Fitzjohn's Avenue, NW3

Prepared for the London Borough of Camden

Ground Investigation Survey and Contaminated Land Assessment

A detailed planning application, submitted on behalf of PegasusLife to provide specialist living accommodation for older people

PegasusLife

PEGASUS LIFE LIMITED

FITZJOHN'S AVENUE, HAMPSTEAD, NW3 6PA

REPORT ON PHASE 2 GROUND INVESTIGATION

Contract: 52247A

Date: November 2014

Ian Farmer Associates (1998) Limited Unit 1A, Lower Luton Road, Harpenden, Herts AL5 5BZ Tel: 01582 460018 Fax: 01582 469287

REPORT ON PHASE 2 GROUND INVESTIGATION

carried out at

FITZJOHN'S AVENUE,

HAMPSTEAD, NW3 6PA

Prepared for

PEGASUS LIFE LIMITED 105 – 107 Bath Road Cheltenham GL53 7PR

Contract No: 52247A

Date: November 2014

Ian Farmer Associates (1998) Limited Unit 1A, Lower Luton Road, Harpenden, Herts AL5 5BZ Tel: 01582 460018 Fax: 01582 469287

Report Issue Log

	Issued By	Checked By
Draft Issue	DA	WGG
Issue Method F	Date 16/9/2014	Date 22/09/2014

	Issued By	Checked By
Final Issue	DA	WGG
Issue Method	Date	Date
D	22/9/2014	23/9/2014

	Issued By	Checked By
Revision	WGG	DAA
Issue Method	Date	Date
E	05/11/2014	07/11/2014

	Issued By	Checked By
Revision	DAA	WGG
Issue Method	Date	Date
E	02/12/2014	02/12/2014

	Issued By	Checked By
Revision	DAA	WGG
Issue Method	Date	Date
E	18/12/2014	18/12/2014

Issue Method: E = Electronic P = Paper

D = Disc

EXECUTIVE SUMMARY

On the instructions of Gleeds Management Services Limited, on behalf of Pegasus Life Limited, an investigation was undertaken to determine ground conditions to enable foundation and road/hard standing design to be carried out, together with a contamination risk assessment and a review of gas emissions.

The site, where it is proposed to develop a five and seven storey structure with part lower ground level (basement), for accommodation purposes, is situated at the junction of Fitzjohn's Avenue and Prince Arthur Road, approximately 200m to the south of Hampstead Tube Station, and may be located by Grid Reference TQ 264 855.

Published geological and hydrogeological records indicate the site to be situated above a Secondary A aquifer relating to the granular Bagshot Formation with the Claygate Member outcropping directly to the southwest. No superficial deposits are anticipated though Made Ground formed during the development of the existing and previous structures is anticipated to a moderate depth.

Site works were undertaken between the 13 and 29 August 2014 and comprised five boreholes to depths of between 11m and 20m below ground level (bgl), with one further borehole location aborted due to the presence of services. Three hand-dug trial pits were also carried out to reveal the foundations to the adjacent boundary wall.

The exploratory locations encountered the anticipated geological sequence being solid deposits of the Bagshot Formation, generally comprising interbedded firm occasionally stiff to very stiff sandy occasionally slightly gravelly clay and medium dense, occasionally loose or dense, clayey occasionally slightly gravelly fine sand. The Bagshot Formation, where proven, extended to a depth of between 8.50m and 14.90m bgl and was underlain by the Claygate Member of the London Clay Formation to the full depth of the investigation. This generally comprised unweathered stiff fissured dark grey occasionally sandy silty clay with partings of sand and clusters and speckling of iron pyrite.

The natural strata were overlain by Made Ground or Possible Made Ground (borehole 2) which extended to a depth of between 0.25m and 1.80m bgl and was unproven in trial pit 1 at 0.70m bgl.

On the basis of these observations together with results of in-situ and laboratory tests consideration could be given to the adoption of shallow spread foundations to support the proposed structure. Such foundations, at the proposed elevations for the new structure of 103.29m, 100.84m and 98.7m AOD, assuming the Bagshot Formation at shallow depth to be essentially a clay soil, may be designed to an allowable bearing pressure of 80kPa, 110kPa and 125kPa respectively, which would provide an adequate factor of safety against shear failure. Settlements, assuming a 1m wide pad, are likely to be less than 20mm. However, it may be considered that for foundations over a certain size and depth it may be more economical to adopt piles.

For the purposes of this contamination risk assessment, the results of the soil analyses have been compared to the Assessment Criteria (AC) derived in-house using the CLEA Software Version 1.06, CLEA SGVs published in Environment Agency Science Reports SCR050021 and SC050021/SR3, where available, and Generic Assessment Criteria (GAC), determined by LQM and CIEH, in accordance with current legislation and guidance.

Elevated levels of lead, benzo(a)pyrene and TPH were encountered within the soils at two locations while leachate analysis indicated elevated levels of lead, copper and TPH when compared to the relevant assessment criteria.

Recommendations have been made which include removal of contaminated soil and placing clean materials in order to prevent any potential risk to human health while it is also recommended that groundwater sampling and testing be undertaken in order to assess the risk to controlled waters.

Elevated levels of carbon dioxide have been recorded during the monitoring phase. As the results are also variable, it is recommended that further monitoring is undertaken.

CONTENTS

EXECUTIVE SUMMARY

1.0	INTRODUCTION	4
2.0	SITE SETTING	5
	2.1 Site Location	5
	2.2 Geological Setting	5
3.0	SUMMARY DESK STUDY FINDINGS	6
4.0	SITE WORK	7
5.0	LABORATORY TESTS	8
	5.1 Geotechnical Testing	8
	5.2 Chemical Testing	8
6.0	GROUND CONDITIONS ENCOUNTERED	9
	6.1 Sequence	9
	6.2 Made Ground/Possible Made Ground	9
	6.3 Bagshot Formation	10
	6.4 Claygate Member	10
	6.5 Groundwater	10
7.0	GEOTECHNICAL ASSESSMENT AND	
	RECOMMENDATIONS IN RELATION TO THE	
	PROPOSED DEVELOPMENT	11
	7.1 Structural Details	11
	7.2 Assessment of Soil Condition	11
	7.3 General	11
	7.4 Made Ground	11
	7.5 Bagshot Formation	11
	7.6 Suggested Soil Characteristic Values	12
	7.7 Claygate Member	13
	7.8 Foundation Design	13
	7.9 Retaining Wall Design	14
	7.10 Estimation of ϕ' for Retaining Wall Design	14
	7.11 Ground/Basement Floor Slabs	15
	7.12 Excavations	15
	7.13 Road and Hard Standing Design	15
	7.14 Chemical Attack on Buried Concrete	16
8.0	ENVIRONMENTAL RISK ASSESSMENT IN	
	RELATION TO PROPOSED DEVELOPMENT	18
	8.1 Contaminated Land	18
	8.2 Risk Assessment	18
	8.3 Pollutant Linkage	18
	8.4 Risk Assessment – Human Health	19
	8.5 Risk Assessment - Controlled Waters	21
	8.6 Gas Generation	21

	8.7 8.8 8.9 8.10	Protection Risk Eval Summary Waste	uation	vices Evaluation	22 22 23 23
9.0	MANA 9.1 9.2 9.3 9.4	Remediati Managem Consultati	on and V ent of U on	ONTAMINATION Verification nidentified Sources of Contamination During Site Works	25 25 26 27 27
10.0	REFE	RENCES			28
APPEI Figure Figure			- -	DRAWINGS Site Plan Proposed Building Elevations	
APPE	NDIX 2	2	-	SITE WORK General Notes on Site Work	ii/i-ii/iv
Figure	s A2.1- s A2.6- s A2.9-	-A2.8	- -	Borehole Records Trial Pit Records Trial Pit Photographs Nominal Section	
Figure			-	Results of Gas and Groundwater Monitoring	
APPE	NDIX 3	}	-	LABORATORY TESTS General Notes on Laboratory Tests on Soils	iii/i-iii/i
Figure Figure	A3.2		-	Geotechnical Laboratory Test Report Results of Special Digest 1 Tests	
Figure	A3.3		-	Plasticity Classification Chart	
APPE Figure Figure Figure	A4.2	l	- - -	CHEMICAL TESTS Results of Chemical Tests on Soils Results of Chemical Tests on Leachate HAZWASTE TM Output Sheet	
APPE	NDIX 5	5	-	(Full copy of output on CD) DESIGN CONSIDERATIONS Guidelines for the Design of Piles - First Approximation	
Figure	A5.1		-	of Working Loads Plot of 'N' Value with Depth	v/i-v/iii
APPE	NDIX 6	ō	-	CONTAMINATION ASSESSMENT	
Figure	A6.1		-	General Notes on Chemical Contamination Summary Table and Output Sheets for Statistical Tests on Soil	vi/i-vi/vii
Figure	A6.2		-	Summary Table for Leachate	

APPENDIX 7 - GAS GENERATION General Notes on Gas Generation

vii/i-vii/x

1.0 INTRODUCTION

- 1.1 It is understood that it is proposed to develop the site for accommodation purposes, comprising a five and seven storey structure that is joined at ground level and lower ground level (basement), which will house forty-two apartments.
- 1.2 On the instructions of Gleeds Management Services Limited, on behalf of Pegasus Life Limited, an investigation was undertaken to determine ground conditions to enable foundation and road/hard standing design to be carried out, together with a contamination risk assessment and a review of gas emissions.
- 1.3 This report should be read in conjunction with the Preliminary Investigation, which was reported under reference 52247 in August 2013.
- 1.4 It is recommended that a copy of this report be submitted to the relevant authorities to enable them to carry out their own site assessments and provide any comments.
- 1.5 This report has been prepared for the sole use of the Client for the purpose described and no extended duty of care to any third party is implied or offered. Third parties using any information contained within this report do so at their own risk.
- 1.6 The comments given in this report and the opinions expressed herein are based on the information received, the conditions encountered during site works, and on the results of tests made in the field and laboratory. However, there may be conditions prevailing at the site which have not been disclosed by the investigation and which have not been taken into account in the report.
- 1.7 The comments on groundwater conditions are based on observations made at the time the site work was carried out. It should be noted that groundwater levels vary owing to seasonal or other effects.

2.0 SITE SETTING

2.1 Site Location

- 2.1.1 The site is situated at the junction of Fitzjohn's Avenue and Prince Arthur Road in Hampstead, North London and approximately 200m to the south of Hampstead Tube Station. The site can be located by Grid Reference TQ 264 855.
- 2.1.2 A site plan is included in Appendix 1, Figure A1.1.

2.2 Geological Setting

- 2.2.1 Details of the geology underlying the site have been obtained from the British Geological Survey map, Sheet No. 256, 'North London', solid and drift edition, 1:50000 scale, published 2006.
- 2.2.2 The geological map indicates the site is not underlain by superficial deposits.
- 2.2.3 The solid geology is represented by the Bagshot Formation consisting of pale yellow-brown to pale grey or white, locally orange or crimson, fine to coarse grained sand that is frequently micaceous and locally clayey, with sparse glauconite and sparse seams of gravel. The Bagshot Formation is, in turn, underlain by the Claygate Member of the London Clay Formation comprising clay, silt and fine grained sand.

3.0 SUMMARY DESK STUDY FINDINGS

- 3.1 A Preliminary Investigation in the form of a desk study and site reconnaissance was carried out in August 2014 in order to assess the potential hazards on and adjacent to the site and prepare a risk assessment for further consideration.
- 3.2 Potential hazards relating to the underlying geology which may impact on the proposed development included Made Ground formed during the development of the existing and previous structures, which may be present to a moderate depth and likely be compressible and of low strength, and potentially high concentration of sulphates and sulphides associated with the Claygate Member, which may result in concrete attack.
- 3.3 A walkover survey was carried out on the 7 August 2014, at which time the site was at two levels. To the northeast, the ground level was at the same level as the surrounding area at about 105.80m AOD. To the southwest, ground level had been reduced to approximately 102.00m AOD, which was between 1.00m and 2.00 below the original ground level, to produce a level platform. Two structures occupied the majority of the site and were connected at first floor level. The building to the northeast was brick clad and between five and six storeys high with the buildings were in use as a residential hostel operated by the Hyelm Group.
- 3.4 A review of available historical maps indicated the site to have been undeveloped until the 1860s/1870s when Mount Farm was first shown. The site was redeveloped in the 1890s as a single Victorian dwelling with a large garden and remained substantially unchanged until the early 1970s when a new structure was constructed in the garden area of the site. The Victorian house was replaced around the late 1990s/early 2000s.
- 3.5 The research identified Made Ground, formed during previous development of the site, as a potential source of contamination which may form part of a pollutant linkage and would require further investigation.

4.0 SITE WORK

- 4.1 The site work was carried out between 13 and 29 August 2014. The locations of exploratory holes were identified by the client.
- 4.2 Three boreholes, designated 2, 5 and 6, were sunk by light cable percussion method, three boreholes, designated 1, 3 and 4, were undertaken by window sampler technique and three trial pits, designated 1 to 3, were dug by hand at the positions shown on the site plan, Appendix 1, Figure A1.1. The depths of boreholes and trial pits, descriptions of strata encountered and comments on groundwater conditions are given in the borehole and trial pit records, Appendix 2, Figures A2.1 to A2.8.
- 4.3 Borehole 6 was attempted but, due to the presence of services and difficulties in excavating an inspection pit prior to boring, was abandoned.
- 4.4 Representative disturbed and undisturbed samples were taken at the depths shown on the borehole and trial pit records and despatched to the laboratory. Standard (split-barrel and cone) penetration tests, ref. 10.6, were carried out in the boreholes in the various strata to assess the relative density or consistency. The values of penetration resistance are given in the borehole records.
- 4.5 Samples for environmental purposes were collected in amber glass jars and kept in a cool box.
- 4.6 Monitoring installations protected by a stopcock cover were installed in boreholes 4 and 5, as detailed in the borehole records and tabulated below.

Borehole No	Depth To Base (m)	Response Zone (m bgl)	Nominal Pipe Diameter (mm)	Gas Valve/Lockable Cover
BH4	12.00	1.00 to 12.00	50	Yes
BH5	20.00	1.00 to 20.00	50	Yes

- 4.7 The ground levels at the borehole and trial pit locations, reported on the records, were interpolated from spot levels on a survey drawing provided by the Client.
- 4.8 Gas monitoring visits were undertaken on the 13 and 21 October and 4 November 2014 and the results provided in Appendix 2, Figure A2.13.

5.0 LABORATORY TESTS

5.1 Geotechnical Testing

- 5.1.1 Geotechnical soil analysis was undertaken of samples obtained during the investigation as follows:
- 5.1.2 12 No. Water Content Tests
- 5.1.3 8 No. Plasticity Index Tests
- 5.1.4 11 No. Particle Size Distributions (by Wet Sieving)
- 5.1.5 6 No. pH Values
- 5.1.6 6 No. Sulphate Contents (Water Soluble)
- 5.1.7 7 No. Special Digest 1 Test Suites
- 5.1.8 The laboratory test reports are given in Appendix 3, Figures A3.1 and A3.2.

5.2 Chemical Testing

- 5.2.1 The suite of chemical analyses has been based upon the findings of the preliminary investigation, along with any on-site observations, to investigate the potential sources of contamination identified in the conceptual model. The chemical analyses were carried out on selected samples of the Made Ground. Leachate analysis was also conducted on selected samples of the Made Ground. The nature of the analyses is detailed below:
- 5.2.2 **Metals Suite** arsenic, boron (water soluble), cadmium, chromium (hexavalent), chromium (total), copper, lead, mercury, nickel, selenium and zinc.
- 5.2.3 **Organic Suite** petroleum hydrocarbons TPH CWG speciated analysis, polycyclic aromatic hydrocarbons (PAH) USEPA 16 suite and phenols, BTEX compounds and MTBE.
- 5.2.4 **Inorganics Suite** cyanide (free) and sulphate (water soluble).
- 5.2.5 **Others** pH, organic matter content and asbestos.
- 5.2.6 The results of these tests are shown in Appendix 4, Figure A4.1 and Figure A4.2.

6.0 GROUND CONDITIONS ENCOUNTERED

6.1 Sequence

- 6.1.1 The sequence of the strata encountered during the investigation generally confirms the anticipated geology as interpreted from the geological map.
- 6.1.2 Interpolation of strata depths between locations should be undertaken with caution, particularly for depths of Made Ground where structures are still present at the time of the investigation.

Strata Encountered	Depth Encount	Strata Thickness		
Strata Encountereu	From	То	(m)	
Made Ground/Possible Made Ground	0.00	0.25 to 1.80	0.25 to 1.80	
Bagshot Formation	0.25 to 1.80	8.50 to 14.90	6.80 to 14.65	
Claygate Member (London Clay Formation)	8.50 to 14.90	>20.00	>11.50	

6.1.3 The sequence and indicative thicknesses of strata are provided below:

6.2 Made Ground/Possible Made Ground

- 6.2.1 This was encountered at each of the exploratory location and extended to a depth of between 0.25m below ground level (bgl) in borehole 5 and 1.80m bgl in borehole 1.
- 6.2.2 Boreholes 1 and 4, undertaken in areas of soft landscaping encountered a surface layer of topsoil 0.80m and 0.40m thick.
- 6.2.3 Whilst boreholes 2, 3 and 5, undertaken through existing hard standings, encountered a 0.10m thick layer of asphalt over reinforced concrete to 0.40m and 0.30m bgl in boreholes 2 and 3 respectively, and block paving over sandy granite sub-base to 0.15m bgl in borehole 5. Borehole 6 was terminated in an undermined thickness of concrete.
- 6.2.4 The natural strata directly underlay the hard standing in borehole 5, and possible Made Ground comprising soft sandy gravelly clay with sand pockets underlay the hard standing in borehole 2 to a depth of 1.70m bgl.
- 6.2.5 The Made Ground continued in boreholes 1, 3 and 4, below the hard standing or topsoil, generally as brown slightly gravelly to gravelly occasionally slightly clayey silty sand with varying proportions of clinker, glass, asphalt and brick fragments, and rootlets in boreholes 1 and 4, to a depth of 1.45m bgl in borehole 1 and to the full depth of the stratum in boreholes 3 and 4.
- 6.2.6 A further layer of Made Ground was encountered in borehole 1 between 1.45m ad 1.80m comprising firm brown silty sandy clay with rootlets and rare brick and clinker fragments.

6.2.7 Trial pits 2 and 3 encountered Made Ground to a depth of 0.60m bgl and unproven at 0.70m bgl in trial pit 1.

6.3 Bagshot Formation

- 6.3.1 This underlay the Made Ground/Possible Made Ground to a depth proven in boreholes 1, 2 and 5 of between 8.50m and 14.90m bgl generally increasing in depth broadly from the north to the south.
- 6.3.2 The stratum generally comprised interbedded firm to stiff occasionally stiff to very stiff orange brown silty sandy to very sandy occasionally slightly gravelly clay and medium dense slightly clayey to clayey silty occasionally slightly gravelly fine sand. Gravels were well rounded flint.
- 6.3.3 Boreholes 3 and 4, and trial pits 2 and 3 were terminated in this stratum and thus the full thickness was unproven.

6.4 Claygate Member

- 6.4.1 Deposits consistent with the Claygate Member of the London Clay Formation underlay the Bagshot Formation in the remaining locations to the full depth of the investigation at 20m bgl.
- 6.4.2 This stratum generally comprised unweathered stiff fissured dark grey occasionally sandy silty clay with partings of sand and clusters and speckling of iron pyrite.
- 6.4.3 A bed of claystone was noted between 15.50m and 15.80m bgl.

6.5 Groundwater

- 6.5.1 Several groundwater strikes were recorded throughout the soil profile.
- 6.5.2 These observations suggest groundwater, associated with the Bagshot Formation, is present at levels of between 93.2m and 95.5mAOD, and associated with the Claygate Member at levels of between 83.7m and 90.0m AOD rising in a twenty minute period to levels of between 87.1m and 90.8. The latter likely to be under sub-artesian pressure.

7.0 GEOTECHNICAL ASSESSMENT AND RECOMMENDATIONS IN RELATION TO THE PROPOSED DEVELOPMENT

7.1 Structural Details

- 7.1.1 It is understood that the proposed development is to consist of a five and seven storey structure that is joined at ground level and lower ground level (basement), to form forty-two apartments.
- 7.1.2 Precise structural details were not available at the time of preparation of this report.
- 7.1.3 Details of the foundations to the adjacent boundary wall to the site are provided in the trial pit logs given in Appendix 2, Figures A2.6 to A2.8 and trial pit photographs Figures A2.9 to A2.11.

7.2 Assessment of Soil Condition

7.3 General

- 7.3.1 It was not possible to retrieve undisturbed samples from the strata encountered due to the frequency of groundwater strikes, the interbedded nature of the strata and the proportion of fine sand.
- 7.3.2 A plot of SPT 'N' value, as measured and uncorrected, with elevation is provided in Appendix 5, Figure A5.1.

7.4 Made Ground

- 7.4.1 Made Ground or possible Made Ground was encountered to a depth of between 0.25m and 1.80m bgl and was principally comprised of silty sand and occasionally sandy clay.
- 7.4.2 SPTs were undertaken which recorded 'N' values of between 5 and 16 suggesting the material to be generally loose to medium dense.

7.5 Bagshot Formation

- 7.5.1 These generally comprised interbedded sandy clay and clayey sand with perched groundwater and extended to depths where proven of between 8.50m and 14.90m bgl.
- 7.5.2 Laboratory testing for the clay beds recorded natural moisture contents of between 11% and 25%, with an average of 19% and plasticity indices of between 18% and 33%, with an average of 27%. The plastic index test results are presented on the plasticity classification chart, Appendix 3, Figure A3.3.
- 7.5.3 These results indicate the clay beds in the stratum are of low to intermediate plasticity and of low to medium volume change potential as defined by the National House Building Council, ref. 10.9 and other published data, refs 10.10 and 10.11.

- 7.5.4 Therefore based on the average plasticity index of 27% it is considered that for design purposes medium volume change potential should be adopted. Changes in moisture content could result in moderate changes in volume, seasonal changes being exacerbated by the presence of trees.
- 7.5.5 Participle size distributions undertaken on bulk samples from a range of depths indicated a gravel content of between 0% and 10%, with one value of 45% and an average of 7%, a sand content of between 29% and 83%, with an average of 58%, a silt content of between 8% and 44%, with an average of 20% and a clay content of between 4% and 27%, with an average of 15%. The sand was predominantly fine grained.
- 7.5.6 SPTs were undertaken and where full penetration was achieved, recorded 'N' values of between 7 and 29, with one value of 50 and an average of 17 suggesting the stratum is generally medium dense, occasionally loose towards the top of the stratum.
- 7.5.7 Using empirical correlations and assuming the stratum to be a clay soil an average 'N' value of 17 might suggest an m_v value of 0.13 m²/MN for this stratum with a conservative value for the top of the stratum in the order of $0.32m^2/MN$.

7.6 Suggested Soil Characteristic Values

7.6.1 Summary of the geotechnical parameters derived from the laboratory and insitu testing:

	Minimum	Maximum	Characteristic
Moisture Content (%)	11	25	19
Plasticity Index (%)	18	33	27
SPT 'N' value	7	29 (50)	17
Derived Compressibility, m _v (m ² /MN)	0.08	0.32	0.13
Gravel Content (%)	0	10	7
Sand Content (%)	29	83	58
Silt Content (%)	8	44	20
Clay Content (%)	4	27	15

7.7 Claygate Member

- 7.7.1 This was proven to underlay the Bagshot Formation to the full depth of the investigation at 20m bgl and generally comprised unweathered stiff fissured dark grey occasionally sandy silty clay with partings of sand and clusters and speckling of iron pyrite, with possible sub-artesian groundwater.
- 7.7.2 Laboratory testing undertaken on one sample of the clay recorded a natural moisture content of 25% with a plasticity index of 37%. The plastic index test result is presented on the plasticity classification chart, Appendix 3, Figure A3.3.
- 7.7.3 This result indicates the stratum to be of high plasticity and of medium volume change potential as defined by the National House Building Council, ref. 10.9 and other published data, refs 10.10 and 10.11.
- 7.7.4 A participle size distribution indicated a gravel content of 0%, a sand content of 56%, a silt content of 28% and a clay content of 16%.
- 7.7.5 SPTs were undertaken and where full penetration was achieved, recorded 'N' values of between 20 and 41, with an average of 34 which when using empirical correlations suggests the stratum is generally stiff to very stiff and of high to very high strength.

7.8 Foundation Design

- 7.8.1 On the basis of observations made on site together with results of in-situ and laboratory tests consideration could be given to the adoption of shallow spread foundations to support the proposed structure.
- 7.8.2 Therefore, at the proposed formation elevations for the new structure of 103.29m, 100.84m and 98.7m AOD such foundations, assuming the Bagshot Formation at shallow depth is essentially a clay soil, may be designed to an allowable bearing pressure of 80kPa, 110kPa and 125kPa respectively, which would provide an adequate factor of safety against shear failure. Settlements, assuming a 1m wide pad, are likely to be less than 20mm, however, these should be checked when the final structural loading is known.
- 7.8.3 In addition conventional shallow spread footings should be taken through any Made Ground/Possible Made Ground and placed in the underlying natural strata, be at a minimum depth of 0.90m bgl and where within the zone of influence of recently removed, existing or proposed trees, foundations should be taken through the Made Ground and placed at depths recommended by the NHBC for soils of medium volume change potential. Compressible material should be placed on the inside faces of foundations as specified by the NHBC.
- 7.8.4 However, it may be considered that for foundations over a certain size and depth it may be more economical to adopt piles. Guidelines for the design of piles are given in Appendix 5, which may be used with the plot of 'N' value with depth included in Figure A5.1.

- 7.8.5 Within the zone of influence of trees the piles should be sleeved to depths equivalent to those specified by the NHBC for a foundation at the same location. Compressible material should be placed below and on the inside faces of pile caps and beams, as specified by the NHBC.
- 7.8.6 The carrying capacity of piles depends not only on their size and the ground conditions but also on their method of installation. Pile design and installation are continuously evolving processes and state-of-the-art techniques are often employed before they reach the public domain, perhaps several years down the line. Therefore, it is recommended that specialist Piling Contractors be contacted as to the suitability and carrying capacity of their piles in the ground conditions pertaining to the site.
- 7.8.7 However, as a guide, a basic assessment of the likely carrying capacity of bored piles can be determined using the guidelines given in Appendix 5 and included in the table below.

Length of Pile (m)	Safe Working Load (kN)					
	350mm Diameter	400mm Diameter	450mm Diameter			
10	140	160	185			
15	250	295	340			
20	405	475	545			

- 7.8.8 The assessment is based on traditional methods using an overall factor of safety of 3, it assumes the Bagshot Formation is a granular material, assumes an adhesion factor of 0.45 for the stiff clay in the Claygate Member and that the top 2m is Made Ground (from the highest elevation of 103.29m AOD) and thus is ignored.
- 7.8.9 It should be noted that groundwater was present, which could affect the installation of the piles and that casing will be required.

7.9 Retaining Wall Design

7.10 Estimation of ϕ' for Retaining Wall Design

- 7.10.1 New retaining walls for the proposed structure, which are understood to extend to a depth of some 7.7m bgl, are likely to be require to support predominantly the interbedded Bagshot Formation, which for the purpose of this report is considered to be a clay soil.
- 7.10.2 To determine the long term clay strength, effective stress analyses may be carried out, either fully drained or undrained with pore water pressure measurements. However, such tests must be carried out slowly to ensure equalisation of pore pressures and are therefore time consuming. It was not possible to retrieve suitable samples of the Bagshot Formation for such analysis due to the interbedded nature of the stratum and the high percentage of fine sand.

- 7.10.3 Therefore, based on the sample descriptions and laboratory classification tests together with readily available published literature, it is considered reasonable for design purposes that an assumed angle of internal friction, ϕ' for the Bagshot Formation of 24° could be adopted.
- 7.10.4 If the undrained strength of stiff clay is to be relied upon during temporary works construction, then care is necessary to ensure that there are no sand or silt partings containing free water that would affect the undrained shear strength. Sand beds were encountered within the Bagshot Formation for the depth of the proposed basement and though perched water was not observed.

7.11 Ground/Basement Floor Slabs

- 7.11.1 On the basis of observations on site together with the results of laboratory tests, it is recommended that outside the zone of influence of trees, consideration is given to constructing the ground/basement floor slabs on formation prepared in the Bagshot Formation. Any soft or deleterious material should be removed and replaced with properly compacted granular fill.
- 7.11.2 Within the zone of influence of trees, the ground floor slabs should be suspended over a void, in accordance with NHBC guidelines.

7.12 Excavations

- 7.12.1 On the basis of observations on site together with the results of in-situ and laboratory tests, it is considered that excavations to less than 1.20m would not stand unsupported in the short term. Side support for safety purposes should of course be provided to all excavations which appear unstable, and those in excess of 1.20m deep, in accordance with Health and Safety Regulations, ref. 10.14.
- 7.12.2 Groundwater should not be expected in shallow excavations for foundations or services. However, it is possible that perched groundwater could be present in the Made Ground overlying the clay beds of the Bagshot Formation. It is considered that this could be dealt with by the use of a small pump.
- 7.12.3 Groundwater could be expected in excavations taken to depths in excess of 8m bgl.

7.13 Road and Hard Standing Design

- 7.13.1 The structural design of a road or hard standing is based on the strength of the subgrade, which is assessed on the California Bearing Ratio, CBR, scale from which the subgrade surface modulus can be estimated. Experience has indicated that the measurement of the in-situ CBR value tends to give unreliable results because of the influence of the moisture content of the materials. In practice, the correlation given by the Highways Agency, ref. 10.15, is usually more appropriate than direct determination of the CBR.
- 7.13.2 The process of design given in the guidance notes requires an estimate of CBR and subgrade stiffness modulus to be made at the design stage and in-situ measurement prior to construction.

- 7.13.3 On the basis of laboratory classification tests it is recommended that for formation prepared in the Bagshot Formation, with a characteristic plastic index value of 27%, a subgrade CBR value of 4% be adopted for design purposes. The assessment assumes there to be a low water table, good construction conditions and a thin pavement construction. Any areas of soft or deleterious material in the Made Ground should be excavated and replaced with a properly compacted granular fill.
- 7.13.4 For routine cases, all material within 450mm of the road surface should be non frost-susceptible, ref. 10.16.

