Dcp 13 April 2016

Our ref CHS 13 April 2016

Development Management Planning Services London Borough of Camden Town Hall Argyle Street London WC1H 8ND

For the attention of Shane O'Donnell

13 Fitzroy Street London W1T 4BQ United Kingdom t +44 20 7636 1531 d +44 20 7755 4933 f +44 20 775 2121

hilary.shields@arup.com arup.com

Dear Sir,

59 Maresfield Gardens- Audit of Revised Basement Impact Assessment December 2012

In November 2015 we were appointed to comment on a new BIA dated March 2015 for 59 Maresfield Gardens.

We have been asked to confirm that:

- 1. The submission contains a Basement Impact Assessment, which has been prepared in accordance with the processes and procedures set out in the Arup report/Camden Planning Guidance 4 2013.
- 2. The methodologies have been appropriate to the scale of the proposals and the nature of the site
- 3. The conclusions have been arrived at based on all necessary and reasonable evidence and considerations, in a reliable, transparent manner, by suitably qualified professionals, with sufficient attention paid to risk assessment and use of conservative engineering values/estimates
- 4. The conclusions are sufficiently robust and accurate and are accompanied by sufficiently detailed amelioration/mitigation measures to ensure that the grant of planning permission would accord with DP27, in respect of
 - a. maintaining the structural stability of the building and any neighbouring properties
 - b. avoiding adversely affecting drainage and run-off or causing other damage to the water environment and
 - c. avoiding cumulative impacts on structural stability or the water environment in the local area

We have been asked to comment on whether this report:

^{\\}GLOBAL.ARUP.COMILONDONIG_EUD05/7000/71910-021HYDROGEOLOGY/PROPOSALSIBIASIFOR DEVELOPERS ETCS9 MARESFIELD GARDENS59 MARESFIELD GARDENS SEPTEMBER 2019JARUP RESPONSE TO BIA MARESFIELD GDNS MARCH 2015 DOCX

- 5. Raises any reasonable concerns about the technical content or considerations of the submission which should be addressed by the applicant by way of further submission, *prior* to planning permission being granted. In this case it would need to be apparent that the submission is so deficient in some respect that the three conclusions (points 4a-c above) cannot be guaranteed without the provision of further information at this stage.
- 6. Raises any relevant and reasonable considerations in respect of the structural integrity or condition of the road and the neighbouring properties which may be unknown or unaccounted for by the submission or which would benefit from particular construction measures or methodologies in respect of the development *following* a grant of permission for the development.

In January 2016 we sent a series of questions by email to Camden for forwarding to the applicant, which are attached at the back of this letter. These were addressed by email from Martin Cooper of GEA to Hilary Shields dated 16th March 2016, also attached.

Following the email response of 16th March 2016, we find that the BIA, together with the attached email response, are sufficient to satisfy the requirements for the grant of planning permission in accordance with DP27, in respect of:

- maintaining the structural stability of the building and any neighbouring properties
- avoiding adversely affecting drainage and run-off or causing other damage to the water environment and
- avoiding cumulative impacts on structural stability or the water environment in the local area

Additional comments are as given below. They do not change our conclusion above.

There is the potential for a small increase in groundwater level beneath the swimming pool and for a small decrease in groundwater level below the footings of 57 Maresfield Gardens. As a result, there is the potential for some minor additional movement to the adjacent structures which may occur following construction. In our opinion this should be acknowledged and covered in party wall agreements.

There are temporary works required for the ramp and to support the driveway to be designed. The stability of these and adjacent structures will need to be checked by the Contractor prior to the Works.

Our conclusion relates only to the basement configuration and construction sequence proposed. If there are significant changes to these during detailed design then another review would need to be conducted.

Our review is an audit of the information contained in the BIA and does not constitute a third party check on the calculations.

Note that we were asked to comment against CPG4 2013. CPG4 was updated in 2015 so that it now adds:

^{\\}GLOBALARUP.COMLONDONG_EUOBS\700007/1910-02HYDROGEOLOGY\PROPOSALS\BIAS\FOR DEVELOPERS ETC\59 MARESFIELD GARDENS\59 MARESFIELD GARDENS SEPTEMBER 2015\ARUP RESPONSE TO BIA MARESFIELD GONS MARCH 2015.DOCX

- BIA to provide mitigation measures where any risk of damage is identified of Burland Category "very slight" or higher.
- Preferred approach is for a basement not to extend beyond the footprint of original building and to be no deeper than 1 full storey below ground level. Larger schemes require more justification

The BIA does not address the new requirements of CPG4 2105.

Yours sincerely

CH Smields

Hilary Shields Senior Geotechnical Engineer BA Cantab MSc DIC CEng MICE

Hilary Shields

Subject:

FW: RE: Follow Up Independent Verification-59 Maresefield Gardens - Overude invoice 000395403

From: Hilary Shields
Sent: 31 January 2016 21:07
To: 'O'Donnell, Shane'
Subject: RE: RE: Follow Up Independent Verification-59 Maresefield Gardens - Overude invoice 000395403

Dear Shane

Please can you pass these comments on to the applicant. I am happy to continue to review the responses before writing our report to Camden.

