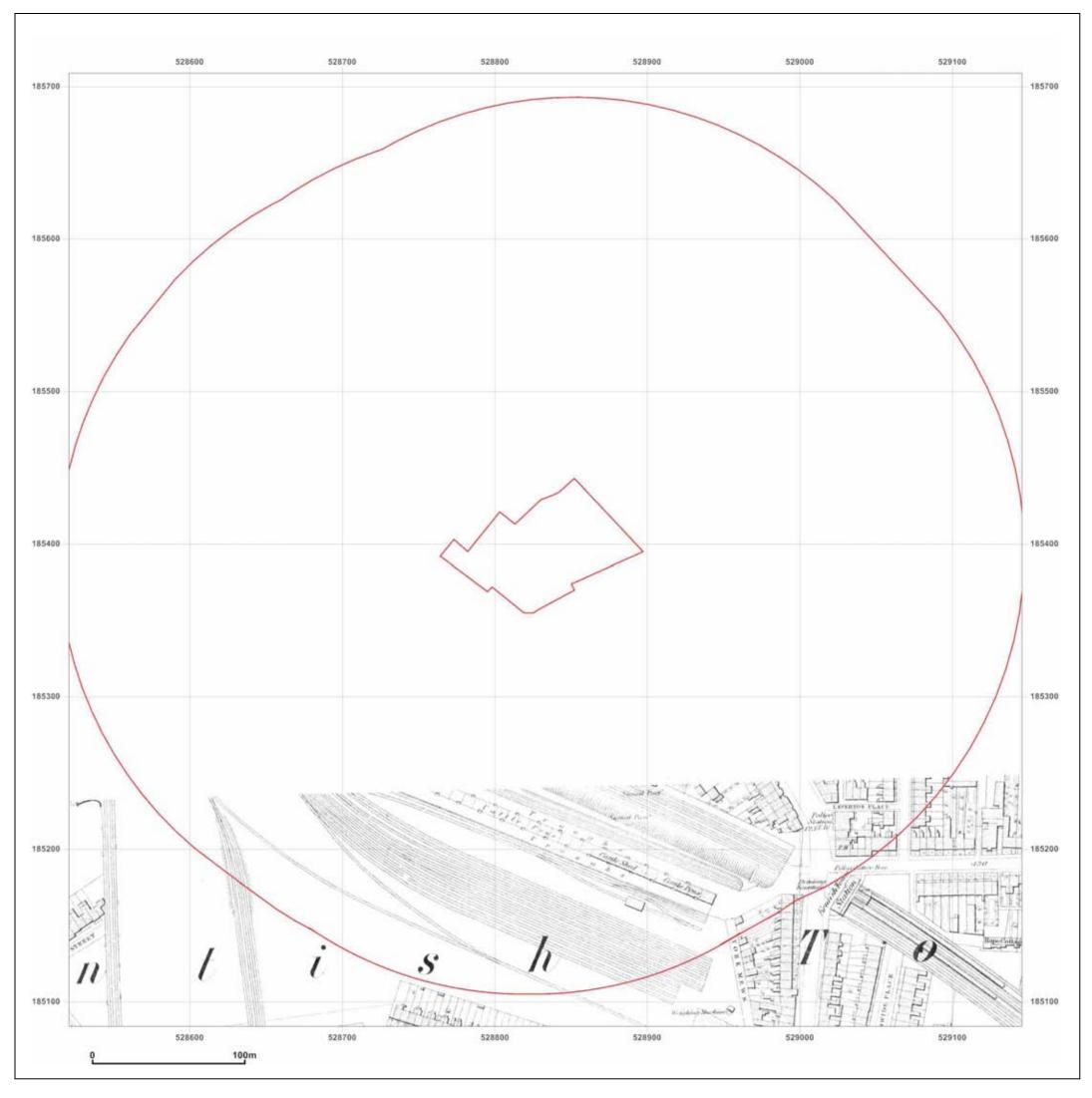


Greenwood Place Community Centre

Client Ref: EMS_184935_271159 **Report Ref:** EMS-184935_271159 528833, 185396 Grid Ref:

- Map Name: County Series
- 1896 Map date:
- 1:2,500 Scale:
- **Printed at:** 1:2,500

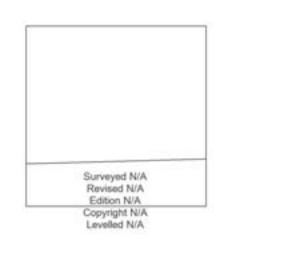
To view map legend click here <u>Legend</u>


Greenwood Place Community Centre

IS_184935_271159 IS-184935_271159 3833, 185396

Map Name:	1056 Scale Town Plan	N
Map date:	1894	W
Scale:	1:1,056	1
Printed at:	1:1,056	S

Surveyed N/A Revised N/A Edition N/A Copyright N/A Levelled N/A



Greenwood Place Community Centre

Client Ref:	EMS_184935_271159
Report Ref:	EMS-184935_271159
Grid Ref:	528833, 185396

- Map Name: County Series
- 1875 Map date:
- 1:2,500 Scale:
- **Printed at:** 1:2,500

To view map legend click here <u>Legend</u>

Greenwood Place Community Centre

Report Ref:	EMS_184935_271159 EMS-184935_271159 528833, 185396
Map Name	1056 Scale Town Plan

map mame.	1056 Scale Town Plan	N
Map date:	1872	W
Scale:	1:1,056	1
Printed at:	1:1,056	S

Surveyed N/A Revised N/A Edition N/A Copyright N/A Levelled N/A

RE: 11167 Greenwood Place, Highgate Road, NW5 Felix, Amedeo to: 'EllenJones@campbellreith.com' 13/11/2012 14:34 Hide Details From: "Felix, Amedeo" <Amedeo.Felix@camden.gov.uk> To: "'EllenJones@campbellreith.com'' <EllenJones@campbellreith.com>,

History: This message has been forwarded.

1 Attachment

image001.jpg

Building Control has no information on ground conditions, or any of the other information you outline a need for.

Regards,

Amedeo Felix Technical Support Officer

Telephone: 020 7974 5131

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com] Sent: 13 November 2012 12:13 To: BC Mail Cc: RhyaddWatkins@campbellreith.com Subject: 11167 Greenwood Place, Highgate Road, NW5

Dear Sir/ Madam,

I am undertaking a geo-environmental desktop study of Greenwood Place, Highgate, NW5, National Grid Reference: 528840^E, 185400^N.

I would be grateful if you could provide any information on the following:

- What are the typical ground conditions in the site area?
- What are the typical foundation solutions in the site area?
- What is the site's current and previous land use history, including that of the adjacent land?
- What is the water table level in the area?
- What are the seasonal high and low water table levels?
- Is / was there any mining / mineral / gravel extraction in the area?
- Does fill material occur in the area?
- Are there any methane problem in the area or any such history of problems?
- Are soakaways or piped networks used in the area?
- Do you hold any relevant investigation reports for the site?

Please could you advise if there is likely to be a charge for providing the above information. Thank you for your time in advance

Kind regards,

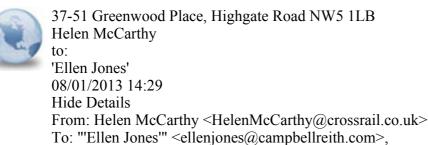
Ellen

Ellen Jones Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com


If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system.

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in England and Wales. Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, conclusions and other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endorsed by it. Please note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure and cannot be guaranteed. If verification is required please telephone the sender of the email.

This e-mail may contain information which is confidential, legally privileged and/or copyright protected. This e- mail is intended for the addressee only. If you receive this in error, please contact the sender and delete the material from your computer.

Click here to report this email as spam.

Crossrail Ref: CRL-00-058283

Dear Ellen Jones,

37-51 Greenwood Place, Highgate Road NW5 1LB

Thank you for your enquiry of 03 December 2012, regarding the effect of the proposed Chelsea-Hackney Line on the above property.

Crossrail Limited acts as an agent for Transport for London in the administration of the Chelsea-Hackney Line Safeguarding Direction made by the Secretary of State for Transport in June 2008.

The current safeguarded route for the Chelsea-Hackney Line follows the District Line from Wimbledon in the south to proposed new tunnels at Parsons Green. The new tunnels would continue via new stations at Kings Road, Victoria, Piccadilly Circus, Tottenham Court Road, Kings Cross, Angel, Essex Road, Dalston, Hackney and Homerton. The tunnels would surface in north London, south of Leytonstone, and then run on London Underground's Central Line to Epping.

The above property falls outside the safeguarded limits of land shown on the plans accompanying the Directions referred to above.

You may be aware that Crossrail (a scheme linking Maidenhead/Heathrow with Central London and Shenfield/Abbey Wood) was enacted as the Crossrail Act 2008.

The design, planning and construction resources required to build Crossrail are very substantial and must remain a priority, but the collective desire of the Department for Transport and Transport for London is to maintain the safeguarding of the Chelsea-Hackney Line for development at some point in the future. Construction on the Chelsea-Hackney Line could begin, at the very earliest, in 2024.

In addition, the latest project developments can be found on the Crossrail website <u>www.crossrail.co.uk/safeguarding</u>, which is updated on a regular basis.

I hope this information is helpful, but if you require any further assistance then please feel free to contact a member of the Safeguarding Team on 0345 602 3813, or by email to safeguarding@crossrail.co.uk

Yours sincerely,

Helen McCarthy Stakeholder Administrator

Crossrail Limited | 25 Canada Square | London | E14 5LQ Tel: 020 3229 9100 | Helpdesk (24hr) 0345 602 3813

Click here to report this email as spam.

file:///C:/Users/ellenj/AppData/Local/Temp/notes7A9C63/~web9419.htm

11167 Greenwood Place, Highgate Road, NW5 Schultz, Weronika to: 'EllenJones@campbellreith.com' 21/11/2012 14:22 Cc: "Labarr, Winston" Hide Details From: "Schultz, Weronika" <Weronika.Schultz@camden.gov.uk> To: "'EllenJones@campbellreith.com'' <EllenJones@campbellreith.com>,

Cc: "Labarr, Winston" <Winston.Labarr@camden.gov.uk> History: This message has been forwarded.

Dear Ellen,

Further to your contaminated land enquiry please note that there is a charge of £60.00 payable to LB Camden for contaminated land searches. If you wish to proceed please make a payment online and forward the copy of the payment confirmation to me by email. I attach a link to the payment pages:

https://forms.camden.gov.uk/cus/servlet/auth.Login?ask=no&auth=205&st=&redirect=https%3A% 2F%2Fforms.camden.gov.uk%2Fcus%2Fservlet%2Fep.app%3Ftype%3D18773%26auth%3D205% 26ut%3DA&anonymous=https%3A%2F%2Fforms.camden.gov.uk%2Fcus%2Fservlet%2Fep.app% 3Ftype%3D18773%26auth%3D205%26ut% 3DAX&context=Pay+for+a+contaminated+land+enquiry

Please note that even though that the requested information will be used for a planning application for Council development the charge still applies.

Regards,

Thank you

Weronika

Weronika Schultz Environmental Health Officer LAPPC (Industrial Installations)

Telephone: 020 7974 2794

From: <u>EllenJones@campbellreith.com</u> [<u>mailto:EllenJones@campbellreith.com</u>] Sent: 21 November 2012 13:04 To: Kypriotis, Angela Cc: Labarr, Winston; <u>RhyaddWatkins@campbellreith.com</u> Subject: RE: 11167 Greenwood Place, Highgate Road, NW5

Dear Angela,

Thank you for your email. I apologise for the late response. I work for a company called CampbellReith within their land quality team. We are undertaking a geo-environmental desk top study of the area in question on behalf of our client Camden Council which may be used within a planning application for the redevelopment of the site, however, nothing is concrete at this stage.

We would be grateful if you could provide any information on the following:

- Are there any landfill sites within a 1km radius of the site? If so, what is the location, period of operation, type of fill and date of filling?
- Are there any ground gas problems in the area or any such history of problems?
- Do you have any knowledge of the previous site uses?
- Do you have any records regarding whether the site or any neighbouring areas are contaminated?
- Are there any prosecutions for nuisance or special sites?
- Are there any authorised processes near the site?
- Are there any private water abstractions within 1km of the site?
- Are there any known problems with asbestos / radon / radioactivity?
- Do you hold any contamination investigation reports for the site?
- •

If you do hold any information on the above, please could you advise if there is likely to be a charge for providing the information. Thank you for your time in advance.

If you have any other questions please do not hesitate to contact me.

Many thanks,

Ellen

Ellen Jones Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From: "Kypriotis, Angela" <<u>Angela.Kypriotis@camden.gov.uk</u>> To: "EllenJones@campbellreith.com" <<u>EllenJones@campbellreith.com</u>>, Cc: "Labarr, Winston" <<u>Winston.Labarr@camden.gov.uk</u>> Date: 19/11/2012 11:47 Subject: RE: 11167 Greenwood Place, Highgate Road, NW5 This e-mail may contain information which is confidential, legally privileged and/or copyright protected. This e- mail is intended for the addressee only. If you receive this in error, please contact the sender and delete the material from your computer.

Click <u>here</u> to report this email as spam.

Greenwood Place, Highgate Road, NW5 Schultz, Weronika to: 'EllenJones@campbellreith.com' 29/11/2012 10:56 Hide Details From: "Schultz, Weronika" <Weronika.Schultz@camden.gov.uk> To: "'EllenJones@campbellreith.com'' <EllenJones@campbellreith.com>,

History: This message has been forwarded.

5 Attachments

235-LandUseHistoric.xlsx 235-EADraftLandfill250k.xlsx 235-LandUseHistoric.xlsx 235-PartBM.xlsx

Greenwood place.doc

Dear Ellen

RE: Contaminated Land Enquiry 37-51 Greenwood Place NW5 1LB

Further to your contaminated land search enquiry relating to the land at Greenwood Place, I would like to confirm the following:

The site has not been determined as contaminated land under Part IIA of the Environmental Protection Act 1990.

With regard to details under the Council's Part IIA strategy, Camden is in a process to create a revised Contaminated Land Database to identify and prioritise sites within the Borough with a former potentially contaminative land use. Sites recorded on the database are not contaminated land (as defined by Part IIA of the Environmental Protection Act 1990); rather they are considered as having the potential to be contaminated land through their previous use. The Council is in the process of identifying prioritised sites, confirming current land use and the existence of pollutant linkages. The site at 37-51 Greenwood Place has been identified as a potential priority site and may be investigated in the future.

Further to your enquiry, a historical record search was performed to determine the past land uses and it appears that the following past industrial uses of plausible concern were carried out on or within 100 metres of the site:

Chemical Works, Depository (Depot), Laundry, Welding Works, Coach Building Works, Railway Land, Garage, Unknown Industrial Use, Unknown Warehouse, Smithy, Bottling Works. Please see the attachment for further reference.

According to our contaminated land risk categorisation, land on which several of the above processes/activities were carried out is inherently considered to present a plausible risk of contamination. It is considered likely that such land would exhibit substantial areas of significantly elevated contamination levels widespread across the site with moderate magnitude to cause harm. However, as mentioned, at present the site is not being investigated under Part IIA Contaminated Land regime neither it is on our contaminated land register. Council has no present evidence that

confirms there are contamination issues affecting the site, other than the potentially contaminative past uses of the land.

If the land was to be redeveloped in the future a planning condition would be imposed with a requirement to carry out extensive site investigation (desk top, walkover and intrusive investigation) and if necessary remediation works. However if the site remains in current state (established development/hard-standing area) and there are no soft landscaped areas or gardens the site would not be prioritised for investigation under contaminated land regime until change of use would be proposed by a developer. Any future construction works involving excavation would immediately have to be assessed and approved by a contaminated land officer under contaminated land planning strategy.

Additional Information:

The Council holds no information on pollution incidents in the area. No historical landfills identified within 1 km of the site. No information about ground gas problems. The Council holds no information about water abstraction points. There are no Local Authority Pollution Prevention and Control processes permitted under the Environmental Permitting Regulations 2010 on or within 100 metres of the site. It is highly likely that asbestos contamination will be found on site. The Council has no record of any former site investigations on or directly adjacent to the site.

Information relating to radon and radioactivity should be sought from the Environment Agency.

Disclaimer:

The above response is provided from such information that is readily available to the Council and in its possession. It is believed to be correct but the Council expressly gives no warranty in this respect nor will the Council accept any liability whatsoever for any error, omission or loss occasioned thereby to any person (whether or not the person requested the information) and in particular the Council gives no warranty that it has researched all its relevant archives in order to respond to the request for information.

I hope the information provided is sufficient, however if you require further clarification please contact me directly.

I also attach an environmental search carried out by former contaminated land officer in 2004.

Regards,

Weronika Schultz

Weronika Schultz Environmental Health Officer LAPPC (Industrial Installations)

Telephone: 020 7974 2794

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com] Sent: 23 November 2012 10:51

file:///C:/Users/ellenj/AppData/Local/Temp/notes7A9C63/~web3025.htm

To: Schultz, Weronika Cc: Labarr, Winston; RhyaddWatkins@campbellreith.com Subject: Re: 11167 Greenwood Place, Highgate Road, NW5

Dear Weronika,

Please find attached payment confirmation for a contaminated land enquiry for Greenwood Place. If you have any questions please do not hesitate to contact me.

Kind regards,

Ellen

Ellen Jones Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From:"Schultz, Weronika" <<u>Weronika.Schultz@camden.gov.uk</u>>To:"EllenJones@campbellreith.com" <<u>EllenJones@campbellreith.com</u>>,Cc:"Labarr, Winston" <<u>Winston.Labarr@camden.gov.uk</u>>Date:21/11/2012 14:22Subject:11167 Greenwood Place, Highgate Road, NW5

Dear Ellen,

Further to your contaminated land enquiry please note that there is a charge of £60.00 payable to LB Camden for contaminated land searches. If you wish to proceed please make a payment online and forward the copy of the payment confirmation to me by email. I attach a link to the payment pages:

https://forms.camden.gov.uk/cus/servlet/auth.Login?ask=no&auth=205&st=&redirect=https%3A% 2F%2Fforms.camden.gov.uk%2Fcus%2Fservlet%2Fep.app%3Ftype%3D18773%26auth%3D205% 26ut%3DA&anonymous=https%3A%2F%2Fforms.camden.gov.uk%2Fcus%2Fservlet%2Fep.app% 3Ftype%3D18773%26auth%3D205%26ut% 3DAX&context=Pay+for+a+contaminated+land+enquiry

Please note that even though that the requested information will be used for a planning application for Council development the charge still applies.

file:///C:/Users/ellenj/AppData/Local/Temp/notes7A9C63/~web3025.htm

Regards,

Thank you

Weronika

Weronika Schultz Environmental Health Officer LAPPC (Industrial Installations)

Telephone: 020 7974 2794

From: <u>EllenJones@campbellreith.com</u> [<u>mailto:EllenJones@campbellreith.com</u>] Sent: 21 November 2012 13:04 To: Kypriotis, Angela Cc: Labarr, Winston; <u>RhyaddWatkins@campbellreith.com</u> Subject: RE: 11167 Greenwood Place, Highgate Road, NW5

Dear Angela,

Thank you for your email. I apologise for the late response. I work for a company called CampbellReith within their land quality team. We are undertaking a geo-environmental desk top study of the area in question on behalf of our client Camden Council which may be used within a planning application for the redevelopment of the site, however, nothing is concrete at this stage.

We would be grateful if you could provide any information on the following:

- Are there any landfill sites within a 1km radius of the site? If so, what is the location, period of operation, type of fill and date of filling?
- Are there any ground gas problems in the area or any such history of problems?
- Do you have any knowledge of the previous site uses?
- Do you have any records regarding whether the site or any neighbouring areas are contaminated?
- Are there any prosecutions for nuisance or special sites?
- Are there any authorised processes near the site?
- Are there any private water abstractions within 1km of the site?
- Are there any known problems with asbestos / radon / radioactivity?
- Do you hold any contamination investigation reports for the site?
- •

If you do hold any information on the above, please could you advise if there is likely to be a charge for providing the information. Thank you for your time in advance.

If you have any other questions please do not hesitate to contact me.

Many thanks,

Ellen

Ellen Jones Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From:	"Kypriotis, Angela" < <u>Angela.Kypriotis@camden.gov.uk</u> >
To:	"'EllenJones@campbellreith.com'" < <u>EllenJones@campbellreith.com</u> >,
Cc:	"Labarr, Winston" < <u>Winston.Labarr@camden.gov.uk</u> >
Date:	19/11/2012 11:47
Subject:	RE: 11167 Greenwood Place, Highgate Road, NW5

This e-mail may contain information which is confidential, legally privileged and/or copyright protected. This e- mail is intended for the addressee only. If you receive this in error, please contact the sender and delete the material from your computer.

Click here to report this email as spam.

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system.

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in England and Wales. Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, conclusions and other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endorsed by it. Please note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure and cannot be guaranteed. If verification is required please telephone the sender of the email.

This e-mail may contain information which is confidential, legally privileged and/or copyright protected. This e- mail is intended for the addressee only. If you receive this in error, please contact the sender and delete the material from your computer.

RE: 11167 Greenwood Place, Highgate Road, NW5 Location Enquiries to: 'EllenJones@campbellreith.com' 14/11/2012 12:11 Hide Details From: Location Enquiries <SMBLocationEnquiries@tfl.gov.uk> To: "'EllenJones@campbellreith.com'' <EllenJones@campbellreith.com>,

History: This message has been replied to and forwarded.

1 Attachment

SI-6-141112 Greenwood Place, Highgate Road, NW5.pdf

London Underground Infrastructure Protection response to your communication attached.

Kind regards

Shahina Inayathusein Information Manager <u>locationenquiries@tube.tfl.gov.uk</u> Tel: 0207 918 0016 Auto: 40016

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com] Sent: 14 November 2012 11:16 To: Location Enquiries Subject: RE: 11167 Greenwood Place, Highgate Road, NW5

Hi Shahina,

Thank you for your email and advice.

Please find attached two more plans which will hopefully give you a clearer idea of the site's location. The site boundary covers four existing buildings; the Greenwood Centre, AA Storage Depot, Highgate Centre and Deane House.

If you need any further information please do not hesitate to contact me.

Many thanks for your help,

Ellen

Ellen Jones Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From:Location Enquiries <<u>SMBLocationEnquiries@tfl.gov.uk</u>>To:"'EllenJones@campbellreith.com'' <<u>EllenJones@campbellreith.com</u>>,Date:14/11/2012 10:29Subject:RE: 11167 Greenwood Place, Highgate Road, NW5

Hi Ellen,

To ensure that we provide you with the correct information can you please send a legible plan of the locality to your search showing surrounding streets with your site clearly outlined or plotted. Also we need the property name or no.

Please see our attached leaflet on how to request asset location enquiries which you may find helpful.

Kind regards

Shahina Inayathusein Information Manager London Underground Infrastructure Protection Tel: 020 7918 0016 Email: <u>locationenquiries@tube.tfl.gov.uk</u>

From: <u>EllenJones@campbellreith.com</u> [<u>mailto:EllenJones@campbellreith.com</u>] Sent: 13 November 2012 14:02 To: Location Enquiries Cc: <u>RhyaddWatkins@campbellreith.com</u> Subject: 11167 Greenwood Place, Highgate Road, NW5

Dear Sir/ Madam,

We are currently undertaking a desk study for a proposed development at Greenwood Place, Highgate Road, NW5, National Grid Reference: 528840^E, 185400^N.

Below groundworks are likely to comprise a ground investigation (boreholes and trial pits). The foundations of the proposed development are likely to be piled foundations.

Would you be able to tell us if there are any London Underground assets within the vicinity of the site?

Please find attached a site location plan (outlined in red in the middle of the large circle). If you have any questions please do not hesitate to contact me.

I look forward to hearing from you.

Kind regards,

Ellen

Ellen Jones Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system.

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in England and Wales. Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, conclusions and other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endorsed by it. Please note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure and cannot be guaranteed. If verification is required please telephone the sender of the email.

The contents of the e-mail and any transmitted files are confidential and intended solely for the use of the individual or entity to whom they are addressed. Transport for London hereby exclude any warranty and any liability as to the quality or accuracy of the contents of this email and any attached transmitted files. If you are not the intended recipient be advised that you have received this email in error and that any use, dissemination, forwarding, printing or copying of this email is strictly prohibited., If you have received this email in error please notify <u>postmaster@tfl.gov.uk</u>., This email has been sent from Transport for London, or from one of the companies within its control within the meaning of Part V of the Local Government and Housing Act 1989. Further details about TfL and its subsidiary companies can be found at <u>http://www.tfl.gov.uk/ourcompany</u>, This footnote also confirms that this email message has been swept for the presence of computer viruses.

Click <u>here</u> to report this email as spam.[attachment "IP leaflet No.2 Requesting location info.pdf" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system.

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in England and Wales. Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, conclusions and other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endorsed by it. Please note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure and cannot be guaranteed. If verification is required please telephone the sender of the email.

Date 14 November 2012

Our Ref 20878-SI-6-141112

Your Ref 11167

то Ellen Jones

Campbell Reith EllenJones@campbellreith.com

Hello Ellen

Greenwood Place, Highgate Road, NW5

Thank you for your communication of 13th February 2012.