7.14 Chemical Attack on Buried Concrete

- 7.14.1 The site has been classified in accordance with BRE Special Digest 1, ref. 10.17, as Made Ground, and as natural ground without the presence of pyrite being the Bagshot Formation and as natural ground that contains pyrite being the Claygate Member. Laboratory testing was undertaken accordingly. It is recommended that the guidelines given in BRE Special Digest 1, ref. 10.17, be adopted.
- 7.14.2 The results of chemical tests in the Made Ground indicate a sulphate concentration in the soil of between 24mg/l and 1300mg/l as a 2:1 water/soil extract, with pH values in the range of 7.2 to 11.1.
- 7.14.3 The results of chemical tests in the Bagshot Formation indicate a sulphate concentration in the soil of between 27mg/l and 63mg/l as a 2:1 water/soil extract, with pH values in the range of 6.1 to 8.5.
- 7.14.4 The results of chemical tests in the Claygate Member, indicate a sulphate concentration in the soil of between 180mg/l and 350mg/l as a 2:1 water/soil extract, a total sulphate concentration of between 0.11% and 0.12% and total sulphur of between 0.48% and 0.60%, with pH values in the range of 7.2 to 7.6.
- 7.14.5 It is recommended that for conventional shallow foundations the groundwater should be regarded as mobile.
- 7.14.6 Characteristic values for each strata have been derived from laboratory results for pH, 2:1 water/soil extract (WS), total (acid) soluble sulphate (AS), equivalent Total Potential Sulphate (TPS) and Oxidisable Sulphate (OS), and are presented in the table below, together with Design Sulphate Class and the ACEC Class: -

Stratum	рН	WS (mg/l)	AS (%)	TPS (%)	OS (%)	Groundwater Condition	DS	AC
Made Ground	7.2	1300	N/a	N/a	N/a	Mobile	2	2
Bagshot Formation	6.1	63	N/a	N/a	N/a	Mobile	1	1
Claygate Member (unweathered)	7.2	350	0.12	1.80	1.68	Static	1/4	1s/3s

7.14.7 Values for OS greater than 0.30% indicate that pyrite is present and may be oxidised to sulphate where the ground is disturbed.

- 7.14.8 On the basis of the laboratory test results it is considered that a Design Sulphate Class for concrete located in the non-pyritic soils may be taken as DS-1. The site conditions would suggest that an ACEC class for the site of AC-1 would be appropriate, however where concrete is to come into contact with the Made Ground consideration should be given to DS and ACEC 2.
- 7.14.9 Where concrete is to be exposed to disturbed ground in which pyrite is available to be oxidised to sulphate, in this instance the Claygate Member below a depth of about 8.5m bgl, consideration should be given to a Design Sulphate Class of DS-4 with an ACEC class of AC-3s. However, it is considered that oxidisation is unlikely to occur below this depth following the installation of piles. Therefore, it is recommended that should piles be adopted a Design Sulphate Class of DS-1 and ACEC class of AC-1, as indicated by the water soluble sulphate would be appropriate.

8.0 ENVIRONMENTAL RISK ASSESSMENT IN RELATION TO PROPOSED DEVELOPMENT

8.1 Contaminated Land

- 8.1.1 The statutory definition of contaminated land is defined in the Environmental Protection Act 1990, ref. 10.18, which was introduced by the Environment Act 1995, ref. 10.19, as;
- 8.1.2 'Land which appears to the Local Authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that
 - significant harm is being caused or there is a significant possibility of such harm being caused; or
 - significant pollution of controlled waters is being caused, or there is a significant possibility of such pollution being caused.'

8.2 Risk Assessment

- 8.2.1 The definition of contaminated land is based on the principles of risk assessment. Risk is defined as a combination of:
 - The probability, or frequency of exposure to a substance with the potential to cause harm, and:
 - The seriousness of the consequence.

8.3 Pollutant Linkage

- 8.3.1 The basis of an environmental risk assessment involves identifying a 'source' of contamination, a 'pathway' along which the contamination may migrate and a 'receptor' at risk from the contamination.
- 8.3.2 Current legislation defines the various elements of the pollution linkage as:
 - A contaminant is a substance, which is in or under the ground and which has the potential to cause harm or to cause pollution of controlled waters.
 - A pathway is one or more routes through which a receptor is being exposed to, or affected by, a contaminant, or could be so affected.
 - A receptor is either a living organism, an ecological system, a piece of land or property, or controlled water.
- 8.3.3 A pollutant linkage indicates that all three elements have been identified. The site can only be defined as 'Contaminated Land' if a pollutant linkage exists and the contamination meets the criteria in Section 8.1 above.

- 8.3.4 The guidance proposes a four-stage approach for the assessment of contamination and the associated risks. The four stages are listed below:
 - Hazard Identification
 - Hazard Assessment
 - Risk Assessment
 - Risk Evaluation
- 8.3.5 The hazard identification and hazard assessment have been based upon the Preliminary Investigation and formed the conceptual site model, detailed in our report, reference 52247, dated August 2014.
- 8.3.6 The risk assessment and evaluation stages are presented in this phase 2 interpretive report, after an intrusive ground investigation has taken place.

8.4 Risk Assessment – Human Health

- 8.4.1 It is understood that it is proposed to develop the site for accommodation purposes, comprising a five and seven storey structure that is joined at ground level and lower ground level (basement), which will house forty-two apartments. The risk assessment has therefore been based on guidelines for a residential end use.
- 8.4.2 The results of the soil analyses have been compared to CLEA SGVs published in Environment Agency Science Reports SC050021/SR3, ref. 10.20, and SC050021, ref. 10.21, where available, and Generic Assessment Criteria (GAC), determined by LQM and CIEH, ref. 10.22, as well as Assessment Criteria (AC) derived in-house using the CLEA Software Version 1.06, ref. 10.23. The CLEA AC have been derived by Ian Farmer Associates in accordance with current legislation and guidance, as detailed in Appendix 6.
- 8.4.3 The guidance values used within this contamination assessment have been tabulated and are detailed within Appendix 6. The results have been tabulated, and compared against the relevant assessment criteria, and a summary table presented in Appendix 6, Figure A6.1
- 8.4.4 The results of chemical analyses have been processed in accordance with recommendations set out in the CIEH and CL:AIRE document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration', ref. 10.24. Where the concentrations determined on site are at or below the respective assessment criteria, they are considered not to pose a risk and are removed from further consideration, unless otherwise stated.

8.4.5 Those contaminants with observed concentrations above the Guidance Level are detailed below:

Location	Depth (m)	Contaminant	Concentration (mg/kg)	Guidance Level (mg/kg)
BH1	0.30	Lead	1500	450
		Benzo(a)pyrene	1.3	0.83
BH3	1.00	TPH Aromatic C ₁₆ -C ₂₁	440	250
		TPH Aromatic C ₂₁ -C ₃₅	2900	890

- 8.4.6 Where the concentration of any contaminant is above the Guidance Level, further statistical analysis of the results has been conducted in accordance with the CIEH and CL:AIRE guidance, the results of which are presented in the summary table and on 'output sheets' in Appendix 6, Figure A6.1.
- 8.4.7 Before determining which statistical test can be applied to the data set, it is first necessary to determine the normality of the data distribution by carrying out the Shapiro-Wilk normality test, ref. 10.25. Where the data distribution is shown to be normal, the Upper Confidence Limit (UCL) test can be applied to the results and where data deviates from normality, an alternative method is selected.
- 8.4.8 The Shapiro-Wilk normality test indicates that the data for the results is normally distributed.
- 8.4.9 The relevant methods were applied to the contaminants of concern, the results of which gives the estimated upper bound of the 95th UCL of the samples. This test indicates whether any high concentrations represent a significant possibility of harm to human health.
- 8.4.10 The calculations from the UCL tests are provided in Appendix 6, Figure A6.1, and the results are tabulated below:

Contaminant	Value of UCL (mg/kg)	Guidance Value (mg/kg)	Comments
Lead	521	450	Outlier test required
Benzo(a)pyrene	0.50	0.83	Risk within acceptable limits for proposed use
TPH Aromatic C ₁₆ -C ₂₁	126	250	Risk within acceptable limits for proposed use
TPH Aromatic C ₂₁ -C ₃₅	825	890	Risk within acceptable limits for proposed use

8.4.11 To assess the significance of the contaminant concentrations that exceed the Guidance Level, the outlier test has been undertaken. This test determines whether the highest recorded contaminant concentrations are from the same population or represent a 'hotspot'.

8.4.12 The calculation from the outlier test for lead is provided in Appendix 6, Figure A6.1. This indicates that the result for lead is not an outlier and therefore represents a background concentration within the strata sampled. However, if this result is removed, the 95th percentile result no longer continues to exceed the Guidance Value.

8.5 Risk Assessment - Controlled Waters

- 8.5.1 The site is located above a Secondary A aquifer and there are no surface watercourses within 1km of the site.
- 8.5.2 An initial assessment of the risk to controlled waters has been carried out on the basis of the results of leachate analysis undertaken on samples from the Made Ground. The leachate results have been screened against the Water Supply (Water Quality) Regulations 2000, ref. 10.29.
- 8.5.3 It should be noted that there is no TPH guideline parameter within the Water Supply Regulations 2000. As such, the guidance value of $10\mu g/l$ within the Water Supply Regulations 1989, ref. 10.30, has been adopted as a conservative approach.
- 8.5.4 The leachate analysis indicates exceedances for lead, copper and TPH when compared against the Water Supply Regulations. However, if the leachate analysis is compared to freshwater EQS, ref. 10.31, then only TPH exceeds the relevant guidance level.
- 8.5.5 It is recommended that the Environment Agency be consulted with regard to the significance of these results, particularly in light of the fact that there is no current guideline TPH parameter within the Water Supply Regulations 2000.
- 8.5.6 Given the ground conditions encountered at the site and the results of this contamination assessment, it is considered likely that further assessment of the risks to controlled waters will be required.

8.6 Gas Generation

- 8.6.1 Gas monitoring visits were undertaken during October and November, generally during periods of low or falling atmospheric pressure. The results of the gas monitoring are included within Appendix 2, Figure A2.13.
- 8.6.2 Methane concentrations of less than 0.1% by volume were recorded during the various monitoring phases together with carbon dioxide concentrations of between <0.1% and 10.3%. Variable oxygen concentrations were recorded ranging from near atmospheric to depleted (12.9%).
- 8.6.3 Flow rates were recorded over a three minute period during the various return monitoring visits. The maximum of the three minute average flows was recorded at less than 0.11/hr (limit of detection).

- 8.6.4 In accordance with the methodology published in CIRIA Document C665, ref. 10.47, the maximum recorded values were taken to calculate a Gas Screening Value for the site. The GSV calculated for carbon dioxide is 0.011/hr. The GSV calculated for methane is 0.00011/hr. Although this value indicates the site to be Characteristic Situation 1 (Appendix 7, Table A7.2), the high levels of carbon dioxide recorded on each visit would indicate that Characteristic Situation 2 would be more applicable. For Situation A, being any development other than low rise residential with suspended floor slab and ventilated void, gas protective measures are given in Appendix 7, sections A7.7 and A7.10.
- 8.6.5 These comments are based on three sets of readings over a period of 4 weeks, which does not follow the recommended guidelines given in Appendix 7, Table A7.1. These values were elevated and varied over the period of monitoring and therefore, it is recommended that a continued programme of monitoring be carried out to comply more closely with these guidelines before final design is undertaken.
- 8.6.6 Radon The BRE guidance on Radon producing areas within the UK, (BR211:2007), indicates that the site lies within an area where radon protective measures are not required.
- 8.6.7 It is recommended that the Local Authority/NHBC are consulted regarding these gas protection measures for their approval prior to commencing construction.

8.7 **Protection Of Services**

8.7.1 Due to the increasing number of developments being undertaken on potentially contaminated land, the Water Supply Industry has identified the need to protect newly laid water supply pipes. They are likely to impose constraints on the nature of water supply pipes that are to be laid in contaminated land. Current guidance on the selection of materials for water pipes is provided by the UK Water Industry Research Limited, ref. 10.32, though some water supply companies may continue to refer to the previous guidance provided by Water Regulations Advisory Scheme, ref. 10.33, and should be consulted for confirmation.

8.8 Risk Evaluation

8.8.1 The conceptual model formed within the Preliminary Investigation has been updated to reflect the findings of the contamination risk assessment and the revised conceptual model, detailing the relevant pollutant linkages, is tabulated below:

Source	Potential Pathways	Receptor Group			
Made Ground (lead, PAH, TPH)	 Ingestion of contaminated soil by direct contact Ingestion of contaminants through vegetables Entry of contaminants by skin or eye contact with contaminated soils or dust Inhalation of contaminated dust 	 Humans Site occupants¹ Site users¹ Construction workers² Maintenance workers¹ Neighbouring site users² 			
Made Ground (copper, lead. TPH)	InfiltrationMigrationSurface run-off	Water EnvironmentGroundwater			
Made Ground (Ground gas)	 Inhalation or migration of toxic / explosives gases / vapours 	Humans Site occupants¹ Site users¹ Construction workers² Maintenance workers¹ 			
 ¹ – Assumes no remediation is undertaken ² – Pathway exists only during the construction period 					

8.9 Summary of Risk Evaluation

- 8.9.1 The above assessment identifies that the 'source pathway receptor' linkage potentially occurs with lead impacting upon the identified receptors. Therefore, it would be necessary to manage the risk at this location by either eliminating one of the links or by minimising the potential effects.
- 8.9.2 The elevated level of lead was from BH1 at a depth of 0.30m. The borehole was sunk within the garden area in the northwest corner of the site.

8.10 Waste

- 8.10.1 An initial assessment of the likely waste classification for any material to be disposed of has been conducted on the basis of the chemical test results obtained as part of the contamination risk assessment.
- 8.10.2 This assessment has been conducted using the HazWasteOnlinetm tool, ref. 10.34, the summary output sheet from which is included within Appendix 4, Figure A4.3, with a full copy of the output included on the accompanying CD.
- 8.10.3 This initial assessment indicates that the following sample could be classified as hazardous waste:

Location	Depth (m)	Classification Result	Contaminant	Hazardous Property
BH1	0.30	Hazardous	Lead	H7: Carcinogenic H14: Ecotoxic
			Cyanide	H12: Release of toxic gases

- 8.10.4 It should be noted that this sample also identified the presence of asbestos fibres (amosite) which is also likely to classify the material as hazardous waste.
- 8.10.5 Individual tips might require further analysis prior to the disposal of any material from the site. Any such requirements should be clarified with the tip prior to any further analysis being undertaken.

9.0 MANAGEMENT OF CONTAMINATION

9.1 Remediation and Verification

- 9.1.1 The risk management framework set out in the Model Procedures for the Management of Land Contamination, CLR 11, ref. 10.35, is applicable to the redevelopment of sites that may be affected by contamination.
- 9.1.2 The risk management process set out in the Model Procedures has three main components:
 - Risk assessment
 - Options appraisal
 - Implementation
- 9.1.3 This initial risk assessment has identified the presence of elevated lead, benzo(a)pyrene and total petroleum hydrocarbons concentrations within the Made Ground in the garden area and central forecourt of the site, plus elevated levels of lead, copper and TPH within the leachate results. Relevant pollutant linkages have been identified, as demonstrated in the updated conceptual model.
- 9.1.4 The remediation strategy will need to review methods of reducing or controlling the identified unacceptable risks. This could be done by removing or treating the sources of contamination, removing or modifying the pathways or removing or modifying the behaviour of the receptors, to ensure there is no significant risk of significant harm to either human health or controlled waters from the identified contamination, in relation to the proposed end use.
- 9.1.5 An important part of the risk management process is identifying and informing all stakeholders with an interest in the outcome of the risk management project. To this end, if the regulators have not yet been contacted with regard to the redevelopment of this site, it is recommended that they be supplied with a copy of both the Preliminary Investigation report and this Phase 2 Ground Investigation report in order to enable liaison to be undertaken with them.
- 9.1.6 Following liaison with the relevant regulatory bodies, a remediation strategy could be formulated, which should incorporate an options appraisal and summarise in detail the chosen remedial approach, along with the verification proposals. The remediation strategy should then be approved by the relevant regulatory authorities prior to implementation.
- 9.1.7 Where remediation is required, a verification report will need to be formulated following implementation of the remediation strategy, which should provide a complete record of all remedial activities conducted on site and include all the data obtained to support the remedial objectives and demonstrate that the remediation has been effective. Any unexpected conditions encountered during the remedial works should also be detailed within the verification report.

- 9.1.8 The elevated TPH identified in BH3 is likely to be removed as part of the construction as a basement is to be constructed.
- 9.1.9 This would only leave the elevated benzo(a)pyrene and lead identified in BH1 which will be within a garden area and would require some form of remediation. In gardens, landscaped areas or areas likely to be used for the growing of vegetables/fruit for consumption, a capping layer of 'inert' material could be provided to break the pathway between the identified contamination and end users of the site. The required thickness of the capping layer could be determined using guidance provided by the BRE, ref. 10.36.
- 9.1.10 In order to minimise the impact on future maintenance workers, where services are to be placed at a depth that puts them at or below the level of the source of contamination, it would be prudent to line the trenches and surround the services with clean inert material.
- 9.1.11 With respect to groundwater, the removal of the source during basement construction would go some way to reducing the potential risk to groundwater. However, it would be prudent to undertake groundwater sampling on at least two occasions in order to ascertain the impact on the groundwater from the elevated contaminants in the soil.
- 9.1.12 Elevated levels of carbon dioxide have been recorded during the monitoring period. However, the results are variable and it is recommended that further monitoring is undertaken to confirm these results.

9.2 Management of Unidentified Sources of Contamination

- 9.2.1 There is the possibility that sources of contamination may be present on the site, which were not detected during the investigation. Should such contamination be identified or suspected during the site clearance or ground works, these should be dealt with accordingly. A number of options are available for handling this material, which include:
 - The removal from site and disposal to a suitably licensed tip of all material suspected of being contaminated. The material would need to be classified prior to disposal.
 - Short-term storage of the suspected material while undertaking verification testing for potential contamination. The storage area should be a contained area to ensure that contamination does not migrate and affect other areas of the site. Depending upon the amounts of material under consideration, this could be either a skip or a lined area.
 - Having a suitably experienced environmental engineer either on-call or with a watching brief for the visual and olfactory assessment of the material, and sampling for verification purposes.

9.3 Consultation

- 9.3.1 During the development of a site, consultation may be required for a number of reasons with a number of regulatory Authorities. The following provides an indication as to the most likely Authorities with which consultation may be required.
 - Local Authority. There may be a planning condition regarding contamination and consultation will be required with a designated Contaminated Land Officer within the Environmental Health Department. The Local Authority is generally concerned with human health risks. Some Authorities now require 'Completion Certificates' to be signed off following remediation works.
 - **Environment Agency.** Where a site is situated above an aquifer, within a groundwater protection zone or has been designated as a special site, the Environment Agency is likely to be involved to ensure that controlled waters are protected.
 - National House Building Council, NHBC. Section 4.1 of the NHBC Standards requires land management to be addressed. For a new housing development to be approved by the NHBC, any remediation will require a validation report.
- 9.3.2 Based on the results of any consultation, there may be specific remediation requirements imposed by one or more of the Authorities.

9.4 Risk Management During Site Works

- 9.4.1 During ground works, some simple measures may have to be put in place to mitigate the risk of any known or previously unidentified contamination affecting the site workers and the environs. The majority of the proposed measures represent good practice for the construction industry and include:
 - Informing the site workers of the contamination on site and the potential health effects from exposure.
 - Where appropriate, the provision of suitable Personal Protective Equipment (PPE) for workers who may be potentially impacted by working in areas of the contamination.
 - Ensuring good hygiene is enforced on site and washing facilities are maintained on the site. Workers are discouraged from smoking, eating or drinking without washing their hands first.
 - Dust monitoring, and if necessary, suppression measures should be put into practice where contamination is becoming airborne.
- 9.4.2 Where contaminated materials are being removed from the site they should be disposed of at a suitably licensed landfill, with a 'duty of care' system in place and maintained throughout the disposal operations.

10.0 REFERENCES

- 10.1 CLR 4, 'Sampling strategies for contaminated land'. Report by The Centre for Research into the Built Environment, the Nottingham Trent University, DoE, 1994.
- 10.2 British Standards Institute: BS 10175 'Code of practice for the investigation of potentially contaminated sites', BSI 2011.
- 10.3 British Standards Institute: BS 5930 'Code of practice for site investigations', BSi 1999 + A2:2010.
- 10.4 ISO 1997, Part 2:2007, 'Eurocode 7 (incorporating corrigendum June 2010) Geotechnical Design Part 2, Ground Investigation and Design'.
- 10.5 ISO 22476 3:2005, 'Geotechnical Investigation and Testing Field Testing' Part 3, Standard Penetration Test.
- 10.6 British Standard 1377:1990, Part 9, 'Methods of Test for Soils for Civil Engineering Purposes'.
- 10.7 Stroud, M.A. 'The Standard Penetration Test in Insensitive Clays and Soft Rocks', Proceedings of European Symposium on Penetration Testing, Stockholm, 1974.
- 10.8 Stroud, M.A. and Butler, F.G. 1975 'The Standard Penetration Test and Engineering Properties of Glacial Materials', Symposium of Engineering Behaviour of Glacial Materials, Birmingham University.
- 10.9 National House-Building Council, Standards, Chapter 4.2, 2003 'Building Near Trees'.
- 10.10 BRE Digest 240, 'Low-rise buildings on shrinkable clay soils: Part 1'. September 1993.
- 10.11 Geotechnique, June 1983.
- 10.12 British Standard Code of Practice for Earth Retaining Structures, BS 8002:1994. No longer current but cited in building regulations.
- 10.13 Thorburn, S. 'Tentative Correction Chart for the Standard Penetration Test in noncohesive soils', Soil Engineering and Public Works Review, 58, 1963.
- 10.14 Health and Safety Executive, 'Health and Safety in Excavations', HSG 185, 1999.
- 10.15 Design Guidance for Road Pavement Foundations, Interim Advice Note 73/06, Revision 1 (2009).
- 10.16 Transport and Road Research Laboratory, Report PR45, 1986.
- 10.17 Building Research Establishment, Special Digest 1, 'Concrete in Aggressive Ground', 2005.
- 10.18 The Environmental Protection Act, Part IIA, Section 78, 1990.
- 10.19 Environment Act 1995, Section 57, DoE 1995.

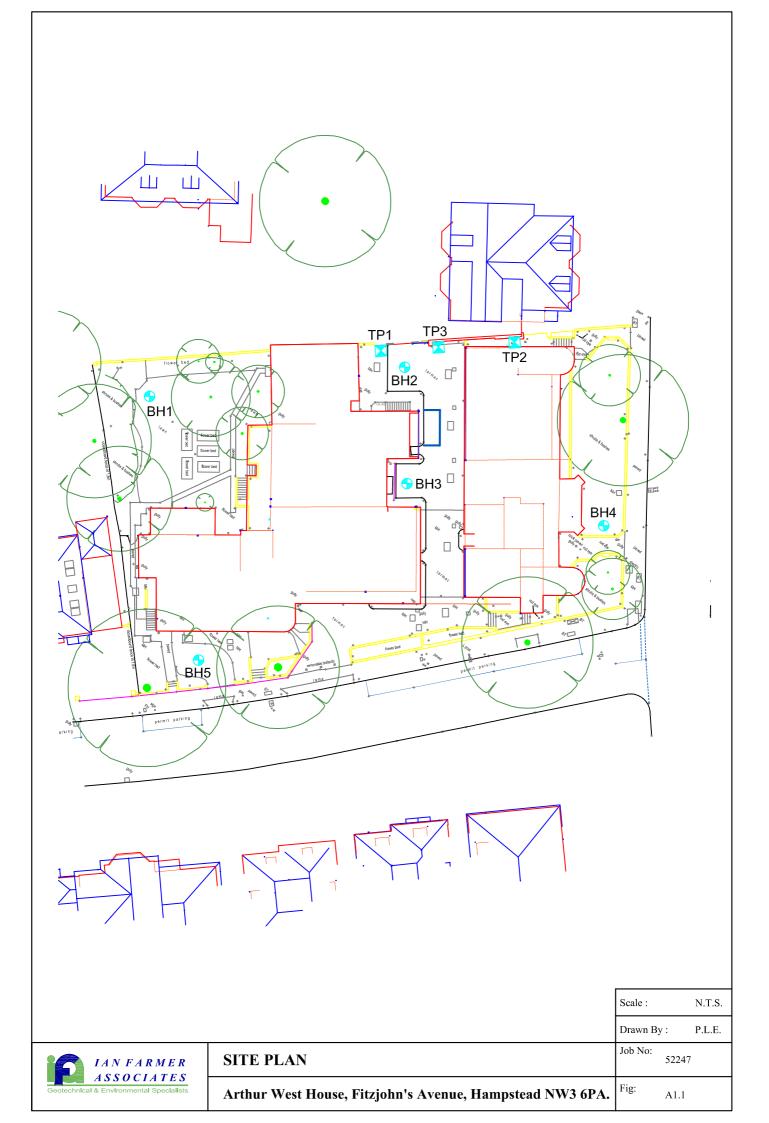
- 10.20 Environment Agency Science Report SC050021/SR3, 2008, 'Updated technical background to the CLEA model'.
- 10.21 Environment Agency Science Report SC050021, 2009, 'Contaminants in Soil: Updated Collation of Toxicological Data and Intake Values for Humans'.
- 10.22 Generic Assessment Criteria for Human Health Risk Assessment (2nd Edition), Nathanial P, McCaffery C, Ashmore M, Cheng Y, Gillett A, Ogden R, and Scott D, Land Quality Press, Nottingham, published July 2009.
- 10.23 CLEA Software Version 1.06 (downloaded from the Environment Agency website, <u>http://www.environment-agency.gov.uk</u>).
- 10.24 'Guidance on Comparing Soil Contamination Data with a Critical Concentration', Chartered Institute of Environmental Health (CIEH) and Contaminated Land: Applications in Real Environments (CL:AIRE) May 2008.
- 10.25 An Analysis of Variance Test for Normality, Shapiro, S. S. and Wilk, M. B. 1965.
- 10.26 Environment Agency Science Report SC050021/SR2 'Human health toxicological assessment of contaminants in soil'.
- 10.27 Generic Assessment Criteria for Human Health Risk Assessment, Nathanial CP, McCaffery C, Ashmore M, Cheng Y, Gillett A, Hooker P and Ogden RC, Land Quality Press, Nottingham, published November 2006.
- 10.28 CLR 7, 'Assessment of risks to human health from land contamination: an overview of the development of soil guideline values and related research'. DEFRA/EA, March 2002.
- 10.29 Water Supply (Water Quality) Regulations 2000, Statutory Instrument 2000 No. 3184, Crown Copyright 2000.
- 10.30 Water Supply (Water Quality) Regulations 1989, Statutory Instrument 1989 No. 1147, Reprinted 1993.
- 10.31
 Environmental Quality Standards, Lists 1 and 2 Dangerous Substances, EC Dangerous Substances

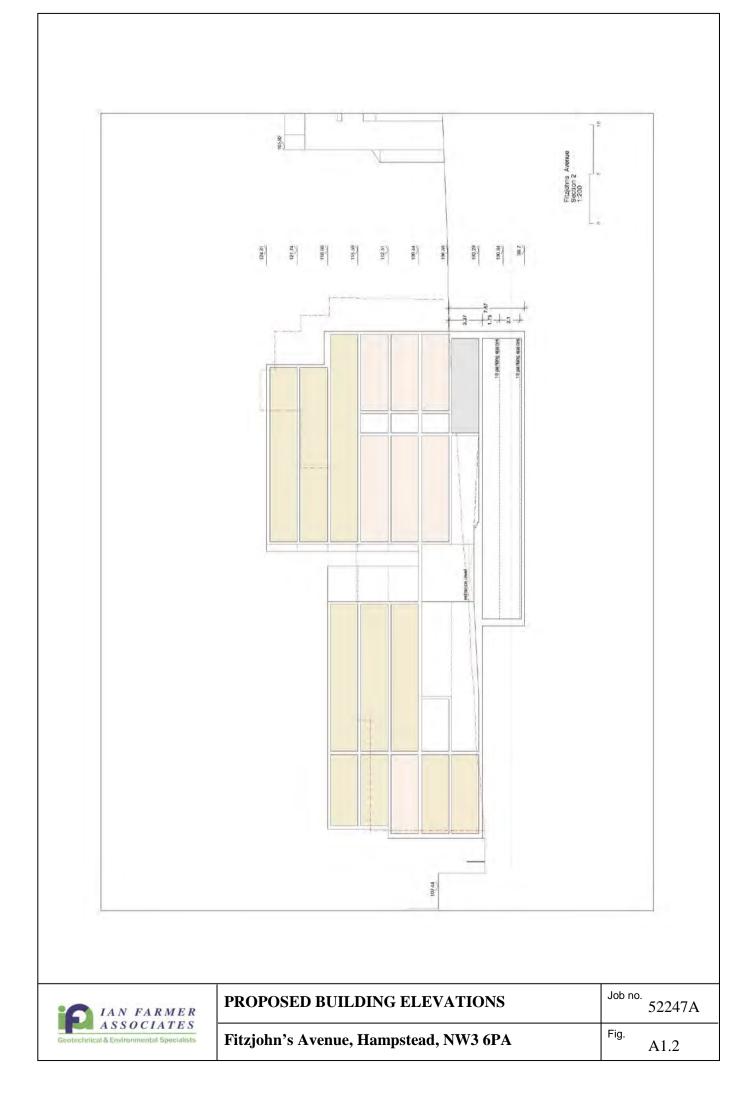
 Substances
 Directive,

 agency.gov.uk/yourenv/eff/1190084/water/1182267/1182413/290939/?version=1&lan

 g=_e
- 10.32 UK Water Industry Research Limited, 'Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites', report reference Number 10/WM/03/21, 2010.
- 10.33 Water Regulations Advisory Scheme, Information and Guidance Note, October 2002, 'The Selection of Materials for Water Supply Pipes to be Laid in Contaminated Land'.
- 10.34 HazWasteOnlinetm, <u>http://www.hazwasteonline.co.uk</u>.
- 10.35 CLR 11, 'Model Procedures for the Management of Contaminated Land', DEFRA and Environment Agency, 2004.