- 1. The BIA talks about a heave void beneath the basement slab. There is no thickness given for this heave void and it is not shown on the Elliot Wood drawings. This will lead to extra dig. Also, the slab thickness is given as 300mm to be confirmed, so this too might lead to a deeper dig if the slab is thicker. Please consider the impact on the findings of the BIA.
- 2. The deeper dig for the swimming pool appears to extend significantly past the end wall of 57 Maresfield Gardens. However, there is no Wallap analysis for the deeper dig with the building surcharge. Please consider how this may affect the wall and ground movement assessment.
- 3. It seems that the 1.3m extra dig deeper dig for the swimming pool is proposed to be carried out in a battered back excavation. This will increase the length of 57 Maresfield Gardens affected by the deeper dig. In addition, it is not clear how the stair area will be formed and the dig for the stairs may create a berm in front of the formation level against 57 Maresfield Gardens which has not been considered. Please consider any impact of a battered dig for the swimming pool and stairs.
- 4. The deep chamber at the front wall has not been analysed in Wallap, perhaps because it will be carried out in a localised supported excavation, but some thought needs to be given to this. In addition, it should be shown on the architects drawings (not currently).
- 5. In the Wallap runs the surcharge on the formation on the passive side is 52.5kPa. It is not clear where this comes from, especially with the proposed heave void. Please explain.
- 6. In the permanent condition it is stated that lateral stability is provided through RC shear walls. If there is a heave void then is the imbalance of lateral load from the road taken by the internal piles. Has this been considered?
- 7. Whilst the CIRIA profiles of settlement due to excavation must incorporate short term heave effects, since they are based on measured data, there is some deep seated short term to long term heave which would cause heave of the surrounding ground. If there is a heave void, the long term heave is less constrained and ought to be considered for the impact on neighbouring properties.
- 8. Originally, the deep basement application had 600mm diameter piles at 900 centres. This was stiffer than the current proposal for 450mm diameter piles at 600mm centres. Given that potential damage is falling into the slight category, and that dig may be slightly deeper than analysed, please consider whether this might still be an option for the current scheme.
- 9. There is the potential for a small increase in groundwater level beneath the swimming pool and for a small decrease in groundwater level below the footings of 57 Maresfield Gardens. As a result, there

is the potential for some minor additional movement to the adjacent structures which may occur following construction. In our opinion this should be acknowledged and covered in party wall agreements.

Regards

Hilary

Hilary Shields

Senior Engineer | Geotechnics & Tunnelling London

Arup

13 Fitzroy Street London W1T 4BQ United Kingdom t +44 20 7636 1531 d +44 20 7755 4933 f +44 20 7755 2121 www.arup.com

Hilary Shields

From:	Martin Cooper <martin@gea-itd.co.uk></martin@gea-itd.co.uk>
Sent:	16 March 2016 14:57
То:	Hilary Shields
Cc:	Mark Renshaw; Edd Rushton (EddR@lom-fdp.com);
	stephen.alder@jacksoncoles.co.uk; Steve Branch
Subject:	59 Maresfield Gardens - BIA
Attachments:	59 Maresfield Gdns Scheme 4 South Wall_SLS Pool.pdf

Dear Hilary

With apologies for the delay in responding following our conversation a week or two ago, we've discussed the points you raised with the design team and our responses are set out below point by point.

Please feel free to call me directly if you would like to discuss further but we hope that they will satisfy your concerns.

Kind regards

Martin

Please can you pass these comments on to the applicant. I am happy to continue to review the responses before writing our report to Camden.

- 1. The BIA talks about a heave void beneath the basement slab. There is no thickness given for this heave void and it is not shown on the Elliot Wood drawings. This will lead to extra dig. Also, the slab thickness is given as 300mm to be confirmed, so this too might lead to a deeper dig if the slab is thicker. Please consider the impact on the findings of the BIA. *There is a single mention of potential heave protection that was not deleted from the latest issue of the BIA. Elliott Wood have confirmed that there is to be no heave protection and any heave forces will be transferred through the slab into the piled foundations. The piles will be suitably reinforced against the tension that would occur in the short term before the building load is applied to the piles and which, in the long term would off-set any tension forces. At this stage the preliminary designs have indicated that a 300 mm slab should be sufficient even for the potential heave forces mainly on account of the relatively short spans.*
- 2. The deeper dig for the swimming pool appears to extend significantly past the end wall of 57 Maresfield Gardens. However, there is no Wallap analysis for the deeper dig with the building surcharge. Please consider how this may affect the wall and ground movement assessment. *A new Wallap analysis has been undertaken for the South wall with the deeper excavation for the pool whilst still supporting the adjacent No 57 Maresfield Gardens. This run is appended and has indicated no increase in pile depth but an increase in maximum bending moment from 65 kNm per pile to 124 kNm per pile. There is a slight increase in the maximum deflection from 10 mm to 12 mm but the movements remain within those in the movement curves adopted within the XDisp analysis. There is therefore no change to the predicted damage category.*
- 3. It seems that the 1.3m extra dig deeper dig for the swimming pool is proposed to be carried out in a battered back excavation. This will increase the length of 57 Maresfield Gardens affected by the deeper dig. In addition, it is not clear how the stair area will be formed and the dig for the stairs may

create a berm in front of the formation level against 57 Maresfield Gardens which has not been considered. Please consider any impact of a battered dig for the swimming pool and stairs. *The Wallap analysis for the pool in No 2 above represents the deepest case analysed and the design for those piles will also be adopted for the section of wall behind the berm used to reduce the level in that area.*

