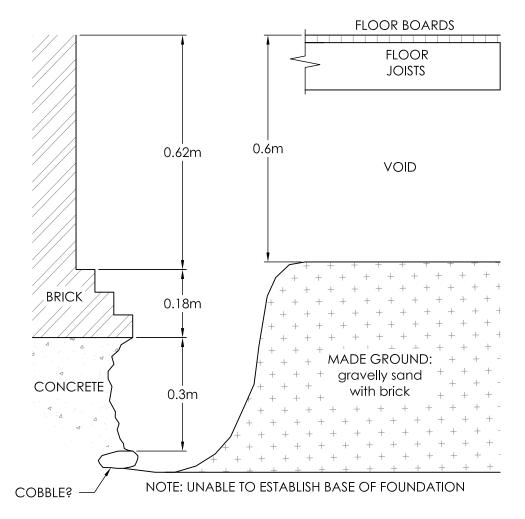


PLATE 1: EXCAVATION

(PARTY WALL) SCALE 1:10


PLATE 1: EXCAVATION

TRIAL PIT 2A (INTERNAL WALL) SCALE 1:10

PLATE 1: EXCAVATION

TRIAL PIT 3 (PARTY WALL) SCALE 1:10

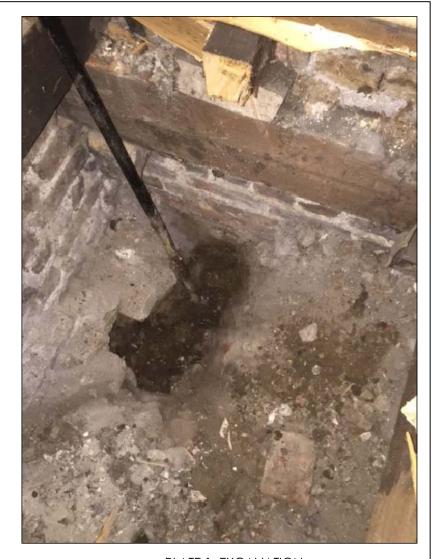
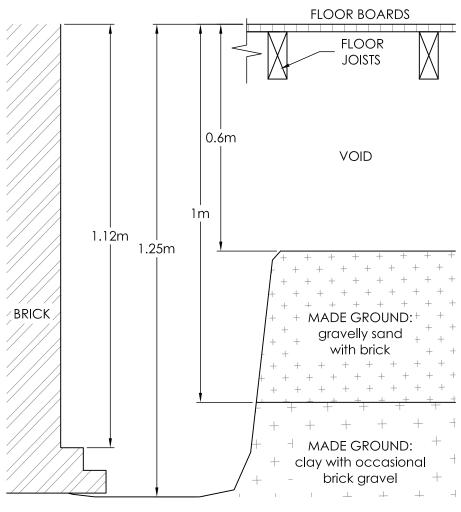



PLATE 1: EXCAVATION

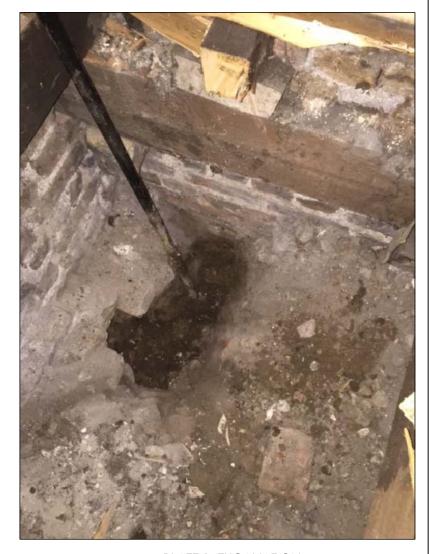
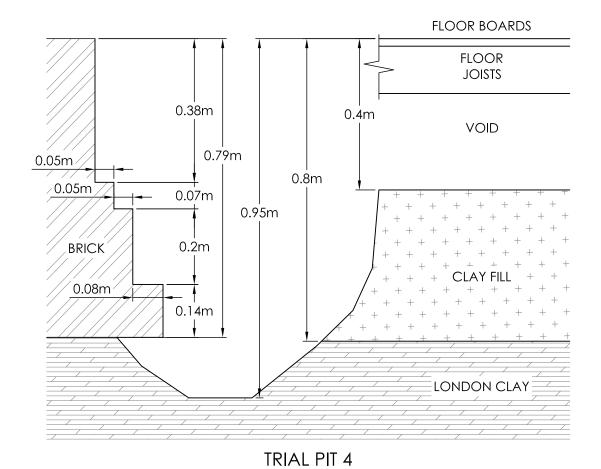