- 10.36 BRE Digest 465, 'Cover Systems for Land Regeneration Thickness Cover Systems for Contaminated Land', 2004.
- 10.37 Environment Agency / SEPA Pollution Prevention Guidelines, PPG5, 'Works In, Near, or Liable to Affect Watercourses'.
- 10.38 ISO 22475-1:2006, 'Geotechnical Investigation and Testing Sampling Methods and Groundwater Measurements' Part 1: Technical Principles for Execution.
- 10.39 ISO 14688 Part 1:2002 and Part 2:2004, 'Geotechnical Investigation and Testing Identification and Classification of Soil'.
- 10.40 ISO 14689 Part 1:2003, 'Geotechnical investigation and testing Identification and description of rock'.
- 10.41 CLR 2, 'Guidance on preliminary site inspection of contaminated land', Report by Applied Environmental, DoE 1994.
- 10.42 CLR 3 'Documentary Research on Industrial Sites', Report by RPS Consultants Ltd., DOE, 1994.
- 10.43 CLR 8, 'Potential contaminants for the assessment of contaminated land'. DEFRA/EA, March 2002.
- 10.44 Environment Agency, 2003, 'Review of the Fate and Transport of Selected Contaminants in the Soil Environment'. Draft Technical Report P5-079/TR1. Bristol: Environment Agency.
- 10.45 CLR 10, 'The Contaminated Land Exposure Assessment Model (CLEA): Technical basis and algorithms'. DEFRA/EA, March 2002.
- 10.46 CIRIA Reports 149 to 152, 'Methane and Associated Hazards to Construction', 1995.
- 10.47 CIRIA C665, 'Assessing Risks Posed by Hazardous Ground Gases in Buildings', 2007.
- 10.48 British Standard 8485:2007, 'Code of Practice for the Characterisation and Remediation from Ground Gas in Affected Developments.
- 10.49 Office of the Deputy Prime Minister, 'The Building Regulations 2000, Approved Document C, Site Preparation and Resistance to Contaminants and Moisture', 2004.
- 10.50 Building Research Establishment, Report 414, 'Protective Measures for Housing on Gas Contaminated Land', 2004.
- 10.51 Wilson, S A and Haines, S, 'Site Investigation and Monitoring for Soil Gas Assessment Back to Basics', Land Contamination and Reclamation, 2005.
- 10.52 Wilson S A and Card G B, 'Reliability and Risk in Gas Protection Design', 2004.
- 10.53 Boyle and Witherington, 'Guidance on Evaluation on Development Proposals on Sites where Methane and Carbon Dioxide are present, incorporating 'Traffic Lights''. Report 10627-R01-(02) for NHBC, 2006.


For and on behalf of Ian Farmer Associates (1998) Limited


DA

D A Ashton (Mrs) BSc (Hons) MSc CGeol FGS Principal Geotechnical Engineer

Gavin Greenwood BSc (Hons) MSc (Eng) FGS Senior Environmental Engineer

DRAWINGS

SITE WORK

GENERAL NOTES ON SITE WORKS

A2.1 SITE WORK

A2.1.1 General

Site work is carried out in general accordance with the guidelines given in ISO 1997, 10.4 and BS 5930, ref. 10.3.

A2.1.2 Trial Pits

Shallow trial pits are generally dug by mechanical excavator, however, in difficult access locations or adjacent to structures, such pits may be hand dug. Pits are best used where the ground will stand unsupported and generally, the maximum depth of machine dug pits is 4m to 5m. Where personnel are required to enter pits, it is essential that side support is provided. Entry by personnel into unsupported pits deeper than 1.2m is not allowed for health and safety reasons.

Trial pits allow the in-situ condition of the ground to be examined both laterally and vertically and also allow discontinuities to be recorded. The field record should give the orientation of the pit with details of which face was logged, assessment of stability of sides of pit and groundwater as well as the strata encountered. Photographs of the pit should also be taken.

In-situ testing, such as hand penetrometer, hand vane, Macintosh probe, or similar, can be undertaken in the sides or base of pits while both disturbed and undisturbed samples recovered.

It is generally advisable to backfill the pits as soon as possible, open pits should not be left unattended.

A2.1.3 Light Cable Percussion Boring

For routine soil exploration to depths in excess of 3m, the light cable percussion rig is generally employed for boring through soils and weak rocks, refs 10.3, 10.4 and 10.5. It consists of a powered winch and tripod frame, with running wheels that are permanently attached so that the rig may be towed behind a suitable vehicle. The rig is towed into position and set up using its own winching system.

The locations of services are checked to make sure the borehole is not situated unacceptably near any services. Regardless of the proximity of services, a CAT scan is undertaken at the borehole location and a trial hole dug to 1.20m by hand.

Boreholes are advanced in soil by the percussive action of the cable tool. The force of the cylindrical tool as it is dropped a short distance cuts a plug of cohesive soil that is removed by the tool.

In non-cohesive soils, the borehole is advanced by a 'shell', otherwise known as a 'bailer' or 'sand pump', which incorporates a clack valve. Material is transferred into the shell and retained by the clack valve. The water level in a borehole is maintained above that in the surrounding granular soil to allow for temporary reductions in the head of water as the shell is withdrawn from the borehole. Water should flow from the borehole into the surrounding soil at all times to prevent 'piping' and loosening the soil at the base of the hole. The casing is always advanced with the borehole in granular soil so that material is drawn from the base rather than the borehole sides.

Obstructions to boring are overcome by fitting a serrated chiselling ring to the base of the percussion tool. For large obstructions, a heavy chisel with a hardened cutting edge may have to be used.

Disturbed samples are taken in polythene bags, jars or tubs that are sealed against air or water loss.

Undisturbed samples are generally taken in cohesive materials at changes in strata and at one metre intervals to 5 metres then at 1.5 metre intervals to the full depths of the borehole. The general purpose open-tube sampler is suitable for firm to stiff clays, but is often used to retrieve disturbed samples of weak rocks, soft or hard clay and also clayey sand or silts. This has been adopted for routine use, and usually consists of a 100mm internal diameter tube (U100), which is capable of taking soil samples up to 450mm in length. The undisturbed samples are sealed at each end using micro-crystalline wax to prevent drying.

Standard penetration tests are generally carried out in non-cohesive soils but also in stiff clays and soft rocks at frequencies similar to that of undisturbed sampling.

A2.1.4 Percussive Window Sampling Rig

The percussive sampler consists of a track mounted window sampler, ref. 10.38, with tube sizes varying in diameter from 98mm to 86mm. The sample tube is driven by a drop weight, which can also be used for dynamic probing and standard SPT tests. A cutting shoe is fitted to the bottom of each tube, whilst the sample is collected in a plastic sleeve.

The borehole is extended by using progressively smaller diameter tubes.

A2.2 IN-SITU TESTS

A2.2.1 Standard Penetration Test

The Standard Penetration Test is carried out in accordance with the proposals recommended by ISO 1997, ref. 10.4, BS 1377, Part 9, 1990 ref. 10.6 and ISO 22476 ref. 10.5.

The standard penetration test, **SPT**, covers the determination of the resistance of soils to the penetration of a split barrel sampler. A 50mm diameter split barrel sampler is driven 450mm into the soil using a 63.5kg hammer with a 760mm drop. The penetration resistance is expressed as the number of blows required to obtain 300mm penetration below an initial seating drive of 150mm through any disturbed ground at the bottom of the borehole. The number of blows to achieve the standard penetration of 300mm is reported as the 'N' value.

The test is generally carried out in fine soils, however, it may also be carried out in coarse granular soils, weak rocks and glacial tills using the same procedure as for the SPT but with a 50mm diameter, 60° apex solid cone replacing the split spoon sampler, **CPT**.

When attempting the standard penetration test in very dense material or weathered rocks it may be necessary to terminate the test before completion to prevent damage to the equipment. In these circumstances it is important to distinguish how the blow count relates to the penetration of the sampler. This may be achieved in the following manner:

- Where the seating drive has been completed, the test drive is terminated if 50 blows are reached before the full penetration of 300mm is achieved. The penetration for 50 blows is recorded and an approximate N value obtained by linear extrapolation of the number of blows for the partial test drive.
- If the seating drive of 150mm is not achieved within the first 25 blows, the penetration after 25 blows is recorded and the test drive then commenced.
- For tests in soft rocks, the test drive should be terminated after 100 blows where the penetration of 300mm has not been achieved.

The N-value obtained from the Standard Penetration Test may be used to assess the relative density of sands and gravels as follows:

Term	SPT N-Value : Blows/300mm Penetration
Very Loose	0 - 4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	Over 50

A2.3 SAMPLES

A2.3.1 General

Samples have been recovered and stored in accordance with the guidelines given in ISO 22475-1:2006, ref. 10.38 and BS 5930, ref. 10.3.

The undisturbed samples recovered from the percussive sampler were of varying diameters depending upon the depth taken and the ground conditions encountered.

In accordance with EN ISO 22475, ref. 10.38, and BS 5930, ref. 10.3, the thick walled U100 sample is considered as a Class B sampling technique and will only produce Class 3 to 5 quality samples in accordance with EN 1997-2:2007, ref. 10.4. A similar assumption can be made from samples tested from the percussive window sample probing.

Laboratory strength and consolidation testing can only be carried out on Class 1 quality samples, which can be obtained from a Class A sampling technique, ref. 10.4. This is due to possible disturbance during sampling, giving a weaker strength in testing.

Therefore values for c_u and mv derived for use in this report can only be used as guidance and not used to determine the shear strength properties of the clay and is not used to give a descriptive strength in the borehole records.

- UT represents undisturbed 100mm diameter samples taken in thin walled sample tubes, the number of blows to obtain the sample also recorded.
- U represents undisturbed 100mm diameter sample, the number of blows to obtain the sample also recorded.
- U fail indicates undisturbed sample not recovered
- J represents sample recovered in an amber jar, generally for environmental analysis
- HV represents Hand Vane test with equivalent undrained shear strength in kPa.
- PP represents Pocket Penetrometer test with equivalent undrained shear strength in kPa.
- CBR represents California Bearing Ratio test
- B represents large bulk disturbed samples
- D represents small disturbed sample
- W represents water sample
- \bigtriangledown represents water strike
- \checkmark represents level to which water rose

A2.4 DESCRIPTION OF SOILS

A2.4.1 General

The procedures and principles given in ISO 14688 Parts 1 and 2, ref. 10.39, supplemented by section 6 of BS 5930, ref. 10.3 have been used in the soil descriptions contained within this report.

Excavation I Percussive W	Method /indow Sampler	Dimens	ions		Level (mOD)	Client Pegasus Life Ltd	Job Number 52247a	
		Locatio TC	n 1263854	Dates 13	3/08/2014	Engineer Gleeds Management Services Ltd	Sheet 1/2	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
).30	E1				(0.80)	TOPSPOIL. Dark brown slightly gravelly sandy silt with occasional roots, rootlets, brick, concrete, clinker and glass fragments. Gravel is flint.		
).90	E2			101.40	0.80	MADE GROUND. Brown slightly clayey, slightly gravelly silty fine to medium sand with occasional rootlets, organic remains, rare clinker and glass fragments. Becoming claying with depth. Gravel is flint.		
.20-1.65 .20	SPT(C) N=8 D3		1,1/2,2,2,2	100.75 100.40	(0.35)	MADE GROUND. Firm brown silty fine sandy clay with occasional organic remains, rootlets and rare traces of brick and clinker. Occasional fine to medium flint gravel. 1.60m to 2.00m; No recovery.		
2.00-2.45 2.00	SPT(C) N=7 D4		1,1/1,1,2,3			Firm brown mottled orange-brown slightly gravelly silty sandy CLAY. Sand is fine. Gravel is fine to coarse well-rounded flint.	/ · · · · · · · · · · · · · · · · · · ·	
2.50 3.00-3.45 3.10	D5 SPT(C) N=8 D6		1,1/1,2,2,3		(3.00)	3.40m to 4.40m; Soft to firm.		
3.50 1.00-4.45 1.00	D7 SPT(C) N=16 D8		2,2/4,4,4,4					
1.50 1.90 5.00-5.45 5.30	D9 D10 SPT(C) N=18 D11		2,2/3,5,5,5	97.40	4.80	Firm orange-brown mottled light brown silty sandy CLAY interbedded with slightly clayey, and occasionally clayey, fine SAND.Rare well-rounded flint gravel 5.10m to 5.60m; Firm to stiff.	× · · · · · · · · · · · · · · · · · · ·	
5.80 5.00-6.45 5.30	D12 SPT(C) N=17 D13		4,5/5,5,4,3			5.6m to 6.30m; Medium dense, slightly clayey fine SAND. Below 6.30m; Occasionally interlaminated	x x x x x x x x x x x x x x x x x x x	
5.80 7.00-7.45	D14 SPT(C) N=10		2,2/2,2,3,3 Seepage(1) at 7.10m.			orange-brown and brown with lenses of fine sand.	× × × × × × × × × × × × × × × × × × ×	
7.50	D15				(5.50)		× × ×	
.00-8.45 .50	SPT(C) N=13 D16		2,3/4,3,3,3 Water strike(2) at 8.20m.			8.50m to 9.00m; Firm to stiff.	× × ×	
.00-9.45 .10	SPT N=16 D17		2,3/3,4,4,5			9.00m to 10.00m; 10% recovery.	x x x x x x x x x x x x x x x x x x x	
0.00-10.45	SPT N=31		3,3/7,7,8,9				× × ×	

A2.1

	Location TQ263854 Water Depth (m) Field Records Image:	Dates 13/08/20 Level (mob) 91.90 91.20	014 (m) (kness) 10.30 (0.70) 11.00	Engineer Gleeds Management Services Ltd Description as previous 10.00m to 11.00m; 10% recovery. Stiff dark grey silty CLAY with frequent specks and clusters of iron pyrite crystals. Complete at 11.00m	5224 Shee 2/ Legen	t 2
10.00 D18	Water Depth (m) Field Records	91.90	10.30 (0.70)	as previous 10.00m to 11.00m; 10% recovery. Stiff dark grey silty CLAY with frequent specks and clusters of iron pyrite crystals.	××	q
10.00 10.10 D18 D19		91.20	(0.70)	10.00m to 11.00m; 10% recovery. Stiff dark grey silty CLAY with frequent specks and clusters of iron pyrite crystals.	×	
Remarks Borehole terminated at 11.00m	1			Scale (approx)	Logg By	jed

IAN
1 5 5
ASS

Cather Percention Summer reader in 12 Om TO 284 855 I to 2.00 Pergence Life Life Pergence Life Life Perform Second Second Perform 120 - 10 TO 284 855 TO 284 855 Find Reacond 6000 Perform Descender Management Services Life To 284 955 Find Reacond 102 00 Descender Management Services Life To 284 955	-	ASSOCIA	1			Ground	aval (mOD)	Client		Job
TO 264 867 28302014 (112) Glocks Management Services Lid 1012 112	-		20	0mm cas	ed to 12.00m	102.10 Dates 26/08/2014-				
PRPI Sample / Tesis Paint Microsover Month Microsover Month Microsover ASPHALT								-		
2.50 D1 In I	Depth (m)	Sample / Tests	Casing Depth	Water Depth	Field Records	Level (mOD)	Depth (m)		Legend	Aater Insti
4.00-4.45 SPT N=9 4.00 DRY 2.22.3.2.2 4.00m to 6.00m; Occasional coarse gravel-sized lumps of blush gray sandy clay. 5.00-5.45 SPT N=10 5.00 DRY 2.23.2.3.2 (6.80) 6.00 D7 B.50 DRY 2.33.2.3.4 E.50 5.00 B4 DRY 2.33.2.3.4 E.50 8.00 B4 B4 B4 B4 B4 7.50 D9 B4 <	1.20-1.65 1.50 1.70 2.00-2.45 2.00 8.00-3.45 3.00	SPT(C) N=5 B1 D2 SPT N=7 D3 SPT N=8 B2	2.00	DRY	1,1/1,2,2,2	101.70	(0.30) 0.40 (1.30) 1.70	Reinforced CONCRETE. Possible MADE GROUND. Soft brownish grey sandy gravelly clay with occasional pockets of orange-brown fine to medium sand. Gravel is fine to coarse subangular to rounded flint. Loose becoming medium dense orange-brown		
3.50-6.95 SPT N=12 6.00 DRY 2,3/3,2,3,4 1.00 B4 - - - 1.50 D9 - - - 1.50 D9 - - - 1.50 D9 - - - - 1.50 D9 - - - - - 1.50 D1 8.00 DRY 3,4/3,4,3,3 -	1.00 5.00-5.45 5.00	D5 SPT N=10 B3						4.00m to 6.00m; Occasional coarse gravel-sized lumps of bluish grey sandy clay.		
3.00 D10 3.50 D11 3.50 D11 3.50 D11 3.50 D11 3.50 D11 3.50 Stiff, fissured dark grey silty sandy CLAY with occasional specks of iron pyrite and partings of orange-brown silty sand. Image: Chick of the second secon	8.50-6.95 3.50 7.00	SPT N=12 D8 B4	6.00	DRY	2,3/3,2,3,4					
I0.00-10.45 SPT N=27 I0.00 DRY 6,5/8,5,7,7 Image: Chiselling from 0.00m to 1.20m for 1 hour. Scale (approx) Scale (by green)			8.00	DRY	3,4/3,4,3,3					
Chiselling from 0.00m to 1.20m for 1 hour.	3.50-8.95 9.00 9.00	SPT N=20 B5 D12			8.50m, rose to 8.10m in 20 mins. 4,5/5,3,5,7			occasional specks of iron pyrite and partings of	× × ×	⊻1
		m 0.00m to 1.20m f	or 1 hour.	1	L	1		1	Scale (approx)	Logged
										BP/DAA

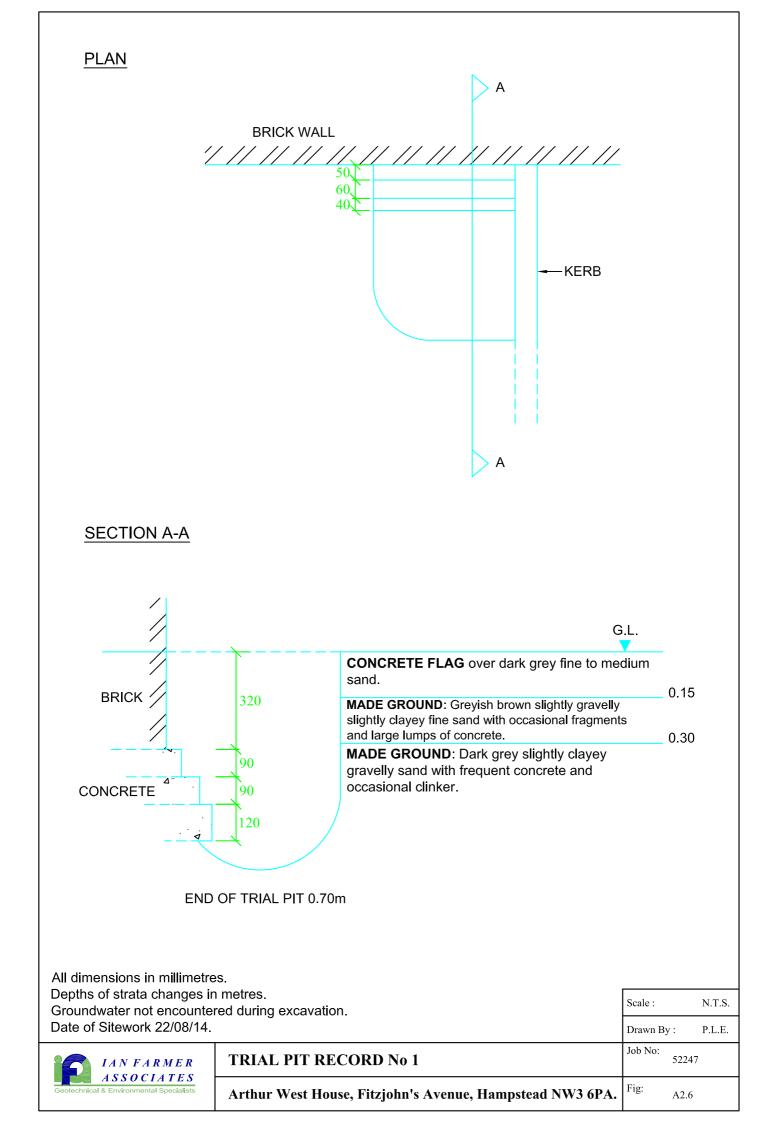
5	IAN
	ASS

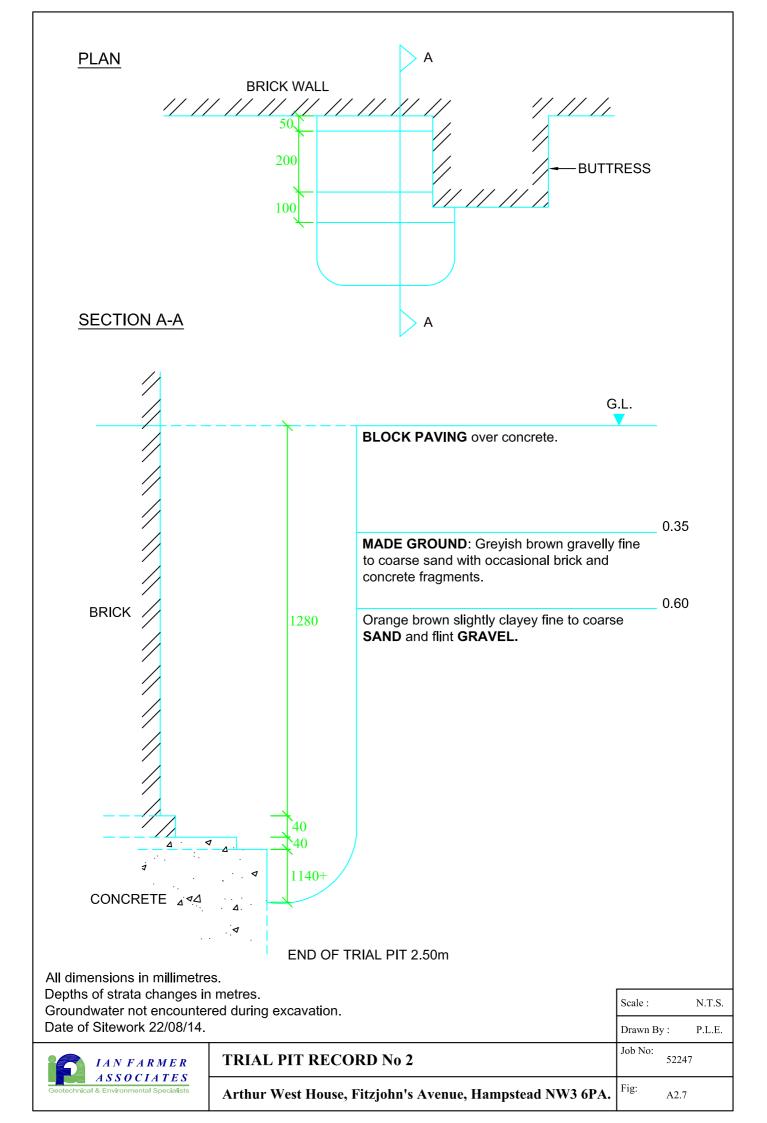
Calcing marging between a start in 200m marging tracks in 200m marging framework in 200m marg	Boring Metho	od	Casing	Diameter		Ground	Level (mOD)	Client		Job Number	
TO 264 80 2000014 Genetal Management Services Loid Upper Line Services Loid Loge d 30 Interpretende Interp	Cable Percus	sion	20	0mm cas	ed to 12.00m						
Opposite (N) Sample / Tess (N) Call (M) Vest (M) Peed Record (m00) Description Lage M 10.00 D13 J						26/08/2014-					
10.00 D13 1 </th <th>.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Gleeds Management Services Ltd</th> <th></th> <th></th> <th><u>י/2</u></th>	.							Gleeds Management Services Ltd			<u>י/2</u>
Number Numer Numer Numer <th>Depth (m)</th> <th>Sample / Tests</th> <th>Casing Depth (m)</th> <th>Water Depth (m)</th> <th>Field Records</th> <th>Level (mOD)</th> <th>Depth (m) (Thickness)</th> <th>Description</th> <th>Legend</th> <th>Wate</th> <th>nstr</th>	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Wate	nstr
Nume Link Link <thlink< th=""> Link Link <thl< td=""><td>10.00</td><td>D13</td><td></td><td></td><td></td><td></td><td></td><td> as previous</td><td>××</td><td></td><td></td></thl<></thlink<>	10.00	D13						as previous	××		
12:50 D16 At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to ta	10.50	D14						bands of dark greenish grey and	× × ×		
12:50 D16 At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to ta									× × ×	▼ 2	
12:50 D16 At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with frequent pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to the pockets of orange-brown sandy clay. At 12:50m, Recovered as soft to firm with greenish and to take to ta			11.00	DRY					× × ×	∇2	
13.00 B0 T I <td>12.50</td> <td>D16</td> <td></td> <td></td> <td>12.10m, rose to</td> <td></td> <td></td> <td>At 12.50m; Recovered as soft to firm with frequent pockets of orange-brown sandy clay.</td> <td>× × ×</td> <td></td> <td></td>	12.50	D16			12.10m, rose to			At 12.50m; Recovered as soft to firm with frequent pockets of orange-brown sandy clay.	× × ×		
15.00 D19 15.00 12.00 6.6/8.9.11.10 From 16.00m; No banding. 16.00 D21 17.00 13.00 5.5/11.10.8.11 From 16.00m; No banding. 17.00-17.45 SPT N=30 17.00 13.00 5.5/11.10.8.11 Image: Comparison of the comparison of	13.00	B6	13.00	12.00	5,4/6,6,7,9				× × × × × × × × × × × × × × × × × × ×		
15.50.15.95 SPT N=38 15.00 12.00 6.6/8,9,11,10 Image: second sec			14.00	11.00	4,4/7,8,8,10		 (11.50)	From 14.00m; Firm and grey with greenish and reddish brown banding, and partings of light grey fine sand and silt.			
15.50 D20 D20 From 16.00m; No banding. 16.00 D21 From 16.00m; No banding. From 16.00m; No banding. 17.00-17.45 SPT N=40 17.00 13.00 5.5/11,10,8,11 18.00 D23 D23 From 16.00m; No banding. From 16.00m; No banding. 18.00 D23 B.7/8,9,10,8 From 16.00m; No banding. From 16.00m; No banding. 19.00-19.45 SPT N=35 B.7/8,9,10,8 From 16.00m; No banding. From 16.00m; No banding. Remarks Kappen J. Kappen J. Kappen J. Kappen J.	15.00	D19							× × ×		
17.00-17.45 SPT N=40 17.00 13.00 5.5/11,10.8.11 Image: state s	15.50-15.95 15.50		15.00	12.00	6,6/8,9,11,10				× × ×		
17.00 D22 D22 D23 D23 D23 D23 D23 D23 D23 D23 D24 D23 D24 D24 D25 D24 D25 D24 D25 D25 <td< td=""><td>16.00</td><td>D21</td><td></td><td></td><td></td><td></td><td></td><td>From 16.00m; No banding.</td><td>× · · · · · · · · · · · · · · · · · · ·</td><td></td><td></td></td<>	16.00	D21						From 16.00m; No banding.	× · · · · · · · · · · · · · · · · · · ·		
18.50-18.95 SPT N=37 18.00 13.00 6,6/7,12,10,8 19.00-19.45 SPT N=35 B,7/8,9,10,8 Image: Comparison of the second			17.00	13.00	5,5/11,10,8,11						
19.00-19.45 SPT N=35 8,7/8,9,10,8 Image: Constraint of the second	18.00	D23							× × ×		
19.00 D24	18.50-18.95	SPT N=37	18.00	13.00	6,6/7,12,10,8				× ×		
Remarks Scale Logged By					8,7/8,9,10,8						
Remarks Scale Logged By						82.10	20.00		××		
	Remarks						,	· · · · · · · · · · · · · · · · · · ·	Scale (approx)	Log By	ged

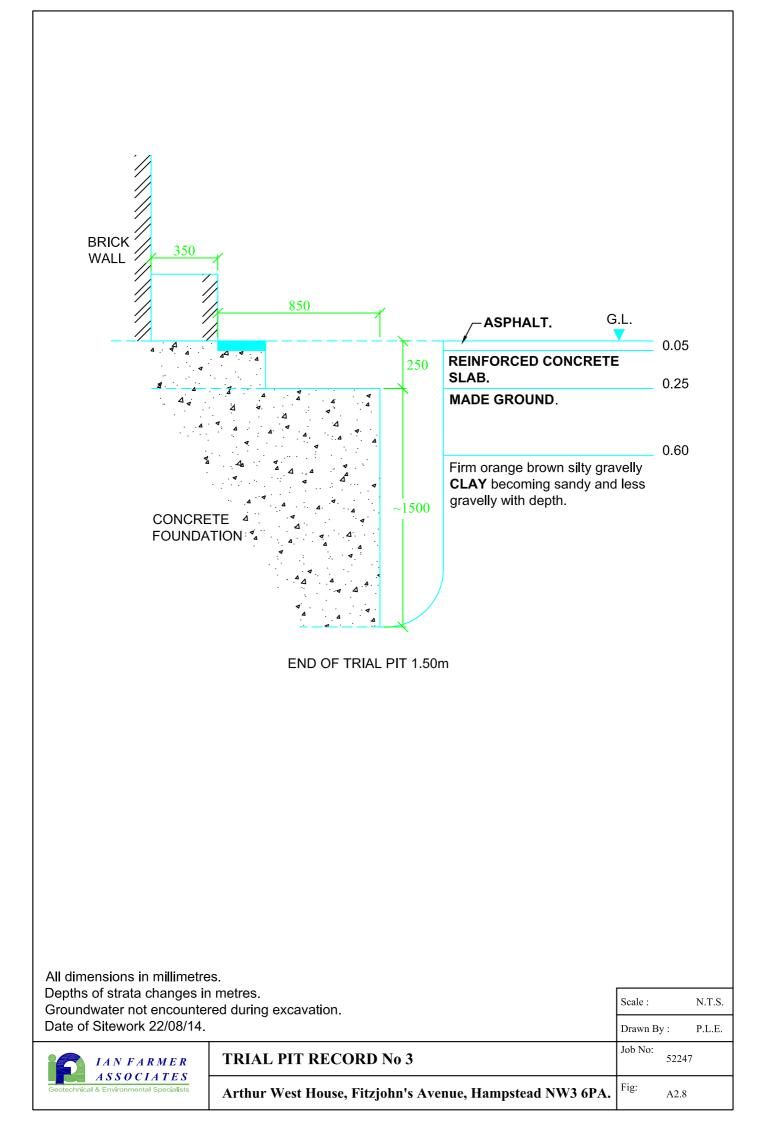
Excavation M Percussive W	ASSOCIA Method /indow Sampler	Dimens	ions	Ground	Level	. ,	Client Pegasus Life Ltd	Job Numb 52247	
			Location TQ264855		14/08/2014		Engineer Gleeds Management Services Ltd		et /2
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	D (Thio	epth (m) ckness)	Description	Legen	Vater
				102.10		0.10 (0.20) 0.30	ASPHALT		
				101.90	Ē	0.30	Reinfored CONCRETE.		
0.50	E1				Ē	<i></i>	MADE GROUND. Yellowish brown fine to coarse gravelly sand with frequent concrete and brick fragments/ cobbles,		
0.70	D1					(1.00)	and occasional clinker, glass and asphalt fragments and flints.		
1.00	E2			400.00	Ē	4.00			
1.20-1.65 1.40	SPT(C) N=6 D2		0,0/1,1,2,2	100.90		1.30	Firm brown mottled orange-brown silty sandy CLAY. Occasionally very sandy.	××	
1.90 2.00-2.45	D3 SPT(C) N=12		2,2/3,3,3,3			(1.60)		× × ×	
2.50	D4				Ē			× ×	
				99.30	Ē	2.90	From 2.65m; Firm to stiff.	× ×	
3.00-3.45 3.00	SPT(C) N=21 D5		5,5/5,6,5,5			(1.30)	Medium dense brown slightly clayey fine SAND.		
3.70	D6				Ē	()			
4.00-4.45	SPT(C) N=22		1,2/4,6,6,6						
4.30	D7			98.00		4.20	Firm orange-brown mottled light brown silty sandy CLAY interbedded with clayey or slightly clayey fine SAND.Rare well-rounded flint gravel. 4.50m to 5.60m; Silty clayay fine SAND.	×	
5.00-5.45 5.00	SPT(C) N=24 D8		4,5/6,6,6,6						
5.80	D9				Ē			×	
6.00-6.45	SPT(C) N=18		3,3/4,4,4,6				6.10m to 7.10m; Slightly clayey silty fine SAND.	× × × × × ×	
6.50	D10							× × ×	
7.00-7.45	SPT(C) N=14		2,2/3,4,3,4					× ×	
7.20	D11				Ē			× ×	
						(6.80)		××	
			Water strike(1) at 7.70m.		Ē		7.70m to 7.90m; Slightly clayey fine SAND.	× ×	_
8.00-8.45	SPT(C) N=12		2,2/3,2,3,4		Ē		8.00m to 9.00m; 75% recovery.	×	
8.20	D12							××	
8 80	D13				Ē			×	
8.80 9.00-9.45	SPT(C) N=7		2,2/1,2,2,2		Ē		9.00m to 10.00m; No Recovery.	× ×	
5.00 5.40			<i>2,21,1,2,2,2</i>				9.00m to 10.00m, No Recovery.	× × ×	
10.00-10.45	SPT(C) N=19		4,4/4,5,5,5		Ē			×	
Remarks	. ,		1, 11 1,0,0,0		<u> </u>		Scale		
Slight seepag Groundwater	struck at 7.70m.	to incress	of groundwater and sand.				Scale (approx)	Logg By	jea
	a neiow orodili ade	to ingress	or groundwater and Sand.				1:50	BP/D	AA
							Figure N	lo.	