- 4. The deep chamber at the front wall has not been analysed in Wallap, perhaps because it will be carried out in a localised supported excavation, but some thought needs to be given to this. In addition, it should be shown on the architects drawings (not currently). The exact location of the deep chamber has yet to be finalised but Elliott Wood have confirmed that wherever it is placed, the basement slab will have been cast, with a box-out or similar and additional reinforcement in the slab prior to the excavation of the chamber so that the piled wall will always be propped at basement level.
- 5. In the Wallap runs the surcharge on the formation on the passive side is 52.5kPa. It is not clear where this comes from, especially with the proposed heave void. Please explain. *The passive surcharge of 52.5 kPa represents the balancing water pressure for the 5.25 m excavation below groundwater level. There is no heave void.*
- 6. In the permanent condition it is stated that lateral stability is provided through RC shear walls. If there is a heave void then is the imbalance of lateral load from the road taken by the internal piles. Has this been considered? *There is no heave void and the lateral load imbalance will be distributed through the piles.*
- 7. Whilst the CIRIA profiles of settlement due to excavation must incorporate short term heave effects, since they are based on measured data, there is some deep seated short term to long term heave which would cause heave of the surrounding ground. If there is a heave void, the long term heave is less constrained and ought to be considered for the impact on neighbouring properties. *There is no heave void.*
- 8. Originally, the deep basement application had 600mm diameter piles at 900 centres. This was stiffer than the current proposal for 450mm diameter piles at 600mm centres. Given that potential damage is falling into the slight category, and that dig may be slightly deeper than analysed, please consider whether this might still be an option for the current scheme. The original scheme was for a further level of basement below the deepest level of this application and as we recall were for slightly deeper spans of the wall. The increased diameter has been considered for subsequent schemes but given the relatively modest plan area of the basement the loss in area was not acceptable to the client.
- 9. There is the potential for a small increase in groundwater level beneath the swimming pool and for a small decrease in groundwater level below the footings of 57 Maresfield Gardens. As a result, there is the potential for some minor additional movement to the adjacent structures which may occur following construction. In our opinion this should be acknowledged and covered in party wall agreements.

The groundwater impact assessment by Chord Environmental discussed in detail and identified no potential adverse impacts. However, it is acknowledged that this matter will need to be agreed within party wall agreements.

Regards

Hilary

Hilary Shields

Senior Engineer | Geotechnics & Tunnelling London

Arup 13 Fitzroy Street London W1T 4BQ United Kingdom t +44 20 7636 1531 d +44 20 7755 4933 f +44 20 7755 2121 www.arup.com

This e-mail may contain information which is confidential, legally privileged and/or copyright protected. This e- mail is intended for the addressee only. If you receive this in error, please contact the sender and delete the material from your computer.

This e-mail message and any attached file is the property of the sender and is sent in confidence to the addressee only.

Internet communications are not secure and RPS is not responsible for their abuse by third parties, any alteration or corruption in transmission or for any loss or damage caused by a virus or by any other means.

RPS Planning and Development Limited, company number: 02947164 (England). Registered office: 20 Western Avenue Milton Park Abingdon Oxfordshire OX14 4SH.

RPS Group Plc web link: http://www.rpsgroup.com

 GEOTECHNICAL & ENVIRONMENTAL ASSOCIATES
 Sheet No.

 Program: WALLAP Version 6.05 Revision A45.B58.R48
 Job No. J11251D

 Licensed from GEOSOLVE
 Made by : MC

 Data filename/Run ID: 59 Maresfield Gdns Scheme 4 South Wall_SLS Pool
 Date:14-03-2016

 South Wall SLS Poolside
 Checked :

INPUT DATA

Units: kN,m

SOIL PROFILE

Stratum	Elevation of	Soil	types
no.	top of stratum	Active side	Passive side
1	82.00	1 Made Ground / Alluv	1 Made Ground / Alluv
2	76.00	2 Claygate Beds	2 Claygate Beds
3	73.50	3 London Clay	3 London Clay

