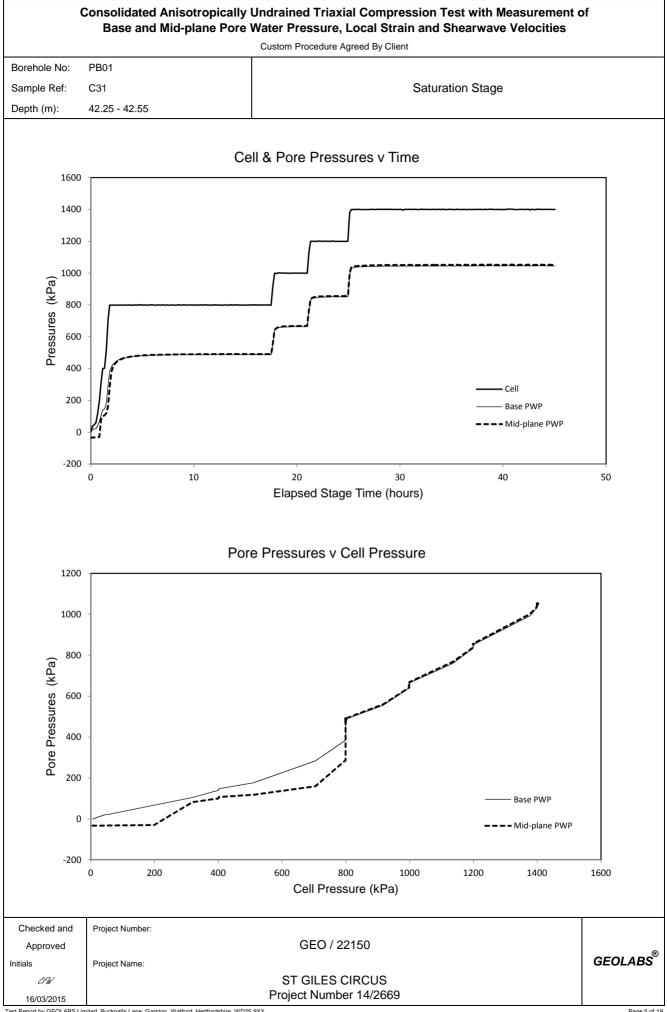
Consolidated Anisotropically Undrained Triaxial Compression Test with Measurement of Base and Mid-plane Pore Water Pressure, Local Strain and Shearwave Velocities

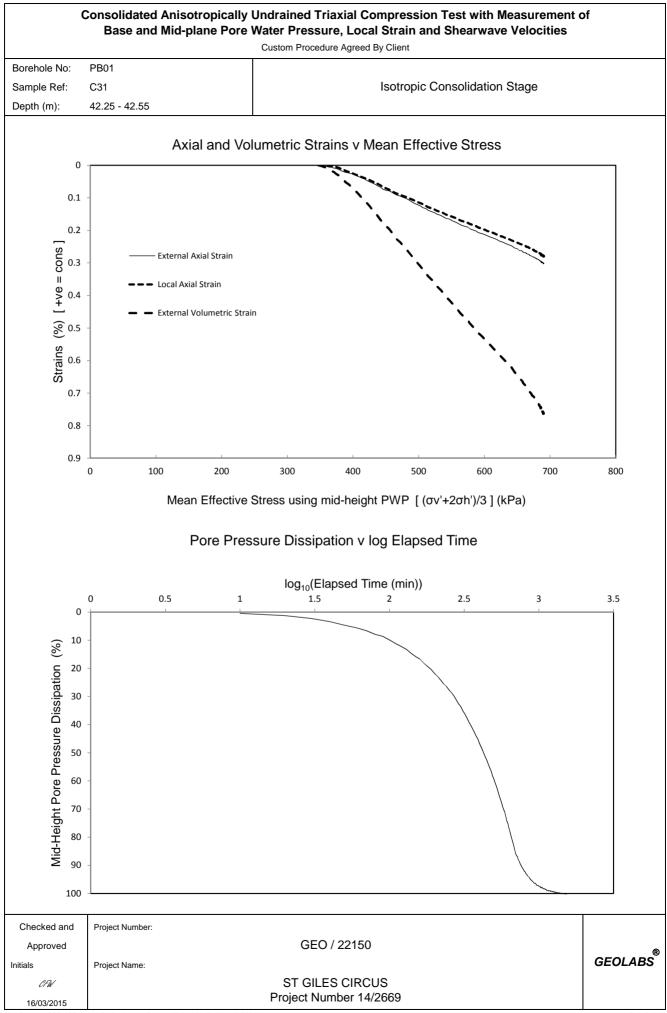
Custom Procedure Agreed By Client

Borehole No:	PB01
Sample Ref:	C31
Depth (m):	42.25 - 42.55

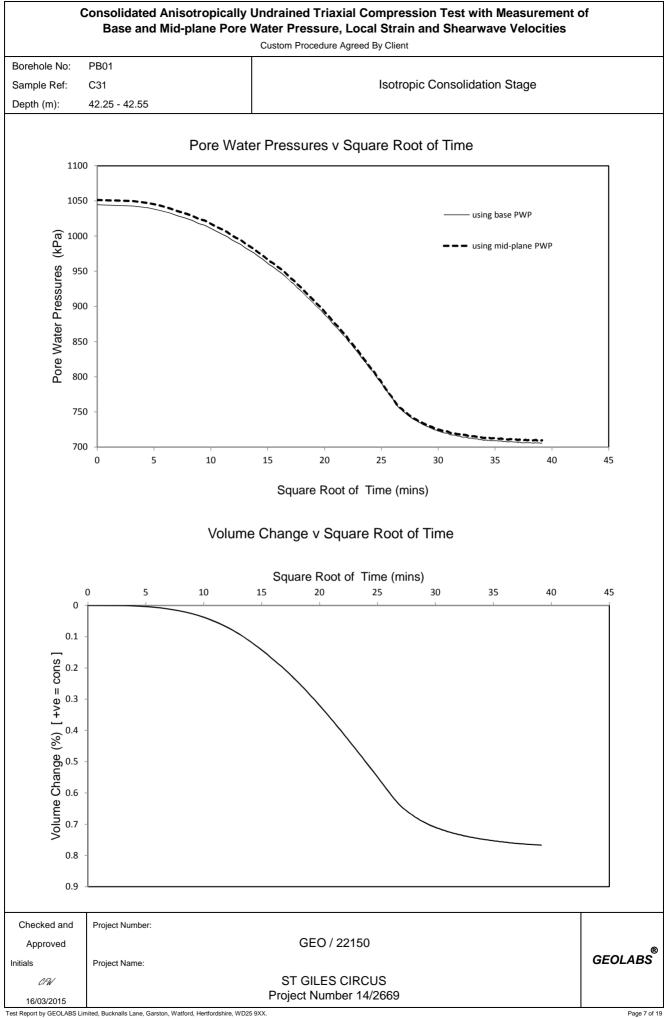
Shear Wave Velocities

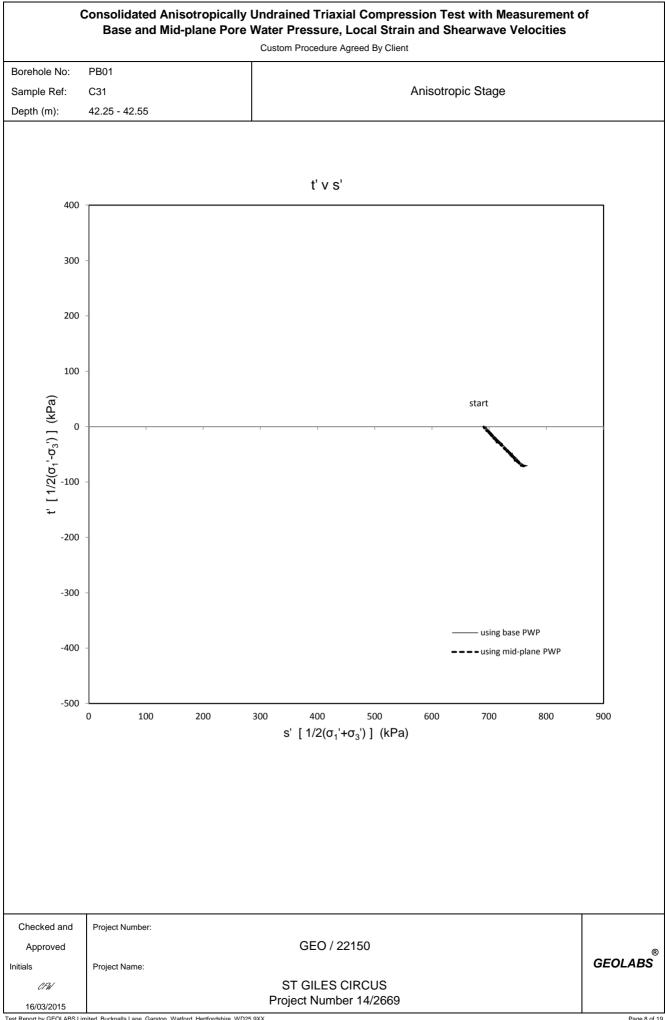

Gmax Determination Using First Arrival Shear Wave Velocities from Bender Elements

Note: The travel time determinations can be subjective, so the associated Gmax and Wave Velocity values should be taken as guide only

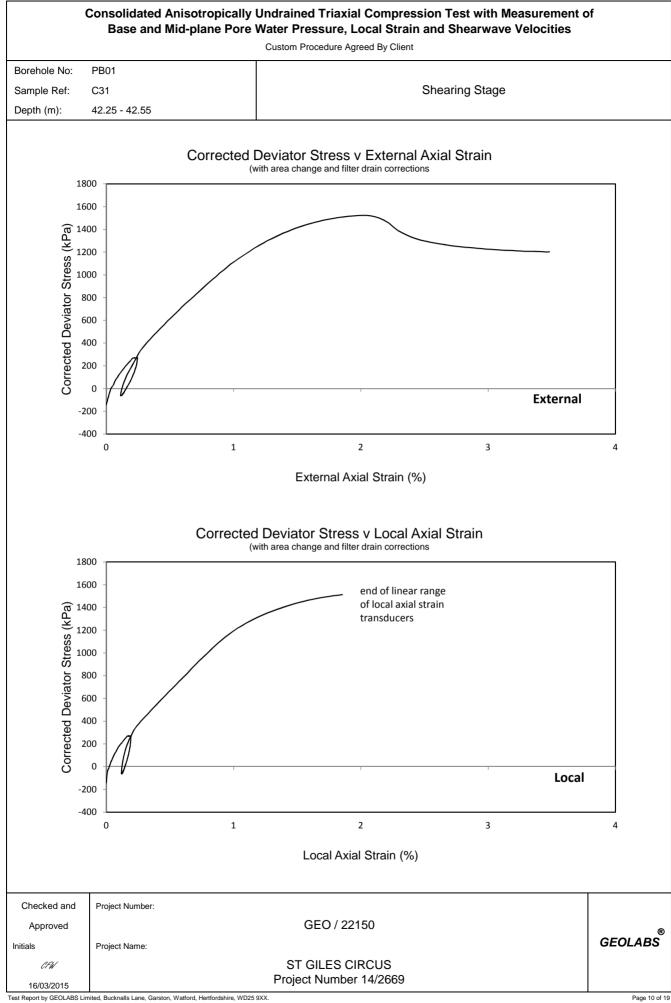

					Shear Wave
Svh Determination	Bulk	Travel time	Travel	Gmax	Velocity
At End Of Stage:	Density		Length		Svh
	(Mg/m³)	(s)	(m)	(MPa)	(m/s)
Saturation	2.198	0.000470	0.1978	389.3	420.8
Isotropic Consolidation	2.208	0.000368	0.1972	633.7	535.8
Anisotropic Consolidation	2.210	0.000379	0.1972	598.0	520.2
End of Unload (before reload	2.210	0.000387	0.1969	572.2	508.9
Shh Determination	Bulk	Travel time	Travel	Gmax	Velocity
		Traver time		Gillax	Shh
At End Of Stage:	Density (Mg/m³)	(s)	Length (m)	(MPa)	(m/s)
Saturation	2.198	0.000216	0.0968	441.9	448.3
Isotropic Consolidation	2.208	0.000169	0.0966	721.4	571.6
Anisotropic Consolidation	2.210	0.000162	0.0965	784.5	595.8
End of Unload (before reload	2.210	0.000165	0.0968	761.1	586.9

Checked and	Project Number:	
Approved	GEO / 22150	R
Initials	Project Name:	GEOLABS®
CFW	ST GILES CIRCUS	
16/03/2015	Project Number 14/2669	
Test Report by GEOLABS Lin	ited, Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX.	Page 3 of 1

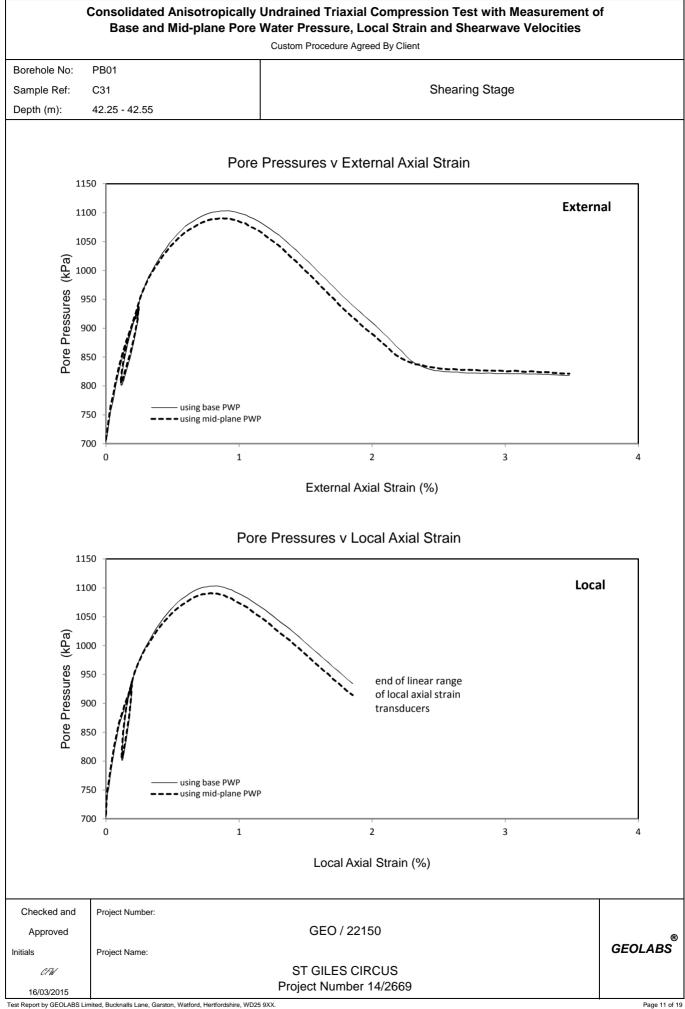

	Consolidated	Anisotropically U	ndrained Triaxial Compression Test with Measurement of	of
			/ater Pressure, Local Strain and Shearwave Velocities	
			Custom Procedure Agreed By Client	
Borehole No:	PB01			
Sample Ref:	C31		End of test photograph	
Depth (m):	42.25 - 42.55			
		Parent Name Bender Ander Bender Ander <td><image/></td> <td></td>	<image/>	
		Project Null 2215 Project Name St Ga Borehole Ref. P001		
		Sample ref. C31	r-42.35 After Test	
Checked and	Project Number:			
Approved			GEO / 22150	@
Initials	Project Name:			GEOLABS®
CFW			ST GILES CIRCUS	
16/03/2015	<u> </u>		Project Number 14/2669	
Test Report by GEOLABS I	Limited, Bucknalls Lane, Gar	ston, Watford, Hertfordshire, WD25 93	XX.	Page 4 of 19

