantify it.

Section 6 - attenuation storage

We have altered the first line of this table; as greenfield runoff rates are very small it would not be practical to restrict development runoff to them due to flow control blockage risk. We have assumed 5.0l/s as a minimum rate in accordance with standard practice.

Section 8 - how are rates restricted?

Any overflow (if required) is managed internally by our blue roof restrictor chamber. Hence any exceedance/overspill is over the internal wall of the restrictor chamber, and then down into the RWO position. The height of this internal wall is designed to meet the requirements of the original planning design storm events.

Advice Note on contents of a Surface Water Drainage Statement

London Borough of Camden

1. Introduction

- 1.1 The Government has strengthened planning policy on the provision of sustainable drainage and new consultation arrangements for 'major' planning applications will come into force from 6 April 2015 as defined in the <u>Written</u> <u>Ministerial Statement</u> (18th Dec 2014).
- 1.2 The new requirements make Lead Local Flood Authorises statutory consultees with respect to flood risk and SuDS for all major applications. Previously the Environment Agency had that statutory responsibility for sites above 1ha in flood zone 1.
- 1.3 Therefore all 'major' planning applications submitted from 6 April 2015 are required demonstrate compliance with this policy and we'd encourage this is shown in a **Surface Water Drainage Statement**.
- 1.4 The purpose of this advice note is to set out what information should be included in such statements.

2. Requirements

- 2.1 It is essential that the type of Sustainable Drainage System (SuDS) for a site, along with **details of its extent and position**, is identified within the planning application to clearly demonstrate that the proposed SuDS can be accommodated within the development.
- 2.2 It will now not be acceptable to leave the design of SuDs to a later stage to be dealt with by planning conditions.
- 2.3 The NPPF paragraph 103 requires that developments do not increase flood risk elsewhere, and gives priority to the use of SuDS. Major developments must include SuDS for the management of run-off, unless demonstrated to be inappropriate. The proposed minimum standards of operation must be appropriate and as such, a **maintenance plan** should be included within the Surface Water Drainage Statement, clearly demonstrating that the SuDS have been designed to ensure that the maintenance and operation requirements are economically proportionate Planning Practice Guidance suggests that this should be considered by reference to the costs that would be incurred by consumers for the use of an effective drainage system connecting directly to a public sewer.
- 2.4 Camden Council will use planning conditions or obligations to ensure that there are clear arrangements in place for ongoing maintenance over the lifetime of the development.
- 2.5 Within Camden, SuDS systems must be designed in accordance with London Plan policy 5.13. This requires that developments should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy:

UNCLASSIFIED

- 1 store rainwater for later use
- 2 use infiltration techniques, such as porous surfaces in non-clay areas
- 3 attenuate rainwater in ponds or open water features for gradual release
- 4 attenuate rainwater by storing in tanks or sealed water features for gradual release
- 5 discharge rainwater direct to a watercourse
- 6 discharge rainwater to a surface water sewer/drain
- 7 discharge rainwater to the combined sewer.
- 2.6 The hierarchy above seeks to ensure that surface water run-off is controlled as near to its source as possible to mimic natural drainage systems and retain water on or near to the site, in contrast to traditional drainage approaches, which tend to pipe water off-site as quickly as possible.
- 2.7 Before disposal of surface water to the public sewer is considered all other options set out in the drainage hierarchy should be exhausted. When no other practicable alternative exists to dispose of surface water other than the public sewer, the Water Company or its agents should confirm that there is adequate spare capacity in the existing system taking future development requirements into account.
- 2.8 Best practice guidance within the <u>non-statutory technical standards</u> for the design, maintenance and operation of sustainable drainage systems will also need to be followed. Runoff volumes from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the **greenfield runoff volume** for the same event.
- 2.9 <u>Camden Development Policy 23</u> (Water) requires developments to reduce pressure on combined sewer network and the risk of flooding by limiting the rate of run-off through sustainable urban drainage systems. This policy also requires that developments in areas known to be at risk of surface water flooding are designed to cope with being flooded. <u>Camden's SFRA</u> surface water flood maps, updated SFRA figures 6 (LFRZs), and 4e (increased susceptibility to elevated groundwater), as well as the <u>Environment Agency</u> <u>updated flood maps for surface water (ufmfsw)</u>, should be referred to when determining whether developments are in an area at risk of flooding.
- 2.10 <u>Camden Planning Guidance 3</u> (CPG3) requires developments to achieve a greenfield run off rate once SuDS have been installed. Where it can be demonstrated that this is not feasible, a minimum 50% reduction in run off rate across the development is required. Further guidance on how to reduce the risk of flooding can be found in CPG3 paragraphs 11.4-11.8.
- 2.11 Where an application is part of a larger site which already has planning permission it is essential that the new proposal does not compromise the drainage scheme already approved.