SOIL PROPERTIES

SOID FROEBRIIDE	,						
	Bulk	Young's	At rest	Consol	Active	Passive	
Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No. Description	⊾ kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Кр	kN/m2
(Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1 Made Ground	l 17.00	12500	0.500	NC	1.000	1.000	25.00u
/ Alluv				(0.490)	(2.570)	(2.571)	
2 Claygate	18.00	37500	1.000	OC	1.000	1.000	75.00u
(76.00)		(3000)		(0.490)	(2.000)	(2.000)	(6.000)
3 London Clay	19.00	45000	1.000	OC	1.000	1.000	90.00u
(73.50)		(2608)		(0.490)	(1.000)	(1.000)	(5.200)
4 MG /Alluv	17.00	7500	0.500	NC	0.324	3.601	0.0d
Drained				(0.250)	(1.327)	(5.104)	
5 Claygate	18.00	22500	1.000	OC	0.351	3.440	0.0d
(76.00)		(1800)		(0.200)	(1.391)	(5.233)	
6 London Cl	19.00	27000	1.000	OC	0.337	3.440	0.0d
(73.50)		(1565)		(0.200)	(1.360)	(5.233)	

Additional soil parameters associated with Ka and Kp

		param	eters for	Ka	param	Кр	
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Made Ground / Alluv	0.00	1.000	0.00	0.00	1.000	0.00
2	Claygate Beds	0.00	0.000	0.00	0.00	0.000	0.00
3	London Clay	0.00	-0.674	0.00	0.00	-0.674	0.00
4	MG /Alluv Drained	27.00	0.641	0.00	27.00	0.471	0.00
5	Claygate Drained	25.00	0.670	0.00	25.00	0.670	0.00
б	London Clay Drained	26.00	0.670	0.00	25.00	0.670	0.00

GROUND WATER CONDITIONS

Density	of	water	=	10.00)	kN/m3			
							Active	side	

				Active side	Passive	side
Initial	water	table	elevation	81.00	81.0	0

Automatic water pressure balancing at toe of wall : No

Water		Activ	e side			Passiv	re side	
profile no.	Point no.	Elev.	Piezo elev.	Water press.	Point no.	Elev.	Piezo elev.	Water press.
1	1	m 81.00	m 81.00	KN/m2 0.0	1	m 80.60	m 80.60	0.0 MC
2	1	82.00	82.00	0.0	1	78.60	78.60	0.0 WC
3	1	81.00	81.00	0.0	1	77.50	77.50	0.0 MC
4	1	82.00	82.00	0.0	1	76.40	76.40	0.0 WC
5	1	81.00	81.00	0.0	1	74.45	74.45	0.0 MC
6	1	82.00	82.00	0.0	1	75.25	75.25	0.0 WC

Type of structure	=	Fully Embedded Wall
Elevation of toe of wall	=	72.00
Maximum finite element length	=	0.60 m
Youngs modulus of wall E	=	2.8000E+07 kN/m2
Moment of inertia of wall I	=	3.3550E-03 m4/m run
E.I	=	93940 kN.m2/m run
Yield Moment of wall	=	Not defined

STRUTS	and AN	CHORS						
Strut/			X-section			Inclin	Pre-	
anchor		Strut	area	Youngs	Free	-ation	stress	Tension
no.	Elev.	spacing	of strut	modulus	length	(degs)	/strut	allowed
		m	sq.m	kN/m2	m		kN	
1	84.40	3.00	0.010000	2.000E+08	2.00	0.00	0	No
2	81.10	3.00	0.010000	2.000E+08	4.00	0.00	0	No
3	78.00	3.00	0.010000	2.000E+08	4.00	0.00	0	No
4	74.70	1.00	0.350000	3.000E+07	1.00	0.00	0	No
5	79.50	3.00	0.100000	2.000E+08	4.00	0.00	0	No
6	78.95	1.00	0.250000	2.000E+08	1.00	0.00	0	No
7	81.75	1.00	0.250000	3.000E+07	1.00	0.00	0	No
8	84.40	1.00	0.250000	3.000E+07	1.00	0.00	0	No

SURCHARGE LOADS

Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	81.50	1.30(A)	0.50	20.00	100.00	=	N/A	1.00 P/U
2	81.50	0.80(A)	20.00	0.50	80.00	=	N/A	1.00 P/U
3	82.00	0.00(A)	20.00	20.00	5.00	=	N/A	1.00 Var
4	74.45	-0.00(P)	8.00	10.00	65.50	=	N/A	1.00 -

Note: A = Active side, P = Passive side Limit State Categories P/U = Permanent Unfavourable P/F = Permanent Favourable Var = Variable (unfavourable)

CONSTRUCTION	STAGES
Construction	Stage description
stage no.	
1	Apply surcharge no.1 at elevation 81.50
2	Apply surcharge no.2 at elevation 81.50
3	Apply surcharge no.3 at elevation 82.00
4	Apply water pressure profile no.1 (Mod. Conserv.)
5	Excavate to elevation 80.60 on PASSIVE side
6	Install strut or anchor no.2 at elevation 81.10
7	Apply water pressure profile no.3 (Mod. Conserv.)
	No analysis at this stage
8	Excavate to elevation 77.50 on PASSIVE side
9	Install strut or anchor no.3 at elevation 78.00
10	Apply water pressure profile no.5 (Mod. Conserv.)
11	Excavate to elevation 74.45 on PASSIVE side
12	Install strut or anchor no.4 at elevation 74.70
13	Apply surcharge no.4 at elevation 74.45
14	Install strut or anchor no.5 at elevation 79.50
15	Remove strut or anchor no.3 at elevation 78.00
16	Install strut or anchor no.6 at elevation 78.95
17	Remove strut or anchor no.5 at elevation 79.50
18	Install strut or anchor no.7 at elevation 81.75
19	Remove strut or anchor no.2 at elevation 81.10
20	Change properties of soil type 1 to soil type 4
	Ko pressures will be reset
21	Change properties of soil type 2 to soil type 5
	Ko pressures will be reset
22	Change properties of soil type 3 to soil type 6
	Ko pressures will be reset

