CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Title	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	10 Clorano Gardons	
	London NW3 7PR	
	DESIGN DATA SHEETS & STRUCTURAL	
	<u>CALCULATIONS.</u>	
	New Basement and Upper Floor Alterations	
	DATE: Jan-16	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Index	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS		OPTIONS
	Calculation Index	Sheet numbers	
	Design data sheet and loading data.	Data 1 to 4	
	Loads on walls supported on suspended ground floor slab	Load1 to Load3	
	Ground Floor Slab design including:	GFS1 to GFS40	
	Ground Floor slab reinforcement summary.	GFS39 & GFS40	
	Column Loading Assessment	Col L1	
	Perimeter wall loads	Wall1 to Wall3	
	Pad Foundations below central columns	PF1 to PF3	
	Steel Column Design - supporting ground floor slab.	Col1	
	Basement Retaining Wall.	RW1 to RW6	
	Basement Slab. including:	BS1 to BS11	
	Retaining wall & basement slab reinforcement summary.	BS9 to BS11	
	Rear Ground Floor Extension	RE1 to RE11	
	First Floor Beam supporting rear wall over opening.	BM1	
	Steel Stool Design.	Stool1	
	General Notes and Construction Guidance	Notes	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Data 1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

ATION		CALCULATIONS	OPTION		
	STRUCTURAL DESIG	IN DATA SHEET			
	Description of the Str	ructural Works			
The de comple at the r	evelopment proposals at 10 Cl ete footprint of the existing pr rear of the property.	lorane Gardens include the construction of a basement below the roperty. A single storey ground floor extension is also to be constru	ucted		
To prov form of slab, a installe ground dug soi	vide support to the existing w f an underpinned raft is to be continuous slot is to be create ed in an underpinning type see I floor slab in place, excavatio I from a "mole hole" left at th	ralls and loadbearing structure of the house, a ground floor slab in a constructed prior to the excavation for the basement. To construct ed at the base of existing internal load bearing walls, using steel sto quence to provide temporary support to the walls. With the new n to the basement will commence in a "Top down" manner, removing front of the property.	the ct this ools <i>r</i> ing		
The bas uplift fo	sement is to be constructed a orces . Retaining walls are to l	is a reinforced concrete box designed to resist ground pressures an be constructed under the existing walls of the property in a staged paintain support to the existing walls at all time	nd		
Alterations within the building's upper floors primarily consist of relocation of existing non loadbearing walls to create the new room layouts. Internal loadbearing walls and timber floor structures will remain in					
walls to	create the new room layout	s. Internal loadbearing walls and timber floor structures will remain	n in 🔰		
walls to place re	o create the new room layout etaining the stability of the ex	s. Internal loadbearing walls and timber floor structures will remain kisting house.	n in		
walls to place re	o create the new room layout etaining the stability of the ex	is. Internal loadbearing walls and timber floor structures will remain kisting house.	n in		
walls to	o create the new room layout etaining the stability of the ex	is. Internal loadbearing walls and timber floor structures will remain kisting house.	n in		
walls to place ro	create the new room layout etaining the stability of the ex Relevant Design Stan	is. Internal loadbearing walls and timber floor structures will remain kisting house.	n in		
walls to place ro	Relevant Design Stan BS 8103-1: 1995	is. Internal loadbearing walls and timber floor structures will remain kisting house. Indards and guidance notes Structural Design of Low Rise Buildings	n in		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964	adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials	n in		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1996	adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L	n in oads		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1998	Adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L Loading for Buildings: Code of Practice for Imposed Roof Loads	oads		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1996 BS 6399: Part 3: 1988 BS8102:2009	Adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L Loading for Buildings: Code of Practice for Imposed Roof Loads Protection of below ground structures	oads		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1996 BS 6399: Part 3: 1988 BS8102:2009 BS 8110;Part 1: 1997	Adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L Loading for Buildings: Code of Practice for Imposed Roof Loads Protection of below ground structures Structural use of Concrete	n in oads		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1996 BS 8102:2009 BS 8110;Part 1: 1997 BS 5628-1: 2005 BS 5950: Part 1: 2000	Adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L Loading for Buildings: Code of Practice for Imposed Roof Loads Protection of below ground structures Structural use of Concrete Structural use of unreinforced masonry Structural use of Steelwork in Building	n in .oads		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1996 BS 6399: Part 3: 1988 BS8102:2009 BS 8110;Part 1: 1997 BS 5628-1: 2005 BS 5950: Part 1: 2000 BS 5268-2: 2002	Adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L Loading for Buildings: Code of Practice for Imposed Roof Loads Protection of below ground structures Structural use of Concrete Structural use of Steelwork in Building Structural use of Steelwork in Building Structural use of timber	n in .oads		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1996 BS 6399: Part 3: 1988 BS8102:2009 BS 8110;Part 1: 1997 BS 5628-1: 2005 BS 5950: Part 1: 2000 BS 5268-2: 2002	Adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L Loading for Buildings: Code of Practice for Imposed Roof Loads Protection of below ground structures Structural use of Concrete Structural use of Steelwork in Building Structural use of Steelwork in Building Structural use of timber	oads		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1996 BS 6399: Part 3: 1988 BS8102:2009 BS 8110;Part 1: 1997 BS 5628-1: 2005 BS 5950: Part 1: 2000 BS 5268-2: 2002 Steel designers Manual, 0 Tata steel section Interact	Adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L Loading for Buildings: Code of Practice for Imposed Roof Loads Protection of below ground structures Structural use of Concrete Structural use of Steelwork in Building Structural use of steelwork in Building Structural use of timber 6th edition - The Steel Construction Institute.	nin		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1996 BS 6399: Part 3: 1988 BS8102:2009 BS 8110;Part 1: 1997 BS 5628-1: 2005 BS 5950: Part 1: 2000 BS 5268-2: 2002 Steel designers Manual, 0 Tata steel section Interac	Adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L Loading for Buildings: Code of Practice for Imposed Roof Loads Protection of below ground structures Structural use of Concrete Structural use of Steelwork in Building Structural use of steelwork in Building Structural use of timber 6th edition - The Steel Construction Institute. strive 'Blue book'	nin		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1996 BS 6399: Part 3: 1988 BS8102:2009 BS 8110;Part 1: 1997 BS 5628-1: 2005 BS 5950: Part 1: 2000 BS 5268-2: 2002 Steel designers Manual, 0 Tata steel section Interact	Adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L Loading for Buildings: Code of Practice for Imposed Roof Loads Protection of below ground structures Structural use of Concrete Structural use of unreinforced masonry Structural use of steelwork in Building Structural use of timber 6th edition - The Steel Construction Institute. tive 'Blue book'	oads		
walls to place ro	Relevant Design Stan BS 8103-1: 1995 BS 648: 1964 BS 6399: Part 1: 1996 BS 6399: Part 3: 1988 BS8102:2009 BS 8110;Part 1: 1997 BS 5628-1: 2005 BS 5950: Part 1: 2000 BS 5268-2: 2002 Steel designers Manual, 4 Tata steel section Interac	Adards and guidance notes Structural Design of Low Rise Buildings Schedule of Weights of Building Materials Loading for Buildings: Code of Practice for Dead and Imposed L Loading for Buildings: Code of Practice for Imposed Roof Loads Protection of below ground structures Structural use of Concrete Structural use of unreinforced masonry Structural use of steelwork in Building Structural use of timber 6th edition - The Steel Construction Institute. strive 'Blue book'	oads		

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Data 2	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION		CALCULATIONS			OPTIONS
	Loadin	g Data Roof and upper floors			
	Pitched	roof			
	Dead	Tiles	0.64		
-		Timbers joists	0.08		
		Battens	0.03		
		12.5mm plasterboard + skim	0.18		
		Insulation & Roofing felt	<u>0.04</u>		
		Total	0.97	kN/m ²	
BS6300-3	Pitch=	35 ° Dead load on plan = 0.97 /cos 35 =	1.18	kN/m ²	
cl 4.3.2 <u>l</u>	Live	at 35° pitch = 0.75 x (60- 35)/30 =	0.63	kN/m ²	
	Flat Ro	of (to rear single storey extension)			
<u> </u>	Dead	Timbers joists	0.16		
		double 12.5mm plasterbaord + skim	0.32		
		sarking board	0.15		
		Root finish including waterproofing	0.13		
		Insulation	0.02		
		Total	0.78	kN/m ²	
<u>l</u>	<u>Live</u>	(allowing maintenance access)	0.75	kN/m ²	
	Suspen	ded floors (first and second) [see Data 4 for ground floor]			
	Dead	Timbers joists	0.16		
-		double 12.5mm plasterbaord + skim	0.32		
		Floorboards / T&G chipboard	0.12		
		Floor coverings	0.16		
		insulation	<u>0.02</u>		
		Total	0.78	kN/m ²	
	Live		1.50	kN/m ²	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Data 3	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION		CALCULATIONS			OPTIONS
	Leedin	a Data Walla			
	Loaum	g Data Walls			
	Externa	al solid walls (Existing)			
	Dead	Brickwork (215 mm thk.)	3.87		
		plastering	<u>0.17</u>		
		Total	4.04	L.N.I / and 2	
		lotal	4.04	KIN/M	
	Existing	niternal loadbearing walls (100 thk brick)			
	Dead	Brickwork (100 thk)	1.80		
		plastering to wall both faces	<u>0.34</u>		
			0.44		
		lotal	2.14	kN/m²	
	New In	ternal wall in basement (Blockwork)			
	Dead	Medium density concrete blocks (100 thk)	1.80		
		12.5mm plasterbaord + skim (both sides)	<u>0.34</u>		
		Total	2.14	kN/m ²	
	Partitio	n wall (studwork)			
	Dead	Timbers studs	0.09		
		12.5mm plasterbaord + skim (both sides)	0.34		
		insulation	<u>0.02</u>		
		Total	0 45	kN/m ²	
	<u>Partitio</u>	n wall (studwork) to bathroom allowing for tiling			
	- ·				
	<u>Dead</u>	Timbers studs	0.09		
		12.5mm plasterbaord + skim (both sides)	0.34		
		insulation	0.20		
		insulation	0.02		
		Total	0.65	kN/m ²	
	Perime	ter basement retaining walls (Reinforced underpin)			
	Dead	Concrete retaining wall (300mm ave.)	7.20		
		Cavity drainage membrane & insulation	0.05		
		Blockwork liner wall (7.3 N/mm ² aerated)	0.75		
		Plasterboard on dot and dabs	<u>0.17</u>		
		Tabl	0.47		
		10(2)	8.17	κN/m ⁺	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Data 4	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

New basement and u	upper floor alterations
--------------------	-------------------------