3. Further information and guidance

- 3.1 Applicants are strongly advised to discuss their proposals with the Lead Local Flood Authority at the pre-application stage to ensure that an acceptable SuDS scheme is submitted.
- 3.2 For general clarification of these requirements please Camden's Local Planning Authority or Lead Local Flood Authority

UNCLASSIFIED

Surface Water Drainage Pro-forma for new developments

This pro-forma accompanies our advice note on surface water drainage. Developers should complete this form and submit it to the Local Planning Authority, referencing from where in their submission documents this information is taken. The pro-forma is supported by the <u>Defra/EA guidance on Rainfall Runoff Management</u> and uses the storage calculator on <u>www.UKsuds.com</u>. This pro-forma is based on current industry best practice and focuses on ensuring surface water drainage proposals meet national and local policy requirements. The pro-forma should be considered alongside other supporting SuDS Guidance.

1. Site Details

Site	
Address & post code or LPA reference	
Grid reference	
Is the existing site developed or Greenfield?	
Is the development in a LFRZ or in an area known to be at risk of surface or ground water flooding? If yes, please demonstrate how this is managed, in line with DP23?	
Total Site Area served by drainage system (excluding open space) (Ha)*	

* The Greenfield runoff off rate from the development which is to be used for assessing the requirements for limiting discharge flow rates and attenuation storage from a site should be calculated for the area that forms the drainage network for the site whatever size of site and type of drainage technique. Please refer to the Rainfall Runoff Management document or CIRIA manual for detail on this.

2. Impermeable Area

	Existing	Proposed	Difference	Notes for developers
	_		(Proposed-Existing)	
Impermeable area (ha)				If the proposed amount of impermeable surface is greater, then runoff rates and volumes
				will increase. Section 6 must be filled in. If proposed impermeability is equal or less than
				existing, then section 6 can be skipped and section 7 filled in.
Drainage Method			N/A	If different from the existing, please fill in section 3. If existing drainage is by infiltration and
(infiltration/sewer/watercourse)				the proposed is not, discharge volumes may increase. Fill in section 6.

3. Proposing to Discharge Surface Water via

	Yes	No	Evidence that this is possible	Notes for developers
Existing and proposed				Please provide MicroDrainage calculations of existing and proposed run-off rates and
MicroDrainage calculations				volumes in accordance with a recognised methodology or the results of a full infiltration test
				(see line below) if infiltration is proposed.
Infiltration				e.g. soakage tests. Section 6 (infiltration) must be filled in if infiltration is proposed.
To watercourse				e.g. Is there a watercourse nearby?
To surface water sewer				Confirmation from sewer provider that sufficient capacity exists for this connection.
Combination of above				e.g. part infiltration part discharge to sewer or watercourse. Provide evidence above.
Has the drainage proposal				Evidence must be provided to demonstrate that the proposed Sustainable Drainage
had regard to the SuDS				strategy has had regard to the SuDS hierarchy as outlined in Section 2.5 above.
hierarchy?				
Layout plan showing where				Please provide plan reference numbers showing the details of the site layout showing
the sustainable drainage				where the sustainable drainage infrastructure will be located on the site. If the development
infrastructure will be				is to be constructed in phases this should be shown on a separate plan and confirmation
located on site.				should be provided that the sustainable drainage proposal for each phase can be
				constructed and can operate independently and is not reliant on any later phase of
				development.

4. Peak Discharge Rates – This is the maximum flow rate at which storm water runoff leaves the site during a particular storm event.

	Existing Rates (I/s)	Proposed Rates (I/s)	Difference (I/s) (Proposed- Existing)	% Difference (difference /existing x 100)	Notes for developers
Greenfield QBAR		N/A	N/A	N/A	QBAR is approx. 1 in 2 storm event. Provide this if Section 6 (QBAR) is proposed.
1 in 1					Proposed discharge rates (with mitigation) should aim to be equivalent to greenfield rates
1 in 30					for all corresponding storm events. As a minimum, peak discharge rates must be reduced
1in 100					by 50% from the existing sites for all corresponding rainial events.
1 in 100 plus	N/A				The proposed 1 in 100 +CC peak discharge rate (with mitigation) should aim to be
climate change					equivalent to greenfield rates. As a minimum, proposed 1 in 100 +CC peak discharge rate must be reduced by 50% from the existing 1 in 100 runoff rate sites.

5. Calculate additional volumes for storage –The total volume of water leaving the development site. New hard surfaces potentially restrict the amount of stormwater that can go to the ground, so this needs to be controlled so not to make flood risk worse to properties downstream.

