V & D	Project	Job Ref.	Job Ref.					
	14 R	14 ROSECROFT AVE., LONDON. NW3 7QB						
	Section				Sheet no./rev	Sheet no./rev.		
	PRELI	MINARY STRUC	TURAL CALCU	ILATIONS		1		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date		
SURREY GU16 6PT	TV	18/02/2016						
PITCHED ROOF	KN/m ²	<u>C</u>	EILING		KN/m²			
Tiles	0.70	C	eiling Joists		0.10			
Felt & battens	0.05	P	lasterboard		<u>0.15</u>			
Rafters	<u>0.10</u>	D	. L.		0.25 KN/m²			
	<u>0.85</u>	Ι.	L. where applic	able	<u>0.25</u> KN/m²			
45º on plan load D. L.	1.20 KN/m ²				0.50 KN/m²			
45 ⁰ Imposed Load	<u>0.38 </u> KN/m ²							
	1.58 KN/m ²							
FLAT ROOF	KN/m ²	I	IMBER FLOOR	S	KN/m²			
Felt	0.25	В	oards		0.20			
Boards	0.25	J	oists		0.10			
Joists & firrings	0.15	C	eiling		<u>0.20</u>			
Ceiling	<u>0.15</u>	D	. L.		0.50 KN/m²			
D. L.	0.80 KN/m ²	Ι.	L.		<u>1.50</u> KN/m²			
I .L.	<u>0.75</u> KN/m ²			:	2.00 KN/m ²			
	1.55 KN/m ²							
MASONRY	KN/m ²							
102 Brick	2.20 KN/m ²							
100 lt. wt blk + (1 x plaster)	1.10 KN/m ²							
100 lt. wt blk + (2 x plaster)	1.35 KN/m ²							
100 dense blk + (1 x plaster)	1.85 KN/m ²							
215 BRICK + PLASTER	4.60KN/m ²							
330 BRICK + PLASTER	6.80KN/m ²							

DESIGN PHILOSOPHY

Walls to be Underpinned

New concrete walls below the property are designed as propped cantilevers in reinforced concrete, the lower ground floor slab acting as a lateral at the base prop at base level. The walls will be designed using the soil parameters relative to the site. The walls will be designed for a water table at 1.0m below ground level.

The surcharge load allowed on the external walls of the property will be 10KN/m². The party wall bounding will have a surcharge load of 10.00KN/m² for adjoining floor and partition wall construction and will also take into account any loads from adjoining foundations.

V&D	Project				Job Ref.	
	14 RC					
	Section		Sheet no./rev.			
	PRELIM	IINARY STRUC	TURAL CALCU	LATIONS		2
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	ΤV	18/02/2016				

The basement slab will be formed in reinforced concrete. It will be designed for uplift due to water pressure below, and as a clear span under finish and imposed load, it will be protected by any uplift due to heave from Cordek. The basement slab will act as a lateral prop to the base of the basement walls.

Final super structure design is subject to soft strip of the existing building to expose existing floor spans etc. Calculations for the proposed revised super structure elements as well as the new ground floor concrete slab and steel beams will not form part of this preliminary set of calculations.

<u>KEY PLAN</u>

	Project	ROSECROF	T AVE., LONI	DON. NW3 7QB	Job Ref.	
	Section		Sheet no./rev	<i>.</i>		
	PREL	IMINARY S	TRUCTURAL	CALCULATIONS		3
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2	2016			
WALL A						
WALL	11.5 X 6.8	=	78.20			
ROOF DL	1.2 X 2	=	2.40			
ROOF IL	0.4 X 2	=		<u>0.80</u>		
			80.60KN/m	0.80KN/m		
WALL B						
ROOF DL	1.2 X 3	=	3.60			
ROOF IL	0.4 X 3	=		1.20		
FLR DL	2 X 0.6 X 2	=	2.40			
FLR IL	2 X 1.5 X 2	=		6.00		
WALL	7 X 6.8 X 85%	=	40.50			
			47.5KN/m	7.2KN/m		
WALL C						
WALL	8.5 X 6.8	=	57.80KN/m			
WALL D						
WALL	7 X 6.8 X 60%	=	29.00KN/m			
WALLS E & G						
ROOF DL	2.5 X 1.2	=	3.00			
ROOF IL	2.50 X 0.5	=		1.25		
WALL	7.5 X 4.6	=	34.50			
FLRS DL	2 X 2 X 0.6	=	2.40			
FLRS IL	2 X 2X 1.5	=		<u>6.00</u>		
			39.40KN/m	7.25KN/m		
WALL F						
\A/ALI	75X46X05	_	17 25KN/m			

	Project				Job Rof	
V & R			W0 70D	JOD Rei.		
VINCENT & RYMILL	14 RU	SECROFT AVE	W3 /QB			
VINCENT & RYMILL	Section		Sheet no./rev.			
LAKESIDE COUNTRY CLUB	PRELIM	INARY STRUC	JLATIONS		4	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				
		000				
WALLS AND BASES TO LOV		LOOK				
$\frac{WALL A - PARITWALL}{DL}$						
DL = 80.6 KN/111, 1L = 0.6 KN/111						
RETAINING WALL ANAL	YSIS & DES	IGN (BS80)	12)			
			<u>, </u>			
RETAINING WALL ANALYSIS	S (BS 8002:1994)				
					TEDDS calculatio	n version 1.2.01.06
	 	1965	→			
	4	1800	> 4375→ ନ୍ତି 4_			
			81 kN/m	10 kN/m²		
				ਠ <u>†</u> †		
				_ ▲		
				3200-		
				3600		
				2600		
	Ļ					
	<u>↓</u> T			<u>↓</u> <u>↓</u>		
	 	2325				
Wall details						
Retaining wall type	Cantilever					
Height of wall stem	h _{stem} = 3200 mn	ı	Wall stem thic	kness	t _{wall} = 375 mr	n
Length of toe	I _{toe} = 1800 mm		Length of heel		l _{heel} = 150 mr	n
Overall length of base	l _{base} = 2325 mm		Base thicknes	S	t _{base} = 400 m	m
Height of retaining wall	h _{wall} = 3600 mm					
Depth of downstand	d _{ds} = 0 mm		Thickness of c	lownstand	t _{ds} = 400 mm	I
Position of downstand	l _{ds} = 1830 mm					
Depth of cover in front of wall	d _{cover} = 0 mm		Unplanned ex	cavation depth	d _{exc} = 200 m	m
Height of ground water	h _{water} = 2600 mr	n	Density of wat	er .	γ _{water} = 9.81	⟨N/m³
Density of wall construction	Ywall = 23.6 kN/m	1 ³	Density of bas	e construction	Vhase = 23.6 k	N/m ³
Angle of soil surface	$\beta = 0.0 \text{ deg}$	-	Effective beight	t at back of wall	ho# - 3600 m	
Mobilisation factor	p – 0.0 069 M – 1 5			I at back of wall		
Moist dopoity	$\mathbf{U} = \mathbf{I} \cdot \mathbf{J}$		Coturotod do-	city	W _ 01 0 LNV	m ³
	$\gamma_m = 18.0 \text{ KIV}/\text{M}^3$			Sity	$\gamma_{\rm S} = 21.0$ KIN/	111~
Design shear strength	φ' = 24.2 deg		Angle of wall f	riction	ð = U.O deg	
Design shear strength	φ'ь = 24.2 deg		Design base f	riction	$\delta_{\rm b} = 18.6 {\rm deg}$	9