PLATE 1: EXCAVATION

(EXTERNAL WALL) SCALE 1:10

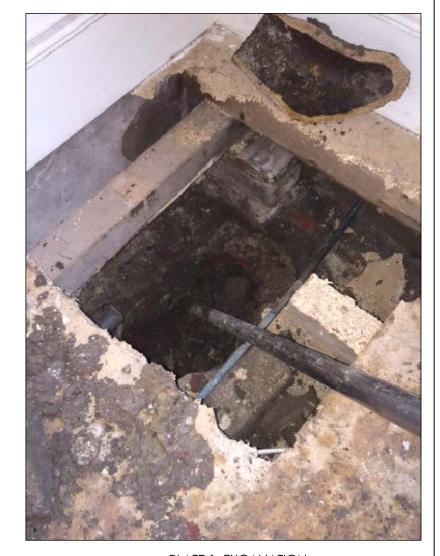
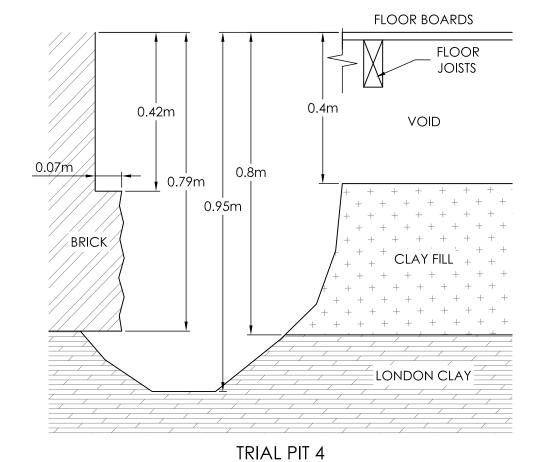



PLATE 1: EXCAVATION

(PARTY WALL)

SCALE 1:10

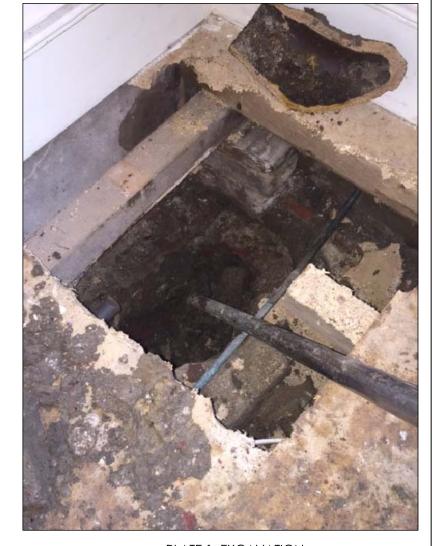


PLATE 1: EXCAVATION

APPENDICES

APPENDIX B CHEMICAL ANALYTICAL RESULTS

Philip Lewis

LMB Geosolutions Ltd 28 Dresden Road London N19 3BD i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: philip@lmbgeosolutions.com

Analytical Report Number: 15-84355

Project / Site name: 21 Boscastle Road , London NW5 Samples received on: 10/12/2015

Your job number: Samples instructed on: 10/12/2015

Your order number: Analysis completed by: 21/12/2015

Report Issue Number: 1 Report issued on: 21/12/2015

Samples Analysed: 2 soil samples

Signed:

Rexona Rahman Reporting Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Signed:

soils

Dr Irma Doyle Assistant Quality Manager

For & on behalf of i2 Analytical Ltd.

- 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Iss No 15-84355-1

Project / Site name: 21 Boscastle Road , London NW5

Lab Sample Number				516806	516807			
Sample Reference				TP3	BH1			
Sample Number				None Supplied	None Supplied			
Depth (m)				0.90	0.50			
Date Sampled				02/12/2015	03/12/2015			
Time Taken				None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	-			
Moisture Content	%	N/A	NONE	8.3	-			
Total mass of sample received	kg	0.001	NONE	0.59	-			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected			
General Inorganics	I	I N/A		0.7	,		1	
pH	pH Units	N/A	MCERTS	8.7	-			
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	1.9	-			<u> </u>
Heavy Metals / Metalloids	_							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	33	-			
Boron (water soluble)	mg/kg	0.2	MCERTS	4.8	-			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	28	-			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	46	-			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	1300	-			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	2.7	-			
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	19	-			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	73	-			
Petroleum Hydrocarbons TPH C10 - C40	Petroleum Hydrocarbons							
ILU C10 - C40	mg/kg	10	MCERTS	< 10	_		<u> </u>	<u></u>