	Greenfield runoff volume	Existing Volume (m ³)	Proposed Volume (m ³)	Difference (m ³) (Proposed-Existing)	Notes for developers
	(m ³)				
1 in 1					Proposed discharge volumes (with mitigation) should be constrained to a value as close as is
1 in 30					reasonably practicable to the greenfield runoff volume wherever practicable and as a
1in 100 6 hour					minimum should be no greater than existing volumes for all corresponding storm events. Any
					increase in volume increases flood risk elsewhere. Where volumes are increased section 6
					must be filled in.
1 in 100 6 hour plus					The proposed 1 in 100 +CC discharge volume should be constrained to a value as close as
climate change					is reasonably practicable to the greenfield runoff volume wherever practicable. As a
					minimum, to mitigate for climate change the proposed 1 in 100 +CC volume discharge from
					site must be no greater than the existing 1 in 100 storm event. If not, flood risk increases
					under climate change.

6. Calculate attenuation storage – Attenuation storage is provided to enable the rate of runoff from the site into the receiving watercourse to be limited to an acceptable rate to protect against erosion and flooding downstream. The attenuation storage volume is a function of the degree of development relative to the greenfield discharge rate.

	Notes for developers
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a greenfield run off rate.
meet greenfield run off rates (m ³)	Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a 50% reduction from
reduce rates by 50% (m ³)	existing rates. Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a rate different from the
meet [OTHER RUN OFF RATE (as close to greenfield rate as	above – please state in 1 st column what rate this volume corresponds to. On
possible] (m ³)	previously developed sites, runoff rates should not be more than three times the
	calculated greenfield rate. Can't be used where discharge volumes are
	increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at existing rates. Can't be
retain rates as existing (m ³)	used where discharge volumes are increasing
Percentage of attenuation volume stored above ground,	Percentage of attenuation volume which will be held above ground in
	swales/ponds/basins/green roofs etc. If 0, please demonstrate why.

7. How is Storm Water stored on site?

Storage is required for the additional volume from site but also for holding back water to slow down the rate from the site. This is known as attenuation storage and long term storage. The idea is that the additional volume does not get into the watercourses, or if it does it is at an exceptionally low rate. You can either infiltrate the stored water back to ground, or if this isn't possible hold it back with on site storage. Firstly, can infiltration work on site?

		Notes for developers
	State the Site's Geology and known Source	Avoid infiltrating in made ground. Infiltration rates are highly variable
Infiltration	Protection Zones (SPZ)	and refer to Environment Agency website to identify and source
		protection zones (SPZ)
	Are infiltration rates suitable?	Infiltration rates should be no lower than 1×10^{-6} m/s.
	State the distance between a proposed infiltration	Need 1m (min) between the base of the infiltration device & the water
	device base and the ground water (GW) level	table to protect Groundwater quality & ensure GW doesn't enter
		infiltration devices. Avoid infiltration where this isn't possible.

	Were infiltration rates obtained by desk study or infiltration test?	Infiltration rates can be estimated from desk studies at most stages of the planning system if a back up attenuation scheme is provided
	Is the site contaminated? If yes, consider advice from others on whether infiltration can happen.	Advice on contaminated Land in Camden can be found on our supporting documents <u>webpage</u> Water should not be infiltrated through land that is contaminated. The Environment Agency may provide bespoke advice in planning consultations for contaminated sites that should be considered.
In light of the above, is infiltration feasible?	Yes/No? If the answer is No, please identify how the storm water will be stored prior to release	If infiltration is not feasible how will the additional volume be stored?. The applicant should then consider the following options in the next section.

Storage requirements

The developer must confirm that either of the two methods for dealing with the amount of water that needs to be stored on site.

Option 1 Simple – Store both the additional volume and attenuation volume in order to make a final discharge from site at the greenfield run off rate. This is preferred if no infiltration can be made on site. This very simply satisfies the runoff rates and volume criteria.

Option 2 Complex – If some of the additional volume of water can be infiltrated back into the ground, the remainder can be discharged at a very low rate of 2 l/sec/hectare. A combined storage calculation using the partial permissible rate of 2 l/sec/hectare and the attenuation rate used to slow the runoff from site.

	Notes for developers
Please confirm what option has been chosen and how much	The developer at this stage should have an idea of the site
storage is required on site.	characteristics and be able to explain what the storage requirements
- · ·	are on site and how it will be achieved.