Allowable bearing

Pbearing = 125 kN/m²

Moist density

 $\gamma_{mb} = 18.0 \text{ kN/m}^3$

14 ROSECROF I AVE., LONDON, NV3 708VINCENT & RYMILL LAKESDE COUNTRY CLUB FRIMELY ORESNStreet no./rev.PRELIMINARY STRUCTURAL CALCULATIONS6PRELIMINARY STRUCTURAL CALCULATIONSConstant colspan="2">Applie to constant colspan="2">Applie to constant colspan="2">The EDIS calculation version 1TOT 13 8/0Constant colspan="2">Constant colspan="2">Constant colspan="2">Constant colspan="2">Constant colspan="2">Constant colspan="2">Strength of constant colspan="2">Constant colspan="2" <th co<="" th=""><th>V&R</th><th>Project</th><th></th><th></th><th></th><th>Job Ref.</th><th></th></th>	<th>V&R</th> <th>Project</th> <th></th> <th></th> <th></th> <th>Job Ref.</th> <th></th>	V&R	Project				Job Ref.	
MINCENT & RYMILL Levession Country CLUB Section PRELIMINARY STRUCTURAL CALCULATIONS 6 Cells, by manuary care entry TV 18/02/2016 Date April by Date BETAINING WALL DESIGN (BS 8002:1984) TEDDS calculation version 1 Utimate limit state load factors TEDDS calculation version 1 Dead load factor γ $e = 1.4$ Live load factor $\gamma_1 = 1.6$ Earth pressure factor $\gamma_{1,x} = 1.4$ Live load factor $\gamma_1 = 1.6$ Basic and reinforced concrete retaining wall toe (BS 8002:1994) Material properties Minimum reinforcement $r_y = 500$ N/mm² Strength of concrete $r_{cm} = 40$ N/mm² Strength of reinforcement ($r_y = 500$ N/mm² Date properties Strength of concrete $r_{m} = 40$ N/mm² Strength of reinforcement ($r_y = 500$ N/mm² Date properties Strength of concrete $r_{m} = 40$ N/mm² Strength of reinforcement ($r_y = 500$ N/mm² Date properties Strength of concrete $r_{m} = 40$ N/mm² Area provided A_{n} to $r_{m} = 2011$ mm Design of retaining wall toe Jame of 100 mm centres Area provided A_{n} to $r_{m} = 5.00$ N/mm² PASS - Design shear stress Voan = 0.462 N/mm² Allowable	VINCENT & RYMILL	14 RO	SECROFT AV	E., LONDON. N	W3 7QB	Shaat is - /iii		
LAKESBE COUNTRY CLUB Instant of the Count of the	VINCENT & RYMILL					Sneet no./rev.		
SUBREY CUTE BYTTV18/02/2016TEEDIS calculation version 1TEEDIS calculation version 1TEEDIS calculation version 1Utimate limit state load factorsTEEDIS calculation version 1Daad load factor $y_{1,0} = 1.4$ Calculate propping forcePropping force $F_{prop} = 38.7 \text{ kN/m}$ Design of reinforced concrete retaining wall toe (BS 3002:1994)Material propertiesStrength of concrete $f_{ev} = 40 \text{ N/mm}^2$ Strength of reinforcement $k = 0.13$ %Cover in toe $C_{000} = 50 \text{ mm}$ Design of retaining wall toeDesign of retaining wall toeBase detailsMinimum reinforcement $k = 0.13 \%$ Cover in toe $C_{000} = 50 \text{ mm}$ Design of retaining wall toeDesign of retaining wall toeDesign of retaining wall toeBase detailsMoment at heel $M_{00} = 199.7 \text{ kNm/m}$ Concrete in bendingReinforcement provided16 mm dia.bars @ 100 mm centresArea required $A_{0,0e,-prov =} 2011 \text{ mm}$ PASS - Design shear stress $V_{oon =} 5.000 \text{ N/mm}^2$ Design of reinforced concrete retaining wall heel (BS 8002:1994)Material propertiesStrength of reinforcement $f_v = 500 \text{ N/mm}^2$ Value = 0.644 N/mm²Strength of reinforcement $f_v = 500$	LAKESIDE COUNTRY CLUB ERIMI EY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date	
TEEDIS calculation version 1 TEEDIS calculation version 1 Utimate limit state load factors Dead load factor $\gamma_{1,0} = 1.4$ Live load factor $\gamma_{1,1} = 1.6$ Earth pressure factor $\gamma_{1,0} = 1.4$ Calculate propping force Propoing force Propping force $F_{prop} = 38.7 \text{ kN/m}$ Design of reinforced concrete relatining wall toe (BS 8002:1994) Material properties Strength of concrete $f_w = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13 \%$ Cover in toe $O_{lose} = 50 \text{ mm}$ Design of retaining wall toe Design of retaining wall toe Design of retaining wall toe Cover in toe $O_{lose} = 50 \text{ mm}$ Design of retaining wall toe Cover in toe Olice = 50 mm Design of retaining wall toe Pass of retaining wall toe Cover in toe Olice = 50 mm Design of retaining wall toe Cover in toe Cover = 2011 mm	SURREY GU16 6PT	TV	18/02/2016					
TEDDS calculation version 1 Utimate limit state load factor $\gamma_{L,0} = 1.4$ Live load factor $\gamma_{L,0} = 1.6$ Calculate propping force $\gamma_{L,0} = 1.4$ Calculate propping force $F_{prop} = 38.7 kN/m$ Design of reinforced concrete relating wall toe (BS 8002:1994) Material properties Strength of concrete $f_{col} = 40 N/mm^2$ Strength of reinforcement is not reinforcement provided Allowable shear stress $v_{acm} = 2011 mm^2$ Reinforcement provided As_{Lob_0,000} = 2011 mm^2 PASS - Design shear stress $v_{acm} = 5.00 N/mm^2$ Concrete shear stress $v_{acm} = 0.644 $	RETAINING WALL DESIGN (BS 8002:1994)						
Ultimate limit state load factor $y_{1,0} = 1.4$ Dead load factor $y_{1,0} = 1.4$ Live load factor $y_{1,1} = 1.6$ Calculate propping force Propping force $F_{prop} = 38.7$ kN/m Dead load retinforced concrete retaining wall toe (BS 8002:1994) Material properties Strength of centrete retaining wall toe (BS 8002:1994) Material properties Base details Minimum reinforcement k = 0.13 % Cover in toe $\alpha_{eo} = 50$ mm Design of retaining wall toe Strength of reinforcement $f_v = 500$ N/mm? Base details Moment at heel Move = 199.7 kNm/m Cover in toe Cover = 500 mm Design of retaining wall toe Strength of reinforcement is not read Cover in toe Adve_tow_mm? Adve_tow_mm? Adve_tow_mm? Cover in toe Adve_tow_mm? PASS - Design shear stress Vactor Vactor Vactor Vactor Vact						TEDDS calculation	on version 1.2.0	
Dead lactor $\gamma_{1,e} = 1.4$ Live load factor $\gamma_{1,i} = 1.6$ Earth pressure factor $\gamma_{1,e} = 1.4$ Live load factor $\gamma_{1,i} = 1.6$ Calculate propping force Propping force Propping force Propping force Propping force $F_{prop} = 38.7 \text{ kN/m}$ Design of reinforced concrete retaining wall toe (BS 8002:1994) Material properties Strength of concrete $f_{out} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement k = 0.13 % Cover in toe $C_{000} = 50 \text{ mm}$ Design of retaining wall toe Base details More = 199.7 kNm/m <i>Compression reinforcement is not rev</i> Check toe in bending Reinforcement provided 16 mm dia.bars @ 100 mm centres As toe prove = 2011 mm Reinforcement provided 16 mm dia.bars @ 100 mm centres As toe prove = 2011 mm PASS - Reinforcement provided at the retaining wall toe is ade Design shear stress $v_{0:e} = 0.462 \text{ N/mm}^2$ Allowable shear stress Vastm = 5.000 N/mm² Design of reinforced concrete retaining wall theel (BS 6002:1994) Material properties Vastm = 5.00 N/mm² Strength of concrete foor = 40 N/mm² Strength of reinforce	Ultimate limit state load fact	ors						
Earth pressure factor $\gamma_{L,0} = 1.4$ Calculate propping force $P_{prop} = 38.7 \text{ kN/m}$ Design of reinforced concrete retaining wall toe (BS 8002:1994) Material properties Strength of concrete $f_{ou} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13$ %. Cover in toe $c_{000} = 50 \text{ mm}$ Design of retaining wall toe Shear at heel $V_{cov} = 158.0 \text{ kN/m}$ Moment at heel $M_{cov} = 199.7 \text{ kNm/m}$ Compression reinforcement is not reinforcement is not reinforcement provided $A_{a, 100, 100} = 2011 \text{ mm}$ PASS - Reinforcement provided $A_{a, 100, 100} = 2011 \text{ mm}^2$ PASS - Reinforcement provided at the retaining wall toe is add Check shear resistance at toe Design of reinforced concrete retaining wall heel (SS 8002:1994) Material properties Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13$ %. Cover in heel $m_{exc} = 5000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear. Concrete shear stress $v_{c_100} = 0.462 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13$ %. Cover in heel $m_{exc} = 50 \text{ mm}$ Design of reinforced concrete retaining wall heel (SS 8002:1994) Material properties Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13$ %. Cover in heel $m_{exc} = 50 \text{ mm}$ Design of retaining wall heel Shear at heel $V_{meel} = 14.1 \text{ kN/m}$ Moment at heel $M_{hoel} = 3.4 \text{ kNm/m}$ PASS - Reinforcement provided at the retaining wall heel is add Check shear resistance at heel Design shear stress $v_{c_{100}} = 520.0 \text{ mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear s	Dead load factor	$\gamma_{f_d} = 1.4$		Live load facto	r	$\gamma_{f_{-}I} = 1.6$		
Calculate propping force Propping force $F_{prop} = 38.7 \text{ kN/m}$ Design of reinforced concrete retaining wall toe (BS 8002:1994) Material properties Strength of concrete $f_{os} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement k = 0.13 % Cover in toe $C_{000} = 50 \text{ mm}$ Design of retaining wall toe Strength of concrete More = 199.7 kN/m More = 199.7 kN/m/m Concretes the in bending Reinforcement provided 16 mm dia.bars @ 100 mm centres Area provided A summary and the is add Area required As_instance = 1413.3 mm²/m Area provided A summary and the is add PASS - Reinforcement provided A summary and the is add Concrete shear stress vos = 0.462 N/mm² Allowable shear stress vadm = 5.000 N/mm² Design shear stress vadm = 5.000 N/mm² Concrete shear stress vos = 0.644 N/mm² Vus < v_{e,toe"} - No shear reinforcement ret Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties Strength of concrete for = 50 mm <td>Earth pressure factor</td> <td>γ_{f_e} = 1.4</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Earth pressure factor	γ _{f_e} = 1.4						
Propping force $F_{prop} = 38.7 \text{ kN/m}$ Design of reinforced concrete retaining wall toe (BS 8002:1994) Material properties Strength of concrete $f_{ou} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13 \%$ Cover in toe $O_{toe} = 50 \text{ mm}$ Design of retaining wall toe Strength of reinforcement is not recomment provided 16 mm dia.bars @ 100 mm centres Reinforcement provided 16 mm dia.bars @ 100 mm centres Action_prov = 2011 mm Reinforcement provided 16 mm dia.bars @ 100 mm centres Value Strength of reinforce at the retaining wall toe is ade Check toe in bending Reinforcement provided As_toe_prov = 2011 mm PASS - Reinforcement provided at the retaining wall toe is ade Check shear resistance at toe Pass - Design shear stress Voor = 0.462 N/mm^2 Allowable shear stress is less than maximum shear Concrete shear stress Voor = 0.464 N/mm^2 Strength of reinforcement fy = 500 N/mm^2 Base details Material properties Strength of reinforcement fy = 500 N/mm^2 Base details Minimum reinforcement k = 0.13 % Cover in heel Cherel = 50 mm Design	Calculate propping force							
Design of reinforced concrete retaining wall toe (BS 8002:1994) Material properties Strength of concrete $f_{cu} = 40$ N/mm ² Base details Minimum reinforcement k = 0.13 % Cover in toe $C_{core} = 50$ mm Design of retaining wall toe Strength of concrete Shear at heel $V_{toe} = 158.0$ kN/m Moment at heel $M_{ove} = 199.7$ kNm/m Check toe in bending Reinforcement provided Reinforcement provided 16 mm dia.bars @ 100 mm centres Area required $A_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_$	Propping force	F _{prop} = 38.7 kN/r	n					
Material properties Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement k = 0.13 % Cover in toe $c_{loc} = 50 \text{ mm}$ Design of retaining wall toe Shear at heel More = 158.0 kN/m Moment at heel $M_{co} = 199.7 \text{ kNm/m}$ Check toe in bending Reinforcement provided 16 mm dia.bars @ 100 mm centres C Area required $A_{s_1 oe_ree} = 1413.3 \text{ mm}^2/m$ Area provided $A_{s_1 be_r pow} = 2011 \text{ mm}$ PASS - Reinforcement provided at the retaining wall toe is ade C C C Check shear resistance at toe PASS - Design shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear Concrete shear stress $v_{c_1 toe} = 0.644 \text{ N/mm}^2$ Allowable shear stress is less than maximum shear PASS - Design shear stress is less than envinum shear Design of reinforced concrete retaining wall heel (BS 3002:1994) Material properties Pase = 40 N/mm^2 Strength of reinforcement fy = 500 N/mm^2 Base details Minimum reinforcement k = 0.13 % Cover in heel Cheel = 50 mm Compression reinforcement is not rec Cheel = 50 mm Des	Design of reinforced concre	te retaining wall	toe (BS 8002: ⁻	<u>1994)</u>				
Strength of concrete f_{ou} = 40 N/mm ² Strength of reinforcement f_y = 500 N/mm ² Base details Minimum reinforcement k = 0.13 % Cover in toe c_{loce} = 50 mm Design of retaining wall toe Shear at heel V_{loc} = 158.0 kN/m Moment at heel M_{loce} = 199.7 kNm/m Check toe in bending Reinforcement provided 16 mm dia.bars @ 100 mm centres Area required $A_{a_toe_prov}$ = 2011 mm Area required $A_{a_toe_rea}$ = 1413.3 mm ² /m Area provided $A_{a_toe_prov}$ = 2011 mm PASS - Reinforcement provided at the retaining wall toe is ade Check shear resistance at toe Pass - Design shear stress v_{com} = 0.462 N/mm ² Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties Vice < vc_toe - No shear reinforcement retorement retore Design of retaining wall heel Strength of reinforcement f_y = 500 N/mm ² Base details Minimum reinforcement k = 0.13 % Cover in heel Cheel = 50 mm Design of retaining wall heel Base details Minimum reinforcement f_y = 500 N/mm ² Minimum reinforcement k = 0.13 % Cover in heel Cheel = 50 mm Design of retaining wall heel Neei = 1	Material properties							
Base details Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$ Design of retaining wall toe Moment at heel $M_{toe} = 199.7 \text{ kNm/m}$ Check toe in bending $Compression reinforcement is not reaction to the tot is not reactis not reactis not reaction to the tot is not reaction tototot to$	Strength of concrete	$f_{cu} = 40 \text{ N/mm}^2$		Strength of rei	nforcement	f _y = 500 N/m	1m²	
Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$ Design of retaining wall toe Shear at heel $V_{toe} = 158.0 \text{ kN/m}$ Moment at heel $M_{toes} = 199.7 \text{ kNm/m}$ Compression reinforcement is not reinforcement provided 16 mm dia.bars @ 100 mm centres Compression reinforcement is not reinforcement provided Area required $A_{a_{a_1}toe_a,req} = 1413.3 \text{ mm}^2/m$ Area provided $A_{a_{a_1}bee_a,req} = 2011 \text{ mm}^2$ PASS - Reinforcement provided at the retaining wall toe is ade Check shear resistance at toe Voice = 0.462 N/mm ² Allowable shear stress $v_{adm} = 5.000 \text{ N/mm^2}$ Concrete shear stress $v_{c_1oe} = 0.644 \text{ N/mm^2}$ Voice < $V_{c_1oe} - No$ shear reinforcement Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties Strength of reinforcement fy = 500 N/mm ² Base details Minimum reinforcement k = 0.13 % Cover in heel Cheel = 50 mm Design of retaining wall heel Voice = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Check heel in bending PASS - Reinforcement provided at the retaining wall heel is ade Check heel in be	Base details							
Design of retaining wall toe Noe = 158.0 kN/m Moment at heel Moe = 199.7 kNm/m Compression reinforcement is not reinforcement provided 16 mm dia.bars @ 100 mm centres Compression reinforcement is not reinforcement provided Area required As_toe_req = 1413.3 mm²/m Area provided As_toe_prov = 2011 mm' PASS - Reinforcement provided at the retaining wall toe is add PASS - Reinforcement provided at the retaining wall toe is add Check shear resistance at toe PASS - Design shear stress Vadm = 5.000 N/mm² Design shear stress Vice = 0.462 N/mm² Allowable shear stress is less than maximum shear. Concrete shear stress Vice = 0.644 N/mm² Vice < Ve_tree - No shear reinforcement retorement retore	Minimum reinforcement	k = 0.13 %		Cover in toe		Ctoe = 50 mn	ı	
Shear at heel $V_{toe} = 158.0$ kN/m Moment at heel $M_{toe} = 199.7$ kNm/m Compression reinforcement is not recommend to represent the relationary of the second term of term of the second term of term o	Design of retaining wall toe							
Compression reinforcement is not rei Check toe in bending Reinforcement provided 16 mm dia.bars @ 100 mm centres Area required $A_{stoetreq} = 1413.3 mm^2/m$ Area provided $A_{stoeprov} = 2011 mm$ PASS - Reinforcement provided at the retaining wall toe is ade Check shear resistance at toe vadm = 5.000 N/mm^2 Design shear stress $v_{toe} = 0.462 N/mm^2$ Allowable shear stress is less than maximum shear Concrete shear stress is less than maximum shear Concrete shear stress $v_{ctoe} = 0.644 N/mm^2$ Vroe < $v_{ctoe} - No$ shear reinforcement reinforcement reinforcement reinforcement reinforcement reinforcement reinforcement reinforcement for the stress is less than maximum shear Material properties Strength of reinforcement $f_y = 500 N/mm^2$ Base details Minimum reinforcement $k = 0.13 \%$ Cover in heel Cheel = 50 mm Design of retaining wall heel Son reinforcement is not reinforcement is not reinforcement reinforcement is not reinforcement reinforcement is not reinforcement reinforcement is not reinforcement is not reinforcement provided A_{s.heel.req} = 520.0 mm^2 m Base details Minimum reinforcement $k = 0.13 \%$ Cover in heel Meel = 3.4 kNm/m Design of retaining wall heel Neel = 14.1 kN/m Moment at heel	Shear at heel	V _{toe} = 158.0 kN/	m	Moment at hee	el	Mtoe = 199.7	′ kNm/m	