LOCATION		CALCULATIONS			OPTIONS
	Loadir	g Data Basement and ground floor			
	<u>Basem</u>	ent slab			
	Dead	slab 300 mm thk.	7.20		
		screed and cavity drainage	1.70		
		Floor coverings (allowing for tiled finish)	0.30		
		insulation	<u>0.02</u>		
		Tatal	0.00		
		Iotal	9.22	kN/m ²	
	Livo		1 50	kN/m^2	
	LIVE		1.50	KIN/III	
	Ground	Floor suspended slab			
	Dead	slab 250 mm thk	6.00		
	<u></u>	screed	1.10		
		Floor coverings (allowing for tiled finish)	0.30		
		12.5mm plasterbaord + skim on battens	0.18		
		partition allowance	<u>1.00</u>		
		Total	8.58	kN/m ²	
	<u>Live</u>		1.50	kN/m ²	
	Ground	Floor suspended slab to rear extension			
	Dead	beam block floor (1450 kg/m ³ block infill)	2.15		
		50mm screed	1.10		
		Tile bedding	0.12		
		Floor coverings, tiled / stone	0.30		
		insulation	0.04		
		Partition allowance	<u>1.00</u>		
		Tatal	1 71	1 1 1 2	
		Total	4.71	KN/m⁻	
	Live		1 50	kN/m^2	
			1.00	KIN/111	
	New ca	avity walls to rear extension			
	Dead	Blockwork outer leaf (medium density concrete)	1.50		
		Cavity insulation	0.02		
			0.02		
		Biockwork innear leaf (7.3 N/mm ⁻ aerated)	0.75		
		External render	0.40		
		Plasterboard on dot and dabs	<u>0.17</u>		
		Tatal	2.94		
		าปเล่า	2.84	κN/m ⁺	

CONSULTING STRUCTURAL ENGINEERS

 Sheet No:
 Load1
 Project No:
 K697

 By
 IN
 Date
 Jan-16

 Checked:
 GS
 Date

10 Clorane Gardens, London NW3 New basement and upper floor alterations

CONSULTING STRUCTURAL ENGINEERS

Sheet No	:	Load2	Project No:	K697
Ву	IN		Date	Jan-16
Checked:		GS	Date	

10 Clorane Gardens, London NW3

LOCATION				C	CALCULATIO	NS			OPTIONS
	Wall Loading Assessment - Walls supported on ground floor slab								
	Loadii	ng on	internal	wall	<u>Wall A</u>		Deed	Live	
	Deef	,	1 10	0.62.\	4	1		Live	
	ROOT	(0.45	, 0.63)x	4 X	1	4.7	2.5	
	vvali Socond	(0.45	x 1.50.)v	2.2 X	1	1.0	33	
	Second	(0.76	, 1.50)x	2.2 X	1	1.7	3.3	
	VVall	(0.45	X 1 50 \v	2.0 X	1	1.2	22	
	riisi Wall	(2 14	, 1.30)X	2.2 X 3 V	1	6.4	0.5	
	vvali		2.14	×	3 X	1	0.4	0	
	Total						16.7	9.1	kN/m
	Plu	us 10%	6 desian	development c	ontingency		18.4	10.0	kN/m
			g.				28	3.4	kN/m
	Loadii	ng on	internal	wall	Wall B				
		0					Dead	Live	
	Roof	(1.18	, 0.63)x	2.4 x	1	2.8	1.5	
	Wall		0.45	x	2.2 x	1	1.0	0	
	Second	(0.78	, 1.50)x	2.2 x	1	1.7	3.3	
	Wall		0.45	x	2.6 x	1	1.2	0	
	First	(0.78	, 1.50)x	2.2 x	1	1.7	3.3	
	Wall		2.14	х	3 х	1	6.4	0	
	Total						14.9	8.1	kN/m
	Plu	us 10%	6 design	development c	ontingency		16.3	8.9	kN/m
							25	5.2	kN/m
	Loadii	ng on	internal	wall	<u>Wall C</u>			I 15	
	_ /	,					Dead	Live	
	Root	(1.18	, 0.63)x	2.4 x	1	2.8	1.5	
	wall	,	0.45	X	2.2 x	1	1.0	0	
	Second	(0.78	, 1.50)x	2.2 X	1	1.7	3.3	
	Stair	(0.78	, 1.50)x		1	0.8	1.5	
	vvali Firet	,	0.45	X 1 50 \\\\	2.0 X	1	1.2	0	
	FIRST	(0.78	, 1.50)x	2.2 X	1	1.7	3.3	
	Stall	(0.70	, 1.50)x	1 X 2 v	1	0.0	1.5	
	vvali		2.14	X	3 X	I	0.4	0	
	Total						16.4	11 1	kN/m
	Pli	us 10%	6 design	development c	ontingency		18.1	12.2	kN/m
		40 107	o doolgii		onungeney		3().3	kN/m
	Loadii	na on	wall D	Refer to	perimeter wa	all load ass	essment sht. W	all L2.	
	Total						27.9	8.0	kN/m
	Pli	us 10%	6 desian	development c	ontingencv		30.6	8.8	kN/m
	Loadii	na on	wall E	Refer to	rear wall loa	d assessm	ent sht. Wall I 1		
	Total						23.2	1.8	kN/m
	Plu	us 10%	% desian	development c	ontingency		25.5	2.0	kN/m
		/			. <u>.</u> ,		I	I	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Load3	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

ATION				С	ALCULATIO	NS			OPTIONS
	Wall Loa	Wall Loading Assessment - Walls supported on ground floor slab							
	Reaction	n fro	om first flo	or trimmer to	o stair				
	Loading	on	suported	wall alongsig	le stair		Dead	Live	
	Roof	(1.18	0.63)x	2.5 x	1	3.0	1.6	
	Wall	(0.45	x	2.2 x	1	1.0	0	
	Second	(0.78 ,	1.50)x	1.8 x	1	1.4	2.7	
	Stair	(0.78 ,	1.50)x	1 x	1	0.8	1.5	
	Wall		0.45	х	2.6 x	1	1.2	0	
	First	(0.78 ,	1.50)x	1.8 x	1	1.4	2.7	
	Total						8.7	8.5	kN/m
	Plus	10%	6 design de	velopment co	ontingency		9.6	9.3	kN/m
			-	-			18	3.9	kN/m
	Reaction	n fror	n stair trim	mer:		w			
					K				
			Ť		4.4 m		Ť		
			K—				→ _R		
							Dead	Live	
	R = w.L/	2 =	w. 4	.4 /2			21.1	20.5	kN
	Reaction	n fro	om first flo	or beam sup	porting rear	wall			
	Loading	l on	rear wall				Deed	Live	
	Poof	1	1 1 2	0.63.)v	25 v	1	3 O	1.6	
	Second	(0.78	0.03)x	2.3 x 2.2 v	1	3.0 1 7	33	
	balconv 1st	(0.76,	1.50)x	2.2 x 1 x	1	0.8	1.5	
	Wall	(4.04	x	2.6 x	1	10.5	0	
	First	(0.78	1.50)x	2.2 x	1	1.7	3.3	
		,	,	,					
	Total						17.7	9.7	kN/m
	Plus	10%	6 design de	velopment c	ontingency		19.4	10.6	kN/m
							30).1	kN/m
	Reaction	n fror	n first floor	beam:	\checkmark	W			
					L.		•		
			T		E 0		T		
			k—		ე.∠ M		\rightarrow		
			-				Dead	Live	
	R = w.L/	2 =	w. 5	.2 /2			50.6	27.6	kN
			-					-	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS2	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS3	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground Floor Slab Reinforcement design Slab strip A	
	Moment Distribution:	
	A B C DF 0.68 0.32 FEM 0.0 -11.3 79.2 0.0 DIST -45.9 -22.1 -22.1 -22.1	
	FINAL 0.0 -57.2 57.2 0.0	kNm
	Calculate support reactions:	
	Taking moments about support B: (Span 1)	
	RA x 2.50 - W x $2.50^2 = -57.2$	
	RA = $\frac{14.41 \times 2.50^2}{2.50}$ /2 + -57.2 = -5 kN	
	Taking moments about support B: (Span 2)	
	RC x 5.20 - P1 x 1.00 - w x 5.20^2 = -57.16	
	$RC = \frac{41.81 \times 1.00 + 14.41 \times 5.20^{2} / 2 + -57.16}{5.20} = 35 \text{ kN}$	
	Resolving forces vertically:	
	RB = P1 + w x 7.7 - RA - RC	
	$RB = 41.81 + 14.41 \times 7.74.851 - 34.52 = 123 \text{ kN}$	
	Shear Force diagram:	
	93 75	
	33	
	-4	
	$^{-48} \longleftrightarrow ^{2.86} \Rightarrow$	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS4	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS5	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS				
	Ground floor Slab Reinforcement design					
	Slab strip A Reinforcement design for maximum span moment					
	M = 41 kNm (Sagging) strip width = 1000 mm					
	Slab depth =250 mmCover (bottom) =20 mmEffective depth, d =250 -20 -10 =220 mmConcrete strength, fcu =35 N/mm²Reinforcement strength =500 N/mm²					
	$k = M/bd^{2}f_{cu}$ $k = 41.3 \times 10^{6} = 0.024$ 1000 x 220 ² x 35					
	z = d{0.5 + √(0.25 - K/0.9)} = (not greater than 0.95.d) = 214 mm 0.95d = 209 mm					
	$A_{s} (req) = M/0.87 f_{y} z = \frac{41.3 \times 10^{6}}{0.87 \times 500 \times 209} = 454.4 \text{ mm}^{2}$	Provide				
	A_s (min) = 0.13% = 325 mm²/m Reinforcement provided: H16 @ 150 A_s (prov) = 1340 mm²/m A_s (prov) = 1340 mm²/m	H16 @ 150 (1340) Bottom				
	Deflection Check: basic $l/d = 26$ For continuous strip.	U12 @ 150				
table 3.10	$M/b.d^{2} = \underbrace{41 x \ 10^{6}}_{1000 x 220^{-2}} = \underbrace{0.85}_{2} \qquad f_{s} = \underbrace{2.f_{y}.A_{s} \ req}_{3.A_{s} \ prov} = \underbrace{113 N/mm^{2}}_{3.A_{s} \ prov}$	(753) Top				
table 3.11	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ (tension reinforcement)= $2.28 \le 2.00$ Modification factor, Mod (C) = 1.08 $100A'_s \text{ prov/bd} = 0.257$	Hence:				
	(compression reinforcement) Allowable $l/d = 26 \times 2.28 \times 1.08 = 63.9$	l/d acceptable.				
	Act. $I/d = 5800 = 26.4$					