A S S O C I A T E S ccavation Method Dimensions Ground Level (mO				Level (mOD)				
ercussive Window Sampler				02.20	Pegasus Life Ltd	Job Number 52247a		
Location TQ264855		Dates 14	/08/2014	Engineer Gleeds Management Services Ltd	Sheet 2/2			
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend		
.00-11.45 SPT(C) N=19		3,4/4,4,5,6			as previous 10.00m to 11.00m; No Recovery.			

Excavation N	ASSOCIA Method /indow Sampler	Dimens			Level (mOD) 06.10	6PA Client Pegasus Life Ltd		Jo N	3H4 ob umber
		Locatio	n	Dates	/08/2014	Engineer		52247a Sheet	
		TC	0264855	10,00,2011		Gleeds Management Services Ltd			1/2
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
					(0.40)	TOPSOIL. Dark brownslightly gravelly clayey silty fine to medium sand with occasional roots, rootlets			
0.30	E1			105.70	0.40	brick, concrete and clinker fragments. MADE GROUND. Brown slightly gravelly silty fine	-		<u></u>
0.80	E2				(0.70)	sand with occasional rootlets, brick fragments and rare clinker fragments.			
				105.00	1.10	MADE GROUND. Dense brown mottled			
1.20-1.65 1.20	SPT(C) N=16 D3		1,3/4,4,4,4		(0.50)	orange-brown silty clayey fine sand with occasiona brick and clinker fragments. Rare flint pebbles.			
				104.50	1.60	Stiff to very stiff, becoming firm with depth, brown	× · · · ·		
.80	D4					mottled orang-brown silty sandy CLAY with frequent decomposing rootlets.	×		
2.00-2.45 2.30	SPT(C) N=26 D5		6,6/5,6,7,8			From 2.00m; Orange-brown mottled grey. Occasionally very sandy with occasional decomposing rootlets.	×		
	05					decomposing rootiets.	× ×		
							× <u>×</u>		
2.90 3.00-3.45	D6 SPT(C) N=19		5,5/5,5,4,5				××		
3.30	D7				(3.20)		×		
							×		
.80	D8					From 3.70m; Becoming firm with occasional bands of fine sand.	× ×		
.00-4.45	SPT(C) N=16		3,4/3,4,4,5				× ×		
1.20	D9						××		
.60	D10			101 20	4.80		××		
.80	D11		22/4455	101.30	4.60	Medium dense brown slightly silty clayey fine SAND.	·×. ·×.		
5.20	SPT(C) N=18 D12		2,3/4,4,5,5		-	5.00m to 5.65m; Very clayey.	× ×		
.20	012				(1.20)				
5.70	D13						× × · · · · · · · · · · · · · · · · · ·		
6.00-6.45	SPT(C) N=15		2,3/3,2,5,5	100.10	6.00	Firm to stiff orange-brown mottled light brown silty sandy CLAY interbedded with slightly clayey, and	× — ×		
6.20	D14					occasionally clayey, fine SAND.Rare well-rounded	×		
						flint gravel 6.60m to 7.45m; Brown slightly clayey fine	× ×		
5.70	D15					SAND.	×××		
.00-7.45	SPT(C) N=19		3,5/6,5,4,4				××		
					<u>-</u> -		××		
7.50	D16					7.45m to 7.80m; Firm very sandy CLAY.	×		
00.045						7.80m to 8.40m; Brown fine SAND.	×		
3.00-8.45	SPT(C) N=23		5,6/6,6,5,6		<u>-</u> -		× ×		
3.20	D17					8.40m to 9.00m; Firm very sandy CLAY.	× ×		
3.60	D18						×		
9.00-9.45	SPT(C) N=50		8,8/9,11,14,16		(6.00)	9.00m to 9.85m; Brown slightly clayey fine	× × ×		
-	. /					SAND.	××		
9.50	D19						× ×		
0.00-10.45	SPT(C) N=22		2,3/3,4,6,9			9.85m; to 10.60m; Firm orange-brown and	×××		
Remarks		 					Scale	Lo	ogged
smm slotted roundwater	standipipe installed struck at 10.60m.	d to 11.50r	n.				(approx)	B	
							1:50	В	P/DAA
							Figure I	No.	

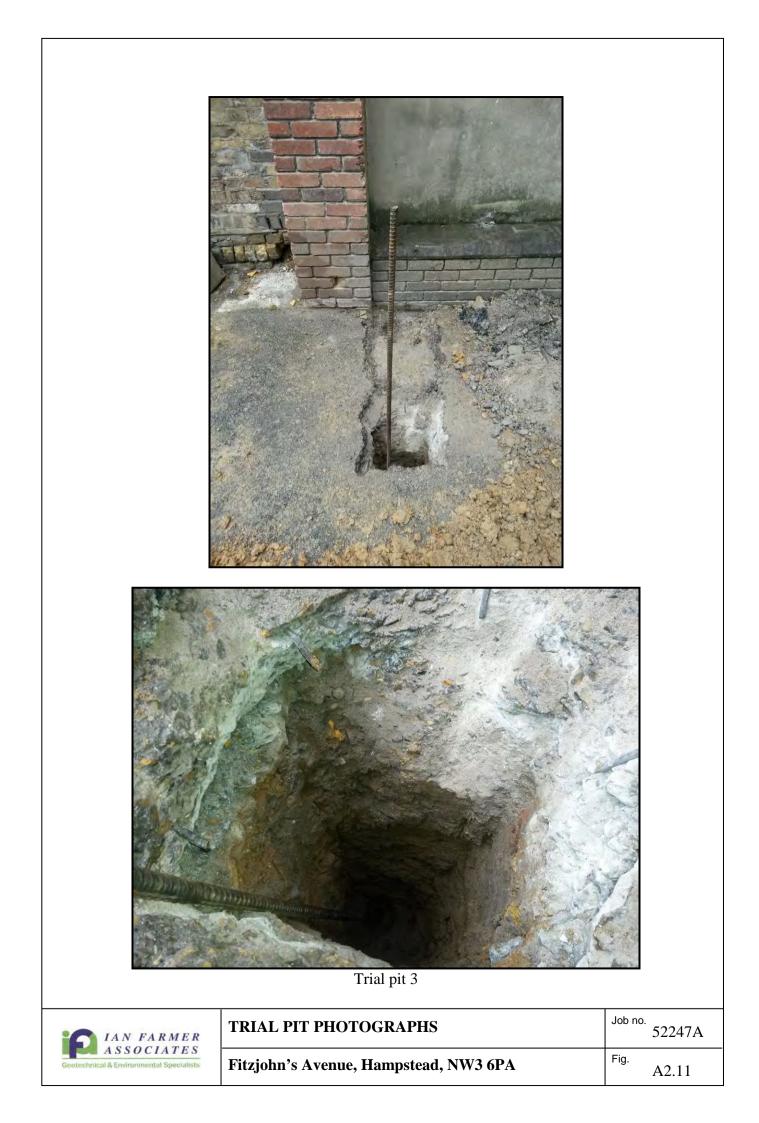

A2.4

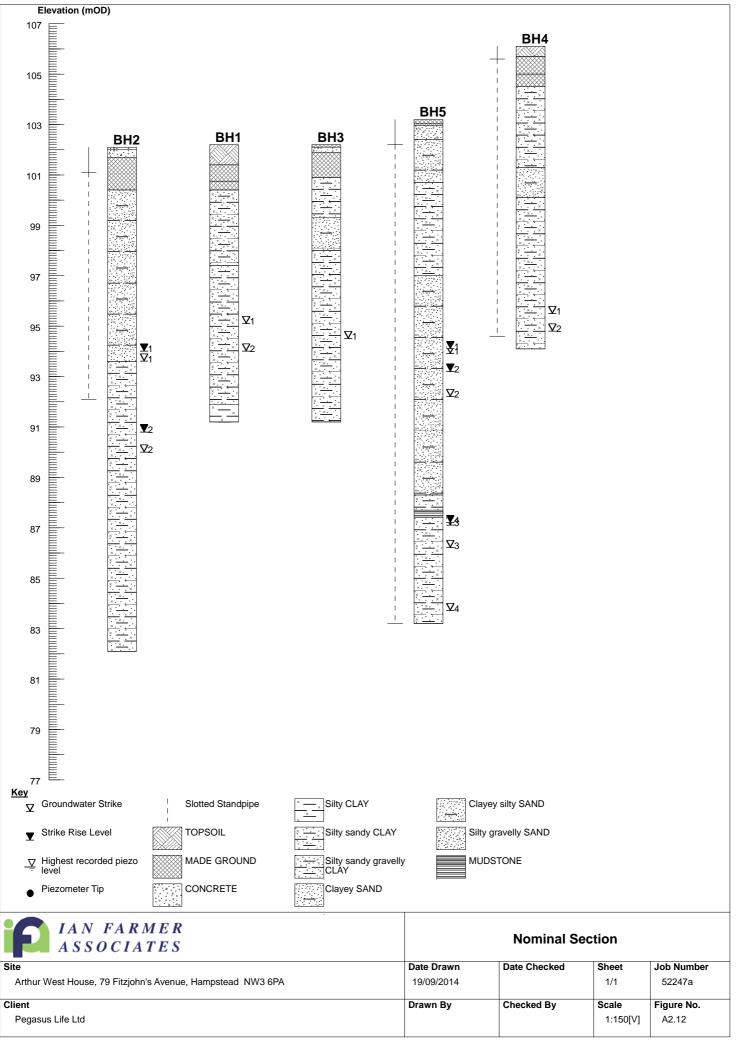

P	IAN FAR ASSOCIA	MER TES				Site Arthur West House, 79 Fitzjohn's Avenue, Har 6PA	npstead NW3		umber BH4	
Excavation M Percussive W	/lethod /indow Sampler	Dimens	ions		Level (mOD) 106.10	Client Pegasus Life Ltd		N	ob umber 2247a	
		Locatio TC	n)264855	Dates 15	15/08/2014 Engineer Gleeds Management Services Ltd			Sheet 2/2		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legenc	Water	Instr	
10.00 10.70 11.00-11.45 11.30 11.80	D20 D21 D22 SPT(C) N=18 D23 D24		Water strike(1) at 10.60m. 4,4/4,4,4,6 Water strike(2) at 11.30m.	94.10		grey silty sandy CLAY. as previous 10.60m to 12.00m; Orange-brown slightly clayey, becoming clayey, fine SAND. Complete at 12.00m		∇ 1 ∇ 2		
Remarks							Scale (approx) 1:50		ogged y P/DAA	
							Figure		. 2. 01	


5	IAN
	ASSO

P	IAN FAR ASSOCIA						Site Arthur West House, 79 Fitzjohn's Avenue, Hampstead NW3 6PA					
Boring Met		-	Diamete 0mm cas	r ed to 20.00m		Level (mOD) 03.20	Client Pegasus Life Ltd			b umber 2247a		
		Locatio TC	n Q 264 854	L	Dates 20 21	/08/2014- /08/2014	Engineer Gleeds Management Services Ltd		Sh	1/2		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr		
0.50					103.05 102.95		Block paving over sand sub base. MADE GROUND. Dark reddish brown silty sandy medium to coarse subangular granite gravel (Type					
0.50 0.50	D1 E1				102.40	E	1 granular sub base). Brown slightly gravelly silty fine SAND with occasional roots and rootlets.					
1.00 1.00	D2 E2						Medium dense orange and greyish brown slightly clayey silty fine SAND.] 	0,00,000,000,000			
1.50-1.95 1.50	SPT N=19 D3	1.00	DRY	6/4,5,5,5		(1.70)		X X X X	10 ¹¹ 0110 100 100			
2.00-2.45 2.00	SPT N=18 D4	2.00	DRY	9/5,4,5,4					" ⁰ 0 <u>0</u> 00" <u>0</u> 0 0 "00 <u>0</u> 0 0 0 0			
2.90 3.00-3.45 3.00	D5 SPT N=16 D6	3.00	DRY	6/4,4,4,4	100.70	2.50	Firm orange and yellowish brown mottled grey very sandy silty CLAY with occasional bands and pockets of clayey to very clayer fine SAND.	× × ×	<u>, 00^{,10}0,10,10,00,00,00,00,00,00,00,00,00,00,00</u>			
3.50	D7							× × ×	0 ¹² 0 10 0 10 0 10 10 10 10 10 10 10 10 10			
4.00-4.45 4.00	SPT N=18 D8	4.00	DRY	6/5,5,4,4		(3.70)		× × ×	00 n 0 0 100 n 0 0 n 0 0 n			
4.50	D9							× × ×	000 00 00 00 00 00 00 00 00 00 00 00 00			
5.00-5.45 5.00	SPT N=12 D10	5.00	DRY	6/3,3,3,3				× × ×	<u>20 8'00' 50 0 ''Bobo 8'00' 50 0 - 40</u>			
6.00	D11				97.00	6.20	Medium dense brown clayey silty fine SAND.	× × × × × × × × × × × × × × × × × × ×	<u>20 8'00' 50 0 10 0 10 10 10 10 10 10 10 10 10 10 1</u>			
6.50-6.95 6.50	SPT N=18 D12	6.00	DRY	7/4,3,5,6					5 500° 50 5 50 500° 50 500° 50 500° 50 500° 50 500° 50 500° 50 500° 50 500° 50 500° 50 500° 50 500° 50 500° 500			
8.00-8.45 8.00	SPT N=21 D14	8.00	DRY	9/5,6,5,5					<u>ິດປີ ລັດດັດ ອີດທີ່ດ້</u> ວ ດີ ອີດກ່ຽ ອິດປີ ລັດປີ ລັດປີ ລັດປີ ອັນປ			
9.00	D15			Moderate(1) at 9.30m, rose to 9.10m in 20 mins.					▼1 ∇1	2. 3.2.0.0.2.2.0.2.3.2.2.0.2.2.2.2.2.2.2.2.		
9.50-9.95	SPT N=22	9.00	DRY	11/5,6,6,5				× × × ×	00 ¹⁰ 0100 ¹⁰⁰ 10			
Remarks Chiselling fro	om 0.00m to 1.20m f	or 1 hour.		1		1		Scale (approx)	Lo By	gged		
							-	1:50		P/DAA		
								Figure	No. A2.5			

	IAN FAR ASSOCIA						Site Arthur West House, 79 Fitzjohn's Avenue, Hampst 6PA	ead NW3	N	orehol umber BH5
Boring Metho Cable Percus		-	Diameter Omm case	r ed to 20.00m		Level (mOD) 103.20	Client Pegasus Life Ltd		N	ob umbe 52247a
		Location TQ	n 264 854		Dates 20 21)/08/2014- /08/2014	Engineer Gleeds Management Services Ltd		S	heet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	р. Water	Instr
10.00	D16					(8.70)	as previous At 10.00m; Very wet.		T 2	
11.00	D17 SPT N=29	11.00	10.00	Moderate(2) at 11.00m, rose to 10.00m in 20 mins. 10/7,8,6,8					∇ 2	
12.00-12.45	SPT N=29	12.00	DRY	13/5,7,5,7			From 12.00m; Wet and very clayey with			
12.00	D18						From 12.00m; Wet and very clayey with occasional pockets of grey clay.			
13.00-13.45 13.00 13.00	SPT N=26 D19 D20	13.00	DRY	12/7,7,8,4						
14.00-14.45	SPT N=16	14.00	DRY	8/3,5,5,3						3252 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 0 0.0000000000000000000000000000000
15.00	D21				88.30	14.90 (0.60)	Stiff dark grey silty sandy CLAY.	× × ×		
15.50-15.95	SPT N=50	15.00	DRY	20/25,25	87.70	(0.30)	CLAYSTONE			
16.00	D22				87.40		Stiff, becoming firm and occasionally fissured, dar grey silty sandy CLAY with occasional specks of iron pyrite.	× · · · · · · · · · · · · · · · · · · ·	▼ 4 3	
17.00 17.00 17.00-17.45	D23 D24 SPT N=41	17.00	16.00	Moderate(3) at 17.00m, rose to 16.10m in 20 mins. 15/10,8,11,12			At 17.00m; Soft to Firm, and dark bluish grey.		∑ 3	
18.00	D25					(4.20)	At 18.00m; Firm, brownish grey and slightly sandy.			لو درون کې د کې د کې د کې د کې د کې د کې د کې د کې د
19.00-19.45 19.00	SPT N=37 D26	19.00	16.00	15/9,9,11,8			At 19.00m; Firm bluish grey with brown mottling and sandy.		Π.	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				Moderate(4) at 19.50m, rose to 16.00m in 20 mins.	83.20	20.00			⊻4	
Remarks Chiselling from	m 15.50m to 15.80r	n for 1 hou	Jr.					Scale (approx	B	ogged y
								1:50		P/DAA
								Figure	No. A2.5	


G	IAN FARMER
	ASSOCIATES


Fitzjohn's Avenue, Hampstead, NW3 6PA

52247A A2.9

Fig.

							×								1		1				
							Water Sample Y	N /	Z	Z	N								-		
							Depth of Well	mBGL	10.16	11.30	15.08										
							Water Level	mBGL	6.86	10.38	8.84										
							mqq	Steady	NR	NR	NR										
							VOC ppm	Peak	NR	NR	NR										
	ſ	mq					щ	Steady	0	0	0								-		
		VOC ppm	NR				CO ppm	Peak	0	0	0										99W
		m					ų,	Steady	0	0	0									vot Read.	iy:
		COppm	0				H ₂ S ppm	Peak	0	0	0									ND = Below detection limit of instrument. NR = Not Read.	Checked By:
		m					v/v	Steady	13.4	20.7	12.9								-	t of instrum	
	1	H ₂ Sppm	0				02% v/v	Peak	13.4	20.7	12.9								-	tection limi	
		v/v	0	Wet	Wet	989	v/v	Steady	8.0	0.0	10.3									= Below de	
		02%v/v	21.0				CO2% v/v	Peak	8.0	0.0	10.3									ŊD	
2014		o v/v ک		su	(wet etc.)	(mb)	v/v ở	Steady	0.0	0.0	0.0								-		
13/10/2014	INTICT	CO2 %v/v	0.0	Weather Conditions	ditions (dry/	Atmospheric Pressure (mb)	CH4% v/v	Peak	0.0	0.0	0.0										
Visit	1161 4	v/v		Weath	Ground Conditions (dry/wet etc.)	Atmosphe	Gas Flow Rate	(l/hr)	0.0	0.0	0.0										BP
Date of Visit	Date of	CH₄% v/v	0.0				Atmos. Pressure	(mb)	989	989	686										
			cadings:	0	<u> </u>	L			11:45	11:50	11:35										ken By:
			Background Readings:	0			Hole No:	ن	BH2	BH4	BH5										Readings Taken By:
6					MEI		RESULTS OF GAS AND GROUNDWATER MONITORING						RING	Job	No:		522	- 47A			
ieotech	_	_			TES pecialis		Arthu	r We	est Hou	ıse, F	iztjoh	n's Av	venue,	Ham	pstead		Fig	are No):	A2	

							γ		T				1	1	1					1	
							Water Sample Y	N /	N	Z	Ν										
							Depth of Well	mBGL	10.13	11.26	14.99										
							Water Level	mBGL	6.80	10.40	8.82										
							VOC ppm	Steady	NR	NR	NR										
							VOC	Peak	NR	NR	NR										
		bpm	~				mq	Steady	0	0	0										5
		VOC ppm	NR				CO ppm	Peak	0	0	0										99W
		mq					mqo	Steady	0	0	0									Not Read.	By:
		COppm	0				H ₂ S ppm	Peak	0	0	0									ment. NR =	Checked By:
		mqc					A/A	Steady	13.4	19.4	20.8									ND = Below detection limit of instrument. NR = Not Read.	
		H ₂ Sppm	0				02% v/v	Peak	13.4	19.4	20.8									etection lim	
		O ₂ %v/v	20.9	Sunny	Wet	1000	CO2% v/v	Steady	8.6	2.4	0.0) = Below d	
		0_{2} %	20				C02	Peak	8.6	2.4	0.0									QN	
	21/10/2014	CO ₂ % v/v	0.0	ons	y/wet etc.)	re (mb)	CH4 % v/v	Steady	0.0	0.0	0.0										
	21/10	CO_2	0	Weather Conditions	Ground Conditions (dry/wet etc.)	Atmospheric Pressure (mb)		Peak	0.0	0.0	0.0										
	f Visit	∕o v/v	0	Weat	Ground Co	Atmospł	Gas Flow Rate	(l/hr)	0.0	0.0	0.0										ΗΊ
	Date of Visit	CH4%v/v	0.0				Atmos. Pressure	(qm)	1000	1000	1000										
	1		Readings:	0	1		Time	(mm:mm)	15:15	15:20	15:30										'aken By:
			Background Readings:	R			Hole No:		BH2	BH4	BH5								-		Readings Taken By:
6		IAN ASS					RESULTS OF GAS AND GROUNDWATER MONITORING							RING	Job	No:		522	47A		
Geote		al & Env					Arthu	r We	est Ho	ıse, F	iztjoh	n's Av	venue,	Ham	pstead		Figu	ure No):	A2.13	cont'd

							Y	[I												
							Water Sample Y	N /	Z	N	N										
							Depth of Well	mBGL	10.13	11.26	15.00										
							Water Level	mBGL	6.80	10.39	8.83										
							mqq	Steady	NR	NR	NR										
							VOC ppm	Peak	NR	NR	NR										
		hm					щ	Steady	0	0	0										
		VOC ppm	NR				CO ppm	Peak	0	0	0										99W
		ш					m	Steady	0	0	0	<u> </u>								Vot Read.	y:
		COppm	0				H ₂ S ppm	Peak	0	0	0	ļ								ND = Below detection limit of instrument. NR = Not Read.	Checked By:
		m					v/v	Steady	15.2	17.8	20.6								-	t of instrum	
		H ₂ Sppm	0				02% v/v	Peak	15.2	17.8	20.6									ection limit	
		A/A	×	Sunny	Dry	986	v/v	Steady	6.4	4.0	0.3									= Below det	
		$O_2 \% v/v$	20.8				CO2% v/v	Peak	6.4	4.0	0.3									:UD:	
	2014	v/v	_	us	wet etc.)	(mb)	v/v (Steady	0.0	0.0	0.0										
	04/11/2014	CO ₂ %v/v	0.0	Weather Conditions	litions (dry/	Atmospheric Pressure (mb)	CH4% v/v	Peak	0.0	0.0	0.0										
	Visit	V/V		Weath	Ground Conditions (dry/wet etc.)	Atmosphe	Gas Flow Rate	(l/hr)	0.0	0.0	0.0										HY
	Date of Visit	CH4% v/v	0.0				Atmos. Pressure	(mb)	986	986	986										
		<u> </u>	teadings:	<u> </u>	1	L		(IIII:III)	8:31	8:50	8:15										ıken By:
			Backeround Readines:	0			Hole No:		BH2	BH4	BH5										Readings Taken By:
6		IAN ASS					RESULTS OF GAS AND GROUNDWATER MONITORING							RING	Job	No:		522	47A		
ieote		al & Env					Arthu	r We	est Hou	use, Fi	iztjoh	n's Av	venue,	Ham	pstead		Figu	ure No):	A2.13	cont'd

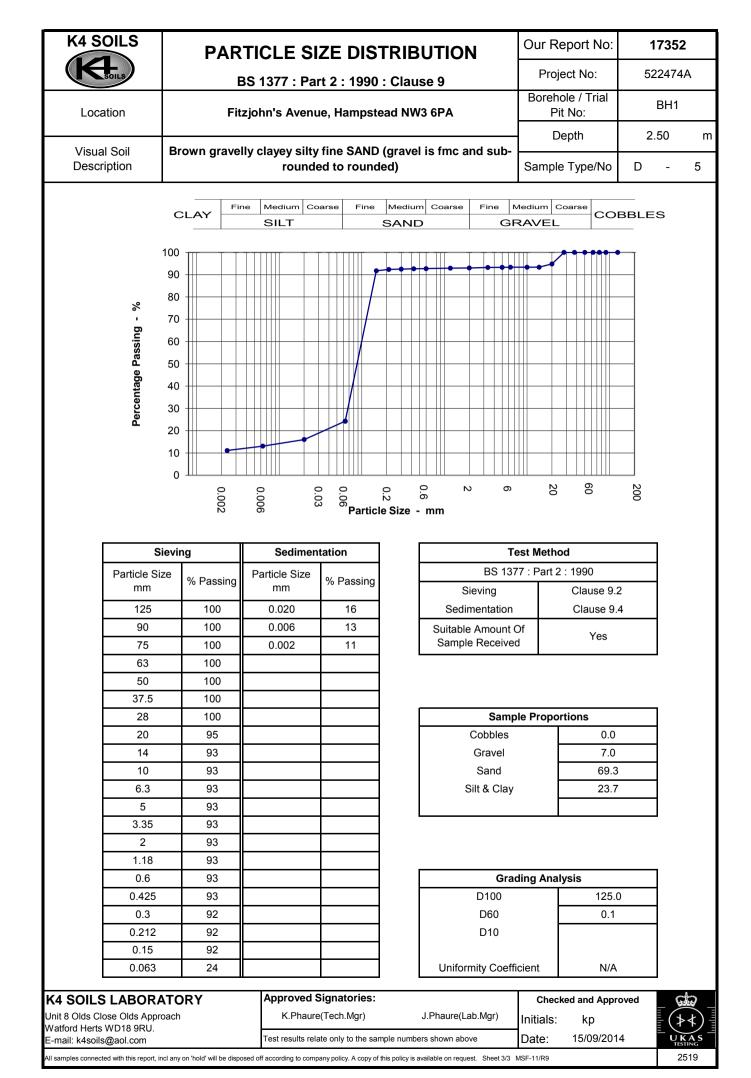
LABORATORY TESTS

GENERAL NOTES ON LABORATORY TESTS ON SOILS

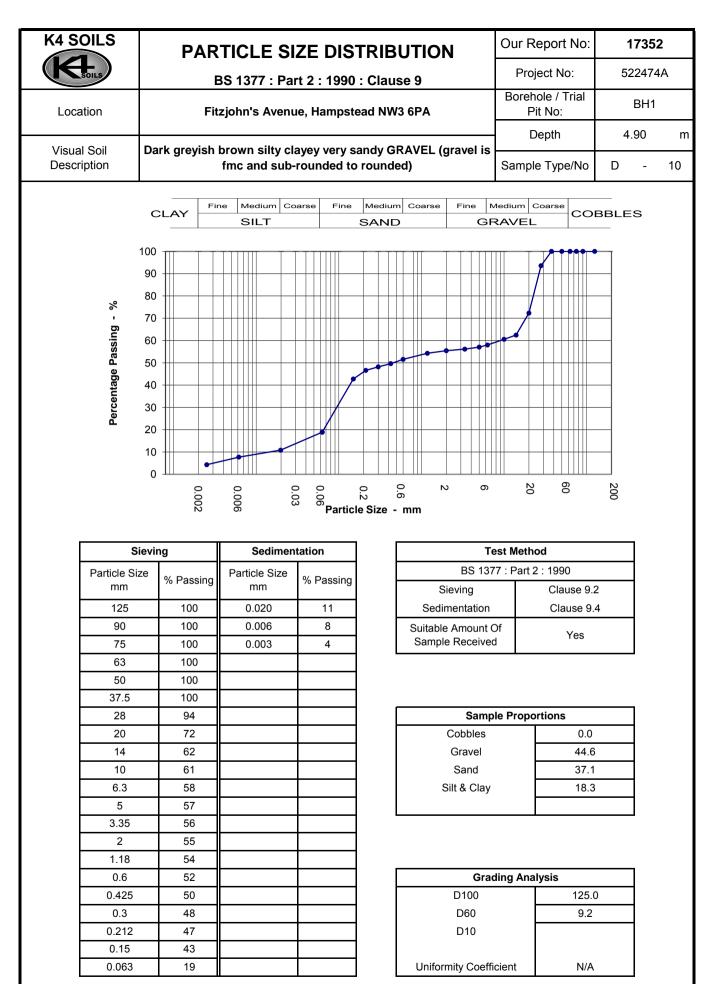
A3.1 GENERAL

- A3.1.1 Where applicable all tests are carried out in accordance with the relevant British Standard. The laboratory test procedures are given in the laboratory test reports.
- A3.1.2 Any discussion in this report is based on the values and results obtained from the appropriate tests. Due allowance should be made, when considering any result in isolation, of the possible inaccuracy of any such individual result. Details of the accuracy of results are included in this section, where applicable.