Check toe in bending Reinforcement provided 16 mm dia.bars @ 100 mm centres Area required $A_{s_toe_req} = 1413.3 \text{ mm}^2/\text{m}$ Area provided $A_{s_toe_prov} = 2011 \text{ mm}$ PASS - Reinforcement provided at the retaining wall toe is ade Check shear resistance at toe vadm = 5.000 N/mm^2 Design shear stress $v_{toe} = 0.462 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ Concrete shear stress $v_{toe} = 0.644 \text{ N/mm}^2$ Allowable shear stress is less than maximum shear Concrete shear stress $v_{c_toe} = 0.644 \text{ N/mm}^2$ $v_{toe} < v_{c_toe} - No$ shear reinforcement reading wall heel (BS 3002:1994) Material properties Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13 \%$ Cover in heel $c_{heel} = 50 \text{ mm}$ Design of retaining wall heel Shar at heel $V_{heel} = 14.1 \text{ kN/m}$ Moment at heel $M_{heel} = 3.4 \text{ kNm/m}$ Check heel in bending Reinforcement provided 12 mm dia.bars @ 150 mm centres As_heel_prov = 754 mm^2 PASS - Reinforcement provided 12 mm dia.bars @ 150 mm centres As_heel_prov = 754 mm^2 PASS - Reinforcement provided at the retaining wall				C	Compression r	reinforcement	is not requ	
Reinforcement provided 16 mm dia.bars @ 100 mm centres Area required $A_{s_toe_req} = 1413.3 \text{ mm}^2/\text{m}$ Area provided at the retaining wall toe is add PASS - Reinforcement provided at the retaining wall toe is add Design shear stress $v_{toe} = 0.462 \text{ N/mm}^2$ Design shear stress $v_{toe} = 0.462 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ Concrete shear stress $v_{to_{_toe}} = 0.644 \text{ N/mm}^2$ $V_{toe} < v_{c_toe} - No$ shear reinforcement reference Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties $v_{toe} < v_{c_toe} - No$ shear reinforcement reference Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties $v_{toe} < v_{c_toe} - No$ shear reinforcement reference Base details $f_{ou} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13 \%$ Cover in heel $c_{heel} = 50 \text{ mm}$ Design of retaining wall heel Steen theel Mheel = 3.4 kNm/m Compression reinforcement is not reference Design of retaining wall heel 12 mm dia.bars @ 150 mm centres As_heel_prov = 754 mm^2 PASS - Reinforcement provided As_heel_prov = 754 mm^2 Area required As_heel_req = 520.0 mm^	Check toe in bending							
Area required $A_{e_toe_req} = 1413.3 \text{ mm}^2/\text{m}$ Area provided $A_{e_toe_prov} = 2011 \text{ mm}$ PASS - Reinforcement provided at the retaining wall toe is add Check shear resistance at toe PASS - Design shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ Design shear stress $v_{toe} = 0.462 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ Concrete shear stress $v_{o_toe} = 0.644 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear Concrete shear stress $v_{o_toe} = 0.644 \text{ N/mm}^2$ $v_{toe} < v_{e_toe} - No$ shear reinforcement recomment recomment of $v_{e_toe} - No$ shear reinforcement recomment of $v_{e_toe} - No$ shear reinforcement recomment of $v_{e_toe} - No$ shear reinforcement for $v_{e_toe} - No$ shear reinforcement for $v_{e_toe} - No$ shear reinforcement for $v_{e_toe} - No$ shear stress Base details $N_{eu} = 40 \text{ N/mm}^2$ Strength of reinforcement for $v_{y} = 500 \text{ N/mm}^2$ Base details $N_{eu} = 40 \text{ N/mm}^2$ Cover in heel $n_{heel} = 50 \text{ mm}$ Design of retaining wall heel $N_{heel} = 14.1 \text{ kN/m}$ Moment at heel $M_{heel} = 3.4 \text{ kNm/m}$ Check heel in bending Reinforcement provided $A_{e_theel_req} = 520.0 \text{ mm}^2/m$ PASS - Reinforcement provided at the retaining wall heel is addee the retaining wall heel is addee the retaining wall heel is addee the stress $V_{adm} = 5.000 \text{ N/mm}^2$	Reinforcement provided	16 mm dia.bars	a @ 100 mm c	entres				
PASS - Reinforcement provided at the retaining wall toe is add Check shear resistance at toe Design shear stress $v_{toe} = 0.462 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ Concrete shear stress $v_{o_{a}toe} = 0.644 \text{ N/mm}^2$ Vice < $v_{c_atoe} - No$ shear reinforcement red Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties Strength of concrete $f_{ou} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement k = 0.13 % Cover in heel Cheel = 50 mm Design of retaining wall heel Shear at heel Vheel = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Compression reinforcement is not red Allowable shear stress PASS - Reinforcement provided Allowable shear stress Vade = 5200 N/mm ² PASS - Reinforcement provided at the retaining wall heel is add Check heel in bending Reinforcement provided 12 mm dia.bars @ 150 mm centres Allowable shear stress	Area required	As_toe_req = 1413	.3 mm²/m	Area provided		As_toe_prov =	2011 mm²/n	
Check shear resistance at toe Design shear stress $v_{toe} = 0.462 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear Concrete shear stress $v_{o_{-}toe} = 0.644 \text{ N/mm}^2$ Vree < $v_{c_{-}tee} - No$ shear reinforcement ref Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement k = 0.13 % Cover in heel Cheel = 50 mm Design of retaining wall heel Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement k = 0.13 % Cover in heel Cheel = 50 mm Design of retaining wall heel Shear at heel Vheel = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Compression reinforcement is not red Allowable shear stress Nate = 0.48 N/mm^2 PASS - Reinforcement provided $A_{s_nheel_nprov} = 754 \text{ mm}^2$ PASS - Design shear stress Vadm = 5.000 N/mm^2<			PASS - Rei	nforcement pro	ovided at the r	etaining wall t	oe is adequ	
Design shear stress $v_{toe} = 0.462 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear PASS - Design shear stress is less than maximum shear PASS - Design shear stress is less than maximum shear Concrete shear stress $v_{c_toe} = 0.644 \text{ N/mm}^2$ $v_{toe} < v_{c_toe} - No shear reinforcement reinforcement reinforced concrete retaining wall heel (BS 8002:1994)$	Check shear resistance at to	be						
PASS - Design shear stress is less than maximum shear Concrete shear stress $v_{c_toe} = 0.644$ N/mm ² Vroe < $v_{c_toe} - No$ shear reinforcement real Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties Strength of concrete $f_{ou} = 40$ N/mm ² Strength of reinforcement $f_y = 500$ N/mm ² Base details Minimum reinforcement k = 0.13 % Cover in heel Cheel = 50 mm Design of retaining wall heel Strength of reinforcement thell Mheel = 3.4 kNm/m Check heel in bending Reinforcement provided 12 mm dia.bars @ 150 mm centres PASS - Reinforcement provided As_heel_req 520.0 mm ² /m Area required As_heel_req 520.0 mm ² /m Area provided As_heel_prov = 754 mm ² Design shear stress Value = 0.041 N/mm ² Allowable shear stress Value = 5.000 N/mm ² PASS - Design shear stress is less than maximum shear stress Concrete shear stress Value = 0.043 N/mm ²	Design shear stress	v _{toe} = 0.462 N/m	m ²	Allowable shea	ar stress	Vadm = 5.000	N/mm ²	
Concrete shear stress $v_{c_toe} = 0.644 \text{ N/mm}^2$ Viore < $v_{c_toe} - No$ shear reinforcement rei Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13 \%$ Cover in heel $c_{heel} = 50 \text{ mm}$ Design of retaining wall heel Shear at heel Vheel = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Check heel in bending Reinforcement provided 12 mm dia.bars @ 150 mm centres Area provided $A_{s_heel_prov} = 754 \text{ mm}^2$ Area required $A_{s_heel_req} = 520.0 \text{ mm}^2/m$ Area provided at the retaining wall heel is ade Check shear resistance at heel Design shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ Concrete shear stress $v_{c_heel} = 0.463 \text{ N/mm}^2$ Allowable shear stress is less than maximum shear stress			PASS	- Design shear	stress is less	than maximu	m shear sti	
Vice < Vo_toe - No Shear reinforcement reinforcement reinforcement reinforcement Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13 \%$ Cover in heel $c_{heel} = 50 \text{ mm}$ Design of retaining wall heel Shear at heel Vheel = 14.1 kN/m Moment at heel $M_{heel} = 3.4 \text{ kNm/m}$ Compression reinforcement is not reinforcement is not reinforcement provided PASS - Reinforcement provided As_heel_prov = 754 mm ² PASS - Reinforcement provided at the retaining wall heel is ade Check shear resistance at heel Design shear stress $v_{heel} = 0.041 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear stress Concrete shear stress $v_{c_hheel} = 0.463 \text{ N/mm}^2$	Concrete shear stress	v _{c_toe} = 0.644 N/	mm ²					
Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement $k = 0.13 \%$ Cover in heel $c_{heel} = 50 \text{ mm}$ Design of retaining wall heel Stear at heel Vheel = 14.1 kN/m Moment at heel $M_{heel} = 3.4 \text{ kNm/m}$ Compression reinforcement is not reaction Compression reinforcement is not reaction Compression reinforcement is not reaction Reinforcement provided 12 mm dia.bars @ 150 mm centres Area required $A_{s_heel_req} = 520.0 \text{ mm}^2/m$ Area provided at the retaining wall heel is addeen to be addeen the stress of the stress is less than maximum shear stress value = 0.463 N/mm^2				Vtoe	e < Vc_toe - NO S	shear reinforce	ement requ	
Material propertiesStrength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base detailsMinimum reinforcementk = 0.13 %Cover in heel $C_{heel} = 50 \text{ mm}$ Design of retaining wall heelShear at heelV_{heel} = 14.1 kN/mMoment at heelM_{heel} = 3.4 kNm/mCompression reinforcement is not readCheck heel in bendingReinforcement provided12 mm dia.bars @ 150 mm centresArea required $A_{s_heel_req} = 520.0 \text{ mm}^2/m$ Area provided at the retaining wall heel is adeCheck shear resistance at heelDesign shear stress $v_{heel} = 0.041 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear stress $v_{c_heel} = 0.463 \text{ N/mm}^2$ $v_{heel} = No shear reinforcement red$	Design of reinforced concre	te retaining wall	heel (BS 8002	<u>:1994)</u>				
Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$ Base details Minimum reinforcement k = 0.13 % Cover in heel $C_{heel} = 50 \text{ mm}$ Design of retaining wall heel Stear at heel Vheel = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Shear at heel Vheel = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Check heel in bending Exercise Exercise Exercise Reinforcement provided 12 mm dia.bars @ 150 mm centres Area required As_heel_req = 520.0 mm²/m Area provided at the retaining wall heel is addered at the retain the	Material properties							
Base details Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$ Design of retaining wall heel Noment at heel Meel = 3.4 kNm/m Shear at heel Vheel = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Compression reinforcement is not read Check heel in bending Reinforcement provided 12 mm dia.bars @ 150 mm centres Area required $A_{s_heel_req} = 520.0 \text{ mm}^2/m$ Area provided at the retaining wall heel is adde PASS - Reinforcement provided at the retaining wall heel is adde PASS - Reinforcement provided at the retaining wall heel is adde Check shear resistance at heel PASS - Design shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear stress $v_{adm} = 0.463 \text{ N/mm}^2$ Concrete shear stress $v_{c_heel} = 0.463 \text{ N/mm}^2$	Strength of concrete	$f_{cu} = 40 \text{ N/mm}^2$		Strength of rei	nforcement	f _y = 500 N/m	1m²	
Minimum reinforcement k = 0.13 % Cover in heel cheel = 50 mm Design of retaining wall heel Shear at heel Vheel = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Shear at heel Vheel = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Compression reinforcement is not reaction Compression reinforcement is not reaction Check heel in bending 12 mm dia.bars @ 150 mm centres Area required 12 mm dia.bars @ 150 mm centres Area required As_heel_req = 520.0 mm²/m Area provided at the retaining wall heel is adder PASS - Reinforcement provided at the retaining wall heel is adder PASS - Design shear stress Vadm = 5.000 N/mm² Concrete shear stress Vheel = 0.041 N/mm² Allowable shear stress is less than maximum shear stress PASS - Design shear stress is less than maximum shear stress Concrete shear stress Vc_heel = 0.463 N/mm² Vheel < Vc heel - No shear reinforcement reter	Base details							
Design of retaining wall heel Vheel = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Shear at heel Vheel = 14.1 kN/m Moment at heel Mheel = 3.4 kNm/m Compression reinforcement is not real Check heel in bending Reinforcement provided 12 mm dia.bars @ 150 mm centres Area required As_heel_req = 520.0 mm²/m Area provided at the retaining wall heel is ade Check shear resistance at heel Design shear stress Vheel = 0.041 N/mm² Allowable shear stress is less than maximum shear stress is less than maximum shear stress is less than maximum shear stress Concrete shear stress vc_heel = 0.463 N/mm²	Minimum reinforcement	k = 0.13 %		Cover in heel		Cheel = 50 mi	m	
Shear at heel $V_{heel} = 14.1 \text{ kN/m}$ Moment at heel $M_{heel} = 3.4 \text{ kNm/m}$ Compression reinforcement is not realCheck heel in bendingReinforcement provided12 mm dia.bars @ 150 mm centresArea required $A_{s_heel_req} = 520.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_heel_prov} = 754 \text{ mm}^2$ Check shear resistance at heelDesign shear stress $v_{heel} = 0.041 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ Concrete shear stress $v_{c_heel} = 0.463 \text{ N/mm}^2$ Vheel < V_c heel - No shear reinforcement red	Design of retaining wall hee	I						
Compression reinforcement is not real Check heel in bending Reinforcement provided 12 mm dia.bars @ 150 mm centres Area required As_heel_req = 520.0 mm²/m Area provided As_heel_prov = 754 mm² Area required As_heel_req = 520.0 mm²/m Area provided at the retaining wall heel is adde PASS - Reinforcement provided at the retaining wall heel is adde Check shear resistance at heel Design shear stress vheel = 0.041 N/mm² Allowable shear stress vadm = 5.000 N/mm² PASS - Design shear stress is less than maximum shear PASS - Design shear stress is less than maximum shear PASS - Design shear stress is less than maximum shear	Shear at heel	V _{heel} = 14.1 kN/r	n	Moment at hee	el	M _{heel} = 3.4 k	Nm/m	
Check heel in bending Reinforcement provided 12 mm dia.bars @ 150 mm centres Area required As_heel_req = 520.0 mm²/m Area provided As_heel_prov = 754 mm² PASS - Reinforcement provided at the retaining wall heel is added Check shear resistance at heel Design shear stress vheel = 0.041 N/mm² Allowable shear stress vadm = 5.000 N/mm² Concrete shear stress vc_heel = 0.463 N/mm² Vheel < Vc heel - No shear reinforcement red				C	Compression r	einforcement	is not requ	
Reinforcement provided 12 mm dia.bars @ 150 mm centres Area required As_heel_req = 520.0 mm²/m Area provided As_heel_prov = 754 mm² PASS - Reinforcement provided at the retaining wall heel is adde Check shear resistance at heel Design shear stress vheel = 0.041 N/mm² Allowable shear stress vadm = 5.000 N/mm² PASS - Design shear stress is less than maximum shear stress vc_heel = 0.463 N/mm² Vneel < Vc_heel - No shear reinforcement red	Check heel in bending							
Area required $A_{s_heel_req} = 520.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_heel_prov} = 754 \text{ mm}^2$ PASS - Reinforcement provided at the retaining wall heel is addedCheck shear resistance at heelDesign shear stress $v_{heel} = 0.041 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear stressConcrete shear stress $v_{c_heel} = 0.463 \text{ N/mm}^2$ Vheel < Vc heel - No shear reinforcement red	Reinforcement provided	12 mm dia.bars	a @ 150 mm c	entres				
PASS - Reinforcement provided at the retaining wall heel is added Check shear resistance at heel Design shear stress vheel = 0.041 N/mm² Allowable shear stress vadm = 5.000 N/mm² PASS - Design shear stress is less than maximum shear stress Concrete shear stress vc_heel = 0.463 N/mm² Vheel < Vc_heel - No shear reinforcement red	Area required	$A_{s_heel_req} = 520.$	0 mm²/m	Area provided		$A_{s_heel_prov} =$	754 mm²/m	
Check shear resistance at hell Vheel = 0.041 N/mm² Allowable shear stress Vadm = 5.000 N/mm² Design shear stress Vadm = 0.041 N/mm² Allowable shear stress is less than maximum shear stress is less than maximum shear stress Concrete shear stress Vc_heel = 0.463 N/mm² Vheel < Vc heel - No shear reinforcement resident stress			PASS - Rein	forcement prov	vided at the re	taining wall he	eel is adequ	
Design shear stress $v_{heel} = 0.041 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shearConcrete shear stress $v_{c_heel} = 0.463 \text{ N/mm}^2$ Vheel = 0.463 N/mm^2Vheel < Vc_heel - No shear reinforcement red	Check shear resistance at h	eel						
PASS - Design shear stress is less than maximum shear Concrete shear stress vc_heel = 0.463 N/mm² Vheel < Vc heel - No shear reinforcement red	Design shear stress	v _{heel} = 0.041 N/n	nm²	Allowable shea	ar stress	Vadm = 5.000	N/mm ²	
Concrete shear stress $v_{c_heel} = 0.463 \text{ N/mm}^2$ $v_{heel} < v_{c_heel} - No shear reinforcement red$			PASS	- Design shear	stress is less	than maximu	m shear sti	
Vheel < Vc heel - No shear reinforcement red	Concrete shear stress	Vc_heel = 0.463 N	/mm²				_	
				Vheel	< Vc_heel - NO S	shear reinforce	ement requ	