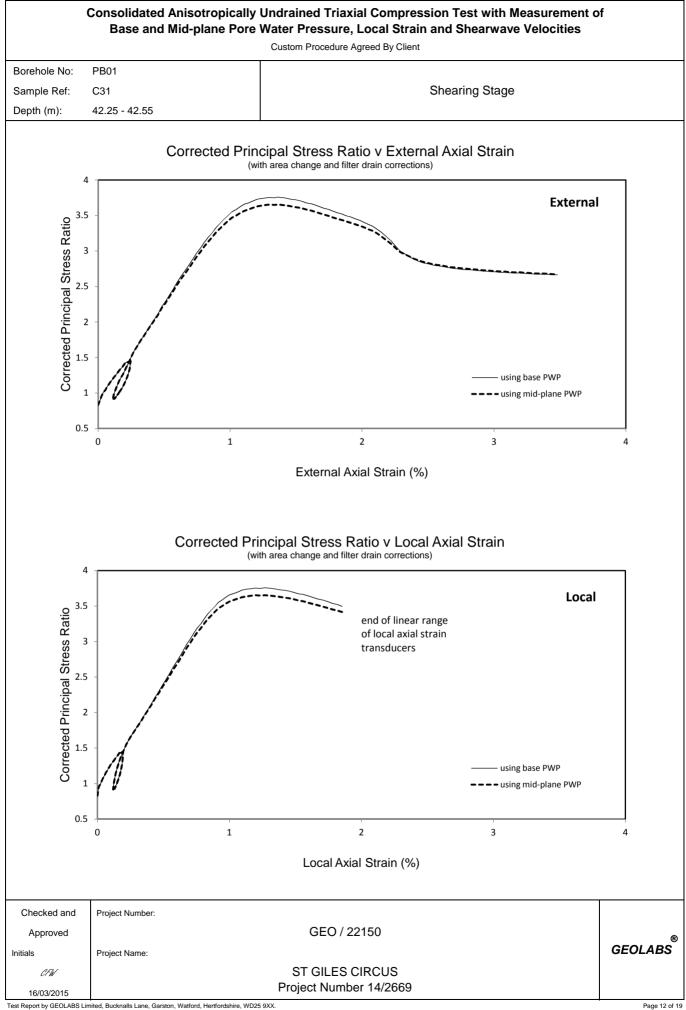

Test Report by GEOLABS Limited, Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX. Authorised Signatories: [] J R Masters (Qual. Mgr) [x] C F Wallace (Tech. Mgr) [] J J M Powell (Tech. Dir)

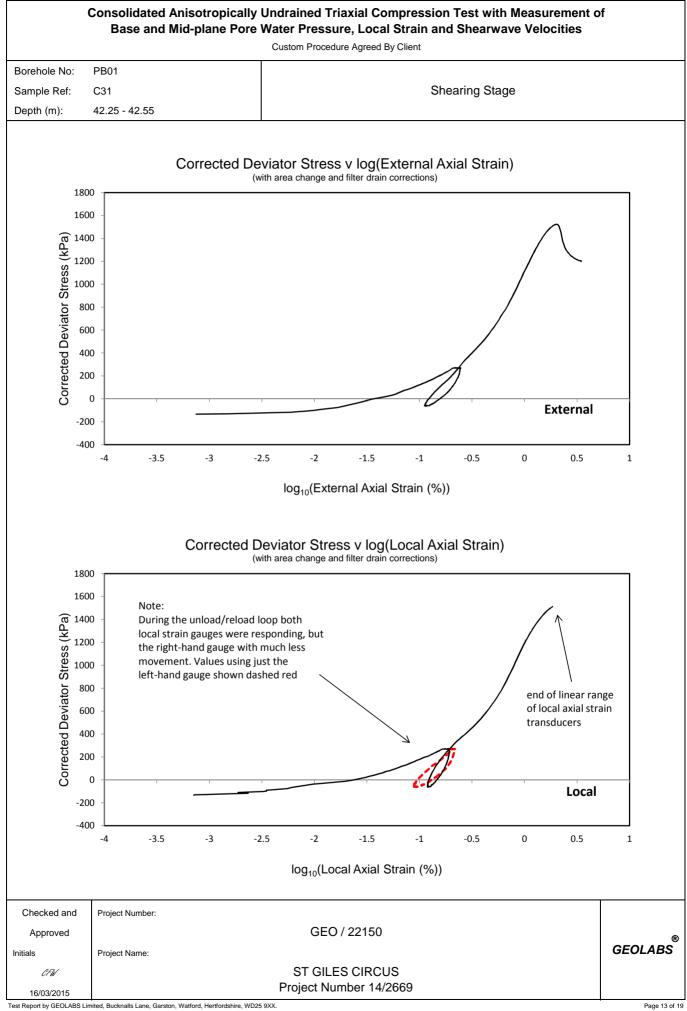
Test Report by GEOLABS Limited, Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX. Authorised Signatories: [] J R Masters (Qual. Mgr) [x] C F Wallace (Tech. Mgr) [] J J M Powell (Tech. Dir)

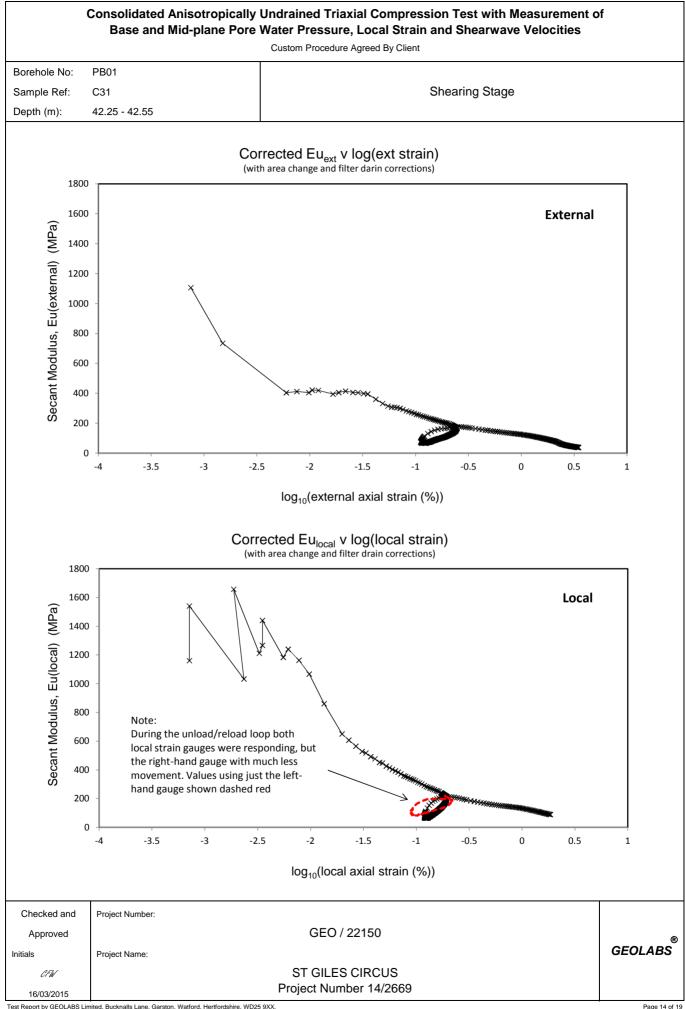

Authorised Signatories: [] J R Masters (Qual. Mgr) [] C F Wallace (Tech. Mgr) [] J J M Powell (Tech. Dir)

Test Report by GEOLABS Limited, Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX. Authorised Signatories: [] J R Masters (Qual. Mgr) [x] C F Wallace (Tech. Mgr) [] J J M Powell (Tech. Dir)

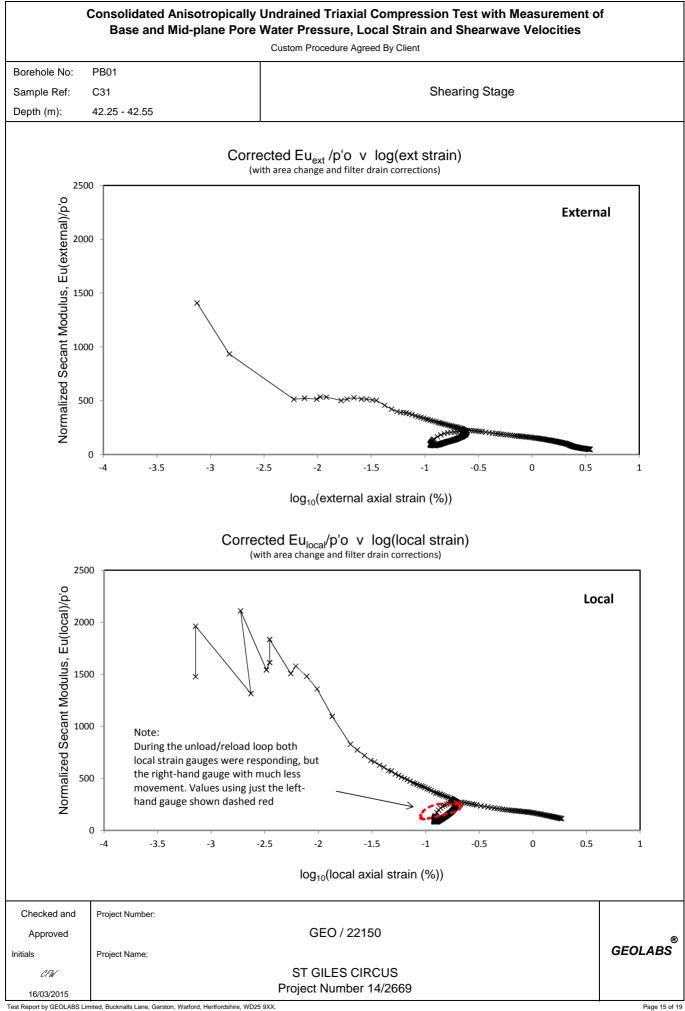


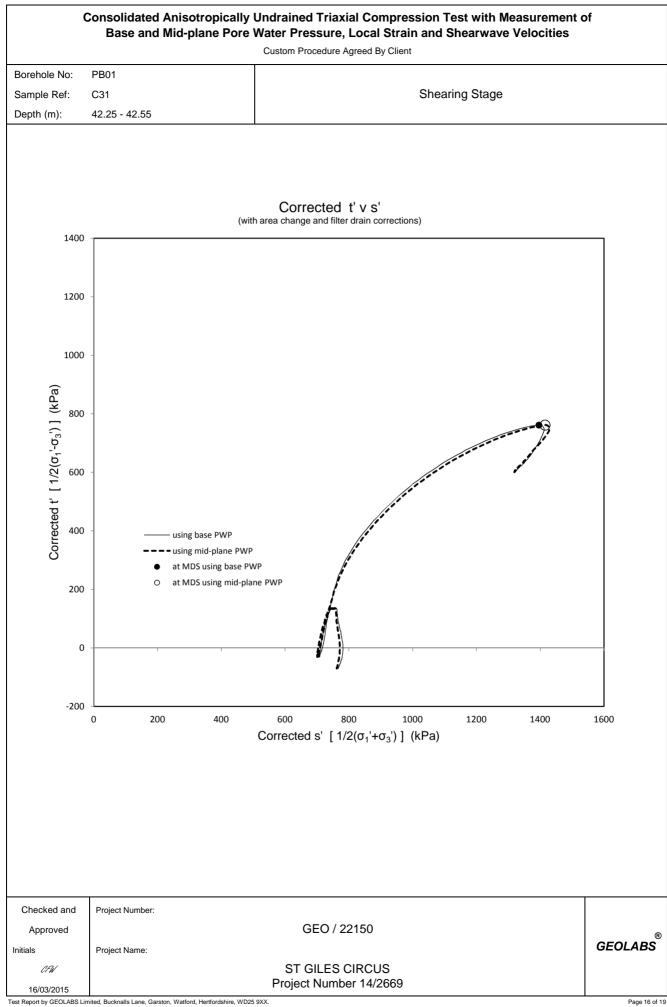

Test Report by GEOLABS Limited, Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX. Authorised Signatories: [] J R Masters (Qual. Mgr) [] C F Wallace (Tech. Mgr) [] J J M Powell (Tech. Dir)



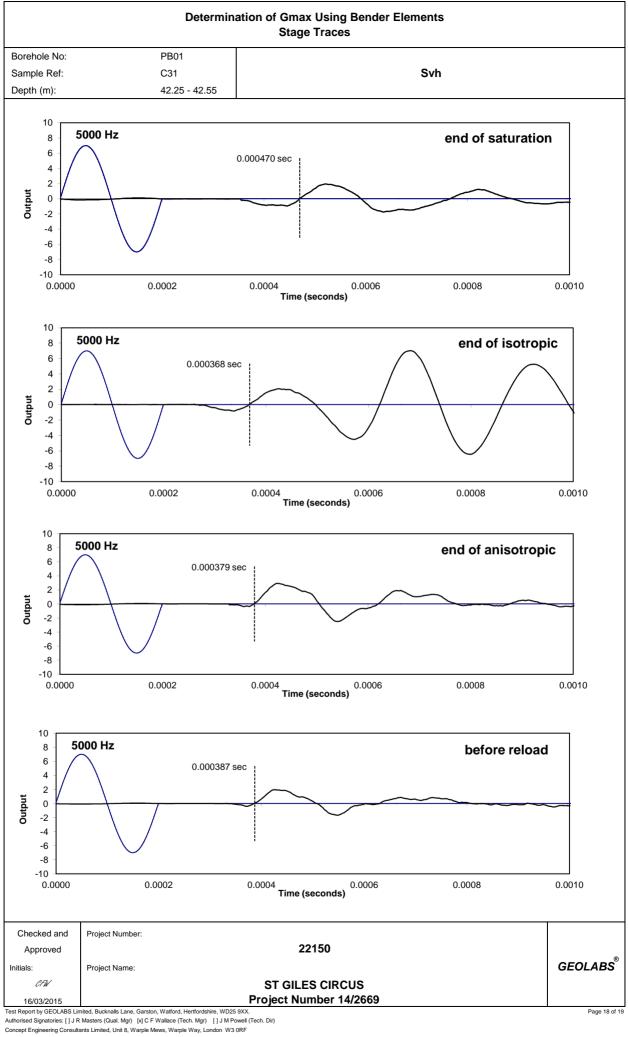

Test Report by GEOLABS Limited, Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX.