Project / Site name: 21 Boscastle Road , London NW5

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
516806	TP3	None Supplied	0.90	Light brown sandy loam with gravel and brick.
516807	BH1	None Supplied	0.50	-

Project / Site name: 21 Boscastle Road , London NW5

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding.	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Philip Lewis

LMB Geosolutions Ltd 28 Dresden Road London N19 3BD i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: philip@lmbgeosolutions.com

Analytical Report Number: 15-84356

Project / Site name:	21 Boscastle Road , London NW5	Samples received on:	10/12/2015
Your job number:		Samples instructed on:	10/12/2015
Your order number:		Analysis completed by:	22/12/2015
Report Issue Number:	1	Report issued on:	22/12/2015
Samples Analysed:	1 wac multi sample		

Signed:

Rexona Rahman Reporting Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Emma Winter
Assistant Reporting Manager
For & on behalf of i2 Analytical Ltd.

Signed:

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404

email:reception@i2analytical.com

	15-843	356				
				Cliant	LMBCEOCOL	
				Client:	LMBGEOSOL	
	21 Boscastle Road	, London NW5				
	E1690	10		Landfill		e Criteria
					reactive	
				Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil
						6%
					1	10%
		+			ł	
-				100		
7.9					>6	
9.5					To be evaluated	To be evaluate
2.1	0.1		Sumulativa 10.1	Limit value	es for compliance le	eaching test
				using BS EN	l 12457-3 at L/S 10) l/kg (mg/kg)
mg/I	mg/I					
0.014	0.014		0.14	0.5	2	25
						300
						5
						70
						100 2
						30
						40
						50
0.0055	< 0.0050		< 0.020	0.06	0.7	5
< 0.010	< 0.010		< 0.040	0.1	0.5	7
0.0038	0.0097		0.091	4	50	200
8.2	< 4.0		16	800	4000	25000
0.48	0.42		4.3	10	150	500
9.2	1.9		27	1000	20000	50000
130	60			4000	60000	100000
< 0.13	< 0.13		< 0.50	1	-	-
4.4	3.7		38	500	800	1000
< 0.1						
0.90						
81						
19				_		
0.32						
0.18						
	I				1	1
	1.0	21 Boscastle Road 51680 02/12/2 BH1 0.50 1.0			Client: Clie	Client: LMBGEOSOL

^{*=} UKAS accredited (liquid eluate analysis only)

** = MCERTS accredited

Project / Site name: 21 Boscastle Road , London NW5

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

ı	Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
	516808	BH1	None Supplied	0.50	Brown loam and clay with gravel.

Project / Site name: 21 Boscastle Road , London NW5

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046-PL	W	NONE
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457- 3 Prep)	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	W	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	W	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDICES

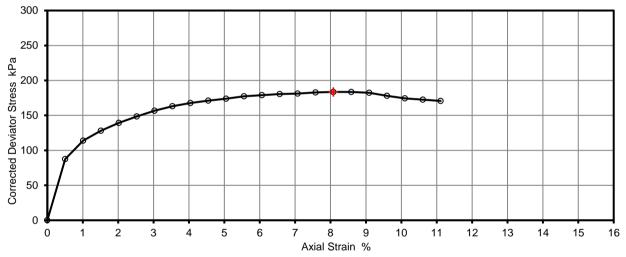
APPENDIX C GEOTECHNICAL LABORATORY RESULTS

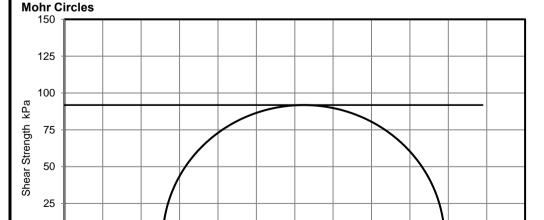
ab Na			Project	No				n Test Results				
ob No.	2000		I -						Samples r	Programme Samples received 17/12		
	0092			castie	Rd, London NW5				Schedule received 10/12/201 Project started 18/12/201			
roject No.			Client									
	-		LMB Ge	eosolu	tions	ı			Testing St	arted	08/01/2016	
Hole No.		Sam		L	Soil Description	iption NMC F		LL	PL	PI	Remarks	
	Ref	Тор	Base	Туре		%	%	%	%	%		
BH1		2.70		D	Brown CLAY with blue-grey veins	34	100	76	28	48		
BH1		4.20		D	Brown CLAY with orange-brown sandy patches	34	100	80	32	48		
	Natural	Moisture	: BS137 Content clause 4.	: clause	t 2: 1990: = 3.2 Test 5.0 U	Test Report by K4 SOILS LABOF Unit 8 Olds Close Olds Appro Watford Herts WD18 9RU			oach	Checked and Approved Initials J.P		