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS6	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground floor Slab Reinforcement design	
	Slab strip A Reinforcement design for maximum support moment	
	M = 57 kNm (Hogging) strip width = 1000 mm	
	Slab depth = 250 mm Cover (top) = 20 mm Effective depth, d = 250 - 20 - 10 = 220 mm Concrete strength, fcu = 35 N/mm^2 Reinforcement strength = 500 N/mm^2	
	k = M/bd ² f _{cu} k = 57.2×10^{6} = 0.034 1000 x 220 ² x 35	
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} =$ (not greater than 0.95.d) = 211 mm 0.95d = 209 mm	
	$A_s (req) = M/0.87 f_y z = \frac{57.2 \times 10^6}{0.87 \times 500 \times 209} = 628.8 \text{ mm}^2$ $A_s (min) = 0.13\% = 325 \text{ mm}^2/m$	Provide H16 @ 150
	Reinforcement provided: H16 @ 150 $A_s (prov) = 1340 \text{ mm}^2/\text{m}$ $A_s (prov) = 1340 \text{ mm}^2$	(1340) Top

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS7	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS8	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS9	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS		
	Ground floor Slab Reinforcement design			
	Slab strip C Reinforcement design for maximum span moment			
	M = 64 kNm (Sagging) strip width = 1000 mm			
	Slab depth = 250 mm Cover (bottom) = 20 mm Effective depth, d = 250 - 20 - 10 = 220 mm Concrete strength, fcu = 35 N/mm^2 Reinforcement strength = 500 N/mm^2			
	$k = M/bd^{2}f_{cu}$ $k = 64.3 \times 10^{6} = 0.038$ 1000 x 220 ² x 35			
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} = (not greater than 0.95.d) = 210 mm$ 0.95d = 209 mm			
	$A_{s} (req) = M/0.87 f_{y} z = \frac{64.3 \times 10^{6}}{0.87 \times 500 \times 209} = 706.8 \text{ mm}^{2}$	Provide		
	A_s (min) = 0.13% = 325 mm ² /m Reinforcement provided: H16 @ 150 A_s (prov) = 1340 mm ² /m A_s (prov) = 1340 mm ²	(1340) Bottom		
	Deflection Check: basic $l/d = 26$ For continuous strip.	LI12 @ 150		
table 3.10	$M/b.d^{2} = \frac{64 \times 10^{6}}{1000 \times 220^{2}} = \frac{1.33}{2} \qquad f_{s} = \frac{2.f_{y}.A_{s} \text{ req}}{3.A_{s} \text{ prov}} = \frac{176 \text{ N/mm}^{2}}{3.A_{s} \text{ prov}}$	(753) Top		
table 3.11	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ = $1.68 \le 2.00$ (tension reinforcement) $120.(0.9 + M/b.d^2)$ Modification factor, Mod (C) = 1.08 $100A'_s \text{ prov/bd} = 0.257$	Hence:		
	(compression reinforcement) Allowable $l/d = 26 \times 1.68 \times 1.08 = 47.0$	l/d acceptable.		
	Act. $I/d = 5800 = 26.4$			

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS10	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground floor Slab Reinforcement design	
	Slab strip C Reinforcement design for maximum support moment	
	M = 14 kNm (Hogging) strip width = 1000 mm	
	Slab depth = 250 mm Cover (top) = 20 mm Effective depth, d = 250 - 20 - 10 = 220 mm Concrete strength, fcu = 35 N/mm^2 Reinforcement strength = 500 N/mm^2	
	$k = M/bd^{2}f_{cu}$ $k = \frac{14.0 \times 10^{6}}{1000 \times 220^{-2} \times 35} = 0.008$	
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} =$ (not greater than 0.95.d) = 218 mm 0.95d = 209 mm	
	$A_{s} (req) = M/0.87f_{y}z = \frac{14.0 \times 10^{6}}{0.87 \times 500 \times 209} = \frac{154 \text{ mm}^{2}}{A_{s} (min)} = 0.13\% = \frac{325 \text{ mm}^{2}/\text{m}}{325}$	Provide H16 @ 150
	Reinforcement provided: H16 @ 150 $A_s (prov) = 1340 \text{ mm}^2/\text{m}$ $A_s (prov) = 1340 \text{ mm}^2$	(1340) Top

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS11	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS12	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground Floor Slab Reinforcement design Slab strip D	
	Moment Distribution:	
	A B C DF 0.56 0.44 FEM 0.0 -149.9 99.5 0.0 DIST 28.4 22.0 22.0 22.0	
	FINAL 0.0 -121.6 121.6 0.0	kNm
	Calculate support reactions:	
	Taking moments about support B: (Span 1)	
	RA x 4.50 - w x 4.50^2 = -121.6	
	RA = $\frac{59.23 \times 4.50^2}{4.50}$ /2 + -121.6 = 106 kN 4.50	
	Taking moments about support B: (Span 2)	
	RC x 5.80 - P1 x 1.80 - w x 5.80^2 = -121.6	
	$RC = \frac{37.13 \text{ x} 1.80 + 14.41 \text{x} 5.80 ^2 /2 + -121.6}{5.80} = 32 \text{kN}$	
	Resolving forces vertically:	
	RB = P1 + w x 10.3 + w2 x 4.5 - RA - RC	
	RB = 37.13 + 14.41 x 10.3 + 44.81 x 4.5 - 106.2 - 32.36	
	Shear Force diagram: = 249 kN	
	106	
	< <u>1.79</u> -160 <u>3.555</u> -32	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS13	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground Floor Slab Reinforcement design Slab strip D	
	Calculate maximum span moments:	
	Taking moments about points of zero shear	
	Span 1 (x = 1.79 m	
	RA x 1.79 - W x 1.79^2 =	
	$106 \times 1.79 - 44.81 \times 1.79^2 = 118 \text{ kNm}$	
	Span 2 (x = 2.245 m[5.8 - 3.555])	
	RC x 2.25 - w x $2.25^2 = \frac{2}{2}$	
	32.36×2.25 - 14.41 x $\frac{2.25}{2}^2$ = 36 kNm	
	Bending Moment diagram: (kNm)	
	$3.555 \rightarrow 36$	
	\longleftrightarrow	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS14	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground floor Slab Reinforcement design	
	Slab strip D Reinforcement design for maximum span moment	
	M = 118 kNm (Sagging) strip width = 1000 mm	
	Slab depth =250 mmCover (bottom) =20 mmEffective depth, d =250 -20 -10 =220 mmConcrete strength, fcu =35 N/mm²Reinforcement strength =500 N/mm²	
	$k = M/bd^{2}f_{cu}$ $k = 118.5 \times 10^{6} = 0.070$ 1000 x 220 ² x 35	
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} = (not greater than 0.95.d) = 201 mm$ 0.95d = 209 mm	
	$A_{s} (req) = M/0.87 f_{y} z = \frac{118.5 \times 10^{6}}{0.87 \times 500 \times 201} = 1353 \text{ mm}^{2}$	Provide
	A_s (min) = 0.13% = 325 mm²/m Reinforcement provided: H16 @ 125 A_s (prov) = 1608 mm²/m A_s (prov) = 1608 mm²	H16 @ 125 (1608) Bottom
	Deflection Check: basic $I/d = 26$ For continuous strip.	
table 3.10	$M/b.d^{2} = \underbrace{118 \times 10^{6}}_{1000 \times 220^{2}} = 2.45 \qquad f_{s} = \underbrace{2.f_{y}.A_{s} \text{ req}}_{3.A_{s} \text{ prov}} = 280 \text{ N/mm}^{2}$	H12 @ 125 (905) Top
table 3.11	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ (tension reinforcement)= $1.04 \le 2.00$ Modification factor, Mod (C) = 1.09 $100A'_s \text{ prov/bd} = 0.309$ (compression reinforcement)	Hence:
	Allowable $l/d = 26 \times 1.04 \times 1.09 = 29.5$	I/d acceptable.
	Act. $I/d = 4500 = 20.5$	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS15	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground floor Slab Reinforcement design	
	Slab strip D Reinforcement design for maximum support moment	
	M = 122 kNm (Hogging) strip width = 1000 mm	
	Slab depth = 250 mm Cover (top) = 20 mm Effective depth, d = 250 - 20 - 10 = 220 mm Concrete strength, fcu = 35 N/mm^2 Reinforcement strength = 500 N/mm^2	
	$k = M/bd^{2}f_{cu} \qquad k = \underbrace{121.6 \ x \ 10^{6}}_{1000 \ x} \underbrace{220^{2} \ x \ 35}_{2} = 0.072$	
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} =$ (not greater than 0.95.d) = 201 mm 0.95d = 209 mm	
	$A_{s} (req) = M/0.87f_{y}z = \frac{121.6 \times 10^{6}}{0.87 \times 500 \times 201} = \frac{1392 \text{ mm}^{2}}{A_{s} (min) = 0.13\%} = \frac{325 \text{ mm}^{2}}{325 \text{ mm}^{2}}$	Provide H16 @ 125
	Reinforcement provided: H16 @ 125 $A_s (prov) = 1608 \text{ mm}^2/\text{m}$ $A_s (prov) = 1608 \text{ mm}^2$ $A_s (prov) = 1608 \text{ mm}^2$	(1608) Top