I can confirm that London Underground has no assets within 50 metres of your site as shown on the plan you provided.

Should you have any further enquiries, please do not hesitate to contact me.

Shahina Inayathusein Information Manager LUL Infrastructure Protection E-mail: Locationenquiries@tube.tfl.gov.uk Tel: 020 7918 0016

11167 Petroleum Search Request Enquiry Ellen Jones to: barryc.walford, petroleum

Cc: Rhyadd Watkins

27/02/2013 18:07

Hi Barry,

Many thanks for assisting me with my earlier query.

Please find attached a site location plan for the search area. The site comprises three separate buildings in close proximity which some I believe historically were part of the same site.

As discussed, would it be possible to undertake a search for the three buildings as part of one request? As they are in close proximity I ideally would not want to pay for three separate searches.

Below is some information regarding the three buildings.

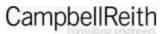
Highgate Day Centre, Highgate Road Greenwood Centre/ Camden society, Greenwood Place AA self storage, Greenwood Place NW5 1LB

I am unsure if there was a different historical address for the site, however, I believe the Camden Society/ Greenwood community centre used to be a heavy chemical works, AA self storage used to be a building coach works and the Highgate Day Centre was previously used for terraced housing.

I would be most grateful if you could confirm whether the search for the three buildings could be undertaken using the same request.

If you have any questions please do not hesitate to contact me.

Many thanks,


Ellen

11167-GIS001A-DSFig1_SiteLocn.pdf 11167 Greenwood Place Location Map.pdf

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

RE: 11167 Petroleum Search Request Enquiry 🗎

Ellen Jones to: petroleum, barryc.walford Cc: Rhyadd Watkins 28/02/2013 14:16

From:Ellen Jones/CRHTo:petroleum@london-fire.gov.uk, barryc.walford@london-fire.gov.uk,Cc:Rhyadd Watkins/CRH@Campbellreith

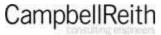
Hello Barry,

Apologies for the late response.

Please find attached the search template required in order to obtain a quote. There are now only two buildings I am concerned with; the Highgate Day Centre 19-37 Highgate Road NW5 1JY and Greenwood Centre/Choices/Camden Society 37 Greenwood Place NW5 1LB.

I look forward to receiving a quote for the search. I would be most grateful if you don't undertake the work prior to me confirming that we would be happy with the cost.

If you have any questions just ask.


Many thanks for your help.

Ellen

W

11167 Petroleum Search.docx

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

Dear Ellen,

28/02/2013 08:34:13

From:	<barryc.walford@london-fire.gov.uk></barryc.walford@london-fire.gov.uk>
To:	<ellenjones@campbellreith.com>,</ellenjones@campbellreith.com>
Date:	28/02/2013 08:34
Subject:	RE: 11167 Petroleum Search Request Enquiry

Dear Ellen,

Thank you for your e-mail below and attachments.

I attach our revised Environment Search Request Template completion. Please list the full postal address for each site to be searched. I will confirm the fees to be charged in due course based on the

information provided.

Please send your completed Environmental Search Request Form to the following web address <u>petroleum@london-fire.gov.uk</u> and my e-mail address as well.

There are two fundamental reasons for the revision:-

- The current financial climate together with a substantial increase in the number of requests received forced the Authority to review the real cost of providing the service and to consider how the continue to provide adequate resources to continue to provide the service within the statutory and voluntary (the Express Service) time limits. We have not reviewed the system or the fees since its inception in 2006. The new template shows the new fees that come into force from 1st April 2012.
- 2. There are restrictions on how we are able to interrogate both our current and historic databases. They are all purely based on the addresses at which petrol was stored in below ground tanks at the time when a Petroleum Licence was in force for the premises. In many cases when searching for the addresses requested, we may miss a historic address either because it is now encompassed by a larger site following a redevelopment, or that at some point the address has changed. To overcome this likelihood, we will now undertake to search both current and historic addresses for a single location should this information be provided at the time of making the request.

From 1st April 2012 onwards, we will only accept requests submitted on the new template. Please take time to read the revised 'Additional Information' on Page 2 of the form, which we hope will clearly explain the limitations of our searches, and how best to ensure that any locations that have or had underground petrol tanks will be encompassed by your request.

Many thanks.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858 F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at <u>www.london-fire.gov.uk</u>

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]
Sent: 27 February 2013 18:08
To: WALFORD, BARRY; Petroleum
Cc: RhyaddWatkins@campbellreith.com
Subject: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for assisting me with my earlier query.

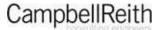
Please find attached a site location plan for the search area. The site comprises three separate buildings in close proximity which some I believe historically were part of the same site.

As discussed, would it be possible to undertake a search for the three buildings as part of one request? As they are in close proximity I ideally would not want to pay for three separate searches.

Below is some information regarding the three buildings.

Highgate Day Centre, Highgate Road Greenwood Centre/ Camden society, Greenwood Place AA self storage, Greenwood Place NW5 1LB

I am unsure if there was a different historical address for the site, however, I believe the Camden Society/ Greenwood community centre used to be a heavy chemical works, AA self storage used to be a building coach works and the Highgate Day Centre was previously used for terraced housing.


I would be most grateful if you could confirm whether the search for the three buildings could be undertaken using the same request.

If you have any questions please do not hesitate to contact me.

Many thanks,

Ellen

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your syster

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLI other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

For fire safety advice please go to http://www.london-fire.gov.uk/YourSafety.asp

EMAIL DISCLAIMER: The Information in the email may contain confidential or privileged materials. Please read the full email disclaimer notice at http://www.london-fire.gov.uk/EmailDisclaimer.asp.

Click <u>here</u> to report this email as spam.[attachment "Environmental Survey Request Form (Revised 29 3 12).docx" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Eng Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is auth any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endo note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure guaranteed. If verification is required please telephone the sender of the email.

RE: 11167 Petroleum Search Request Enquiry 🗎

Ellen Jones to: barryc.walford Cc: brian.humm, RhyaddWatkins

From:Ellen Jones/CRHTo:<barryc.walford@london-fire.gov.uk>,Cc:brian.humm@london-fire.gov.uk, RhyaddWatkins@campbellreith.com

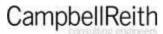
Hi Barry,

Many thanks for your email.

We are having trouble confirming the exact numbers of the buildings that need to be searched. For the building at Greenwood Place the numbers range between 25-37. Would it be possible to check the buildings that come up on your register with the site location plan attached please? (All buildings within the red line boundary excluding the AA storage building need to be searched).

Apologies for the confusion. If you should have any questions please feel free to give me a call.

Many thanks for your help.


Ellen

11167 Greenwood Place Location Map.pdf 11167 Petroleum Search.docx

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

	Hi Ellen,	01/03/2013 09:36:19
_		
From:	 barryc.walford@london-fire.gov.uk>	
To:	<ellenjones@campbellreith.com>,</ellenjones@campbellreith.com>	
Cc:	<rhyaddwatkins@campbellreith.com>, <brian.humm@london-fire.gov.u< th=""><th>k></th></brian.humm@london-fire.gov.u<></rhyaddwatkins@campbellreith.com>	k>
Date:	01/03/2013 09:36	
Subject:	RE: 11167 Petroleum Search Request Enquiry	

Hi Ellen,

Further to your e-mail below, I have spoken with my manager, Brian Humm. It has been agreed that we will charge a single fee $(\pounds70.00 + VAT / \pounds140.00 + VAT$ as per the fees listed on the submitted Environment Search Request form) to undertake the search for each of the buildings listed below. Both of these buildings have separate file numbers on our Fire Safety database.

Please confirm by e-mail if you are happy for me to proceed with these searches on this basis or if you decide to cancel your request. I will not start any work on these searches until I hear from you either way.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

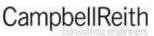
T: 020 8555 1200 x30858 F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at www.london-fire.gov.uk

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]
Sent: 28 February 2013 14:16
To: Petroleum; WALFORD, BARRY
Cc: RhyaddWatkins@campbellreith.com
Subject: RE: 11167 Petroleum Search Request Enquiry

Hello Barry,

Apologies for the late response.

Please find attached the search template required in order to obtain a quote. There are now only two buildings I am concerned with; the Highgate Day Centre 19-37 Highgate Road NW5 1JY and Greenwood Centre/Choices/Camden Society 37 Greenwood Place NW5 1LB.


I look forward to receiving a quote for the search. I would be most grateful if you don't undertake the work prior to me confirming that we would be happy with the cost.

If you have any questions just ask.

Many thanks for your help.

Ellen

Ellen Jones Graduate Environmental Scientist

Raven House,

29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

 From:
 <barryc.walford@london-fire.gov.uk>

 To:
 <EllenJones@campbellreith.com>,

 Date:
 28/02/2013 08:34

 Subject:
 RE: 11167 Petroleum Search Request Enquiry

Dear Ellen,

Thank you for your e-mail below and attachments.

I attach our revised Environment Search Request Template completion. Please list the full postal address for each site to be searched. I will confirm the fees to be charged in due course based on the information provided.

Please send your completed Environmental Search Request Form to the following web address <u>petroleum@london-fire.gov.uk</u> and my e-mail address as well.

There are two fundamental reasons for the revision:-

1. The current financial climate together with a substantial increase in the number of requests received forced the Authority to review the real cost of providing the service and to consider how the continue to provide adequate resources to continue to provide the service within the statutory and voluntary (the Express Service) time limits. We have not reviewed the system or the fees since its inception in 2006. The new template shows the new fees that come into force from 1st April 2012.

2. There are restrictions on how we are able to interrogate both our current and historic databases. They are all purely based on the addresses at which petrol was stored in below ground tanks at the time when a Petroleum Licence was in force for the premises. In many cases when searching for the addresses requested, we may miss a historic address either because it is now encompassed by a larger site following a redevelopment, or that at some point the address has changed. To overcome this likelihood, we will now undertake to search both current and historic addresses for a single location should this information be provided at the time of making the request.

From 1st April 2012 onwards, we will only accept requests submitted on the new template. Please take time to read the revised 'Additional Information' on Page 2 of the form, which we hope will clearly explain the limitations of our searches, and how best to ensure that any locations that have or had underground petrol tanks will be encompassed by your request.

Many thanks.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858 F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at <u>www.london-fire.gov.uk</u>

From: <u>EllenJones@campbellreith.com</u> [mailto:EllenJones@campbellreith.com]
Sent: 27 February 2013 18:08
To: WALFORD, BARRY; Petroleum
Cc: <u>RhyaddWatkins@campbellreith.com</u>
Subject: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for assisting me with my earlier query.

Please find attached a site location plan for the search area. The site comprises three separate buildings in close proximity which some I believe historically were part of the same site.

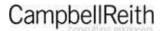
As discussed, would it be possible to undertake a search for the three buildings as part of one request? As they are in close proximity I ideally would not want to pay for three separate searches.

Below is some information regarding the three buildings.

Highgate Day Centre, Highgate Road Greenwood Centre/ Camden society, Greenwood Place AA self storage, Greenwood Place NW5 1LB

I am unsure if there was a different historical address for the site, however, I believe the Camden Society/ Greenwood community centre used to be a heavy chemical works, AA self storage used to be a building coach works and the Highgate Day Centre was previously used for terraced housing.

I would be most grateful if you could confirm whether the search for the three buildings could be undertaken using the same request.


If you have any questions please do not hesitate to contact me.

Many thanks,

Ellen

Ellen Jones

Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system. This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL

other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

For fire safety advice please go to http://www.london-fire.gov.uk/YourSafety.asp

EMAIL DISCLAIMER: The Information in the email may contain confidential or privileged materials. Please read the full email disclaimer notice at http://www.london-fire.gov.uk/EmailDisclaimer.asp.

Click <u>here</u> to report this email as spam.[attachment "Environmental Survey Request Form (Revised 29 3 12).docx" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your syster

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Eng Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is auth any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endo note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure guaranteed. If verification is required please telephone the sender of the email.

RE: 11167 Petroleum Search Request Enquiry 🗎

Ellen Jones to: barryc.walford Cc: brian.humm, RhyaddWatkins

From:	Ellen Jones/CRH
To:	<barryc.walford@london-fire.gov.uk>,</barryc.walford@london-fire.gov.uk>
Cc:	brian.humm@london-fire.gov.uk, RhyaddWatkins@campbellreith.com

Hi Barry,

No problem I appreciate you must be extremely busy.

Please find attached an up to date search request form. If the cost is still $\pounds 70.00 + VAT / \pounds 140.00 + VAT$ I would be happy to proceed.

Look forward to hearing from you.

Kind regards,

Ellen

11167 Petroleum Search.docx

Ellen Jones Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

Hi Ellen,

01/03/2013 13:29:20

01/03/2013 15:45

From:	
To:	<ellenjones@campbellreith.com>,</ellenjones@campbellreith.com>
Cc:	<pre><brian.humm@london-fire.gov.uk>, <rhyaddwatkins@campbellreith.com></rhyaddwatkins@campbellreith.com></brian.humm@london-fire.gov.uk></pre>
Date:	01/03/2013 13:29
Subject:	RE: 11167 Petroleum Search Request Enquiry

Hi Ellen,

Thank you for your e-mail below.

Unfortunately, I am unable to look up the information that you require due to time and workload constraints. We will search on whatever address data that you submit and cost it and then inform you accordingly.

Regards

Barry

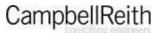
Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858 F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at <u>www.london-fire.gov.uk</u>

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]
Sent: 01 March 2013 11:52
To: WALFORD, BARRY
Cc: HUMM, BRIAN; RhyaddWatkins@campbellreith.com
Subject: RE: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for your email.


We are having trouble confirming the exact numbers of the buildings that need to be searched. For the building at Greenwood Place the numbers range between 25-37. Would it be possible to check the buildings that come up on your register with the site location plan attached please? (All buildings within the red line boundary excluding the AA storage building need to be searched).

Apologies for the confusion. If you should have any questions please feel free to give me a call.

Many thanks for your help.

Ellen

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From:	< <u>barryc.walford@london-fire.gov.uk</u> >
To:	< <u>EllenJones@campbellreith.com</u> >,
Cc:	< <u>RhyaddWatkins@campbellreith.com</u> >, < <u>brian.humm@london-fire.gov.uk</u> >
Date:	01/03/2013 09:36
Subject:	RE: 11167 Petroleum Search Request Enquiry

Hi Ellen,

Further to your e-mail below, I have spoken with my manager, Brian Humm. It has been agreed that we will charge a single fee (\pounds 70.00 +VAT / \pounds 140.00 + VAT as per the fees listed on the submitted Environment Search Request form) to undertake the search for each of the buildings listed below. Both of these buildings have separate file numbers on our Fire Safety database.

Please confirm by e-mail if you are happy for me to proceed with these searches on this basis or if you decide to cancel your request. I will not start any work on these searches until I hear from you either way.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

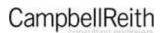
T: 020 8555 1200 x30858 F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at <u>www.london-fire.gov.uk</u>

From: <u>EllenJones@campbellreith.com</u> [mailto:EllenJones@campbellreith.com]
Sent: 28 February 2013 14:16
To: Petroleum; WALFORD, BARRY
Cc: <u>RhyaddWatkins@campbellreith.com</u>
Subject: RE: 11167 Petroleum Search Request Enquiry

Hello Barry,

Apologies for the late response.

Please find attached the search template required in order to obtain a quote. There are now only two buildings I am concerned with; the Highgate Day Centre 19-37 Highgate Road NW5 1JY and Greenwood Centre/Choices/Camden Society 37 Greenwood Place NW5 1LB.


I look forward to receiving a quote for the search. I would be most grateful if you don't undertake the work prior to me confirming that we would be happy with the cost.

If you have any questions just ask.

Many thanks for your help.

Ellen

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

 From:
 <barryc.walford@london-fire.gov.uk>

 To:
 <</td>

 EllenJones@campbellreith.com>,

 Date:
 28/02/2013 08:34

 Subject:
 RE: 11167 Petroleum Search Request Enquiry

Dear Ellen,

Thank you for your e-mail below and attachments.

I attach our revised Environment Search Request Template completion. Please list the full postal address for each site to be searched. I will confirm the fees to be charged in due course based on the information provided.

Please send your completed Environmental Search Request Form to the following web address <u>petroleum@london-fire.gov.uk</u> and my e-mail address as well.

There are two fundamental reasons for the revision:-

1. The current financial climate together with a substantial increase in the number of requests received forced the Authority to review the real cost of providing the service and to consider how the continue to provide adequate resources to continue to provide the service within the statutory and voluntary (the Express Service) time limits. We have not reviewed the system or the fees since its inception in 2006. The new template shows the new fees that come into force from 1st April 2012.

2. There are restrictions on how we are able to interrogate both our current and historic databases. They are all purely based on the addresses at which petrol was stored in below ground tanks at the time when a Petroleum Licence was in force for the premises. In many cases when searching for the addresses requested, we may miss a historic address either because it is now encompassed by a larger site following a redevelopment, or that at some

point the address has changed. To overcome this likelihood, we will now undertake to search both current and historic addresses for a single location should this information be provided at the time of making the request.

From 1st April 2012 onwards, we will only accept requests submitted on the new template. Please take time to read the revised 'Additional Information' on Page 2 of the form, which we hope will clearly explain the limitations of our searches, and how best to ensure that any locations that have or had underground petrol tanks will be encompassed by your request.

Many thanks.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858 F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at www.london-fire.gov.uk

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]
Sent: 27 February 2013 18:08
To: WALFORD, BARRY; Petroleum
Cc: RhyaddWatkins@campbellreith.com
Subject: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for assisting me with my earlier query.

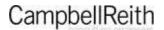
Please find attached a site location plan for the search area. The site comprises three separate buildings in close proximity which some I believe historically were part of the same site.

As discussed, would it be possible to undertake a search for the three buildings as part of one request? As they are in close proximity I ideally would not want to pay for three separate searches.

Below is some information regarding the three buildings.

Highgate Day Centre, Highgate Road Greenwood Centre/ Camden society, Greenwood Place AA self storage, Greenwood Place NW5 1LB

I am unsure if there was a different historical address for the site, however, I believe the Camden Society/ Greenwood community centre used to be a heavy chemical works, AA self storage used to be a building coach works and the Highgate Day Centre was previously used for terraced housing.


I would be most grateful if you could confirm whether the search for the three buildings could be undertaken using the same request.

If you have any questions please do not hesitate to contact me.

Many thanks,

Ellen

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500

www.campbellreith.com

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system. This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLI other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

For fire safety advice please go to http://www.london-fire.gov.uk/YourSafety.asp

EMAIL DISCLAIMER: The Information in the email may contain confidential or privileged materials. Please read the full email disclaimer notice at http://www.london-fire.gov.uk/EmailDisclaimer.asp.

Click <u>here</u> to report this email as spam.[attachment "Environmental Survey Request Form (Revised 29 3 12).docx" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system. This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your syster

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Eng Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is auth any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endo note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a guaranteed. If verification is required please telephone the sender of the email.

PETROLEUM ENVIRONMENTAL ENQUIRY DETAIL FORMS:- GREENWOOD CENTRE/CAMDEN SOCIETY, 25-37 GREENWOOD PLACE, NW5 1LB & HIGHGATE DAY CENTRE, 19-37 HIGHGATE ROAD, NW5 1JY barryc.walford to: EllenJones

EllenJones 25/03/2013 16:12 Hide Details From: <barryc.walford@london-fire.gov.uk> To: <EllenJones@campbellreith.com>, History: This message has been forwarded.

2 Attachments

02-015892 B11 ES response to Campbell Reith Hill LLP 25 03 13.docx

W

02-018794 B11 ES response to Campbell Reith Hill LLP 25 03 13.docx

Hi Ellen,

Please find the attached electronic copy of the covering letter and Petroleum Environmental Enquiry Detail Form for each of the above sites.

I will arrange for a separate invoice for a total of $\pounds 70.00 + VAT$ for each site to be sent to you in due course under separate cover from our Finance Office

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858 F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at www.london-fire.gov.uk

For fire safety advice please go to http://www.london-fire.gov.uk/YourSafety.asp

EMAIL DISCLAIMER: The Information in the email may contain confidential or privileged materials. Please read the full email disclaimer notice at <u>http://www.london-fire.gov.uk/EmailDisclaimer.asp</u>.

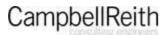
Click here to report this email as spam.

Re: FW: 11167 Petroleum Search Request Enquiry Ellen Jones to: barryc.walford

01/03/2013 17:09

From:Ellen Jones/CRHTo:<barryc.walford@london-fire.gov.uk>,Cc:brian.humm@london-fire.gov.uk, RhyaddWatkins@campbellreith.com,
petroleum@london-fire.gov.uk

Cc: brian.humm, RhyaddWatkins, petroleum


Hi Barry,

I can confirm we are happy for you to undertake the two separate searches for the Highgate Day Centre and the Greenwood Centre/Camden Society.

Kind regards,

Ellen

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

	Hi Ellen,	01/03/2013 16:45:22
_		
From:	 barryc.walford@london-fire.gov.uk>	
To:	<ellenjones@campbellreith.com>,</ellenjones@campbellreith.com>	
Cc:	<rhyaddwatkins@campbellreith.com>, <brian.humm@london-fire.gov.u< th=""><th>k></th></brian.humm@london-fire.gov.u<></rhyaddwatkins@campbellreith.com>	k>
Date:	01/03/2013 16:45	
Subject:	FW: 11167 Petroleum Search Request Enquiry	

Hi Ellen,

Thank you for your e-mail.

Can you please confirm, via e-mail, that you understand that we will charge the normal fee (\pounds 70.00 +VAT / \pounds 140.00 + VAT) for each search on the Highgate Day Centre and the Greenwood Centre/ Camden Society? I will proceed with the search process upon your confirmation. Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

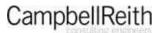
T: 020 8555 1200 x30858

F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at <u>www.london-fire.gov.uk</u>

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]
Sent: 01 March 2013 15:46
To: WALFORD, BARRY
Cc: HUMM, BRIAN; RhyaddWatkins@campbellreith.com
Subject: RE: 11167 Petroleum Search Request Enquiry

Hi Barry,

No problem I appreciate you must be extremely busy.


Please find attached an up to date search request form. If the cost is still $\pm 70.00 + VAT / \pm 140.00 + VAT$ I would be happy to proceed.

Look forward to hearing from you.

Kind regards,

Ellen

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

 From:
 <barryc.walford@london-fire.gov.uk</td>

 To:
 <EllenJones@campbellreith.com</td>

 Cc:

brian.humm@london-fire.gov.uk

 Date:
 01/03/2013 13:29

 Subject:
 RE: 11167 Petroleum Search Request Enquiry

Hi Ellen,

Thank you for your e-mail below.

Unfortunately, I am unable to look up the information that you require due to time and workload constraints. We will search on whatever address data that you submit and cost it and then inform you accordingly.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858 F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at <u>www.london-fire.gov.uk</u>

From: <u>EllenJones@campbellreith.com</u> [mailto:EllenJones@campbellreith.com]
Sent: 01 March 2013 11:52
To: WALFORD, BARRY
Cc: HUMM, BRIAN; <u>RhyaddWatkins@campbellreith.com</u>
Subject: RE: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for your email.

We are having trouble confirming the exact numbers of the buildings that need to be searched. For the building at Greenwood Place the numbers range between 25-37. Would it be possible to check the buildings that come up on your register with the site location plan attached please? (All buildings within the red line boundary excluding the AA storage building need to be searched).

Apologies for the confusion. If you should have any questions please feel free to give me a call.

Many thanks for your help.

Ellen

Ellen Jones Graduate Environmental Scientist

CampbellReith

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

From:	< <u>barryc.walford@london-fire.gov.uk</u> >
To:	< <u>EllenJones@campbellreith.com</u> >,
Cc:	< <u>RhyaddWatkins@campbellreith.com</u> >, < <u>brian.humm@london-fire.gov.uk</u> >
Date:	01/03/2013 09:36
Subject:	RE: 11167 Petroleum Search Request Enquiry

Hi Ellen,

Further to your e-mail below, I have spoken with my manager, Brian Humm. It has been agreed that we will charge a single fee (\pounds 70.00 +VAT / \pounds 140.00 + VAT as per the fees listed on the submitted Environment Search Request form) to undertake the search for each of the buildings listed below. Both of these buildings have separate file numbers on our Fire Safety database.

Please confirm by e-mail if you are happy for me to proceed with these searches on this basis or if you decide to cancel your request. I will not start any work on these searches until I hear from you either way.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

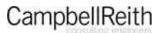
T: 020 8555 1200 x30858 F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at <u>www.london-fire.gov.uk</u>

From: <u>EllenJones@campbellreith.com</u> [mailto:EllenJones@campbellreith.com]
Sent: 28 February 2013 14:16
To: Petroleum; WALFORD, BARRY
Cc: <u>RhyaddWatkins@campbellreith.com</u>
Subject: RE: 11167 Petroleum Search Request Enquiry

Hello Barry,

Apologies for the late response.

Please find attached the search template required in order to obtain a quote. There are now only two buildings I am concerned with; the Highgate Day Centre 19-37 Highgate Road NW5 1JY and Greenwood Centre/Choices/Camden Society 37 Greenwood Place NW5 1LB.