Sulphate Content (Gravimetric Method) for 2:1 Soil: Water Extract and pH Value - Summary of Results

V	SOIL	S			Tested in accordance with BS1377 : F	Part 3 : 1	990, claı	use 5.3 a	and clau	se 9	
Job No.			Project N	Name						Progran	nme
20092			21 Bosca	astle Rd,	London NW5				Samples r	eceived	17/12/2015
Project No			Client						Schedule r Project s		10/12/2015 18/12/2015
Project No	١.										
•			LMB Geo	osolution	s				Testing S	started	05/01/2016
		Sa	mple			Dry Mass passing	303	SO4			
Hole No.	Ref	Тор	Base	Туре	Soil description	2mm	Content	Content	pН	F	Remarks
				. , , , ,		%	g/l	g/l			
BH1		1.70		D	Brown gravelly silty CLAY (gravel is fmc and sub- angular to sub-rounded)	67	0.40	0.48	7.78		
BH1		3.70		D	Brown slightly mottled bluish grey silty CLAY	100	2.46	2.95	7.58		
UKAS TESTING				Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Appro						J.P 12/01/2016 5-R29 (Rev. 0)	
2519	-			-PP-040	d Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.	3./					


1	Unconsolidated Compression To			Job Ref	20092		
SOILS	pore pressure -		Borehole/Pit No.	BH1			
Site Name	21 Boscastle Rd, London NW5		Sample No.				
Project No.	-	Client	LMB Geosolutions	Depth	3.20	m	
				Sample Type	U		
Soil Description	High	strength brown	Samples received	17/12/2015			
				Schedules received	18/12/2015		
Test Method	BS1377 : Part 7 : 199	00, clause 8, sing	gle specimen	Date of test	12/01/2016		


Remarks		

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	1.92	Mg/m3
Moisture Content	31	%
Dry Density	1.47	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	64	kPa
Axial Strain	8.1	%
Deviator Stress, (σ1 - σ3)f	184	kPa
Undrained Shear Strength, cu	92	kPa ½(σ1
Mode of Failure	Brittle	

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

- σ3)f

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

0

0

25

50

75

100

Test Report by K4 SOILS LABORATORY **Unit 8 Olds Close Olds Approach** Watford Herts WD18 9RU Tel: 01923 711 288

175

200

225

250

275

300

Email: James@k4soils.com

Checked and Approved J.P

Initials:

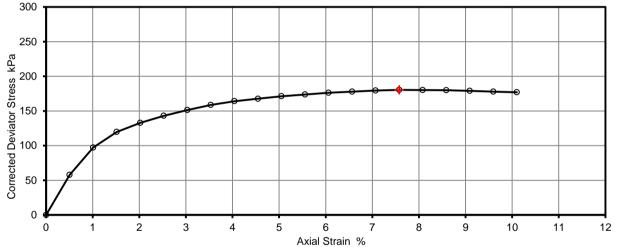
12/01/2016 Date

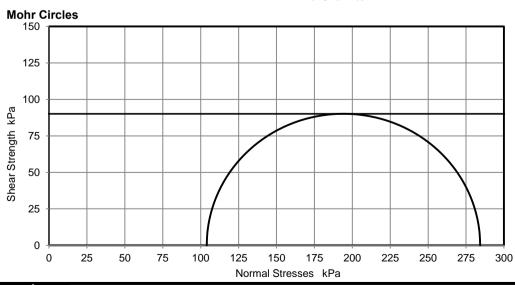
MSF-5 R7 (Rev.0)

125

150

Normal Stresses kPa


(K Soils)	•	est without i	measurement of	Job Ref	20092		
	pore pressure -	single spec	imen	Borehole/Pit No.	BH1		
Site Name	21 Boscastle Rd, Lon	don NW5		Sample No.			
Project No.	- Client LMB Geosolutions		Depth	5.20	m		
				Sample Type	U		
Soil Description	High strength brown silty CLAY		silty CLAY	Samples received	17/12/2015		
		Schedules received	18/12/2015				
Test Method	BS1377 : Part 7 : 199	0, clause 8, sing	gle specimen	Date of test	12/01/2016		