V & D	Project				Job Ref.	
	14 RC	SECROFT AVE	E., LONDON. NV	N3 7QB		
	Section				Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTBY CLUB	PRELIM	IINARY STRUC	TURAL CALCU	LATIONS		7
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				
						I
Design of reinforced concrete	e retaining wall	stem (BS 8002	<u>:1994)</u>			
Material properties						
Strength of concrete	$f_{cu} = 40 \ N/mm^2$	f _{cu} = 40 N/mm ²		nforcement	fy = 500 N/mm	1 ²
Wall details						
Minimum reinforcement	k = 0.13 %					
Cover in stem	C _{stem} = 75 mm		Cover in wall		Cwall = 50 mm	
Design of retaining wall stem						
Shear at base of stem	V _{stem} = 36.4 kN/	V _{stem} = 36.4 kN/m		Moment at base of stem		kNm/m
			Compression reinforcement is not requ			
Check wall stem in bending						
Reinforcement provided	20 mm dia.bar	s @ 100 mm ce	entres			
Area required	As stem reg = 126	7.6 mm²/m	Area provided		As stem prov = 3	142 mm²/m
·		PASS - Reinfe	orcement provi	ded at the retai	ning wall sten	n is adequate
Check shear resistance at wa	ll stem					
Design shear stress	$V_{\rm stom} = 0.126 {\rm N}/{\rm stom}$	mm ²	Allowable shea	r stress	$V_{adm} = 5000$	J/mm ²
Dough choar choos		PASS	- Design shear	stress is less ti	han maximum	shear stress
Concrete shear stress	Vc. stem = 0.823	N/mm ²	2001gil olioui v			
			Vstem <	< Vc stem - No sh	ear reinforcen	nent required
Chock rotaining wall deflection	n					
Max span/depth ratio	ratio 11 25		Actual span/de	oth ratio	ratio 11 0	2
			Actual span/de	PASS - Span f	a depth ratio	s is accontablo
				, A00 - Opan i		