I look forward to receiving a quote for the search. I would be most grateful if you don't undertake the work prior to me confirming that we would be happy with the cost.

If you have any questions just ask.

Many thanks for your help.

Ellen

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com

 From:
 <barryc.walford@london-fire.gov.uk>

 To:
 <
EllenJones@campbellreith.com>,

 Date:
 28/02/2013 08:34

 Subject:
 RE: 11167 Petroleum Search Request Enquiry

Dear Ellen,

Thank you for your e-mail below and attachments.

I attach our revised Environment Search Request Template completion. Please list the full postal address for each site to be searched. I will confirm the fees to be charged in due course based on the information provided.

Please send your completed Environmental Search Request Form to the following web address <u>petroleum@london-fire.gov.uk</u> and my e-mail address as well.

There are two fundamental reasons for the revision:-

1. The current financial climate together with a substantial increase in the number of requests received forced the Authority to review the real cost of providing the service and to consider how the continue to provide

adequate resources to continue to provide the service within the statutory and voluntary (the Express Service) time limits. We have not reviewed the system or the fees since its inception in 2006. The new template shows the new fees that come into force from 1^{st} April 2012.

2. There are restrictions on how we are able to interrogate both our current and historic databases. They are all purely based on the addresses at which petrol was stored in below ground tanks at the time when a Petroleum Licence was in force for the premises. In many cases when searching for the addresses requested, we may miss a historic address either because it is now encompassed by a larger site following a redevelopment, or that at some point the address has changed. To overcome this likelihood, we will now undertake to search both current and historic addresses for a single location should this information be provided at the time of making the request.

From 1st April 2012 onwards, we will only accept requests submitted on the new template. Please take time to read the revised 'Additional Information' on Page 2 of the form, which we hope will clearly explain the limitations of our searches, and how best to ensure that any locations that have or had underground petrol tanks will be encompassed by your request.

Many thanks.

Regards

Barry

Barry Walford Petroleum Group Admin. Manager Fire Safety Regulation London Fire Brigade

T: 020 8555 1200 x30858 F: 020 7960 3624 E: <u>barryc.walford@london-fire.gov.uk</u> Visit our website at www.london-fire.gov.uk

From: <u>EllenJones@campbellreith.com</u> [mailto:EllenJones@campbellreith.com]
Sent: 27 February 2013 18:08
To: WALFORD, BARRY; Petroleum
Cc: <u>RhyaddWatkins@campbellreith.com</u>
Subject: 11167 Petroleum Search Request Enquiry

Hi Barry,

Many thanks for assisting me with my earlier query.

Please find attached a site location plan for the search area. The site comprises three separate buildings in close proximity which some I believe historically were part of the same site.

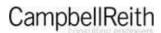
As discussed, would it be possible to undertake a search for the three buildings as part of one request? As they are in close proximity I ideally would not want to pay for three separate searches.

Below is some information regarding the three buildings.

Highgate Day Centre, Highgate Road Greenwood Centre/ Camden society, Greenwood Place AA self storage, Greenwood Place

NW5 1LB

I am unsure if there was a different historical address for the site, however, I believe the Camden Society/ Greenwood community centre used to be a heavy chemical works, AA self storage used to be a building coach works and the Highgate Day Centre was previously used for terraced housing.


I would be most grateful if you could confirm whether the search for the three buildings could be undertaken using the same request.

If you have any questions please do not hesitate to contact me.

Many thanks,

Ellen

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500

www.campbellreith.com

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

For fire safety advice please go to http://www.london-fire.gov.uk/YourSafety.asp

EMAIL DISCLAIMER: The Information in the email may contain confidential or privileged materials. Please read the full email disclaimer notice at http://www.london-fire.gov.uk/EmailDisclaimer.asp.

Click <u>here</u> to report this email as spam.[attachment "Environmental Survey Request Form (Revised 29 3 12).docx" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your syster

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your syster

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your syster

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Engl Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LL other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endor

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure a

[attachment "11167 Petroleum Search.docx" deleted by Ellen Jones/CRH]

If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in Eng Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is auth any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endo note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure guaranteed. If verification is required please telephone the sender of the email.

RE: Planning Enquiry (Ref. ENQ\09113) - 11167 Greenwood Place, Highgate Road, NW5 Planning to: 'EllenJones@campbellreith.com' 22/11/2012 12:11 Hide Details From: Planning <Planning@camden.gov.uk> To: "'EllenJones@campbellreith.com'' <EllenJones@campbellreith.com>, History: This message has been forwarded.

1 Attachment

How to search for planning records on Camden web pages - August 2011.pdf

Dear Ellen,

Thank you for your enquiry, please accept our apologies for the delay in providing you with a response.

The Council's <u>Online Planning Search</u> enables you to find planning applications using a wide variety of search options. I would recommend looking at the planning history of the site to establish the previous uses and current use (should the most recent permission have been implemented). You can also view the planning applications online and any plans, drawings and documents associated with the applications. I have attached some guidance notes on how to do this.

You would need to contact the <u>contaminated land</u> team to establish whether the land is contaminated and if there were any tanks on the land. More information can be found in the frequently asked questions section on this page.

Please use the following pages on our website to check if the building is listed or is in a conservation area:

- Find a listed building
- Find a conservation area

More information on archeological priority areas can be found in Camden's <u>Local Development</u> <u>Framework Development Policies Document 2010</u> (adopted version) in policy DP25 and there is a map on page 122 which shows the areas.

I trust this information is of assistance. Should you have any further queries please do not hesitate to contact me.

Kind regards,

Sally Shepherd Planning Officer Advice and Consultation Team Planning and Regeneration Culture and Environment Directorate London Borough of Camden

Telephone: 0207 974 4672

Web: camden.gov.uk

6th Floor Camden Town Hall Judd Street London WC1H 8ND

The London Borough of Camden has a waste minimisation policy. Please do not print out this email.

From: EllenJones@campbellreith.com [mailto:EllenJones@campbellreith.com]
Sent: 13 November 2012 12:09
To: Planning
Cc: RhyaddWatkins@campbellreith.com
Subject: ENQ\09113 - 11167 Greenwood Place, Highgate Road, NW5

Dear Sir/ Madam,

I am undertaking a geo-environmental desk study review of Greenwood Place, Highgate, NW5, National Grid Reference: 528840^E, 185400^N.

I would be grateful if you could provide any information on the following:

- What is the site's current and previous land use history, including that of the adjacent land?
- Are there any concerns about the site or surrounding areas being contaminated?
- Are there any planning constraints placed on the site, for example, Listed Buildings, archaeology, etc?
- Do you hold any plans or drawings relating to the site which we could have access to?
- Have there been any tanks containing hazardous substances stored on site?

If you are aware of any other information (factual, anecdotal etc) that you believe would better inform the study, please feel free to add this or any other comments.

Please could you advise if there is likely to be a charge for providing the above information. Thank you for your time in advance.

I look forward to hearing from you.

Many thanks,

Ellen

Ellen Jones Graduate Environmental Scientist

Raven House, 29 Linkfield Lane, Redhill, Surrey RH1 1SS

Tel +44 (0)1737 784500 www.campbellreith.com If you have received this e-mail in error please immediately notify the sender by email and delete it and any attachments from your system.

This email has been sent from CampbellReith, which is the trading name of Campbell Reith Hill LLP, a limited liability partnership registered in England and Wales. Registered number, OC300082. Registered address: Friars Bridge Court, 41-45 Blackfriars Road, London, SE1 8NZ. No employee or agent is authorised to conclude any binding agreement(s) on behalf of Campbell Reith Hill LLP with any other party by email unless it is an attachment on headed paper. Opinions, conclusions and other information in this email and any attachments which do not relate to the official business of Campbell Reith Hill LLP are neither given or endorsed by it. Please note that email traffic and content may be monitored.

As this e-mail has been transmitted over a public network the accuracy, completeness and virus status of the transmitted information is not secure and cannot be guaranteed. If verification is required please telephone the sender of the email.

This e-mail may contain information which is confidential, legally privileged and/or copyright protected. This e- mail is intended for the addressee only. If you receive this in error, please contact the sender and delete the material from your computer.

Click here to report this email as spam.

Appendix C: SITE INVESTIGATION INFORMATION

Ground Investigation Report – Greenwood Place. Ground Engineering Ltd, dated June 2013, reference C12974.

F3

Newark Road Peterborough PE1 5UA Tel: 01733 566566 Fax: 01733 315280

GROUND INVESTIGATION REPORT GREENWOOD PLACE KENTISH TOWN LONDON NW5 (Factual) Report Reference No. C12974

On behalf of:-

London Borough of Camden c/o CampbellReith Friars Bridge Court 41-45 Blackfriars Road London SE1 8NZ

June 2013

LONDEN BOROUGH OF CAMDEN

CAMPBELLREITH HILL LLP

CONSULTING ENGINEERS

FACTUAL REPORT ON A GROUND INVESTIGATION HIGHGATE AND GREENWOOD DAY CENTRES GREENWOOD PLACE <u>KENTISH TOWN</u>

LONDON NW5

Report Reference No. C12974

INTRODUCTION

The London Borough of Camden, the client, intends to demolish their existing Highgate Day Centre and Greenwood Community Centre buildings, Greenwood Place, Kentish Town, London NW5, and construct two new buildings of three and six storeys in height with new access ways, cycle parking and soft landscaped areas.

Ground Engineering Limited was commissioned by the client, under the guidance of consulting engineers CampbellReith Hill LLP, the 'Engineer' to carry out a ground investigation and produce a factual report. The investigation was to determine the nature and geotechnical properties of the underlying soils in addition to environmental sampling, monitoring and analysis.

June 2013

LOCATION, TOPOGRAPHY, GEOLOGY AND HYDROGEOLOGY OF THE SITE

The site is bisected by the north-west to south-east trending part of Greenwood Place and is positioned on the south-western side of Highgate Road, London NW5, approximately 200m north-west of Kentish Town London Underground railway station. The site is centred at National Grid Reference TQ 2884 8540. A site location plan is presented in Appendix 1.

The near-rectangular site has an approximately 75m long frontage along the southwestern side of Highgate Road and extends to the south-west by up to 80m. Greenwood Place crosses the site near centrally in a south-east to north-west orientation, then turns to border the north-western edge of the site and forms a junction with Highgate Road to the immediate north of the site. A church, named Christ Apostolic Church, was to the immediate south-east.

At the time of the investigation the north-eastern half of the site area contained Highgate Day Centre and Lensham House. Both of these buildings were in use at the time of the investigation. Lensham House was adorned with signs marked A&A Storage and Business Centre. This building, although located within the site, does not form part of the proposed redevelopment area which it bisects. The south-western half of the site contained Greenwood Community Centre that was disused. The day centre and community centre buildings were single and two storey structures whereas Lensham House was up to three storeys high with several large metal roller shutter doors and loading bays at ground level. All three buildings were of brick construction.

A car park was positioned in the north-eastern corner of the site, associated with Highgate Day Centre. Four car parking spaces, some loading bays and motorcycle bays were positioned along the south-western side of Greenwood Place. Remaining parts of the site comprised pathways and peripheral soft landscaping.

Various immature to mature trees were located in landscaped areas along the north-eastern boundary and in the northern corner of the site including Eucalyptus, Beech, Cherry, Cotoneaster, Laburnum, Laurel and Maple. A row of mature Cypress trees was C12974 Page 2 of 10

positioned immediately beyond the southern corner of the site and along the south-western side of Greenwood Place. A small garden to the rear of Highgate Day Centre in the eastern corner of the site contained abundant Bamboo. A stand of Japanese Knotweed was to the rear of Lensham House beyond the southern corner of the site and was established behind and on top of a brick retaining wall that bordered the lower level of the Greenwood Place roadway.

Ground levels generally fell across the site towards the south-west from approximately 38mOD alongside Highgate Road, reducing to some 36.5mOD to the rear of Greenwood Community Centre. The site was largely surrounded by brick walls, some of which were retaining walls of up to 1.5m high to accommodate the change in levels between higher ground to the north-east and lower ground to the south-west.

The 1934 geological map for the area shows the site to be immediately underlain by the solid geology of the London Clay. A tributary of the River Fleet is indicated to flow towards the south-west along the north-castern edge of the site beneath Greenwood Place and turn beneath the western corner of the site to flow towards the south. This tributary has since been apparently re-routed and culverted. Service plans provided by the Engineer include a sewer plan depicting a trunk combined sewer and a storm relief sewer flowing to the south-east of the site beneath Highgate Road.

The 2006 geological map for the area at 1:50,000 scale, Sheet 256, shows the site to be immediately underlain by the London Clay Formation, but with areas of higher ground to the north-east also indicated with a propensity for Head or 'hill wash' deposits. An area of worked ground is also marked immediately beyond the western corner or the site.

SITE WORK

The locations of the intrusive works were agreed on site with the Engineer.

The investigation was undertaken following the protocols detailed in British Standards (BS) 'Code of Practice for Site Investigations' (BS5930:1999+A2:2010) and 'Methods of test for soils for engineering purposes' (BS1377:1990). All of the intrusive works were undertaken under the supervision of a Geo-environmental Engineer. The works were carried out making due reference to generic and site specific risk assessments, and method statements. Prior to commencement of intrusive works, available statutory service plans were sourced by Ground Engineering Limited and consulted, and a cable avoidance tool (CAT) was used to confirm the absence of buried services at each exploratory hole position.

The exploratory hole positions are depicted on the site plan in Appendix 1. The working areas for two of the exploratory holes (BH2 and DCS1) comprised four parking spaces and a motorcycle bay alongside the roadway of Greenwood Place. These boreholes were undertaken under the supervision of an operative provided by Ground Engineering Limited with New Roads and Street Works Act accreditation. Parking suspensions for all four parking spaces and the motorcycle bays, a building licence and a hoarding licence were obtained by Ground Engineering Limited to facilitate the works for these areas as required by the London Borough of Camden. Traffic management with appropriate roadway works signage and temporary fences were also employed for the duration of the works where required.

The exploratory hole records are presented in Appendix 2 and give the descriptions and depths of the various strata encountered, details of all samples taken, results of the in-situ tests, installation details and the groundwater conditions observed during boring/excavation and on completion. The ground levels at each exploratory hole position were related to Ordnance Datum (OD) using levelling equipment and the National Grid co-ordinates for each position were calculated from on-site measurements, as presented on the exploratory hole records.

Cable Percussive Boreholes

Two boreholes (BH1 to BH2) were undertaken by a standard cable percussive boring rig between 29th April and 2nd May 2013. Prior to boring at each position, starter pits were dug to 1.20m below ground level using hand tools, in order to ensure the absence of buried services. Diamond drilling equipment with 200mm diameter core barrel was employed to remove the surface asphalt, near surface granite setts and concrete at the location of BH2.

The boreholes were then advanced using weighted shell and claycutter tools, initially working within 150mm diameter casing. The boreholes were completed at the intended depths of 35.00m (BH1) and 20.00m (BH2) below ground level.

Standard penetration tests were undertaken in order to give an indication of the insitu relative density/shear strength of the soils encountered at the instructed intervals. The test was made by driving a 50mm diameter solid cone point (C) or similar diameter open shoe and split spoon sampler (S) into the soil at the base of the borehole by means of an automatic trip hammer weighing 63.50kg falling freely through 760mm. The penetration resistance was determined as the number of blows (N) required to drive the tool the final 300mm of a total penetration of 450mm into the soil ahead of the borehole. Where the full penetration was not achieved the actual penetration and the number of blows were recorded.

Undisturbed samples (U) nominally 100mm in diameter were taken in clay, using thin wall steel samplers (UT100s), at the instructed intervals. The ends of the samples were capped and sealed to maintain them in as representative condition as possible during transit to the laboratory.

Representative small (D) and bulk (B) disturbed samples of soil were taken from the boring tools at regular intervals throughout the depth of the boreholes. The supervising Geoenvironmental Engineer also took environmental samples (ES) in polycarbonate pots, glass jars and vials at regular intervals within made ground and underlying naturally deposited soil. On-site screening of soil samples was undertaken by the Geo-environmental Engineer using a photo-ionisation detector (PID). The results of the PID screening are tabulated to the rear of the exploratory hole records.

Within BH1, an indication of the shear strength of clay soils within the recovered samples to 6m depth was made using a hand shear vane (V) at regular intervals and the readings are presented on the BH1 record. A pocket penetrometer was also used to provide an indication of apparent cohesion of clay soils at regular intervals on recovered samples from BH1. These tests were not undertaken on the in-situ clay soils, and the results should only be used as a guide to the shear strength.

Samples of groundwater (W) were recovered from the boreholes once sufficient water had accumulated for collection.

On completion of the boreholes, 50mm diameter pipes were installed with gravel response zones to depths of 4.70m in BH1 and 4.15m in BH2 as instructed by the Engineer. Above this, each borehole was backfilled with bentonite. A gas tap was installed in the top of the standpipes, as instructed. A protective stopcock cover was concreted into the ground flush with the surface over each installation. Below the installations, the boreholes were backfilled with bentonite. Excess spoil was removed from site and disposed of at a licensed facility.

Window Sample Boreholes

Five window sample boreholes, DCS1, DCS2, DCS2A, DCS3 and DCS4, were undertaken by a dynamic continuous sampling rig on 29th and 30th April 2013. Prior to window sampling at each position a starter pit was dug to 1.20mbgl using hand tools in order to ensure the absence of buried services. Diamond drilling equipment with 200mm diameter core barrels was employed to remove the surface asphalt and concrete at the locations of DCS1 and DCS4. Representative small disturbed samples of soil were taken in the starter pits at regular intervals.

The window sample boreholes were then formed by a small track-mounted window sampling and super heavy dynamic probing rig. Personal gas monitors and fume extraction equipment was employed when undertaking DCS4 that was located inside the Greenwood Community Centre Building that was a confined space.

Exploratory hole DCS2 was abandoned due to refusal in concrete at 2.22mbgl, and an alternative location, DCS2A was completed at the intended 6.00m depth, as were DCS1, DCS3 and DCS4. Casing was installed to 4.00mbgl in DCS1 to maintain the hole sidewalls.

The window sampling equipment consisted of drive-in sample tubes of specially constructed and strengthened steel, lined with a plastic core-liner. The barrels were initially of 87mm internal diameter and were reduced in diameter with successive barrels with increasing depth. Upon extraction, a continuous profile of the soil was obtained within the plastic liners.

Standard penetration tests (SPTs) were undertaken at regular intervals in order to give an indication of the in-situ density or strength of the material. Each test was made by driving a 50mm diameter split spoon sampler into the soil at the base of the borehole by means of an automatic trip hammer weighing 63.50kg falling freely through 750mm. The penetration resistance was determined as the number of blows 'N' required to drive the tool the final 300mm of a total penetration of 450mm into the soil ahead of the window sample hole. In coarse or hard soils, the split tube sampler (SPT(S)) was replaced by a 60° apex cone (SPT(C)). The SPT results are tabulated to the rear of the exploratory hole records.

The plastic liners recovered from the window sample boreholes were logged and sampled on-site by a supervising Geo-environmental Engineer. Representative small disturbed (D) samples of soil were taken at regular intervals throughout the depth of each borehole. Environmental samples (ES) were taken in polycarbonate pots and glass jars at regular intervals within made ground and into the top layer of underlying naturally deposited soils.

On-site screening of soil samples was undertaken by the Geo-environmental Engineer using a photo-ionisation detector (PID). The results of the PID screening are tabulated to the rear of the exploratory hole records.

An indication of the shear strength of clay soils within the recovered liners was made using a hand shear vane (V) at regular intervals and the readings are presented on the window sample hole records. A pocket penetrometer was also used to provide an indication of apparent cohesion of clay soils at regular intervals in DCS1, DCS3 and DCS4. These tests were not undertaken on the in-situ clay soils, and the results should only be used as a guide to the shear strength.

On completion 50mm diameter standpipes were installed to depths of 3.00m in DCS1; 2.00m in DCS2A and DCS4; and 1.00m in DCS3, for future gas and groundwater monitoring. The standpipes were slotted to within 1.00m depth (DCS1, DCS2A and DCS4) or 0.60m depth (DCS3) and surrounded with a pea gravel annulus. A bentonite seal was placed above the pea gravel annulus, a gas tap inserted and a protective steel stopcock cover concreted in place at ground level.

Monitoring

Four return visits were made on 13th, 20th, 29th May and 3rd June 2013 to monitor methane, carbon dioxide and oxygen gas levels in the standpipes using a GasData GFM 430 series gas monitor. Ambient pressures and flow rates were recorded together with the depth to groundwater. A photo-ionisation detector (PID) was used to monitor for volatile organic compounds (VOCs). Groundwater samples were obtained where possible from each standpipe during each visit and were sealed within 1 litre glass bottles. Due to vehicles obstructing the location of BH2 during these four visits, additional visits were undertaken for the BH2 standpipe that was successfully monitored on 13th June 2013. The results of all monitoring visits monitoring are presented in Appendix 3.

LABORATORY TESTING

The samples were inspected in the laboratory and assessments of the soil characteristics have been taken into account during preparation of the exploratory hole records. The soils have been described in accordance with BS5930:1999+A2:2010. The geotechnical and chemical testing schedules were devised by the Engineer. The testing was completed within UKAS accredited laboratories.

The geotechnical test results are presented in Appendix 4 whilst the results of the chemical tests and gas sample tests are presented in Appendix 5.

Geotechnical Laboratory Testing

The samples recovered from the exploratory holes were tested in accordance with the recommendations of British Standard BS1377:1990 'Methods of tests for soils for civil engineering purposes'.

The moisture contents and index properties of selected soil samples were determined as a guide to soil classification and behaviour. The liquid limit was determined by a cone penetrometer.

The particle size distribution of a selected sample was obtained by wet sieve analysis and sedimentation by pipette. The results of this tests are given as combined particle size distribution curve.

The particle size distribution of a selected sample was determined by wet sieve analysis. The results of this test is given as a particle size distribution curve.

Immediate undrained triaxial compression tests were made on selected undisturbed samples at single confining cell pressures specified by the Engineer. The moisture content and bulk density of the specimens were also determined. A single undisturbed sample of fissured clay fragmented on extrusion in the laboratory and the recovered specimen was not suitable for triaxial testing. A hand shear vane test was undertaken as an alternative and the result, taken as an average of three readings, is presented in the summary table.

C12974

Selected samples of soil and water were analysed to determine the concentration of soluble sulphates. The pH values were determined using an electrometric method. Selected samples of soil were also tested for total sulphur and acid soluble sulphate. The testing was undertaken using the methods prescribed in BRE Digest SD1 (2005).

Chemical Laboratory Testing

The UKAS MCERTs accredited laboratory, Chemtest, was used for the analysis of soil samples recovered during the site work.

Twelve soil samples were tested for a suite that included arsenic, cadmium, chromium, copper, nickel, lead, mercury, selenium, zinc, moisture content, speciated PAH (16 plus benzo[j]fluoranthene), gasoline range organics (>C6-C10), extractable petroleum hydrocarbons (>C10-C25 and >C25-C40), sulphate (total), sulphide, phenols monohydric (total of phenol, cresol and xylenol), total cyanide and pH. A single sample was separately tested for speciated PAH.

Eleven soil samples were screened for the presence of asbestos. Four soil samples were tested for speciated TPH CWG, three soil samples were tested for total organic carbon and three soil samples were tested for the fraction of organic carbon.

Selected water samples were tested for a suite that included arsenic, cadmium, chromium, copper, nickel, lead, mercury, selenium, zinc, hexavalent chromium, total cyanide, free cyanide, thiocyanate, total PAH, total TPH, total phenol, soluble sulphate, sulphide, free sulphur and pH. These samples were also tested for speciated TPH CWG and VOCs.