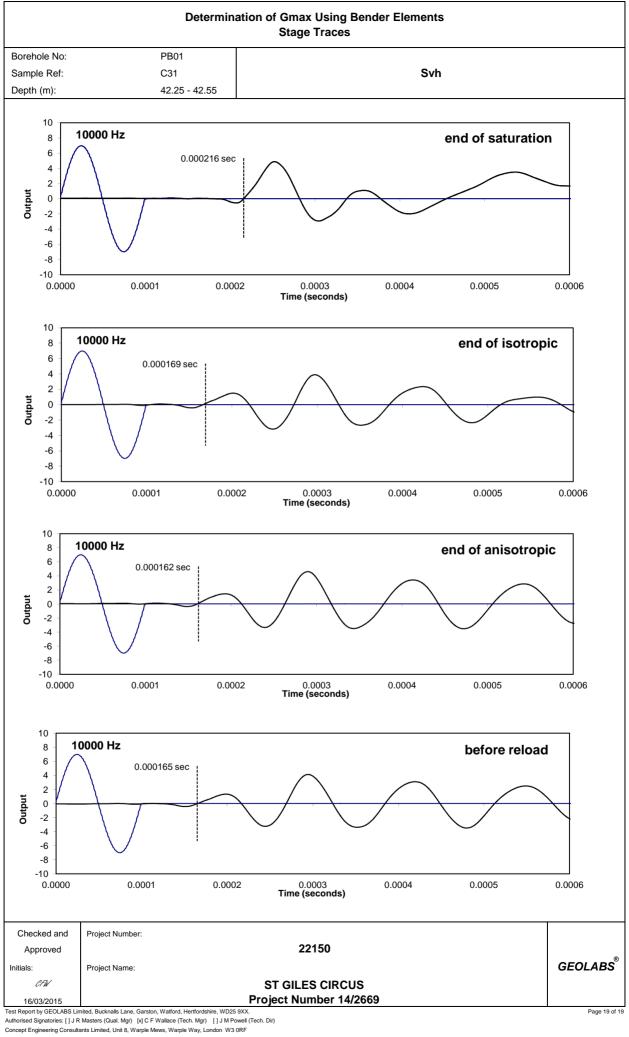
Authorised Signatories: [] J R Masters (Qual. Mgr) [] C F Wallace (Tech. Mgr) [] J J M Powell (Tech. Dir)





Test Report by GEOLABS Limited, Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX. Authorised Signatories: [] J R Masters (Qual. Mgr) [] C F Wallace (Tech. Mgr) [] J J M Powell (Tech. Dir) Client: Concept Engineering Consultants Limited, Unit 8, Warple Mews, Warple Way, London W3 ORF




Authorised Signatories: [] J R Masters (Qual. Mgr) [x] C F Wallace (Tech. Mgr) [] J J M Powell (Tech. Dir)

		Undrained Triaxial Compression Test with Measurement of Water Pressure, Local Strain and Shearwave Velocities	f
	-	Custom Procedure Agreed By Client	
Borehole No:	PB01		
Sample Ref:	C31	Shearing Stage - Calculations Notes	
Depth (m):	42.25 - 42.55		
	Cross-Sectional Area Calculations	5	
a)	The cross-sectional area is calculate	ed assuming a right-cylinder deformation of the specimen.	
	Membrane Corrections		
b)	Corrections for membrane restraint a	are according to BS1377:Part 8:1990	
	Filter Paper Corrections		
c)	Corrections for strength due to perip	heral filter papers are according to BS1377:Part 8:1990	
,		strain proportionally increasing from 0 kPa to the value calculated at 2% st	rain.
Checked and	Project Number:		
Approved		GEO / 22150	
Initials	Project Name:		GEOLABS
CFW		ST GILES CIRCUS	
16/03/2015		Project Number 14/2669	

Test Report by GEOLABS Limited, Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX.

Authorised Signatories: [] J R Masters (Qual. Mgr) [] C F Wallace (Tech. Mgr) [] J J M Powell (Tech. Dir)

13. CHEMICAL TEST RESULTS

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 14-63271

Replaces Analytical Report Number : 14-63271, issue no. 1

Project / Site name:	St Giles Circus	Samples received on:	19/11/2014
Your job number:	14-2669	Samples instructed on:	20/11/2014
Your order number:	CL206	Analysis completed by:	28/11/2014
Report Issue Number:	2	Report issued on:	28/11/2014
Samples Analysed:	8 soil samples		

dt Signed:

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Signed:

Neil Donovan Environmental Forensics Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

				202566	202567	2025(0	2025(0	202570
Lab Sample Number				393566	393567	393568	393569	393570
Sample Reference Sample Number	PB05	PB05 ES	PB05	PB05 ES	PB04 ES			
Depth (m)				ES 0.50	1.00	ES 2.00	3.00	0.50
	19/11/2014	19/11/2014	19/11/2014	19/11/2014	14/11/2014			
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			1	None Supplied	None Supplied	None Supplieu	None Supplieu	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	18	22	2.9	11
Total mass of sample received	kg	0.001	NONE	1.4	1.3	1.6	1.6	1.4
- · ·								
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
	-							
General Inorganics								
рН	pH Units	N/A	MCERTS	8.6	8.7	8.6	8.9	8.6
Total Cyanide	mg/kg	1	MCERTS	1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	1200	1600	2100	160	830
Sulphide	mg/kg	1	MCERTS	5.0	1.4	2.8	< 1.0	3.9
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	0.1	< 0.1	< 0.1	0.7
Total Phenols			-					
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10 < 0.10
Phenanthrene Anthracene	mg/kg mg/kg	0.1	MCERTS MCERTS	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10			
Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10			
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10			
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05			
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10	<pre>< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10</pre>	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	$\begin{array}{c} < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.05 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \end{array}$	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	$\begin{array}{c} < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.05 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \end{array}$	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	$\begin{array}{c} < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.05 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \end{array}$	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	$\begin{array}{c} < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.05 \\ < 0.05 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \end{array}$	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	$\begin{array}{c} < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.05 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.05 \end{array}$	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	$\begin{array}{c} < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.05 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.05 \end{array}$	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	$\begin{array}{c} < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.05 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.05 \end{array}$	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.05 1.6	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(a)pyrene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	<pre>< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.60 </pre>		< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.60 11	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.55 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.60 11
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS		<pre>< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.60 </pre>	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <		< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.60 $< 1.60 $
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.05 1.6 1 0.2 0.2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.5 < 0.2 < 4.0	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 12 0.6 < 0.2 < 4.0	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Diben2(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.05 1.6 1 0.2 0.2 4	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 1.60	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 12 0.6 < 0.2 < 4.0 15	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 11 0.8 < 0.2 < 4.0 16	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <td>< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.10 < 1.60 < 1.10 </td>	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.10 < 1.60 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 13 0.5 < 0.2 < 4.0 19 72	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 12 0.6 < 0.2 < 4.0	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.2 < 4.0 13 9.0	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.5 < 0.10 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Cadpare regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.05 1.6 1 0.2 0.2 4 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 1.60		< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.14 < 1.60 < 1.14 < 1.40 < 1.14 < 1.40 < 1.14 < 1.40 < 1.14 < 1.40 < 1.14 < 1.40 < 1.14 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40 < 1.40
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(a)pyrene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Choper (aqua regia extractable) Copper (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.05 1.6 1 0.2 0.2 4 1 1 1	MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.5 < 0.5 < 0.2 < 4.0 19 72 500	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.5	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.5 < 1.60	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.11 < 0.10 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.5 < 1.60
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)apyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 1.60	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 4.0 15 57 390 1.1	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.11 < 0.10 < 0.11 < 0.12 < 1.60 11 0.8 < 0.2 < 4.0 1.4	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.3 <td>< 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.5 < 0.2 < 4.0 14 < 1.4 < 0.14 < 0.12 < 0.1</td>	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.5 < 0.2 < 4.0 14 < 1.4 < 0.14 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.1

Lab Sample Number				393566	393567	393568	393569	393570
Sample Reference					PB05	PB05	PB05	PB04
Sample Number				ES	ES	ES	ES	ES
Depth (m)				0.50	1.00	2.00	3.00	0.50
Date Sampled				19/11/2014	19/11/2014	19/11/2014	19/11/2014	14/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	ma/ka	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

Lab Sample Number				393571	393572	393573	
Sample Reference				PB04	PB04	PB04	
Sample Number				ES	ES	ES	
Depth (m)				1.00	2.00	3.00	
Date Sampled	14/11/2014	14/11/2014	14/11/2014				
Time Taken				None Supplied	None Supplied	None Supplied	
			Þ				
	_	de Li	Accreditation Status				
Analytical Parameter	Units	Limit of detection	edii				
(Soil Analysis)	ช	lo of	us us				
		-	9				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	15	16	12	
Total mass of sample received	kg	0.001	NONE	1.5	1.7	1.6	
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	
	1,00		100 1/020	Hot detected	Hot detected	Hot detected	• • •
General Inorganics							
pH	pH Units	N/A	MCERTS	8.5	8.5	8.7	I
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	920	870	150	
Sulphide	mg/kg	1	MCERTS	1.4	2.9	4.0	
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	
Fluorene							
	ma/ka	0.1	MCERIS	< 0.10	< 0.10	< 0.10	
Phenanthrene	mg/kg ma/ka	0.1	MCERTS MCERTS	< 0.10	< 0.10	< 0.10	
Phenanthrene Anthracene	mg/kg	0.1 0.1	MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10	< 0.10	< 0.10 < 0.10 < 0.10	
Anthracene	mg/kg mg/kg	0.1	MCERTS MCERTS	< 0.10 < 0.10		< 0.10 < 0.10	
Anthracene Fluoranthene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1	MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene	mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pfluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	<pre>< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.60 </pre>	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.11 < 0.10 < 0.11 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.		
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.05 1.6 1 0.2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS		< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 14 0.9 0.1		
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS		< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.25	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.05 1.6 1 0.2 0.2 4	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 13 0.8 < 0.2 < 4.0	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 14 1.2 < 0.2 < 4.0	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Ghrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS		< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 4.0 16	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 14 1.2 < 0.2 < 4.0 17	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chopper (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.05 1.6 1 0.2 0.2 4 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS		< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 14 0.9 < 0.2 < 4.0 16 97	< 0.10 < 0.10 < 0.10 < 0.10 < 0.00 < 0.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 1.60 14 1.2 < 0.2 < 4.0 17 25	
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.05 1.6 1 0.2 0.2 4 1 1 1	MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 4.0 16 97 260		
Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 1.60	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 1.60 14 0.9 < 0.2 < 4.0 16 97 260 2.2	< 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.2 < 1.60 14 1.2 < 0.2 < 4.0 17 25 98 < 0.3 < 0.3	

Lab Sample Number				393571	393572	393573		
Sample Reference				PB04	PB04	PB04		
Sample Number				ES	ES	ES		
Depth (m)				1.00	2.00	3.00		
Date Sampled				14/11/2014	14/11/2014	14/11/2014		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics							-	
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
393566	PB05	ES	0.50	Brown sandy topsoil with gravel and brick.
393567	PB05	ES	1.00	Brown sandy topsoil with gravel and brick.
393568	PB05	ES	2.00	Brown sandy topsoil with gravel and brick.
393569	PB05	ES	3.00	Light brown sandy gravel.
393570	PB04	ES	0.50	Brown sandy topsoil with gravel and brick.
393571	PB04	ES	1.00	Brown sandy topsoil with gravel and brick.
393572	PB04	ES	2.00	Brown sandy topsoil with gravel and brick.
393573	PB04	ES	3.00	Light brown sandy clay with gravel and brick.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

		Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
(Polish) TPH1 (Soil)	In-house method	In-house method based on USEPA8260	L073S-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-63841

Project / Site name:	St Giles Circus	Samples received on:	28/11/2014
Your job number:	14-2669	Samples instructed on:	28/11/2014
Your order number:	CL215	Analysis completed by:	09/12/2014
Report Issue Number:	1	Report issued on:	09/12/2014
Samples Analysed:	4 soil samples		

Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

110

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

TPL

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number				396831	396832	396833	396834	
Sample Reference	WS02	WS02	WS02	WS02				
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.50	1.00	2.00	3.00	
Date Sampled				26/11/2014	26/11/2014	26/11/2014	26/11/2014	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
			Þ					
Analytical Developmentary	_	Limit of detection	Accreditation Status					
Analytical Parameter	Units	tect mit	tat					
(Soil Analysis)	ស	ion of	us lati					
		-	9					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	20	9.3	9.6	16	
Total mass of sample received	kg	0.001	NONE	1.2	1.1	1.5	1.2	
· · · · · · · · · · · · · · · · · · ·			-					
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
General Inorganics								
рН	pH Units	N/A	MCERTS	7.9	8.1	8.1	8.2	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	570	250	59	89	
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.1	
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Creative d DALLS								
Speciated PAHs Naphthalene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
	mg/kg	0.05	1 1	< 0.10	< 0.10	< 0.10	< 0.05	
Acenaphthylene Acenaphthene	mg/kg mg/kg	0.1	MCERTS MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.10	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.10	
soned griffer frene	1119/119	0.05	TICERTS	\$ 0.05	\$ 0.00	\$ 0.00	1 0100	
Total PAH								
Speciated Total EPA-16 PAHs	ma/ka	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	
	•							

TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic > EC35 - EC44

TPH-CWG - Aromatic (EC5 - EC35) TPH-CWG - Aromatic (EC5 - EC44)

Lab Sample Number				396831	396832	396833	396834	
Sample Reference				WS02	WS02	WS02	WS02	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.50	1.00	2.00	3.00	
Date Sampled				26/11/2014	26/11/2014	26/11/2014	26/11/2014	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids		-	-				-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	6.6	12	14	
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	0.7	< 0.2	0.9	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	26	6.4	36	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	22	7.5	3.7	28	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	66	7.9	1.9	12	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	
Nickel (agua regia extractable)	mg/kg	1	MCERTS	26	12	13	32	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc (agua regia extractable)	mg/kg	1	MCERTS	53	21	18	71	
Monoaromatics					<u></u>		<u> </u>	
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Petroleum Hydrocarbons TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	
TOULONIO American FOE FOE		0.1						
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

mg/kg mg/kg

mg/kg

mg/kg

10 8.4

10

10

MCERTS NONE

MCERTS

NONE

< 10 < 8.4

< 10

< 10

< 10 < 8.4

< 10

< 10

< 10 < 8.4

< 10

< 10

< 10 < 8.4

< 10

< 10

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
396831	WS02	None Supplied	0.50	Light brown clay and sand with brick.
396832	WS02	None Supplied	1.00	Green sandy clay with gravel.
396833	WS02	None Supplied	2.00	Light brown sand.
396834	WS02	None Supplied	3.00	Light brown clay and sand.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
(Polish) TPH1 (Soil)	In-house method	In-house method based on USEPA8260	L073S-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

Iss No 14-63841-1

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-63842

Project / Site name:	St Giles Circus	Samples received on:	28/11/2014
Your job number:	14-2669	Samples instructed on:	28/11/2014
Your order number:	CL215	Analysis completed by:	10/12/2014
Report Issue Number:	1	Report issued on:	10/12/2014
Samples Analysed:	1 wac multi sample		

Signed: Castate

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical Results Report No:

Location

Sampling Date Zé/11/2014 Stable Non-reactive Sample ID WSU Stable Non-reactive Stable Non-reactive Hazardous Waste Land fill AddRDDD Hazardous Waste Land fill Reactive Hazardous Waste Land fill Reactive Hazardous Waste Land fill Maxardous	Lab Reference (Sample Number)		3968	37	Landfill Waste Acceptance Criteria Limits			
Sample DUSU2Instruction of the standow of the	Someling Data				+			
TOC (by)**<0.1	Sample ID		WS	12		Inert Waste HAZARDOUS Landfill waste in non- hazardous		
Loss on purplies (%) **····Image of the second of the	Solid Waste Analysis							
BTEX (upls) ** < 10 < 6000 Mineral Oli (ng/kg) < 10	TOC (%)**	< 0.1			3%	5%	6%	
Sun of CSS (mg/kg) < 1 Mineral OI (mg/kg) <	Loss on Ignition (%) **	-					10%	
Mineral (ir.gn/kg) < 10 < -	BTEX (µg/kg) **	< 10			6000			
Total PAH (WAC-17) (mg/kg) < <t< td=""><td>Sum of PCBs (mg/kg)</td><td>< 0.30</td><td></td><td></td><td>1</td><td></td><td></td></t<>	Sum of PCBs (mg/kg)	< 0.30			1			
pH (units)** · · · · · · · · · · To be evaluated To be for complicity To be for compli	Mineral Oil (mg/kg)	< 10			500			
Add Neutralisation Capachy (mol / kg) - To be evaluated State (state) (BS EN 12457 - 3 preparation utilising end over end leaching procedure) mg/l mg/l mg/l mg/l using BS EN 12457-3 at L/S 10 k/g(m/g)(m/g)(m/g) Arsenic * 0.010 < 0.010	Total PAH (WAC-17) (mg/kg)	< 1.6			100			
Lust Analysis 2:1 8:1 Cumulative 10:1 Linit values for compliance leaching test. (B5 EN 12457 - 3 preparation utilising end over end leaching procedure) mg/l mg/l mg/l using BS EN 12457-3 at L/S 10 //kg (mg/kg) Arsenic * 0.010 < 0.010	pH (units)**	-				>6		
L.1 0.1 Unitative 10.1 BSE N12457 - 3 preparation utilising end over end leaching procedure) mg/l mg/l mg/kg Arsenic * 0.010 <0.010	Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluate	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eluate Analysis	2.1	8.1	Cumulative 10:1	Limit value	es for compliance le	eaching test	
Arenic * 0.010 0.069 0.5 2 25 Barium * 0.019 0.015 0.15 20 100 300 Cadmium * 0.005 <0.0005						12457-3 at L/S 10	l/kg (mg/kg)	
Barium * 0.019 0.015 0.15 20 100 300 Cadmium * < 0.0005	procedure)	ilig/i	mg/i	IIIg/ kg				
Cadmium * < 0.0005 < 0.0005 < 0.0020 0.04 1 5 Chromium * 0.017 0.0079 0.090 0.5 10 70 Copper * 0.011 0.0062 0.067 2 50 100 Mercury * < 0.0015	Arsenic *	0.010	< 0.010	0.069	0.5	2	25	
Chromium * 0.017 0.0079 0.090 0.5 10 70 Copper * 0.011 0.0062 0.067 2 50 100 Merury * <.0015	Barium *	0.019	0.015	0.15	20	100	300	
Copper * 0.011 0.0062 0.067 2 50 100 Mercury * < 0.0015	Cadmium *							
Mercury * < 0.0015 < 0.0015 < 0.0010 0.01 0.2 2 Molydderum * 0.0091 0.0033 0.040 0.5 10 30 Nickel * 0.0090 0.0062 0.066 0.4 10 40 Lead * 0.0050 0.033 0.55 10 50 Antimony * < 0.0050								
Molybdenum * 0.0091 0.0033 0.040 0.5 10 30 Nickel * 0.0090 0.0062 0.066 0.4 10 40 Lead * 0.0062 <0.050								
Nickel * 0.0090 0.0062 0.066 0.4 10 40 Lead * 0.0062 <.0.0050	Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2		
Lead * 0.0062 < 0.0050 0.039 0.5 10 50 Antimory * < 0.0050		0.0091	0.0033	0.040	0.5	10		
Antimony * < 0.0050 < 0.0050 0.046 0.066 0.7 5 Selenium * < 0.010			0.0062			10		
Selenium * < 0.010	Lead *	0.0062	< 0.0050					
Zinc * 0.015 0.0082 0.089 4 50 200 Chloride * 5.0 < 4.0				0.046				
Chloride * 5.0 < 4.0 17 800 4000 25000 Fluoride 0.37 0.23 2.4 10 150 500 Sulphate * 8.8 9.4 93 1000 20000 50000 DDS 160 60 720 4000 60000 10000 Phenol Index (Monhydric Phenols) * < 0.13 < 0.13 < 0.50 1 $ -$ DOC 1.8 3.5 33 500 800 1000 Leach Test Information $ -$ Stone Content (%) < 0.1 $ -$ Stone Content (%) < 0.1 $ -$ Stone Content (%) < 0.1 $ -$ Stone Content (%) < 0.1 $ -$ Stone Content (%) 9.3 $ -$					-			
Fluoride 0.37 0.23 2.4 10 150 500 Sulphate* 8.8 9.4 93 1000 20000 50000 TDS 160 60 720 4000 60000 10000 Phenol Index (Monhydric Phenols)* < 0.13 < 0.13 < 0.50 1 $ -$ DOC 1.8 3.5 33 500 800 10000 Doc 1.8 3.5 33 500 800 1000 Leach Test Information $ -$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Sulphate * 8.8 9.4 93 1000 20000 50000 TDS 160 60 720 4000 60000 100000 Phenol Index (Monhydric Phenols) * <0.13								
TDS 160 60 720 4000 60000 100000 Phenol Index (Monhydric Phenols)* < 0.13								
Phenol Index (Monhydric Phenols)* < 0.13 < 0.13 < 0.50 1 - - DOC 1.8 3.5 33 500 800 1000 Leach Test Information	•		-					
DOC 1.8 3.5 33 500 800 1000 Leach Test Information Image: Content (%) Image: Content (%						60000	100000	
Image: Constraint of the second sec	Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-	
Stone Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 < 0.1 Image: Content (%) < 0.1 Image: Content (%) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	DOC	1.8	3.5	33	500	800	1000	
Sample Mass (kg) 1.1 Image: Constraint of the system of t	Leach Test Information							
Sample Mass (kg) 1.1 Image: Constraint of the system of t								
Dry Matter (%) 91 Image: Constraint of the system of the			├ ───┤					
Moisture (%) 9.3 Image: Constraint of the second s			├ ───┤					
Stage 1 Image: Ima			├ ───┤					
Volume Eluate L2 (litres) 0.33 0.31 0.00 0.00 0.00 0.00 0.00 0.00		9.3						
		0.22	├ ───┤					
Hittered Eluate VE1 (litres) 0.21			<u> </u>					
	Filtered Eluate VE1 (litres)	0.21						

14-63842

St Giles Circus

Ideasities are expressed on a ny weight bass, after correction for mosture content where applicable Stated limits are for guidance only and IC cannot be held responsible for any discrependes with current legislation *= UKAS accredited (liquid eluate analysis only) ** = MCERTS accredited

Client: CONCEPT

email:reception@i2analytical.com

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
396837	WS02	None Supplied	1.00	Green sandy clay with gravel.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

				r	
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	w	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	W	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	w	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	w	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	w	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	w	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-63672

Project / Site name:	St Giles Circus	Samples received on:	25/11/2014
Your job number:	14-2669	Samples instructed on:	27/11/2014
Your order number:	CL215	Analysis completed by:	08/12/2014
Report Issue Number:	1	Report issued on:	08/12/2014
Samples Analysed:	5 soil samples		

Signed: Castate

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Lab Sample Number				395875	395876	395877	395878	395879
Sample Reference	WS03	WS03	WS03	WS03	WS03			
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)				0.50	1.00	2.00	3.00	3.80
Date Sampled	21/11/2014	21/11/2014	21/11/2014	21/11/2014	21/11/2014			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	6.3	6.0	5.1	13	19
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	2.0	2.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
рН	pH Units	N/A	MCERTS	6.9	6.9	7.1	7.2	7.2
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	140	66	770	240	130
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.3
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
	mg/kġ	1.0	MUERIS	< 1.00	< 1.00	< 1.00	< 1.0U	< 1.00
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	7.1	8.2	4.8	10
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	0.3	< 0.2	< 0.2	0.7
Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg mg/kg	<u>0.2</u> 4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	4	MCERTS	4.7	4.6	8.2	5.0	35
Copper (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	3.8	2.9	3.7	2.0	29
Lead (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	2.1	< 1.0	2.6	1.1	14
Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)		0.3	MCERTS	< 0.3 6.4	< 0.3 5.6	< 0.3	< 0.3 4.4	< 0.3 42
	mg/kg	1	MCERTS	6.4 < 1.0	< 1.0	< 1.0	4.4 < 1.0	< 1.0
Selenium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	< 1.0 13	< 1.0 8.2	< 1.0	< 1.0 8.9	< 1.0
בוווכ (מקוום וכטום בגנו מנומטופ)	тіу/ку	1	PICERIS	13	0.2	14	0.9	00

Lab Sample Number				395875	395876	395877	395878	395879
Sample Reference				WS03	WS03	WS03	WS03	WS03
Sample Number				None Supplied				
Depth (m)				0.50	1.00	2.00	3.00	3.80
Date Sampled				21/11/2014	21/11/2014	21/11/2014	21/11/2014	21/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	ma/ka	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
					-			
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
395875	WS03	None Supplied	0.50	Light brown sand.
395876	WS03	None Supplied	1.00	Light brown sand.
395877	WS03	None Supplied	2.00	Light brown sand with gravel.
395878	WS03	None Supplied	3.00	Light brown clay and sand.
395879	WS03	None Supplied	3.80	Light brown clay.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name Analytical Method Description		Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
(Polish) TPH1 (Soil)	In-house method	In-house method based on USEPA8260	L073S-PL	W	NONE	
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025	
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS	
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	w	MCERTS	
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE	
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	NONE	
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS	
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS	
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	w	NONE	
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS	
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS	
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS	
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE	
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS	
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS	

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-63673

Project / Site name:	St Giles Circus	Samples received on:	25/11/2014
Your job number:	14-2669	Samples instructed on:	27/11/2014
Your order number:	CL215	Analysis completed by:	09/12/2014
Report Issue Number:	1	Report issued on:	09/12/2014
Samples Analysed:	1 wac multi sample		

Signed: Castate

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical Results

Report No:		14-63	5673				
					Client:	CONCEPT	
Location		St Giles	Circus				
		St diles	circus		Landfill	Waste Acceptan	e Criteria
Lab Reference (Sample Number)		3958				Limits	
Sampling Date		21/11/				Stable Non- reactive	
Sample ID		WS	03		Inert Waste	HAZARDOUS	Hazardous
Depth (m)		3.8	30		Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis					201	50/	<i>co</i> /
TOC (%)** Loss on Ignition (%) **	0.3				3%	5% 	6% 10%
EOSS ON Ignition (%) ** BTEX (μg/kg) **	< 10				6000		
Sum of PCBs (mg/kg)	< 0.30				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 1.6				100		
pH (units)**	-					>6	
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated
					Limit valu	es for compliance le	
Eluate Analysis	2:1	8:1		Cumulative 10:1			
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l		mg/kg	using BS EN	12457-3 at L/S 10) l/kg (mg/kg)
Arsenic *	< 0.010	< 0.010		< 0.050	0.5	2	25
Barium *	0.048	< 0.0050		0.027	20	100	300
Cadmium *	< 0.0005	< 0.0005		< 0.0020	0.04	1	5
Chromium *	0.023	< 0.0010		0.011	0.5	10	70
Copper *	< 0.0010	< 0.0030		< 0.020	2	50	100
Mercury *	< 0.0015	< 0.0015		< 0.010	0.01	0.2	2
Molybdenum *	0.011	< 0.0030		< 0.020	0.5	10	30
Nickel *	0.0069	< 0.0010		< 0.0050	0.4	10	40
Lead * Antimony *	0.0086	< 0.0050 < 0.0050		< 0.020 < 0.020	0.5	10 0.7	50 5
Selenium *	< 0.0000	< 0.010		< 0.020	0.00	0.5	7
Zinc *	0.015	< 0.0010		< 0.040	4	50	200
Chloride *	12	< 4.0		35	800	4000	25000
Fluoride	1.3	0.53		5.7	10	150	500
Sulphate *	74	0.59		48	1000	20000	50000
TDS	160	30		370	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13		< 0.50	1	-	-
DOC	6.8	6.1		62	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	2.0						
Dry Matter (%)	81						
Moisture (%)	19						
Stage 1							
Volume Eluate L2 (litres)	0.32						
Filtered Eluate VE1 (litres)	0.10						
Results are expressed on a dry weight basis, after correction for moisture content Stated limits are for guidance only and I2 cannot be held responsible for any discr	where applicable	vielation					
	epencies with current leg	ji aici (I Ul I					