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS16	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS17	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground Floor Slab Reinforcement design Slab strip E	
	Moment Distribution:	
	A B C DF 0.56 0.44 FEM 0.0 -36.5 107.6 0.0 DIST -40.0 -31.1	
	FINAL 0.0 -76.5 76.5 0.0	kNm
	Calculate support reactions:	
	Taking moments about support B: (Span 1)	
	RA x 4.50 - w x 4.50^2 = -76.5	
	$RA = \frac{14.41 \text{ x} 4.50^{2} / 2 + -76.5}{4.50} = 15 \text{ kN}$	
	Taking moments about support B: (Span 2)	
	RC x 5.80 - P1 x 1.80 - w x 5.80^2 = -76.53	
	$RC = \frac{44.81 \text{ x} 1.80 + 14.41 \text{x} 5.80^{\ 2} /2 + -76.53}{5.80} = 43 \text{kN}$	
	Resolving forces vertically:	
	RB = P1 + w x 10.3 - RA - RC	
	$RB = 44.81 + 14.41 \times 10.3 - 15.42 - 42.51 = 135 kN$	
	Shear Force diagram:	
	86 60	
	15	
	$\stackrel{1.07}{\longleftrightarrow} \stackrel{-49}{\longleftarrow} \stackrel{2.85}{\longleftrightarrow}$	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS18	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground Floor Slab Reinforcement design Slab strip E	
	Calculate maximum span moments:	
	Taking moments about points of zero shear	
	Span 1 (x = 1.07 m)	
	RA x 1.07 - W x $1.07^{2} =$	
	$15 \times 1.07 - 14.41 \times 1.07^2 = 8 \text{ kNm}$	
	Span 2 (x = 2.949 m[5.8 - 2.851])	
	RC x 2.95 - w x $2.95^2 = \frac{2.95}{2}$	
	$42.51 \times 2.95 - 14.41 \times \frac{2.95}{2}^2 = 63 \text{ kNm}$	
	Bending Moment diagram: (kNm) 77	
	8	
	$\longleftrightarrow^{1.07}$ $\xleftarrow{2.851}$ \longleftrightarrow_{63}	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS19	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground floor Slab Reinforcement design	
	Slab strip E Reinforcement design for maximum span moment	
	M = 63 kNm (Sagging) strip width = 1000 mm	
	Slab depth =250 mmCover (bottom) =20 mmEffective depth, d =250 -20 -10 =220 mmConcrete strength, fcu =35 N/mm²Reinforcement strength =500 N/mm²	
	$k = M/bd^{2}f_{cu}$ $k = \frac{62.7 \times 10^{6}}{1000 \times 220^{-2} \times 35} = 0.037$	
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} = (not greater than 0.95.d) = 211 mm$ 0.95d = 209 mm	
	$A_{s} (req) = M/0.87 f_{y} Z = \frac{62.7 \times 10^{6}}{0.87 \times 500 \times 209} = 689.5 \text{ mm}^{2}$ $A_{s} (min) = 0.13\% = 325 \text{ mm}^{2}/m^{2}$	Provide
	A_s (min) = 0.13% = 323 mm /m Reinforcement provided: H16 @ 150 A_s (prov) = 1340 mm²/m A_s (prov) = 1340 mm²	(1340) Bottom
	Deflection Check: basic $l/d = 26$ For continuous strip.	H12 @ 150
table 3.10	$M/b.d^{2} = \frac{63 \times 10^{6}}{1000 \times 220^{2}} = \frac{1.30}{2} \qquad f_{s} = \frac{2.f_{y}.A_{s} \text{ req}}{3.A_{s} \text{ prov}} = \frac{172 \text{ N/mm}^{2}}{3.A_{s} \text{ prov}}$	(753) Top
table 3.11	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ = 1.71 \leq 2.00 (tension reinforcement) 120.(0.9 + M/b.d ²) = 1.08/s prov/bd = 0.257	Hence:
	(compression reinforcement) Allowable $I/d = 26 \times 1.71 \times 1.08 = 48.0$	l/d acceptable.
	Act. $I/d = \frac{5800}{220} = 26.4$	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS20	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS	
	Ground floor Slab Reinforcement design		
	Slab strip E Reinforcement design for maximum support moment		
	M = 77 kNm (Hogging) strip width = 1000 mm		
	Slab depth =250 mmCover (top) =20 mmEffective depth, d =250 -20 -10 =220 mmConcrete strength, fcu =35 N/mm²Reinforcement strength =500 N/mm²		
	$k = M/bd^{2}f_{cu}$ $k = \frac{76.5 \times 10^{6}}{1000 \times 220^{-2} \times 35} = 0.045$		
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} =$ (not greater than 0.95.d) = 208 mm 0.95d = 209 mm		
	$A_{s} (req) = M/0.87f_{y}z = \frac{76.5 \times 10^{6}}{0.87 \times 500 \times 208} = \frac{844.4 \text{ mm}^{2}}{A_{s} (min)} = 0.13\% = \frac{325 \text{ mm}^{2}/\text{m}}{325}$	Provide H16 @ 150	
	Reinforcement provided: H16 @ 150 $A_s (prov) = 1340 \text{ mm}^2/\text{m}$ $A_s (prov) = 1340 \text{ mm}^2$	(1340) Top	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS21	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS22	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground Floor Slab Reinforcement design Slab strip F	
	Moment Distribution:	
	A B C DF 0.56 0.44 FEM 0.0 -36.5 180.6 0.0 DIST -81.2 -63.0	
	FINAL 0.0 -117.6 117.6 0.0	kNm
	Calculate support reactions:	
	Taking moments about support B: (Span 1)	
	RA x 4.50 - w x 4.50^2 = -117.6	
	RA = $\frac{14.41 \times 4.50^2}{4.50} = 6 \text{ kN}$ 4.50	
	Taking moments about support B: (Span 2)	
	RC x 5.80 - P1 x 1.80 - W x 5.80^2 = -117.6	
	$RC = \frac{114.4 \text{ x} 1.80 + 14.41 \text{x} 5.80 ^2 /2 + -117.6 = 57 \text{kN}}{5.80}$	
	Resolving forces vertically:	
	RB = P1 + w x 10.3 - RA - RC	
	$RB = 114.4 + 14.41 \times 10.3 - 6.285 - 57.02 = 200 \text{ kN}$	
	Shear Force diagram:	
	141 115	
	6	
	$\stackrel{(0.436)}{\longleftrightarrow} \xrightarrow{-59} \stackrel{1.84}{\longleftrightarrow}$	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS23	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground Floor Slab Reinforcement design Slab strip F	
	Calculate maximum span moments:	
	Taking moments about points of zero shear	
	Span 1 (x = 0.436 m)	
	RA x 0.44 - w x $0.44^2 =$	
	$6 \times 0.44 - 14.41 \times \frac{0.44}{2}^2 = 1 \text{ kNm}$	
	Span 2 (x = 3.957 m[5.8 - 1.843])	
	RC x 3.96 - W x 3.96^2 =	
	57.02 x 3.96 - 14.41 x $\frac{3.96}{2}^2$ = 113 kNm	
	Bending Moment diagram: (kNm)	
	1	
	$\stackrel{0.436}{\longleftrightarrow} \qquad \underbrace{1.843}_{113}$	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS24	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS	
	Ground floor Slab Reinforcement design For Slab strip with highest moment. Slab strip F Reinforcement design for maximum span moment		
	M = 113 kNm (Sagging) strip width = 1000 mm		
	Slab depth =250 mmCover (bottom) =20 mmEffective depth, d =250 -20 -10 =220 mmConcrete strength, fcu =35 N/mm²Reinforcement strength =500 N/mm²		
	$k = M/bd^{2}f_{cu}$ $k = \frac{112.8 \times 10^{6}}{1000 \times 220^{-2} \times 35} = 0.067$		
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} = (not greater than 0.95.d) = 202 mm$ 0.95d = 209 mm		
	$A_s (req) = M/0.87 f_y z = \frac{112.8 \times 10^6}{0.87 \times 500 \times 202} = 1282 \text{ mm}^2$ $A_s (min) = 0.13\% = 325 \text{ mm}^2/m$	Provide H16 @ 125	
	Reinforcement provided: H16 @ 125 $A_s (prov) = 1608 \text{ mm}^2/\text{m}$ As (prov) = 1608 mm^2	(1608) Bottom	
	Deflection Check: basic I/d = 26 For continuous strip.	LI12 @ 125	
table 3.10	$M/b.d^{2} = \underbrace{113 \ x \ 10^{6}}_{1000 \ x} = \underbrace{2.00^{2}}_{2} = \underbrace{2.33}_{3.A_{s} \ prov} f_{s} = \underbrace{2.f_{y}.A_{s} \ req}_{3.A_{s} \ prov} = \underbrace{266 \ N/mm^{2}}_{3.A_{s} \ prov}$	(905) Top	
table 3.11	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ (tension reinforcement)= $1.09 \le 2.00$ $120.(0.9 + M/b.d^2)$ Modification factor, Mod (C) = 1.09 $100A'_s \text{ prov/bd} = 0.309$ (compression reinforcement)	Hence:	
	Allowable $l/d = 26 \times 1.09 \times 1.09 = 31.1$	l/d acceptable.	
	Act. $I/d = \frac{5800}{220} = 26.4$		