VI&D	Project				Job Ref.	
	14 ROSECROFT AVE., LONDON. NW3 7QB					
	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIM		9			
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				

WALL B

SIDE WALL

DL = 47.5KN/m, IL = 7.2KN/m

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

Wall details

Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3200 mm	Wall stem thickness	t _{wall} = 375 mm
Length of toe	I _{toe} = 1800 mm	Length of heel	l _{heel} = 150 mm
Overall length of base	l _{base} = 2325 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	h _{wall} = 3600 mm		
Depth of downstand	d _{ds} = 0 mm	Thickness of downstand	t _{ds} = 400 mm
Position of downstand	l _{ds} = 1900 mm		
Depth of cover in front of wall	d _{cover} = 0 mm	Unplanned excavation depth	d _{exc} = 200 mm
Height of ground water	h _{water} = 2600 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	γ _{wall} = 23.6 kN/m ³	Density of base construction	$\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	h _{eff} = 3600 mm
Mobilisation factor	M = 1.5		
Moist density	$\gamma_{m} =$ 18.0 kN/m ³	Saturated density	$\gamma_{s} = 21.0 \text{ kN/m}^{3}$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	$\delta = \textbf{0.0} \text{ deg}$
Design shear strength	φ' _b = 24.2 deg	Design base friction	$\delta_{\text{b}} = \textbf{18.6} \text{ deg}$
Moist density	$\gamma_{mb} = $ 18.0 kN/m ³	Allowable bearing	$P_{\text{bearing}} = 125 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	Ka = 0.419	Passive pressure	Kp = 4.187
At-rest pressure	$K_0 = 0.590$		

TEDDS calculation version 1.2.01.06

V&R	Project				Job Ref.		
VINCENT & RYMILL	14 RC	SECROFT AV	E., LONDON. N	DON. NW3 7QB			
VINCENT & RYMILL					Sheet no./rev.		
	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SURREY GU16 6PT	TV	18/02/2016					
<u>RETAINING WALL DESIGN (</u>	<u>BS 8002:1994)</u>				TEDDS calculation	version 1 2 01 0	
Ultimate limit state load fact	ors						
Dead load factor	γ _{f d} = 1.4		Live load factor	r	γ _{f I} = 1.6		
Earth pressure factor	γ _{f_e} = 1.4				• =		
Calculate propping force							
Propping force	F _{prop} = 49.8 kN/	m					
Design of reinforced concre	te retaining wall	toe (BS 8002:1	<u>994)</u>				
Material properties							
Strength of concrete	f _{cu} = 40 N/mm ²		Strength of reir	nforcement	f _y = 500 N/mn	n ²	
Base details							
Minimum reinforcement	k = 0.13 %		Cover in toe		C _{toe} = 50 mm		
Design of retaining wall toe							
Shear at heel	V _{toe} = 140.0 kN/	′m	Moment at hee	9	Mtoe = 201.3	۸m/m	
			Compression rei		inforcement is not require		
Check toe in bending							
Reinforcement provided	16 mm dia.bars	s @ 125 mm co	entres				
Area required	As_toe_req = 1424	.8 mm²/m	Area provided		$A_{s_toe_prov} = 16$	508 mm²/m	
		PASS - Rei	nforcement pro	vided at the re	taining wall to	e is adequate	
Check shear resistance at to	e						
Design shear stress	v _{toe} = 0.409 N/m		Allowable shea	ar stress atraca in lage t	Vadm = 5.000 M	N/mm²	
Concrete shear stress	$V_{c,top} = 0.563 \text{ N/}$	/mm ²	- Design shear	511855 15 1855 1		Silear Siles	
			Vtoe	< Vc_toe - No sh	near reinforcen	nent required	
Design of reinforced concre	te retaining wall	heel (BS 8002	1994)				
Material properties	le returning wan						
Strength of concrete	f _{cu} = 40 N/mm ²		Strength of reir	nforcement	f _v = 500 N/mn	n ²	
Base details			etterigti er ten		.,		
Minimum reinforcement	k = 0.13 %		Cover in heel		Cheel = 50 mm		
Design of retaining wall heel							
Shear at heel	V _{heel} = 17.9 kN/i	m	Moment at hee	9	Mheel = 4.9 kN	lm/m	
			C	ompression re	inforcement is	not require	
Check heel in bending						~	
Reinforcement provided	B785 mesh						
Area required	$A_{s_heel_req} = 520.$.0 mm²/m	Area provided		$A_{s_heel_prov} = 7$	85 mm²/m	
		PASS - Rein	forcement prov	rided at the reta	aining wall hee	el is adequate	
Check shear resistance at he	eel						
Design shear stress	v _{heel} = 0.052 N/r	mm²	Allowable shea	ar stress	Vadm = 5.000	N/mm ²	
Congrato chaor atraca	V 0 460 M	PASS	- Design shear	stress is less t	han maximum	shear stres	
Concrete shear stress	vc_heel = U.468 N	N/111111-	Vhart	< Va haal - No ch	near reinforcer	nent require	
			v neel ·	≺ vc_neei - NU SI		nem required	

	Project				Job Ref.		
VINCENT	14 RO	SECROFT AVE	E., LONDON. NV	V3 7QB			
	Section				Sheet no./rev.		
	PRELIM	IINARY STRUC	TURAL CALCU	LATIONS		12	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SURREY GU16 6PT	TV	18/02/2016					
				I			
Design of reinforced concrete	retaining wall	stem (BS 8002	<u>:1994)</u>				
Material properties							
Strength of concrete	_{cu} = 40 N/mm ²		Strength of rein	forcement	f _y = 500 N/mm	1 ²	
Wall details							
Minimum reinforcement	k = 0.13 %						
Cover in stem	c _{stem} = 75 mm		Cover in wall		Cwall = 50 mm		
Design of retaining wall stem							
Shear at base of stem	V _{stem} = 20.8 kN/	m	Moment at base of stem		M _{stem} = 151.5 kNm/m		
			Compression reinforcement is not re			not required	
Check wall stem in bending							
Reinforcement provided	16 mm dia.bars	s @ 100 mm ce	entres				
Area required	As_stem_req = 125	8.0 mm²/m	Area provided		$A_{s_stem_prov} = 2$	2011 mm²/m	
		PASS - Reinfo	orcement provided at the retaining wall stem is adequate				
Check shear resistance at wal	l stem						
Design shear stress	v _{stem} = 0.071 N/	mm²	Allowable shea	r stress	Vadm = 5.000 N	N/mm ²	
		PASS	- Design shear	stress is less tl	nan maximum	shear stress	
Concrete shear stress	Vc_stem = 0.706 N	√mm²					
			Vstem <	: Vc_stem - No she	ear reinforcen	nent required	