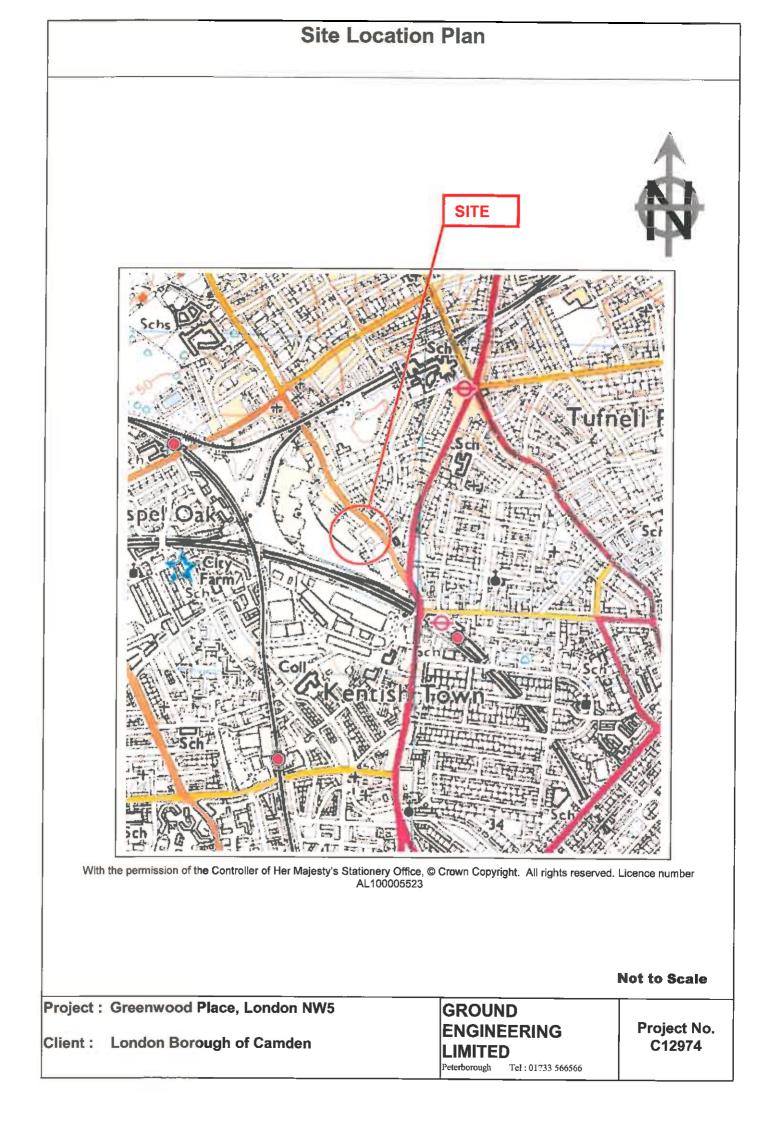
GROUND ENGINEERING LIMITED

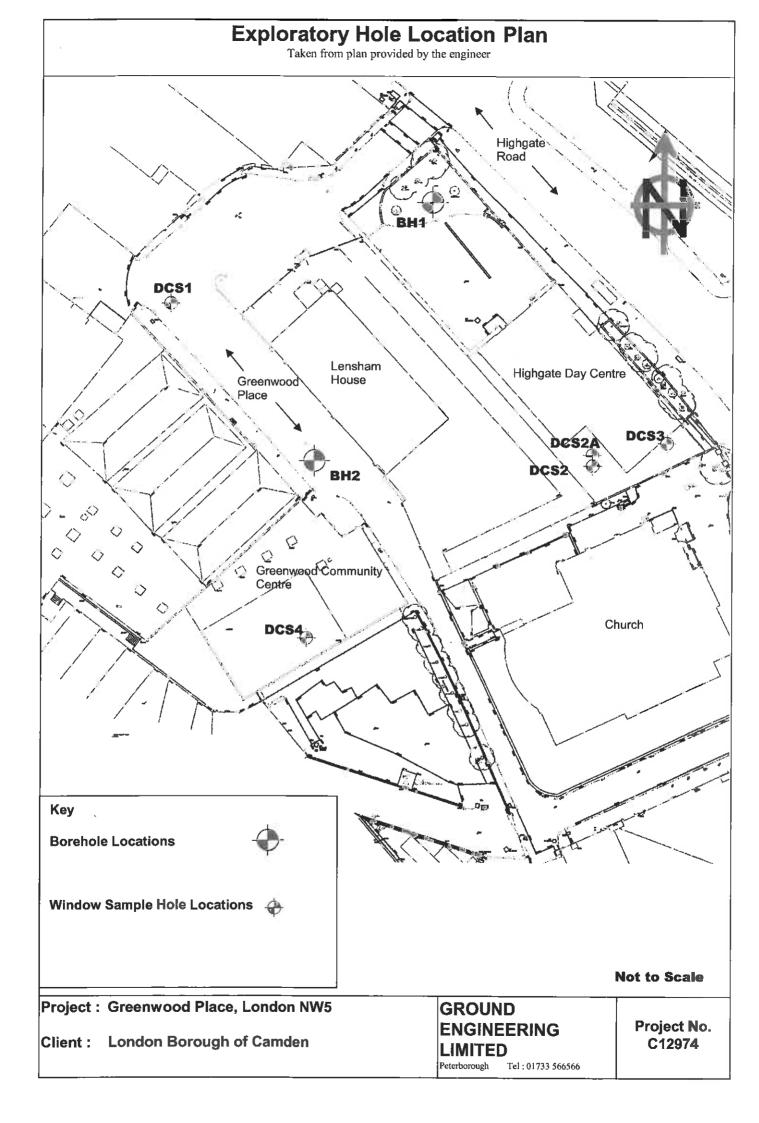
. E. M. DAVIES

B.Sc. (Hons.), M.Sc., C.Geol., F.G.S., <u>Senior Geotechnical Engineer</u> *C12974*

<u>C. M. J. EBELING</u> M.Sc.(Eng.), M.A.E.G., C.Geol., F.G.S.,

<u>Director</u>


Page 10 of 10


Appendix 1

Site Location Plan

Exploratory Hole Location Plan

C12974– Appendices

Appendix 2

Exploratory Hole Records Results of On-site PID Screening

C12974– Appendices

GROUND	RiNG	Site: GI	REENWO	OOD PI	LACE	COMM	UNITY	CENTRE	, LONI	DON SE	БВ	OREHC BH1	
L I M I T Tel: 01733-566566	E D	Date: 29/04	4/13	Hole Si	ze: 1	50mm di	a to 35.	00m			528 Ground	355 mE 1	854 32 m
www.groundengineerin		to 30/04	4/13								Level:	36.9	0m. 0.D
Samples and in-situ Depth m Ty		(Date) Casing	Inst.			0	Description of	of Strata			Legend	Depth	C.D. Level m
0.10 D 0.10 E 0.50-1.00 B 0.50 D	1 51 12 52 52									ly sandy, to l, ash lightly cobbles. k, flint, brough		0.25	36. 65
1.20 V 1.35 E 1.70 D	1 30 P1 (1.50) 1 (81) S3 4	1.20		asbest MADE G below	os fra ROUND 1.55m	gments - Firm brown	angular sh and co <u>at 0.50m</u> , locally , orange ightly gr l, flint	stiff, brown a	becomin	g soft		1.10	35.80
1.80 E	N9	1.50 ⊻s. ⊻s.		Firm	becomi	ng stil	f, browr	n, orange	e brown	and grey lint and	-	2.40	- 34. 50
2.60 E 2.70 P 2.70 V 2.95 D 3.20-3.60 V 3.20 P	S5 P4 (1.50) 4 (91) 7 2 30 P5 (1 75)	1.50 ▼s		quartz Firm, l brown a	becomi	ng stil	f below	4.00m de	epth, fis	ssured,		3.15	33.75
3.40 E 3.70 D8 3.70 PF 3.70 V6 3.95 D9 4.20 V6	P6 (1.75) 6 (72) 9	⊻ s 1.50		size s partin	elenit gs.	e cryst	als and	orange E	prown si	lt	XXX		
4.35-4.65 S 4.65 D1 4.70 PF 4.70 V8 4.70 V8	N11 P8 (2.00) 8 (125)	1.50										-	
5.70 D1 5.70 PP1 5.70 V1 5.95 D1	12 10 (2.75) 10 (108) 13												_
6.35-6.65 S 6.65 D1	N15	1.50											-
7.20-7.60 U4	35	1.50											_
7.70 D1	15										XX		
8.35-8.45 S 8.65 D1		1.50											-
9.20-9.60 U5	45	1.50											
9.70 D1			1.1.0	Very st occasic pyrite	nodule	fissure rey sil	d, brown t partin	grey CL gs and r	AY with are grav	el size		9.70	27. 20
9.70 D17 10.00 ES7 Very stiff, fissured, brown grey CLAY with occasional grey silt partings and rare gravel size pyrite nodules. REMARKS 1. Excavating a pit from 0.00m to 1.20m 2. Live roots observed to 2.70m depth 3. Borehole cased to 1.50m depth 4. Gas monitoring standpipe installed to 4.70m depth 5. PP = Pocket Penetrometer reading (Kg/cm2)									10.00 Projec 1297 Scale	t No			
0. ES =	Environme	ntat sampt	le	_			ter Strike:	s	_	Grou	Indwater O	1:50 bservatio	1/4
D - Disturbed Sample * - Blows for quoted Depth m						D	epth m						
U - Undisturbed Sample W - Water Sample /C - SPT Spoon/Cone	eV ⊶ Vane Cohes ⊻c Level c⊻w Level	Shear Test sion () kPa	on	Struck	Rose to	Ra	te	Cased	Sealed	Date 29/04/13 30/04/13 30/04/13 30/04/13 13/05/13	Hole 14.15 14.15 35.00 35.00	Casing 1.50 1.50 1.50 0.00	Water dry dry dry dry 3.75

GROUND			Site:	GREENV	BOREHOLE			
	ER		Date:		BH1 528855 mE 185432			
Tel: 01733-566566 www.groundengineering.co.uk			29	/04/13 /04/13		round evel:		0m. 0.
Samples and in			(Date)	Inst.				0.0
Depth m	Туре	Blows	Casing			gend	Depth m	Leve m
10.20	D18				Very stiff, fissured, brown grey CLAY with occasional grey silt partings and rare gravel size pyrite nodules.		10.00	26.9
10.85-11.15	s	N24	1.50		7			
11.15	D19			K 14 1	*			
11.70	D20				7			
12.20-12.30	U6	60	1.50		Concretionary limestone nodule at 12.30m to			
12.40 12.50	D21 D22							
13.20	D23							
13.85-14.15	s	N33	1.50			*		
14.15	D24					X		
14.70	D25					*		
15.20-15.60	U7	45	1.50			×		
15.70	D26							
16.20	D27					×		
16.85-17.15	s	N36	1.50			*		
17.15	D28							
17.70	D29				Becoming hard below 18.00m depth.	*		
18.20-18.60	U8	50	1.50					
18.70	D30							
19.20	D31							
19.85-20.15	s	N38	1.50			×	20.00	16.90
EMARKS							Project 1297	
			_			1	:50	Page 2/4
EY D - Disturbed Samj			Blowsfor(forquote		Groundwater Strikes Groundwater Depth m		servatio oth m	ns
3 - Bulk Sample J - Undisturbed Sa		penet	ration	N	lo Struck Rose to Rate Cased Sealed Date Hole		asing	Water
W - Water Sample C - SPT Spoon/Cor Z Water Strike Water Rise	ne ⊻ a c ⊻ ∖	Cohes c Level w Level	on compl on compl casing wi pipe Leve	a etion ithdrawn	20/05/13 4.70 29/05/13 4.70 03/06/13 4.70			3.49 2.72 2.56

GROUND ENGINEERING				GREENW	OOD PLACE COMMUNITY CENTRE, LONDON	N SE6		DREHO	_
L I M I Tel: 01733-566566 www.groundenging	-	E D	Date: 29/ to 30/	/04/13 /04/13	Hole Size: 150mm dia to 35.00m		5288 Ground Level:	55 mE 18 36.9	85432 m)m. 0. D
Samples and in Depth m			(Date) Casing	Inst.	Description of Strata	·	Legend	Depth m	0.D. Level
20.15	D32				Hard, fissured, brown grey CLAY with occasion grey silt partings and rare gravel size pyrit nodules.	al e		20.00	
20.70	D33								
21.20-21.60	60	55	1.50						-
_							- <u>*</u>		
21.70	D34						X		_
22.20	D35								
22.85-23.15	s	N37	1.50				× ×		-
- 23.15	D36								_
23.70	D37						×		-
_	057								_
24.20-24.60	U10	55	1.50				-/		
24.70	D38						XX		-
25.20	D39			2 2 X					_
_				121			~~~		-
25.85-26.15	S	N39	1.50				<u>}</u>		_
26.15	D40						X		_
26.70	D41						×. 		
27.20-27.60	U11	65	1.50	1.1.1			X		_
27,70	D42						X		-
28.20	D43			4 4 4 4 4 4		·	λ		
				* * *			$\dot{\boldsymbol{\lambda}}$		-
28.85-29.15	S	N41	1.50				×		
29.15	D44						*		
29.70	D45								-
REMARKS				N			$\rightarrow \downarrow$	30.00 Projec	t No
								1297 Scale	Page
					Groundwater Strikes	Groups	Jwater Ot	1:50	3/ 4
KEY D - Disturbed Sam B - Bulk Samala		- Blow	Blowsfor(sforquote	ed _	Depth m		De	epth m	
B - Bulk Sample U - Undisturbed Sa W - Water Sample /C - SPT Spoon/Coi ▼ Water Strike ▼ Water Rise	ne 🗴 c 🗶	- Vane Cohe c Level w Level	tration Shear Tes sion () kP l on comple l casing wi dpipe Leve	st a etion ithdrawn	No Struck Rose to Rate Cased Sealed	Date	Hole	Casing	Water

GROUN	D ERi	iNG		GREENW	OOD PLACE COMMUNITY CENTRE, LONDON SE6	E	BOREHO	
L I M I Tel: 01733-566566 www.groundenging		E D	Date: 29/04/13 to 30/04/13		Hole Size: 150mm dia to 35.00m	528 Ground Level;	855 mE 185432 36.90m. 0.	
Samples and in Depth m	1-situ Te	Blows	(Date) Casing	Inst.	Description of Strata	Legend		O.D. Level
30.20-30.60	U12	<u> </u>	1.50		Hard, fissured, brown grey CLAY with occasional grey silt partings and rare gravel size pyrite nodules.			m 6.90
-					nodules.	1×	-	
30.70	D46			1		K	_	
- - - 31.20	D47			1 1 1			_	-
-						H¥	-	
31.85-32.15	s	N47	1.50			Ŕ		
32.15	D48					$\square \times$		-
-							-	
32.70	D49					1	-	
33.20-33.60	U13	75	1.50					-
33.20-33.00	013	15	1.50					
33.70	D50						-	
						1×	-	
34.20	D51					1	_	
34.65-34.95	S	N53	1.50	1 I 1			-1	-
34.95	D52			1			35.00	1.90_
					Borehole completed at 35.00m depth			
								-
-								
-								
-								
-								- - -
								-
								-
								-
								-
		ļ						-
								-
REMARKS				L		<u>.</u>	Projec 129	
							Scale 1:50	Page 4/4
KEY			Blows for (dwater C	Observatio	
D - Disturbed Samp B - Bulk Sample		penet	s for quote ration	N	Depth m lo Struck Rose to Rate Cased Sealed Date	Hole	Depth m Casing	Water
U - Undisturbed Sa W - Water Sample S/C - SPT Spoon/Con ▼ Water Strike	ne ⊻ o c ⊻ ∖	Cohes c Level w Level	sion () kPa on comple casing wi	a etion thdrawn				
✓ Water Rise		s Stand	pipe Leve	•				

GROUND ENGINEERING	j	WOOD PLACE COMMUNITY CENTRE, LONDON SE6		REHO BH2	
LIMITED Tel: 01733-566566 www.groundenginsering.co.uk	Date: 01/05/13 to 02/05/13	Hole Size: 200mm dia to 0.42m 150mm dia to 20.00m	52883 Ground Level:		85390 mi 5m. 0.D
Samples and in-situ Tests Depth m Type Blows	(Date) Casing₂ ▽	Description of Strata	Legend	Depth m	O.D. Level m
		MADE GROUND - ASPHALT. MADE GROUND - GRANITE SETTS in concrete. MADE GROUND - CONCRETE.		0.05 0.25 0.42	36.50 36.30 36.13
0.67 ES1 1.00 ES2		MADE GROUND - Very soft, brown, slightly sandy, very gravelly CLAY. Gravel consists of angular to sub-rounded brick, concrete, ceramic, shell fragments and ash.		1.00	35.55
1.20-1.70 B1 1.20 ES3 1.35-1.65 C 1.50 ES4 1.70 D1 1.80-2.30 B2 1.95-2.25 S	1.20 ▼s	MADE GROUND - Very soft, grey, slightly gravelly, sandy, organic CLAY. Gravel consists of angular to sub-rounded brick, flint and ash. Occasional black organic patches.			-
2.25 D2 2.40 ES5 2.55 D3 2.60 D4 2.70-3.10 U1	2.70 ¥				-
3.20-3.70 B3 3.35-3.65 C N15 3.35 ES6	3.00 1	Medium dense, brown, slightly clayey, very sandy GRAVEL. Gravel consists of sub-angular to rounded flint.		3.10	33.45
3.70 3.80-4.20 3.95 ES7 ES7	3.80	Firm, brown, orange brown and grey mottled, gravelly CLAY. Gravel consists of angular to rounded flint.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.70	32. 85
4.30 D6 _ 4.40 ES8 _ 4.55 D7		Stiff, fissured, brown and grey mottled CLAY with occasional sand size selenite crystals and orange brown silt partings.	XX		
_ 4.95-5.25 s N11 5.25 D8	4.20	• •	X		
5.55 D9 5.80-5.20 U3 30	4.20	> / -			
6.30 D10		· · · · · · · · · · · · · · · · · · ·			-
6.80 D11		-			- - -
7.45-7.75 S N14 7.75 D12	4.20				- - - - -
8.30 D13			K X		- - - -
8.80-9.20 U4 35	4.20 4 4 4 4 4 4		X		
9.30 D14 9.80 D15				10.00	
REMARKS 1. Excavating a 2. Borehole case 3. Gas monitorin 4. ES = Environn	pit from 0.00m d to 4.15m dep g standpipe ins ental Sample	to 1.20m alled to 4.15m depth	<u> </u>	10.00 Project 1297 Scale	t No
KEY N - SPT	Blows for 0.3m	Groundwater Strikes Ground		1:50	1/2
D - Disturbed Sample * - Blow	s for quoted	Depth m		pth m	
U - Undisturbed SampleV - Van W - Water Sample Coh S/C - SPT Spoon/Cone ⊻c Lev. 文 Water Strike c ⊻w Lev.	etration e Shear Test esion () kPa el on completion el casing withdrawn idpipe Level	No Struck Rose to Rate Cased Sealed Date H 1 3.10 2.70 very slow 4.20 3.70 01/05/13 15 2 0.00 2 seepage 4.20 3.70 01/05/13 15 02/05/13 20 02/05/13 20 02/05/13 20 1 3.00 13/05/13 20 02/05/13 20	lole C	asing .20 .20 .20 .20 .00	Water dry dry dry dry

GROUN ENGiNE		iNG		GREENW	OOD PLACE COMMUNITY CENTRE, LONDON SE		BOREHO	
L I M I Tel: 01733-566566 www.groundengin		E D		(05/13	Hole Size: 200mm dia to 0.42m 150mm dia to 20.00m	Ground	836 mE 1	8539 0 mN 5 m. 0.D.
www.groundengin Samples and ir			to 02/ (Date)			Level:	- 36.5	5m. 0.D.
Depth m	Туре	1	Casing	inst.	Description of Strata	Legend	I Depth m	Level
10.45-10.75	s	N15	4.20		Stiff, fissured, brown and grey mottled CLAY with occasional sand size selenite crystals and orange brown silt partings.	XX	10.00	26.55
10.75	D16			111				
-					Very stiff, fissured, locally fissured to stiff,		11.00	25.55
11.30	D17				Very stiff, fissured, locally fissured to stiff, brown, grey CLAY with occasional grey silt partings and rare gravel size pyrite nodules.			
11.80-12.20	U5	50	4.20			Ę.	-	-
12.30	D18						-	
12.80	D19							
							-	
13.45-13.75	S	N34	4.20				-	-
- 13.75	D20					X		-
14.30	D21					<u> </u>	-	-
 							-	-
14.80-15.20	U6	50	4.20	212		<u>)</u> //		
- 45 70				1				
15.30	D22			111		1		-
15.80	D23			5 33			-	-
-				~ / /			1	_
16.45-16.75	s	N36	14.20	5 8 "				-
16.65	D24			211			-	-
_				1.		1×	-	
17.30 -	D25			1 1				
17.80-18.20	U7	55	4.20				-	1
-						5		-1
18.30	D26		ľ	<, <, <,		K		
18.65-18.95	s	N38	14.20	114				
18.95	D27					×.		
_ 19.50-19.90	8U	55	4.20	1 1 J				
				5 1.5		Ľ¥		-
19.95 REMARKS	D28	1	ľ	<u>) () ()</u> B	orehole completed at 20.00m depth		20.00	
				-			Projec 1297	4
							Scale 1:50	Page 2/2
KEY			Blows for 0			indwater C	Dbservatio	_
D - Disturbed Sam B - Bulk Sample		penet	s for quoted ration	N	Depth m o Struck Rose to Rate Cased Sealed Date	Hole	Depth m Casing	Water
U - Undisturbed Sa W - Water Sample S/C - SPT Spoon/Cor		Cohes	sion () kPa	t —	20/05/13	4 50		-
S/C - SPT Spoon/Cor ▼ Water Strike ▼ Water Rise		v Level	o n com ple casing wit lpi pe Level	hdrawn	29/05/13 03/06/13 13/06/13	4.50 4.50 4.50		1.53
	<u> </u>	. orana						

GROUND ENGINEERING	Site: GREEN	WOOD PLACE COMMUNITY CENTRE, LONDON SE6	WINDO	DW SA	
L I M I T E D Tel: 01733-566566	Date: 30/04/13	Hole Size: 87mm dia to 2.00m 67mm dia to 4.00m	52881 Ground	13 mE 18	
www.groundengineering.co.uk		57mm dia to 6.00m	Level:	36.50)m. 0. D
Samples and in-situ Tests Depth m Type Result	(Date) Water Inst.	Description of Strata	Legend	Depth m	0.D. Level m
3.15 U3A 3.30 PP3 3.30 V3 3.40 V4 3.35 ES7 3.55-3.75 U3B 3.80 PP4 4.00 D6 4.00-5.00 U4 3.80 V4 3.90 U32 4.15-4.45 S 4.30 PP5 4.30 V5 4.40 U44	y s y s	gravelly CLAY. Gravel consists of angular to sub- rounded concrete, brick, coal, ceramic and ash.		0.05 0.24 0.39 0.65 3.10 4.20 4.80 6.00	36.45 36.26 36.11 35.85 33.40 32.30 31.70 30.50
denth)		to 1.20m depth (Diamond cored 200mm diameter to 0.39m roots observed to 4.20m depth alled to 3.00m depth ing (Kg/cm2) Groundwater Strikes		Project 1297 Scale 1:50	
NET		Godina Godina	water Ob	servatio	ns
	Sample ckintosh Probe	Depth m		pth m	
J - Undisturbed Sample V - Var	ne Shear Test			asing	Water
V - Water Sample Col ☑ Water Strike P() - Hai ☑ Depth to Water Col	hesion () kPa nd Penetrometer hesion () kPa andpipe Level	1 3.00 20/05/13 3. 29/05/13 3. 29/05/13 3. 03/06/13 3.	.00 .00 .00		dry 1.34 1.21

GROUND ENGINEERING	Site: GREENV	NOOD PLACE COMMUNITY CENTRE, LONDON SE	6 WIND	ow sa	
	Date: 29/04/13	Hole Size: 87mm dia to 2.00m 77mm dia to 2.22m		880 mE 1	85394 mN
Tel: 01733-566566 www.groundengineering.co.uk	27/04/15		Ground Level:	37.5	Om. O.D.
Samples and in-situ Tests Depth m Type Result	(Date) Water	Description of Strata	Legend	Depth m	0.D. Level m
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MADE C MADE C MADE C consis MADE C slight to sub flint	<pre>ROUND - CONCRETE paving slab. ROUND - CONCRETE. ROUND - Orange brown, silty, gravelly SAND. Gravel is of sub-angular to rounded flint. ROUND - Soft, locally firm, brown and grey, mottled ly sandy, gravelly CLAY. Gravel consists of angular o-rounded concrete, brick, ironstone, metal, coal, and ash. ROUND - CONCRETE ibandoned at 2.22m depth</pre>		2.20 2.22	m 37.45 37.26 37.26 35.30 35.28
REMARKS 1. Starter pit exa 2. No live roots of 3. Hole sides stal 4. Concrete obstru 5. ES = Environment	cavated from GL observed ble uction at 2.22m ntal Sample	to 1.20m depth depth		Projec 1297 Scale	
				1:50	1/1
KEY	- Seman'-		undwater C		ons
B - Bulk Sample M - Ma	r Sample ackintosh Probe	Depth m No Struck Rose to Rate Cased Sealed Date		epth m Casing	Water
W - Water SampleCo♥ Water StrikeP() - Ha♥ Depth to WaterCo	ane Shear Test - bhesion () kPa and Penetrometer bhesion () kPa andpipe Level				dry