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS25	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS	
	Ground floor Slab Reinforcement design		
	Slab strip F Reinforcement design for maximum support moment		
	M = 118 kNm (Hogging) strip width = 1000 mm		
	Slab depth = 250 mm Cover (top) = 20 mm Effective depth, d = 250 - 20 - 10 = 220 mm Concrete strength, fcu = 35 N/mm^2 Reinforcement strength = 500 N/mm^2		
	$k = M/bd^{2}f_{cu}$ $k = 117.6 \times 10^{6} = 0.069$ 1000 x 220 ² x 35		
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} =$ (not greater than 0.95.d) = 201 mm 0.95d = 209 mm		
	$A_{s} (req) = M/0.87f_{y}z = \frac{117.6 \times 10^{6}}{0.87 \times 500 \times 201} = \frac{1342 \text{ mm}^{2}}{A_{s} (min) = 0.13\%} = \frac{325 \text{ mm}^{2}/\text{m}^{2}}{325 \text{ mm}^{2}/\text{m}^{2}}$	Provide H16 @ 125	
	Reinforcement provided: H16 @ 125 $A_s (prov) = 1608 \text{ mm}^2/\text{m}$ $A_s (prov) = 1608 \text{ mm}^2$	(1608) Top	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS26	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS27	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS	
	Ground floor Slab Reinforcement design		
	Slab strip G Reinforcement design for maximum span moment		
	M = 119 kNm (Sagging) strip width = 1000 mm		
	Slab depth =250 mmCover (bottom) =20 mmEffective depth, d =250 -20 -10 =220 mmConcrete strength, fcu =35 N/mm²Reinforcement strength =500 N/mm²		
	$k = M/bd^{2}f_{cu}$ $k = 118.8 \times 10^{6} = 0.070$ 1000 x 220 ² x 35		
	z = d{0.5 + √(0.25 - K/0.9)} = (not greater than 0.95.d) = 201 mm 0.95d = 209 mm		
	$A_s (req) = M/0.87 f_y z$ = $\frac{118.8 \times 10^6}{0.87 \times 500 \times 201}$ = 1357 mm ²	Provide	
	$A_{s} (min) = 0.13\% = 325 \text{ mm}^{2}/\text{m}$ Reinforcement provided: H16 @ 100 $A_{s} (prov) = 2010 \text{ mm}^{2}/\text{m}$ $A_{s} (prov) = 2010 \text{ mm}^{2}$	H16 @ 100 (2010) Bottom	
	Deflection Check: basic $l/d = 20$ For simply supported strip.		
table 3.10	$M/b.d^{2} = \underbrace{119 \times 10^{6}}_{1000 \times 220^{2}} = 2.46 \qquad f_{s} = \underbrace{2.f_{y}.A_{s} \text{ req}}_{3.A_{s} \text{ prov}} = 225 \text{ N/mm}^{2}$	H12 @ 100 (1131) Top	
table 3.11	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ (tension reinforcement)= $1.18 \le 2.00$ Modification factor, Mod (C) = 1.11 $100A'_s \text{ prov/bd} = 0.386$ (compression reinforcement)	Hence:	
	Allowable $l/d = 20 \times 1.18 \times 1.11 = 26.2$	l/d acceptable.	
	Act. $I/d = 5600 = 25.5$ 220		
CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS28	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS29	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground floor Slab Reinforcement design	
	Slab strip H Reinforcement design for maximum span moment	
	M = 184 kNm (Sagging) strip width = 1000 mm	
	Slab depth = 250 mm Cover (bottom) = 20 mm Effective depth, d = 250 - 20 - 10 = 220 mm Concrete strength, fcu = 35 N/mm^2 Reinforcement strength = 500 N/mm^2	
	$k = M/bd^{2}f_{cu}$ $k = 184.1 \times 10^{6} = 0.109$ 1000 x 220 ² x 35	
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} =$ (not greater than 0.95.d) = 189 mm 0.95d = 209 mm	
	$A_{s} (req) = M/0.87 f_{y} z = \frac{184.1 \times 10^{6}}{0.87 \times 500 \times 189} = 2238 \text{ mm}^{2}$	Provide
	$A_{s} (min) = 0.13\% = 325 \text{ mm}^{2}/\text{m}$ Reinforcement provided: H20 @ 100 $A_{s} (prov) = 3141 \text{ mm}^{2}/\text{m}$ $A_{s} (prov) = 3141 \text{ mm}^{2}$	H20 @ 100 (3141) Bottom
	Deflection Check: basic $I/d = 20$ For simply supported strip.	
table 3.10	$M/b.d^{2} = \frac{184 \times 10^{6}}{1000 \times 220^{2}} = \frac{3.80}{2} \qquad f_{s} = \frac{2.f_{y}.A_{s} \text{ req}}{3.A_{s} \text{ prov}} = \frac{238 \text{ N/mm}^{2}}{3.A_{s} \text{ prov}}$	(1131) Top
table 3.11	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ (tension reinforcement)= $0.97 \le 2.00$ Modification factor, Mod (C) = 1.11 $100A'_s \text{ prov/bd} = 0.386$ (compression reinforcement)	Hence:
	Allowable $l/d = 20 \times 0.97 \times 1.11 = 21.7$	l/d acceptable.
	Act. $I/d = 5000 = 22.7$	
	Considered acceptable as some continuity into adjacent slab. Also area of windows in rear wall will reduce actual loading on slab.	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS30	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS31	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS32	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS33	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION		C	ALCULATIONS			OPTIONS
	Ground Floor Slab Reinforcement design Slab strip J					
	Fixed End M Span 2	oments (cont'd):				
	(1)	<u>.</u>	$\frac{vL^2}{12}$			
	FEM (BC) =	93.7 x 3.00 ² 12	= 70 kNm			
	FEM (CB) =	$\frac{93.7 \text{ x} 3.00}{12}^2$	= 70 kNm			
	<u>Span 3</u>					
	(Jammer Kunner	**************************************	$\frac{wL^2}{8}$			
	FEM (CD) =	<u>123 x 3.3</u> ² 8	= 168 k	Nm		
	Moment Dist	ribution:				
	A	E	з С		D	
	DF	0.41	0.59 0.59	0.41		
	FEM	242.2 -233.8	70.3 -70.3	167.6	0.0	
	CO	33.14	-28.94 48.6	-39.5		
	DIST	/ 11.7	17.2 / -28.9	-19.7		
	со	5.91	-14.5 8.6			
	DIST	/ 5.9	8.6 🗸 -5.1	-3.5		
	со	2.9 K	-2.6K 4.3			
	DIST	1.0	1.5 -2.6	-1.7		
	CO	0.5	-1.3 - 0.8	0.2		
	CO	0.3	-0.2 -0.3 -0.4	-0.3		
	DIST	/ 0.1	0.1 \ 2 -0.2	-0.2		
	CO	0.04	-0.1 0.1	-		
	DIST	/ 0.0	0.1 🗸 0.0	0.0		
	СО	0.0 <i>K</i>	0.0 0.0			
	FINAL	285.0 -148.2	148.2 -102.7	102.7	0.0	kNm
					~	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS34	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground Floor Slab Reinforcement design Slab strip J	
	Calculate support reactions:	
	Taking moments about support B: (Span 1)	
	RA x 4.40 - P1 x 3.90 - P2 x 0.50 - w x $\frac{4.40^2}{2}$ = -148.2	
	$RA = \frac{64.23 \times 3.90 + 113.3 \times 0.50 + 135.3 \times 4.40^{2} / 2 - 148.2}{4.40}$	
	= 333.8 kN	
	Taking moments about support C: (Span 3)	
	RD x 3.30 - w x 3.30 2 = -102.7	
	$RD = \frac{123.1 \text{ x} 3.30^{-2} /2^{-102.7}}{2.20} = 172 \text{ kN}$	
	Taking moments about support B: (Span 2 & 3)	
	RD x 6.30 +RC x 3.00 - w2 x $\frac{3.00}{2}^2$ - w3 x 3.30 x 4.65 = -102.7	
	RC =	
	123 x 3.30 x 4.65 + 93.7 x 3.00 ² /2 -102.7 - 172 x 6.30	
	3.00	
	Resolving forces vertically:	
	RB = P1 + P2 + w x L - RA - RC - RD	
	RB = 64.23 + 113.3 + 135.33 x 4.4 - 333.8 - 374.8 - 172	
	+ 93.7 x 3.0 + 123.1 x 3.3	
	RB = 579.7 kN	
	Shear Force diagram:	
	266.2	
	201.9 140.5 234.3	
	$\xrightarrow{1.99} -258.2 \qquad \qquad \xleftarrow{1.5} -140.6 \xrightarrow{1.90} -172$	
	-371.5 -439.1	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS35	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS36	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground floor Slab Reinforcement design	
	Slab strip J Reinforcement design for maximum span 1 moment	
	M = 301 kNm (Sagging) strip width = 2000 mm	
	Slab depth = 250 mm Cover (bottom) = 20 mm Effective depth, d = 250 - 20 - 26 = 204 mm Concrete strength, fcu = 35 N/mm ² Reinforcement strength = 500 N/mm ²	
	k = M/bd ² f _{cu} k = $\frac{300.7 \times 10^{6}}{2000 \times 204^{2} \times 35}$ = 0.103	
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} = (not greater than 0.95.d) = 177 mm$ 0.95d = 194 mm	
	$A_s (req) = M/0.87 f_y z = \frac{300.7 \times 10^6}{0.87 \times 500 \times 177} = 3904 \text{ mm}^2$	Provide
	$A_s (min) = 0.13\% = 325 \text{ mm}^2/\text{m}$ Reinforcement provided: 14H20 @ 150	14H20 @ 150 (4398) Bottom
	Deflection Check: basic $I/d = 26$ For continuous strip.	BZ
table 3.10	$M/b.d^{2} = \frac{301 \times 10^{6}}{2000 \times 204} = \frac{3.61}{2} \qquad f_{s} = \frac{2.f_{y}.A_{s} \text{ req}}{3.A_{s} \text{ prov}} = 296 \text{ N/mm}^{2}$	14 H16 @ 150 (3216) Top T2
table 3.11	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ = $0.88 \le 2.00$ (tension reinforcement) $120.(0.9 + M/b.d^2)$ Modification factor, Mod (C) = 1.16 $100A'_s \text{ prov/bd} = 0.591$	Hence:
	(compression reinforcement) Allowable $I/d = 26 \times 0.88 \times 1.16 = 26.8$	I/d acceptable.
	Act. $I/d = 4400 = 21.6$	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS37	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS								
	Ground floor Slab Reinforcement design									
	Slab strip J Reinforcement design for maximum span 3 moment									
	M = 120 kNm (Sagging) strip width = 2000 mm									
	Slab depth =250 mmCover (bottom) =20 mmEffective depth, d =250 -20 -26 =204 mmConcrete strength, fcu =35 N/mm^2 Reinforcement strength =500 N/mm^2									
	$k = M/bd^{2}f_{cu}$ $k = 120.2 \times 10^{6}$ = 0.041 2000 x 204 ² x 35									
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} =$ (not greater than 0.95.d) = 194 mm 0.95d = 194 mm									
	$A_s (req) = M/0.87 f_y z$ = $\frac{120.2 \times 10^6}{0.87 \times 500 \times 194}$ = 1425 mm ²	Provide								
	A_{s} (min) = 0.13% = 325 mm ² /m Reinforcement provided: 14H16 @ 150	14H16 @ 150 (3216) Bottom								
	A_s (prov) = 3216 mm ²	B2								
table 3.10	$M/b.d^{2} = \frac{120 \times 10^{6}}{2000 \times 204^{2}} = \frac{1.44}{2} \qquad f_{s} = \frac{2.f_{y}.A_{s} \text{ req}}{3.A_{s} \text{ prov}} = \frac{148 \text{ N/mm}^{2}}{3.A_{s} \text{ prov}}$	14 H16 @ 150 (3216) Top B2								
	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ = $1.72 \le 2.00$ (tension reinforcement) $120.(0.9 + M/b.d^2)$	Hence:								
table 3.11	(compression reinforcement) Allowable $1/d = 26 \times 1.72 \times 1.16 = 52.1$	I/d acceptable.								
	Act. $I/d = \frac{3300}{204} = 16.2$									

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS38	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground floor Slab Reinforcement design	
	Slab strip J Reinforcement design for maximum support moment	
	M = 285 kNm (Hogging) strip width = 2000 mm	
	Slab depth = 250 mm Cover (top) = 20 mm Effective depth, d = 250 - 20 - 26 = 204 mm Concrete strength, fcu = 35 N/mm ² Reinforcement strength = 500 N/mm ²	
	k = M/bd ² f _{cu} k = $\frac{285.0 \times 10^6}{2000 \times 204^2 \times 35}$ = 0.098	
	$z = d\{0.5 + V(0.25 - K/0.9)\} =$ (not greater than 0.95.d) = 179 mm 0.95d = 194 mm	
	$A_{s} (req) = M/0.87 f_{y} z = \frac{285.0 \times 10^{6}}{0.87 \times 500 \times 179} = 3667 \text{ mm}^{2}$ $A_{s} (min) = 0.13\% = 325 \text{ mm}^{2}/\text{m}$	Provide 14H20 @ 150
	Reinforcement provided: 14H20 @ 150 $A_s (prov) = 4398 \text{ mm}^2$	(4398) Top T2
	Slab strip J Reinforcement design for support B moment	
	M = 148 kNm (Hogging) strip width = 2000 mm	
	Slab depth = 250 mm Cover (top) = 20 mm Effective depth, d = 250 - 20 - 16 = 214 mm Concrete strength, fcu = 35 N/mm^2 Reinforcement strength = 500 N/mm^2	
	$k = M/bd^{2}f_{cu}$ $k = 148.2 \times 10^{6} = 0.046$ 2000 x 214 ² x 35	
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} = (not greater than 0.95.d) = 202 mm$ 0.95d = 203 mm	
	$A_{s} (req) = M/0.87 f_{y} z = \frac{148.2 \times 10^{6}}{0.87 \times 500 \times 202} = \frac{1684 \text{ mm}^{2}}{A_{s} (min) = 0.13\%} = \frac{325 \text{ mm}^{2}/\text{m}}{325}$	Provide 14H16 @ 150
	Reinforcement provided: 14H16 @ 150 A_s (prov) = 4398 mm ²	(3216) Top T2