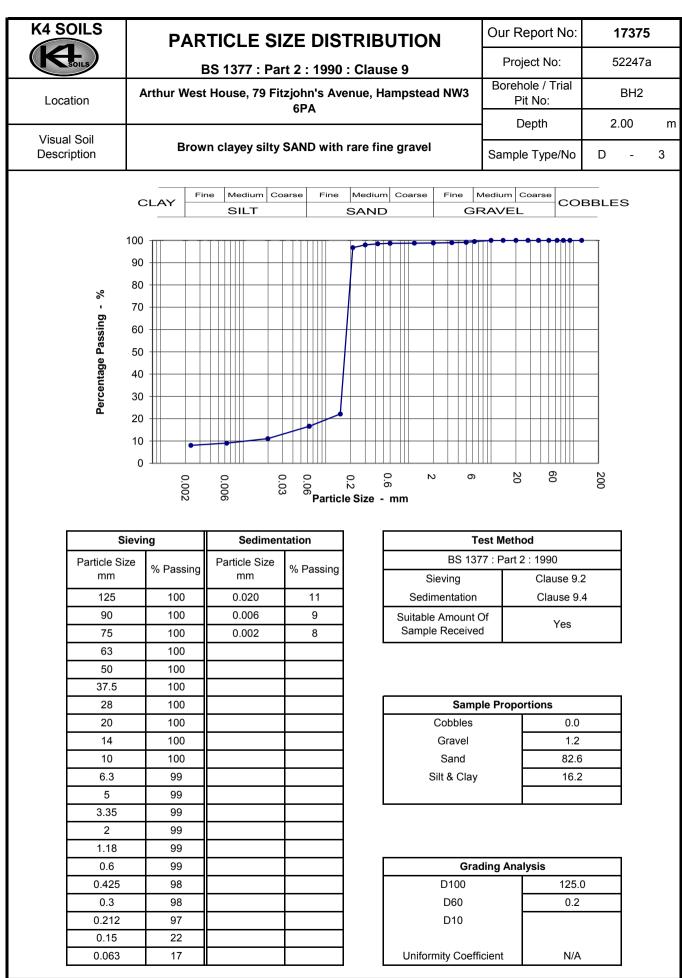
A3.2 SOIL CLASSIFICATION

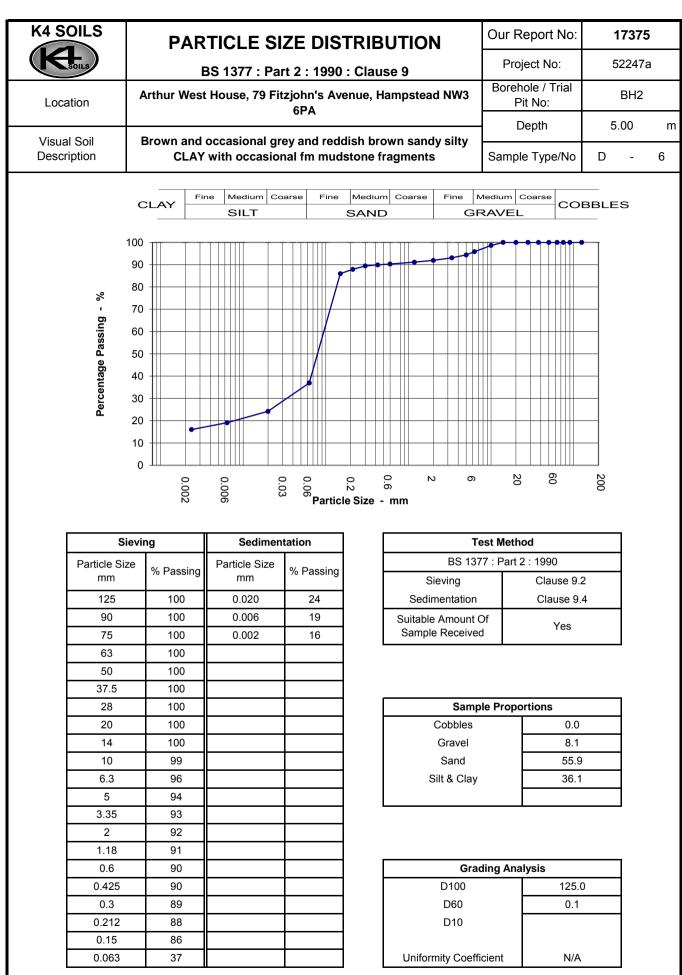

- A3.2.1 Classification of soils is usually undertaken by means of the Plasticity Classification Chart, sometimes called the A-Line Chart. This is graphical plot of PI against LL with the A-Line defined as PI = 0.73(LL 20).
- A3.2.2 This line is defined from experimental evidence and does not represent a well-defined boundary between soil types, but forms a useful reference datum. When the values of LL and PI for inorganic clays are plotted on the chart they generally lie just above the A-Line in a narrow band parallel to it, while silts and organic clays plot below this line.
- A3.2.3 Clays and silts are divided into five zones of plasticity:

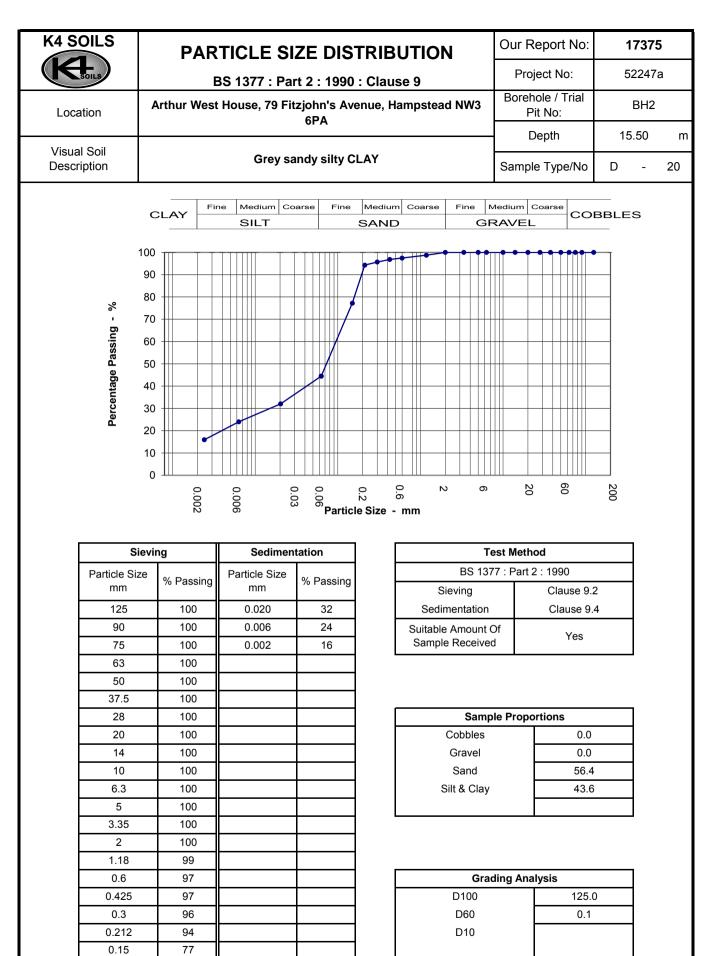
Low Plasticity (L)	LL less than 35
Intermediate Plasticity (I)	LL between 35 and 50
High Plasticity (H)	LL between 50 and 70
Very High Plasticity (V)	LL between 70 and 90
Extremely High Plasticity (E)	LL greater than 90


A3.2.4 In general, clays of high plasticity are likely to have a lower permeability, are more compressible and consolidate over a longer period of time under load than clays of low plasticity. Clays of high plasticity are more difficult to compact as fill material.

roject Na	ime:		s Avenue, Hampstead NW3 6PA		Samples F Project Sta Testing St	arted:	26/08 27/08 10/09	/2014	K4 SOILS
roject No) :	522474A		352	Date Repo		15/09		3011.3
Borehole No:	Sample No:	Depth (m)	Description	Moisture content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Passing 0.425 mm (%)	Remarks
BH1	D6	3.10	Light brown and orange brown slightly gravelly slightly fine sandy silty CLAY (gravel is fmc and sub-rounded)	18	33	15	18	79	
BH3	D2	1.40	Light brown fine sandy silty CLAY	25	47	16	31	100	
BH3	D4	2.50	Light brown fine sandy silty CLAY	21	43	19	24	100	
BH4	D4	1.80	Orange brown and greenish grey mottled slightly gravelly fine sandy silty CLAY with occasional roots and rotlets (gravel is fine)	16	48	15	33	98	
BH4	D6	2.90	Light brown fine sandy silty CLAY	11	47	16	31	100	
BH5	D5	2.90	Orange brown and light brown fine sandy silty CLAY with pockets of light green grey fine sand	20	43	15	28	100	
BH5	D7	3.50	Orange brown, light brown and blue grey mottled fine sandy silty CLAY	22	41	17	24	100	
			Summary of Test Res	sults					Checked and Approved
\sim \sim \sim	BS 1377	: Part 2 :	Clause 4.3 : 1990 Determination of the liquid limit by the cone p Clause 5 : 1990 Determination of the plastic limit and plasticity Clause 3.2 : 1990 Determination of the moisture content by the	oenetromet index.					Initials: K.P Date: 17/09/20
est Repo	rt by K4 S	SOILS LA	BORATORY Unit 8 Olds Close Olds Approach Watford Herts W		-				

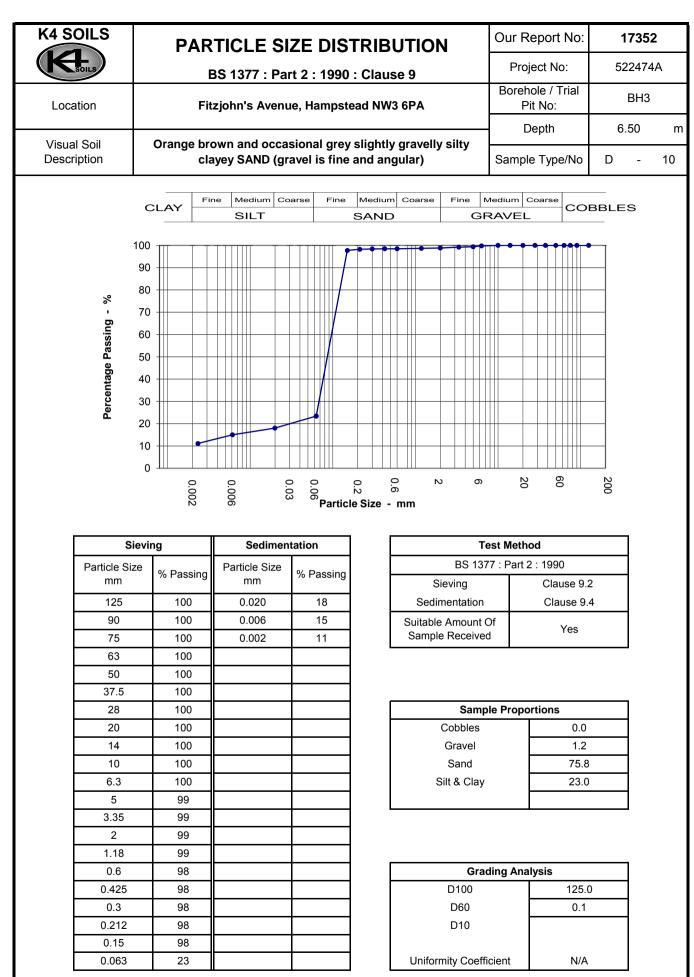

Project Na	ame:	Aπnur W	/est House, 79 Fitzjohn's Avenue, Hampstead NW3 6PA		Samples F Project St		29/08 01/09		K4 SOILS
Client:		lan Farm	ner Associates		Testing St			/2014	Soils
Project No	:	52247a	Our job/report no: 17	375	Date Repo	rted:	17/09	/2014	
Borehole No:	Sample No:	Depth (m)	Description	Moisture content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Passing 0.425 mm (%)	Remarks
BH2	B5	9.00	Dark grey slightly gravelly silty CLAY with occasional pockets of reddish brown fine sand	25	60	23	37	100	
BH3	D3	1.90	Brown clayey silty SAND	24					
BH4	D5	2.30	Orange brown silty sandy CLAY	14					
BH4	D7	3.30	Orange brown silty sandy CLAY	15					
BH4	D8	3.80	Orange brown and slightly grey clayey silty SAND	21					
			Summary of Test Res	ults			<u> </u>		Checked and Approved
UKAS TESTING 2519	BS 1377	: Part 2 :	Clause 4.3 : 1990 Determination of the liquid limit by the cone p Clause 5 : 1990 Determination of the plastic limit and plasticity Clause 3.2 : 1990 Determination of the moisture content by the	enetromet index.					Initials: K.P Date: 17/09/20
-	rt by K4 S	SOILS LA	BORATORY Unit 8 Olds Close Olds Approach Watford Herts W						-
	-		umbers shown above. Approved Signatories: K.Phaure (Tech.Mgr) J.P ncl any on 'hold' will be stored and disposed off according to Company policy.Acopy o	haure (Lab.Mg f this policy is a		request.			MSF-11


Figure A3.1


K4 SOILS LABORATORY	Approved Signatories:		Check	ed and Approved	CÍ.
Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU.	K.Phaure(Tech.Mgr)	J.Phaure(Lab.Mgr)	Initials:	kp	$(\mathbf{A} \mathbf{A})$
E-mail: k4soils@aol.com	Test results relate only to the sample	e numbers shown above	Date:	15/09/2014	
All samples connected with this report, incl any on 'hold' will be di	sposed off according to company policy. A copy of this	policy is available on request. Sheet 3/3	MSF-11/R9		2519

K4 SOILS LABORATORY	Approved Signatories:		Check	ed and Approved	<u>G</u>
Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU.	K.Phaure(Tech.Mgr)	J.Phaure(Lab.Mgr)	Initials:	kp	$(\mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$
E-mail: k4soils@aol.com	Test results relate only to the sample	e numbers shown above	Date:	17/09/2014	
All samples connected with this report, incl any on 'hold' will be di	sposed off according to company policy. A copy of this	policy is available on request. Sheet 3/3	MSF-11/R9		2519

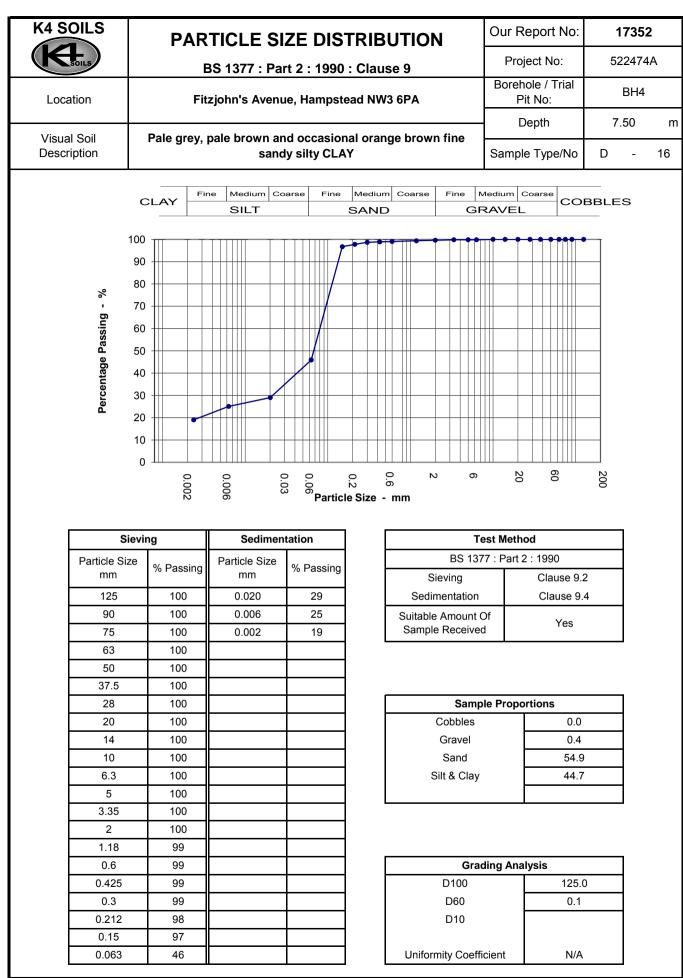
K4 SOILS LABORATORY	Approved Signatories:		Check	ed and Approved	යේ බ
Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU.	K.Phaure(Tech.Mgr)	J.Phaure(Lab.Mgr)	Initials:	kp	(≯≮)
E-mail: k4soils@aol.com	Test results relate only to the sample	e numbers shown above	Date:	17/09/2014	
All samples connected with this report, incl any on 'hold' will be d	sposed off according to company policy. A copy of this	policy is available on request. Sheet 3/3	MSF-11/R9		2519

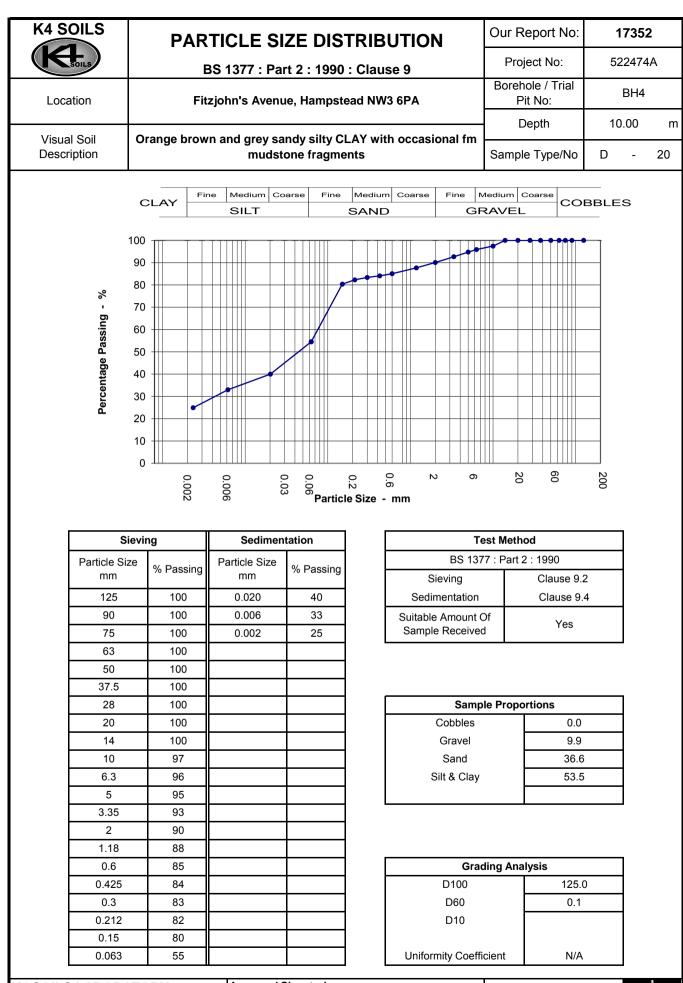


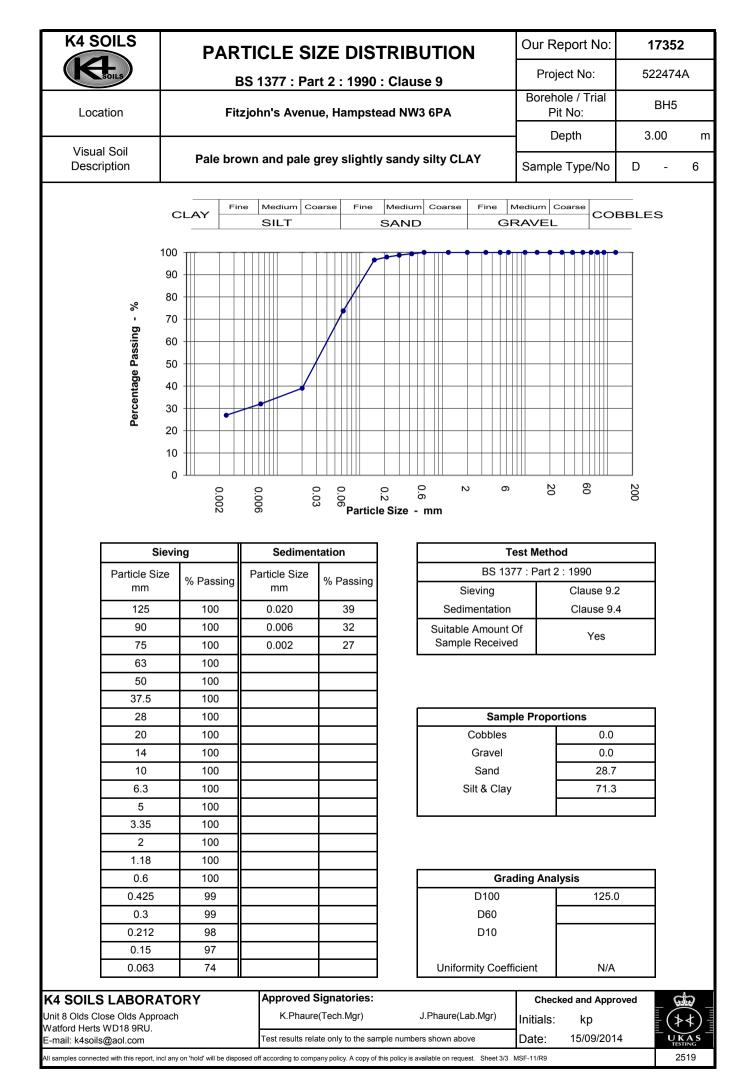
Uniformity Coefficient N/A

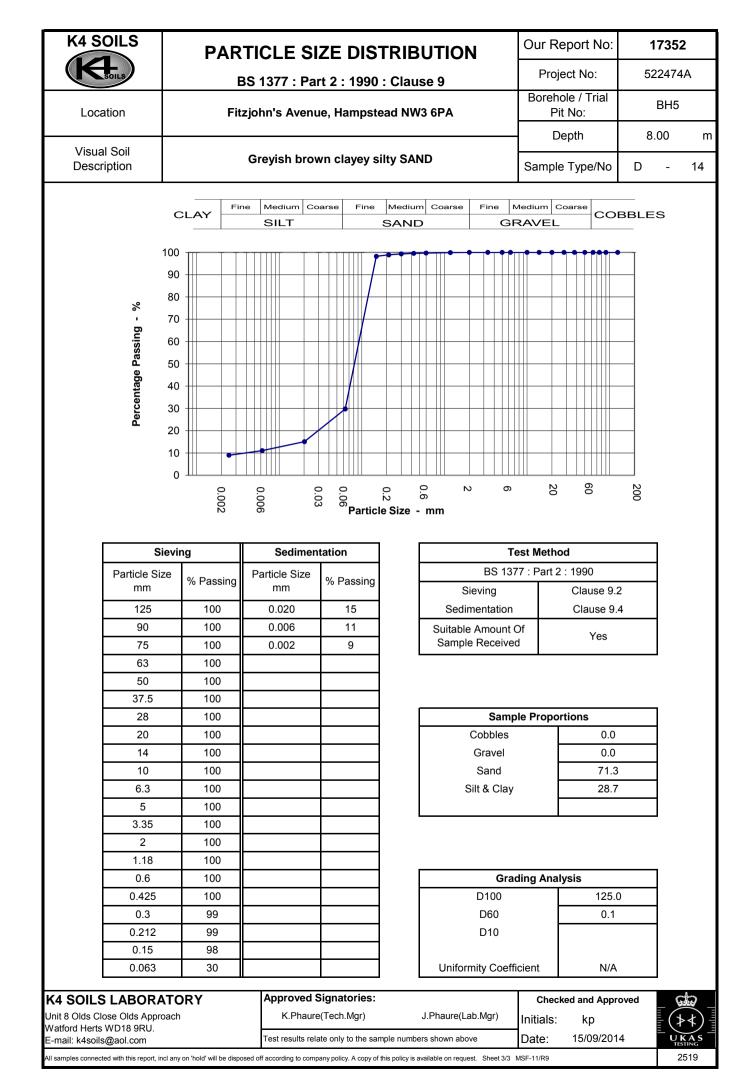
K4 SOILS LABORATORY	Approved Signatories:		Check	ed and Approved	G G
Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU.	K.Phaure(Tech.Mgr)	J.Phaure(Lab.Mgr)	Initials:	kp	(≯≮)
E-mail: k4soils@aol.com	Test results relate only to the sampl	e numbers shown above	Date:	17/09/2014	
All samples connected with this report, incl any on 'hold' will be disposed	I off according to company policy. A copy of this	policy is available on request. Sheet 3/3	MSF-11/R9		2519

0.063


44


K4 SOILS LABORATORY	Approved Signatories:		Check	ed and Approved	<u></u>
Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU.	K.Phaure(Tech.Mgr)	J.Phaure(Lab.Mgr)	Initials:	kp	(><)
E-mail: k4soils@aol.com	Test results relate only to the sample	e numbers shown above	Date:	15/09/2014	
All samples connected with this report, incl any on 'hold' will be di	sposed off according to company policy. A copy of this	policy is available on request. Sheet 3/3	MSF-11/R9		2519


K4 SOILS LABORATORY	Approved Signatories:		Check	ed and Approved	<u>c</u> io
Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU.	K.Phaure(Tech.Mgr)	J.Phaure(Lab.Mgr)	Initials:	kp	
E-mail: k4soils@aol.com	Test results relate only to the sample	e numbers shown above	Date:	15/09/2014	
All samples connected with this report, incl any on 'hold' will be d	sposed off according to company policy. A copy of this	policy is available on request. Sheet 3/3	MSF-11/R9		2519



K4 SOILS LABORATORY	Approved Signatories:		Check	ed and Approved	<u>cito</u>
Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU.	K.Phaure(Tech.Mgr)	J.Phaure(Lab.Mgr)	Initials:	kp	$(\diamond \diamond)$
E-mail: k4soils@aol.com	Test results relate only to the sample	e numbers shown above	Date:	15/09/2014	
All samples connected with this report, incl any on 'hold' will be dis	sposed off according to company policy. A copy of this	policy is available on request. Sheet 3/3	MSF-11/R9		2519

K4 SOILS LABORATORY	Approved Signatories:		Check	ed and Approved	CL C
Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU.	K.Phaure(Tech.Mgr)	J.Phaure(Lab.Mgr)	Initials:	kp	(≯≮)
E-mail: k4soils@aol.com	Test results relate only to the sample	e numbers shown above	Date:	15/09/2014	
All samples connected with this report, incl any on 'hold' will be dispose	d off according to company policy. A copy of this	policy is available on request. Sheet 3/3	MSF-11/R9		2519

Certificate of Analysis Certificate Number 14-14078

03-Sep-14

Client Ian Farmer Associates 1A Batford Mill Lower Luton Road Harpenden Herts AL5 5BZ

- Our Reference 14-14078
- Client Reference 52247

Contract Title Fitzjohn's Avenue, Hampstead

- Description 9 Soil samples.
- Date Received 28-Aug-14
- Date Started 28-Aug-14
- Date Completed 03-Sep-14

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Pua.

Rob Brown Business Manager

Summary of Chemical Analysis

Soil Samples

Our Ref _ 14-14078 Client Ref 52247 Contract Title Fitzjohn's Avenue, Hampstead

	Lab No	691461	691462	691463	691464	691465	691466	691467	691468	691469
	Sample ID	BH1	BH1	BH3	BH4	BH5	BH3	BH5	BH5	BH5
	Depth	1.20	2.00	0.70	1.20	0.50	1.90	4.00	13.00	16.00
	Other ID									
	Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampling Date	13/08/14	13/08/14	13/08/14 14/08/14 15/08/14	15/08/14	21/08/14	14/08/14	21/08/14	21/08/14	21/08/14
	Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Method	LOD Units									

Inorganics												
рН	DETSC 2008#			7.5	7.5	11.1	7.2	8.5	7.3	6.6	7.7	7.6
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	24	62	1300	59	27	36	48	61	280
Total Sulphur as S	DETSC 2320	0.01	%						0.05	< 0.01	0.03	0.60
Total Sulphate as SO4	DETSC 2321#	0.01	%						0.14	0.02	0.07	0.12

Inannronriate

Information in Support of the Analytical Results

Our Ref 14-14078 *Client Ref* 52247 *Contract* Fitzjohn's Avenue, Hampstead

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
691461	BH1 1.20 SOIL	13/08/14	PG	pH (7 days)	
691462	BH1 2.00 SOIL	13/08/14	PG	pH (7 days)	
691463	BH3 0.70 SOIL	14/08/14	PG	pH (7 days)	
691464	BH4 1.20 SOIL	15/08/14	PG	pH (7 days)	
691465	BH5 0.50 SOIL	21/08/14	PT 1L		
691466	BH3 1.90 SOIL	14/08/14	PG	pH (7 days)	
691467	BH5 4.00 SOIL	21/08/14	PT 1L		
691468	BH5 13.00 SOIL	21/08/14	PT 1L		
691469	BH5 16.00 SOIL	21/08/14	PT 1L		

Key: P-Plastic G-Bag T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time and/or inappropriate containers are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Certificate of Analysis Certificate Number 14-14566

10-Sep-14

Client Ian Farmer Associates 1A Batford Mill Lower Luton Road Harpenden Herts AL5 5BZ

- Our Reference 14-14566
- *Client Reference* 52247

Contract Title Fitzjohn's Avenue, Hampstead

- Description 4 Soil samples.
- Date Received 03-Sep-14
- Date Started 03-Sep-14
- Date Completed 10-Sep-14

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Pua.