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
395880	WS03	None Supplied	3.80	Light brown clay.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	w	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	w	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	w	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-63809

Project / Site name:	St Giles Circus	Samples received on:	28/11/2014
Your job number:	14-2669	Samples instructed on:	01/12/2014
Your order number:	CL223	Analysis completed by:	09/12/2014
Report Issue Number:	1	Report issued on:	09/12/2014
Samples Analysed:	23 soil samples		

Signed: Castate

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Lab Sample Number				396666	396667	396668	396669	396670
Sample Reference								
Sample Number				WS01 ES01	WS01 ES02	WS04 ES01	WS04 ES02	WS04 ES03
Depth (m)				0.50	1.00	0.50	1.00	2.00
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	12	12	6.7	1.7	11
Total mass of sample received	kg	0.001	NONE	0.45	0.41	0.43	0.45	0.46
	-							
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH	pH Units	N/A	MCERTS	7.8	7.9	8.3	8.1	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	5400	93	330	180	72
Sulphide	mg/kg	1	MCERTS	8.4	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5	< 0.1	< 0.1	< 0.1	< 0.1
Total Phenols								
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	IIIg/Kg	1	PICERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Heavy Metals / Metalloids	m = 0	-	MCERTS	21	40	10	14	7.0
Arsenic (aqua regia extractable)	mg/kg	1		21	43	16	14	7.9
Boron (water soluble)	mg/kg	0.2	MCERTS	2.4	1.2	0.9	0.8	0.6
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	0.2 4	MCERTS MCERTS	< 0.2 < 4.0	< 0.2 < 4.0	< 0.2	< 0.2 < 4.0	< 0.2 < 4.0
Chromium (nexavalenc) Chromium (aqua regia extractable)	mg/kg	4	MCERTS	< 4.0 5.2	< 4.0 12	10	6.4	5.6
Copper (aqua regia extractable) Copper (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	5.2	12	10	7.3	2.7
Lead (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	850	15	29	23	< 1.0
Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS	2.5	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.9	13	9.5	5.2	6.8
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	150	26	22	15	11
		-						

Lab Sample Number				396666	396667	396668	396669	396670
Sample Reference				WS01	WS01	WS04	WS04	WS04
Sample Number				ES01	ES02	ES01	ES02	ES03
Depth (m)				0.50	1.00	0.50	1.00	2.00
Date Sampled	27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

TPH1 (C6 - C12)	ma/ka	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
		011	HONE		1012	1011		
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	24	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	24	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	24	< 10	< 10	< 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

Lab Sample Number				396671	396672	396673	396674	396675
Sample Reference				WS04	WS05	WS05	WS05	WS05
Sample Number				ES04	ES01	ES02	ES03	ES04
Depth (m)				2.80	0.50	1.00	2.00	3.00
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
		r	1	None Supplieu	None Supplieu	None Supplieu	None Supplieu	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	5.8	5.6	12	12
Total mass of sample received	kg	0.001	NONE	0.45	0.42	0.38	0.44	0.47
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH	pH Units	N/A	MCERTS	7.8	7.9	7.8	7.6	7.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	<1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	8.5	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	< 50	260	180	< 50	< 50
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	//////////////////////////////////////	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
• • • • •								
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH	I							
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Heavy Metals / Metalloids					1			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.2	12	23	8.9	7.5
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	0.7	0.6	0.6	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	1.3	8.5	8.6	4.6	3.2
		1	MCERTS	< 1.0	11	5.3	4.6	1.2
Copper (aqua regia extractable)	mg/kg	-						
Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	7.2	1.3	< 1.0	1.6
Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	1 0.3	MCERTS MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg	1	MCERTS MCERTS MCERTS	< 0.3 1.9	< 0.3 12	< 0.3 13	< 0.3 10	< 0.3 6.9
Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	1 0.3	MCERTS MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3

Lab Sample Number				396671	396672	396673	396674	396675
Sample Reference				WS04	WS05	WS05	WS05	WS05
Sample Number				ES04	ES01	ES02	ES03	ES04
Depth (m)				2.80	0.50	1.00	2.00	3.00
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

TPH1 (C6 - C12)		0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
IPHI (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	ma/ka	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic > EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
							-	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

Lab Sample Number				396676	396677	396678	396679	396680
Sample Reference				WS07	WS07	WS07	WS07	WS08
Sample Number				ES01	ES02	ES03	ES04	ES01
Depth (m)				0.50	1.00	2.00	3.00	0.30
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	17	5.9	6.7	12	1.6
Total mass of sample received	kg	0.001	NONE	0.46	0.41	0.46	0.46	0.45
	itig	0.001	Home	0110	0.112	0110	0110	0110
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
рН	pH Units	N/A	MCERTS	7.8	8.0	7.8	7.7	7.8
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	1300	< 50	< 50	< 50	1400
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	240
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.6	< 0.1	< 0.1	< 0.1	0.3
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10
Anthracene Fluoranthene	mg/kg	0.1	MCERTS MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	mg/kg	0.1		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.1	MCERTS MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.10	< 0.10	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Heavy Metals / Metalloids			-					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	12	16	14	14
Boron (water soluble)	mg/kg	0.2	MCERTS	2.0	1.2	0.9	0.5	2.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	10	8.6	9.3	3.3	16
Copper (aqua regia extractable)	mg/kg	1	MCERTS	54	8.7	5.5	4.1	44
Lead (aqua regia extractable)	mg/kg	1	MCERTS	520	3.3	< 1.0	2.2	160
		0.3	MCERTS	1.3	< 0.3	< 0.3	< 0.3	< 0.3
Mercury (aqua regia extractable)	mg/kg	0.5						
	mg/kg mg/kg	1	MCERTS	17	9.8	15	10	14
Mercury (aqua regia extractable)								14 < 1.0

Lab Sample Number				396676	396677	396678	396679	396680
Sample Reference				WS07	WS07	WS07	WS07	WS08
Sample Number				ES01	ES02	ES03	ES04	ES01
Depth (m)				0.50	1.00	2.00	3.00	0.30
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

ТРН1 (С6 - С12)	ma/ka	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
		011	HOHE	1011	1012	1011		. 012
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

Lab Sample Number				396681	396682	396683	396684	396685
Sample Reference								
Sample Number				WS08 ES02	WS14 ES01	WS14 ES02	WS14 ES03	WS14 ES04
Depth (m)				1.00	0.50	1.00	2.00	3.00
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Change Comband		0.1		. 0.1	. 0.1	. 0.1	. 0.1	. 0.1
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A 0.001	NONE NONE	12 0.47	12 0.45	5.1 0.45	8.9	3.9 0.44
Total mass of sample received	kg	0.001	NUNE	0.47	0.45	0.45	0.42	0.44
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH	pH Units	N/A	MCERTS	7.8	7.8	7.6	7.3	7.6
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	< 50	< 50	< 50	< 50	< 50
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.2	0.5	< 0.1	< 0.1	< 0.1
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene Ronzo(a)apthracono	mg/kg	0.1	MCERTS MCERTS	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.10	< 0.10	< 0.05	< 0.10	< 0.10
Chrysene Benzo(h)fluoranthene	mg/kg	0.05	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.10	< 0.05	< 0.10	< 0.05
Total PAH Speciated Total EPA-16 PAHs	mallin	1.6	MCEDTC	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Specialeu Tolai EPA-10 PAHS	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Heavy Metals / Metalloids				·	1			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	10	9.7	13	15	7.7
Boron (water soluble)	mg/kg	0.2	MCERTS	1.6	1.3	0.5	0.6	0.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	16	9.9	3.9	11	< 1.0
Copper (aqua regia extractable)	mg/kg	1	MCERTS	16	69	4.9	6.1	< 1.0
Lead (aqua regia extractable)	mg/kg	1	MCERTS	30	130	1.9	< 1.0	< 1.0
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.4	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	11	9.6	5.6	11	3.2
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	43	830	30	22	7.9

Lab Sample Number				396681	396682	396683	396684	396685
Sample Reference				WS08	WS14	WS14	WS14	WS14
Sample Number				ES02	ES01	ES02	ES03	ES04
Depth (m)				1.00	0.50	1.00	2.00	3.00
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

ТРН1 (С6 - С12)	ma/ka	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
		011	HOILE	1011	1012	1011		. 012
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

Lab Sample Number			396686	396687	396688			
Sample Reference				WS14	WS14	WS14	İ	1
Sample Number				ES05	ES06	ES07	1	
Depth (m)				4.00	5.00	5.80		
Date Sampled				27/11/2014	27/11/2014	27/11/2014		
Time Taken				None Supplied	None Supplied	None Supplied		
			Þ					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	12	15	13		
Total mass of sample received	kg	0.001	NONE	0.44	0.42	0.38		
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected		i
Aspestos III Soli	туре	N/A	150 17025	Not-detected	Not-detected	Not-detected	<u></u>	88
General Inorganics								
pН	pH Units	N/A	MCERTS	7.7	8.4	8.0		
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	1	
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1		
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	19	< 5.0		
Total Sulphate as SO₄	mg/kg	50	ISO 17025	< 50	230	< 50		
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20		
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	0.1	0.2		
Total Phenois		-					1	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Speciated PAHs		0.05	1405070	0.05	0.05	. 0.05		
Naphthalene Acenaphthylene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10		
Acenaphthene	mg/kg mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Total PAH							1	r 1
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60		<u> </u>
Hanny Matala / Matallaida								
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.4	17	18		I
Arsenic (aqua regia extractable) Boron (water soluble)		0.2	MCERTS	9.4	5.2	18		╂────┨
Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	50	46	l	1 1
Copper (aqua regia extractable)	mg/kg	1	MCERTS	1.8	36	36		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	14	15	l	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	2.9	43	43	1	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	1	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	8.3	77	94		
· · · · · · · · · · · · · · · · · · ·	<i>J</i> 1.19						-	

Lab Sample Number				396686	396687	396688		
Sample Reference				WS14	WS14	WS14		
Sample Number				ES05	ES06	ES07		
Depth (m)				4.00	5.00	5.80		
Date Sampled				27/11/2014	27/11/2014	27/11/2014		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics							-	
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		

TPH1 (C6 - C12)	ma/ka	0.1	NONE	< 0.1	< 0.1	< 0.1	1	
IPHI (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	ma/ka	8	MCERTS	< 8.0	< 8.0	< 8.0		
TPH-CWG - Aliphatic > EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0		
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10		
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10		
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10		
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10		
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007		

Miscellaneous Organics							
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
396666	WS01	ES01	0.50	Brown sandy topsoil with gravel and rubble.
396667	WS01	ES02	1.00	Brown sandy topsoil.
396668	WS04	ES01	0.50	Light brown sand with gravel.
396669	WS04	ES02	1.00	Light brown sand with gravel.
396670	WS04	ES03	2.00	Light brown sand.
396671	WS04	ES04	2.80	Light brown sand.
396672	WS05	ES01	0.50	Light brown sand.
396673	WS05	ES02	1.00	Brown sand with gravel.
396674	WS05	ES03	2.00	Light brown sand.
396675	WS05	ES04	3.00	Light brown sand.
396676	WS07	ES01	0.50	Brown topsoil and clay with gravel and brick.
396677	WS07	ES02	1.00	Light brown sand.
396678	WS07	ES03	2.00	Light brown sand.
396679	WS07	ES04	3.00	Light brown sand.
396680	WS08	ES01	0.30	Brown topsoil and clay with gravel and vegetation.
396681	WS08	ES02	1.00	Brown topsoil and clay with gravel and vegetation.
396682	WS14	ES01	0.50	Brown clay and topsoil with gravel and vegetation.
396683	WS14	ES02	1.00	Light brown sand.
396684	WS14	ES03	2.00	Light brown sand.
396685	WS14	ES04	3.00	Light brown sand.
396686	WS14	ES05	4.00	Light brown sand.
396687	WS14	ES06	5.00	Brown clay.
396688	WS14	ES07	5.80	Brown clay.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
(Polish) TPH1 (Soil)	In-house method	In-house method based on USEPA8260	L073S-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	w	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Toluene Extractable Matter in soil	Gravimetrically determined through extraction with toluene.	In-house method	L013-UK	D	NONE

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-63810

Project / Site name:	St Giles Circus	Samples received on:
Your job number:	14-2669	Samples instructed on:
Your order number:	CL223	Analysis completed by:
Report Issue Number:	1	Report issued on:
Samples Analysed:	4 wac multi samples	


State Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

28/11/2014

01/12/2014

10/12/2014

10/12/2014

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Report No:		14-63810				
				Cliente	CONCEPT	
				Client:	CONCEPT	
Location		St Giles Circus	;			
Lab Reference (Sample Number)				Landfill	Waste Acceptanc	e Criteria
		396689		Limits	1	
Sampling Date		27/11/2014			Stable Non-	
Sample ID Depth (m)		WS01 ES02		Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfi
Solid Waste Analysis						
TOC (%)**	< 0.1			3%	5%	6%
Loss on Ignition (%) **	-					10%
BTEX (µg/kg) **	< 10			6000		
Sum of PCBs (mg/kg)	< 0.30			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 1.6			100		
pH (units)**	-				>6	
Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluate
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit valu	es for compliance le	eaching test
(BS EN 12457 - 3 preparation utilising end over end leaching				using BS EN	12457-3 at L/S 10) l/kg (mg/kg)
procedure)	mg/l	mg/l	mg/kg			
Arsenic *	0.014	< 0.010	0.076	0.5	2	25
Barium *	0.033	0.019	0.21	20	100	300
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5
Chromium *	0.0058	0.0021	0.026	0.5	10	70
Copper *	0.0039	< 0.0030	0.024	2	50	100
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum *	0.018	0.0078	0.090	0.5	10	30
Nickel *	0.0023	< 0.0010	< 0.0050	0.4	10	40
Lead *	< 0.0050	< 0.0050	< 0.020	0.5	10	50
Antimony *	0.0076	0.0072	0.072	0.06	0.7	5
Selenium *	< 0.010	< 0.010	< 0.040	0.1	0.5	7
Zinc *	0.0025	< 0.0010	< 0.020	4	50	200
Chloride *	35	< 4.0	71	800	4000	25000
Fluoride	0.14	0.065	0.74	10	150	500
Sulphate *	99	62	670	1000	20000	50000
TDS	400	80	1200	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-
DOC	4.0	1.9	22	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	0.41					
Dry Matter (%)	88					
Moisture (%)	12					
Stage 1						
Volume Eluate L2 (litres)	0.33					
Filtered Eluate VE1 (litres)	0.22					
					1	

Iteration are expressed on a ny weight bass, after correction for mosture content where applicable Stated limits are for guidance only and I2 cannot be held responsible for any discrependes with current legislation *= UKAS accredited (liquid eluate analysis only) ** = MCERTS accredited

Telephone: 01923 225404

Fax: 01923 237404 email:reception@i2analytical.com

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical Results

Report No:		14-6	3810					
					Client:	CONCEPT		
Location		St Gile	s Circus					
Lab Reference (Sample Number)	396690				Landfill Waste Acceptance Criteria			
						Limits		
Sampling Date	27/11/2014 WS07 ES04 3.00					Stable Non- reactive		
Sample ID Depth (m)					Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	< 0.1				3%	5%	6%	
Loss on Ignition (%) **	-						10%	
BTEX (µg/kg) **	< 10				6000			
Sum of PCBs (mg/kg)	< 0.30				1			
Mineral Oil (mg/kg)	< 10				500		-	
Total PAH (WAC-17) (mg/kg)	< 1.6				100			
pH (units)**	-					>6		
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated	
Eluate Analysis	2:1	8:1		Cumulative 10:1		es for compliance le		
(BS EN 12457 - 3 preparation utilising end over end leaching					using BS EN	12457-3 at L/S 10	l/kg (mg/kg)	
procedure)	mg/l	mg/l		mg/kg				
Arsenic *	0.015	0.014	1	0.14	0.5	2	25	
Barium *	0.059	0.0082		0.14	20	100	300	
Cadmium *	0.0006	< 0.0005		< 0.0020	0.04	1	5	
Chromium *	0.015	0.0027		0.041	0.5	10	70	
Copper *	0.011	< 0.0030		0.038	2	50	100	
Mercury *	< 0.0015	< 0.0015		< 0.010	0.01	0.2	2	
Molybdenum *	0.0059	< 0.0030		0.021	0.5	10	30	
Nickel *	0.020	0.0017		0.039	0.4	10	40	
Lead *	0.0067	< 0.0050		0.028	0.5	10	50	
Antimony *	0.0079	< 0.0050		0.030	0.06	0.7	5	
Selenium *	< 0.010	< 0.010		< 0.040	0.1	0.5	7	
Zinc *	0.024	0.0020		0.045	4	50	200	
Chloride *	7.1	< 4.0		17	800	4000	25000	
Fluoride	0.16	0.077		0.87	10	150	500	
Sulphate *	11	9.7		98	1000	20000	50000	
TDS	80	20		270	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13		< 0.50	1	-	-	
DOC	6.4	2.7		31	500	800	1000	
Leach Test Information		<u> </u>						
Stone Content (%)	< 0.1							
Sample Mass (kg)	0.46							
Dry Matter (%)	88							
Moisture (%)	12							
Stage 1								
Volume Eluate L2 (litres)	0.33							
Filtered Eluate VE1 (litres)	0.20							
Results are expressed on a dry weight basis, after correction for moisture content v	where applicable							
Stated limits are for guidance only and 12 cannot be held responsible for any discre-	mencies with current le	niclation						

Results are expressed use usy mean add 12 anothe held responsible for any disc stated limits are for outdance only and 12 anothe held responsible for any disc *= UKAS accredited (liquid eluate analysis only) ** = MCERTS accredited

Report No:

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical Results

Location		St Giles	Circus					
Lab Reference (Sample Number)	396691				Landfill Waste Acceptance Criteria			
						Limits		
Sampling Date	27/11/2014					Stable Non-		
Sample ID Depth (m)		WS14 3.0			Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardou Waste Land	
Solid Waste Analysis						1		
TOC (%)**	< 0.1				3%	5%	6%	
Loss on Ignition (%) **	-						10%	
BTEX (µg/kg) **	< 10				6000			
Sum of PCBs (mg/kg)	< 0.30				1		-	
Mineral Oil (mg/kg)	< 10				500		-	
Total PAH (WAC-17) (mg/kg)	< 1.6				100			
pH (units)**	-					>6	-	
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evalu	
Eluate Analysis	2.4		<u> </u>		Limit valu	es for compliance le	eaching test	
	2:1	8:1	Cumula	tive 10:1				
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	m	g/kg	USING BS EN	l 12457-3 at L/S 10	i/kg (mg/kg)	
Arsenic *	0.018	0.011	0	.12	0.5	2	25	
Barium *	0.047	0.033	0	.34	20	100	300	
Cadmium *	< 0.0005	< 0.0005	0.0	0047	0.04	1	5	
Chromium *	0.014	0.014	0	.13	0.5	10	70	
Copper *	0.013	0.0071	0.	078	2	50	100	
Mercury *	< 0.0015	< 0.0015	< (0.010	0.01	0.2	2	
Molybdenum *	0.025	< 0.0030	0.	030	0.5	10	30	
Nickel *	0.018	0.018		.18	0.4	10	40	
Lead *	0.0051	0.0096	0.	091	0.5	10	50	
Antimony *	0.0061	< 0.0050	< (0.020	0.06	0.7	5	
Selenium *	< 0.010	< 0.010	< (0.040	0.1	0.5	7	
Zinc *	0.027	0.0190	0	.20	4	50	200	
Chloride *	< 4.0	< 4.0		28	800	4000	25000	
Fluoride	0.17	0.060	0	.73	10	150	500	
Sulphate *	15	1.5	3	31	1000	20000	50000	
TDS	100	20	2	90	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	<	0.50	1	-	-	
DOC	6.2	4.8		50	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1					1		
Sample Mass (kg)	0.44					1		
Dry Matter (%)	96		İ					
Moisture (%)	3.9					1		
Stage 1			İ					
Volume Eluate L2 (litres)	0.33							
Filtered Eluate VE1 (litres)	0.20							
		1				1		

14-63810

Stated limits are for guidance only and 12 cannot be near responsible for any use. *= UKAS accredited (liquid eluate analysis only) ** = MCERTS accredited

Telephone: 01923 225404 Fax: 01923 237404

email:reception@i2analytical.com

Report No:

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical Results

Location		St Giles	St Giles Circus			
Lab Reference (Sample Number)		2000	Landfill	Landfill Waste Acceptance Criteria Limits		
Lub Reference (Sumple Number)		3966				
Sampling Date		27/11/	2014		Stable Non-	
Sample ID		WS14	S06		reactive	
				Inert Waste	HAZARDOUS	Hazardou
Depth (m)		5.0)	Landfill	waste in non- hazardous	Waste Landfill
,					Landfill	
Solid Waste Analysis		1				
TOC (%)**	< 0.1			3%	5%	6%
Loss on Ignition (%) **	-					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg)	< 0.30			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 1.6			100		
pH (units)**	-				>6	-
Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluated
Eluate Analysis	<u>.</u>		A 1.11 - 11	. Limit valu	es for compliance le	eaching test
	2:1	8:1	Cumulative 10	.1		
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	mg/kg	using BS E	N 12457-3 at L/S 10	l/kg (mg/kg)
Arsenic *	0.030	0.015	0.15	0.5	2	25
Barium *	0.050	0.032	0.33	20	100	300
Cadmium *	0.0005	< 0.0005	0.0046	0.04	1	5
Chromium *	0.035	0.014	0.15	0.5	10	70
Copper *	0.046	0.0087	0.11	2	50	100
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum *	0.045	0.0033	0.057	0.5	10	30
Nickel *	0.028	0.015	0.16	0.4	10	40
Lead *	0.013	0.0092	0.094	0.5	10	50
Antimony *	0.011	< 0.0050	< 0.020	0.06	0.7	5
Selenium *	< 0.010	< 0.010	< 0.040	0.1	0.5	7
Zinc *	0.038	0.0237	0.25	4	50	200
Chloride *	30	4.6	61	800	4000	25000
Fluoride	4.0	1.4	15	10	150	500
Sulphate *	48	2.0	47	1000	20000	50000
TDS	380	130	1400	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-
DOC	23	6.0	70	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	0.42					
Dry Matter (%)	85					
Moisture (%)	15					
Stage 1						
Volume Eluate L2 (litres)	0.32					
Filtered Eluate VE1 (litres)	0.10					

14-63810

Stated limits are for guidance only and 12 cannot be near responsible for any use. *= UKAS accredited (liquid eluate analysis only) ** = MCERTS accredited

Telephone: 01923 225404 Fax: 01923 237404

CONCEPT

Client:

email:reception@i2analytical.com

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
396689	WS01	ES02	1.00	Brown sandy topsoil.
396690	WS07	ES04	3.00	Light brown sand.
396691	WS14	ES04	3.00	Light brown sand.
396692	WS14	ES06	5.00	Brown clay.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	w	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	w	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	w	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-64062

Project / Site name:	St Giles Circus	Samples received on:	02/12/2014
Your job number:	14-2669	Samples instructed on:	04/12/2014
Your order number:	CL230	Analysis completed by:	15/12/2014
Report Issue Number:	1	Report issued on:	15/12/2014
Samples Analysed:	14 soil samples		

Signed:

Neil Donovan Environmental Forensics Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Lab Sample Number				398143	398144	398145	398146	398147
Sample Reference				WS06	WS06	WS06	WS06	WS09
Sample Number				ES01	ES02	ES03	ES04	ES01
Depth (m)				0.50	1.00	2.00	3.00	0.50
Date Sampled				28/11/2014	28/11/2014	28/11/2014	28/11/2014	28/11/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	5.8	2.9	13	11	9.8
Total mass of sample received	kg	0.001	NONE	0.35	0.46	0.44	0.49	0.45
Ashashas in Cail	Tara	NI/A	ISO 17025	Not detected	Not detected	Not-detected	Not detected	Not detected
Asbestos in Soil	Туре	N/A	150 1/025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH	pH Units	N/A	MCERTS	8.6	8.8	8.6	8.5	10.2
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO₄	mg/kg	50	ISO 17025	< 50	< 50	120	58	1100
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Organic Matter	%	0.1	MCERTS	0.3	0.4	0.3	0.5	0.4
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.2	0.2	0.2	0.3	0.2
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.97
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	0.23
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	0.34
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	0.29
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.10	< 0.05	< 0.05	< 0.10
Total PAH	maller	16	MCEDIC	< 1.60	< 1.60	< 1.60	< 1.60	1 00
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	1.83
Heavy Metals / Metalloids			T		10			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.0	10	11	8.3	16
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	17	12	11	12	21
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.8	6.9	11	5.2	14
Lead (aqua regia extractable)	mg/kg	1	MCERTS	4.8	4.9	3.7	5.0	210
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	17	14	14	15	24
	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Selenium (aqua regia extractable) Zinc (aqua regia extractable)	шу/ку	-	MCERTS	22	16	18	18	37

Lab Sample Number	398143	398144	398145	398146	398147			
Sample Reference	WS06	WS06	WS06	WS06	WS09			
Sample Number	ES01	ES02	ES03	ES04	ES01			
Depth (m)				0.50	1.00	2.00	3.00	0.50
Date Sampled				28/11/2014	28/11/2014	28/11/2014	28/11/2014	28/11/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)								
Monoaromatics	-		-					
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	2.9
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	24	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	9.6	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	24	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	34	< 10

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

Lab Sample Number				398148	398149	398150	398151	398152
Sample Reference				WS09	WS10	WS10	WS10	WS10
Sample Number				ES02	ES01	ES02	ES03	ES04
Depth (m)				1.00	0.50	1.00	2.00	2.70
Date Sampled				28/11/2014	28/11/2014	28/11/2014	28/11/2014	28/11/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	4.3	1.8	8.2	14	10
Total mass of sample received	kg	0.001	NONE	0.45	0.41	0.44	0.43	0.55
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
рН	pH Units	N/A	MCERTS	9.4	8.5	8.4	8.5	8.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	900	92	480	160	97
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	21
Organic Matter	%	0.1	MCERTS	0.3	0.8	0.9	0.5	0.7
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.2	0.5	0.5	0.3	0.4
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	1.5	2.3	2.3	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	0.31	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	0.36	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	0.33	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	0.14	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	0.12	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH			-					
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	2.74	2.32	2.33	< 1.60	< 1.60
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	13	14	6.3	8.6
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	0.8	0.4	< 0.2	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	24	22	18	20
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	31	44	18	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	28	88	160	29	18
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	22	18	13	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)			MCERTS	32	59	72	39	41

Lab Sample Number		398148	398149	398150	398151	398152		
Sample Reference	WS09	WS10	WS10	WS10	WS10			
Sample Number				ES02	ES01	ES02	ES03	ES04
Depth (m)				1.00	0.50	1.00	2.00	2.70
Date Sampled				28/11/2014	28/11/2014	28/11/2014	28/11/2014	28/11/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	5.0	4.8	5.2	1.1	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