V&R	Project				Job Ref.	
	14 RO	SECROFT AVI	V3 7QB			
	Section			Sheet no./rev.		
	PRELIM	IINARY STRUC	TURAL CALCU	LATIONS		14
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				
<u>WALLS E AND G</u> DL = 39.4KN/m, IL = 7.25KN/m ETAINING WALL ANAL	YSIS & DES	IGN (BS80	<u>02)</u>			
<u>RETAINING WALL ANALYSIS</u>		2 1980 1800	→ → 4375→ 였 4- 47 kN/m ↓ ↓ ↓ ↓ ↓	10 kN/m ²	TEDDS calculation	version 1.2.01.06
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand Depth of cover in front of wall Height of ground water	← Cantilever h _{stem} = 3200 mm l _{toe} = 1800 mm l _{base} = 2325 mm h _{wall} = 3600 mm d _{ds} = 0 mm l _{ds} = 1850 mm d _{cover} = 0 mm h _{water} = 2600 mr	2325 1 n	Wall stem thick Length of heel Base thickness Thickness of do Unplanned exc Density of wate	ness ownstand avation depth er	$t_{wall} = 375 \text{ mm}$ $l_{heel} = 150 \text{ mm}$ $t_{base} = 400 \text{ mm}$ $t_{ds} = 400 \text{ mm}$ $d_{exc} = 200 \text{ mm}$ $\gamma_{water} = 9.81 \text{ kl}$	ı 1 V/m ³
Angle of soil surface Mobilisation factor Moist density Design shear strength Design shear strength	$\gamma_{wall} = 23.6 \text{ KIV/m}$ $\beta = 0.0 \text{ deg}$ M = 1.5 $\gamma_m = 18.0 \text{ kN/m}^3$ $\phi' = 24.2 \text{ deg}$ $\phi'_b = 24.2 \text{ deg}$	3	Saturated dens Angle of wall fri Design base fri	t at back of wall ity iction ction	$\gamma_{base} = 23.6$ KN h _{eff} = 3600 mm $\gamma_s = 21.0$ kN/m $\delta = 0.0$ deg $\delta_b = 18.6$ deg	n n 1 ³
woist density	γmb = Ι δ. υ KIN/M	-	Allowable bear	шg	T bearing = 125	NN/111
Using Coulomb theory Active pressure At-rest pressure	K _a = 0.419 K ₀ = 0.590		Passive pressu	ire	Kp = 4.187	

V & R	Project				Job Ref.	
VINCENT & RYMILL	14 RC	DSECROFT AV	E., LONDON. N	N3 7QB		
VINCENT & RYMILL					Sneet no./rev.	16
				Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016	onited by	Duto	, ipp a b j	Balo
RETAINING WALL DESIGN (<u>BS 8002:1994)</u>					version 1.2.01.0
Illtimate limit state load fast	ore				TEDDS calculation	version 1.2.01.0
Dead load factor	∿u ⊒ – 1 4		Live load factor	r	va ⊢ 1 6	
Earth pressure factor	γ _{1_u} = 1.4				<u>1-</u> 1 - 110	
Calculate propping force	<u>1</u> _0					
Propping force	Fprop = 52.6 kN/	'n				
Design of usinforced concern			1004)			
Design of reinforced concre	te retaining wall	toe (BS 8002:1	<u>1994)</u>			
Material properties	f 40 N1/mm2				f 500 NI/aaa	- 2
Strength of concrete	$T_{cu} = 40 \text{ N/mm}^2$		Strength of reir	norcement	Ty = 500 N/mn]-
Base details			a			
winimum reinforcement	к = 0.13 %		Cover in toe		Ctoe = 50 mm	
Design of retaining wall toe						
Shear at heel	V _{toe} = 129.2 kN	/m	Moment at hee		Mtoe = 196.1	«Nm/m
			C	ompression re	Inforcement is	not required
Check toe in bending	10	105				
Reinforcement provided		s @ 125 mm co	Area provided		A 10	00 mm ² /m
Area required	$As_{toe_req} = 1307$	PASS - Rei	nforcement pro	vided at the re	As_toe_prov = 10	e is adequate
Check shear resistance at to	0					
Design shear stress	v _{toe} = 0.378 N/n	nm²	Allowable shea	ır stress	Vadm = 5.000	N/mm ²
		PASS	- Design shear	stress is less t	han maximum	shear stress
Concrete shear stress	v _{c_toe} = 0.598 N	/mm²				
			Vtoe	< Vc_toe - No sh	ear reinforcen	nent required
Design of reinforced concre	te retaining wall	heel (BS 8002	:1994 <u>)</u>			
Material properties						
Strength of concrete	f _{cu} = 40 N/mm ²		Strength of reir	nforcement	f _y = 500 N/mn	1 ²
Base details						
Minimum reinforcement	k = 0.13 %		Cover in heel		Cheel = 50 mm	
Design of retaining wall heel						
Shear at heel	V _{heel} = 17.9 kN/	m	Moment at hee	1	M _{heel} = 4.9 kN	m/m
			С	ompression re	inforcement is	not require
Check heel in bendina						
Reinforcement provided	B785 mesh					
Area required	As_heel_req = 520	.0 mm²/m	Area provided		$A_{s_heel_prov} = 7$	85 mm²/m
		PASS - Rein	forcement prov	ided at the reta	aining wall hee	el is adequate
Check shear resistance at he	eel					
Design shear stress	Vheel = 0.052 N/	mm²	Allowable shea	ir stress	Vadm = 5.000	N/mm²
		PASS	- Design shear	stress is less t	han maximum	shear stres
Concrete shear stress	Vc_heel = 0.463 N	N/mm²				
			Vheel	< Vc_heel - No sh	ear reinforcen	nent required

VIED	Project				Job Ref.	
VINCENT	14 RC	SECROFT AVE	E., LONDON. NV	V3 7QB		
	Section				Sheet no./rev.	
	PRELIM	IINARY STRUC	TURAL CALCU	LATIONS		17
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				
						-
Design of reinforced concrete	e retaining wall	stem (BS 8002	<u>::1994)</u>			
Material properties						
Strength of concrete	$f_{cu} = 40 \text{ N/mm}^2$		Strength of reinforcement		fy = 500 N/mn	1 ²
Wall details						
Minimum reinforcement	k = 0.13 %					
Cover in stem	C _{stem} = 75 mm		Cover in wall		Cwall = 50 mm	
Design of retaining wall stem						
Shear at base of stem	V _{stem} = 17.0 kN/	'n	Moment at bas	e of stem	M _{stem} = 151.5	kNm/m
		Compression reinforcen				
Check wall stem in bending						
Reinforcement provided	16 mm dia.bars	s @ 100 mm ce	entres			
Area required	As_stem_req = 125	8.0 mm²/m	Area provided		As_stem_prov = 2	011 mm²/m
		PASS - Reinf	orcement provi	ded at the retai	ning wall sten	n is adequate
Check shear resistance at wa	ll stem					
Design shear stress	vstem = 0.058 N/	mm²	Allowable shea	r stress	Vadm = 5.000 N	N/mm²
		PASS	- Design shear	stress is less tl	han maximum	shear stress
Concrete shear stress	Vc_stem = 0.706	N/mm²				
			Vstem <	: Vc_stem - No she	ear reinforcen	nent required

	Project 14 R	OSECROFT AVE	E., LONDON,	NW3 7QB	Job Ref.	
	Section		,		Sheet no./rev	
VINCENT & RYMILL	PRELI	MINARY STRUC	TURAL CALC	CULATIONS		18
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				
Indicative retaining wall reinf	orcement diag	ram				
Toe bars - 16 mm dia.@ 125 m Heel mesh - B785 - (785 mm²/r Stem bars - 16 mm dia.@ 100	ement am centres - (16 m) mm centres - (2	08 mm²/m) 011 mm²/m)		Stem reinfor	cement	

VI & D	Project				Job Ref.	
	14 ROSECROFT AVE., LONDON. NW3 7QB					
	Section		Sheet no./rev.			
	PRELIM	INARY STRUC	TURAL CALCU	LATIONS		19
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				

WALL F

DL = 17.25KN/m

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Wall details

Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3200 mm	Wall stem thickness	t _{wall} = 375 mm
Length of toe	I _{toe} = 1800 mm	Length of heel	l _{heel} = 150 mm
Overall length of base	l _{base} = 2325 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	h _{wall} = 3600 mm		
Depth of downstand	d _{ds} = 0 mm	Thickness of downstand	t _{ds} = 400 mm
Position of downstand	l _{ds} = 1050 mm		
Depth of cover in front of wall	d _{cover} = 500 mm	Unplanned excavation depth	d _{exc} = 200 mm
Height of ground water	h _{water} = 0 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	γ _{wall} = 23.6 kN/m ³	Density of base construction	$\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	h _{eff} = 3600 mm
Mobilisation factor	M = 1.5		
Moist density	$\gamma_{m} =$ 18.0 kN/m ³	Saturated density	$\gamma_{s} = 21.0 \text{ kN/m}^{3}$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	$\delta = \textbf{0.0} \text{ deg}$
Design shear strength	φ' _b = 24.2 deg	Design base friction	$\delta_{\text{b}} = \textbf{18.6} \text{ deg}$
Moist density	$\gamma_{mb} = $ 18.0 kN/m ³	Allowable bearing	$P_{bearing} = 125 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	Ka = 0.419	Passive pressure	Kp = 4.187
At-rest pressure	$K_0 = 0.590$		

V&R	Project				Job Ref.	
VINCENT & RYMILL	14 RC	SECROFT AV	E., LONDON. N	N3 7QB		
VINCENT & RYMILL					Sheet no./rev.	01
	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016			FF 7	
			I			
RETAINING WALL DESIGN (<u>BS 8002:1994)</u>				TEDDS calculation	n version 1.2.01.0
Ultimate limit state load facto	ors					
Dead load factor	$\gamma_{f_d} = 1.4$		Live load factor	r	$\gamma_{f_{-}I} = 1.6$	
Earth pressure factor	$\gamma_{f_e} = 1.4$					
Calculate propping force						
Propping force	F _{prop} = 26.6 kN/	m				
Design of reinforced concret	te retaining wall	toe (BS 8002:1	<u> 994)</u>			
Material properties						
Strength of concrete	f _{cu} = 40 N/mm ²		Strength of reir	forcement	f _y = 500 N/m	m²
Base details						
Minimum reinforcement	k = 0.13 %		Cover in toe		C _{toe} = 50 mm	
Design of retaining wall toe						
Shear at heel	V _{toe} = 10.2 kN/n	n	Moment at hee	I	M _{toe} = 11.3 k	Nm/m
			С	ompression re	inforcement i	s not require
Check toe in bending						
Reinforcement provided	16 mm dia.bar	s @ 150 mm ce	entres			
Area required	$A_{s_toe_req} = 520.$	0 mm²/m	Area provided		$A_{s_toe_prov} = 1$	340 mm²/m
		PASS - Rei	nforcement pro	vided at the rel	taining wall to	e is adequat
Check shear resistance at to	e	0				
Design shear stress	v _{toe} = 0.030 N/n	nm² DASS	Allowable shea	ir stress stress is loss t	Vadm = 5.000	N/mm² S shoar stras
Concrete shear stress	Vc toe = 0.563 N	/mm ²	- Design shear	311033 13 1033 1	nan maximun	i Sileai Siles
			Vtoe	< Vc_toe - No sh	ear reinforce	ment require
Design of reinforced concret	e retaining wall	heel (BS 8002)	:1994)			
Material properties						
Strength of concrete	f _{cu} = 40 N/mm ²		Strenath of reir	forcement	f _v = 500 N/m	n²
Base details			5		,	
Minimum reinforcement	k = 0.13 %		Cover in heel		Cheel = 50 mm	1
Design of retaining wall heel						
Shear at heel	V _{heel} = 16.5 kN/	m	Moment at hee	1	M _{heel} = 4.6 kl	Nm/m
			С	ompression re	inforcement i	s not require
Check heel in bending						
Reinforcement provided	B785 mesh					
Area required	$A_{s_heel_req} = 520$.0 mm²/m	Area provided		$A_{s_heel_prov} = 7$	785 mm²/m
		PASS - Rein	forcement prov	ided at the reta	aining wall he	el is adequat
Check shear resistance at he	eel	2				N1(2
Design snear stress	Vheel = U.U48 N/I	יווחי <i>סגככ</i>	Allowable shea	ir stress stress is loss t	Vadm = 5.000	N/MM ²
Concrete shear stress	Vc heel = 0.468 N	/mm ²	- Desiyii siledî	311533 13 1888 l	nan maximun	i silear sties
			Vheel	< Vc_heel - No sh	ear reinforce	ment require
					-	