Rob Brown Business Manager

Summary of Chemical Analysis Soil Samples

Our Ref 14-14566 *Client Ref* 52247 *Contract Title* Fitzjohn's Avenue, Hampstead

			_				
			Lab No	694365	694366	694367	694368
		Sa	mple ID	BH2	BH2	BH2	BH2
			Depth	0.50	3.00	8.50	10.50
		(Other ID				
		Sam	ple Type	D	D	D	D
		Sampl	ing Date	27/08/14	27/08/14	27/08/14	27/08/14
		Sampli	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Inorganics							
рН	DETSC 2008#			8.5	6.1	7.2	7.4
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	31	63	350	180
Total Sulphur as S	DETSC 2320	0.01	%		0.02	0.48	0.51
Total Sulphate as SO4	DETSC 2321#	0.01	%		0.04	0.12	0.11

..

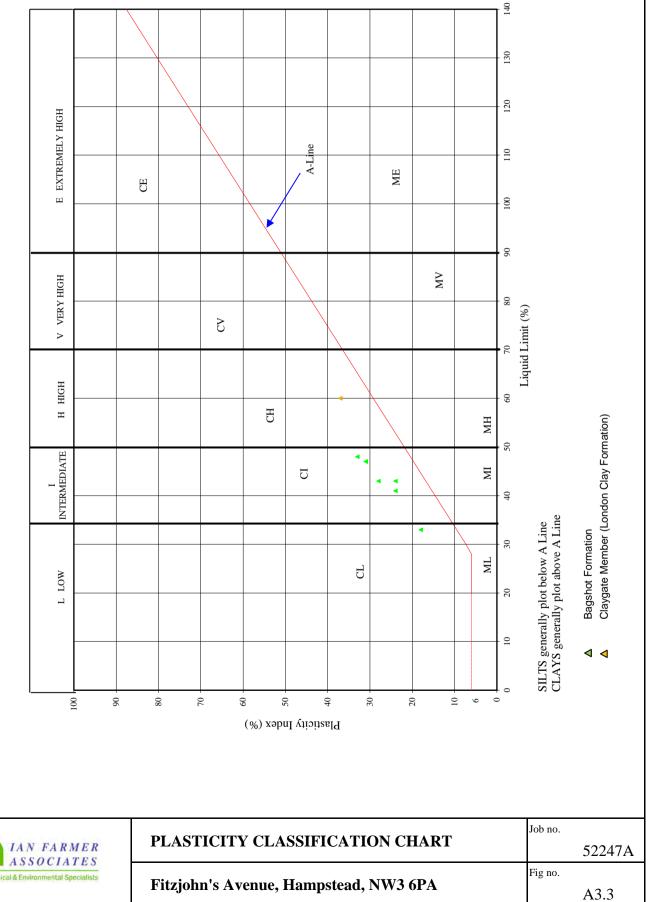
Information in Support of the Analytical Results

Our Ref 14-14566 Client Ref 52247 Contract Fitzjohn's Avenue, Hampstead

Containers Received & Deviating Samples

		Date			Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	1	tests	tests
694365	BH2 0.50 SOIL	27/08/14	PT 1L			
694366	BH2 3.00 SOIL	27/08/14	PT 1L			
694367	BH2 8.50 SOIL	27/08/14	PT 1L			
694368	BH2 10.50 SOIL	27/08/14	PT 1L			

Key: P-Plastic T-Tub


DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time and/or inappropriate containers are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

APPENDIX 4

CHEMICAL TESTS

Certificate of Analysis Certificate Number 14-13464-2

22-Sep-14

Client Ian Farmer Associates 1A Batford Mill Lower Luton Road Harpenden Herts AL5 5BZ

- Our Reference 14-13464-2
- Client Reference 52247

Contract Title Fitzjohn's Avenue

Description 4 Soil samples, 2 Leachate samples.

- Date Received 19-Aug-14
- Date Started 19-Aug-14
- Date Completed 22-Sep-14

Test Procedures Identified by prefix DETSn (details on request), Asbestos Analysis DETSC 1101.

Notes This report supersedes 14-13464-1. Leachates added

Fua.

Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Rob Brown Business Manager

Summary of Chemical Analysis Matrix Descriptions

Sample ID	Depth	Lab No	Completed	Matrix Description
BH1	0.3	687704	22/09/2014	brown gravelly sandy CLAY
BH1	0.9	687705	22/09/2014	brown gravelly sandy CLAY
BH3	0.5	687706	22/09/2014	brown gravelly sandy CLAY
BH3	1	687707	22/09/2014	brown gravelly sandy CLAY

Summary of Chemical Analysis Soil Samples

contract ritle Fitzjonn's Avenue			-				
		_	Lab No	687704	687705	687706	687707
		Sa	ample ID	BH1	BH1	BH3	BH3
			Depth	0.30	0.90	0.50	1.00
			Other ID				
			ple Type	SOIL	SOIL	SOIL	SOIL
		-	ing Date	13/08/14	13/08/14	14/08/14	14/08/14
_		-	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Metals							
Arsenic	DETSC 2301#	0.2	mg/kg	22	15	8.0	12
Boron (water soluble)	DETSC 2123#	0.2	mg/kg	2.4	2.2	1.5	2.0
Cadmium	DETSC 2301#	0.1	mg/kg	1.5	0.7	0.2	0.4
Chromium	DETSC 2301#	0.15	mg/kg	78	93	81	91
Hexavalent Chromium	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	83	41	8.2	15
Lead	DETSC 2301#	0.3	mg/kg	1500	330	54	180
Mercury	DETSC 2325#	0.05	mg/kg	0.43	0.52	< 0.05	0.17
Nickel	DETSC 2301#	1	mg/kg	28	20	14	18
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	450	120	44	83
Inorganics							
рН	DETSC 2008#			7.5	7.5	11.2	10.5
Cyanide free	DETSC 2130#	0.1	mg/kg	0.2	< 0.1	< 0.1	< 0.1
Organic matter	DETSC 2002#	0.1	%	4.7			0.6
Petroleum Hydrocarbons				÷		÷	
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	11
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	28
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	39
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	7.8
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	19
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	0.6	< 0.6	< 0.6	440
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	2900
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	3300
TPH Ali/Aro	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	3400
Benzene	DETSC 3321#	0.01	mg/kg		_0	< 0.01	2.00
Ethylbenzene	DETSC 3321#	0.01	mg/kg			< 0.01	
Toluene	DETSC 3321#	0.01	mg/kg			< 0.01	
Xylene	DETSC 3321#	0.01	mg/kg			< 0.01	
МТВЕ	DETSC 3321#	0.01	mg/kg			< 0.01	
PAHs	22100 3321	0.01	ð" <i>\</i> 6'יי			× 0.01	
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
Acenaphunyiene	DE13C 3301	0.1	iiig/ Kg	0.1	< U.1	< U.1	< 0.1

Summary of Chemical Analysis Soil Samples

			Lab No	687704	687705	687706	687707
		Sa	ample ID	BH1	BH1	BH3	BH3
			Depth	0.30	0.90	0.50	1.00
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	13/08/14	13/08/14	14/08/14	14/08/14
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Anthracene	DETSC 3301	0.1	mg/kg	0.2	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	1.3	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	1.3	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	1.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	0.5	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	1.2	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	2.3	0.6	0.3	0.4
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	0.9	< 0.1	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	2.1	0.7	0.3	0.4
РАН	DETSC 3301	1.6	mg/kg	11	< 1.6	< 1.6	< 1.6

Summary of Chemical Analysis Leachate Samples

,			-		
			Lab No	701272	701273
		Sa	mple ID	BH1	BH3
			Depth	0.90	1.00
		(Other ID		
		Sam	ole Type	LEACHATE	LEACHATE
		Sampli	ing Date	13/08/14	14/08/14
		Sampli	ng Time	n/s	n/s
Test	Method	LOD	Units		
Preparation					
NRA Leachate Preparation	DETS 036*			Y	Y
Metals	•				
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	2.6	1.3
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	1.0	1.5
Copper, Dissolved	DETSC 2306	0.4	ug/l	4.4	1.1
Lead, Dissolved	DETSC 2306	0.09	ug/l	6.2	0.86
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.02	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	0.8	0.8
Selenium, Dissolved	DETSC 2306	0.25	ug/l	1.8	1.3
Zinc, Dissolved	DETSC 2306	1.25	ug/l	3.23	< 1.25
Inorganics					
рН	DETSC 2008			5.8	7.0
Cyanide free	DETSC 2130	20	ug/l	< 20	< 20
Petroleum Hydrocarbons	•				
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 15.0	< 15.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 15.0	< 15.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 15.0	< 15.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 15.0	< 15.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	60	60
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 15.0	< 15.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 15.0	< 15.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 15.0	< 15.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 15.0	< 15.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	60	60
TPH Ali/Aro	DETSC 3072*	10	ug/l	120	120

Summary of Asbestos Analysis Soil Samples

Our Ref 14-13464-2 Client Ref 52247 Contract Title Fitzjohn's Avenue

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
687704	BH1 0.30	SOIL	Amosite	Amosite present as fibre bundles	Jeff Cruddas
687706	BH3 0.50	SOIL	NAD	none	Jeff Cruddas

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 14-13464-2 *Client Ref* 52247 *Contract* Fitzjohn's Avenue

Containers Received & Deviating Samples

	Date		Holding time exceeded for	Inappropriate container for
Sample ID	Sampled	Containers Received	tests	tests
BH1 0.30 SOIL	13/08/14	GJ 250ml (250ml), GV (40ml), PT 1L (1kg)		
BH1 0.90 SOIL	13/08/14	GJ 250ml (250ml), GV (40ml), PT 1L (1kg)		
BH3 0.50 SOIL	14/08/14	GJ 250ml (250ml), GV (40ml), PT 1L (1kg)		
BH3 1.00 SOIL	14/08/14	GJ 250ml (250ml), GV (40ml), PT 1L (1kg)		
BH1 0.90 LEACHATE	13/08/14	GJ 1L (1L)		
BH3 1.00 LEACHATE	14/08/14	GJ 1L (1L)		
	BH1 0.30 SOIL BH1 0.90 SOIL BH3 0.50 SOIL BH3 1.00 SOIL BH1 0.90 LEACHATE	Sample ID Sampled BH1 0.30 SOIL 13/08/14 BH1 0.90 SOIL 13/08/14 BH3 0.50 SOIL 14/08/14 BH3 1.00 SOIL 14/08/14 BH1 0.90 LEACHATE 13/08/14	Sample ID Sampled Containers Received BH1 0.30 SOIL 13/08/14 GJ 250ml (250ml), GV (40ml), PT 1L (1kg) BH1 0.90 SOIL 13/08/14 GJ 250ml (250ml), GV (40ml), PT 1L (1kg) BH3 0.50 SOIL 14/08/14 GJ 250ml (250ml), GV (40ml), PT 1L (1kg) BH3 1.00 SOIL 14/08/14 GJ 250ml (250ml), GV (40ml), PT 1L (1kg) BH3 1.00 SOIL 14/08/14 GJ 250ml (250ml), GV (40ml), PT 1L (1kg) BH1 0.90 LEACHATE 13/08/14 GJ 1L (1L)	Date exceeded for Sample ID Sampled Containers Received tests BH1 0.30 SOIL 13/08/14 GJ 250ml (250ml), GV (40ml), PT 1L (1kg) BH1 0.90 SOIL 13/08/14 GJ 250ml (250ml), GV (40ml), PT 1L (1kg) BH3 0.50 SOIL 13/08/14 GJ 250ml (250ml), GV (40ml), PT 1L (1kg) BH3 0.50 SOIL 14/08/14 GJ 250ml (250ml), GV (40ml), PT 1L (1kg) BH3 1.00 SOIL 14/08/14 GJ 250ml (250ml), GV (40ml), PT 1L (1kg) BH1 0.90 LEACHATE 13/08/14 GJ 1L (1L)

Key: G-Glass P-Plastic J-Jar V-Vial T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time and/or inappropriate containers are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix A - Details of Analysis

1-1			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	рН	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	ЕРН (С10-С40)	mg/kg	10	As Received	No	Yes	Yes

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

Certificate of Analysis Certificate Number 14-13783

29-Aug-14

Client Ian Farmer Associates 1A Batford Mill Lower Luton Road Harpenden Herts AL5 5BZ

- Our Reference 14-13783
- Client Reference 52247
 - Contract Title Fitzjohn's Avenue
 - Description 2 Soil samples.
 - Date Received 22-Aug-14
 - Date Started 22-Aug-14
- Date Completed 29-Aug-14
- Test Procedures Identified by prefix DETSn (details on request), Asbestos Analysis DETSC 1101.

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

PUQ.

Rob Brown Business Manager

Summary of Chemical Analysis Matrix Descriptions

Sample ID	Depth	Lab No	Completed	Matrix Description
BH5	0.5	689432	29/08/2014	Brown gravelly sandy CLAY
BH5	1	689433	29/08/2014	Brown gravelly sandy CLAY with odd rootlets

Summary of Chemical Analysis Soil Samples

,				1	
			Lab No	689432	689433
		Sa	mple ID	BH5	BH5
			Depth	0.50	1.00
			Other ID		
			ple Type	SOIL	SOIL
		-	ing Date	18/08/14	18/08/14
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
Metals	1	1 1			
Arsenic	DETSC 2301#	0.2	mg/kg	7.1	10
Boron (water soluble)	DETSC 2123#	0.2	mg/kg	0.8	1.1
Cadmium	DETSC 2301#	0.1	mg/kg	0.1	0.2
Chromium	DETSC 2301#	0.15	mg/kg	97	82
Hexavalent Chromium	DETSC 2204*	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	8.4	7.0
Lead	DETSC 2301#	0.3	mg/kg	14	11
Mercury	DETSC 2325#	0.05	mg/kg	0.05	0.06
Nickel	DETSC 2301#	1	mg/kg	5.8	8.7
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	25	29
Inorganics					
Cyanide free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Organic matter	DETSC 2002#	0.1	%		0.4
Petroleum Hydrocarbons					
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10
TPH Ali/Aro	DETSC 3072*	10	mg/kg	< 10	< 10

Summary of Chemical Analysis Soil Samples

			Lab No	689432	689433
		Sa	ample ID	BH5	BH5
			Depth	0.50	1.00
		(Other ID		
		Sam	ple Type	SOIL	SOIL
		Sampl	ing Date	18/08/14	18/08/14
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
PAHs					
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
РАН	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6

Summary of Asbestos Analysis Soil Samples

Our Ref 14-13783 Client Ref 52247 Contract Title Fitzjohn's Avenue

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
689432	BH5 0.50	SOIL	NAD	none	Keith Wilson
Crocidolite = Blue	e Asbestos, Amosite = Brown	Asbestos, Chrysotile = White Asbesto	os. Anthophyllite, Actine	olite and Tremolite are other fo	orms of Asbestos.
Samples are anal	lysed by DETSC 1101 using po	arised light microscopy in accordance	ce with HSG248 and doo	cumented in-house methods. I	NAD = No Asbestos
Detected. Where	e a sample is NAD, the result is	based on analysis of at least 2 sub-	samples and should be	taken to mean 'no asbestos de	etected in sample'. Key: * -
not included in la	aboratory scope of accreditation	on.			

Figure A4.1

Information in Support of the Analytical Results

Our Ref 14-13783 Client Ref 52247 Contract Fitzjohn's Avenue

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriat container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
689432	BH5 0.50 SOIL	18/08/14	GJ 250ml (250ml), GV (40ml), PT 1L (1kg)		
689433	BH5 1.00 SOIL	18/08/14	GJ 250ml (250ml), GV (40ml), PT 1L (1kg)		
		• •	nples received whereby the laboratory did not undertake t tish and International standards and laboratory trials in co		•
containers a	are deviating due to the If no sampled date (soils	reasons stated. This	ve. However, those samples that have additional comment means that the analysis is accredited where applicable, bu ers) has been supplied then samples are deviating. Howeve	ut results may be compromised	due to sample

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix A - Details of Analysis

••		•	Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	рН	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062 DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 002 DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311 DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311 DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes
DE13C 3311		····ጽ/ •·ጽ	10	AS NECENEU	NU	163	163

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

Certificate of Analysis Certificate Number 14-13784-1

22-Sep-14

Client Ian Farmer Associates 1A Batford Mill Lower Luton Road Harpenden Herts AL5 5BZ

- Our Reference 14-13784-1
- Client Reference 52247

Contract Title Fitzjohn's Avenue

Description 2 Soil samples, 1 Leachate sample.

- Date Received 22-Aug-14
- Date Started 22-Aug-14
- Date Completed 22-Sep-14

Test Procedures Identified by prefix DETSn (details on request), Asbestos Analysis DETSC 1101.

Notes This report supersedes 14-13784. Leachates added

Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Fua.

Rob Brown Business Manager

Summary of Chemical Analysis Matrix Descriptions

Sample ID	Depth	Lab No	Completed	Matrix Description
BH4	0.4	689434	22/09/2014	Dark grey gravelly sandy CLAY with odd rootlets
BH4	0.8	689435	22/09/2014	Brown gravelly sandy CLAY (made ground includes brick)

Summary of Chemical Analysis Soil Samples

Our Ref 14-13784-1 Client Ref 52247 Contract Title Fitzjohn's Avenue

contract ritle ritzjonn's Avenue			Lab No	689434	689435
		6-	ample ID	BH4	BH4
		36	Depth	0.40	0.80
			Other ID	0.40	0.80
			ple Type	SOIL	SOIL
			ing Date	15/08/14	15/08/14
		-	ing Time	n/s	13/08/14 n/s
Test	Method	LOD	Units	11/5	11/5
Metals	method	100	Onits		
Arsenic	DETSC 2301#	0.2	mg/kg	13	11
Boron (water soluble)	DETSC 2123#	0.2	mg/kg	1.3	1.1
Cadmium	DETSC 2301#	0.1	mg/kg	0.3	0.2
Chromium	DETSC 2301#	0.15	mg/kg	100	120
Hexavalent Chromium	DETSC 2204*	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	28	19
Lead	DETSC 2301#	0.2	mg/kg	84	97
Mercury	DETSC 2325#	0.05	mg/kg	0.19	0.43
Nickel	DETSC 2301#	0.05	mg/kg	17	10
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5
Zinc	DETSC 2301#	0.5	mg/kg	73	45
Inorganics	DE136 2301#	-	<u>מיי /מייי</u>	73	-15
pH	DETSC 2008#			7.9	7.7
Cyanide free	DETSC 2000#	0.1	mg/kg	< 0.1	< 0.1
Organic matter	DETSC 2002#	0.1	%	× 0.1	1.6
Petroleum Hydrocarbons	DE13C 2002#	0.1	70		1.0
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10
TPH Ali/Aro	DETSC 3072*	10	mg/kg	< 10	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	× 10
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	
MTBE	DETSC 3321#	0.01	mg/kg	< 0.01	
PAHs	196136 3321	0.01	<u>116/ 16</u>	× 0.01	
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthylene	DETSC 3301 DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acchaphunyiene	DE13C 2201	0.1	mg/ ⊾g	< U.1	< U.1

Summary of Chemical Analysis Soil Samples

Our Ref 14-13784-1 Client Ref 52247 Contract Title Fitzjohn's Avenue

			Lab No	689434	689435
		Sa	mple ID	BH4	BH4
			Depth	0.40	0.80
		(Other ID		
		Sam	ple Type	SOIL	SOIL
		Sampl	ing Date	15/08/14	15/08/14
		Sampli	ing Time	n/s	n/s
Test	Method	LOD	Units		
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	0.3	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	0.3	< 0.1
РАН	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6

Summary of Chemical Analysis Leachate Samples

Our Ref 14-13784-1 Client Ref 52247 Contract Title Fitzjohn's Avenue

-			Lab No	701271
		Sa	ample ID	BH4
			Depth	0.80
			Other ID	
			ple Type	LEACHATE
			ing Date	15/08/14
		-	ing Time	n/s
Test	Method	LOD	Units	
Preparation				
NRA Leachate Preparation	DETS 036*			Y
Metals	•			
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	2.7
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	2.6
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.6
Lead, Dissolved	DETSC 2306	0.09	ug/l	3.9
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.02
Nickel, Dissolved	DETSC 2306	0.5	ug/l	0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	2.3
Zinc, Dissolved	DETSC 2306	1.25	ug/l	1.60
Inorganics				
рН	DETSC 2008			5.5
Cyanide free	DETSC 2130	20	ug/l	< 20
Petroleum Hydrocarbons				
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	6.1
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	7.5
Aromatic C12-C16	DETSC 3072*	1	ug/l	8.4
Aromatic C16-C21	DETSC 3072*	1	ug/l	13
Aromatic C21-C35	DETSC 3072*	1	ug/l	11
Aromatic C5-C35	DETSC 3072*	10	ug/l	40
TPH Ali/Aro	DETSC 3072*	10	ug/l	47

Summary of Asbestos Analysis Soil Samples

Our Ref 14-13784-1 Client Ref 52247 Contract Title Fitzjohn's Avenue

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
689434	BH4 0.40	SOIL	NAD	none	Keith Wilson
Crocidolite = B	lue Asbestos, Amosite = Brov	vn Asbestos, Chrysotile = White Asbesto	os. Anthophyllite, Actino	olite and Tremolite are other fo	orms of Asbestos.
Samples are ar	nalysed by DETSC 1101 using	polarised light microscopy in accordance	e with HSG248 and doo	cumented in-house methods. N	NAD = No Asbestos
Detected. Whe	ere a sample is NAD, the resu	It is based on analysis of at least 2 sub-	amples and should be t	taken to mean 'no asbestos de	tected in sample'. Key: *
not included in	laboratory scope of accredit	ation.			

Figure A4.1

.. . ..

Information in Support of the Analytical Results

Our Ref 14-13784-1 *Client Ref* 52247 *Contract* Fitzjohn's Avenue

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
689434	BH4 0.40 SOIL	15/08/14	GJ 250ml (250ml), GJ 60ml (60ml), PT 1L (1kg)		
689435	BH4 0.80 SOIL	15/08/14	GJ 250ml (250ml), PT 1L (1kg)		
701271	BH4 0.80 LEACHATE	15/08/14	GJ 1L (1L)		
Key: G-Glas	s P-Plastic J-Jar T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time and/or inappropriate containers are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix A - Details of Analysis

1-1			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	рН	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	ЕРН (С10-С40)	mg/kg	10	As Received	No	Yes	Yes

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

Certificate of Analysis Certificate Number 14-14078

03-Sep-14

Client Ian Farmer Associates 1A Batford Mill Lower Luton Road Harpenden Herts AL5 5BZ

- Our Reference 14-14078
- Client Reference 52247

Contract Title Fitzjohn's Avenue, Hampstead

- Description 9 Soil samples.
- Date Received 28-Aug-14
- Date Started 28-Aug-14
- Date Completed 03-Sep-14

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

PUQ.

Rob Brown Business Manager

Summary of Chemical Analysis

Soil Samples

Contract Title Fitzjohn's Avenue, Hampstead *Our Ref* 14-14078 *Client Ref* 52247

		Sample ID	BH1	BH1	BH3	BH4	BH5	BH3	BH5	BH5	BH5
		Depth	1.20	2.00	0.70	1.20	0.50	1.90	4.00	13.00	16.00
		Other ID									
		Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampling Date		13/08/14	14/08/14	15/08/14	21/08/14	14/08/14	13/08/14 13/08/14 14/08/14 15/08/14 21/08/14 14/08/14 21/08/14 21/08/14	21/08/14	21/08/14
		Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD Units									
Inorganics											
рН	DETSC 2008#		7.5	7.5	11.1	7.2	8.5	7.3	6.6	7.7	7.6
Sulphate Aqueous Extract as SO4	DETSC 2076#	10 mg/l	24	62	1300	59	27	36	48	61	280

0.60 0.12

0.03 0.07

< 0.01 0.02

0.05 0.14

%

0.01 0.01

DETSC 2321# DETSC 2320

Total Sulphate as SO4 Total Sulphur as S

691469

691468

691467

691466

691465

691464

691463

691462

691461

Lab No

Inannronriato

Information in Support of the Analytical Results

Our Ref 14-14078 *Client Ref* 52247 *Contract* Fitzjohn's Avenue, Hampstead

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
691461	BH1 1.20 SOIL	13/08/14	PG	pH (7 days)	
691462	BH1 2.00 SOIL	13/08/14	PG	pH (7 days)	
691463	BH3 0.70 SOIL	14/08/14	PG	pH (7 days)	
691464	BH4 1.20 SOIL	15/08/14	PG	pH (7 days)	
691465	BH5 0.50 SOIL	21/08/14	PT 1L		
691466	BH3 1.90 SOIL	14/08/14	PG	pH (7 days)	
691467	BH5 4.00 SOIL	21/08/14	PT 1L		
691468	BH5 13.00 SOIL	21/08/14	PT 1L		
691469	BH5 16.00 SOIL	21/08/14	PT 1L		

Key: P-Plastic G-Bag T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time and/or inappropriate containers are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Certificate of Analysis Certificate Number 14-14255

04-Sep-14

Client Ian Farmer Associates 1A Batford Mill Lower Luton Road Harpenden Herts AL5 5BZ

- Our Reference 14-14255
- Client Reference 52247
 - Contract Title Fitzjohn's Avenue
 - Description 2 Soil samples.
 - Date Received 29-Aug-14
 - Date Started 29-Aug-14
- Date Completed 04-Sep-14
- Test Procedures Identified by prefix DETSn (details on request), Asbestos Analysis DETSC 1101.

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

PUQ.

Rob Brown Business Manager

Summary of Chemical Analysis Matrix Descriptions

Our Ref 14-14255 Client Ref 52247 Contract Title Fitzjohn's Avenue

Sample ID	Depth	Lab No	Completed	Matrix Description
TP1	0.2	692710	04/09/2014	Brown clayey sandy GRAVEL (sample matrix outside MCERTS scope of accreditation)
TP2	0.5	692711	04/09/2014	Dark brown grey gravelly silty sandy CLAY (made ground includes brick)

Summary of Chemical Analysis Soil Samples

Our Ref 14-14255 Client Ref 52247 Contract Title Fitzjohn's Avenue

		Lab No	692710	692711
	Sa	mple ID	TP1	TP2
		Depth	0.20	0.50
	(Other ID		
	Sam	ple Type	SOIL	SOIL
	Sampl	ing Date	27/08/14	27/08/14
	Sampli	ng Time	n/s	n/s
Method	LOD	Units		
DETSC 2301#	0.2	mg/kg	10	7.7
DETSC 2123#	0.2	mg/kg	1.4	1.4
DETSC 2301#	0.1	mg/kg	0.5	0.9
DETSC 2301#	0.15	mg/kg	96	98
DETSC 2204*	1		< 1.0	< 1.0
DETSC 2301#	0.2		10	20
DETSC 2301#	0.3		16	310
DETSC 2325#	0.05		< 0.05	0.19
DETSC 2301#	1		29	9.1
DETSC 2301#	0.5		< 0.5	< 0.5
	1		62	55
	11	<u> </u>		
DETSC 2008#			8.6	8.3
	0.1	mg/kg		< 0.1
1	1	0, 0		
DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
	0.01			< 0.01
				< 0.01
				< 1.5
				1.9
				25
				270
				300
				< 0.01
				< 0.01
				< 0.01
				< 0.9
-				< 0.5
				7.8
				32
				40
				340
	0.01	סיי יסייי		
DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
				< 0.1
				0.4
	DETSC 2301# DETSC 2123# DETSC 2301# DETSC 2301# DETSC 2301# DETSC 2301# DETSC 2301# DETSC 2301# DETSC 2325# DETSC 2301#	Sample Sample Sample Sample Method LOD DETSC 2301# 0.2 DETSC 2123# 0.2 DETSC 2301# 0.11 DETSC 2301# 0.15 DETSC 2301# 0.15 DETSC 2301# 0.13 DETSC 2301# 0.33 DETSC 2301# 0.33 DETSC 2301# 0.33 DETSC 2301# 0.15 DETSC 2301# 0.11 DETSC 2301# 0.11 DETSC 3321* 0.01 DETSC 3072# 1.5 DETSC 3072# 1.0 DETSC 3072# 1.0 DETSC 3072# 0.01 DETSC 3072# 0.01	Other ID Sampling Date Sampling Time Method Units DETSC 2301# 0.2 mg/kg DETSC 2123# 0.2 mg/kg DETSC 2301# 0.1 mg/kg DETSC 2301# 0.15 mg/kg DETSC 2301# 0.15 mg/kg DETSC 2301# 0.13 mg/kg DETSC 2301# 0.13 mg/kg DETSC 2301# 0.3 mg/kg DETSC 2301# 0.5 mg/kg DETSC 2301# 0.5 mg/kg DETSC 2301# 0.1 mg/kg DETSC 2301# 0.1 mg/kg DETSC 2301# 0.1 mg/kg DETSC 3321* 0.01 mg/kg DETSC 3321* 0.01 mg/kg DETSC 3072# 1.5 mg/kg DETSC 3072# 1.5 mg/kg DETSC 3072# 0.01 mg/kg DETSC 3072# 0.01 m	Depth 0.20 Other ID Sample Type Solt Sampling Date 27/08/14 Sampling Time n/s Method LOD Units Units Units DETSC 2301# 0.2 mg/kg 1.0 DETSC 2301# 0.1 mg/kg 0.5 DETSC 2301# 0.15 mg/kg 96 DETSC 2301# 0.15 mg/kg 0.0 DETSC 2301# 0.13 mg/kg 10 DETSC 2301# 0.2 mg/kg 10 DETSC 2301# 0.3 mg/kg 29 DETSC 2301# 1 mg/kg 29 DETSC 2301# 1 mg/kg 20 DETSC 2301# 1 mg/kg 40.1 DETSC 2301# 0.1 mg/kg 40.1 DETSC 3321*

Summary of Chemical Analysis Soil Samples

Our Ref 14-14255 Client Ref 52247 Contract Title Fitzjohn's Avenue

			Lab No	692710	692711
		Sa	mple ID	TP1	TP2
			Depth	0.20	0.50
		(Other ID		
		Sam	ple Type	SOIL	SOIL
		Sampli	ing Date	27/08/14	27/08/14
		Sampli	ng Time	n/s	n/s
Test	Method	LOD	Units		
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	0.6
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	0.3
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	0.4
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	0.7
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	0.2
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	0.3	0.5
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	0.4	0.2
Pyrene	DETSC 3301	0.1	mg/kg	0.2	0.4
РАН	DETSC 3301	1.6	mg/kg	< 1.6	3.5

Summary of Asbestos Analysis Soil Samples

Our Ref 14-14255 Client Ref 52247 Contract Title Fitzjohn's Avenue

Lab No	Sample ID	Material Type	Result	Comment*	Analyst	
692710	TP1 0.20	SOIL	NAD	none	Colin Patrick	
Crocidolite = Blue	e Asbestos, Amosite = Brown Asbe	stos, Chrysotile = White Asbest	os. Anthophyllite, Actino	olite and Tremolite are other for	orms of Asbestos.	
Samples are anal	Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos					
Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -						
not included in laboratory scope of accreditation.						