Lab Sample Number			1	398153	398154	398155	398156	1
Sample Reference				WS10	WS13	WS13	WS13	
Sample Number				ES05	ES01	ES02	ES03	
Depth (m)				3.80	0.50	1.00	2.00	
Date Sampled				28/11/2014	28/11/2014	28/11/2014	28/11/2014	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	12	13	12	9.9	
Total mass of sample received	kg	0.001	NONE	0.46	0.41	0.43	0.44	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
General Inorganics								
pH	pH Units	N/A	MCERTS	8.4	8.9	8.5	8.4	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	
Thiocyanate as SCN Total Sulphate as SO ₄	mg/kg	5 50	NONE ISO 17025	< 5.0 390	< 5.0 9700	< 5.0 240	< 5.0 260	
	mg/kg		-					
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	
Organic Matter	%	0.1	MCERTS	0.2	0.9	0.1	0.1	
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.1	0.5	< 0.1	< 0.1	
Total Phenols			105070	. 1.0	. 1.0	. 1.0	. 1.0	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.21	< 0.05	0.17	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	1.4	< 0.10	0.37	
Anthracene	mg/kg	0.1	MCERTS	< 0.10	0.22	< 0.10	0.10	
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	1.3	< 0.10	0.60	
Pyrene	mg/kg	0.1	MCERTS	< 0.10	1.1	< 0.10	0.50	
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	0.55	< 0.10	0.29	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.47	< 0.05	0.21	
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	0.42	< 0.10	0.24	
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	0.38	< 0.10	0.11	
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	0.35	< 0.10	0.17	
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	0.22	< 0.10	< 0.10	
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.26	< 0.05	< 0.05	
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	6.95	< 1.60	2.76	
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.2	19	9.0	12	
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	0.7	< 0.2	< 0.2	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.7	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	8.9	19	24	23	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	6.9	180	15	14	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	9.6	1100	26	27	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	12	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	13	16	18	18	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0 19	< 1.0	< 1.0	< 1.0 35	
Zinc (aqua regia extractable)	mg/kg		MCERTS		750	41		

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number				398153	398154	398155	398156	
Sample Reference				WS10	WS13	WS13	WS13	
Sample Number				ES05	ES01	ES02	ES03	
Depth (m)				3.80	0.50	1.00	2.00	
Date Sampled			28/11/2014	28/11/2014	28/11/2014	28/11/2014		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6		0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg ma/ka	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	2.8	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	12	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	11	< 10	< 10	
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	26	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	26	< 10	< 10	

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
398143	WS06	ES01	0.50	Light brown sand.
398144	WS06	ES02	1.00	Light brown sand.
398145	WS06	ES03	2.00	Light brown sand.
398146	WS06	ES04	3.00	Light brown sand.
398147	WS09	ES01	0.50	Light brown sand.
398148	WS09	ES02	1.00	Light brown sand.
398149	WS10	ES01	0.50	Light brown sand.
398150	WS10	ES02	1.00	Light brown sand.
398151	WS10	ES03	2.00	Light brown sand.
398152	WS10	ES04	2.70	Light brown sand.
398153	WS10	ES05	3.80	Light brown sand.
398154	WS13	ES01	0.50	Brown sand with rubble and brick.
398155	WS13	ES02	1.00	Light brown sand.
398156	WS13	ES03	2.00	Light brown sand.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
(Polish) TPH1 (Soil)	In-house method	In-house method based on USEPA8260	L073S-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	w	MCERTS
Elemental sulphur in soil	extraction in dichloromethane followed by HPLC. Property Holdings Guidance for Assessing and Managing Potential		L021-PL	D	NONE
Free cyanide in soil		In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Organic matter in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Toluene Extractable Matter in soil	Gravimetrically determined through extraction with toluene.	In-house method	L013-UK	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-64069

Project / Site name:	St Giles Circus	Samples received on:	02/12/2014
Your job number:	14-2669	Samples instructed on:	04/12/2014
Your order number:	CL230	Analysis completed by:	16/12/2014
Report Issue Number:	1	Report issued on:	16/12/2014
Samples Analysed:	2 wac multi samples		

Signed: Castate

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical Report No:		14-6	4069					
					Client:	CONCEPT		
Location		St Giles	s Circus					
Lab Reference (Sample Number)		209	3172		Landfill Waste Acceptance Criteria			
						Limits		
Sampling Date			2/2014 5 ES03			Stable Non- reactive		
Sample ID Depth (m)		WS06			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil	
Solid Waste Analysis								
TOC (%)**	0.2				3%	5%	6%	
Loss on Ignition (%) **	-						10%	
3TEX (μg/kg) **	< 10				6000			
Sum of PCBs (mg/kg)	< 0.30				1			
Mineral Oil (mg/kg)	< 10				500			
Total PAH (WAC-17) (mg/kg)	< 1.6				100			
pH (units)**	-					>6		
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluate	
Eluate Analysis	2:1	8:1		Currulative 10:1	Limit value	es for compliance le	eaching test	
	2:1	8:1		Cumulative 10:1				
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	•	mg/kg	USING BS EN	12457-3 at L/S 10	i/kg (mg/kg)	
Arsenic *	0.017	< 0.010		< 0.050	0.5	2	25	
Barium *	0.042	0.0054		0.10	20	100	300	
Cadmium *	< 0.0005	< 0.0005		< 0.0020	0.04	100	5	
Chromium *	0.018	0.0014		0.035	0.5	10	70	
Copper *	0.011	< 0.0030		0.023	2	50	100	
Mercury *	< 0.0015	< 0.0015		< 0.010	0.01	0.2	2	
Molybdenum *	0.0096	< 0.0030		0.030	0.5	10	30	
Nickel *	0.019	0.0016		0.038	0.4	10	40	
Lead *	0.0066	< 0.0050		0.023	0.5	10	50	
Antimony *	< 0.0050	< 0.0050		< 0.020	0.06	0.7	5	
Selenium *	< 0.010	< 0.010		< 0.040	0.1	0.5	7	
Zinc *	0.028	0.0030		0.062	4	50	200	
Chloride *	8.9	< 4.0		< 15	800	4000	25000	
Fluoride	0.65	0.20		2.6	10	150	500	
Sulphate *	18	1.4		35	1000	20000	50000	
TDS	80	20		280	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13		< 0.50	1	-	-	
DOC	14	2.0		35	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1					1		
Sample Mass (kg)	0.44					1		
Dry Matter (%)	87					1		
Moisture (%)	13					1		
Stage 1						1		
/olume Eluate L2 (litres)	0.33					1		
Filtered Eluate VE1 (litres)	0.22							
Results are expressed on a dry weight basis, after correction for moisture content v								

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

i2 Analytical

Report No:		14-6	4069					
					Client:	CONCEPT		
Location		St Gile	s Circus					
					Landfill Waste Acceptance Criteria			
Lab Reference (Sample Number)			3173			Limits		
Sampling Date			2/2014			Stable Non-		
Sample ID Depth (m)		WS10 3.	9 ES05 80		Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	0.1				3%	5%	6%	
Loss on Ignition (%) **	-						10%	
BTEX (µg/kg) **	< 10				6000			
Sum of PCBs (mg/kg)	< 0.30				1			
Mineral Oil (mg/kg)	< 10				500			
Total PAH (WAC-17) (mg/kg)	< 1.6				100			
pH (units)**	-					>6		
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated	
Eluate Analysis	2:1	8:1		Cumulative 10:1		es for compliance le		
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l		mg/kg	USING BS EN	12457-3 at L/S 10	i/kg (mg/kg)	
Arsenic *	0.017	< 0.010		0.085	0.5	2	25	
Barium *	0.026	0.012		0.14	20	100	300	
Cadmium *	< 0.0005	< 0.0005		< 0.0020	0.04	1	5	
Chromium *	0.010	0.0042		0.050	0.5	10	70	
Copper *	0.011	< 0.0030		0.034	2	50	100	
Mercury *	< 0.0015	< 0.0015		< 0.010	0.01	0.2	2	
Molybdenum *	0.0051	< 0.0030		< 0.020	0.5	10	30	
Nickel *	0.014	0.0051		0.062	0.4	10	40	
Lead *	0.0059	< 0.0050		0.030	0.5	10	50	
Antimony *	< 0.0050	< 0.0050		< 0.020	0.06	0.7	5	
Selenium *	< 0.010	< 0.010		< 0.040	0.1	0.5	7	
Zinc *	0.020	0.0077		0.092	4	50	200	
Chloride *	12	< 4.0		20	800	4000	25000	
Fluoride	0.40	0.12		1.5	10	150	500	
Sulphate *	13	1.4		29	1000	20000	50000	
TDS	80	20		280	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13		< 0.50 37	1 500	- 800	- 1000	
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	0.41							
Dry Matter (%)	92							
Moisture (%)	8.2							
Stage 1								
Volume Eluate L2 (litres)	0.34							
Filtered Eluate VE1 (litres)	0.23							
			-					

Waste Acceptance Criteria Analytical Results

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

ktand limits as for anidaccooks and D channel be held arrangelike for any disc *= UKAS accredited (liquid eluate analysis only) ** = MCERTS accredited

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
398172	WS06	ES03	2.00	Light brown sand.
398173	WS10	ES05	3.80	Light brown sand.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	w	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	w	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	w	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-64297

Project / Site name:	St Giles Circus	Samples received on:	05/12/2014
Your job number:	14-2669	Samples instructed on:	05/12/2014
Your order number:		Analysis completed by:	16/12/2014
Report Issue Number:	1	Report issued on:	16/12/2014
Samples Analysed:	1 soil sample		

Signed: Castate

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number				399845			
Sample Reference				WS13			
Sample Number				ES04			
Depth (m)				3.00			
Date Sampled				02/12/2014			
Time Taken				None Supplied			
			V				
Analytical Developmentary	-	Limit of detection	Accreditation Status				
Analytical Parameter	Units	tect	tat				
(Soil Analysis)	ίδ	ig e	ati				
		_	on				
Stone Content	%	0.1	NONE	< 0.1			
Moisture Content	%	N/A	NONE	12			
Total mass of sample received	kg	0.001	NONE	0.40			
	<u> </u>		J				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected			
B			•				-
General Inorganics							
pН	pH Units	N/A	MCERTS	6.8			
Total Cyanide	mg/kg	1	MCERTS	< 1			
Free Cyanide	mg/kg	1	NONE	< 1			
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0			
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	330			
Elemental Sulphur	mg/kg	20	NONE	< 20			
Organic Matter	%	0.1	MCERTS	0.1			
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1			
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0			
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05			
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10			
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10			
Fluorene	mg/kg	0.1	MCERTS	< 0.10			
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10			
Anthracene	mg/kg	0.1	MCERTS	< 0.10			
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10			
Pyrene	mg/kg	0.1	MCERTS	< 0.10			
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10			
Chrysene	mg/kg	0.05	MCERTS	< 0.05			
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10			
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10			
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10			I I
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	l	-	<u> </u>
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10			<u> </u>
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05		1	
T-t-1 DALL							
Total PAH				. 1	r		1
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	II		<u> </u>
Hannes Markella / Markella / da							
Heavy Metals / Metalloids			MOTOTO	7 -			1
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.5	<u>├</u> ──── <u></u>	+	
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	l	+	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS MCERTS	< 0.2	<u> </u>	+	
Chromium (hexavalent)	mg/kg	4		< 4.0	<u> </u>	+	l
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	9.5	<u>├</u> ──── <u></u>		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	5.6	<u>├</u> ──── <u></u>	+	
Lead (aqua regia extractable)		1	MCERTS	3.9			I
	mg/kg						
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3		-	
Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg	0.3 1	MCERTS MCERTS	9.5			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS				

Project / Site name: St Giles Circus

Lab Sample Number				399845		
Sample Reference				WS13		
Sample Number				ES04		
Depth (m)				3.00		
Date Sampled				02/12/2014		
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Monoaromatics						-
Benzene	µg/kg	1	MCERTS	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0		
p & m-xylene	µg/kg	1	MCERTS	< 1.0		
o-xylene	µg/kg	1	MCERTS	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0		

Petroleum Hydrocarbons

T					 	-	-
TPH1 (C6 - C12)	mg/kg	0.1	ISO 17025	< 0.1			
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1			
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1			
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1			
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0			
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0			
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0			
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0			
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4			
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10			
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10			
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1			
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1			
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1			
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0			
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0			
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10			
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10			
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4			
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10			
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10			
Miscellaneous Organics							
Toluene Extractable Matter	ma/ka	100	NONE	< 100		1	1

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

	Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
I	399845	WS13	ES04	3.00	Brown sand.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Organic matter in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample results are not corrected for the stone content of the sample.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Toluene Extractable Matter in soil	Gravimetrically determined through extraction with toluene.	In-house method	L013-UK	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPH C6- C12	In-house method	In-house method based on USEPA8260	L073S-PL	W	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-64298

Project / Site name:	St Giles Circus	Samples received on:	05/12/2014
Your job number:	14-2669	Samples instructed on:	05/12/2014
Your order number:	CL230	Analysis completed by:	17/12/2014
Report Issue Number:	1	Report issued on:	17/12/2014
Samples Analysed:	1 wac multi sample		

Signed: Castate

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical Report No:		14-64298				
		-				
				Client:	CONCEPT	
Location		St Giles Circu	<i>.</i>			
Location		St diles circu	5	Landfill	Waste Acceptance	e Criteria
Lab Reference (Sample Number)		399846			Limits	e criter.a
Sampling Date		02/12/2014			Stable Non-	
Sample ID		WS13 ES04		· · · · · · · · · · · · · · · · · · ·	reactive	
Depth (m)		3.00		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis						
TOC (%)**	< 0.1			3%	5%	6%
Loss on Ignition (%) **	-					10%
BTEX (µg/kg) **	< 10			6000		
Sum of PCBs (mg/kg)	< 0.30			1		
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	< 10			500 100		
pH (units)**	< 1.0				>6	
Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluated
Eluate Analysis	2:1	8:1	Cumulative 10:1		es for compliance le	
(BS EN 12457 - 3 preparation utilising end over end leaching				using BS EN 12457-3 at L/S 10 l/kg (mg/kg		
procedure)	mg/l	mg/l	mg/kg			
Arsenic *	< 0.010	< 0.010	< 0.050	0.5	2	25
Barium *	0.023	0.012	0.14	20	100	300
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5
Chromium *	0.0096	0.0040	0.048	0.5	10	70
Copper *	0.044	0.0054	0.11	2	50	100
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum *	0.010	0.0032	0.042	0.5	10	30
Nickel *	0.010	0.0037	0.046	0.4	10	40
Lead *	0.0082	< 0.0050	0.040	0.5	10	50
Antimony *	< 0.0050	< 0.0050	< 0.020	0.06	0.7	5
Selenium * Zinc *	< 0.010 0.027	< 0.010 0.0069	< 0.040 0.098	0.1	50	200
Chloride *	4.7	< 4.0	< 15	800	4000	25000
Fluoride	0.36	0.13	1.6	10	150	500
Sulphate *	20	2.6	51	1000	20000	50000
TDS	60	30	340	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-
DOC	8.6	4.7	53	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	0.40					
Dry Matter (%)	88					
Moisture (%)	12					
Stage 1			1		1	
Volume Eluate L2 (litres)	0.33					
Filtered Eluate VE1 (litres)	0.25					