ENGINEERING		OOD PLACE COMMUNITY CENTRE, LONDON SE6		ow sa	MPLE A
LIMITED Tel: 01733-566566 www.groundengineering.co.uk	Date: 29/04/13	Hole Size: 87mm dia to 2.00m 77mm dia to 3.00m 57mm dia to 6.00m	5288 Ground Level:	80 mE 1	853 95 mi 0m. 0.D
Samples and in-situ Tests Depth m Type Result	(Date) Water	Description of Strata	Legend	Depth m	0.D. Level m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		MADE GROUND - CONCRETE MADE GROUND - CONCRETE. MADE CROUND - CONCRETE. MADE CROUND - Transperse MADE CROUND - Transperse Consists of angular to sub-rounded brick, Cravel consists of angular to sub-rounded brick, concrete and ash. MADE CROUND - Firm, brown, slightly clavey SAND AND GRAVEL with occasional cobbles of brick and concrete. Stravel consists of angular to sub-rounded brick, concrete. Gravel consists of angular to sub-rounded brick. Pirm, brown, orange brown and grey mottled CLAY with occasional sand size selenite crystals and orange brown silt partings. Stiff, fissured, brown and grey mottled CLAY with occasional sand'size selenite crystals and orange brown silt partings. Hole completed at 6.00m depth		0.05 0.09 0.16 0.40 1.25 3.20	37 .45 37 .41 37 .34 37 .10 36 .25 36 .25 36 .25 37 .10 36 .25
REMARKS 1. Starter pit exc 2. Live roots obse 3. Hole sides stab	erved to 1.25m c ole	to 1.20m depth depth alled to 2.00m depth		Projec 1297	
5. ES = Environmer	ntal Sample		twater O	Scale 1:50	Page 1/1
KEY D - Disturbed Sample J - Jar		Depth m	lwater Ol	epth m	ns
J - Undisturbed Sample V - Var N - Water Sample Col ▼ Water Strike P() - Har ▼ Depth to Water Col	ackintosh Probe N ne Shear Test hesion () kPa nd Penetrometer hesion () kPa andpipe Level	lo Struck Rose to Rate Cased Sealed Date 29/04/13 6 13/05/13 2 20/05/13 2 29/05/13 2 03/06/13 2		Casing	Water dry dry dry dry dry dry

GROUND	RiNG		GREENW	NOOD PLACE COMMUNITY CENTRE, LONDON SE6		ow sa DCS	3
L I M I T Tel: 01733-566566 www.groundengineer	E D	Date: 30/	/04/13	Hole Size: 87mm dia to 2.00m 77mm dia to 3.00m 57mm dia to 6.00m	5288 Ground Level:	91 mE 1 37.5	85394 r Om. 0.1
Samples and in-sit	tu Tests ype Result	(Date) Water	inst.	Description of Strata	Legend	Depth	0.D Level m
0.30 0.60 0.60 1.20 1.20-2.00 1.20-2.00 1.20 1.20-2.00 1.20 1.35-1.65 1.35 1.65-1.95 1.65-1.95 1.65-1.95 2.00-3.00 1.95 2.00-3.00 1.95 2.30 2.30 2.30 2.30 2.30 3.00-4.00 3.15-3.45 3.30 3.00 4.00 5.00-5.00 4.30 4.5-5.45 5.30 5.	D1 ES1 D2 ES2 D3 ES2 D3 ES3 D4 U1 V1 (0.75) V1 S ES4 U1A V2 (75) D2 U2 (1.25) S N11 V2 U1A (1.75) U2 V2 U1A (1.75) U2 V3 S S V1 V1 (1.75) U2 V3 S S V1 V1 V1 V1 (1.75) U2 V3 S V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1			MADE GROUND - CONCRETE paving slab. MADE GROUND - Brown and orange brown, gravelly SAND. Gravel consists of angular to sub-rounded concrete, brick, flint, metal, ceramic and ash. MADE GROUND - Brown and dark brown, silty SAND AND GRAVEL. Gravel consists of angular to sub-rounded brick, concrete, coal, ash, flint and glass. Firm, brown and grey mottled CLAY with occasional calcareous concretions and orange brown silt partings. Stiff, fissured, brown and grey mottled CLAY with occasional sand size selenite crystals and orange brown silt partings. Concretionary limestone nodule at 2.85m depth		0.05 0.30 0.70 1.10 2.00	3 7.45 37.20 3 6.80 3 6.40 3 5.50 3 1.50
2. Live 3. Gas r 4. PP =	roots obse	erved to standpi netromet) 1.10m d pe insta :er readi	to 1.20m depth epth lled to 1.10m depth ng (Kg/cm2)	ŀ	Project 1297 Scale	
ΈY		·		Groundwater Strikes Ground	lwater Ot	1:50 servatio	1/1 ns
 Disturbed Sample Bulk Sample 		r Sample Ickintosh I	Probe	Depth m	De	epth m	
J - Undisturbed Sample V - Water Sample ▼ Water Strike ▼ Depth to Water on completion	e V-Va Co P()-Ha Co	ne Shear ⁻ hesion ()	Test kPa ometer kPa	o Struck Rose to Rate Cased Sealed Date 1 30/04/13 6 13/05/13 1 20/05/13 1 29/05/13 1 03/06/13 1	.00	asing	Water dry dry dry dry dry dry

GROUN ENGINE		iNG		GREENW	OOD PLACE COMMUNITY CENTRE, LONDON SE6		ow sa DCS	4
L I M I Tel: 01733-566566 www.groundenging	T ering.c	ED	Date: 29/	/04/13	Hole Size: 87mm dia to 2.00m 77mm dia to 3.00m 57mm dia to 6.00m	Ground	38 mE 1 36.7	853 64 m Om. O.D
Samples and in- Depth m	-situ To Type		(Date) Water	Inst.	Description of Strata	Legend	Depth	0.D. Level m
					MADE GROUND - CONCRETE.		0.20	36.50
0.40	ES1				MADE GROUND - Brown, slightly silty SAND AND GRAVEL. Gravel consists of angular to sub-rounded brick, flint and concrete. MADE GROUND - CONCRETE. MADE GROUND - Firm, black, brown and dark brown mottled, slightly sandy, gravelly, silty CLAY. Gravel consists of angular to sub-angular brick, concrete, ash and coal. MADE GROUND - Firm, brown and grey mottled		0.56	36. 14 36. 00
0.95	ES2 D1				MADE GROUND - Firm, black, brown and dark brown mottled, slightly sandy, gravelly, silty CLAY. Gravel consists of angular to sub-angular brick,		1.00	35.70
1.20-2.00 - 1.20 1.35-1.65	ป1 ES3 S	N5			MADE GROUND - Firm, brown and grey mottled, slightly gravelly CLAY. Gravel consists of angular to sub-angular brick, concrete and ash. Firm, brown, grey and orange brown mottled, gravelly CLAY. Gravel consists of sub-angular to rounded flint.		1.50	35.20
1.50 1.50 1.75	PP1 V1 ES4 U1A	(0,75) (32)			Firm, brown, grey and orange brown mottled, gravelly CLAY. Gravel consists of sub-angular to rounded flint.		2.10	7/ 40
1.90 2.00-3.00 2.00 2.00 2.15-2.45	U2 V2 PP2	(41)			Firm, brown and grey mottled CLAY with abundant calcareous concretions and orange brown silt partings.		2.10	34.60
2.15-2.45 2.20 2.35 2.40	C U2A ES5 PP3	N7		11				
2.40 2.40 2.60-2.80 2.90 3.00	PP3 V3 U2B V4 D2 U3	(1.50) (56)	ĺ					-
2.90 3.00 3.00-4.00 3.15-3.45	D2 U3 S	(79) N11						
4.00 4.00-5.00	D3 U4							-
4.15-4.45	S	N10					,	70 44
5,00	D4				Stiff, fissured, brown and grey mottled CLAY with occasional orange brown mottled silt partings and sand size selenite crystals.	<u> </u>	4.60	32. 10
5.00 5.00-6.00 5.15-5.45	D4 U5 S	N14		The star	sum size setenite crystats.	X		a.
						X		
6.00 6.15-6.45	D5 S	N19			Hole completed at 6.00m depth		6.00	30. 70
		- 1						-
								-
2. No	live	roots	observer		to 1.20m depth		Projec 1297	
4. PP 5. ES	= Poi = En	vironme	netromet htal San	er readı. Iple	olled to 2.00m depth ng (Kg/cm2)	Γ	Scale 1:50	Pag e 1/1
(EY) - Disturbed Sample	e		r Sample	-	Groundwater Strikes Ground Depth m	lwater Ot De	servatio	ns
3 - Bulk Sample J - Undisturbed Sam V - Water Sample	ple	V - Va	ackintosh ine Shear	Test –	lo Struck Rose to Rate Cased Sealed Date I	Hole C	asing	Water
 Water Sample Water Strike Depth to Water on completion 		P() Ha Co	phesion () and Penetro phesion () andpipe Le	ometer kPa	29/04/13 6 13/05/13 2 20/05/13 2 29/05/13 2 03/06/13 2	.00 .00 .00 .00 .00		dry dry dry dry dry

Borehole Number	Depth (m)	Casing Depth (m)	Depth to Water (m)	Type of Test *	Seating Drive: Blows/Penetration (mm)	Blows	est Driv for ead 5 mm Per	ch succe	essive	N Value	Extrapolated Value
BH1	2.20 - 2.65	1.50		s	3/150	2	2	2	3	9	
D	4.20 - 4.65	1.50		s	3/150	2	∠ 3	∠ 3	3	9 11	
	6.20 - 6.65	1.50		s	4/150	3	4	4	4	15	
	8.20 - 8.45	1.50		s	4/150	4	4	4 5	* 5	18	
	10.70 - 11.15	1.50		s	7/150	5	- 6	6	5 7	⊥ ¤ 24	
	13.70 - 14.15	1.50		s	10/150	8	8	8	9	24 33	
	16.70 - 17.15	1.50		s	10/150	8	9	9	10	36	
	19.70 = 20.15	1.50		s	10/150	8	9	9 10	11	38	
	22.70 - 23.15	1.50		s	10/150	8	9	10	10	30	
	25.70 - 26.15	1.50		s	10/150	8	10	10	11	39	1
	28.70 - 29.15	1.50		S	10/150	8	10	11	12	39 41	
	31.70 32.15	1.50		s	12/150	10	11	12	14	47	
	34.50 - 34.95	1.50		S	13/150	11	13	13	16	±7 53	
вн2	1.20 - 1.65	1.20		C	1/150	0	1	о	1	2	
	1.80 - 2.25	1.50		S	1/150	0	1	1	1	3	
	3.20 - 3.65	3.00		C	3/150	3	4	4	4	15	
	4.80 - 5.25	4.20		S	2/150	2	3	3	3	11	
	7.30 = 7.75	4.20		S	3/150	3	3	4	4	14	
	10.30 - 10.75	4.20		S	4/150	3	4	4	4	15	
	13.30 * 13.75	4.20		S	9/150	8	8	9	9	34	
	16.30 - 16.75	14.20		S	10/150	8	9	9	10	36	
	18.50 - 18.95	14.20		S	10/150	8	9	10	11	38	
DCS1	1.20 🚊 1.65			s	1/150	0	1	l	1	3	
	2.00 - 2.45			S	2/150	1	0	1	0	2	
	3.00 - 3.45	3.00	3.00	S	3/150	1	2	2	2	7	
	4.00 - 4.45	4.00		S	3/150	2	2	2	4	10	
	5.00 🛫 5.45	4.00		S	4/150	4	4	4	5	17	
	6.00 = 6.45	4.00		S	4/150	4	4	5	5	18	
DCS2A	2.00 - 2.45			S	3/150	2	2	3	3	10	
	3.00 - 3.45			S	3/150	2	2	2	3	9	
	4.00 - 4.45			S	4/150	2	3	3	4	12	
	5.00 - 5.45			S	5/150	4	4	5	5	18	
	6.00 - 6.45			S	7/150	5	5	6	5	21	
DCS3	1.20 1.65			S	2/150	2	1	0	1	4	
	2.00 - 2.45			S	4/150	2	3	3	3	11	
[3.00 = 3.45 4.00 - 4.45			S S	5/150	3	3	3	4	13	
	4.00 - 4.45 5.00 = 5.45			S	5/150 7/150	4 5	4	4	4	16	
	6.00 - 6.45			S	7/150	5 4	6 5	5 6	6 6	22 21	
DCS4	1.20 - 1.65			s	1 /150	1	1	2	1	5	
	2.00 - 2.45			С	4/150	1	1	2	3	7	
	3.00 - 3.45			S	3/150	2	2	3	4	11	
	4.00 💽 4.45			S	3/150	2	2	3	3	10	
	5.00 - 5.45	İ		S	4/150	4	3	4	3	14	
	6.00 - 6.45			S	5/150	5	4	5	5	19	
GRO					using a so			. 7			
ENGi					using a sp		-		_		
Tel: 01733-5		Res	uits o	I Sta	andard/Cone	Pene	etrat	ion '	Test		12974
					COMMUNITY CENT					т	Table No

Results of On-Site PID Screening

			Photo-ionis	sation Detecto	or Reading		
Denth (m)	BH1	BH2	DCS1	(ppm)	Data	- D GGA	
Depth (m)		ВН2	DCSI	DCS2	DCS2A	DCS3	DCS4
0.10	<0.1			_			
0.30					<0.1	<0,1	
0.40				<0.1			<0.1
0.50	<0.1		<0.1				
0.60						-:0.1	
0.65		<0.1			<0.1	· · · ·	
0.70				<0.1			†
0.90			<0.1			<0.1	
0.95							0.4
1.00		<0.1		<0.1	<0.1		
1.20		<0.1	<0.1				<0.1
1.30				<0.1	-		
1.35	<0.1					<0.1	
1.50		<0.1	<0.1		<0.1		
1.75							<0.1
1.80	<0.1						
1.85				:0.1			
2.05					<0.1		
2.30			<0.1				
2.35							<0.1
2.40		<0.1		· · · ·			
2.65	<0.1						
3.35		<0.1	<0.1				
3.40	<0.1						
3.95		-:0.1					
4.40		<0.1			· · · · · · · · · · · · · · · · · · ·		

Project : Greenwood Place, London NW5	GROUND	
Client : London Borough of Camden	ENGINEERING LIMITED	Project No. C12974
	Peterborough Tel : 01733 566566	

Appendix 3

Results of Gas and Groundwater Monitoring

C12974– Appendices

Gas Monitoring Record

Greenwood Place, London NW5 Site:

C12974 Report Ref:

(\/\ %)	_J °`	LEL LEL	Carbon Dio (% v/v)	Carbon Dioxide (% v/v)	(x) (%)	Oxygen (% v/v)	Rate (l/hr)	Atmosph. Pressure (mb)	Dp (mb)	Depth of Well (mbgl)	VOCs (ppm)	Depth to Groundwater (mbgl)	Comments
Steady	Peak	Steady	Peak	Steady	Min.	Max.							
<0.1	<0.1	<0.1	1.6	1.6	19.2	19.2	<0.1	1008	<0.1	4.70	4.9	3.75	Water sample taken & described as clear
						Installati	on obstrue	Installation obstructed by vehicle	e				
<0.1	<0.1	<0.1	<0.1	<0.1	20.9	20.9	<0.1	1008	<0.1	3.00	0.4	Dry	
<0.1	<0.1	<0.1	1.9	1.9	18.9	18.9	<0.1	1008	<0.1	2.00	1.9	Dry	
<0.1	<0.1	<0.1	<0.1	<0.1	20.9	20.9	<0.1	1008	<0.1	1.10	0.8	Dry	
<0.1	<0.1	<0.1	<0.1	<0.1	20.7	20.7	<0.1	1008	<0.1	2.00	0.4	Dry	1
Air temperature 12 ⁰ C Weather = Overcast Barometric pressures on 1 1	Air temperature 12°C Weather = Overcast Barometric pressures on 10/05/13= 1010mb 11/05/13= 1010mb 12/05/13= 1009mb	1010mb 1010mb 1009mb											

LEL – Lower Explosive Limit

Gas Monitoring Record

Greenwood Place, London NW5 Site:

C12974 Report Ref:

Date	Borehole No.	Met (%	Methane (% v/v)	M M M	Methane LEL %	Carbon Dio (% v/v)	Carbon Dioxide (% v/v)	0x) (%)	Oxygen (% v/v)	Flow Rate (I/hr)	Atmosph. Pressure (mb)	Dp (mb)	Depth of Well (mbgl)	VOCs (ppm)	Depth to Groundwater (mbgl)	Comments
		Peak	Steady	Peak	Steady	Peak	Steady	Min.	Max.							
20/05/13	BH1	<0.1	<0.1	<0.1	<0.1	1.6	1.6	19.4	19.4	<0.1	1007	<0.1	4.70	<0.1	3.49	Water sample taken & described as clear
20/05/13	BH2								Installatic	on obstruc	installation obstructed by vehicle	je				
20/05/13	DCS1	<0.1	<0.1	<0.1	<0.1	0.2	0.2	20.1	20.1	<0.1	1007	<0.1	3.00	<0.1	1.34	Water sample taken & described as clear
20/05/13	DCS2	<0.1	<0.1	<0.1	<0.1	1.8	1.8	19.2	19.2	<0.1	1007	<0.1	2.00	<0.1	Dry	•
20/05/13	DCS3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	20.7	20.7	<0.1	1007	<0.1	1.10	<0.1	Dry	
20/05/13	DCS4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	20.7	20.7	<0.1	1007	<0.1	2.00	<0.1	Dry	-
Note -		Air temperature 11ºC Weather = Partly Clou Barometric pressures (dy M	17/05/13= 1008mb 18/05/13= 1006mb 19/05/13= 1007mb	1008mb 1006mb 1007mb											

LEL – Lower Explosive Limit

σ
Ξ.
0
ŏ
×.
~
ľ
_
0
2
L
0
.
1
2
ō
•
\geq
10
22
ц о .
٢Ň.
\smile

Greenwood Place, London NW5 Site:

C12974 Report Ref:

Borehole No.	Me (%	Methane (% v/v)		Methan e LEL %	Carbon (%	Carbon Dioxide (% v/v)	×0 %)	Oxygen (% v/v)	Flow Rate (I/hr)	Atmosph. Pressure (mb)	Dp (mb)	Depth of Well (mbgl)	VOCs (ppm)	Depth to Groundwater (mbgl)	Comments
	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Max.							
BH1	<0.1	<0.1	<0.1	<0.1	1.7	1.7	19.4	19.4	<0.1	1001	<0.1	4.70	<0.1	2.72	Water sample taken & described as clear
BH2								Installati	on obstruk	Installation obstructed by vehicle	sle	-		_	
DCS1	<0.1	<0.1	<0.1	<0.1	0.4	0.3	20.0	20.1	<0.1	1001	<0.1	4.70	<0.1	1.21	Water sample taken & described as clear
DCS2	<0.1	<0.1	<0.1	<0.1	1.3	1.3	19.4	19.4	<0.1	1001	<0.1	2.00	<0.1	Dry	•
DCS3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	20.6	20.6	<0.1	1007	<0.1	1.10	<0.1	Dry	
DCS4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	20.7	20.7	<0.1	1007	<0.1	2.00	<0.1	Dry	1
ir te /eath aron	Air temperature 16°C Weather = Partly Clou Barometric pressures	dy n	26/05/13= 1010mb 27/05/13= 1008mb 28/05/13= 1004mb	1010mb 1008mb 1004mb											

- Note -
- i.
- 1

LEL – Lower Explosive Limit

Gas Monitoring Record

Greenwood Place, London NW5 Site:

C12974 Report Ref:

Comments		Water sample taken & described as clear				1	
Con		Water sa & descrit					
Depth to Groundwater (mbgl)		2.56			Dry	Dry	Dry
VOCs (ppm)		<0.1			<0.1	<0.1	<0.1
Depth of Well (mbgl)		4.70			2.00	1.10	2.00
D D D D		<0.1	sle	sie	<0.1	<0.1	<0.1
Atmosph. Pressure (mb)		1028	Installation obstructed by vehicle	Installation obstructed by vehicle	1028	1028	1028
Flow Rate (I/hr)		<0.1	ion obstru	ion obstru	<0.1	<0.1	<0.1
Oxygen (% v/v)	Мах.	19.2	Installat	Installat	20.7	20.7	20.7
6°	Min.	19.2			20.7	20.7	20.7
Carbon Dioxide (% v/v)	Steady	1.6			<0.1	<0.1	<0.1
Carboi (%	Peak	1.6			<0.1	<0.1	<0.1
Methane LEL %	Steady	<0.1			<0.1	<0.1	<0.1
Met	Peak	<0.1		<0.1	<0.1	<0.1	
Methane (% v/v)	Steady	<0.1			<0.1	<0.1	<0.1
Me (%	Peak	<0.1			<0.1	<0.1	<0.1
Borehole No.		BH1	BH2	DCS1	DCS2	DCS3	DCS4
Date		03/06/13	03/06/13	03/06/13	03/06/13	03/06/13	03/06/13

Air temperature 16°C Note -

Weather = Partly Cloudy Barometric pressures on 31/05/13= 1015mb ï

01/06/13= 1018mb 02/06/13= 1025mb

i

LEL – Lower Explosive Limit

Gas Monitoring Record

Greenwood Place, London NW5 Site:

C12974 Report Ref:

Comments		Water sample taken & described as clear	
Depth to Groundwater (mbgl)		1.53	
VOCs (ppm)		<0.1	
Depth of Well (mbgl)		4.50	
Dp (mb)		<0.1	
Atmosph. Pressure (mb)		1005	
Flow Rate (I/hr)		<0.1	
Oxygen (% v/v)	Мах.	19.2	
×0%)	Min.	19.2	
Carbon Dioxide (% v/v)	Steady	0.8	
Carboi (%	Peak	0.8	
Methane LEL %	Steady	<0.1	
Met L	Peak	<0.1	
Methane (% v/v)	Steady	<0.1	
Me (%	Peak	<0.1	
Borehole No.		BH2	
Date		13/06/13	

Note -

- Air temperature 18°C
 Weather =Sunny with some light showers
 Weather pressures on 10/06/13= 1015mb 11/06/13= 1014mb ī ī

١ĝ

LEL – Lower Explosive Limit

Appendix 4

Geotechnical Laboratory Test Results

C12974– Appendices

	Remarks						SOIL CLASSIFICATION = CI 1% retained on 425µm sieve			SOIL CLASSIFICATION = CH 2% retained on 425µm sieve						
	H			7.6			2 8	7.0		<u> </u>						-
Sulphates (SO ₄)		l) Bu														1
Sulphat	Aqueous			126				420								
		Dry Wt.														
	Angle of Shear Resistance	degrees				0					o					:Soil
lion	Shear Strength	kPa				42	•				57					:1 Water
I riaxial compression	Celi Pressure	e ³				24					128	. <u></u>				xtract 2
	Principal Stress Difference	kРа				84		-			113					Aqueous Extract 2:1 Water:Soil
	Type					ø					a					1
LY .	Dry 3	mg/m				1.62					1.51					
Leilsily	Bulk	Mg/m				2.06					1.99					RAINED
	Moisture Content	% F	<u>^</u>	19	22	27	24	24	21	24	32	31	31	29	59	
	Plasticity Index	\$					54			45						- I •
	Plastic Limit	,e					16			50						
	Liquid Limit %						40			65						- - - - - - -
	ξE	Ę	2	0.50	1.10	1.20 × 1.60	1.70	1.95	2.45	2.95	3.20 = 3.60	3.70	3.95	4.65	4.95	- UNDISTURBED SAMPLE

LABORATORY TEST RESULTS

CONTRACT GREENWOOD PLACE COMMUNITY CENTRE, LONDON SE6

VG Tel: 01733-566566 www.groundengineering.co.uk

	ţ														12974
	Remarks								Hand Vane Test						ENGINFERING
		Ηđ						7.8				7.7		8.0	
Sulphates (SO ₄)	Water	l/gm										_			
Sulph	Ī	Extract						1176				1070		973	
		e Total													13
	Angle of	Resistanc	0			o	0			0	o		0		: Soi l
lon	Shear	Strength kPa	78			101	190		130+	173	340		303		2:1 Water:Soil
Triaxial Compression	Cell	Pressure kPa	208			288	368			608	728		848		xtract 2
Trie	Principal	Difference kPa	157			201	380			346	680		606		Aqueous Extract
-		Type	a			ø	o			a	ø		æ		
ty	Ž	Mg/m ³	1.51			1.56	1.58			1.55	1.64		1.51		[[STAGE
Density	BUK	Mg/m ³	1.99			2.01	2.03			2.02	2.05		1.91		RAINED INED NED NED MULTI
	Moisture	""	32	30	30	59	28		29	30	25		24		- CONSOLIDATED UNDRAINED - CONSOLIDATED DRAINED - CONSOLIDATED DRAINED - IMMEDIATE UNDRAINED - IMMEDIATE UNDRAINED MULTISTAGE
ation	Hasticity	31							-						
Classification	Plastic	, ""													
	Liquid imit	7										_			
	ц ц		5.20 - 5.60	5.70	5.95	7.20 🖃 7.60	9.50 🔬	10.20	12.20 - 12.30	15.20 - 15.60	18.20 -	18.70	21.20 -	22.20	UNDISTURBED SAMPLE DISTURBED SAMPLE BULK SAMPLE WATER SAMPLE
	Sample		٤n	D12	D13		5	D18	90	 2n		D30	60	035	UNDISTU DISTURE BULK S4 WATER 5
010	hole		Ha File		_			<u> </u>						<u> </u>	 3