FACTORS OF SAFETY and ANALYSIS OPTIONS Limit State options: Serviceability Limit State All loads and soil strengths are unfactored Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.00 Parameters for undrained strata: Minimum equivalent fluid density 5.00 kN/m3 = Maximum depth of water filled tension crack = 0.00 m Bending moment and displacement calculation: Method - Subgrade reaction model using Influence Coefficients Open Tension Crack analysis? - No Non-linear Modulus Parameter (L) = 20.00 m Boundary conditions: Length of wall (normal to plane of analysis) = 6.00 m Width of excavation on active side of wall = 20.00 m Width of excavation on passive side of wall = 10.00 m Distance to rigid boundary on active side = 20.00 m Distance to rigid boundary on passive side = 20.00 m

OUTPUT OPTIONS

Stage	Stage description	Outpu	t options	 a 1
no.		Displacement	Active,	Graph.
		Bending mom.	Passive	output
		Shear force	pressures	
1 Apply	surcharge no.1 at elev. 81.50	No	No	No
2 Apply	surcharge no.2 at elev. 81.50	No	No	No
3 Apply	surcharge no.3 at elev. 82.00	No	No	No
4 Apply	water pressure profile no.1	No	No	No
5 Excav	. to elev. 80.60 on PASSIVE side	No	No	No
6 Insta	ll strut no.2 at elev. 81.10	No	No	No
7 Apply	water pressure profile no.3	No	No	No
8 Excav	. to elev. 77.50 on PASSIVE side	No	No	No
9 Insta	ll strut no.3 at elev. 78.00	No	No	No
10 Apply	water pressure profile no.5	No	No	No
11 Excav	. to elev. 74.45 on PASSIVE side	No	No	No
12 Insta	ll strut no.4 at elev. 74.70	No	No	No
13 Apply	surcharge no.4 at elev. 74.45	No	No	No
14 Insta	ll strut no.5 at elev. 79.50	No	No	No
15 Remov	e strut no.3 at elev. 78.00	No	No	No
16 Insta	ll strut no.6 at elev. 78.95	No	No	No
17 Remov	e strut no.5 at elev. 79.50	No	No	No
18 Insta	ll strut no.7 at elev. 81.75	No	No	No
19 Remov	e strut no.2 at elev. 81.10	No	No	No
20 Chang	e soil type 1 to soil type 4	No	No	No
21 Chang	e soil type 2 to soil type 5	No	No	No
22 Chang	e soil type 3 to soil type 6	Yes	No	Yes
* Summa:	ry output	Yes	-	Yes

Program WALLAP - Copyright (C) 2013 by DL Borin, distributed by GEOSOLVE 69 Rodenhurst Road, London SW4, UK. Tel: +44 20 8674 7251

Stage No. 22 Change properties of soil type 3 to soil type 6 Ko pressures will be reset

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

Fos for toeToe elev. for
elev. = 72.00Stage --- G.L. ---StrutFactor MomentToeNo. Act. Pass.Elev.of
safety at elev.elev. Penetr
-ation2282.0074.45More than one strut

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 6.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 20.00 from wall

Passive side 20.00 from wall

Limit State: Serviceability Limit State

Calculated Bending Moments and Strut Forces are to be multiplied by a factor of 1.35 to obtain values for structural design. See summary for factored values.