Figure A4.1

Information in Support of the Analytical Results

Our Ref 14-14255 Client Ref 52247 Contract Fitzjohn's Avenue

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriat container fo
Lab No	Sample ID	Sampled	Containers Received	tests	tests
692710	TP1 0.20 SOIL	27/08/14	GJ 250ml (250ml), GJ 60ml (60ml), PT 1L (1kg)		
692711	TP2 0.50 SOIL	27/08/14	GJ 250ml (250ml), GJ 60ml (60ml), PT 1L (1kg)		
DE13 Calling	•	• ,	nples received whereby the laboratory did not undertake the sampling tish and International standards and laboratory trials in conjunction w		•

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix A - Details of Analysis

••		•	Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	рН	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062 DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311 DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311 DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes
DE13C 3311		1118/ MB	10	As neceived	NU	163	163

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

Certificate of Analysis Certificate Number 14-14566

10-Sep-14

Client Ian Farmer Associates 1A Batford Mill Lower Luton Road Harpenden Herts AL5 5BZ

- Our Reference 14-14566
- Client Reference 52247

Contract Title Fitzjohn's Avenue, Hampstead

- Description 4 Soil samples.
- Date Received 03-Sep-14
- Date Started 03-Sep-14
- Date Completed 10-Sep-14

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

PUQ.

Rob Brown Business Manager

Summary of Chemical Analysis Soil Samples

Our Ref 14-14566 *Client Ref* 52247 *Contract Title* Fitzjohn's Avenue, Hampstead

			_				
			Lab No	694365	694366	694367	694368
		Sa	ample ID	BH2	BH2	BH2	BH2
			Depth	0.50	3.00	8.50	10.50
			Other ID				
		Sam	ple Type	D	D	D	D
		Samp	ling Date	27/08/14	27/08/14	27/08/14	27/08/14
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Inorganics							
рН	DETSC 2008#			8.5	6.1	7.2	7.4
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	31	63	350	180
Total Sulphur as S	DETSC 2320	0.01	%		0.02	0.48	0.51
Total Sulphate as SO4	DETSC 2321#	0.01	%		0.04	0.12	0.11

Information in Support of the Analytical Results

Our Ref 14-14566 Client Ref 52247 Contract Fitzjohn's Avenue, Hampstead

Containers Received & Deviating Samples

Date				Holding time exceeded for	Inappropriate container for	
Lab No	Sample ID	Sampled	Containers Received	tests	tests	
694365	BH2 0.50 SOIL	27/08/14	PT 1L			
694366	BH2 3.00 SOIL	27/08/14	PT 1L			
694367	BH2 8.50 SOIL	27/08/14	PT 1L			
694368	BH2 10.50 SOIL	27/08/14	PT 1L			

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time and/or inappropriate containers are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Waste Classification Report

Job name

52247A Fitzjohn's Avenue

Waste stream

Default Contaminated Land

Comments

Apartment block for over 55s

Project

52247A

Site

Fitzjohn's Avenue

Classified by

Name: Greenwood, Gavin Date: 17/09/2014 15:02 Telephone: 01582 460018 Company: Ian Farmer Associates Unit 1A, Batford Mill Lower Luton Road Harpenden AL5 5BZ

Report

Created by: Greenwood, Gavin Created date: 17/09/2014 15:02

Job summary

# San	nple name	Depth [m]	Classification result	Hazardous properties	Page
1 BH1	1	0.3	Hazardous	H7, H12, H14	2
2 BH1	1[1]	0.9	Non Hazardous		5
3 BH3	3	0.5	Non Hazardous		7
4 BH3	3[1]	1	Potentially Hazardous	Н3-В	10
5 BH4	4	0.4	Non Hazardous		13
6 BH4	4[1]	0.8	Non Hazardous		16
7 BH5	5	0.5	Non Hazardous		18
8 BH5	5[1]	1	Non Hazardous		20
9 TP1	1	0.2	Non Hazardous		22
10 TP2	2	0.7	Potentially Hazardous	НЗ-В	25

AppendicesPageAppendix A: User Defined and non CLP Substances28Appendix B: Notes29Appendix C: Version30

APPENDIX 5

DESIGN CONSIDERATIONS

APPENDIX 5

GUIDELINES FOR THE DESIGN OF PILES

FIRST APPROXIMATION OF WORKING LOAD

A5.1 GENERAL

The ultimate carrying capacity, Qu, of a particular pile is taken as the sum of the ultimate shaft friction resistance, Qs, and the ultimate end bearing resistance, Qb. This may be expressed as follows:-

	Qu	=	Qs + Qb
		=	f.As + q.Ab
where	f	=	unit shaft resistance
	As	=	embedded surface area of pile
	q	=	unit end bearing resistance
	Ab	=	effective cross-sectional area of pile base

A5.2 COHESIVE SOILS

A5.2.1 Shaft Resistance

The ultimate shaft resistance, f, for piles in both compression or tension in cohesive soils is determined by applying a factor to the undrained shear strength, Cs, which exists in the soils along the embedded length of the pile, and is given by:-

f = α .Cs

Where α is an adhesion factor, which for straight-shafted bored piles may be taken as 0.45 to 0.60.

Ultimate unit shaft friction should not exceed 100kPa.

A5.2.2 End Bearing

For piles terminating in cohesive soils, the ultimate unit end bearing resistance q, is given by:-

q = Nc.Cb

where Cb is the undrained shear strength at the base of the pile

and Nc is a bearing capacity factor

The value of Nc for a cohesive material is variable, depending on the depth of the penetration of the pile into the bearing stratum. Generally, Nc could be taken to have a value of 9, except in the case of large diameter short piles where a lesser value should be used.

A5.3 COHESIONLESS SOILS

A5.3.1 Shaft Resistance

For piles driven in cohesionless soils the ultimate unit shaft resistance, f, may be calculated using the following method, which gives:-

	f	=	$0.5\gamma'$ (D+d) Ks tan δ
where	γ'	=	average effective unit weight of soil surrounding
			the pile
	D	=	depth to the pile toe or to the base of the
			granular stratum whichever is the lesser
	d	=	depth to the top of the granular stratum
	δ	=	angle of friction between pile and soil
			(see below)
	Ks	=	a coefficient (see below)

VALUES OF Ks AND δ

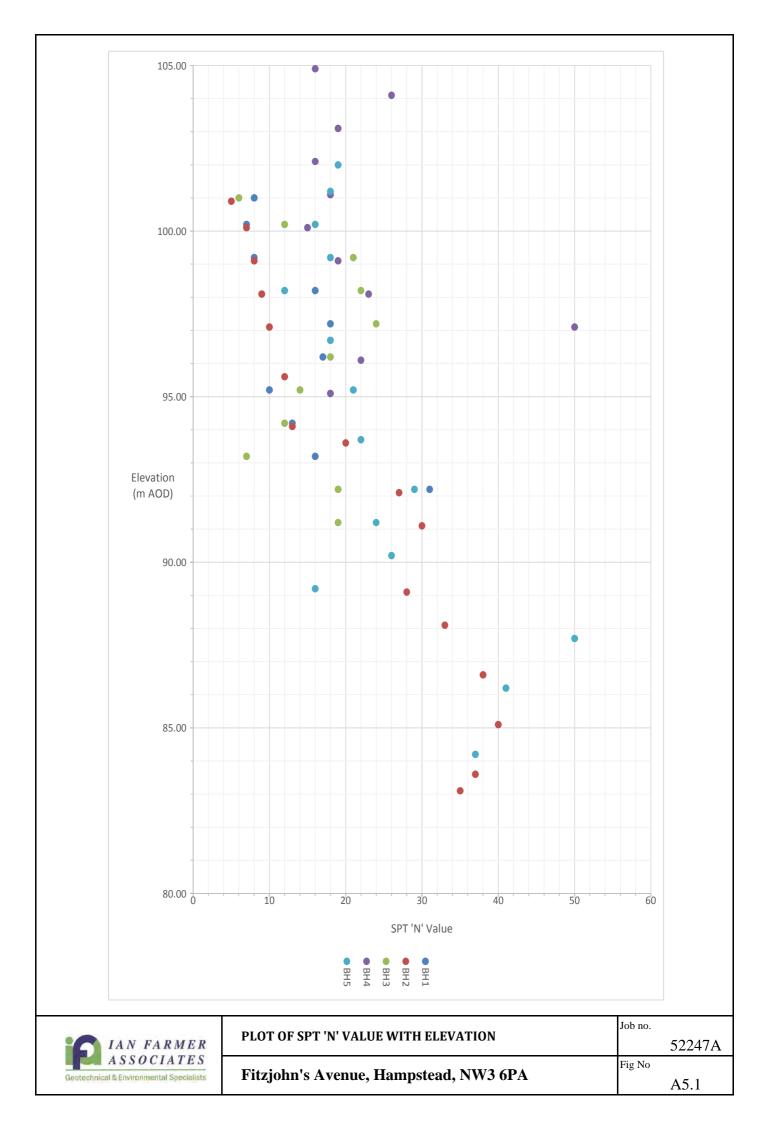
			Ks	
Pile Type	δ	Relative Density		
		Low	High	Tension Piles
Steel	20°	0.5	1.5	0.5
Concrete	0.75φ	1.0	2.0	0.5

For bored and cast-in-place piles, $\delta = 22^{\circ}$ and Ks = 1 should be used to allow for loosening of the soil during boring.

It has been found that the ultimate unit shaft resistance does not exceed 100kPa and therefore this value should not be exceeded in design.

A5.3.2 End Bearing

The unit ultimate end bearing resistance (q) of piles in cohesionless soils may be calculated as follows:-


	q	=	γ'.D.Nq
where	γ'	=	average effective unit weight of soil surrounding the pile
	D	=	depth to pile toe
	Nq	=	bearing capacity factor

In addition, the ultimate unit base resistance should not exceed a value of 11,000kPa. For bored and cast-in-place piles the value of Nq used should correspond to loose soil conditions.

A5.4 FACTORS OF SAFETY

A5.4.1 Cohesive and Non-cohesive Soils

For cohesive and non-cohesive soils a factor of safety of 3 may be used to obtain the allowable or safe carrying capacity of piles from the ultimate carrying capacity.

APPENDIX 6

CONTAMINATION ASSESSMENT

APPENDIX 6

GENERAL NOTES ON CONTAMINATION ASSESSMENT

A6.1 STATUTORY FRAMEWORK AND DEFINITIONS

A6.1.1 The statutory definition of contaminated land is defined in the Environmental Protection Act 1990, ref. 10.18, which was introduced by the Environment Act 1995, ref. 10.19;

'Land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that -

- (a) significant harm is being caused or there is a significant possibility of such harm being caused; or
- (b) pollution of controlled waters is being, or is likely to be, caused.'
- A6.1.2 The UK guidance on the assessment of contaminated has developed as a direct result of the introduction of these two Acts. The technical guidance supporting the new legislation has been summarised in a number of key documents collectively known as the Contaminated Land Reports (CLRs), a proposed series of twelve documents. Seven were originally published in March 1994, four more were published in April 2002, while the last remaining guidance document, CLR 11, ref. 10.35 was published in 2004. In 2008 CLR reports 7 to 10 were withdrawn by DEFRA and the Environment Agency and updated version of CLR 9 and 10 were produced in the form of Science Reports SR2, ref. 10.26 and SR3, ref. 10.20.
- A6.1.3 In establishing whether a site fulfils the statutory definition of 'contaminated land' it is necessary to identify, whether a pollutant linkage exists in respect of the land in question and whether the pollutant linkage:
 - is resulting in significant harm being caused to the receptor in the pollutant linkage,
 - presents a significant possibility of significant harm being caused to that receptor,
 - is resulting in the pollution of the controlled waters which constitute the receptor, or
 - is likely to result in such pollution.
- A6.1.4 A '*pollutant linkage*' may be defined as the link between a contaminant '*source*' and a '*receptor*' by means of a '*pathway*'.

A6.2 ASSESSMENT METHODOLOGY

A6.2.1 The guidance proposes a four-stage assessment process for identifying potential pollutant linkages on a site. These stages are set out in the table below:

No.	Process	Description
1	Hazard Identification	Establishing contaminant sources, pathways and receptors (the conceptual model).
2	Hazard Assessment	Analysing the potential for unacceptable risks (what linkages could be present, what could be the effects).
3	Risk Estimation	Trying to establish the magnitude and probability of the possible consequences (what degree of harm might result and to what receptors, and how likely is it).
4	Risk Evaluation	Deciding whether the risk is unacceptable.

- A6.2.2 Stages 1 and 2 develop a 'conceptual model' based upon information collated from desk based studies, and frequently a walkover of the site. The walkover survey should be conducted in general accordance with CLR 2, ref. 10.41. The formation of a conceptual model is an iterative process and as such, it should be updated and refined throughout each stage of the project to reflect any additional information obtained.
- A6.2.3 The extent of the desk studies and enquiries to be conducted should be in general accordance with CLR 3, ref. 10.42. The information from these enquiries is presented in a desk study report with recommendations, if necessary, for further work based upon the conceptual model. CLR 8, ref. 10.43, together with specific DoE 'Industry Profiles' provides guidance on the nature of contaminants relating to specific industrial processes. Although CLR 8 has been withdrawn, no replacement guidance has been published that lists the contaminants likely to be present on contaminated sites and as such the guidance relating to this issue of CLR 8 is considered to still be relevant.
- A6.2.4 If potential pollutant linkages are identified within the conceptual model, a Phase 2 site investigation and report will be recommended. The investigation should be planned in general accordance with CLR 4, ref. 10.1. The number of exploratory holes and samples collected for analysis should be consistent with the size of the site and the level of risk envisaged. This will enable a contamination risk assessment to be conducted, at which point the conceptual model can be updated and relevant pollutant linkages can be identified.
- A6.2.5 A two-stage investigation may be more appropriate where time constraints are less of an issue. The first stage investigation being conducted as an initial assessment for the presence of potential sources, a second being a more refined investigation to delineate wherever possible the extent of the identified contamination.
- A6.2.6 All site works should be in general accordance with the British Standards, BS 5930:1999, ref. 10.3, ISO 1997, ref. 10.4 and BS 10175:2001, ref. 10.2.
- A6.2.7 The generic contamination risk assessment screens the results of the chemical analysis against generic guidance values. Soils will be compared to Assessment Criteria (AC) generated using the Contaminated Land Exposure Assessment (CLEA) Software Version 1.06, ref. 10.22. Toxicological and physico-chemical/fate and transport data used to generate the AC has been derived from a hierarchy of data sources as follows:
 - 1. Environment Agency or Department of Environment Food and Rural Affairs

(DEFRA) documents;

- 2. Other documents produced by UK Government or state organisations;
- 3. European institution documents;
- 4. International organisation documents;
- 5. Foreign government institutions.

- A6.2.8 In the case of the majority of contaminants considered, the toxicological data has been drawn from the relevant CLR 9 TOX report, or updated toxicological data published by the Environment Agency (2009), ref. 10.21, where available. Where no TOX report is available reference has been made to the health criteria values, derived for use in Land Quality Press (2006), ref. 10.27, as this is considered to represent a peer reviewed data source. Similarly, fate and transport data has been derived in the first instance from Environment Agency (2003), ref. 10.44 and for contaminants not considered in this document the fate and transport data used in previous versions of the CLEA model has been used.
- A6.2.9 Recommendations for tolerable intakes of lead are based on evaluation of the relationship between exposure and blood lead levels. Consequently the Tox report for lead considers a health criteria value based on an uptake dose, whereas the CLEA model estimates exposure in terms of an intake dose, therefore, the CLEA model is not considered appropriate for determining an assessment criteria for lead. In the absence of a current published assessment criterion, the SGVs for lead reported in R&D Publication CLR 10 ref. 10.45 have been used in this assessment.
- A6.2.10 Chemical laboratory test results are processed as follows. A statistical analysis of the results is conducted, as detailed in CIEH and CL:AIRE 'Guidance on Comparing Soil Contamination Data with a Critical Concentration', ref. 10.22. Individual concentrations are compared to the selected guideline values to identify concentrations of contaminants that are above the selected screening criteria.
- A6.2.11 Initially the distribution of the data set is tested using the Shapiro-Wilk normality test, ref. 10.25 to determine if the data set is, or is not, normally distributed. Where the distribution of the data is shown to be normal, the mean value test is applied to determine whether the mean characteristics of the selected soil unit present a significant possibility of significant harm to human health. Where the data is not normally distributed a method based on the Chebychev Theorem can be applied to test the same hypothesis. The significance of the data is further tested using the maximum value test. This determines whether the highest recorded contaminant concentrations are from the same statistical distribution or whether they may represent a 'hot spot'.
- A6.2.12 Where the risk estimation identifies significant concentrations of one or more contaminants, a further risk evaluation needs to be undertaken.
- A6.2.13 The risk evaluation will address the potential pollutant linkages between an identified source of contamination and the likely receptors both on and off site.
- A6.2.14 The potential receptors include:
 - 1) Humans current site occupants, construction workers, future site users and neighbouring site users.
 - 2) Controlled Waters surface water and groundwater resources
 - 3) Plants current and future site vegetation
 - 4) Building materials
- A6.2.15 The potential hazards to be considered in relation to contamination are:
 - a) Ingestion and inhalation.
 - b) Uptake of contaminants via cultivated vegetables.
 - c) Dermal contact
 - d) Phytotoxicity (the prevention or inhibition of plant growth)

- e) Contamination of water resources
- f) Chemical attack on building materials and services
- g) Fire and explosion
- A6.2.16 Dependent on the outcome of the initial, generic contamination risk assessment, further detailed assessment of the identified risks may be required.

A6.3 Generic Guidance Values Used Within Contamination Risk Assessment

Residential End Use

	Determinant	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Primary Data Source			
		1% SOM	2.5% SOM	6% SOM				
	Acenaphthene	210	450	1000	LQM CIEH GAC			
	Acenaphthylene	170	400	850	LQM CIEH GAC			
	Anthracene	2300	4900	9200	LQM CIEH GAC			
	Benzo(a)anthracene	3.1	4.7	5.9	LQM CIEH GAC			
	Benzo(a)pyrene	0.83	0.94	1	LQM CIEH GAC			
	Benzo(b)fluoranthene	5.6	6.5	7	LQM CIEH GAC			
	Benzo(ghi)perylene	44	46	47	LQM CIEH GAC			
РАН	Benzo(k)fluoranthene	8.5	9.6	10	LQM CIEH GAC			
РАН	Chrysene	6	8	9.3	LQM CIEH GAC			
	Dibenzo(ah)anthracene	0.76	0.86	0.90	LQM CIEH GAC			
	Fluoranthene	260	460	670	LQM CIEH GAC			
	Fluorene	160	380	780	LQM CIEH GAC			
	Indeno(123-cd)pyrene	3.2	3.9	4.2	LQM CIEH GAC			
	Naphthalene	1.5	3.7	8.7	LQM CIEH GAC			
	Phenanthrene	92	200	380	LQM CIEH GAC			
	Pyrene	560	1000	1600	LQM CIEH GAC			
Other Organics	Phenol	210	390	780	LQM CIEH GAC			
	Arsenic	32	32	32	EA 2009			
	Beryllium	51	51	51	LQM CIEH GAC			
	Boron	291	291	291	LQM CIEH GAC			
	Cadmium	10	10	10	EA 2009			
	Chromium (III)	3000	3000	3000	LQM CIEH GAC			
	Chromium (VI)	4.3	4.3	4.3	LQM CIEH GAC			
Metals	Copper	2330	2330	2330	LQM CIEH GAC			
	Lead	450	450	450	CLEA SGV 10			
	Inorganic Mercury	169	169	169	EA 2009			
	Nickel	130	130	130	EA 2009			
	Selenium	350	350	350	EA 2009			
	Vanadium	75	75	75	LQM CIEH GAC			
	Zinc	3750	3750	3750	LQM CIEH GAC			

SOM = Soil Organic Matter

Commercial End Use

	Determinant	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Primary Data Source			
		1% SOM	2.5% SOM	6% SOM				
	Acenaphthene	85000 (57)	98000 (141)	100000	LQM CIEH GAC			
	Acenaphthylene	84000 (86)	97000 (212)	100000	LQM CIEH GAC			
	Anthracene	530000	540000	540000	LQM CIEH GAC			
	Benzo(a)anthracene	90	95	97	LQM CIEH GAC			
	Benzo(a)pyrene	14	14	14	LQM CIEH GAC			
	Benzo(b)fluoranthene	100	100	100	LQM CIEH GAC			
	Benzo(ghi)perylene	650	660	660	LQM CIEH GAC			
РАН	Benzo(k)fluoranthene	140	140	140	LQM CIEH GAC			
РАН	Chrysene	140	140	140	LQM CIEH GAC			
	Dibenzo(ah)anthracene	13	13	13	LQM CIEH GAC			
	Fluoranthene	23000	23000	23000	LQM CIEH GAC			
	Fluorene	64000 (31)	69000	71000	LQM CIEH GAC			
	Indeno(123-cd)pyrene	60	61	62	LQM CIEH GAC			
	Naphthalene	200 (76)	480 (183)	1100 (432)	LQM CIEH GAC			
	Phenanthrene	22000	22000	23000	LQM CIEH GAC			
	Pyrene	54000	54000	54000	LQM CIEH GAC			
Other Organics	Phenol	1100000 (24200)	1100000 (38100)	1200000	LQM CIEH GAC			
	Arsenic	640	640	640	EA 2009			
	Beryllium	420	420	420	LQM CIEH GAC			
	Boron	192000	192000	192000	LQM CIEH GAC			
	Cadmium	230	230	230	EA 2009			
	Chromium (III)	30400	30400	30400	LQM CIEH GAC			
	Chromium (VI)	35	35	35	LQM CIEH GAC			
Metals	Copper	71700	71700	71700	LQM CIEH GAC			
	Lead	750	750	750	CLEA SGV 10			
	Inorganic Mercury	3640	3640	3640	EA 2009			
	Nickel	1800	1800	1800	EA 2009			
	Selenium	13000	13000	13000	EA 2009			
	Vanadium	3160	3160	3160	LQM CIEH GAC			
	Zinc	665000	665000	665000	LQM CIEH GAC			

SOM = Soil Organic Matter Values in brackets indicate the solubility or vapour saturation limit where this is exceeded by the GAC

Residential	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Primary Data Source			
	1% SOM	2.5% SOM	6% SOM				
Aliphatic							
EC 5-6	30	55	110	LQM CIEH GAC			
EC >6-8	73	160	370	LQM CIEH GAC			
EC >8-10	19	46	110	LQM CIEH GAC			
EC >10-12	93 (48)	230 (118)	540 (283)	LQM CIEH GAC			
EC >12-16	740 (24)	1700 (59)	3000 (142)	LQM CIEH GAC			
EC >16-35	45000 (8.48)	64000 (21)	76000	LQM CIEH GAC			
EC >35-44	45000 (8.48)	64000 (21)	76000	LQM CIEH GAC			
Aromatic							
EC 5-7 (benzene)	65	130	280	LQM CIEH GAC			
EC >7-8 (toluene)	120	270	611	LQM CIEH GAC			
EC >8-10	27	65	151	LQM CIEH GAC			
EC >10-12	69	160	346	LQM CIEH GAC			
EC >12-16	140	310	593	LQM CIEH GAC			
EC >16-21	250	480	770	LQM CIEH GAC			
EC >21-35	890	1100	1230	LQM CIEH GAC			
EC >35-44	890	1100	1230	LQM CIEH GAC			
Aliphatic and Aromatic							
EC >44-70	1200	1300	1300	LQM CIEH GAC			
BTEX							
Benzene	0.08	0.18	0.33	EA 2009			
Toluene	119	319	611	EA 2009			
Ethylbenzene	65.2	183	354	EA 2009			
Xylenes	45.2	126	246	EA 2009			

Generic Assessment Criteria for Petroleum Hydrocarbons A6.3.1

SOM = Soil Organic Matter Values in brackets indicate the solubility or vapour saturation limit where this is exceeded by the GAC

Commercial	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Primary Data Source			
	1% SOM	2.5% SOM	6% SOM				
Aliphatic							
EC 5-6	3400 (304)	6200 (558)	13000 (1150)	LQM CIEH GAC			
EC >6-8	8300 (144)	18000 (322)	42000 (736)	LQM CIEH GAC			
EC >8-10	2100 (78)	5100 (190)	12000 (451)	LQM CIEH GAC			
EC >10-12	10000 (48)	24000 (118)	49000 (283)	LQM CIEH GAC			
EC >12-16	61000 (24)	83000 (59)	91000 (142)	LQM CIEH GAC			
EC >16-35	1600000	1800000	1800000	LQM CIEH GAC			
EC >35-44	1600000	1800000	1800000	LQM CIEH GAC			
Aromatic							
EC 5-7 (benzene)	28000 (1220)	49000 (2260)	90000 (4710)	LQM CIEH GAC			
EC >7-8 (toluene)	59000 (869)	110000 (1920)	190000 (4360)	LQM CIEH GAC			
EC >8-10	3700 (613)	8600 (1500)	18000 (3580)	LQM CIEH GAC			
EC >10-12	17000 (364)	29000 (899)	34500 (2150)	LQM CIEH GAC			
EC >12-16	36000 (169)	37000	37800	LQM CIEH GAC			
EC >16-21	28000	28000	28000	LQM CIEH GAC			
EC >21-35	28000	28000	28000	LQM CIEH GAC			
EC >35-44	28000	28000	28000	LQM CIEH GAC			
Aliphatic and Aromatic							
EC >44-70	28000	28000	28000	LQM CIEH GAC			
BTEX							
Benzene	28.1	57	94.7	EA 2009			
Toluene	59000 (869)	125000 (2260)	189000 (4360)	EA 2009			
Ethylbenzene	16800 (518)	40400 (1450)	65700 (2840)	EA 2009			
Xylenes	6940 (478)	18600 (1330)	34600 (2620)	EA 2009			

 $SOM = Soil \ Organic \ Matter \\ Values in brackets indicate the vapour saturation limit where this is exceeded by the GAC or SGV$