V&D	Project		Job Ref.					
	14 RO	SECROFT AVE	E., LONDON. NV	V3 7QB				
	Section				Sheet no./rev.			
	PRELIM	IINARY STRUC	CTURAL CALCULATIONS		22			
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date		
SURREY GU16 6PT	TV	18/02/2016						
Design of reinforced concrete	Design of reinforced concrete retaining wall stem (BS 8002:1994)							
Material properties	-							
Strength of concrete	f _{cu} = 40 N/mm ²		Strength of rein	forcement	f _y = 500 N/mm	1 ²		
Wall details								
Minimum reinforcement	k = 0.13 %							
Cover in stem	C _{stem} = 75 mm		Cover in wall		c _{wall} = 50 mm			
Design of retaining wall stem								
Shear at base of stem	V _{stem} = 28.3 kN/	m	Moment at base	e of stem	$M_{stem}=\textbf{150.8}$	kNm/m		
			C	ompression reil	nforcement is	not required		
Check wall stem in bending								
Reinforcement provided	16 mm dia.bars	s @ 100 mm ce	entres					
Area required	As_stem_req = 125	2.2 mm²/m	Area provided		$A_{s_stem_prov} = 2$	011 mm²/m		
		PASS - Reinfe	orcement provi	ded at the retair	ning wall sten	n is adequate		
Check shear resistance at wal	l stem							
Design shear stress	vstem = 0.097 N/	mm²	Allowable shea	r stress	Vadm = 5.000 N	√mm²		
		PASS	- Design shear	stress is less th	an maximum	shear stress		
Concrete shear stress	Vc_stem = 0.706 N	N/mm²						
			Vstem <	< Vc_stem - No she	ear reinforcen	nent required		

V&R	Project				Job Ref.	
VINCENT & RYMILL	14 ROSECROFT AVE., LONDON. NW3 7QB					
	PRELIM	INARY STRUC	TURAL CALC	ULATIONS		23
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				
Indicative retaining wall rein	forcement diagr	am				
Toe bars - 16 mm dia.@ 150 m Heel mesh - B785 - (785 mm²/ Stem bars - 16 mm dia.@ 100	ement im centres - (134 m) mm centres - (20	40 mm²/m) 11 mm²/m)		Stem reinforce	ement	

V & D	Project				Job Ref.	
VINCENT 14 ROSECROFT AVE., LONDON. NW3 7QB						
VINCENT & BYMILI	Section		Sheet no./rev.			
LAKESIDE COUNTRY CLUB	PRELIM	24				
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				

LIGHT WELLS

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

Wall details

Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3200 mm	Wall stem thickness	t _{wall} = 375 mm
Length of toe	I _{toe} = 2300 mm	Length of heel	I _{heel} = 150 mm
Overall length of base	l _{base} = 2825 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	h _{wall} = 3600 mm		
Depth of downstand	d _{ds} = 0 mm	Thickness of downstand	t _{ds} = 400 mm
Position of downstand	l _{ds} = 1900 mm		
Depth of cover in front of wall	d _{cover} = 0 mm	Unplanned excavation depth	d _{exc} = 200 mm
Height of ground water	h _{water} = 2600 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	γ _{wall} = 23.6 kN/m ³	Density of base construction	$\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	h _{eff} = 3600 mm
Mobilisation factor	M = 1.5		
Moist density	$\gamma_{m} =$ 18.0 kN/m ³	Saturated density	$\gamma_{s} = 21.0 \text{ kN/m}^{3}$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	$\delta = \textbf{0.0} \text{ deg}$
Design shear strength	φ' _b = 24.2 deg	Design base friction	$\delta_b = 18.6 \text{ deg}$
Moist density	γ_{mb} = 18.0 kN/m ³	Allowable bearing	$P_{\text{bearing}} = 100 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	K _a = 0.419	Passive pressure	K _p = 4.187

V&R	Project				Job Ref.	
VINCENT & RYMILL	14 RC	SECROFT AV	E., LONDON. N	N3 7QB		
VINCENT & RYMILL	Section				Sheet no./rev.	26
	Calc. by	Date		Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016	,		F	
			•			
<u>RETAINING WALL DESIGN (</u>	<u>BS 8002:1994)</u>				TEDDS calculation	version 1.2.01.0
Ultimate limit state load fact	ors					
Dead load factor	γ _{f d} = 1.4		Live load factor	r	γ _{f I} = 1.6	
Earth pressure factor	$\gamma_{f_e} = 1.4$					
Calculate propping force						
Propping force	F _{prop} = 55.0 kN/	m				
Design of reinforced concre	te retaining wall	toe (BS 8002:1	<u>1994)</u>			
Material properties						
Strength of concrete	f _{cu} = 40 N/mm ²		Strength of reir	nforcement	f _y = 500 N/mr	n²
Base details						
Minimum reinforcement	k = 0.13 %		Cover in toe		C _{toe} = 50 mm	
Design of retaining wall toe						
Shear at heel	V _{toe} = 68.3 kN/n	n	Moment at hee	9	M _{toe} = 165.4	kNm/m
			С	ompression re	inforcement is	s not require
Check toe in bending						
Reinforcement provided	16 mm dia.bar	s @ 150 mm c	entres			
Area required	$A_{s_toe_req} = 1170$).4 mm²/m	Area provided		$A_{s_toe_prov} = 13$	340 mm²/m
		PASS - Rei	nforcement pro	vided at the re	taining wall to	e is adequat
Check shear resistance at to	e					
Design shear stress	v _{toe} = 0.200 N/n		Allowable shea	ar stress	Vadm = 5.000	N/mm²
Concrete shear stress	$V_{0,too} = 0.563 \text{ N}$	/mm ²	- Design snear	stress is less t	nan maximun	i snear stres
			Vtoe	< Vc toe - No sh	near reinforcei	ment require
Design of reinforced concre	le retaining wall	heel /BS 8002	-1004)	-		
Meterial preparties	te retaining wan		.1334)			
Strength of concrete	f _{ou} – 40 N/mm²		Strength of reir	oforcement	f. – 500 N/mr	n ²
Base deteile			ottengti of fell	noroement		
Minimum reinforcement	k = 0 13 %		Cover in heel		$C_{bool} = 50 \text{ mm}$	1
Design of rotaining wall boo						
Shear at heel	Vhool = 16 7 kN/	m	Moment at hee	4	$M_{\text{bool}} = 4.6 \text{ kN}$	lm/m
			C	ompression re	inforcement is	s not require
Check heel in bending			-			
Reinforcement provided	B785 mesh					
Area required	As_heel_req = 520	.0 mm²/m	Area provided		$A_{s_heel_prov} = 7$	′85 mm²/m
		PASS - Rein	forcement prov	rided at the reta	aining wall hee	el is adequat
Check shear resistance at he	eel					
Design shear stress	Vheel = 0.048 N/I	mm²	Allowable shea	ar stress	Vadm = 5.000	N/mm²
		PASS	- Design shear	stress is less t	han maximun	n shear stres
Concrete shear stress	Vc_heel = U.468 N	n/mm∸	Vi. ·	- Vo hard - No of	near reinforce	nent require
			Vheel	< vc_neel - INU SI	icai ieiiii0iCei	nem require

V & D	Project				Job Ref.	
	14 RC	SECROFT AVE	E., LONDON. NV	N3 7QB		
	Section				Sheet no./rev.	
	PRELIM	IINARY STRUC	TURAL CALCU	LATIONS	27	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				
Design of reinforced concrete	e retaining wall	stem (BS 8002	<u>:1994)</u>			
Material properties						
Strength of concrete	$f_{cu}=\textbf{40}~N/mm^2$		Strength of reinforcement		f _y = 500 N/mn	1 ²
Wall details						
Minimum reinforcement	k = 0.13 %					
Cover in stem	C _{stem} = 75 mm		Cover in wall		c _{wall} = 50 mm	
Design of retaining wall stem						
Shear at base of stem	V _{stem} = 4.9 kN/n	า	Moment at bas	e of stem	M _{stem} = 124.3 kNm/m	
			C	ompression reil	nforcement is	not required
Check wall stem in bending						
Beinforcement provided	16 mm dia bar	s @ 125 mm ce	ontres			
Area required	As stom reg = 102	9 9 mm ² /m	Area provided		As stom prov = 1	608 mm ² /m
	ris_stell_leq - ior	PASS - Reinfo	orcement provi	ded at the retail	ning wall ster	n is adequate
Ohaali ahaay yaajatayaa at wa	ll atam					
				r atraga	. E 000 M	1/22/22
Design shear stress	Vstem = U.UI / IN/		Allowable shea	ir stress	Vadm = 5.000 I	
Concrete chear stress	V 0.656 N	PA35 ·	- Design snear	stress is less th	an maximum	snear stress
Concrete siteal sitess	Vc_stem = 0.030 1	N/11111	Vatam	Ve dem - No she	ar reinforcer	nent required
			vstem <			ient required