Y	Nett	Wall	Wall	Shear	Bending	Strut
coord	pressure	disp.	rotation	force	moment	forces
	kN/m2	m	rad.	kN/m	kN.m/m	kN/m
82.00	17.59	0.007	-1.02E-03	0.0	-0.0	
81.75	19.41	0.007	-1.02E-03	4.6	0.7	17.1
	19.41	0.007	-1.02E-03	-12.4	0.7	
81.50	11.37	0.007	-1.02E-03	-8.6	-1.8	
81.10	11.60	0.007	-1.01E-03	-4.0	-4.1	
81.00	13.35	0.008	-1.00E-03	-2.7	-4.4	
80.60	22.79	0.008	-9.89E-04	4.5	-4.2	
80.05	33.43	0.009	-9.86E-04	19.9	3.1	
79.50	41.45	0.009	-1.05E-03	40.5	19.9	
78.95	48.19	0.010	-1.25E-03	65.2	48.8	214.5
	48.19	0.010	-1.25E-03	-149.3	48.8	
78.47	53.61	0.010	-1.33E-03	-125.1	-16.5	
78.00	58.89	0.011	-1.11E-03	-98.4	-69.7	
77.50	64.50	0.011	-6.35E-04	-67.5	-111.3	
77.15	68.53	0.012	-1.84E-04	-44.3	-131.1	
76.80	72.67	0.011	3.24E-04	-19.5	-142.3	
76.40	77.56	0.011	9.35E-04	10.5	-144.3	
76.00	82.62	0.011	1.52E-03	42.5	-133.9	
	118.17	0.011	1.52E-03	42.5	-133.9	
75.68	123.53	0.010	1.95E-03	81.8	-113.9	
75.35	128.97	0.009	2.29E-03	122.9	-80.8	
75.03	134.39	0.009	2.49E-03	165.6	-34.2	
74.70	139.56	0.008	2.50E-03	210.2	27.5	223.3
	139.56	0.008	2.50E-03	-13.1	27.5	
74.45	142.97	0.007	2.42E-03	22.2	28.5	
	-58.27	0.007	2.42E-03	22.2	28.5	
73.97	-40.45	0.006	2.27E-03	-1.3	31.9	
73.50	-22.74	0.005	2.12E-03	-16.3	26.1	
	-6.55	0.005	2.12E-03	-16.3	26.1	
	Y coord 82.00 81.75 81.50 81.10 81.00 80.60 80.05 79.50 78.95 78.47 78.00 77.50 77.15 76.80 76.40 76.00 75.68 75.35 75.03 74.70 74.45 73.97 73.50	Y Nett coord pressure kN/m2 82.00 17.59 81.75 19.41 19.41 81.50 11.37 81.10 11.60 81.00 13.35 80.60 22.79 80.05 33.43 79.50 41.45 78.95 48.19 48.19 78.47 53.61 78.00 58.89 77.50 64.50 77.15 68.53 76.80 72.67 76.40 77.56 76.00 82.62 118.17 75.68 123.53 75.35 128.97 75.03 134.39 74.70 139.56 139.56 74.45 142.97 -58.27 73.97 -40.45 73.50 -22.74 -6.55	Y Nett Wall coord pressure disp. kN/m2 m 82.00 17.59 0.007 81.75 19.41 0.007 11.75 19.41 0.007 81.50 11.37 0.007 81.00 13.35 0.008 80.60 22.79 0.008 80.05 33.43 0.009 79.50 41.45 0.009 78.95 48.19 0.010 78.00 58.89 0.011 77.50 64.50 0.011 77.15 68.53 0.012 76.80 72.67 0.011 76.40 77.56 0.011 76.58 123.53 0.010 75.35 128.97 0.009 74.70 139.56 0.008 139.56 0.008 139.56 0.008 74.45 142.97 0.007 -58.27 0.007 73.97 -40.45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Run ID. 59 Maresfield Gdns Scheme 4 South Wall_SLS Pool Sheet No. 59 Maresfield Gardens Scheme 4 Date:14-03-2016 South Wall SLS Poolside ------

Checked :

(continued)

Stage No.22 Change properties of soil type 3 to soil type 6 Ko pressures will be reset

Node	Y	Nett	Wall	Wall	Shear	Bending	Strut
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
24	73.05	-4.12	0.004	2.02E-03	-18.7	17.3	
25	72.60	12.25	0.003	1.96E-03	-16.8	9.5	
26	72.00	43.87	0.002	1.93E-03	0.0	-0.0	
At e	elev. 81	.75 Strut	force =	17.1 kN/st	:rut =	17.1 kN/m	run
At e	elev. 78	.95 Strut	force =	214.5 kN/st	:rut =	214.5 kN/m	run
At e	elev. 74	.70 Strut	force =	223.3 kN/st	:rut =	223.3 kN/m	run

Stage No.22 Change soil type 3 to soil type 6

 GEOTECHNICAL & ENVIRONMENTAL ASSOCIATES
 Sheet No.

 Program: WALLAP Version 6.05 Revision A45.B58.R48
 Job No. J11251D

 Licensed from GEOSOLVE
 Made by : MC

 Data filename/Run ID: 59 Maresfield Gdns Scheme 4 South Wall_SLS Pool
 Date:14-03-2016

 South Wall SLS Poolside
 Checked :

Units: kN,m

Summary of results

LIMIT STATE PARAMETERS

Limit State: Serviceability Limit State All loads and soil strengths are unfactored

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS for elev. =	toe 72.00	Toe e FoS	elev. = 1.	for 000	
								·	
Stage	G.I	i S	Strut	Factor	Moment	Toe	M	Iall	
No.	Act.	Pass.	Elev.	of	equilib	o. elev.	. Pe	enetr	
				Safety	at elev	<i>.</i>	-a	ition	
1	82.00	82.00	Cant.	Conditio	ons not	suitable	for	FoS	calc.
2	82.00	82.00	Cant.	Conditio	ons not	suitable	for	FoS	calc.
3	82.00	82.00	Cant.	Conditio	ons not	suitable	for	FoS	calc.
4	82.00	82.00	Cant.	Conditio	ons not	suitable	for	FoS	calc.
5	82.00	80.60	Cant.	3.285	73.40	80.34	1	0.26	
6	82.00	80.60		No analy	rsis at	this stag	ge		
7	82.00	80.60		No analy	rsis at	this stag	ge		
8	82.00	77.50	81.10	2.442	n/a	76.58	3	0.92	
9	82.00	77.50		No analy	rsis at	this stag	ge		
All	remainir	ng stages	have mo	ore than	one str	rut - FoS	calc	ulat	ion n/a

