

Plant Room Noise Impact Assessment

Blemundsbury New-Build, Tybalds Estate,
WC1N

Prepared For: Durkan Limited

4 Elstree Gate, Elstree Way, Borehamwood, Herts. WD6 1JD

Issue No.1

Tuesday, 12 January 2016

FES Group Clifford Chambers 4 Clifford Street York YO1 9RD www.thefesgroup.com

Table of Contents

1.0	Introduction	3
2.0	Method	3
Resu	ts & Recommendations	4
Ne	w Build Flat	4
Re	commendation	4
Ne	w Build Unit & Existing Blemundsbury Flat	5
Re	commendation	6
Арре	ndix	7

1.0 Introduction

Fes Group were asked to assess the acoustic impact of the Blemundsbury New Build plant room on neighbouring properties, and make any necessary recommendations for mitigation measures to bring the noise levels down to acceptable levels.

The noise sources within the plant room are the combined heat and power generators (CHP) and the associated pump sets. The CHP units will produce a sound pressure level of 49 dB(A) and the pump sets 77.2 dB(A). As the difference in the two sound pressure levels is over 10 dB(A) it can be stated that the total sound pressure level within the plant room will be 77.2 dB(A).

2.0 Method

The properties most likely to be troubled by noise are the flat immediately above the plant room, the nearest new-build unit (9 metres away) and the nearest existing flat in the existing Blemundsbury block (6.6 metres away). Both of these measurements are from the edge of the attenuated louvre on the plant room ventilation duct to the edge of the nearest window of the unit or flat.

The acceptable noise limits to apply in each case will be:

Situation	Upper noise limit dB(A)
Flat over plant room, lounge	35 dB(A) (BS 8233:2014)
Flat over plant room, bedroom	30 dB(A) (BS 8233:2014)
Blemundsbury new-build unit	61 dB L _{AEq} (Existing background noise level)
Blemundsbury existing flat	61 dB L _{AEq} (Existing background noise level)

Results & Recommendations

New Build Flat

The construction of the separating floor between the flat and the plant room is to be 250mm in-situ reinforced concrete, which has an overall weighted sound reduction (R_w) of 62 dB.

The standard formula for calculating the sound pressure level in the receiving room when the sound reduction index of the floor is known and the sound pressure level in the source room is also known is:

$$L_{p2} = L_{p1} - R + 10logS_p - 10log A dB.$$

Appendix A contains the workings to the above formula for both the lounge and the bedroom of the new build flat, and the results are shown below:

Situation	Calculated internal noise level dB(A)	Allowance for flanking and $C_{tr,}$ dB(A)	Expected level	Limit dB(A)
Lounge	32	10	42	35
Bedroom	31	10	41	30

As can be seen from the results above, the current specification for the floor of 250mm concrete is inadequate.

Recommendation

Add a suspended metal grid ceiling 100mm deep, containing 50mm Rockwool quilt (33kg/m^3) , faced with 2 x 15mm layers of Soundblock plasterboard. The overall R_w of the floor would now become 76 dB.

If this recommendation is adopted the results would be:

Situation	Calculated internal noise level dB(A)	Allowance for flanking and $C_{tr,}$ dB(A)	Expected level	Limit dB(A)
Lounge	17	10	27	35
Bedroom	16	10	26	30

New Build Unit & Existing Blemundsbury Flat

Both of these residential units will be exposed to the noise from the plant room, with the existing Blemundsbury flat being the closest at 6.6 metres. The calculation for expected noise level at the window of this flat should therefore be the determining factor when considering the attenuation of the louvres to the plant room vent duct.