F	Remarks		

Position within sample	
Posit	

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	1.90	Mg/m3
Moisture Content	33	%
Dry Density	1.43	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	104	kPa
Axial Strain	7.6	%
Deviator Stress, (σ1 - σ3)f	180	kPa
Undrained Shear Strength, cu	90	kPa ½(σ1 - σ3)f
Mode of Failure	Brittle	

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288

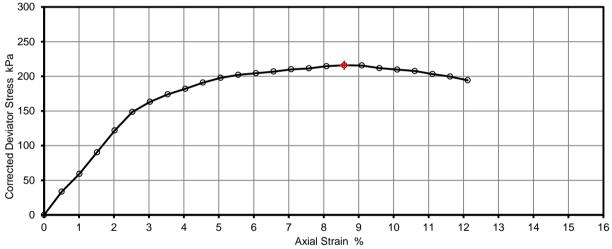
Email: James@k4soils.com

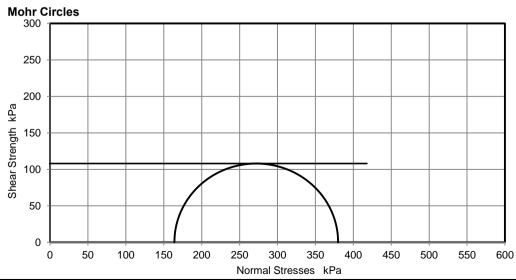
Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Checked and Approved J.P Initials:

12/01/2016 Date

MSF-5 R7 (Rev.0)


(4)	Unconsolidated Compression To	Job Ref	20092				
SOILS	pore pressure -			Borehole/Pit No.	BH1		
Site Name	21 Boscastle Rd, Lon	don NW5		Sample No.			
Project No.	-	Client	LMB Geosolutions	Depth	8.20	m	
				Sample Type	U		
Soil Description	High strength brown	silty CLAY with s	scattered traces of selenite	Samples received	ived 17/12/2015		
				Schedules received	received 18/12/2015		
Test Method	BS1377 : Part 7 : 199	0, clause 8, sing	gle specimen	Date of test	12/01/2016		


Remarks		

ple	
Position within sample	
/ithin	
N UC	
ositic	
ď	

Test Number	1	7
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	1.92	Mg/m3
Moisture Content	30	%
Dry Density	1.47	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	164	kPa
Axial Strain	8.6	%
Deviator Stress, (σ1 - σ3)f	216	kPa
Undrained Shear Strength, cu	108	kPa ½(σ1 - σ3)f
Mode of Failure	Compound	

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288

Email: James@k4soils.com

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Checked and **Approved** J.P Initials:

12/01/2016 Date

MSF-5 R7 (Rev.0)

Unconsolidated Undrained Triaxial Compression tests without measurement of pore pressure **Summary of Results** ried out in accordance with BS1377-Part 7 : 1990 clause 8 or 9 as appropriate to test

			Tes	ts c	arried out in accordan	ce wi	th BS	31377	:Part	7:1	990 c	laus	e 8 o	r 9 a			
Job No.					Proje	ect Nar	ne						Programme				
20092			21 Bos	castle	e Rd, London NW5									nples r			17/12/2015
													edule r			10/12/2015	
Project No	ο.		Client										Project started				18/12/2015
LMB			LMB G	MB Geosolutions									Te	sting S	Started	t	12/01/2016
		Sar	nple			Test	Der	sity						At fail	ure		
Hole No.					Soil Description	Type	bulk	dn	w Length	Length	Diameter	σ3	Axial	L1 ~1		M o	Remarks
i iole ivo.	Ref	Top	Base	Туре	3011 Description		buik	dry					strain	σ1 - σί	cu	o d	Remarks
							Mg	/m3	%	mm	mm	kPa	%	kPa	kPa	e	
BH1		3.20		U	High strength brown silty CLAY	UU	1.92	1.47	31	198	102	64	8.1	184	92	В	
BH1		5.20		U	High strength brown silty CLAY	UU	1.90	1.43	33	198	102	104	7.6	180	90	В	
BH1		8.20		U	High strength brown silty CLAY with scattered traces of selenite	UU	1.92	1.47	30	198	102	164	8.6	216	108	С	
Logani	1111	ninela - ·	200 += - 1 1	oir c'	and multiple are size		C-"	rocc:				Me -! -	of faller		р -	,,;sel -	
					and multiple specimens)	σ3 σ1 - σ3		ressure		deviator		iviode	of failur	е;	B - E P - F		

UUM - Multistage test on a single specimen

σ1 - σ3 Maximum corrected deviator stress

P - Plastic

suffix R - remoulded or recompacted

cu Undrained shear strength, $\frac{1}{2}$ (σ 1 - σ 3)