LABORATORY TEST RESULTS

CONTRACT GREENWOOD PLACE COMMUNITY CENTRE, LONDON SE6

	_	_	_										
	Remarks								SOIL CLASSIFICATION = CH 0% retained on 425µm sieve			SOIL CLASSIFICATION = CV 1% retained on 425µm sieve	12974
	H		7.8			7.9	<u>.</u>	7.1			7.3		
Sulphates (SO ₄)	Water mg/l												
Sulphate	Aqueous Extract	l/ôu	902			871		82			179		
	Soil Total	Ury Wt.									-		
	Angle of Shear Resistance	0 0		0	0		0			0		0	soi l
<u>no</u>	Shear Strength kPa	342		434	338		294			24		52	1 Water:
Triaxial Compression	Cell Pressure kPa	968		108	120		132					152	tract 2:
Тпа	Principal Stress Difference kPa	684		867	676		588			109		105	Aqueous Extract 2:1 Water:Soil
	Type	a		σ	ø		a			a		G	
ity	Dry Mg/m ³	1.52		1.56	1.57		1.54			1.76		1.48	L STACE
Density	Bulk Mg/m ³	1.90		1.93	1.96	_	1.92			2.15		1.95	RAINED INED NED MITT
	Moisture Content %	25		23	25		25		26	22		32	CONSOLIDATED UNDRAINED CONSOLIDATED UNDRAINED CONSOLIDATED DRAINED IMMEDIATE UNDRAINED IMMEDIATE UNDRAINED MULTISTAGE
cation	Plasticity Index %								35			46	
Classification	Plastic Limit %								20			53	
	Liquíd Limit %								55			۲۲ ۲	
	ε	24.20 - 24.60	26.15	27.20 ÷ 27.60	30.20 30.60	30.70	33.20 - 33.60	1.70	2.25	2.70 5 3.10	3.70	3.80 ÷ 4.20	- UNDISTURBED SAMPLE - DISTURBED SAMPLE - DISTURBED SAMPLE - MATER SAMPLE
_	Sample	U10	040	u11	U12	D46	U13	5	02	<u> </u>	D5	ns	- UNDIST - DISTUR - BULK S
Bore.	hole	BH1						BH2					2003

LABORATORY TEST RESULTS

CONTRACT GREENWOOD PLACE COMMUNITY CENTRE, LONDON SE6

GROUND ENGINEERING Tel: 01733-566666 L I M I T E D www.groundengineering.co.uk

DesityTractical CompressionSuppressionSuppressionSuppressionnoiseDry hall hallTypeDefinition hall hallCall hall hall hall hallSuppress (SQ, I)Suppress (SQ, I)91.5Z01.5Z910 $\frac{100}{1000}$ hall hall hall $\frac{100}{1000}$ hall hall $\frac{100}{1000}$ hall $\frac{100}{1000}$ hall hall $\frac{100}{1000}$ hall $\frac{100}{1000}$	1297 ENGINEERING Tei: 01733-566566 E D www.croundengineering.co.uk
sitySupposeSupp	O •
sityTriaxial CompressionSityDry Mg/m 3Triaxial CompressionSitear SitearAngle of Restance NWHSolution Restance NWHSolution 	Ë.
Sity Traxial Compression By Dy Type Phincipal Result Sitear Angle of Result Soluting Angle of Result Mg/m^3 Type Difference Phincipal Result Sitear Angle of Result Soluting Angle of Result Sol	
Sity Triaxial Compression Dry Trype Principal Bitessure Mg/m ³ Triaxial Type Call Bitessure kPa Shear Angle of kPa Angle of Assistance kPa Total Bitessure kPa 1.52 a 183 232 91 0 1.52 a 183 232 91 0 1.52 a 183 232 91 0 1.53 a 248 352 124 0 1.59 a 248 352 124 0 1.59 a 248 352 124 0 1.59 a 248 352 124 0 1.53 a 224 592 112 0 1.61 a 197 712 99 0 1.64 a 367 780 184 0	GROUND □
sity Triaxial Compression Dry Type Drifference Cell Stream Mg/m ³ Type Drifference RPa Stream Mg/m ³ Type Drifference RPa Stream 1.52 Q 183 232 91 154 1.59 Q 410 472 205 1.59 Q 410 472 205 1.53 Q 224 592 112 1.51 Q 197 712 99 1.64 Q 367 780 184	E B
sity Triaxial Compression Dry Type Difference Cell Stream Mg/m ³ Type Difference RPa Stream Mg/m ³ Type Difference RPa Stream 1.52 Q 183 232 91 154 1.58 Q 248 352 124 1.59 Q 410 472 205 1.53 Q 224 592 112 1.53 Q 224 592 112 1.64 Q 367 780 184	soil
sity Triaxial Compress Dry Type Difference Mayina Mayima 1.52 Q 183 232 1.58 Q 248 352 1.58 Q 248 352 1.59 Q 410 472 1.53 Q 410 472 1.53 Q 224 592 1.64 Q 197 712 1.64 Q 367 780	- Mater -
sity Dry Type Principal Mg/m ³ Type Difference Mg/m ³ Type Difference kPa 1.58 Q 248 1.59 Q 410 1.53 Q 410 1.53 Q 248 1.61 Q 197 1.64 Q 367	tract 2:
sity Dry Mg/m ³ Type 1.52 Q 1.53 Q 1.53 Q 1.54 Q 1.64 Q	Aqueous Extract 2:1 Water:Soil
sity Dry Mg/m ³ 1.52 1.52 1.53 1.56 1.61	
Bulk Mg/m ³ 1.99 2.02 2.06 2.05 2.06	DRAINED AINED INED ML
Motisture Content 31 33 28 28 28 28 28 26 26 26	- CONSOLIDATED UNDRAINED - CONSOLIDATED UNDRAINED - CONSOLIDATED DRAINED - IMMEDIATE UNDRAINED - IMMEDIATE UNDRAINED MULTISTAGE
Pasticity Index x 5°	
Classification 2.1 Assists Passification 2.1	ວ່ວ ຮ່ ບໍ່ບໍ່ຜູ້ຜູ້
Depth Liquid Plastic Plastic Plastic Plastic Plastic Mois % <td> </td>	
Depth Depth 1.2.20 - 12.20 - 11.80 - 11.80 - 11.80 - 11.80 - 11.80 - 11.80 - 11.80 - 11.80 - 11.80 - 11.80 - 11.80 - 11.80 - 11.9.90 - 119	UNDISTURBED SAMPLE DISTURBED SAMPLE BULK SAMPLE BULK SAMPLE WATER SAMPLE
	UNDISTL DISTURE BULK SA
BH2	DOM 3

LABORATORY TEST RESULTS

CONTRACT GREENWOOD PLACE COMMUNITY CENTRE, LONDON SE6

RESULTS
TEST
LABORATORY

CONTRACT GREENWOOD PLACE COMMUNITY CENTRE, LONDON SE6

	Remarks			SOIL CLASSIFICATION = CL 52% retained on 425µm sieve			SOIL CLASSIFICATION = CH 7% retained on 425µm sieve								12974 ENGINEERING Tel: 01733-566566
		E.	8.6			6.8									
Sulphates (SO ₄)	Water	1													
Sulpt	Soil	Total Aqueous % Extract Drv Wt. mo/l				156								<u></u>	GROUND
		Shear Resistance degrees D	1										<u>.</u>		
		Strength Res kPa de									<u> </u>				later:So
Triaxial Compression	┢									_					Aqueous Extract 2:1 Water:Soil
Triaxial Co	Cell	e Pressure kPa													s Extra
	Principal	Stress Difference kPa													Aqueous
		Type					.								
ity	į	Mg/m ³													ISTAGE
Density	į	Mg/m ³													RAINED INED NED NED MULT
	Moisture	Content %	32	20	32	34	27	54	32	26	31	29	24	27	CONSOLIDATED UNDRAINED CONSOLIDATED UNDRAINED CONSOLIDATED DRAINED IMMEDIATE UNDRAINED MULTISTAGE IMMEDIATE UNDRAINED MULTISTAGE
ication	Plasticity	Index %		7			34								
Classification	Plastic	Limit %		8			22								
	Liquid	Limit %		25			56								ш Ш Ш
	лерth		0-50	0.90	1.20	1.80	2.00	3.00	3.55 = 3.75	4.00	4.60 © 4.80	5.00	5.60	6.00	UNDISTURBED SAMPLE DISTURBED SAMPLE BULK SAMPLE WATER SAMPLE
	Sample		10	D2	03	U1A	D4	05	U3B	D6	N4B	D7	U5B	D8	- UNDIS - DISTUI
0	bore-		DCS1												2003

RESULTS
TEST
LABORATORY

CONTRACT GREENWOOD PLACE COMMUNITY CENTRE, LONDON SE6

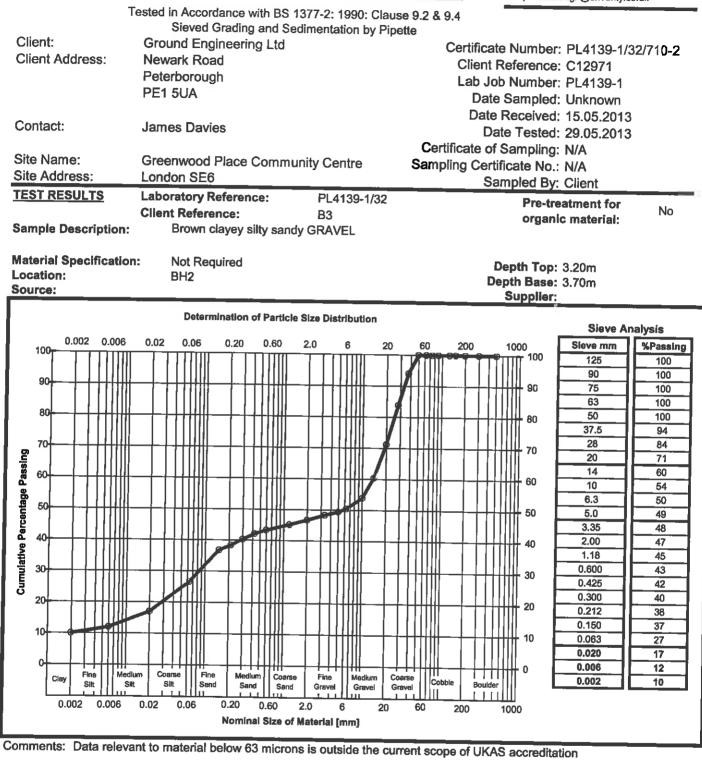
	Remarks		SOIL CLASSIFICATION = CH 17% retained on 425µm sieve	SOIL CLASSIFICATION = CV 16% retained on 425μm sieve	SOIL CLASSIFICATION = CH 0% retained on 425µm sieve						SOIL CLASSIFICATION = CV 0% retained on 425µm sieve			12974 GROUND ENGINEERING Tel: 01733-566566 C MWW afroundencinearing co. lik
ĺ		H		7.4			8.6	8.0						
Sulphates (SO ₄)	Water												_	
Sulpha	Soil	Aqueous Extract mo/l		274			181	288						Dos
		e fotal Drv (vt	1									<u>_</u>		5 _
	Angle of	Snear Resistance deorees												: Soi l
5	Shear	Strength kPa												2:1 Water:Soil
Triaxial Compression		Pressure kPa											<u> </u>	ract 2:
Triaxial	Principal						-							Aqueous Extract
	Ϋ́μ								<u> </u>					Aque
		3 Type										<u>,</u>		4
Density	Ž	-					_							TISTAGE
Der	E E	Mg/m ³												RAINED INED NED MUL'
	Moisture	Content %	28	55	27	11			25	30	30	32	59	CONSOLIDATED UNDRAINED CONSOLIDATED UNDRAINED CONSOLIDATED DRAINED IMMEDIATE UNDRAINED IMMEDIATE UNDRAINED MULTISTAGE
Classification	Plasticity	Maex	39	49	77						46			1.1.1.1
Classif	Plastic	וווו %	20	53	52						24			
	Liquid	лши %	59	72	66						13			E E
ł	neptu n		1.00	1.20 -	2.50	0.30	09-0	06-0	1.20	1.65 ¥ 1.95	2.00	2.50 - 2.70	3.00	I I UNDISTURBED SAMPLE Disturbed Sample Bulk Sample Water Sample
_	Sample		03	5	90	10	02	03	54	U1B	02	U2B	D6	
	hole		DCS2	DCS2A		DCS3								2003

	<u> </u>	Т										4
	Remarks					SOIL CLASSIFICATION = CV 3% retained on 425μm sieve		SOIL CLASSIFICATION = CV 2% retained on 425µm sieve				12974
	Hd			7.7			7.4	_	7.5			
Sulphates (SO ₄)	Water mg/l										_	
	Soil Aqueous Extract	_		3136			181		669			
	Tota Drv W										<u> </u>	
	Angle of Shear Resistance degrees	h			_							: Soī l
ion	Shear Strength kPa											-1 Water
Triaxial Compression	Cell Pressure kPa											tract 2
, Tria	Principal Strebs Difference kPa											Aqueous Extract 2:1 Water:Soil
	Type											
	Dry Mg/m ³							<u> </u>				
Density	Bulk Mg/m ³									 		RAINED RED MILT
	Moisture Content %	27	28		28	23		32				CONSOLIDATED UNDRAINED CONSOLIDATED UNDRAINED IMMEDIATE UNDRAINED IMMEDIATE UNDRAINED
cation	Plasticity Index 5,6					21		63				
Classification	Plastic Lmit %					50		55				 ມີມີອີດ
	Liquid Limit %					41		88				
Depth	E	5.00	5.60 - 5.80	5.90	6.00	1.20 ± 1.50	1.90	2.20	4.00	<u> </u>		UNDISTURBED SAMPLE DISTURBED SAMPLE BULK SAMPLE BULK SAMPLE
	Sample	0 8	USB	U5C	60		U1A	UZA	03			- UNDIST - UNDIST - DISTUR - BULK S
	hole	DCS3				DCS4						2003

LABORATORY TEST RESULTS

CONTRACT GREENWOOD PLACE COMMUNITY CENTRE, LONDON SE6

12974 VG Tel: 01733-566566 www.groundengineering.co.uk


TEST CERTIFICATE

Enverity

Newark Road Peterborough t: 01733 555525 f: 01733 315280

Determination of Particle Size Distribution

e: peterborough@enverity.co.uk

Approved Signatory: M. Hartnup - Laboratory Manager

Date Reported: Form Number:

06.06.2013 Page 1 of 1 EN/C/709-2 Version 31 for and on behalf of Enverity Ltd

Signed:

Registered in England & Wales Registration Number: 6930692 Reg Office: Diasma, Willie Snaith Rd Newmarket, Suffolk, CB8 7SQ

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

Depot Road Newmarket CB8 0AL Tel: 01633 606070

Ground Engineering Limited Newark Road Peterborough

PE1 5UA

FAO James Davies 03 June 2013

Dear James Davies

Test Report Number230731Your Project ReferenceC12974 Greenwood Place, London NW5

Please find enclosed the results of analysis for the samples received 23 May 2013.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

Darrell Hall, Director

Notes to accompany report:

- The sign < means 'less than'
- Tests marked 'U' hold UKAS accreditation
- Tests marked 'M' hold MCertS (and UKAS) accreditation
- Tests marked 'N' do not currently hold UKAS accreditation
- Tests marked 'S' were subcontracted to an approved laboratory
- n/e means 'not evaluated'
- i/s means 'insufficient sample'
- u/s means 'unsuitable sample'
- Comments or interpretations are beyond the scope of UKAS accreditation
- The results relate only to the items tested
- All results are expressed on a dry weight basis
- The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, phenols
- For all other tests the samples were dried at < 37 °C prior to analysis
- Uncertainties of measurement for the determinands tested are available upon request
 - None of the test results included in this report have been recovery corrected

Test Report 230731 Cover Sheet

Newmarket • Coventry • Dublin

Registered in England 3 Wales - Registration Norriber 6511736 - Registered Office: 11 Depot Read Newmarket Suffer CB8 0AL

Ground Engineering Limited	Road	ngh
Ground Engi	Newark Road	Peterborough

FAO James Davies

PE1 5UA

LABORATORY TEST REPORT

Results of analysis of 6 samples

received 23 May 2013

C12974 Greenwood Place, London NW5

Report Date

MChemtest

03 June 2013

Otrapites LIMS ID Sample ID						23073	31		
Sample ID				AI72295	AI72296	AV72297	AI72298	A172299	A1/2300
				BH1	BH2	DCS1	DCS2	DCS3	DCS4
Sample No				9	4	3B	2	1A 1	£
Sampling Date				2/5/2013	2/5/2013	2/5/2013	2/5/2013	2/5/2013	2/5/2013
Depth				2.45m	2.60m	3.55m - 3.75m	0.70m	1.50m	1.20m
Matrix				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SOP↓ Determinand↓ CAS	CAS Not	Unitst	*						
2010 pH			¥	7.8	7.7	8.1	8.2	8.1	7.8
2175 Sulfur (total TRL report 447)		%	Σ	0.021	<0.010	0.65	0.047	0.019	0.024
2120 Sulfate (2:1 water soluble) as SO4	14808798	1-1 D	Σ	0.24	<0.01	1.4	<0.01	0.07	0.06
2430 Sulfate (total BS1377 HCI extract)	14808798	%	A	0.05	<0.01	0.64	0.07	0.05	0.05

All tests undertaken between 23/05/2013 and 31/05/2013 * Accreditation status

Column page 1 Report page 1 of 1 LIMS sample ID range AI72295 to AI72300

This report should be interpreted in conjuction with the notes on the accompanying cover page.

Appendix 5

Chemical Laboratory Test Results

C12974– Appendices

Depot Road Newmarket CB8 GAL Tel: 01638 506070

Ground Engineering Limited Newark Road Peterborough

PE1 5UA

FAO James Davies 21 May 2013

Dear James Davies

Test Report Number229885Your Project ReferenceC12974 - Greenwood Place, London NW5

Please find enclosed the results of analysis for the samples received 13 May 2013.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

Darrell Hall, Director

Notes to accompany report:

- The sign < means 'less than'
- Tests marked 'U' hold UKAS accreditation
- Tests marked 'M' hold MCertS (and UKAS) accreditation
- Tests marked 'N' do not currently hold UKAS accreditation
- Tests marked 'S' were subcontracted to an approved laboratory
- n/e means 'not evaluated'
- i/s means 'insufficient sample'
- u/s means 'unsuitable sample'
- Comments or interpretations are beyond the scope of UKAS accreditation
- The results relate only to the items tested
- All results are expressed on a dry weight basis
- The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, phenols
- For all other tests the samples were dried at < 37°C prior to analysis
- Uncertainties of measurement for the determinands tested are available upon request
 - None of the test results included in this report have been recovery corrected

Test Report 229885 Cover Sheet

Newmarket - Covarity - Dribbs

Registered in England & Walan - Registration Numus: 6511736 - Registered Caliba, 11 Depot Result Neumarket Calibak CBS 0AL

Ground Engineering Limited	Vewark Road	^D eterborough
Ground E	Newark F	Peterbord

PE1 5UA

FAO James Davies

LABORATORY TEST REPORT

Results of analysis of 12 samples received 13 May 2013

C12974 - Greenwood Place, London NW5

Report Date

21 May 2013

100

Login Batch No							229885		
Chemiesi LIMS ID				Ai67544	A167545	AI67546	A107547	AI6/548	A167549
Sample ID				BH1	BH1	BH1	BH2	BH2	DCS1
Sample No				2	r0	4	7	ъ	2
Sampling Date				9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013
Depth				0.50m	1.35m	1.80m	1.00m	2.50m	0.90m
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SOP↓ Determinand↓	CAS Not	Units↓							
			Σ	8.3	7.5	7.7	8.3	8.0	8.4
2300 Cyanide (total)	57125	mg kg-1	X	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2325 Sulfide (Easily Liberatable)	18496258	mg kg-1	Σ	4.8	1.9	1.7	1.8	5.7	8.0
2625 Fraction of Organic Carbon			Σ	0.019		address - c			
Total Organic Carbon		%	Σ	1.9	1.3			1.6	
2430 Sulfate (total) as SO4	14808798	%	×	0.33	0.22	0.14	0,10	0.11	0.12
2450 Arsenic	7440382	mg kg-1	Σ	24	12	14	17	15	15
Cadmium	7440439	mg kg-1	Σ	0.92	0.16	<0.10	<0.10	0.11	<0.10
Chromium	7440473	mg kg-1	Σ	30	19	29	14	25	14
Copper	7440508	mg kg-1	Σ	140	24	12	55	23	47
Mercury	7439976	mg kg-1	Σ	12	0.56	0.11	1.1	0.25	0.87
Nickel	7440020	mg kg-1	M	38	14	19	17	19	13
Lead	7439921	mg kg-1	Σ	1400	170	49	510	85	430
Selenium	7782492	mg kg-'	Σ	0.82	0.70	0.71	0.44	0.79	0.81
	7440666	mg kg-1	Σ	330	71	53	56	50	75
2670 TPH >C6-C10	the Post entered in the	mg kg-1	z	۰ ۲	< ۲	< 1 <	< 1	× 1	, t
TPH >C10-C25		mg kg-1	z	24	22	<1	< 1	<1	v
TPH >C25-C40		mg kg-1	z	20	13	× +	۰ ۲	, t	v
		mg kg-1	¥	44	35	< 10	< 10	< 10	< 10 <
2675 TPH aliphatic >C5-C6		mg kg-1	z			< 0.1	2	2	2
TPH aliphatic >C6-C8		mg kg-1	z			< 0 1			
TPH aliphatic >C8-C10		mg kg-1	z			0 			
TPH aliphatic >C10-C12		mg kg-1	Σ						
TPH aliohatic >C12-C16		1 24 200	W			1			

All tests undertaken between 14/05/2013 and 21/05/2013 * Accreditation status

Column page 1 Report page 1 of 3 LIMS sample ID range Al67544 to Al67556

This report should be interpreted in conjuction with the notes on the accompanying cover page.