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS39	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	GFS40	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Col L1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION					(CALCULATI	ONS			OPTIONS
	Columi	Column Loading Assessment								
	ا Loading on central column supporting internal loadbearing wall line through basement ا									l nt. I
	Loadin	Loading : Based on supported areas								
	Dead Live									
	Roof	(1.18	,	0.63)x	5 x	3.6	21.3	11.25	
	Second	(0.78	,	1.50)x	5 x	3.6	14.0	27	
	First	(0.78	,	1.50)x	5 x	3.6	14.0	27	
	Wall		2.14		х	5.2 x	3.6	40.1		
	Grd	(8.58	,	1.50)x	5 x	3.6	154.4	27	
	Basement	(9.22	,	1.50)x	2 x	2	36.9	6	
	Total							281	98	kN
								005	379	KN
	Plu	s 10%	6 desigi	n dev	elopment c	contingency		295	103	kN
									417	kN
	Ulti	mate	1.4x D	+ 1.6	ix L				578	kN
	Compa	re loa	idina to	reac	tion from cr	ontinuous ar	ound floo	r slah strin		
	(reactio	n at s		R se	e calculatio	on sheet GF	(S34)	-	580 kN	
	(reactio	nate	apport	D, 30			004)	-		
					hence l	oading ass	essment	considered to	be sufficiently ac	curate.
	For pac	d fou	ndatior	n des	ign also c	onsider ten	porary lo	oading on slat	o during construct	l ion:
	Tempo	rary (Constru	uctio	n loads on	central co	lumn (pri	or to installati	on of basement.)	
	Use	0.2	5 kN/r	m² im	posed load	to upper flo	oors	Dead	Live	
	Roof	(1.18		0.63)x	5 x	3.6	21.3	11.25	
	Second	ì	0.78	,	0.25)x	5 x	3.6	14.0	4.5	
	First	í	0.78	,	0.25)x	5 x	3.6	14.0	4.5	
	1 113t Wall	(2 1/	,	0.20)/	52 v	36	40.1	1.0	
	vvali Crd	,	2.14			J.Z X	3.0	40.1	4 5	
	Glu	(0.00 Л	,	0.25 JX	ЭX	3.0	106.0	4.5	
	Total							197	25	kN
		/							222	kN
				Ultim	nate 1.4x D	+ 1.6x L			316	
	For ground floor, slab weight only no finishes installed at construction stage									
			,		3 2 <i>y</i> riv					

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Wall L1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION					CA	ALCULAT	IONS			OPTIONS
	Wall Loa	adin	g Asses	sm	ent					
	Loading	g on	perimet	er r	etaining wal	I	LHS front			
								Dead	Live	
	Roof	(1.18	,	0.63)x	2.2 x	1	2.6	1.4	
	Second	(0.78	,	1.50)x	2.2 x	1	1.7	3.3	
	First	(0.78	,	1.50)x	2.2 x	1	1.7	3.3	
	Grd	(8.58	,	1.50)x	2.2 x	1	18.9	3.3	
	Wall		4.04		Х	5.4 x	1	21.8	0	
	retain Wall		8.17		Х	2.8 x	1	22.9	0	
	basement	(9.22	,	1.50)x	1 x	1	9.2	1.5	
	Total							78.8	12.8	kN/m
								9	1.6	kN/m
	Plus	10%	6 design	de١	elopment co	ntingency	y	86.7	14.1	kN/m
		S	Say					110.0	20.0	
								10	0.8	kN/m
								13	30.0	
	Loading	j on	perimet	er r	etaining wal	I	RHS front	Deed	1	
		,	4.40					Dead	Live	
	Roof	(1.18	,	0.63)X	2.2 x	1	2.6	1.4	
	Second	(0.78	,	1.50)x	2.2 x	1	1.7	3.3	
	First	(0.78	,	1.50)x	2.2 x	1	1.7	3.3	
	Grd	(8.58	,	1.50)x	2.2 x	1	18.9	3.3	
	Wall		4.04		Х	5.4 x	1	21.8	0	
	retain Wall	,	8.17		X	2.8 x	1	22.9	0	
	basement	(9.22	,	1.50)x	1 X	1	9.2	1.5	
	Tetal							70.0	10.0	L.N.L/ma
	Total						I	78.8	1.6	KIN/M
	Dhua	100	decian	day	valanmant aa	ntingono	. 1	967	1/1	KIN/III
	Flus	107		uev	elopment co	nungenc	y	110.0	20.0	KIN/III
			bay				I	110.0		kNI/m
								13	80.0	KIN/III
									0.0	
	Loading	1 o n	roar wa		arried on G	Felah				
	Eloor sp	an n	arallel w	ith v	vall	5105	I	Dead	Live	
	Roof	(1 18		0.63.)x	05 x	1	0.6	0.3	
	Second	$\tilde{(}$	0.78	,	1.50)x	0.5 x	1	0.0	0.75	
	First	(0.78	,	1.50)x	0.5 x	1	0.4	0.75	
	Wall	(4.04	,	x	5.4 x	1	21.8	0	
	Total loa	nd or	around	floc	or slab	0 X		23.2	1.8	
			3.00110				I	_3	1	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Wall L2	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION					С	ALCULAT	IONS			OPTIONS
	Wall Lo	adir	ng Asse	ssm	ent					
	Loading	g on	perime	ter r	retaining wa	ll	LHS rear			
								Dead	Live	
	Roof	(1.18	,	0.63)x	2.2 x	1	2.6	1.4	
	Second	(0.78	,	1.50)x	2.2 x	1	1.7	3.3	
	First	(0.78	,	1.50)x	2.2 x	1	1.7	3.3	
	Grd	(8.58	,	1.50)x	2.7 x	1	23.2	4.1	
	Carry wall	(51.02	,	12.03)x	1.4 /	5.4	13.2	3.1	
	component	load	of wall	carri	ed on grd flr	slab				
	Wall		4.04		Х	5.4 x	1	21.8	0	
	retain Wall		8.17		х	2.8 x	1	22.9	0	
	basement	(9.22	,	1.50)x	1 x	1	9.2	1.5	
	Total							96.3	16.6	kN/m
								. 11	3.0	kN/m
	Plus	s 10º	% desigi	n de	velopment co	ontingency	,	106.0	18.3	kN/m
			Say					130.0	20.0	
								12	4.3	kN/m
								15	0.0	
	Loading	g on	perime	ter r	ear wall LH	S, carried	on GF slab			
								Dead	Live	
	Roof	(1.18	,	0.63)x	2.2 x	1	2.6	1.4	
	Second	(0.78	,	1.50)x	2.2 x	1	1.7	3.3	
	First	(0.78	,	1.50)x	2.2 x	1	1.7	3.3	
	Wall		4.04		Х	5.4 x	1	21.8	0	
	Total loa	ad o	n ground	d floo	or slab			27.9	8.0	
	Grd	(8.58	,	1.50)x	2.7 x	1	23.2	4.1	
	Total							51.0	12.0	kN/m
								63	3.0	kN/m
	Loading	g on	rear re	taini	ng wall sup	porting g	round floor s	slab with carrie	d wall.	
								Dead	Live	
	Grd	(8.58	,	1.50)x	2.7 x	1	23.2	4.1	
	Carry wall	(51.02	,	12.03)x	4.3 /	5.4	40.6	9.6	
	component	load	of wall	carri	ed on grd flr	slab				
	retain Wall		8.17		х	2.8 x	1	22.9	0	
	basement	(9.22	,	1.50)x	1 x	1	9.2	1.5	
	Total							95.9	15.1	kN/m
								. 11	1.0	kN/m
	Plus	s 10º	% desigi	n der	velopment co	ontingency	,	105.5	16.6	kN/m
			Say					130.0	20.0	
								12	2.1	kN/m
								15	0.0	
										1