C - Compound

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288

Initials: Date:

J.P

12/01/2016

Email: james@k4soils.com

MSF-5-R7b (Rev. 0)

Checked and Approved

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

TEST CERTIFICATE

Determination of Moisture Content

Tested in Accordance with BS 1377-2:1990: Clause 3.2

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: LMB Geosolutions Ltd
Client Address: 28 Dresden Road

London N19 3BD

Contact: Philip Lewis

Site Name: 21 Boscastle Road, London NW5

Site Address: Not Given

Client Reference: Not Given

Job Number: 16-85731 Date Sampled: Not Given

Date Received: 2016-01-14

Date Tested: 2016-01-18

Sampled By: Philip Lewis

Test results

Laboratory Reference	Sample Reference	Location	Depth Top [m]	Depth Base [m]	Sample Type	Description	Moisture Content [%]
524479	Not Given	BH2	1	Not Given	D	Brown slightly gravelly CLAY with thin laminae of yellow sand	26
524480	Not Given	BH2	2	Not Given	D	Brown slightly gravelly CLAY with thin laminae of yellow sand	30
524481	Not Given	BH2	3	Not Given	D	Brown slightly gravelly CLAY with thin laminae of grey clay and thin laminae of yellow sand	34
524482	Not Given	BH2	4	Not Given	D	Brown CLAY with thin laminae of grey clay and thin laminae of yellow sand	33

Comments:

Approved:

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 20/01/2016

Minonawa Byther

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: LMB Geosolutions Ltd
Client Address: 28 Dresden Road

London N19 3BD

Contact: Philip Lewis

Site Name: 21 Boscastle Road, London NW5

Site Address: Not Given

Client Reference: Not Given

Job Number: 16-85731

Date Sampled: Not Given

Date Received: 2016-01-14

Date Tested: 2016-01-18

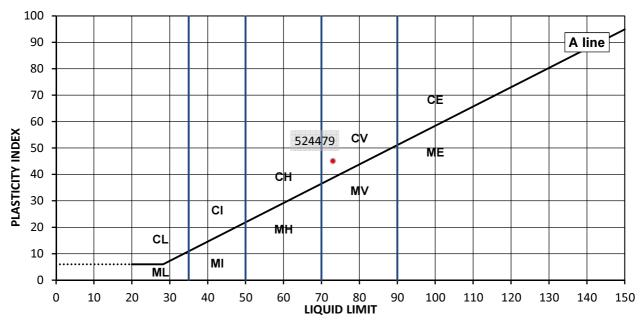
Sampled By: Philip Lewis

TEST RESULTS

Laboratory Reference: 524479

Sample Reference: Not Given

Description: Brown slightly gravelly CLAY with thin laminae of yellow sand


Depth Top [m]: 1

Sample Type:

Location: BH2
Sample Preparation: Tested after >425um removed by hand

Depth Base [m]: Not Given

As Received Moisture	Liquid Limit	Plastic Limit Plasticity Index		% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
26	73	28	45	98

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 М Silt Medium 35 to 50 - 1 50 to 70 Н High ١/ Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Signed:

Comments:

Approved:

Mirosława Pytlik

PL Head of Geotechnical section

Minonawa My 46

Terry Stafford
Geotechnical Manager

for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Not Given

Philip Lewis

Client Reference:

Sampled By:

4041

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: LMB Geosolutions Ltd
Client Address: 28 Dresden Road

 28 Dresden Road
 Job Number:
 16-85731

 London
 Date Sampled:
 Not Given

 N19 3BD
 Date Received:
 2016-01-14

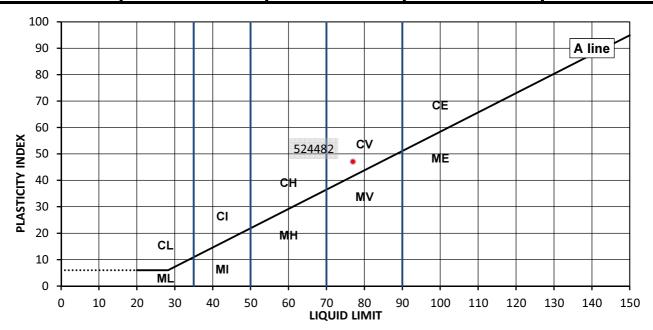
 Philip Lewis
 Date Tested:
 2016-01-18

Contact: Philip Lewis

Site Name: 21 Boscastle Road, London NW5

Site Address: Not Given

TEST RESULTS Laboratory Reference: 524482


Sample Reference: Not Given

Description: Brown CLAY with thin laminae of grey clay and thin laminae of yellow sand Sample Type: Description: Description: Sample Type: Description: Sample Type: Description: Sample Type: Description: Description: Description: Sample Type: Description: Descripti