8. Please confirm

	Notes for developers
Which Drainage Systems measures have been used,	SUDS can be adapted for most situations even where infiltration
including green roofs?	isn't feasible e.g. impermeable liners beneath some SUDS devices
	allows treatment but not infiltration. See CIRIA SUDS Manual C697.
Drainage system can contain in the 1 in 30 storm event	This a requirement for sewers for adoption & is good practice even
without flooding	where drainage system is not adopted.
Will the drainage system contain the 1 in 100 +CC storm	National standards require that the drainage system is designed so
event? If no please demonstrate how buildings and utility	that flooding does not occur during a 1 in 100 year rainfall event in
plants will be protected.	any part of: a building (including a basement); or in any utility plant
	susceptible to water (e.g. pumping station or electricity substation)
	within the development.
Any flooding between the 1 in 30 & 1 in 100 plus climate	Sately: not causing property flooding or posing a hazard to site
change storm events will be safely contained on site.	users i.e. no deeper than 300mm on roads/lootpaths. Flood waters
	must drain away at section o fates. Existing fates can be used
How will exceedance events be externed on site without	Safely: pot causing property flooding or posing a hazard to site
increasing flood risks (both on site and outside the	users i.e. no deeper than 300mm on roads/footnaths. Flood waters
development)?	must drain away at section 6 rates. Existing rates can be used
	where runoff volumes are not increased.
	Exceedance events are defined as those larger than the 1 in 100
	+CC event.
How are rates being restricted (vortex control, orifice etc)	Detail of how the flow control systems have been designed to avoid
	pipe blockages and ease of maintenance should be provided.
Please confirm the owners/adopters of the entire drainage	If these are multiple owners then a drawing illustrating exactly what
systems throughout the development. Please list all the	features will be within each owner's remit must be submitted with
owners.	this Proforma.
How is the entire drainage system to be maintained?	If the features are to be maintained directly by the owners as stated
	in answer to the above question please answer yes to this question
	and submit the relevant maintenance schedule for each feature. If it
	is to be maintained by others than above please give details of each
	leature and the maintenance schedule.
	clear details of the maintenance proposals of all elements of the
	demonstrate that maintenance and operation requirements are
	economically proportionate. Poorly maintained drainage can load to
	increased flooding problems in the future
	Clear details of the maintenance proposals of all elements of the proposed drainage system must be provided. Details must demonstrate that maintenance and operation requirements are economically proportionate. Poorly maintained drainage can lead to increased flooding problems in the future.

9. Evidence Please identify where the details quoted in the sections above were taken from. i.e. Plans, reports etc. Please also provide relevant drawings that need to accompany your proforma, in particular exceedance routes and ownership and location of SuDS (maintenance access strips etc

Pro-forma Section	Document reference where details quoted above are taken from	Page Number		
Section 2				
Section 3				
Section 4				
Section 5				
Section 6				
Section 7				
Section 8				
The above form should be completed using evidence from the Flood Risk Assessment and site plans. It should serve as a summary sheet of the drainage proposals and should clearly show that the proposed rate and volume as a result of development will not be increasing. If there is an increase in rate or volume, the rate or volume section should be completed to set out how the additional rate/volume is being dealt with. This form is completed using factual information from the Flood Risk Assessment and Site Plans and can be used as a summary of the surface water drainage strategy on this site.				
Form Completed By Qualification of person responsible for signing off this pro-forma				
Company On behalf of (Client's details) Date:				

APPENDIX E

GREEN ROOF DRAWING

13	14		
		CLIENT Triangle I Developn	nvestments and nent LTD
		STRUCTURAL ENGINEER	avarro Pledge
		SERVICES ENGINEER	Jmer Flott
		Montagu KEY PLAN	Evans
			eque
		NEW OXI	CORD STREET
			23 33 36 41 PH
	/	NOTES: DO NOT SCALE. FIGURED DI DRAWING CHECK DIMENSIO	MENSIONS ONLY TO BE TAKEN FROM THIS
		DISCREPANCIES TO THE AR	CHITECT. ED BY COPYRIGHT.
		ALL AREAS HAVE BEEN MEA MAY VARY BECAUSE OF (EG CONSTRUCTION TOLERANC	ASURED FROM CURRENT DRAWINGS. THEY B) SURVEY, DESIGN DEVELOPMENT, DES. STATUTORY REQUIREMENTS OR
		RE-DEFINITION OF THE ARE	AS TO BE MEASURED.
/			
		P2 08/01/16 Flat roof over A P1 23/11/15 First Issue	Apartment 303 revised. CB GP CH GP
		No. Date Comment Revisions	Drawn Chk'd
arro ple	edae	PL	ANNING
	lage	tp	architecture
Fax: 01462 632	2233		interiors planning
		One America Street London SET	I ONE UK +44 (0) 20 7208 2000 www.tpbennett.com
		New Oxford S	treet Estate
N ROOF AREA		Drawing Title	
Drawing N	0.	Proposed Roof Plan	
Duit	27/2/10		
		Drawn Date CH 23.11.2015 tp bennett Project No.	Scale @ A1 Alt. Ref. 1:100 L Drawing Number Rev
1m 00 2m	8m	A10862	D 0105 P2
		·	