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Wall L3	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION					C	ALCULAT	IONS			OPTIONS
	Wall Loa	adin	g Asse	ssm	ent					
	Loading	j on	perime	ter r	etaining wa	II	RHS rear			
								Dead	Live	
	Roof	(1.18	,	0.63)x	3 x	1	3.6	1.9	
	Second	(0.78	,	1.50)x	3 x	1	2.3	4.5	
	First	(0.78	,	1.50)x	3 x	1	2.3	4.5	
	Grd	(8.58	,	1.50)x	3 x	1	25.7	4.5	
	Wall		4.04		Х	5.4 x	1	21.8	0	
	retain Wall		8.17		X	2.8 x	1	22.9	0	
	basement	(9.22	,	1.50)x	1 x	1	9.2	1.5	
	Total							87.0	16.0	kN/m
	TULAI							10	10.9	kN/m
	Dlue	100	/ docia	a day	volonmont or	ntingono	,	96.7	4.0	KIN/III kN/m
	Flus	107		i dev		mungency	/	90.7 120.0	10.0	KIN/III
		,	bay				l	120.0	52	kN/m
								14	0.0	KIN/III
								1 '	0.0	
	Loading	ı on	pad ba	ses	to rear exte	nsion				
	Single s	tori	e exten	sion	supported	on groun	d beam spar	nning on to pag	ls	
	U					U	•	Dead	Live	
	Roof	(0.78	,	0.75)x	3.6 x	2.6	7.3	7.0	
	Grd	(4.71	,	1.50)x	3.6 x	2.6	44.1	14.0	
	Wall		2.84		x	4 x	3.2	36.4	0.0	
	G Beam		6.48		х	6.6 x	1	42.8	0.0	
	Total							130.5	21.1	kN
								15	1.6	kN
	Plus	10%	6 desigi	n dev	elopment co	ontingency	/	143.6	23.2	kN
		5	Say					160.0	40.0	
								16	6.7	kN
								20	0.0	
	Loading	j on	retaini	ng v	all, no wall	over		Dood	Livo	
	Crd	,	0 50		1 50 \\	1	1	Deau		
	Gra natain Mall	(0.00	,	1.50)X	1 X	1	8.0 22.0	1.5	
	retain wall	,	0.17		X 1 EQ)y	2.8 X	1	22.9	1.5	
	basement	(9.22	,	1.50 JX	ΙX	I	9.2	1.5	
	Total							40.7	3.0	kN/m
								4:	3.7	kN/m
	Plus	10%	6 desia	ו de	elopment co	ontingency	/	44.7	3.3	kN/m
			Sav				,	50.0	5.0	
			j				-	48	3.0	kN/m
								55	5.0	
								I I	I	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	PF1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS				
	Pad Foundations below central columns					
	Columns to be supported on pad foundations at basement level.					
	Pad foundations to be constructed in excavations made from ground level as part of the underpinning works. Pad foundations support temporary construction loads prior to forming the basement slab. In the final condition the basement slab is placed over the pad foundations increaseing their depth and . Reinforcement should be provided to tie the pad foundation to the basement slab in the final condition.					
	Considering temporary construction loads only:					
	Load on Pad Foundation = 222 kN Safe bearing pressure = 150 kN/m ²					
	Required pad size = $222.2 = 1.481 \text{ m}^2 = 1.0 \text{ m x} 1.5 \text{ m}$					
	Pad foundation depth (without basement slab) = 400 mm					
	Bending moment in pad foundation, M Ultimate load = 316 kN (taking account of 45 degree spread through foundation) $= \frac{316}{2} \times \frac{1.50}{4} - \frac{316}{2} \times \frac{0.80}{4} = 27.7 \text{ kNm}$					
	Pad Foundation Reinforcement Design					
	Pad depth = 400 mm Cover (bottom) = 35 mm Effective depth, d = 400 - 35 - 10 = 355 mm Concrete strength, fcu = 35 N/mm ² Reinforcement strength = 500 N/mm ²					
	$k = M/bd^{2}f_{cu}$ $k = \frac{27.7 \times 10^{6}}{1500 \times 355^{2} \times 35} = 0.004$					
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} =$ (not greater than 0.95.d) = 353 mm 0.95d = 337 mm					
	$A_{s} (req) = M/0.87 f_{y} z$ = $\frac{27.7 \times 10^{6}}{0.87 \times 500 \times 337}$ = 188.5 mm^{2} = $188.5 \text{ mm}^{2}/\text{m}$	Provide				
		LI16 @ 450				
	A_{s} (min) = 0.13% = 520 mm ² /m Reinforcement provided: H16 @ 150 A_{s} (prov) = 1340 mm ² /m	(1340) Bottom				

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	PF2	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	PF3	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Col1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RW1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RW2	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RW3	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RW4	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RW5	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RW6	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Basement Retaining Wall Wall reinforcement design:	
	Take bending moments about top surface of base slab:	
	M (at top of base) = 34.2 kNm	
	(worst case being from construction condition) Final condition M = 20.1 kNm	
	wall thickness. = 300 mm Cover (outside face) = 35 mm Effective depth, d = $300 - 35 - 10 = 255 \text{ mm}$	
	Concrete strength, fcu = 35 N/mm ² Reinforcement strength = 500 N/mm ²	
	$k = M/bd^{2}f_{cu}$ $k = 34.2 \times 10^{6} = 0.015$ 1000 x 255 ² x 35	
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} =$ (not greater than 0.95.d) = 251 mm hence $z = 0.95d =$ 242 mm	
	$A_{s} (req) = M/0.87f_{y}z = \frac{34.2 \times 10^{6}}{0.87 \times 500 \times 242} = 324.5 \text{ mm}^{2}/\text{m}$	Provide
	$A_{\rm s}$ (min) = 0.13 % = 350 mm /m	(1340)
	Reinforcement provided: H16 @ 150 $A_s (prov) = 1340 \text{ mm}^2/\text{m}$	Outside face
	Shear Check: Shear force, V = P1 + P2 + P3 = 21.6 kN	
cl 3.4.5.2	Design shear stress, $v = V / bv.d = 0.08 N / mm^2$	
BS8110	v_{c} = 0.79 { 100.A $_{s}$ / (b_v.d) } $^{1/3}$. (400 / d) $^{1/4}$ / γ_{m}	
table 3.8	$100.A_{s}/b_{v}.d = 0.53$ $400/d = 1.57$ $v_{c} = 0.571 \text{ N/mm}^{2}$	
table 3.16	$v < v_c$ hence no shear reinforcement required	Also Provide
	Deflection Check: basic I/d = 7 For cantilever wall.	
table 3.10	$M/b.d^{2} = \frac{34 \times 10^{6}}{1000 \times 255^{2}} = \frac{0.53}{2} \qquad f_{s} = \frac{2.f_{y}.A_{s} \text{ req}}{3.A_{s} \text{ prov}} = \frac{81 \text{ N/mm}^{2}}{3.A_{s} \text{ prov}}$	H 12 @150 (754) Inside face
	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ = 2.87 (tension reinforcement) $120 (0.9 + M/b d^2)$	Hence:
table 3.11	Modification factor, Mod (C) = 1.09 $100A'_{s} \text{ prov/bd} = 0.296$	
	(compression reinforcement) Allowable $I/d = 7 \times 2.87 \times 1.09 = 21.9$ Act. $I/d = 11.4$	l/d acceptable.

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Basement Retaining Wall Basement slab design	
	Bearing Stress Check:	
	For bearing stress check use unfactored loads	
	Taking moments about the centre line of the base: Taking 1.0 m width of slab as effective base.	
	Overturning moment: From soil and ground water.	
	M _{ot} = P1 x 0.967 + P2 x 1.45 + P3 x 0.95 =	
	= 8.7 x 0.967 + 9.667 x 1.45 + 19 x 0.95 = 40.5 kNr	n
	Restoring moment: From load on retaining wall.	
	$M_R = (V1+V3)x La = (19.08 + 100.8) x 0.3 = 36.0 kNm$	
	$M = M_{ot} - M_R =$ 40.5 - 36.0 = 4.5 kNm	
	Vertical actions on to base:	
	N = V1 + V2 + V3 = (19.08 + 10.72 + 100.8) = 130.56 kN	
	Bearing Pressure under base:	
	$e = \frac{M}{N} = \frac{4.5}{130.56} = 0.035$ $x \to x = 1.0$ m	
	Pa = load + bending moment contact area contact base section modulus (bd²/6)	
	Pa = $\frac{130.56}{1 \text{ x} 1.0} \pm \frac{4.5 \text{ x} 6}{1 \text{ x} 1.0^2} = 103.4 \text{ kN/m}^2$	
	103.4 < 150 kN/m ²	
	hence bearing pressure under retaining wall base is acceptable.	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS2	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS3	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS4	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATIO	ON CALCULATIONS	OPTIONS
	Basement Slab Reinforcement design	
	Design to Resist Uplift forces on basement slab from water pressure and Heave	
E	Basement Heave	
1 tł	0 Clorane Gardens lies on a sloping site with ground levels to the rear approximatly 1m below gr he front of the house.	ound level at
T tł ir 3	The excavation of the new basement to a formation depth of approximately 2.8m below ground levels between the front and rear of the house. This excavation will result in a net unload 2 kN/m ² .	el will entail and variation ling of around
T tł c	This will result in a measure of short term heave and long term swelling of the underlying London theoretically takes a number of years to complete. These movements will to a certain extent be miscontinued load applied by the existing buildings.	Clay, which tigated by the
T o c p ti a	The new basement slab is to be designed to withstand the potential heave forces and movements of total movement would normally be expected to occur prior to construction of the slab (for a norm construction programme). If it is (reasonably) assumed that the relationship between heave move pressure is linear the maximum heave pressure for an infinitely stiff slab could therefore be about the fully constrained condition. Heave pressure below a more flexible slab will be less due to stres as the slab deflects.	About 50% nal nent and 16 kN/m ² for s dissipation
F	lydrostatic Ground Water Pressure	
E p to	Based on the worst case design loading of ground water 1.0m below ground (recommendation of potential hydrostatic ground water pressure on the underside of the basement slab would be 10 kl to basement slab formation, at the rear of the house – 1.0m) x 10 kN/m ³].	3S 8102) the √m² [(2.0m
<u>It</u>	t is noted that water pressure is not additional to any soil heave pressures but will be the minimur	<u>ı uplift</u>
	The basement slab is therefore to be designed to resist an uplift force = 16 kN/n	n²
	Less the weight of the completed basement slab = 9.22 kN/m^2	
	Total (Ultimate) uplift force acting on basement slab	
	= 1.4 x 16.0 - 1.0 x 9.2 = 13.2 kN/m ² \uparrow γ_{f} for heave γ_{f} (beneficial) for dead load (Worst credible condition)	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS5	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

OPTIONS

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS6	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Basement Slab Reinforcement design	
	Slab (beam) strip Top reinforcement design	
	M = 115.0 kNm Beam strip width = 2000 mm	
	Slab depth = 300 mm Cover (top) = 25 mm Effective depth, d = $300 - 25 - 22 = 253 \text{ mm}$ Concrete strength, fcu = 35 N/mm^2 Reinforcement strength = 500 N/mm^2	
	$k = M/bd^{2}f_{cu}$ $k = \frac{115.0 \times 10^{6}}{2000 \times 253^{2} \times 35} = 0.026$	
	$z = d\{0.5 + \sqrt{(0.25 - K/0.9)}\} =$ (not greater than 0.95.d) = 246 mm hence $z = 0.95d =$ 240 mm	
	$A_s (req) = M/0.87 f_y z = \frac{115.0 \times 10^6}{0.87 \times 500 \times 240} = 1100 \text{ mm}^2$	Provide
	A_{s} (min) = 0.13% = 390 mm ² /m	H12 @ 150 (754)
	Reinforcement provided:H12 @ 150 $A_s (prov) = 754 \text{ mm}^2/\text{m}$ 1508 mm² over2.0 m wide strip.	Top T2
	Deflection Check: basic $I/d = 26$ For continuous strip.	H 12 @150
table 3.10	$M/b.d^{2} = \frac{115 \times 10^{6}}{2000 \times 253} = \frac{0.90}{2} \qquad f_{s} = \frac{2.f_{y}.A_{s} \text{ req}}{3.A_{s} \text{ prov}} = \frac{243 \text{ N/mm}^{2}}{3.A_{s} \text{ prov}}$	(754) bottom B2
table 3.11	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ = 1.63 (tension reinforcement) $120.(0.9 + M/b.d^2)$ Modification factor, Mod (C) = 1.07 $100A'_s \text{ prov/bd} = 0.224$ (compression reinforcement)	Hence:
	Allowable $I/d = 26 \times 1.63 \times 1.07 = 45.4$	l/d acceptable.
	Act. $I/d = \frac{4400}{253} = 17.4$	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS7	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS	
	Basement Slab Reinforcement design		
	Slab (beam) strip Bottom reinforcement design, Below central support.		
	M = 205.3 kNm Beam strip width = 2000 mm		
	Slab depth = 300 mm Cover (bottom) = 35 mm Effective depth, d = 300 - 35 - 10 = 255 mm Concrete strength, fcu = 35 N/mm ² Reinforcement strength = 500 N/mm ²		
	k = M/bd ² f _{cu} k = $\frac{205.3 \times 10^{6}}{2000 \times 255^{-2} \times 35}$ = 0.045		
	$z = d\{0.5 + V(0.25 - K/0.9)\} =$ (not greater than 0.95.d) = 242 mm 0.95d = 242 mm		
	$A_{s} (req) = M/0.87f_{y}z = \frac{205.3 \times 10^{6}}{0.87 \times 500 \times 242} = 1954 \text{ mm}^{2}$ $= 977 \text{ mm}^{2}/\text{m}$	Provide	
	A_s (min) = 0.13% = 390 mm ² /m	H16 @ 150 (1340)	
	Reinforcement provided:H16 @ 150 $A_s (prov) = 1340 \text{ mm}^2/\text{m}$ 2680 mm² over2.0 m wide strip.	Bottom	
	The slab is in direct bearing under central columns therefore deflection check not required.		
	Shear Check: Shear force, $V = w.L/2 = 186.7 \text{ kN}$		
cl 3.4.5.2	Design shear stress, $v = V / bv.d = 0.37 N / mm^2$		
BS8110 table 3.8	$v_c = 0.79 \{ 100.A_s / (b_v.d) \}^{1/3}$. (400 / d) ^{1/4} / γ_m 100.A _s / b _v .d = 0.53 400 / d = 1.57 $v_c = 0.571 \text{ N/mm}^2$		
table 3.16	$v < v_c$ hence no shear reinforcement required		
	Note: H16 @150 reinforcement required in bottom of slab under columns to act as spraed pad bases. Refer to pad foundation calculation.		