Ground Engineering Limited Newark Road Peterborough

PE1 5UA

FAO James Davies

LABORATORY TEST REPORT

Results of analysis of 12 samples received 13 May 2013 C12974 - Greenwood Place, London NW5

Date	
Report	

21 May 2013

Answer and the second state and the	Login Batch No			54			229	229885		
The function Desite Desite <thdesite< th=""> <thdesit< th=""> <thdesi< th=""><th>Grentest LIMS (D</th><th></th><th></th><th></th><th>AI67550</th><th>AI67552</th><th>1000</th><th></th><th>AIG7555</th><th>AI67556</th></thdesi<></thdesit<></thdesite<>	Grentest LIMS (D				AI67550	AI67552	1000		AIG7555	AI67556
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					DCS1	DCS2	DCS2A	DCS3	DCS4	DCS4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample No				ŋ	ო	ო	-		2
16 150n 100n 100n 100n 00n 00n 00n 2 Determinendi 5712 901 501 <	Sampling Date				9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013
$^{\rm M}$ Solit	Depth				1.50m	1.00m	1.00m	0.30m	0.40m	0.95m
J. Determinand. CAS No.1 Units. V. Determinand. CAS No.1 Units. M 8.2 8.4 11.2 9.9 Cyanide (teta) 57125 mg kg ¹ M -0.50 -0.50 -0.50 0.50 0.50 Sufflee (teta) 57125 mg kg ¹ M -0.50 -0.50 -0.50 0.50 0.50 Sufflee (teta) 57125 mg kg ¹ M -0.17 3.9 2.4 2.7 Sufflee (teta) as SO4 1480878 % M 0.17 0.14 0.18 1.4 Sufflee (teta) as SO4 1480878 % M 0.17 0.17 0.18 1.4 Sufflee (teta) as SO4 1480878 % M 0.17 0.14 0.18 1.4 Sufflee (teta) as SO4 148087 M -0.10 0.33 0.25 0.31 0.18 Sufflee (teta) as SO4 7440473 mg kg ² M -11 1.1 0.16 0.16 0.16	Matrix				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
pH M B.2 B.4 H.12 9.9 Sulfder (tabl) 57/25 mg kg ¹ M 3.0 7.7 3.9 2.4 2.7 Fraction of Organic Carbon 57/25 mg kg ¹ M 3.0 7.7 3.9 2.4 2.7 Fraction of Organic Carbon 8496.55 mg kg ¹ M 0.17 0.14 0.18 1.4 Sulfate (tabl) as SO4 14808798 % M 0.17 0.14 0.18 1.4 2.7 3.9 2.4 2.3 Sulfate (tabl) as SO4 14808798 % M 0.17 0.14 0.18 1.4 2.7 3.9 2.4 2.7 Areance 7.440439 mg kg ² M 0.17 0.14 0.18 3.0 2.7 3.0 2.6 0.18 0.18 0.18 2.4 2.7 3.0 2.6 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	SOP↓ Determinand↓	CAS Not	Units↓	•						
	2010 pH			Σ	8.2	8.4	8.4	11.2	6.6	8.2
Sulfde (Easly Liberatabe) 13 7.7 3.9 2.4 2.7 Fraction of Organic Carbon % M 0.17 0.14 0.18 2.4 2.7 Total Organic Carbon % M 0.13 0.17 0.14 0.18 1.4 Sulfate (total) as SO4 744035 mg kg ¹ M 1.1 2.2 2.0 3.0 2.3 Arsenic Zartons 744035 mg kg ¹ M 0.17 0.14 0.18 3.0 2.3 0.17 0.18 3.0 2.3 0.18 3.0 2.7 1.8 1.4 0.18 3.0 2.7 1.8 3.0 2.7 1.8 0.18 </td <td>2300 Cyanide (total)</td> <td>57125</td> <td>mg kg-1</td> <td>Σ</td> <td><0.50</td> <td><0.50</td> <td><0.50</td> <td><0.50</td> <td>0.50</td> <td><0.50</td>	2300 Cyanide (total)	57125	mg kg-1	Σ	<0.50	<0.50	<0.50	<0.50	0.50	<0.50
Fraction of Organic Carbon M 0.017 0.017 Sulfate (data) as SO4 % M 0.13 0.14 0.18 1.4 Sulfate (data) as SO4 14308798 % M 0.13 0.17 0.14 0.18 1.4 Sulfate (data) as SO4 740382 mgkg ¹ M 11 22 20 30 23 Arenic 740438 mgkg ² M 11 22 20 30 27 18 Arenic 7440508 mgkg ² M 18 36 50 57 18 18 Copper 7440508 mgkg ² M 0.27 11 1.1 0.74 12 Copper 7440508 mgkg ² M 0.25 0.34 0.74 12 Mecuny 7440508 mgkg ² M 0.25 0.30 0.39 0.74 12 Mecuny 743050 mgkg ² M 0.45 0.34 0.74 <td< td=""><td></td><td>18496258</td><td>mg kg-1</td><td>Σ</td><td>13</td><td>7.7</td><td>3.9</td><td>2.4</td><td>2.7</td><td>0</td></td<>		18496258	mg kg-1	Σ	13	7.7	3.9	2.4	2.7	0
Total Organic Carbon $\%$ M Total Organic Carbon $\%$ M 0.17 0.14 0.18 14 Sulfate (total) as SO4 14803798 $\%$ M 0.17 0.14 0.18 14 Carbinin 7440439 mg/gr M -0.10 0.33 0.25 0.31 0.3 Carbinin 7440439 mg/gr M -14 22 20 30 23 Chromium 7440439 mg/gr M -11 22 20 30 27 18 Chromium 744056 mg/gr M 14 49 50 37 18 17 Chromium 744056 mg/gr M 16 34 31 26 17 13 27 18 Mercury 744056 mg/gr M 16 34 31 26 17 17 17 13 26 15 18 16 16 16 16				Σ		0.017			1	2
Sulfate (total) as SO4 14808798 % M 0.13 0.17 0.14 0.18 14 Arsenic Zadmium 740382 mg kg ⁻¹ M 0.13 0.17 0.14 0.18 13 0.3 0.18 14 Arsenic Zadmium 740382 mg kg ⁻¹ M -0.10 0.33 0.25 0.31 0.18 23 23 27 18 0.18 14 12 22 20 30 27 18 0.18 <			%	Σ	1					
Arsenic 740382 mg kg ¹ M 11 22 20 30 23 Cadmium 740439 mg kg ¹ M 11 22 20 30 27 18 Cadmium 7440473 mg kg ¹ M 18 36 30 27 18 Copper 744057 mg kg ¹ M 18 36 30 27 18 Mercury 744057 mg kg ¹ M 16 34 31 26 0.3 0.18 17 Nickei 7439976 mg kg ¹ M 16 34 31 26 17 Nickei 7439921 mg kg ¹ M 0.25 0.30 0.39 510 560 Selenim 743067 mg kg ² M 0.45 0.30 0.30 520 570 550 510 560 Zinc 740666 mg kg ² N ×1 ×1 ×1 ×1 ×1 <td></td> <td>14808798</td> <td>%</td> <td>M</td> <td>0.13</td> <td>0.17</td> <td>0.14</td> <td>0.18</td> <td>14</td> <td>0.23</td>		14808798	%	M	0.13	0.17	0.14	0.18	14	0.23
Cadmium 740439 mg kg ⁻¹ M <0.10 0.33 0.25 0.31 0.18 Chromium 740638 mg kg ⁻¹ M 18 36 30 27 18 Chromium 740638 mg kg ⁻¹ M 18 36 30 27 18 Chromium 7440508 mg kg ⁻¹ M 14 49 50 35 61 Mercury 743057 mg kg ⁻¹ M 16 34 31 26 17 Nick 7439921 mg kg ⁻¹ M 16 34 31 26 19 Lead 7439921 mg kg ⁻¹ M 34 250 510 500 550 510 560 560 27 19 Selenium 7439821 mg kg ⁻¹ M 34 250 170 130 16 170 170 130 150 Zinc 7440566 mg kg ⁻¹ N 34		7440382	mg kg-1	W	1	22	20	30	23	28.0
Chromium 7440473 mg kg ¹ M 18 36 30 27 18 Copper 7440508 mg kg ¹ M 18 36 30 27 18 Copper 7440508 mg kg ² M 14 49 50 35 61 Mercury 7430976 mg kg ² M 0.27 1.1 1.1 0.74 1.2 Nikel 7439976 mg kg ² M 0.27 1.1 1.1 0.74 1.2 Nikel 7439976 mg kg ² M 0.45 0.30 530 560 510 560 Selenium 7430656 mg kg ² M 0.45 0.30 0.39 <0.20 0.36 Zinc 7182492 mg kg ² M 0.45 0.30 0.39 <0.20 560 Zinc 7182492 mg kg ² M 0.45 0.30 0.39 <0.20 0.20 0.26 Zinc	Cadmium	7440439	mg kg-1	¥	<0.10	0.33	0.25	0.31	0.18	0.87
Copper7440508 $mg kg^1$ M1449503561Mercury743976 $mg kg^1$ M1449503561Nickel7439276 $mg kg^1$ M0.271.11.10.741.2Nickel7430921 $mg kg^1$ M1634312619Lead7430921 $mg kg^1$ M63250550510560Selenium743026 $mg kg^1$ M0.450.300.39<0.20	Chromium	7440473	mg kg-1	Σ	18	36	30	27	<u></u>	10.0
Mercury 7439976 mg kg ⁻¹ M 0.27 1.1 1.1 0.74 1.2 Nickel 7440020 mg kg ⁻¹ M 16 34 31 26 19 Lead 7440020 mg kg ⁻¹ M 53 2500 550 510 560 Selenium 7782492 mg kg ⁻¹ M 0.45 0.30 0.39 <0.20	Copper	7440508	mg kg-1	Σ	4	49	20	32	61	170
Nickel 7440020 mg kg ⁻¹ M 16 34 31 26 19 Lead 7439921 mg kg ⁻¹ M 53 2500 550 510 560 Selenium 7782492 mg kg ⁻¹ M 0.45 0.30 0.39 <0.20	Mercury	7439976	mg kg-1	Σ	0.27	4- 4-	, ,	0.74	12	1 2
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Nicke	7440020	mg kg-1	Σ	16	34	31	26	ē	10
Selenium 7782492 mg kg-1 M 0.45 0.30 0.39 <0.20 0.26 Zinc 7440666 mg kg-1 M 34 250 170 130 150 TPH > C6-C10 7440666 mg kg-1 N <1	Lead	7439921	mg kg-1	Σ	53	2500	550	510	560	022
ZincZinc7440666mg kg-1M 34 250 170 130 150 TPH > C6-C10mg kg-1N < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 $<$	Selenium	7782492	mg kg-1	Μ	0.45	0.30	0.39	<0.20	0.26	0.72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zinc	7440666	mg kg-1	Σ	8	250	170	130	150	460
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2670 TPH >C6-C10		mg kg-1	z	, tv	, v	, v	v	: -	t v
TPH >C25-C40 mg kg-1 N <1	TPH >C10-C25		mg kg-1	z	<u>۲</u>	<1	<1	9.3	< ,	44
Total Petroleum Hydrocarbons mg kg-² M < 10 < 10 14 < 10 TPH aliphatic >C5-C6 mg kg-² N < 0.1	TPH >C25-C40		mg kg-1	z	ţ	× +	v	4.3	, t	- -
TPH allphatic > C5-C6 mg kg ⁻¹ N < 0.1 < 0.1 TPH allphatic > C5-C6 mg kg ⁻¹ N < 0.1	-		mg kg-1	Σ	< 10	< 10	< 10	14	< 10 <	10
mg kg-1 N < 0.1 < 0.1 mg kg-1 N < 0.1 < 0.1 mg kg-1 M < 1 < 0.1 mg kg-1 M < 1 < 1	•		mg kg-1	z	< 0.1	< 0.1	2	-	2	
mg kg-' N < 0.1 < 0.1 mg kg-' M <1 < 1 mg kg-' M <1 < 1	TPH aliphatic >C6-C8		mg kg-1	z	< 0.1	< 0.1				
mg kg-1 M <1 <1 mg kg-1 M <1 <1	TPH aliphatic >C8-C10		mg kg-1	z	< 0.1	< 0.1				
mg kg-1 M <1	TPH aliphatic >C10-C12		mg kg-	Σ	v					
	TPH aliphatic >C12-C16		mg kg-1	Σ	v	v				

LIMS sample ID range AI67544 to AI67556 Report page 1 of 3 Column page 2

This report should be interpreted in conjuction with the notes on the accompanying cover page.

* Accreditation status

Deterborolish									「こう」の「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
			Results	Results of analysis of 12 samples	12 sampies			I DE DÉSA EN	ertisoy to stolmer results
PE1 5UA			E	received 13 May 2013	2013			Ŗ	Report Date
FAO James Davies	a substantia de la composición de la co	C1:	C12974 - G	reenwood Plac	- Greenwood Place, London NW5	4 46 ji		21	21 May 2013
						229885			
				AI67544 BH1	AI67545 RH1	A167546	A167547	A167548	AI67549
				2	3	4	2 2	2 5	2
				9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013
				0.50m	1.35m	1.80m	1.00m	2.50m	0.90m
				SOL	acit	SOIL	SOL	SUIL	SUL
2675 TPH aliphatic >C16-C21		mg kg-1	Σ			, L			
TPH aliphatic >C21-C35		mg kg-1	Σ			v			
TPH aliphatic >C35-C44		mg kg-1	z			۰ ۲			
TPH aromatic >C5-C7		mg kg-1	z			< 0.1			
TPH aromatic >C7-C8		mg kg-	z	h 11 - Fern - SA		< 0.1			
TPH aromatic >C8-C10		mg kg-1	z			< 0.1			
TPH aromatic >C10-C12		mg kg-'	Σ			۲, ۲			
TPH aromatic >C12-C16		mg kg-'	≥ :			۲ ۲			
TPH aromatic >C16-C21		mg kg-	Σ:			v			
TEH aromatic >C21-C35 TPH aromatic >C35-C44		mg kg-'	ΣZ			v v			
Total Petroleum Hydrocarbons		mg kg-1	z			 10 10 			
2700 Naphthalene	91203	mg kg-1	z	0.15	< 0.010	< 0.010	0.16	0.030	0.099
Acenaphthylene	208968	mg kg-1	Z	0.23	0.034	< 0.010	0.25	0.16	0.057
Acenaphthene	83329	mg kg-1	z	0.25	0.075	< 0.010	0.63	0.15	0.18
Fluorene	86737	mg kg-	z	0.13	0.031	< 0.010	0.13	0.089	0.11
Phenanthrene	85018	mg kg-1	z	1.1	0.21	0.061	0.31	0.22	1.0
Anthracene	120127	mg kg-1	z	0.57	0.12	0.035	0.18	0.20	0.18
Fluoranthene	206440	mg kg-1	z	2.3	0.46	0.12	0.29	0.084	0.95
Pyrene	129000	mg kg-1	z	2.0	0.38	0.11	0.44	0.12	0.67
Senzo[a]anthracene	56553	mg kg-1	z	۲ 4	0.23	0.072	0.26	< 0.010	0.34
Chrysene	218019	mg kg-1	z	1.7	0.28	0.084	0.34	< 0.010	0.39
Benzo[b]fluoranthene	205992	mg kg-1	z	2.0	0.39	0.17	0.35	< 0.010	0.38
Benzo[k]fluoranthene	207089	mg kg-1	z	1.2	0.24	0.16	0.31	< 0.010	0.28
Benzo[a]pyrene	50328	mg kg-1	z	1.8	0.34	0.083	0.24	< 0.010	0.31

LIMS sample ID range AI67544 to AI67556 Report page 2 of 3 Column page 1

All tests undertaken between 14/05/2013 and 21/05/2013 * Accreditation status

This report should be interpreted in conjuction with the notes on the accompanying cover page.

Peterborough Peterborough		LABC	Resul	CATORY TEST RI Results of analysis of 12 samples received 13 May 2013	LABORATORY TEST REPORT Results of analysis of 12 samples received 13 May 2013	PORT		O ²	Chemical to deform the state of the second s
FAO James Davies			C12974 -	Greenwood Pl	- Greenwood Place, London NW5	W5			21 May 2013
							229885		
				DCS1	DCS2	DCS2A	AI67554 DCS3	DCS4	AI67556 DCS4
				5	ო	ю	4	£	2
				9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013
				NOS.	1.00m SOIL	1.00m SOIL	0.30m SOIL	0.40m SOIL	0.95m SOIL
2675 TPH aliphatic >C16-C21		mg kg-1	Σ	۲ ۲	, v				, ,
TPH aliphatic >C21-C35		mg kg-1	Σ	v					v
TPH aliphatic >C35-C44		mg kg-1	z	 1 	ŕ				, † , , , , , , , , , , , , , , , , , ,
TPH aromatic >C5-C7		mg kg-1	z	< 0.1	< 0.1	la una suna s			< 0.1
TPH aromatic >C7-C8		mg kg-1	z	< 0.1	< 0.1				< 0.1
TPH aromatic >C8-C10		mg kg-1	z	< 0.1	< 0.1				< 0.1
TPH aromatic >C10-C12		mg kg-1	۲	۰ ۲	× 1				۰ ۲
TPH aromatic >C12-C16		mg kg-1	Σ	۰ ۲	۰ ۲				~
TPH aromatic >C16-C21		mg kg-1	Σ	۰ ۲	ř.				5.2
TPH aromatic >C21-C35		mg kg-'	Σ :	v V	v V				6.9
		mg kg-'	z	r : v	, 1 ,				× 1
2700 Nontheland	04000	mg kg-'	zz	< 10	< 10				12
	208068	mg kg-'	zz	0.042	0.11	0.076	< 0.010	0.098	0.14
Acenaphthene	83329	ma ka-1	z z	0.051	0.25	0.15	0.057	0.17	11.0 at 0
Fluorene	86737	mg kg-1	z	0.020	0.12	0.055	0.015	0.13	0.051
Phenanthrene	85018	mg kg-1	z	0.16	0.32	0.16	0.30	1.0	0.43
Anthracene	120127	mg kg-1	z	0.070	0.27	0.085	0.13	0.51	0.22
Fluoranthene	206440	mg kg-1	z	0.15	0.61	0.34	0.78	1.6	0.55
Pyrene	129000	mg kg-1	z	0.11	0.45	0.25	0.67	1.2	0.45
Benzo[a]anthracene	56553	mg kg-1	z	0.070	0.30	0.14	0.49	0.83	0.29
Chrysene	218019	mg kg-1	z	0.076	0.44	0.22	0.66	1.0	0.41
Benzo[b]fluoranthene	205992	mg kg-1	z	< 0.010	0.79	< 0.010	0.69	0.87	0.44
Benzo[k]fluoranthene	207089	mg kg-1	z	< 0.010	0.45	< 0.010	0.42	0.72	0.30
Benzolalpyrene	50328	mg kg-1	z	< 0.010	0.53	< 0.010	0.51	0.53	0.42

Report page 2 of 3 LIMS sample ID range AI67546 to AI67556 Column page 2

This report should be Interpreted in conjuction with the notes on the accompanying cover page.

* Accreditation status

Ground Engineering Limited Newark Road Peterborough		LABORA		ORY TE	TORY TEST REPORT	ORT			Mitest may be deversed
PE1 5UA			Results re	ults of analysis of 12 samples received 13 May 2013	12 samples r 2013			Ŗ	Report Date
FAO James Davies			C12974 - Gr	reenwood Plac	Greenwood Place, London NW5	("any later")		21	21 May 2013
						229	229885		
				AI67544	AI67545	AI67546	AI67547	AI67548	A167543
				BH1	BH1	BH1	BH2	BH2	DCS1
				2	ŝ	4	2	5	0
				9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013
				0.50m	1.35m	1.80m	1.00m	2.50m	0.90m
				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2700 Dibenzo[a,h]anthracene	53703	mg kg-1	z	0.38	0.047	< 0.010	0.040	< 0.010	0.043
Indeno[1,2,3-cd]pyrene	193395	mg kg-1	z	1.6	0.21	< 0.010	0.13	< 0.010	0.31
Benzo[g,h,i]perylene	191242	mg kg-1	z	1.5	0.26	< 0.010	0.10	< 0.010	0.14
Total (of 16) PAHs		mg kg-1	z	18	3.3	0.00	4.2	1.1	5.4
Benzo[j]fluoranthene low level	205823	mg kg-1	z	1.1	0.21	0.11	0.22	<0.01	0.22
2920 Phenols (total)		mg kg-1	z	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3

All tests undertaken between 14/05/2013 and 21/05/2013 * Accreditation status

Column page 1 Report page 3 of 3 LIMS sample ID range Al67544 to Al67556

This report should be interpreted in conjuction with the notes on the accompanying cover page.

Ground Engineering Limited Newark Road		LABORA		ORY T	TORY TEST REPORT	PORT			emtest
Peterborough			Recult	s of analysis /	ults of analysis of 10 samulas			The right	chemistry to deliver results
			Incoli	a ur arraiyaia u	or it samples				
PE1 5UA				received 13 May 2013	ay 2013				Report Date
FAO James Davies	a bandar ser an	C	C12974 - (Greenwood Pl	- Greenwood Place, London NW5	45			21 May 2013
						22	229885		
				AI67550	AI67552	AI67553	AI67554	A18/666	AIS7668
				DCS1	DCS2	DCS2A	DCS3	DCS4	DCS4
				5	n	б	÷	۴	73
				9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013	9/5/2013
				1.50m	1.00m	1.00m	0.30m	0.40m	0.95m
				SOIL	SOIL	NOS	SOIL	SOIL	SOIL
2700 Dibenzo[a,h]anthracene	53703	mg kg-1	z	< 0.010	< 0.010	< 0.010	0.11	0.11	0.033
Indeno[1,2,3-cd]pyrene	193395	mg kg-1	z	< 0.010	< 0.010	< 0.010	0.32	0.43	0.22
Benzo[g,h,i]perylene	191242	mg kg-1	z	< 0.010	< 0.010	< 0.010	0.28	0.45	0.25
Total (of 16) PAHs		mg kg-1	z	0.77	4.8	1.6	5.5	9.8	4.6
Benzo[]/fluoranthene tow level	205823	mg kg-1	z	<0.01	0.41	<0.01	0.37	0.53	0.25
2920 Phenols (total)		mg kg-1	z	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3

Ground Engineering Limited

LIMS sample ID range Al67544 to Al67556 Report page 3 of 3 Column page 2

This report should be interpreted in conjuction with the notes on the accompanying cover page.

* Accreditation status

Depot Road Newmarket CB8 0AL Tel: 01633 606070

Ground Engineering Limited Newark Road Peterborough

PE1 5UA

FAO James Davies 21 May 2013

Dear James Davies

Test Report Number Your Project Reference

C12974 - Greenwood Place, London NW5

Please find enclosed the results of analysis for the samples received 13 May 2013.

229885

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

Darrell Hall, Director

Notes to accompany report:

- The in-house procedure is employed to identify materials and fibres in soils
- The sample is examined by stereo-binocular and polarised light microscopy
- Sample size is reduced by coning and quartering to obtain a representative sub-sample if necessary
- The bulk identification is in accordance with the requirements of the analyst guide (HSG 248)
- Samples associated with asbestos are retained for six months
- The results relate only to the items tested as supplied by the client
- Comments or interpretations are beyond the scope of UKAS accreditation

Test Report 229885 Cover Sheet

Lewmarket - Coventry - Dublin

Ringistered in England & Wates - Registration Machael 651 739 - Registered Office: 11 Denni Road Llawa miter Settists CBS CH.

PE1 5UA

FAO James Davies

LABORATORY TEST REPORT Asbestos in Soils

MChemtest

Results of analysis of 11 samples received 13 May 2013 C12974 - Greenwood Place, London NW5

Report Date 21 May 2013

Login Batch No: 229885

Qualitative Results

				S	OP 2190
				ACM Type	Asbestos Identification
Chemtest ID	Sample ID	Sample Desc	Depth (m)		
A167544	BH1	2	0.50	Free Fibres	Amosite
AI67545	BH1	3	1.35	-	No Asbestos Detected
AI67547	BH2	2	1.00		No Asbestos Detected
A167548	BH2	5	2.50	-	No Asbestos Detected
A(67549	DCS1	2	0.90	-	No Asbestos Detected
AI67550	DCS1	5	1.50	2	No Asbestos Detected
AI67551	DCS1	6	2.30	2	No Asbestos Detected
A167552	DCS2	3	1.00	8	No Asbestos Detected
AI67553	DCS2A	3	1.00	*	No Asbestos Detected
A167554	DCS3	1	0.30	-	No Asbestos Detected
AI67555	DCS4	1	0.40	-	No Asbestos Detected

The detection limit for this method is 0.001%

Signed

19

Steve McGrath Asbestos Analyst

Depot Road Newmarket CB3 0AL Tel: 01638 606070

Ground Engineering Limited Newark Road Peterborough

PE1 5UA

FAO James Davies 23 May 2013

Dear James Davies

Test Report Number230134Your Project ReferenceC12974 Greenwood Place, London NW5

Please find enclosed the results of analysis for the samples received 15 May 2013.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

Phil Hellier, Director

Notes to accompany report:

- The sign < means 'less than'
- Tests marked 'U' hold UKAS accreditation
- Tests marked 'M' hold MCertS (and UKAS) accreditation
- Tests marked 'N' do not currently hold UKAS accreditation
- Tests marked 'S' were subcontracted to an approved laboratory
- n/e means 'not evaluated'
- i/s means 'insufficient sample'
 u/s means 'unsuitable sample'
- Comments or interpretations are beyond the scope of UKAS accreditation
- The results relate only to the items tested
- All results are expressed on a dry weight basis
- The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, phenols
 - For all other tests the samples were dried at < 37°C prior to analysis
- Uncertainties of measurement for the determinands tested are available upon request
 - None of the test results included in this report have been recovery corrected

Test Report 230134 Cover Sheet

Newnshiet • Dovini y • Dubin

Register of the England & Waldon - Registration Nucliner 6511735 - Registered Chicos: 11 Denot Room Newmarket Soft R 038 dat

Ground Engineering Limited Newark Road Peterborough		LABO	RAT	LABORATORY TEST REPORT	M Chemtest The spin construction to deliver results
PE1 5UA			I	results of analysis of 1 sample received 15 May 2013	Report Date
FAO James Davies	ی در این اور ای این اور این اور	0	312974 G	C12974 Greenwood Place, London NW5	23 May 2013
Login Batch No Sample ID Sample No Sampling Date Depth			_	230134 A464906 BH1 W1 13/5/2013 3.75m	
SOP↓ Determinand↓	CAS Not	Units↓		WAIER	
1010 pH	H		5	7.0	
	7704349	r-l gm	z	1100	
1300 Cyanide (total)	57125	mg H1	∍	< 0.05	
Cyanide (free) Thiocurate	57125	1	⊃ :	< 0.05	
1225 Sulfide	302040	ч I DE I	- -	6.0 ×	
	14808798		> =	050.US 2400	
	7440382) D	4.6	
Boron	7440428	6rl	5	360	
Cadmium	7440439	r-i Ĝri	∍	<0.080	
Chromium	7440473	r- Brl	∍	6.5	
Copper	7440508	г-1 бл	D	7.9	
Mercury	7439976	r-1 6ri	5	<0.50	
Nickel	7440020	µg I-1) N		
Lead	7439921	6n	; ;	<1.0	
Selenium	1/82492	6rl	. :	17	
ZINC 1400 Chromium (hevevelent)	1440000	1 Bri	> :	120	
	10040288	- 10 11 11	5 z		
-		- <u>-</u>	zz	0.1	
TPH aliphatic >C8-C10			z	< 0.1	
TPH aliphatic >C10-C12		-1 6rl	z	< 0.1	
TPH aliphatic >C12-C16		1-1 Bri	z	< 0.1	
TPH aliphatic >C16-C21		нg I-1	z	< 0.1	
¹ The sample container/fill level was not app	ropriate for the specified a	malvsis - these re	esults mav	¹ The sample container/fill level was not appropriate for the specified analysis - these results may be compromised. The accreditation for these results remaine unaffected	e interfereted
	-		Î		ם הומוכלופה.
All tests undertaken between 16/05/2013 and 23/05/2013	05/2013				Column page 1
* Accreditation status					Report page 1 of 4
i nis report should be interpreted in conjuction with the notes on the accompanying cover page.	with the notes on the acco	mpanying cover p	age.		LIMS sample ID range AI68908 to AI68908