GEOTECHNICAL & ENVIRONMENTAL ASSOCIATES | Sheet No. Program: WALLAP Version 6.05 Revision A45.B58.R48 | Job No. J11251D Licensed from GEOSOLVE | Made by : MC Data filename/Run ID: 59 Maresfield Gdns Scheme 4 South Wall_SLS Pool 59 Maresfield Gardens Scheme 4 | Date:14-03-2016 South Wall SLS Poolside | Checked :

Units: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 6.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 20.00 from wall

Passive side 20.00 from wall

Limit State: Serviceability Limit State

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Bending moment, shear force and displacement envelopes

Node	Y	Displa	.cement	E	Bending	moment			• Shear	force	
no.	coord			Calcul	lated	Fact	ored	Calculated		Factored	
		max.	min.	max.	min.	max.	min.	max.	min.	max.	min.
		m	m	kN.	.m/m	kN	.m/m	kN/m	kN/m	kN/m	kN/m
1	82.00	0.008	0.000	0	-0	0	-0	0	0	0	0
2	81.75	0.008	0.000	1	-0	1	-0	6	-14	8	-20
3	81.50	0.008	0.000	3	-2	4	-3	10	-11	13	-14
4	81.10	0.008	0.000	8	-5	11	-7	13	-47	18	-64
5	81.00	0.008	0.000	8	-6	11	-8	3	-47	5	-63
6	80.60	0.008	0.000	10	-16	14	-21	7	-44	9	-60
7	80.05	0.009	0.000	16	-38	22	-51	22	-40	30	-54
8	79.50	0.009	0.000	25	-58	34	-78	43	-83	58	-112
9	78.95	0.010	0.000	54	-73	74	-98	67	-155	91	-209
10	78.47	0.010	0.000	0	-80	0	-108	14	-131	19	-176
11	78.00	0.011	0.000	0	-81	0	-110	29	-104	39	-140
12	77.50	0.011	0.000	0	-114	0	-154	25	-73	34	-99
13	77.15	0.012	0.000	0	-136	0	-183	33	-50	45	-68
14	76.80	0.012	0.000	0	-149	0	-201	43	-29	58	-39
15	76.40	0.011	0.000	4	-153	6	-207	56	-9	75	-12
16	76.00	0.011	0.000	12	-145	16	-196	71	0	95	0
17	75.68	0.010	0.000	18	-128	24	-172	82	0	110	0
18	75.35	0.010	0.000	26	-97	35	-131	123	0	166	0
19	75.03	0.009	0.000	33	-63	45	-85	166	0	224	0
20	74.70	0.008	0.000	36	-39	48	-53	210	-13	284	-18
21	74.45	0.007	0.000	36	-22	48	-30	103	-6	139	-9
22	73.97	0.007	0.000	32	0	43	0	42	-14	57	-19
23	73.50	0.006	0.000	29	0	40	0	б	-19	9	-25
24	73.05	0.005	0.000	24	0	32	0	0	-19	0	-26
25	72.60	0.004	0.000	13	0	18	0	0	-25	0	-33
26	72.00	0.003	0.000	0	-0	0	-0	0	-0	0	-0

Run ID. 59 Maresfield Gdns Scheme 4 South Wall_SLS Pool 59 Maresfield Gardens Scheme 4 South Wall SLS Poolside

Summary of results (continued)

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Maximum and minimum bending moment and shear force at each stage

Stage			Bendin	ng moment					- Shear	force		
no.		Calc	ulated		Fact	ored		Calc	ulated		Fact	ored
	max.	elev.	min.	elev.	max.	min.	max.	elev.	min.	elev.	max.	min.
	kN.m/m		kN.m/m	ı	kN	.m/m	kN/m		kN/m		kN/m	kN/m
1	1	74.45	-5	78.47	2	-6	3	76.00	-2	80.05	5	-3
2	7	74.70	-16	78.95	10	-22	12	76.00	-9	80.60	16	-12
3	10	74.70	-18	78.47	13	-24	15	76.00	-10	80.60	20	-13
4	10	74.70	-18	78.47	13	-24	15	76.00	-10	80.60	20	-13
5	22	75.03	-5	78.00	29	-7	22	76.00	-10	73.50	30	-14
6	No ca	lculati	on at t	his stag	e							
7	No ca	lculati	on at t	his stag	e							
8	36	74.70	-81	78.00	48	-110	71	76.00	-47	81.10	95	-64
9	No ca	lculati	on at t	his stag	е							
10	36	74.70	-81	78.00	48	-109	70	76.00	-47	81.10	95	-64
11	8	73.50	-81	76.40	11	-109	66	74.45	-74	78.00	90	-100
12	No ca	lculati	on at t	his stag	е							
13	16	73.50	-91	76.40	21	-123	84	74.45	-76	78.00	114	-102
14	No ca	lculati	on at t	his stag	е							
15	25	79.50	-111	76.80	34	-150	92	74.45	-83	79.50	124	-112
16	No ca	lculati	on at t	his stag	е							
17	23	73.50	-107	76.40	31	-144	90	74.45	-78	78.95	122	-105
18	No ca	lculati	on at t	his stag	е							
19	23	73.50	-106	76.40	31	-143	90	74.45	-79	78.95	122	-107
20	45	78.95	-137	76.40	60	-184	103	74.45	-145	78.95	139	-195
21	54	78.95	-153	76.40	74	-207	203	74.70	-155	78.95	274	-209
22	49	78.95	-144	76.40	66	-195	210	74.70	-149	78.95	284	-202