Location: BH2 Depth Top [m]: 4

Sample Preparation: Tested in natural condition Depth Base [m]: Not Given

As Received Moisture Content [%]	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm		
	[%]	[%]	[%]	BS Test Sieve		
33	77	30	47	100		

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit С Clay below 35 Low Silt Medium 35 to 50 н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Comments:

Approved:

Signed:

Mirosława Pytlik

PL Head of Geotechnical section
Date Reported: 20/01/2016

Terry Stafford
Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Mi nonawa Byther

APPENDICES

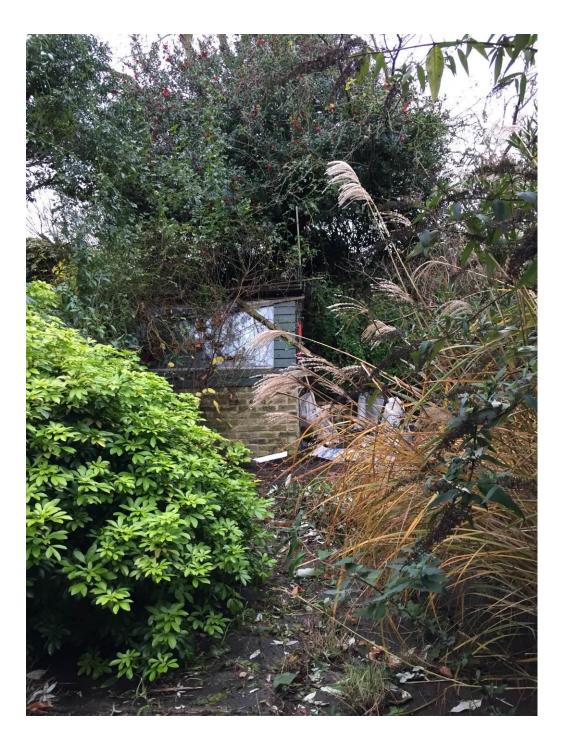
APPENDIX D MONITORING RESULTS

PROJECT: 21 Boscastle Road, London NW5

		Groundwater Level		Ground Elevation
Date	Location	m bgl	m AOD	(m AOD)
	BH1	5.47	47.8	53.27
15/01/2016	BH2	DRY		52.31
	BH1	3.21	50.06	53.27
29/01/2016	BH2	DRY		52.31