Little Control Control Control Control Control Control Control Control Little Control Contro Contro Contro Con	Ground Engineering Limited Newark Road Peterborough		LABO	RAT	LABORATORY TEST REPORT Results of analysis of 1 sample		Chemtest The new domisity to deliver reacts
June Date Cash Landon Mat All all balanci - CSL CSS Balanci - SSL CSS CSS CSS CSS CSS CSS CSS CSS CSS	PE1 5UA			-	sceived 15 May 2013	-	Report Date
23034 23034 Find With With With With With With With With		المورجية المواقعة ال		C12974 G	eenwood Place, London NW5	N	23 May 2013
191 N <0.1 161 U <1.0 75013 191 U <1.0 75603 191 U <1.0 7584 191 U <1.0 75834 191 U <1.0 75834 191 U <1.0 75834 191					230134 Al68908 BH1 W1 13/5/2013 3.75m WATER		
0.1 N 0.1 0.9 0.1 0.1 0.9 0.1 0.1 757.8 0.9 0.1 748.9 0.9 0.1 748.9 0.9 0.1 748.9 0.9 0.1 748.9 0.1 0.1 758.4 0.1 0.1 758.9 0.1 0.1 759.2			r-1 Bri	zz	< 0.1		
10^{1} N < 0.1 75718 10^{1} U $< 1.0^{1}$ 75718 10^{1} U $< 1.0^{1}$ 75033 10^{1} U $< 1.0^{1}$ 75034 10^{1} U $< 1.0^{1}$ 75032 10^{1} U $< 1.0^{1}$ 75033 10^{1} U $< 1.0^{1}$ 75034 10^{1} U $< 1.0^{1}$ 75034 10^{1}	TPH aromatic >C5-C7			zz	 0.1 0.1 		
High N < 0.1 High N < 0.1	TPH aromatic >C7-C8		r- 6rl	z	< 0.1		
191^{2} N < 0.1	TPH aromatic >C8-C10		н <u>д</u> Н1	z	< 0.1		
10^{1} N $2.0.1$ 10^{1} N < 0.1 10^{1} N < 5 10^{1} N < 5 10^{1} N $< 1.0^{1}$ 75718 10^{1} $< 2.0^{1}$ 75718 10^{1} $< -1.0^{1}$ 75718 10^{1} -1.0^{1} 75014 10^{1} -1.0^{1} 7503 10^{1} -1.0^{1} 7503 10^{1} -1.0^{1} 7504 10^{1} -1.0^{1} 7534 10^{1} -1.0^{1} 7533 10^{1} -1.0^{1} 7534 10^{1} -1.0^{1} 7533 10^{1} -1.0^{1} 7534 10^{1} -1.0^{1} 7533 10^{1} -1.0^{1}	TPH aromatic >C10-C12 TPH aromatic >C12-C16		61	zz	< 0.1		
191^{+} N < 0.1 191^{+} N < 0.2 191^{+} N < 0.2 191^{+} U < 0.2 191^{+} U < 0.2 175713 191^{+} U $< 1.0^{+}$ 75014 191^{+} U $< 1.0^{+}$ 75033 191^{+} U $< 2.0^{+}$ 75033 191^{+} U $< 2.0^{+}$ 75033 191^{+} U $< 1.0^{+}$ 75344 191^{+} U $< 1.0^{+}$ 75343 191^{+} <td></td> <td></td> <td>- <u>-</u> -</td> <td>zz</td> <td>0.11.0 </td> <td></td> <td></td>			- <u>-</u> -	zz	0.11.0 		
$\mu g l^2$ N < 0.1 $\mu g l^2$ N < 5	TPH aromatic >C21-C35		6rl	z	< 0.1		
$\mu g l^2$ N < 10 $\mu g l^2$ N < 5	TPH aromatic >C35-C44		r-l gul	z	< 0.1		
Ugl N < 5 Ugl N < 5	Total Petroleum Hydrocarbons		Bri	z	 < 10 _ 		
High U -2 1634044 µg ² U <1.0 ¹ 75718 µg ² U <1.0 ¹ 75718 µg ² U <1.0 ¹ 75014 µg ² U <1.0 ¹ 75013 µg ² U <1.0 ¹ 75033 µg ² U <1.0 ¹ 75694 µg ² U <1.0 ¹ 75692 µg ² U <1.0 ¹ 75354 µg ² U <1.0 ¹ 75353 µg ² U <1.0 ¹ 75354 µg ² U <1.0 ¹ 75343 µg ² U <1.0 ¹ 760 the specified analysis - these results may be compromised. The accreditation for these results remains unaffected.	Total Aromatic Hydrocarbons		61	zz	ο v v		
1634044 µg !- N <1.01 75718 µg !- U <1.01	_		6ri	Э	, ç		
75718 $µg l^2$ U $<1.0^4$ 74873 $µg l^2$ U $<1.0^4$ 75014 $µg l^2$ U $<1.0^4$ 7503 $µg l^2$ U $<2.0^4$ 75694 $µg l^2$ U $<2.0^4$ 75354 $µg l^2$ U $<1.0^4$ 75323 $µg l^2$ U $<1.0^4$ 75343 $µg l^2$ U $<1.0^4$ 10^4 I I		1634044	г-1 бr1	z	<1.01		
$(48/3)$ 109^{12} 0 $<1.0^{1}$ 75014 109^{12} 0 $<1.0^{1}$ 7503 109^{12} 0 $<2.0^{1}$ 7503 109^{12} 0 $<2.0^{1}$ 7503 109^{12} 0 $<2.0^{1}$ 75032 109^{12} 0 $<1.0^{1}$ 75032 109^{12} 0 $<1.0^{1}$ 75343 109^{12} 0 $<1.0^{1}$ 75343 109^{12} 0 $<1.0^{1}$ 75343 109^{12} 0 $<1.0^{1}$ 75343 109^{12} 0 $<1.0^{1}$ 75343 109^{12} 0 $<1.0^{1}$ 75 10^{1} 0^{-1} 0^{-1} 75 10^{1} 0^{-1} 0^{-1} 75 10^{1} 0^{-1} 0^{-1} 75 10^{1} 0^{-1} 0^{-1} 75343 109^{12} 0^{-1} 0^{-1} 10^{1} 0^{-1} 0^{-1} 0^{-1} <	Dichlorodifluoromethane	75718	r-l 6rl	⊃ :	<1.01		
for the specified analysis - these results may be compromised. The accreditation for these results may be compromised. The accreditation for these results remains unaffected.		74873		⇒ :	<1.01		
T5003 $\mu g = 1$ U $< 2.0^{\circ}$ T5694 $\mu g = 1$ U $< 1.0^{\circ}$ T5354 $\mu g = 1$ U $< 1.0^{\circ}$ T5353 $\mu g = 1$ U $< 1.0^{\circ}$ T5605 $\mu g = 1$ U $< 1.0^{\circ}$ T5343 $\mu g = 1^{\circ}$ U $< 1.0^{\circ}$	Bromomethane	74839	- 64		- 0.1>		
T5694 $\mu g l^{-1}$ U <1.01 75354 $\mu g l^{-1}$ U <1.01 75352 $\mu g l^{-1}$ N $\mathbf{n} e^{-1}$ 156605 $\mu g l^{-1}$ U <1.01 75343 $\mu g l^{-1}$ U <1.01 75343 $\mu g l^{-1}$ U <1.01 75343 $\mu g l^{-1}$ U <1.01	Chloroethane	75003	- 101) D	<201		
75354 $\mu g I^{-1} = U = <1.0^{4}$ 75092 $\mu g I^{-1} = U = <1.0^{4}$ 156605 $\mu g I^{-1} = U = <1.0^{4}$ 75343 $\mu g I^{-1} = U = <1.0^{4}$ for the specified analysis - these results may be compromised. The accreditation for these results remains unaffected.	Trichlorofluoromethane	75694	r-1 6rt	5	<1.01		
for the specified analysis - these results may be compromised. The accreditation for these results remains unaffected.	1,1-Dichloroethene	75354	r-l Brl	∍	<1.0 *		
for the specified analysis - these results may be compromised. The accreditation for these results remains unaffected	Dicritorometriane irans-1 2-Dichloroethene	/5092 156605	- Bri	z :	ne ¹		
for the specified analysis - these results may be compromised. The accreditation for these results remains unaffected	1,1-Dichloroethane	75343	г <u>г</u> - 64	> >	<1.0 1		
	¹ The sample container/fill level was not appropriat	e for the specified a	nalysis - these r	esults may t	e compromised. The accreditation for these res	sults remains unaffected.	
1. ja kunsuska di ja mandi makisa unikis kita matana an di -	All tests undertaken between 16/05/2013 and 23/05/201	3				Column page 1	
	* Accreditation status This remove should be intermeded in continuition with a					Report page 2 of 4	

FAO James Davies C12974 G	C12974 Greenwood Place, London NW5	23 May 2013
	230134 AI68608 BH1 W1 13/5/2013 3.75m WATER	
1760 cis-1,2-Dichloroethene 156592 µg L ¹ U	<1.01	
ane 74975	<1.01	
67663 µg I-1	<1.01	
e 71556 µg -'	<1.01	
	<1.01 2.01 2.01	
proethane 107062 µg I-1		
79016 µg l-1	<1.01	
ne 78875	<1.01	
74953	<101	
75274 µg I-1	<5.01	
)ichloropropene 10061015 µg I-1	<101	
108883 µg I-1	<1.01	
cene 10061026 μg Ι-1	<101	
	<101	
	5.0°	
eu	<2.0 -	
106934 ud l-1	<10 S	
108907 µg ⊢'	<101	
oroethane 630206 µg I-1	<2.01	
100414 µg l-1	<1.01	
in- & p-Xylene 1330207 µg -1 U	<1.01	

Ground Engineering Limited Newark Road Peterborough		LABO	RAT	LABORATORY TEST REPORT	Chemtest
PE1 5UA			Resul	Results of analysis of 1 sample received 15 May 2013	Report Date
FAO James Davies	a societaria	U	:12974 G	C12974 Greenwood Place, London NW5	23 May 2013
			-	230134 A1668908 BH1 W1 13/5/2013 3.75m WATER	
1760 Styrene Trikomomethano	100425 75252	6r	> =	<1.01	
Isopropylbenzene	98828	- <u>-</u> 67	ככ	<1.01	
Bromobenzene	108861	r-1 6rl	D	<1.01	
1,2,3-Trichloropropane	96184	r-1 6r1	∍	<501	
2 Chlorateli and	103651 05409	1-1 D1	> :	<1.01	
2-Crinorouterie 1,2,4-Trimethylbenzene	95636	6ri			
4-Chlorotoluene	106434	61) D	<1.01	
tert-Butylbenzene	98066	6rl	Э	<1.01	
1,3,5-Trimethylbenzene	108678	нд Н	⊃	<1.01	
sec-Butylbenzene	135988	нg -1	⊃ :	<1.01	
1,3-Dicritoropenzerie 4-Isopronyltoluene	1.67175	1 Bri	> =		
1,4-Dichlorobenzene	106467	- <u>-</u> - bri) - J	<101 <101	
n-Butylbenzene	104518	- Bri	D	<1.01	
1,2-Dichlorobenzene	95501	,-ı бл	D	<1.01	
1,2-Dibromo-3-chloropropane	96128	н <u>9</u> Г-1	∍	<50 1	
1,2,4-Trichlorobenzene Havachlorohitadiana	120821	6ri	⊃ :	<1.01	
1920 Phenols (total)	60010	-1 6m) z	<1.0 *< 0.03	

Depot Road Newmarket CB8 0AL Tel: 01038 606070

Ground Engineering Limited Newark Road Peterborough

PE1 5UA

FAO James Davies 20 June 2013

Dear James Davies

Test Report Number232404Your Project ReferenceC12974 - Greenwood Place, London NW5

Please find enclosed the results of analysis for the samples received 14 June 2013.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

Darrell Hall, Director

Notes to accompany report:

- The sign < means 'less than'
- Tests marked 'U' hold UKAS accreditation
- Tests marked 'M' hold MCertS (and UKAS) accreditation
- Tests marked 'N' do not currently hold UKAS accreditation
- Tests marked 'S' were subcontracted to an approved laboratory
- n/e means 'not evaluated'
- i/s means 'insufficient sample'
- u's means 'unsuitable sample'
- Comments or interpretations are beyond the scope of UKAS accreditation
- The results relate only to the items tested
- All results are expressed on a dry weight basis
- The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, phenols
- For all other tests the samples were dried at < 37°C prior to analysis
- Uncertainties of measurement for the determinands tested are available upon request
 - None of the test results included in this report have been recovery corrected

Test Report 232404 Cover Sheet

Newmonite' + Coventry + Dublin

Registered in England & Wales - Registration Mindea 6511736 - Registered Office: 11 Depot Road Now minket Suffelix CB8 0AL

Sround Engineering Limite √ewark Road ⋗eterborough
--

PE1 5UA

LABORATORY TEST REPORT

Results of analysis of 3 samples received 14 June 2013

Report Date

MChemtest

20 June 2013

Login Batch No Chemiest LIMS ID				4182511	232404 Aleofeto	06200)9
Sample ID				DCS1	BH1	BH2
Sample No				W1	W1	W1
Sampling Date				29/5/2013	3/6/2013	13/6/2013
Depth				1.21m	2.56m	1.53m
<i>watrix</i> SOP↓ Determinand↓	CAS Not	Units↓ *		WATER	WATER	WATER
	H		5	6.5	6.9	6.8
1300 Cyanide (total)	57125	ng l-¹	∍	< 0.05		< 0.05
Cyanide (free)	57125	ng l-1	Þ	< 0.05		< 0.05
	302045	mg I-1	5	< 0.5		< 0.5
	7704349	mg I-1	z	63	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80
1325 Sulfide	18496258	mg L'	∍	<0.050		<0.050
	14808798	r-l gm	∍	190	1700	240
1450 Arsenic	7440382	r-1 бл	∍	9.6		3.0
Boron	7440428	µg ⊢1	∍	320		210
Cadmium	7440439	н <u></u> 9-1	Э	<0.080		<0.080
Chromium	7440473	- Brl	Э	13		8.3
Copper	7440508	r-i Bri	∍	3.1		3.1
Mercury	7439976	нg I-1	∍	<0.50		<0.50
Nickel	7440020	hg -1	∍	25		13
Lead	7439921	hg H1	∍	<1.0		<1.0
Selenium	7782492	+1 DH	5	5.5		3.6
Zinc	7440666	r-l Bri	∍	17		` .
1490 Chromium (hexavalent)	18540299	¹⁻¹ Вн	D	<201		<20
1675 TPH aliphatic >C5-C6		r-l Brl	z	< 0.1		< 0.1
TPH aliphatic >C6-C8		hg H1	z	< 0.1		< 0.1
TPH aliphatic >C8-C10		r-1 Bri	z	< 0.1		< 0.1
TPH aliphatic >C10-C12		¹⁻¹ бл	z	< 0.1 1		< 0.1
TPH aliphatic >C12-C16		чд ⊢1	z	< 0.1 1		< 0.1
TPH aliphatic >C16-C21		r-l Brl	z	< 0.1		0.1

¹The stability time for this analyte has been exceeded - these results may be compromised. The accreditation for these results remains unaffected.

All tests undertaken between 14/06/2013 and 20/06/2013

* Accreditation status

This report should be interpreted in conjuction with the notes on the accompanying cover page.

LIMS sample ID range Al82511 to Al82513 Report page 1 of 4 Column page 1

PE1 5UA FAO James Davies			Result	Results of analysis of 3 samples	3 samoles		The right clientsity to deliver results
2			Ľ	received 14 June 2013	2013		Report Date
		CI	C12974 - G	sreenwood Plac	- Greenwood Place, London NW5		20 June 2013
			-	AI82511 DCS1 W1 29/5/2013 1.21m W4 TFF	232404 AI82512 BH1 W1 3/6/2013 2.56m WATED	A182613 BH2 W1 13/6/2013 1.53m	
1675 TPH aliphatic >C21-C35 TPU aliobatic >C35		- 6rl	z	< 0.1 1		< 0.1	
		6n	zz	0.1 -1 - 1 -		1.0 ×	
TPH aromatic >C7-C8			z	461			
TPH aromatic >C8-C10	10 m m		Z	8.51		< 0.1	
TPH aromatic >C10-C12		µg I-1	z	12 1		< 0.1	
TPH aromatic >C12-C16		µg -1	z	8.01		< 0.1	
TPH aromatic >C16-C21		г-) Бл	z	< 0.1 ¹		< 0.1	
TPU amountic >C21-C35		6rl	z	< 0.1		< 0.1	
Total Petroleum Hydrocarbons		6ri	zz	< 0.1 - 33 1		 0.1 0.1 	
Total Aliphatic Hydrocarbons			z	- 5 v		2 u / V	
Total Aromatic Hydrocarbons		-1 6r	z	33 1		מי כי עי	
1701 PAH (total EPA 16)		рц	∍	\$. 5	
1760 Methyl tert-butylether	1634044	µ9 -1	z	<1.01		<1.0	
Dichlorodifluoromethane	75718	r-1 6rt	Б	<pre>>>></pre>	main films	<1.0	
Chloromethane	74873	r- 8µ	D	<1.01		<1.0	
Vinyl chloride	75014	r- gu	∍	6100 1		<1.0	
Bromomethane	74839	[,] -{ бп	∍	<201		<20	
Chloroethane	75003	hg H	-	<2.01		<2.0	
1 1. Dichlorooffectane	75254	61	D 2	<1.01		<1.0	
Dichloromethane	75092		o z	. 0.81		0.15	
trans-1.2-Dichloroethene	156605	r-i pri	: =	1801		16 7 7	
1,1-Dichloroethane	75343	- 5 6 1		<1.0 1			
¹ The stability time for this analyte has been exceeded - these results may be compromised. The accreditation for these results remains unaffected.	these results m	ay be compromi	ised. The ε	accreditation for thes	se results remains ur	naffected.	

All tests undertaken between 14/06/2013 and 20/06/2013

* Accreditation status This report should be interpreted in conjuction with the notes on the accompanying cover page.

Column page 1 Report page 2 of 4 LIMS sample ID range Al82511 to Al82513

Ground Engineering Limited Newark Road Determented		LABO	RAT	ORY TE	LABORATORY TEST REPORT	ORT	M Chemtest
			Result	Results of analysis of 3 samples	i 3 samples		The right chemicary to deliver results
PE1 5UA			ž	received 14 June 2013	∍ 2013		Report Date
FAO James Davies	والمراجع والملتية والمراجع ومراجع والمراجع	0	C12974 - G	sreenwood Plac	- Greenwood Place, London NW5		20 June 2013
				A 10 MILES	232404		
				DCS1	RH1	AI82513 RH2	
				W1	W1	M1	
				29/5/2013	3/6/2013	13/6/2013	
				1.21m WATER	2.56m WATER	1.53m WATER	
1760 cis-1,2-Dichloroethene	156592	г- БП	Þ	140000 1		36	
Bromochloromethane	74975	6ri	Э	<1.01		<1.0	
Trichloromethane	67663	г-1 бri	Э	<1.01		<1.0	
1,1,1-Trichloroethane	71556	r- 6rl	Ċ	<1.01		<1.0	
Tetrachloromethane	56235	н <u>9</u> -	D	<1.01		<1.0	
1,1-Dichloropropene	563586	г-1 <u>р</u> ц	·⊃	<1.01		<1.0	
Benzene	71432	рд [-,	∍	8.11		<1.0	
1,2-Dichloroethane	107062	г- 6rl	∍	6.2 1		<2.0	
Trichloroethene	79016	hg -1	z	5600 1		59	
1,2-Dichloropropane	78875	н <u>9</u> 1-1	5	<1.01		<1.0	
Dibromomethane	74953	r-l 6rl	∍	<101		<10	
Bromodichloromethane	75274	r- 6rl	∍	<5.01		<5.0	
cis-1,3-Dichloropropene	10061015	⁺ - 6rl	∍	<101		<10	
Toluene	108883	н <u>9</u> Г-	∍	27 1		<1.0	
irans-1,3-Dichloropropene	10061026	6n	Ъ	<101		<10	
1,1,2-Trichloroethane	79005	µg I-1	D	<101		<10	
Tetrachloroethene	127184	r- 61	∍	120 1		3.4	
1,3-Dichloropropane	142289	r- 6rl	þ	<2.01		<2.0	
Dibromochloromethane	124481	нg I-1	Э	<101		<10	
1,2-Dibromoethane	106934	r-i gri	∍	<5.01		<5.0	
Chlorobenzene	108907	r-∣ Brl	þ	<1.01		<1.0	
1,1,2-Tetrachloroethane	630206	r₁ 6rl	∍	<2.01		<2.0	
Ethylbenzene	100414	hg [-1	D	<1.01		<1.0	
m- & p-Xylene	1330207	hg ⊢¹	Ð	3.4 1		<1.0	
o-Xylene	95476	г-) бл	Э.	1.91		<1.0	

¹The stability time for this analyte has been exceeded - these results may be compromised. The accreditation for these results remains unaffected.

All tests undertaken between 14/06/2013 and 20/06/2013

* Accreditation status

This report should be interpreted in conjuction with the notes on the accompanying cover page.

LIMS sample ID range AI82511 to AI82513 Report page 3 of 4 Column page 1

Ground Engineering Limited Newark Road Peterborough		LABO	RAT	ATORY TEST R Results of analysis of 3 samples	LABORATORY TEST REPORT Results of analvsis of 3 samples	ORT	M Chemity to define means
PE1 5UA			Ľ	received 14 June 2013	⇒ 2013		Report Date
FAO James Davies		U	C12974 - G	Breenwood Plac	- Greenwood Place, London NW5		20 June 2013
				A182511 DCS1 W1 29/5/2013 1.21m WATER	232404 AI82512 BH1 W1 3/6/2013 2.56m <i>WATER</i>	AI87613 BH2 W1 13/6/2013 1.53m WATER	
1760 Styrene	100425	г-1 <u>р</u> ц	þ	<1.01		<1.0	
Tribromomethane	75252	r-l 6rl	Þ	<101		<10	
Isopropylbenzene	98828	г-1 6л	∍	<1.01		<1.0	
Bromobenzene 1 2 3-Trichloronomene	108861	н оц 1 - Ст	⊃ :	<1.01 101		<1.0	
	40 104 102654			- 09		<50	
1-Fropyroenzene 2-Chlorotoliiene	103651 05408		> =	<1.01 101 101		6.0 2	
1,2,4-Trimethylbenzene	95636		ב כ	- <u></u>		0.12	
4-Chlorotoluene	106434	6n	. ⊃	<10 ¹		0.12	
iert-Butylbenzene	98066	6ri	∍	<1.01		4.0	
1,3,5-Trimethylbenzene	108678	r-i gu	D	<1.01		<1.0	
sec-Butylbenzene	135988	нg н'	5	<1.01		<1.0	
1,3-Dichlorobenzene	541731	г- Бц	∍	<1.01		<1.0	
4-Isopropyltoluene	99876	г-1 бн	5	<1.01		<1.0	
1,4-Dichlorobenzene	106467	1 6ri	5	<1.01	t And	<1.0	
n-Butylbenzene	104518	г- бл	-	<1.0 *		<1.0	
1, z-Lichlorobenzene	95501	r- 6rl	∍	<1.01		<1.0	
1,2-Ulbromo-3-chloropropane	96128	י-ן 6rl) :	<501		<50	
1,2,4-1richiorobenzene Hovrohiorobitendiano	120821	6r	> :	<1.01		<1.0	
1920 Phenois (total)	CO0 10	1 6m	Σ	< 0.03 < 0.03		<1.0 < 0.03	
¹ The stability time for this analyte has been exceeded - these results may be compromised. The accreditation for these results remains unaffected.	eded - these results m	ay be compron	iised. The a	accreditation for thes	se results remains ur	naffected.	

All tests undertaken between 14/06/2013 and 20/06/2013

This report should be interpreted in conjuction with the notes on the accompanying cover page. * Accreditation status

LIMS sample ID range Al82511 to Al82513 Report page 4 of 4 Column page 1

Appendix D: AGS Data

London

Friars Bridge Court 41-45 Blackfriars Road London SE1 8NZ

T: +44 (0)20 7340 1700 F: +44 (0)20 7340 1777 E: london@campbellreith.com

Surrey

Raven House 29 Linkfield Lane Redhill Surrey RH1 1SS

T: +44 (0)1737 784 500 F: +44 (0)1737 784 501 E: surrey@campbellreith.com

Bristol

Wessex House Pixash Lane Keynsham Bristol BS31 1TP

T: +44 (0)117 916 1066 F: +44 (0)117 916 1069 E: bristol@campbellreith.com

Birmingham

Chantry House High Street Coleshill Birmingham B46 3BP

T: +44 (0)1675 467 484 F: +44 (0)1675 467 502 E: birmingham@campbellreith.com

Manchester

The Lexicon 10-12 Mount Street Manchester M2 5NT

T: +44 (0)161 819 3060 F: +44 (0)161 819 3090 E: manchester@campbellreith.com

UAE

Office 705, Warsan Building Hessa Street (East) PO Box 28064 Dubai, UAE

T: +971 4 453 4735 F: +971 4 453 4731 E: uae@campbellreith.com

Campbell Reith Hill LLP. Registered in England & Wales. Limited Liability Partnership No OC300082 A list of Members is available at our Registered Office at: Friars Bridge Court, 41-45 Blackfriars Road, London SE1 8NZ VAT No 974 8892 43