VI&R	Project				Job Ref.	Job Ref.	
VINCENT & RYMILL	14 ROSECROFT AVE., LONDON. NW3 7QB						
VINCENT & RYMILL				Sheet no./rev.			
			Chk'd by	Date	App'd by	Date	
SURREY GU16 6PT	TV	18/02/2016	0	Ballo	, , , , , , , , , , , , , , , , , , , ,	2410	
Outer steel resisting sa	gging A _{sx_prov} =	785 mm²/m					
		- 0/		Area of outer	steel provide	d (sagging) Of	
inner steel resisting sag	Iging A _{sy_prov} = I	'1 mm²/m	1	han min avaa	of innovatori		
			Less	nan min area (of inner steel	(sagging) FAII	
CONCRETE SLAB DEFLECTION	ON CHECK (C	L 3.5.7)					
Slab span length $I_x = 3$.	000 m						
Design ultimate momer	it in shorter spa	n per m width m	_{sx} = 27 kNm/m				
Depth to outer tension s	steel d _x = 145 m	m					
Tension steel							
Area of outer tension re	inforcement pro	vided $A_{sx_prov} = $	785 mm²/m				
Area of tension reinforc	ement required	A _{sx_req} = 452 mn	n²/m				
Moment Redistribution	Factor $\beta_{bx} = 1.0$	0					
Modification Factors							
Basic span / effective depth rati	o (Table 3.9) ra	tiOspan_depth = 20					
The modification factor for span	s in excess of 1	0m (ref. cl 3.4.6	.4) has not beer	n included.			
$f_{s} = 2 \times f_{y} \times A_{sx_req} \ / \ (3 \times A_{sx_prov}$	×β _{bx}) = 192.1 Ν	N/mm²					
factor _{tens} = min (2 , 0.55 + (477	′ N/mm² - f _s) / (120 imes (0.9 N/m	m² + m _{sx} / d _x ²)))	= 1.634			
Calculate Maximum Span							
This is a simplified approach an 3.4.6.4 and 3.4.6.7.	d further attenti	on should be giv	en where speci	al circumstance	es exist. Refer	to clauses	
Maximum span I _{max} = r	atio _{span_depth} $ imes$ fa	$ctor_{tens} \times d_x = 4.$	74 m				
Check the actual beam span							
Actual span/depth ratio	l _x / d _x = 20.69						
Span depth limit ratiospa	$n_{depth} imes factor_{ter}$	ns = 32.69					
				Spar	/Depth ratio	check satisfie	
	(SACCINC)	/DC0110.DT 1 -					
CHECK OF NOMINAL COVER	(SAGGING) -	(DJOIIU.FII,	IADLE 3.4)				
Stab (HICKHESS II = 200	nnn mautar tanaian	rainfaraamant d	145 0 mm				
		remorcement a	x = 145.0 mm				
Diameter of tension rai	oforcomont D _	10 mm					
Diameter of links L							
Cover to outer tension reinforce	mont						
$c_{\text{term}} = h_{\text{c}} d_{\text{term}} D_{\text{c}} / 2 = 5$							
Nominal cover to links steel							
) mm						
$G_{nomx} = G_{tenx} - L_{diax} = 50.$		aroomant (Table	2 1)				
	cover to all reini	orcement (Table	: 3.4)				
				Coverave	r staal raaiati	na saaaina Ol	
				Cover ove	ı sleel resisti	ng saggina Ur	

លាលា	Project				Job Ref.	
VINCENT & RYMILL	14 ROSECROFT AVE., LONDON. NW3 7QB					
VINCENT & RYMILL	Section				Sheet no./rev.	
	PRELIMINARY STRUCTURAL CALCULATIONS				31	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				

2 LAYERS A393 FABRIC TOP 50 COVER

2. FOR VERTICAL LOAD

DESIGN LOAD = (6.8 X 1.4) + (1.5 X 1.6) = 11.90KN/m²

BM = 11.9 X 3² / 8 = 13.4KN.m

RC SLAB DESIGN (BS8110)

RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

CONCRETE SLAB DESIGN (CL 3.5.3 & 4)

SIMPLE ONE WAY SPANNING SLAB DEFINITION

Overall depth of slab h = 200 mmCover to tension reinforcement resisting sagging $c_b = 50 \text{ mm}$ Trial bar diameter $D_{tryx} = 10 \text{ mm}$ Depth to tension steel (resisting sagging) $d_x = h - c_b - D_{tryx}/2 = 145 \text{ mm}$ Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Characteristic strength of concrete $f_{cu} = 35 \text{ N/mm}^2$

One-way spanning slab (simple)

ONE WAY SPANNING SLAB (CL 3.5.4)

MAXIMUM DESIGN MOMENTS IN SPAN

Design sagging moment (per m width of slab) $m_{sx} = 13.4 \text{ kNm/m}$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab) $m_{sx} = 13.4 \text{ kNm/m}$

Moment Redistribution Factor $\beta_{bx} = 1.0$

Area of reinforcement required

 $K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.018$

	Project 14 R	OSECROFT AVE	E., LONDON	I. NW3 7QB	Job Ref.	
	Section Sheet no./rev.					
VINCENT & RYMILL	PRELI	ELIMINARY STRUCTURAL CALCULATIONS 32			32	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	18/02/2016				
K' _x = min (0.156 , (0.4	$02 imes (\beta_{bx} - 0.4))$ -	· (0.18 × (β _{bx} - 0.4	↓) ²)) = 0.156	;		
			Outer con	npression steel	not required to	resist saggin
<u>One-way Spanning Slab reg</u> $z_x = \min((0.95 \times d_y))$	<u>uiring tension s</u> (d _* ×(0.5+√(0.25-ł	<u>steel only (saggi</u> {√0 9)))) = 138 m	ing) - mesh Im			
Neutral axis depth xx	= (d _x - z _x) / 0.45 =	= 16 mm				
Area of tension steel required						
$A_{ex} reg = abs(m_{ex}) / (1/2)$	$v_{\rm ms} \times f_{\rm v} \times z_{\rm v} = 22$	2 4 mm²/m				
Tension steel	1m3 ··· · y ··· = xy ==					
Use A393 Mesh						
A _{sx_prov} = A _{sl} = 393 mr	m²/m A _{sy_prov} = A _s	_{st} = 393 mm²/m				
$D_x = d_{sl} = 10 \text{ mm } D_y =$	dst = 10 mm					
		A	Area of tens	ion steel provide	ed sufficient to	resist saggin
Check min and max areas o	of steel resisting	sagging				
Total area of concrete $A_c = h$	= 200000 mm²/m	1				
Minimum % reinforce	ment k = 0.13 %					
$A_{st_min} = k \times A_c = \textbf{260}$	mm²/m					
$A_{st_max} = 4 \% \times A_c = 8$	000 mm²/m					
Steel defined:						
Outer steel resisting s	agging A _{sx_prov} =	393 mm²/m				
				Area of oute	r steel provide	d (sagging) O
Inner steel resisting s	agging $A_{sy_prov} =$	393 mm²/m				
				Area of inne	r steel provide	d (sagging) O
CONCRETE SLAB DEFLEC	TION CHECK (C	CL 3.5.7)				
Slab span length I _x =	3.000 m					
Design ultimate mome	ent in shorter spa	an per m width m	sx = 13 kNm/	/m		
Depth to outer tension	n steel d _x = 145 n	nm				
Tension steel						
Area of outer tension	reinforcement pr	ovided A _{sx_prov} =	393 mm²/m			
Area of tension reinfo	rcement required	A _{sx_req} = 224 mr	n²/m			
Moment Redistributio	n Factor $\beta_{bx} = 1.0$	00				
Modification Factors						
Basic span / effective depth ra	atio (Table 3.9) ra	atio _{span_depth} = 20				
The modification factor for spa	ans in excess of	10m (ref. cl 3.4.6	.4) has not b	been included.		
$f_s = 2 \times f_y \times A_{sx_req} / (3 \times A_{sx_pro})$	$\beta_{\text{bv}} \times \beta_{\text{bx}}$) = 189.8	N/mm ²				
factor _{tens} = min (2 , 0.55 + (4	77 N/mm² - fs)/	(120 × (0.9 N/m	m² + m _{sx} / d	x ²))) = 2.000		
Calculate Maximum Span						
This is a simplified approach a 3.4.6.4 and 3.4.6.7.	and further attent	ion should be giv	ven where sp	pecial circumstand	ces exist. Refer	to clauses
Maximum span I _{max} =	$ratio_{span_depth} imes factors for the second s$	$actor_{tens} \times d_x = 5.$	80 m			
Chock the actual beam ena	,					

V & K	1 10,000					Job Ref.	
VINCENT & RYMILL	14 h	RUSECRUFTAV	Object and from				
VINCENT & RYMILL	Section				Sheet no./rev.		
LAKESIDE COUNTRY CLUB	PREL		TURAL CAL	CULATIONS	33		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SURREY GU16 6PT	TV	18/02/2016					
Actual span/depth rati	o l _x / d _x = 20.69						
Span depth limit ratio	non donth x factor	$t_{cons} = 40.00$					
opan dopin mini railos		iens – 40.00		Crea	n/Donth ratio	abaak aatiafia	
				Spai	n/Depth ratio	CHECK Satistie	
CHECK OF NOMINAL COVE	R (SAGGING) ·	- (BS8110:PT 1,	<u>TABLE 3.4)</u>				
Slab thickness h = 20	0 mm						
Effective depth to bott	om outer tensio	n reinforcement c	l _x = 145.0 mr	n			
Diameter of tension re	einforcement D _x	= 10 mm					
Diameter of links Ldiax	= 0 mm						
Cover to outer tension reinford	ement						
c _{tenx} = h - d _x - D _x / 2 =	50.0 mm						
Nominal cover to links steel							
$C_{nomy} = C_{teny} - 1 diay = 50$).0 mm						
Pormiccoblo minimum nomino	l covor to all roi	nforcomont (Tabl	0 2 1)				
			6 3.4)				
C _{min} = 50 mm							
				Cover ove	er steel resisti	ing sagging Ol	

HEAVE OF OVER CONSOLIDATED CLAYS.

DUE TO THE EXCAVTION WHICH RESULTS IN OVER BURDEN RELIEF TO THE OVER CONSOLIDATED LODON CLAYS BELOW <u>PEAK</u> HEAVE PRESSURES OF APPROXIMATELY 3.6 X 20 = 72KN/m² ARE LIKELY TO OCCUR. THESE PEAK PRESSURE WILL DISSIPATE LOCALLY AT UNDER PIN POSITIONS THEN WHOLLY AS BULK EXCAVTION PROCEEDS, A LIKELY RESULTING HEAVE PRESSURE AT SLAB CONSTRUCTION WILL BE APPROXIMATELY 50% OF THE ABOVE, i.e. 36KN/m². THIS DISSIPATING FURTHER AS THE CLAY CAN HEAVE AGAINST AND INTO THE CORDEK BELOW THE 200 SLABS. BEARING PRESSURES BELOW THE BASES ARE GENERALLY HIGHER THAN THE 36KN/m² THUS RESISTING THE HEAVE FORCES.