Ground Investigation Land Contamination Hydrogeology Engineering Geology

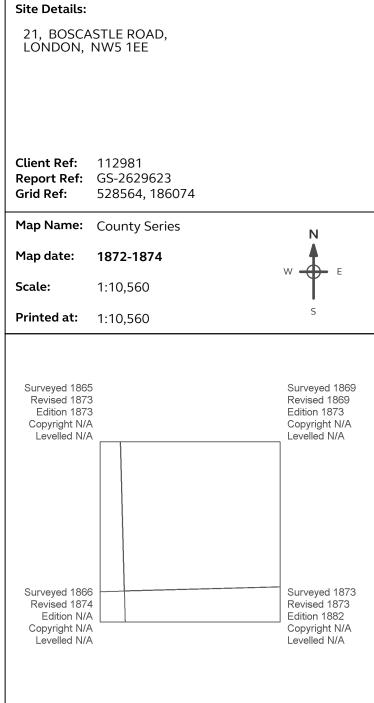
Appendix B - Site Walkover Photographs


Photograph 1. View looking south east towards the site

Photograph 2. View detailing the front garden area

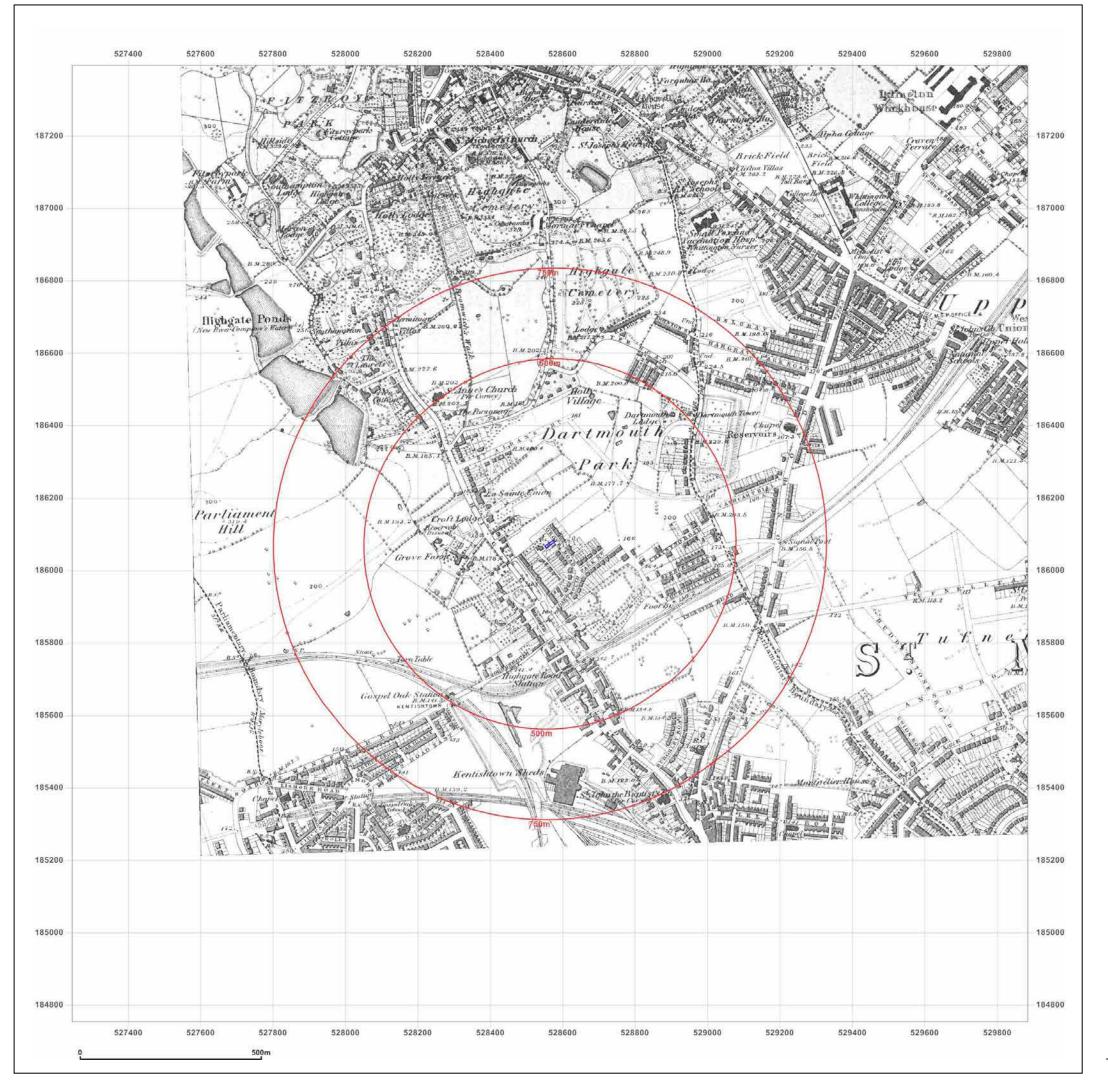
Photograph 3. Detailing the internal structure of the building looking towards the rear garden area

Photograph 4. View detailing the rear garden area


Photograph 5. Detailing the pond in the rear garden area

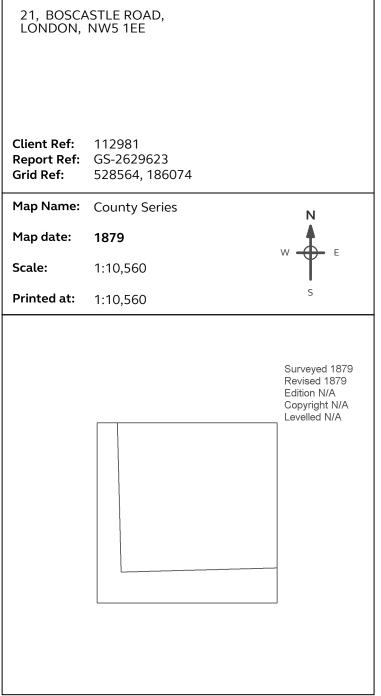
FAIRHURST

Appendix C – Groundsure Report



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2015 Ordnance Survey 100035207


Production date: 01 December 2015

To view map legend click here <u>Legend</u>

Site Details:

Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2015 Ordnance Survey 100035207

Production date: 01 December 2015

To view map legend click here <u>Legend</u>