Using an acoustic louvre with a sound reduction index of 10 dB, a fairly typical figure, the sound pressure level at a distance of 6.6 metres from the louvre can be calculated using the following formulae:

- 1. Sound pressure level outside the louvre; $L_2 = L_1 R 6$
- 2. Sound power level of the partition; $L_w = L_2 + 10logS_p$
- 3. Sound pressure level at distance r from the louvre: L3 = Lw 20logr 8

Using the above formulae the resultant sound pressure level at the window of the flat would be 56.9 dB, which is below the ambient background noise level of 61 dB $L_{AEq.}$ This should not therefore be a cause for complaints from the building occupiers.

Please see the Appendix for the workings.

Recommendation

The acoustic louvre to the plant room ventilation duct must have a sound reduction index of at least 10 dB. It is also recommended that once a suitable louvre has been identified that these calculations are checked using the manufacturers octave band data to ensure that the sound pressure level limit is not exceeded at any frequency.

Appendix

Plant room	ceiling						
250mm cast	in-situ co	oncrete					
Kitchen/Livi	ng						
Room							
V	87.9	87.9	87.9	87.9	87.9	87.9	87.9
T	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Α	28.128	28.128	28.128	28.128	28.128	28.128	28.128
Hz		125	250	500	1000	2000	4000
S _F	38.8	38.8	38.8	38.8	38.8	38.8	38.8
R_F		61	65	72	79	84	100
Α		-16.1	-8.6	-3.2	0	1.2	1
weighting							
$R_f dB(A)$		44.9	56.4	68.8	79	85.2	101
L _{p1}		59	65.5	70.1	72	71.8	69.5
$L_{p2} dB(A)$		15.5	10.5	2.7	-5.6	-12.0	-30.1
Combined	16.9						

Plant room ceiling									
250mm cast in-situ concrete									
Bedroom									
V	32.24	32.24	32.24	32.24	32.24	32.24	32.24		
T	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
Α	10.317	10.317	10.317	10.317	10.317	10.317	10.317		
Hz		125	250	500	1000	2000	4000		
S _F	12.4	12.4	12.4	12.4	12.4	12.4	12.4		
R_F		61	65	72	79	84	100		
A		-16.1	-8.6	-3.2	0	1.2	1		
weighting									
$R_f dB(A)$		44.9	56.4	68.8	79	85.2	101		
L_{p1}		59	65.5	70.1	72	71.8	69.5		
$L_{p2} dB(A)$		14.9	9.9	2.1	-6.2	-12.6	-30.7		
Combined	16.3								

Calculation of so	Calculation of sound pressure level at distance of 6.6m					
R	10					
L ₁	89.7					
L ₂	73.7					
S_p	5.8					
L _w	81.3					
r	6.6					
L ₃	56.9					

Reports MGE-G, MLE-G

11.2.24 MGE132SC2-G3, 5.5 kW, 2-pole, 3600 rpm

Go back to 11.1 Overview of sound measurement reports.

	Sound	d Power m	neasurem	ent accord	ding to DS	/ISO-374	3		
Measured Subject	MGE132								
-	5.5 kW			2 Poles			Hz		
Location of Object	Mounted	l on floor i	n the Gru	ndfos sou	nd test ro	om			
Test Condition	3x400 V			50 Hz			Idle load		
rest condition	3600 rpm	1		50 HZ			ly05141		
Remarks	only the t	est case							
	Backgro	und Nois	e Level:		ок				
The present values									
	kW			Pole			Hz		
			ī	and Lev		Ī			
Center Frequency Sound Power	125	250	500	1000	2000	4000	8000	dB(A)	dB(lin
Level re: 1 pW	71,3	77,8	82,4	84,3	84,1	81,8	72,3	89,5	89,7
Sound Pressure Average at 1m. re: 20 μPa	59,0	65,5	70,1	72,0	71,8	69,5	59,9	77,2	77,4
Nr 60 Nr 50 Nr 40 Nr 30 Nr 20 Nr 10 Nr 0 20		59,0	65,5	0,1	.,0 71,	8 69,5	Nr Nr	80	2-77,4-
0 31,5	63	125		500 10 equency [0 4000	0 8000	□ dE	