Maximum and minimum displacement at each stage

Stage ----- Displacement ----- Stage description no. maximum elev. minimum elev. _____ m m 0.000 1 78.47 0.000 82.00 Apply surcharge no.1 at elev. 81.50 82.00 2 0.002 79.50 0.000 Apply surcharge no.2 at elev. 81.50 82.00 79.50 Apply surcharge no.3 at elev. 82.00 3 0.003 0.000 0.000 82.00 0.003 79.50 Apply water pressure profile no.1 4 5 0.008 82.00 0.000 82.00 Excav. to elev. 80.60 on PASSIVE side No calculation at this stage No calculation at this stage Install strut no.2 at elev. 81.10 6 7 Apply water pressure profile no.3 8 0.009 78.47 0.000 82.00 Excav. to elev. 77.50 on PASSIVE side 9 No calculation at this stage Install strut no.3 at elev. 78.00 10 0.009 78.47 0.000 82.00 Apply water pressure profile no.5 77.15 0.000 82.00 Excav. to elev. 74.45 on PASSIVE side 11 0.010 12 No calculation at this stage Install strut no.4 at elev. 74.70 13 0.010 77.15 0.000 82.00 Apply surcharge no.4 at elev. 74.45 14 No calculation at this stage Install strut no.5 at elev. 79.50 15 0.011 77.15 0.000 82.00 Remove strut no.3 at elev. 78.00 16 No calculation at this stage Install strut no.6 at elev. 78.95 0.011 77.15 0.000 82.00 Remove strut no.5 at elev. 79.50 17 18 No calculation at this stage Install strut no.7 at elev. 81.75 0.011 77.15 0.000 82.00 Remove strut no.2 at elev. 81.10 19 20 0.011 77.15 0.000 82.00 Change soil type 1 to soil type 4 21 0.012 77.15 0.000 82.00 Change soil type 2 to soil type 5 0.012 77.15 0.000 82.00 Change soil type 3 to soil type 6 2.2

Run ID. 59 Maresfield Gdns Scheme 4 South Wall_SLS Pool 59 Maresfield Gardens Scheme 4 South Wall SLS Poolside

Summary of results (continued)

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Strut forces at each stage (horizontal components)

Stage	S	trut no.	2	S	trut no.	3	S	trut no.	4	
no.	at	elev. 8	1.10	at	elev. 7	8.00	at elev. 74.70			
	Calcu	lated 1	Factored	Calcu	lated	Factored	Calcu	lated	Factored	
	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per	
	m run	strut	strut	m run	strut	strut	m run	strut	strut	
8	59	178	240							
10	59	178	240	0	1	1				
11	38	115	155	103	309	417				
13	41	122	165	101	304	410	slack	slack	slack	
15	11	32	43				slack	slack	slack	
17	29	86	116				slack	slack	slack	
19							slack	slack	slack	
20							slack	slack	slack	
21							201	201	271	
22							223	223	301	

 Run ID. 59 Maresfield Gdns Scheme 4 South Wall_SLS Pool
 | Sheet No.

 59 Maresfield Gardens Scheme 4
 | Date:14-03-2016

 South Wall SLS Poolside
 | Checked :

Stage	S	trut no.	5	S	trut no.	б	Strut no. 7			
no.	at	elev. 7	9.50	at	elev. 7	8.95	at elev. 81.75			
	Calcu	lated :	Factored	Calcu	lated	Factored	Calculated Factored			
	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per	
	m run	strut	strut	m run	strut	strut	m run	strut	strut	
15	104	311	419							
17				89	89	120				
19				97	97	132	20	20	28	
20				208	208	281	18	18	25	
21				222	222	300	15	15	20	
22				214	214	290	17	17	23	

* Indicates that the total force shown is the sum of the force in the strut plus a force applied at the same elevation which may represent temperature load or other forces which are part of the strut load. Force components are listed in the detailed results for individual stages.

GEOTECHNICAL & ENVIRONMENTAL ASSOCIATES	Sheet No.
Program: WALLAP Version 6.05 Revision A45.B58.R48	Job No. J11251D
Licensed from GEOSOLVE	Made by : MC
Data filename/Run ID: 59 Maresfield Gdns Scheme 4 South Wall_	_SLS Pool
59 Maresfield Gardens Scheme 4	Date:14-03-2016
South Wall SLS Poolside	Checked :

Bending moment, shear force, displacement envelopes