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS8	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS9	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS10	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BS11	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE2	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE3	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Ground Beams to Rear Extension	
	Shear Check: Beam end reaction, $R = 173.9$ kN bv = 450 mm $d= 545$ mm	
	Shear force, V (at 2d from end of beam) = $51.14 \times (6.8 / 2 - 2 \times 0.545)$	
	= 118 kN	
cl 3.4.5.2	Design shear stress, v = V /bv.d = 0.482 N/mm^2 A _s (prov) = 1570 mm ²	
BS8110	$v_{c} = 0.79 \{ 100.A_{s} / (b_{v}.d) \}^{1/3} . (400 / d)^{1/4} / \gamma_{m}$	
table 3.8	$100.A_s/D_v.d = 0.64 400/d = 0.734 v_c = 0.504 \text{ N/mm}^2$	
3.4.5.10	$v_{\rm c}$ is enhanced is within 2d of support, hence check at 2d is worst case.	
table 3.7	$v < (v_c + 0.4)$ hence provide Minimum links for whole length of beam.	Provide H 8 Links
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	at 200mm centres (2 Legs)
	Deflection Check: basic $l/d = 20$ For simply supported strip.	4 1142
table 3.10	$M/b.d^{2} = \frac{296 \times 10^{6}}{450 \times 545} = 2.21 \qquad f_{s} = \frac{2.f_{y}.A_{s} \text{ req}}{3.A_{s} \text{ prov}} = 286 \text{ N/mm}^{2}$	4 H12 (452) Top
	Modification factor, Mod (T) = $0.55 + (477 - f_s)$ = $1.06 \le 2.00$ (tension reinforcement) $120.(0.9 + M/b.d^2)$	Hence:
table 3.11	Modification factor, Mod (C) = 1.06 100A' _s prov/bd = 0.184 (compression reinforcement)	
	Allowable $I/d = 20 \times 1.06 \times 1.06 = 22.4$	l/d acceptable.
	Act. $I/d = 6800 = 12.5$ 545	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE4	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE5	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE6	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE7	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE8	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Timber joists to flat roof over rear extension.	
	Loading: Dead= 0.78 kN/m2 Live= 0.75 kN/m2	
	max. Joist span = 5.00 m	
	Joists spacing 400 mm	
	Total loading per joist (unfactored for permissible stress design to BS5268)	
	w = (0.78 + 0.75) x 0.4 [joist spacing] = 0.61 kN/m	
	Analysis: (timber design to permissible stresses, hence calculations based on unfactored loads)	
	Max. Bending moment, $M = wl^2/8 = 0.61 x 5.00^2/8 = 1.91 kNm$	
	Max. Shear, V = wl/2 = 0.61 x 5.00 x 1/2 = 1.53 kN	
	Timber section design:	
BS5268-2	225 x 45 Joists at 400 mm centres. <u>Timber grade C16</u>	
cl. 1.6.4	service class = 1 [Internal use] Flat Roof constructed as 'warm roof' with insulation over joists and roof deck.	
table 8	Grade stresses: Bending = 5.3 N/mm^2 Shear = 0.67 N/mm^2	
cl.2.8	Modulus of elasticity: 8800 N/mm ² (mean) 5800 N/mm ² (minimum)	
table 17	Duration of loading = medium term hence: $K_3 = 1.25$	
cl. 2.9	Joists are load share system (spacing < 610mm)	
	Load share modification factor, $K_8 = 1.10$ mean modulus of elasticity applies	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE9	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
BS5268-2	Timber joists to flat roof over rear extension.	
2002	Depth of timber joist = 225 mm	
cl. 2.10.6	Depth modification factor, $K_7 = (300/h)^{0.11} = 1.03$	
	Allowable bending stress in timber joist = $5.3 \times K_3 \times K_8 \times K_7$	
	= 5.3 x 1.25 x 1.10 x 1.03 = 7.52 N/mm ²	
	For 225 x 45 joist:	
	Section modulus, $Z = bd^2/6 = 45 \times 225^2/6 = 379.7 \times 10^3 \text{ mm}^3$	
	Second momoment of area, $I = bd^{3}/12 = 45 x 225^{3}/12 = 42.71 x10^{6} mm^{4}$	
	Applied bending stress in timber joist = M/Z = $\frac{1.91 \text{ x10}^6}{379.7 \text{ x10}^3} = 5.04 \text{ N/mm}^2$	
	< allowable, hence ok Check Shear:	
	Allowing for up to 20mm notch to underside of joist in joist hanger support	
cl 2.10.4	notch factor $K_5 = h_e/h = 205 = 0.91$ 225	
	Allowable shear stress = $0.67 \times K_5 = 0.61 \text{ N/mm}^2$	
	Applied shear stress at joist end = V/bd = $\frac{1.53 \times 10^3}{45 \times 225} = 0.15 \text{ N/mm}^2$	
	Check Deflection:	
cl 2.10.7	Allowable deflection = $0.003 \times 5000 = 15 \text{ mm}$	
	Deflection = $5/384 \text{ wl}^4/\text{EI} = \frac{5x}{384 \text{ x}} \frac{0.61 \text{ x}}{8800 \text{ x}} \frac{5000^4}{42.71 \text{ x10}^6} = 13.2 \text{ mm}$	
	< allowable, hence ok	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE10	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	RE11	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Roof beams trimming lantern rooflight.	
	From Analysis:	
	Applied moment, M = 14.8 kNm	
	Try 203 x 133 x 25 UKB (grade S275) I = 2340 cm ⁴	
BS5950	Beam is restrained by timber roof deck, hence both flange fully restrained Take $L_E = 2 m$	
Table 13	From member capacity charts:	
	BS 5950-1: 2000 BS 4-1: 2005 BS 4-1: 2005	
	Advance® UKB Subject to Bending	
	MOMENT CAPACITY AND BUCKLING RESISTANCE MOMENT FOR Advance 275	
	Section Section Moment Buckling Resistance Moment M _b (kNm) Designation Classification Capacity for	
	M _{ext} Effective lengths L _E (m) kllm 1.0 1.5 2.0 2.5 3.0 5.0 6.0 7.0 8.0 9.0 10.0 202 x 132 x 20 Disptio 86.4 82.6 74.4 68.0 62.6 72.4 82.0 62.6 72.3 20.0 26.0 23.0 20.0	
	203 x 133 x 30 Plastic 60.4 <td></td>	
	Mb = 29 kNm Beam section adequate.	
	Deflection check: Span / 360 = <u>5800</u> = 16.1 mm <u>360</u>	
	w (live) = $0.75 \times 3.0 / 2 = 1.13 \text{ kN/m}$	
	Deflection = $5 \times w \times L^4$ = $5 \times 1.13 \times 5800^4$ = 3.5 mm (live) 384 E = 384 x 205 x 10 ³ x 2340 x 10 ⁴	
	Deflection considered to be acceptable.	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	BM1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Stool1	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3

LOCATION	CALCULATIONS	OPTIONS
	Steel Stool Design. Stools providing wall support for construction of ground floor slab.	
	Stool to comprise Steel CHS section with steel bearing plates top and bottom. Overall height of stool = 250mm	
BBS5950 cl. 4.7.7	using simplified approach: $\frac{F}{P_{c}} + \frac{M_{x}}{M_{bs}} + \frac{M_{y}}{P_{y}Z_{y}}$	
	<u>Try 114.3 x 5.0 CHS</u> (grade S355)	
	Effective length L_{exx} and $L_{eyy} = 0.85 L$ $L_{exx} = L_{eyy} = 0.85 x$ $0.23 = 0.20 m$	
	From BS5950 member capacity tables:	
	P_c (compressive strength) = P_{cy} = 595 kN	
	M_c (buckling resistance moment) = 19.2 kNm p_y S= 21.2 kNm	
	Moment in column, moment from eccentricity of wall load on plate .	
	$e_x = 0.5 \times 200 =$ 100 mm $M_x =$ 24 x 0.10 = 2.42 kNm	
	$e_y = 0.5 \times 200 =$ 100 mm $M_y =$ 24 x 0.10 = 2.42 kNm	
	F_c (compression force) = From internal wall load = 24 kN	
	$(30 \text{ kN/m x 800mm stool spacing})$ $\frac{F}{D} + \frac{M_x}{M} + \frac{M_y}{D} = \frac{24}{505} + \frac{2.42}{40.2} + \frac{2.42}{24.2} = 0.281$	
	P _c M _{bs} p _y S 595 19.2 21.2 <1 hence OK	
	Provide 12mm thick plates top and bottom to form bearing with wall.	

CONSULTING STRUCTURAL ENGINEERS

Sheet No:	Notes	Project No:	K697
By IN		Date	Jan-16
Checked:	GS	Date	

10 Clorane Gardens, London NW3