		Risk		Sar	nple Id		BH1	BH1	BH3	BH3	BH4	BH4	BH5	BH5	TP1	TP2
		Assessment Value	t Depth - m		0.30	0.90	0.50	1.00	0.40	0.80	0.50	1.00	0.20	0.70		
END USE:																
Residential with plant uptake			US ₉₅	Т	Outlier	Average										
Metals		20	1.4			10	22	15	0.0	10	10	11	71	10	10	
Arsenic Boron (water soluble)	mg/kg mg/kg	32 290	14 1.8	-	-	12 1.5	22 2.4	15 2.2	8.0 1.5	12 2.0	13 1.3	11 1.1	7.1	10 1.1	10 1.4	7.7
Cadmium	mg/kg	10	0.83	-	-	0.53	1.8	0.70	0.20	0.40	0.30	0.20	0.10	0.20	0.50	0.90
Chromium	mg/kg	3000	101	-	-	94	78	93	81	91	100	120	97	82	96	98
Hexavalent Chromium Copper	mg/kg mg/kg	4.3 2330	1.00	-	-	1.00 24	<1.0 83	<1.0 41	<1.0 8.2	<1.0 15	<1.0 28	<1.0 19	<1.0 8.4	<1 7.0	<1.0 10	<1.0 20
Lead	mg/kg	450	521	1.8	No	260	1500	330	54	180	84	97	14	11	16	310
Mercury	mg/kg	1	0.32	-	-	0.21	0.43	0.52	< 0.05	0.17	0.19	0.43	0.05	0.06	< 0.05	0.19
Nickel Selenium	mg/kg mg/kg	130 350	21 0.53	-	-	16 0.51	28 <0.5	20 0.60	14 <0.5	18 <0.5	17 <0.5	10 <0.5	5.8 <0.5	8.7 <0.5	29 <0.5	9.1 <0.5
Zinc	mg/kg	3750	172	-	-	99	450	120	44	83	73	45	25	29	62	55
Inorganics																
pH Free Cyanide	mg/kg	5-9 34	0.13	-	-	8.7 0.11	7.5 0.20	7.5	11.2 <0.1	10.5 <0.1	7.90	7.70 <0.1	<0.1	<0.1	8.6 <0.1	8.3 <0.1
Organic matter	mg/kg	34	0.13	-	-	1.8	0.20 4.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Petroleum Hydrocarbons								I	I						I	
Aliphatic C5-C6	mg/kg	30		_	-	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Aliphatic C6-C8 Aliphatic C8-C10	mg/kg mg/kg	73 19	0.01	-	-	0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01
Aliphatic C10-C12	mg/kg	93	1.5	-	-	1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Aliphatic C12-C16	mg/kg	740	1.4	-	-	1.3	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	1.9
Aliphatic C16-C21 Aliphatic C21-C35	mg/kg	45000 45000	9.3 81	-	-	4.8	<1.5 <3.4	<1.5 <3.4	<1.5 <3.4	11 28	<1.5 <3.4	<1.5 <3.4	<1.5 <3.4	<1.5 <3.4	<1.5 <3.4	25 270
Aromatic C5-C7	mg/kg mg/kg	43000	0.01	-	-	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01
Aromatic C7-C8	mg/kg	120	0.01	-	-	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	mg/kg	27	0.01	-	-	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12 Aromatic C12-C16	mg/kg mg/kg	69 140	2.7	-	-	1.5 2.4	<0.9 <0.5	<0.9 <0.5	<0.9 <0.5	7.8 19	<0.9 <0.5	<0.9 <0.5	<0.9 <0.5	<0.9 <0.5	<0.9 <0.5	<0.9 <0.5
Aromatic C16-C21	mg/kg	250	126	-	-	45	0.60	<0.5	<0.5	440	<0.5	<0.5	<0.5	<0.5	<0.5	7.8
Aromatic C21-C35	mg/kg	890	825	-	-	294	<1.4	<1.4	<1.4	2900	<1.4	<1.4	<1.4	<1.4	<1.4	32
TPH Ali/Aro PAHs	mg/kg		-	-	-	-	<10	<10	<10	3400	<10	<10	<10	<10	<10	340
Acenaphthene	mg/kg	210	0.10	-	-	0.10	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
Acenaphthylene	mg/kg	170	0.10	-	-	0.10	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	2300	0.20	-	-	0.14	0.20	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.40
Benzo(a)pyrene Benzo(a)anthracene	mg/kg mg/kg	0.83	0.50	-	-	0.27	1.3 1.3	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.60
Benzo(b)fluoranthene	mg/kg	5.6	0.40	-	-	0.24	1.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.30
Benzo(k)fluoranthene	mg/kg	8.5	0.33	-	-	0.20	0.50	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.70
Benzo(g,h,i)perylene	mg/kg	44	0.10	-	-	0.10	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene Dibenzo(a,h)anthracene	mg/kg mg/kg	6 0.76	0.42	-	-	0.22	1.2 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	0.20
Fluoranthene	mg/kg	260	0.85	-	-	0.47	2.3	0.30	0.30	0.40	0.30	<0.1	<0.1	<0.1	0.30	0.50
Fluorene	mg/kg	160	0.10	-	-	0.10	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
Indeno(1,2,3-c,d)pyrene Naphthalene	mg/kg mg/kg	3.2	0.10		-	0.10	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1
Phenanthrene	mg/kg	92	0.10		-	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.40	0.20
Pyrene	mg/kg	560	0.78	_	-	0.43	2.1	0.30	0.30	0.40	0.30	< 0.1	< 0.1	< 0.1	0.20	0.40
Total PAH BTEX Compounds	mg/kg						11	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	3.5
BTEX Compounds Benzene	mg/kg	0.08	0.01	-	_	0.01			< 0.01		< 0.01				< 0.01	
Toluene	mg/kg	119	0.01		-	0.01			< 0.01		<0.01				<0.01	
EthylBenzene	mg/kg	65.2	0.01	-	-	0.01			< 0.01		< 0.01				< 0.01	
o-Xylene m-Xylene	mg/kg mg/kg	250 240	0.01	-	-	0.01			<0.01 <0.01		<0.01				<0.01 <0.01	
p-Xylene	mg/kg	240	0.01	-	-	0.01			<0.01		<0.01				<0.01	
MTBE	mg/kg	23	0.01	_	-	0.01			< 0.01		< 0.01				< 0.01	
Miscellaneous Asbestos							Amazita		NAD		NAD		NIA D		NAD	
IAN FARM		RESULTS O	- - - Amosite NAD NAI RESULTS OF CONTAMINATION TESTS (SOIL)							NAD	D NAD Job No: 52247					
ASSOCIAT	Fitzjohn's Avenue, Hampsetad, NW3 6PA								Fig. No: A6.1							
									19.110.110.1 19.110.110.1							

STATISTICAL ANALYSIS OF LEAD DATA

Exploratory Hole Number	Depth	Value	Log ₁₀ Value
	m	mg/kg	
BH1	0.3	1500	3.176
BH1	0.9	330	2.519
BH3	0.5	54	1.732
BH3	1	180	2.255
BH4	0.4	84	1.924
BH4	0.8	97	1.987
BH5	0.5	14	1.146
BH5	1	11	1.041
TP1	0.2	16	1.204
TP2	0.7	310	2.491
	MEAN	259.6	1.948

<u>Data</u>

The sample mean value (x) based on only a few samples may be a poor estimate of the true (population) mean. Therefore, any decision made on the basis of x < RAV may not be adequately health protective when x is computed from a small number of samples. It is desirable to state with a given level of confidence (95th percentile) that the population mean is less than the relevant RAV.

Mean Value Test

This provides the upper 95th percentile of the sample population and is calculated from;

$$US_{95} = x + (t.s/(n)^{0.5})$$

In this case, the values used are as follows;

$$x$$
 (arithmentic mean) = 259.6
s (unbiased standard deviation) = 451.35
t (t value from published values) = 1.833
 n (sample population) = 10

US₉₅ = 521.22

Is the 95th percentile less than the RAV for lead?

No. Further sampling may be necessary.

Maximum Value Test

The Maximum Value Test calculates a value of T. If this T is smaller than some critical value, then the maximum value may be accepted as a member of the underlying population. If T is greater than the critical value, then the maximum value is treated as an outlier i.e.; a hot-spot which may be indicative of a localised area of contamination.

The Maximum Value Test is calculated by;

$$T = (y_{max} - y)/Sy$$

In this case, the values used are as follows;

y (log transformed arithmetic mean) = 1.948 Sy (unbiased standard deviation of y values) = 0.69 y $_{max}$ = 3.176

T = 1.78

Is T smaller than the critical value for the given population (*n*);

n (sample population) = 10 5% Critical Value = 2.18 10% Critical Value = 2.04

Does this represent an outlier: No

STATISTICAL ANALYSIS OF BENZO(A)PYRENE DATA

Exploratory Hole Number	Depth	Value	Log ₁₀ Value
	m	mg/kg	
BH1	0.3	1.3	0.114
BH1	0.9	0.1	-1.000
BH3	0.5	0.1	-1.000
BH3	1	0.1	-1.000
BH4	0.4	0.1	-1.000
BH4	0.8	0.1	-1.000
BH5	0.5	0.1	-1.000
BH5	1	0.1	-1.000
TP1	0.2	0.1	-1.000
TP2	0.7	0.6	-0.222
	MEAN	0.27	-0.81

<u>Data</u>

The sample mean value (x) based on only a few samples may be a poor estimate of the true (population) mean. Therefore, any decision made on the basis of x < RAV may not be adequately health protective when x is computed from a small number of samples. It is desirable to state with a given level of confidence (95th percentile) that the population mean is less than the relevant RAV.

Mean Value Test

This provides the upper 95th percentile of the sample population and is calculated from;

$$US_{95} = x + (t.s/(n)^{0.5})$$

In this case, the values used are as follows;

$$x$$
 (arithmentic mean) = 0.27
 s (unbiased standard deviation) = 0.39
 t (t value from published values) = 1.833
 n (sample population) = 10

Is the 95th percentile less than the RAV for benzo(a)pyrene?

Yes. Therefore, no action is required in the averaging area based on the mean value test.

STATISTICAL ANALYSIS OF TPH AROMATIC C12-C16 DATA

Exploratory Hole Number	Depth	Value	Log ₁₀ Value	
	m	mg/kg		
BH1	0.3	0.5	-0.301	
BH1	0.9	0.5	-0.301	
BH3	0.5	0.5	-0.301	
BH3	1	19	1.279	
BH4	0.4	0.5	-0.301	
BH4	0.8	0.5	-0.301	
BH5	0.5	0.5	-0.301	
BH5	1	0.5	-0.301	
TP1	0.2	0.5	-0.301	
TP2	0.7	0.5	-0.301	
	MEAN	2.35	-0.14	

The sample mean value (x) based on only a few samples may be a poor estimate of the true (population) mean. Therefore, any decision made on the basis of x < RAV may not be adequately health protective when x is computed from a small number of samples. It is desirable to state with a given level of confidence (95th percentile) that the population mean is less than the relevant RAV.

Mean Value Test

This provides the upper 95th percentile of the sample population and is calculated from;

$$US_{95} = x + (t.s/(n)^{0.5})$$

In this case, the values used are as follows;

x (arithmentic mean) = 2.35 s (unbiased standard deviation) = 5.85 t (t value from published values) = 1.833 n (sample population) = 10

 $US_{95} = 5.74$

Is the 95th percentile less than the RAV for TPH Aromatic C12-C16?

Yes. Therefore, no action is required in the averaging area based on the mean value test.

STATISTICAL ANALYSIS OF TPH AROMATIC C21-C35 DATA

Exploratory Hole Number	Depth	Value	Log ₁₀ Value	
	m	mg/kg		
BH1	0.3	1.4	0.146	
BH1	0.9	1.4	0.146	
BH3	0.5	1.4	0.146	
BH3	1	2900	3.462	
BH4	0.4	1.4	0.146	
BH4	0.8	1.4	0.146	
BH5	0.5	1.4	0.146	
BH5	1	1.4	0.146	
TP1	0.2	1.4	0.146	
TP2	0.7	32	1.505	
	MEAN	294.32	0.61	

The sample mean value (x) based on only a few samples may be a poor estimate of the true (population) mean. Therefore, any decision made on the basis of x < RAV may not be adequately health protective when x is computed from a small number of samples. It is desirable to state with a given level of confidence (95th percentile) that the population mean is less than the relevant RAV.

Mean Value Test

Data

This provides the upper 95th percentile of the sample population and is calculated from;

$$US_{95} = x + (t.s/(n)^{0.5})$$

In this case, the values used are as follows;

x (arithmentic mean) = 294.32
s (unbiased standard deviation) = 915.59
t (t value from published values) = 1.833
n (sample population) = 10

US₉₅ = 825.04

Is the 95th percentile less than the RAV for TPH Aromatic C21-C35?

Yes. Therefore, no action is required in the averaging area based on the mean value test.

		Sample Id	BH1	BH3	BH4					
END USE:		Depth - m	0.90	1.00	0.80					
Freshwater - DWS		Date	-	-	-					
Metals		Risk Assess	ment Val	ue				 		_
Arsenic	υg/l	50	2.6	1.3	2.7					
Boron	υg/l	2000								
Cadmium	υg/l	5	< 0.03	< 0.03	< 0.03					
Chromium	υg/l	5	1.00	1.5	2.6					
Copper	υg/l	1	4.4	1.1	2.6					
Lead	υg/l	4	6.2	0.86	3.9					
Mercury	υg/l	1	0.02	< 0.01	0.02					
Nickel	υg/l	50	0.80	0.80	0.50					
Selenium	υg/l	10	1.8	1.3	2.3					
Zinc	υg/l	8	3.2	<1.25	1.6					
Inorganics										
pН		5-9	5.8	7.0	5.5					
Organics										
TPH	υg/l	10	<10	<10	47					
		RESULTS OF CNTAMINATION TESTS (LEACHATE)				Job No:	52247A			
ASSOCIATES Fitzjohn's Avenue, Hampst					stead, N	W3 6PA		Fig. No:	A6.2	

APPENDIX 7

GAS GENERATION

APPENDIX 7

GENERAL NOTES ON GAS GENERATION

A7.1 GENERAL

- A7.1.1 In the past, a series of guidance documents were published by CIRIA, ref. 10.45, providing advice on hazards associated with methane. This earlier guidance was consolidated in CIRIA Document C659 to provide a risk based approach to gas contaminated land. This was subsequently re-issued as CIRIA Document C665, ref. 10.47. In 2007, British Standard, BS8485, ref. 10.48, dealing with ground gas was published. It is recommended that guidance in C665 and BS8485 is adopted to provide a consistent approach in dealing with ground gas contamination, the principal details being as follows.
- A7.1.2 This guidance is based on a similar approach to that for dealing with contaminated soil. The presence of hazardous gases could be deemed to be the 'source' in a 'pollutant linkage' that could lead to the conclusion that significant harm is or could be caused to people, buildings or the environment. In such circumstances the land could be deemed 'contaminated', ref. 10.18.
- A7.1.3 Should a potential source of gas be identified in the conceptual model, a gas risk assessment should be carried out, sufficient to demonstrate to the local authority that the proposals mitigate any hazards associated with ground gas. The authority enforces compliance with Approved Document Part C of the Building Regulations, ref. 10.49.

A7.2 APPROACH

- A7.2.1 A flow chart detailing the approach to assessing a site is given in CIRIA document C665, Figure 1.1. This may be summarised as follows.
 - Carry out Phase 1 desk study, including initial conceptual model
 - Assess site, potential presence of gas / potential unacceptable risk / identify further action, if necessary
 - Monitor gas concentrations
 - Assessment of Risk
 - Recommendations / remediation
 - Validation

A7.3 POLLUTANT LINKAGE ASSESSMENT

- A7.3.1 A pollutant linkage assessment is presented in Appendix 3 of the Phase 1 Desk Study Report.
- A7.3.2 Using the risk model in the desk study, the pollutant linkage can be identified and a preliminary estimate of risk undertaken. If there is no relevant pollutant linkage identified there is no risk. If there is a very low risk, it is likely that no further assessment is required. If further assessment is necessary, then gas monitoring is required.

A7.4 SITE MONITORING

A7.4.1 For sites with low generation potential, giving consistently low concentrations of soil gas under the worst-case conditions, a limited programme of monitoring would be appropriate. Where high or variable concentrations are anticipated or recorded, an extended programme of monitoring would be appropriate. The following guideline has been proposed, ref. 10.51.

Table A7.1

		Generation potential of source					
		Very low	Low	Moderate	High	Very high	
ity of ment	Low (Commercial)	4/1	6/2	6/3	12/6	12/12	
Sensitivity of development	Moderate (Flats)	6/2	6/3	9/6	12/12	24/24	
Ser dev	High (Residential with gardens)	6/3*	9/6	12/6	24/12	24/24	

Notes

- 1. First number is minimum number of readings and second number is minimum period in months, for example 4/1 Four sets of readings over 1 month.
- 2. At least two sets of readings must be at low and falling atmospheric pressure (but not restricted to periods below <1000mb) known as worst case conditions (see Boyle and Witherington, 2006).
- 3. The frequency and period stated are considered to represent typical minimum requirements. Depending on specific circumstances fewer or additional readings may be required (e.g. any such variation subject to site specific justification). * The NHBC guidance is also recommending these periods/frequency of monitoring (Boyle and Witherington, 2006)
- 4. Historical data can be used as part of the data set.
- 5. Not all sites will require gas monitoring however, this would need to be confirmed with demonstrable evidence.
- 6. Placing high sensitivity end use on a high hazard site is not normally acceptable unless the source is removed or treated to reduce its gassing potential. Under such circumstances long-term monitoring may not be appropriate or required.
- A7.4.2 Before taking any readings, zero the instrument, record atmospheric pressure and temperature.
- A7.4.3 Gas flow should be recorded, giving the range of pressures, ensuring positive or negative flow is recorded.
- A7.4.4 Record gas levels, recording peak and steady. Where steady state not obtained within 3 minutes, record change in concentration, where concentrations are decreasing, always record peak value. For very high concentrations, record for longer period of up to 10 minutes.

A7.5 ASSESSMENT OF RISK AND RECOMMENDATIONS

A7.5.1 The main method of characterising a site is the method described by Wilson and Card, ref. 10.52 and is termed Situation A. This can be used for all types of development except conventional low-rise housing with suspended ground floor and ventilated underfloor void.

- A7.5.2 Low rise housing, Situation B, was developed by Boyle and Witherington, ref. 10.53 and was developed for the NHBC for classifying gassing sites for houses with suspended ground floor slab with ventilated void.
- A7.5.3 Although the Code of Practice, ref. 10.48, assesses the characteristic gas situation as CIRIA recommend for Situation A, see Table A7.2 below, their solution for gas protection systems is different, see section A7.10.

A7.6 SITUATION A - ASSESSMENT

- A7.6.1 This system proposed by Wilson and Card, ref. 10.52 was originally developed in CIRIA Report 149, ref. 10.45.
- A7.6.2 The method uses both gas concentrations and borehole flow rate for methane and carbon dioxide to define a Characteristic Situation for a site.
- A7.6.3 Gas Screening Value (litre/hr) = borehole flow rate (litre/hr) x (gas concentration (%))/100. The GSV is determined for methane and carbon dioxide and the worst case adopted. The Characteristic Situation can then be determined from the table below. The GSV can be exceeded if the conceptual model indicates it is safe to do so, and other factors may lead to a change in the Characteristic Situation.

Characteristic Situation	Risk Classification	Gas screening value (CH4 or CO ₂ (1/hr) ¹	Additional factors	Typical source of generation
1	Very low risk	<0.07	Typically methane $\leq 1\%$ and/or carbon dioxide $\leq 5\%$. Otherwise consider increase to Situation 2	Natural soils with low organic content "Typical" Made Ground
2	Low risk	<0.7	Borehole air flow rate not to exceed 701/hr. Otherwise consider increase to Characteristic Situation 3	Natural soil, high peat/organic content. "Typical" Made Ground
3	Moderate risk	<3.5		Old landfill, inert waste, mineworking flooded
4	Moderate to high risk	<15	Quantitative risk assessment required to evaluate scope of protective measures	Mineworking – susceptible to flooding, completed landfill (WMP 26B criteria)
5	High risk	<70		Mineworking unflooded inactive with shallow workings near surface
6	Very high risk	>70		Recent landfill site

- 1. Site characterisation should be based on gas monitoring of concentrations and borehole flow rates for the minimum periods defined in Table A7.1
- 2. Source of gas and generation potential/performance must be identified.
- 3. If there is no detectable flow use the limit of detection of the instrument.

A7.7 SITUATION A – SOLUTION

- A7.7.1 The Characteristic Situation can be used to define the scope of gas protective measures required.
- A7.7.2 The CIRIA approach uses the characteristic situation to define the level of gas protection as follows:

Characteristic situation		building (Not low-rise itional housing)	Office/commercial/industrial developmen		
	Number of levels of protection	Typical scope of protective measures	Number of levels of protection	Typical scope of protective measures	
1	None	No special precautions	None	No special precautions	
2	2	 a) Reinforced concrete cast in situ floor slab (suspended non- suspended or raft) with at least 1200g DPM and underfloor venting b) Beam and block or pre-cast concrete and 2000g DPM / reinforced gas membrane and underfloor venting All joints and penetrations sealed 	1 to 2	 a) Reinforced concrete cast in-situ floor slab (suspended non-suspended or raft) with at least 1200g DPM b) Beam and block or pre cast concrete slab and minimum 2000g DPM/reinforced gas membrane c) Possibly underfloor venting or pressurisation in combination with a) and b) depending on use 	
				All joints and penetrations sealed	
3	2	All types of floor slab as above. All joints and penetrations sealed. Proprietary gas resistant membrane and passively ventilated or positively pressurised underfloor sub-space	1 to 2	All types of floor slab as above. All joints and penetrations sealed. Minimum 2000g/reinforced gas proof membrane and passively ventilated underfloor sub-space or positively pressurised underfloor sub-space	
4	3	All types of floor slab as above.	2 to 3	All types of floor slab as above.	

Characteristic situation	Residential building (Not low-rise traditional housing)		Office/commerci	al/industrial development
		All joints and penetrations sealed.		All joints and penetration sealed.
		Proprietary gas resistant membrane and passively ventilated underfloor subspace or positively pressurised underfloor sub-space, oversite capping or blinding and in ground venting layer		Proprietary gas resistant membrane and passively ventilated or positively pressurised underfloor sub-space with monitoring facility
5	4	Reinforced concrete cast in situ floor slab (suspended, non- suspended or raft).	3 to 4	Reinforced concrete cast in-situ floor slab (suspended, non- suspended or raft).
		All joints and penetrations sealed. Proprietary gas resistant membrane and ventilated or positively pressurised underfloor sub-space, oversite capping and in ground venting wells or		All joints and penetrations sealed. Proprietary gas resistant membrane and passively ventilated or positively pressurised underfloor sub-space with monitoring facility. In ground venting wells
6	5	barriers Not suitable unless gas regime is reduced first and quantitative risk assessment carried out to assess design of protection measures in conjunction with foundation design	4 to 5	or barriers Reinforced concrete cast in-situ floor slab (suspended, non- suspended or raft). All joints and penetrations sealed. Proprietary gas resistant membrane and actively ventilated or positively pressurised underfloor sub-space with monitoring facility, with monitoring. In ground venting wells and reduction of gas regime.

- 1. Typical scope of protective measures may be rationalised for specific developments on the basis of quantitative risk assessments.
- 2. Note the type of protection is given for illustration purposes only. Information on the detailing and construction of passive protection measures is given in BR414, ref. 10.50.
- 3. In all cases there should be minimum penetration of ground slabs by services and minimum number of confined spaces such as cupboards above the ground slab. Any confined spaces should be ventilated.
- 4. Foundation design must minimise differential settlement particularly between structural elements and ground-bearing slabs.

Appendix 7 pages vii/i-vii/x

- 5. Commercial buildings with basement car parks, provided with ventilation in accordance with the Building Regulations, may not require gas protection for characteristic situations 3 and 4.
- 6. Floor slabs should provide an acceptable formation on which to lay the gas membrane. If a block and beam floor is used it should be well detailed so it has no voids in it that membranes have to span, and all holes for service penetrations should be filled. The minimum density of the blocks should be 600kg/m³ and the top surface should have a 4:1 sand cement grout brushed into all joints before placing any membrane (this is also good practice to stabilise the floor and should be carried out regardless of the need for gas membrane).
- 7. The gas-resistant membrane can also act as the damp-proof membrane.

A7.8 SITUATION B -ASSESSMENT

- A7.8.1 The NHBC has developed a characterisation system that is similar to Situation A but is specific to low-rise housing development with a clear ventilated underfloor void. The gas emission rates are compared to generic 'Traffic Lights'.
- A7.8.2 The Traffic Lights include a Typical Maximum Concentration that is used for initial screening purposes. Where the Typical Maximum Concentration is exceeded the risk-based Gas Screening Value, GSV, should be adopted. The GSVs are determined for the 'model' low rise development and where they differ from this model, the GSV should be reassessed, ref. 10.47.
- A7.8.3 The calculations should be made for both methane and carbon dioxide, and the worst case adopted. The GSV is only a guideline.

		Metha	ane	Carbon c	lioxide	
Traffic light		Typical maximum concentration ² (% v/v)	Gas screening value (GSV) ³ (litres per hour)	Typical maximum concentration ² (% v/v)	Gas screening value (GSV) ^{1,2} (litres per hour)	
Green	- 5					
-	$\left\{ \left \right. \right. \right\}$	1	0.16	5	0.78	
Amber 1	 					
	$\left\{ \right. \right\}$	5	0.63	10	1.56	
Amber 2	с-					
~	$\left\{ \left \right. \right. \right.$	20	1.56	30	3.13	
Red						

- Generic GSVs are based on guidance contained within latest revision of Department of the Environment and the Welsh Office (2004 edition) "The Building Regulations: Approved Document C" and used a sub-floor void of 150mm thickness.
- The Typical Maximum Concentrations can be exceeded in certain circumstances should the conceptual site model indicate it is safe to do so. This is where professional judgement will be required, based on a thorough understanding of the gas-regime identified at the site where monitoring in the worst temporal conditions has occurred.
- 3. The GSV thresholds should not generally be exceeded without completion of a detailed gas risk assessment taking into account site-specific conditions.

A7.9.1 On the basis of this Traffic Light classification the following protection should be applied to low-rise housing.

Table A7.5

Traffic Light Classification	Protection measures required
Green	Negligible gas regime identified and gas protection measures are not considered necessary.
Amber 1	Low to intermediate gas regime identified, which requires low-level gas protection measures, comprising a membrane and ventilated sub-floor void to create a permeability contrast to limit the ingress of gas into buildings. Gas protection measures should be as prescribed in BRE Report 414. Ventilation of the sub-floor void should facilitate a minimum of one complete volume change per 24 hours.
Amber 2	Intermediate to high gas regime identified, which requires high- level gas protection measures, comprising a membrane and ventilated sub-floor void to create a permeability contrast to prevent the ingress of gas into buildings. Gas protection measures should be as prescribed in BRE Report 414. A specialist contractor should always fit membranes. As with Amber 1, ventilation of the sub- floor void should facilitate a minimum of one complete volume change per 24 hours. Certification that these passive protection measures have been installed correctly should be provided.
Red	High gas regime identified. It is considered that standard residential housing would not normally be acceptable without a further Gas Risk Assessment and/or possible remedial mitigation measures to reduce and/or remove the source of gas.

A7.10 CODE OF PRACTICE – SOLUTIONS

- A7.10.1 The Characteristic Gas Situation is determine in a similar manner to that recommended by CIRIA, see Table A7.2 above.
- A7.10.2 Having selected the Characteristic Gas Situation, the appropriate gas protection could be selected for the building. The tables below give a guide as to the relative performance of the various designs and systems.
- A7.10.3 A guidance value for the required gas protection, in the range 0 to 7 should be obtained from Table A7.6 below. Then, a combination of ventilation and/or barrier system should be chosen from Table A7.7 to meet that requirement.

Table A7.6

Characteristic gas situation, CS	NHBC traffic light	Required gas protection					
		Non-managed property, e.g. private housing	Public building ^{A)}	Commercial buildings	Industrial buildings ^{B)}		
1	Green	0	0	0	0		
2	Amber 1	3	3	2	1 ^{C)}		
3	Amber 2	4	3	2	2		
4		6 ^{D)}	5 ^{D)}	4	3		
	Red		6 ^{E)}	5	4		
				7	6		

NOTE: Traffic light indications are taken from NHBC Report no.: 10627-R01 (04) [3] and are mainly applicable to low-rise residential housing. These are for comparative purposes but the boundaries between the traffic light indications and CS values do not coincide.

A) Public buildings include, for example, managed apartments, schools and hospitals.

B) Industrial buildings are generally open and well ventilated. However, areas such as office pods might require a separate assessment and may be classified as commercial buildings and require a different scope of gas protection to the main building.
 C) Maximum methane concentration 20% otherwise consider an increase to CS3.

D) Residential building on higher traffic light/CS sites is not recommended unless the type of construction or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the gas control system, e.g. in institutional and/or fully serviced contractual situations.

E) Consideration of issues such as ease of evacuation and how false alarms will be handled are needed when completing the design specification of any protection scheme.

A7.10.4 Having determined the appropriate guidance value from Table A7.6, an element or combination of elements from a), b), c) or d) in Table A7.7, should be chosen to achieve the required level of protection.

PROTECTION ELEMENT/SYSTEM		SCORE	COMMENTS		
a) Venting/dilution					
Passive sub floor ventilation (venting layer can be a clear void or formed using gravel, geocomposites, polystyrene void formers, etc.) ^{A)}	Very good performance	2.5	Ventilation performance in accordance with Annex A, ref. 10.48		
	Good performance	1	If passive ventilation is poor this is generally unacceptable and some form of active system will be required		

PROTECTION ELEMENT/SYSTEM		SCORE	COMMENTS	
Subfloor ventilation with active abstraction/pressurization (venting layer can be a clear void or formed using gravel, geocomposites, polystyrene void formers, etc.) ^{A)}		2.5	There have to be robust management systems in place to ensure the continued maintenance of any ventilation system. Active ventilation can always be designed to meet good performance. Mechanically assisted systems come in two main forms: extraction and positive	
Ventilated car park (basement or undercroft)		4	pressurization. Assumes car park is vented to deal with car exhaust fumes, designed to Building Regulations Document F and IstructE guidance	
b) Barriers				
Floor slabs				
Block and beam floor slab		0	It is good practice to install ventilation in all foundation systems to effect pressure relief as	
Reinforced concrete ground bearing flo	oor slab	0.5		
Reinforced concrete ground bearing foundation raft with limited service penetrations that are cast into slab		1.5	a minimum. Breached in floor slabs such as joints have to be effectively sealed against gas ingress in order to maintain these performances	
Reinforced concrete cast in situ suspended slab with minimal service penetrations and water bars around all slab penetrations and at joints		1.5		
Fully tanked basement		2		
c) Membranes				
Taped and sealed membrane to reasonable levels of workmanship/in line with current good practice with validation ^{B), C)}		0.5	The performance of membranes is heavily dependent on the quality and design of the installation, resistance to damage after installation, and the integrity of joints	
Proprietary gas resistant membrane to reasonable levels of workmanship/in line with current good practice under independent inspection (CQA) ^{B), C)}		1		
Proprietary gas resistant membrane installed to reasonable levels of workmanship/in line with current good practice under CQA with integrity testing and independent validation		2		
d) Monitoring and detection (not applicable to non-managed property, or in isolation)				
Intermittent monitoring using hand hel	d equipment	0.5		
Permanent monitoring and alarm system ^{A)}	Installed in the underfloor venting/ dilution system Installed in the building	2	Where fitted, permanent monitoring systems ought to be installed in the underfloor venting/dilution system in the first instance but can also be provided within the occupied space as a fail safe.	
e) Pathway intervention	une oundring			

PROTECTION ELEMENT/SYSTEM	SCORE	COMMENTS
Pathway intervention	-	This can consist of site protection measures for off-site or on-site sources (see Annex A, ref. 10.48)
NOTE. In practice the choice of materials might well rely on factors such as construction method and the risk of damage after		

ht well re v on factors s *NOTE:* In practice the choice of materials might well rely on factors such as construction method and the installation. It is important to ensure that the chosen combination gives an appropriate level of protection

A)

It is possible to test ventilation systems by installing monitoring probes for post installation validation. If a 1200 g DPM material is to function as a gas barrier it should be installed according to BRE 414, ref. 10.50 being taped B) and sealed to all penetrations.

C) Polymeric Materials >1200g can be used to improve confidence in the barrier. Remember that their gas resistance is little more than the standard 1200g (proportional to thickness) but their physical properties mean that they are more robust and resistant to site damage.