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and 12 cannot be held responsible for any discrepencies with current legislation *= UKAS accredited (liquid eluate analysis only) ** = MCERTS accredited

Telephone: 01923 225404 Fax: 01923 237404

email:reception@i2analytical.com

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
399846	WS13 ES04	None Supplied	3.00	Brown sand.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

	2				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	w	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	w	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	w	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 14-64295

Project / Site name:	St Giles Circus	Samples received on:	05/12/2014
Your job number:	14/2669	Samples instructed on:	09/12/2014
Your order number:	CL241	Analysis completed by:	17/12/2014
Report Issue Number:	1	Report issued on:	17/12/2014
Samples Analysed:	14 soil samples		

rtte Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

TPL

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number				399804	399805	399806	399807	399808
Sample Reference				WS15	WS15	WS15	WS15	WS15
Sample Number				ES01	ES02	ES03	ES04	ES05
Depth (m)				0.50	1.00	2.00	3.00	4.00
Date Sampled				03/12/2014	03/12/2014	03/12/2014	03/12/2014	03/12/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
				None Supplied	Hone Supplied	Hone Supplied	Hone Supplied	None Supplied
		de 🗆	Accreditation Status					
Analytical Parameter	Units	Limit of detection	Sta					
(Soil Analysis)	ts.	tio	tus					
			ion					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	3.0	4.1	10	10	19
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.4	1.4	0.99
	•							
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
рН	pH Units	N/A	MCERTS	8.7	8.0	8.0	8.3	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	8.9	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	1900	85	220	< 50	560
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.1
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs		0.05	MORDER	. 0.05	. 0.05	. 0.05	. 0.05	. 0.05
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10				
Fluorene Phenanthrene	mg/kg	0.1	MCERTS MCERTS	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Anthracene	mg/kg mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene		0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.10	< 0.10	< 0.10	< 0.05
Benzo(b)fluoranthene		0.05	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	119/19	0.00		. 5105		. 5.05		. 5.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
		-	-					
Heavy Metals / Metalloids		-					-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.5	7.7	4.6	4.9	17
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	0.3	0.2	0.3	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	11	9.8	4.6	8.7	45
Copper (aqua regia extractable)	mg/kg	1	MCERTS	16	5.2	4.1	4.7	37
Lead (aqua regia extractable)	mg/kg	1	MCERTS	55	3.4	2.0	3.1	17
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	9.2	11	6.2	9.1	46
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	18	15	11	12	87

Lab Sample Number				399804	399805	399806	399807	399808
Sample Reference				WS15	WS15	WS15	WS15	WS15
Sample Number	ES01	ES02	ES03	ES04	ES05			
Depth (m)	0.50	1.00	2.00	3.00	4.00			
Date Sampled				03/12/2014	03/12/2014	03/12/2014	03/12/2014	03/12/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics					-		-	
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

Lab Sample Number				399809	399810	399811	399812	399813
Sample Reference				WS22	WS22	WS22	WS22	WS22
Sample Number				ES01	ES02	ES03	ES04	ES05
Depth (m)				0.50	1.00	1.50	2.50	3.00
Date Sampled				03/12/2014	03/12/2014	03/12/2014	03/12/2014	03/12/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
				Hone Supplied	Hone Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	2.9	4.7	11	12	20
Total mass of sample received	kg	0.001	NONE	0.79	2.0	2.0	2.0	0.97
-			-					
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH	pH Units	N/A	MCERTS	8.0	8.0	8.1	7.7	8.1
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	130	100	260	1100	210
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
···· · J · ··· · · · · · · ·								
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	• ···· y / •·y	0.00		. 3105	. 5105	. 5105	. 5105	. 5105
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
	IIIg/Ng	1.0	PICENTS	× 1.00	× 1.00	× 1.00	× 1.00	× 1.00
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	11	11	16	19
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.3	1.7	1.0	2.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (nexavalent) Chromium (aqua regia extractable)	mg/kg	4	MCERTS	20	14	17	17	43
Copper (aqua regia extractable)		1	MCERTS	11	6.9	45		35
Lead (aqua regia extractable)	mg/kg	1	MCERTS	6.4	5.5	91	23 22	17
	mg/kg							
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1		16	12	16	26	53
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	26	20	50	35	77

Lab Sample Number				399809	399810	399811	399812	399813
Sample Reference				WS22	WS22	WS22	WS22	WS22
Sample Number	ES01	ES02	ES03	ES04	ES05			
Depth (m)	0.50	1.00	1.50	2.50	3.00			
Date Sampled				03/12/2014	03/12/2014	03/12/2014	03/12/2014	03/12/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics							-	
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

Lab Sample Number	399814	399815	399816	399817				
Sample Reference				WS23	WS23	WS23	WS23	
Sample Number				ES01	ES02	ES03	ES04	
Depth (m)				0.50	1.00	2.00	2.80	
Date Sampled				03/12/2014	03/12/2014	03/12/2014	03/12/2014	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
	1			None Supplied	None Supplied	None Supplied	None Supplied	
	_	Limit of detection	Accreditation Status					
Analytical Parameter	Units	tec mit	tat					
(Soil Analysis)	ស	ti of	us					
		-	9					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	3.6	21	2.1	20	
Total mass of sample received	kg	0.001	NONE	2.0	0.90	2.0	0.85	
· · ·	-		•					
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
General Inorganics								
pH	pH Units	N/A	MCERTS	8.9	8.1	7.9	8.2	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	2000	390	53	1300	
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.1	
Total Phenois							. 1 0	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg mg/kg	0.05	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Total PAH					1		1	
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	
Heavy Metals / Metalloids				12	4-7	0.0	10	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	17	9.0	13	
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	1.7	0.3	0.4	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	14	52	10	50	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	23	44	6.8	41	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	79	18	3.9	15	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	13	56	10	50	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	27	110	46	90	

Lab Sample Number				399814	399815	399816	399817	
Sample Reference				WS23	WS23	WS23	WS23	
Sample Number				ES01	ES02	ES03	ES04	
Depth (m)			0.50	1.00	2.00	2.80		
Date Sampled			03/12/2014	03/12/2014	03/12/2014	03/12/2014		
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics					-		-	-
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	3.5	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	1.2	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	

Project / Site name: St Giles Circus

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
399804	WS15	ES01	0.50	Light brown sand with gravel and rubble.
399805	WS15	ES02	1.00	Light brown sand with gravel.
399806	WS15	ES03	2.00	Light brown sand with gravel.
399807	WS15	ES04	3.00	Light brown sand with gravel.
399808	WS15	ES05	4.00	Brown clay.
399809	WS22	ES01	0.50	Brown clay.
399810	WS22	ES02	1.00	Light brown sandy topsoil with gravel and rubble.
399811	WS22	ES03	1.50	Light brown sandy topsoil with gravel.
399812	WS22	ES04	2.50	Light brown sandy topsoil with gravel.
399813	WS22	ES05	3.00	Light brown sandy clay with gravel.
399814	WS23	ES01	0.50	Light brown sandy topsoil with gravel.
399815	WS23	ES02	1.00	Brown clay.
399816	WS23	ES03	2.00	Light brown sand.
399817	WS23	ES04	2.80	Grey clay.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditatio Status
Asbestos identification in soil	sbestos identification in soil Asbestos Identification with the use of polarised I light microscopy in conjunction with disperion staining techniques.		A001-PL	D	ISO 17025
Boron, water soluble, in soil	, water soluble, in soil Determination of water soluble boron in soil by hot water extract followed by ICP-OES.		L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	nohydric phenols in soil Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	w	MCERTS
oH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Foluene Extractable Matter in soil	Gravimetrically determined through extraction with toluene.	In-house method	L013-UK	D	NONE
ōtal cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Fotal organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH C6- C12	In-house method	In-house method based on USEPA8260	L073S-PL	W	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

Analytical Report Number : 15-65272

Project / Site name:	St Giles Circus	Samples received on:	07/01/2015
Your job number:	14-2669	Samples instructed on:	07/01/2015
Your order number:	CL268	Analysis completed by:	16/01/2015
Report Issue Number:	1	Report issued on:	16/01/2015
Samples Analysed:	3 water samples		

rtte Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Inhe Signed:

Dee Theis Operations Director For & on behalf of i2 Analytical Ltd.

 4 weeks from reporting
- 2 weeks from reporting
- 2 weeks from reporting
- 6 months from reporting

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Your Order No: CL268							
Lab Sample Number				405637	405638	405639	
Sample Reference				PB5	PB4	PB2	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	
Date Sampled				07/01/2015	07/01/2015	07/01/2015	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
General Inorganics							
pH	pH Units	N/A	ISO 17025	7.8	7.6	7.3	
Total Cyanide	µg/l	10	ISO 17025	< 10	48	< 10	
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1	< 1	< 1	
Thiocyanate as SCN	µg/l	200	ISO 17025	< 200	230	200	
Sulphate as SO ₄	µg/l	45	ISO 17025	154000	194000	290000	
Sulphide	μg/l	5	NONE	< 5.0	< 5.0	< 5.0	
Total Phenols			-				
Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	< 10	< 10	
Speciated PAHs							
Naphthalene	µq/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Total PAH							
Total EPA-16 PAHs	µg/l	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	
Heavy Metals / Metalloids							
Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.48	9.65	2.15	
Boron (dissolved)	µg/l	10	ISO 17025	150	300	280	
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	< 0.02	0.03	
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	
Chromium (dissolved)	µg/l	0.2	ISO 17025	< 0.2	0.3	< 0.2	I
Copper (dissolved)	µg/l	0.5	ISO 17025	12	14	12	I
Lead (dissolved)	µg/l	0.2	ISO 17025	0.2	0.5	0.2	
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	
Nickel (dissolved)	µg/l	0.5	ISO 17025	7.1	16	11	
Selenium (dissolved)	µg/l	0.6	ISO 17025	14	4.4	6.2	
Zinc (dissolved)	µg/l	0.5	ISO 17025	0.9	0.8	3.0	

Lab Sample Number				405637	405638	405639	
Sample Reference				PB5	PB4	PB2	
Sample Number				None Supplied	None Supplied None Supplied 07/01/2015 None Supplied	None Supplied None Supplied	
Depth (m)				None Supplied			
Date Sampled				07/01/2015		07/01/2015	
Time Taken				None Supplied		None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Petroleum Range Organics (C6 - C10)	µg/l	10	NONE	< 10.0	< 10.0	< 10.0	I
TPH-CWG - Aliphatic >C5 - C6	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C6 - C8	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C8 - C10	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C35 - C44	µg/l	10 10	NONE NONE	< 10 < 10	< 10 < 10	< 10 < 10	
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aliphatic (C5 - C44)	µg/l mg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic (C3 - C44)	TTI9/1	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >C5 - C7	µq/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >C7 - C8	μg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >C8 - C10	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >C35 - C44	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic (C5 - C44)	1-51	10	NONE	< 10	< 10	< 10	

TPH (C35 - C44) ug/l 10 NONE < 10 < 10								
	1PH((35 - (44)))	µg/l	10	NONE	< 10	< 10	< 10	

Your Order No: CL268								
Lab Sample Number				405637	405638	405639		
Sample Reference				PB5	PB4	PB2		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied	None Supplied		
Date Sampled				07/01/2015	07/01/2015	07/01/2015		
Time Taken		-	r	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								-
Chloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Chloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Bromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Vinyl Chloride	µg/l	1	NONE NONE	< 1.0	< 1.0	< 1.0		
Trichlorofluoromethane 1,1-Dichloroethene	µg/l µg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0		<u> </u>
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		1
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		1
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		Į
Trichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		┨────┤
1,1,1-Trichloroethane 1,2-Dichloroethane	µg/l µg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0		┨─────┤
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
1,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Trichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Dibromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Bromodichloromethane	µg/l µg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0	< 1.0		
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0 < 1.0		
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Chlorobenzene 1,1,1,2-Tetrachloroethane	µg/l µg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
p & m-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Styrene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Tribromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
o-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		ł
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		┨──────
Isopropylbenzene Bromobenzene	µg/l µg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		ł
n-Propylbenzene	µg/I µg/I	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0		1
2-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
4-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		<u> </u>
tert-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		┨─────
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		┨─────┤
sec-Butylbenzene 1,3-Dichlorobenzene	μg/l μg/l	1 1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		ł
p-Isopropyltoluene	µg/i µg/i	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0		t
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		1
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		Į]
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		┨────┤
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	1	<u></u>

Your Order No: CL268							
Lab Sample Number		405637	405638	405639			
Sample Reference				PB5	PB4	PB2	
Sample Number					None Supplied	None Supplied	
Depth (m)	None Supplied	None Supplied	None Supplied				
Date Sampled	07/01/2015	07/01/2015	07/01/2015				
Time Taken	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
VOCs TICs							
VOCs TICs Compound Name		10	NONE	None Detected	None Detected	None Detected	
VOC % Match	%	10	NONE	0	0	0	<u> </u>

Your Order No: CL268							
Lab Sample Number				405637	405638	405639	
Sample Reference				PB5	PB4	PB2	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	
Date Sampled				07/01/2015	07/01/2015	07/01/2015	
Time Taken	1	-	-	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs							
Aniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Phenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
2-Chlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Bis(2-chloroethyl)ether 1,3-Dichlorobenzene	µg/l	0.05	NONE NONE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
1,2-Dichlorobenzene	μg/l μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	µg/I µg/I	0.05	NONE	< 0.05	< 0.05	< 0.05	
Bis(2-chloroisopropyl)ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
2-Methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Hexachloroethane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Nitrobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
1-Methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
isophorone	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
2-Nitrophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
2,4-Dimethylphenol Bis(2-chloroethoxy)methane	µg/l	0.05	NONE NONE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
1,2,4-Trichlorobenzene	μg/l μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Vaphthalene	µg/l	0.03	ISO 17025	< 0.01	< 0.01	< 0.05	
2.4-Dichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
1-Chloroaniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Hexachlorobutadiene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
4-Chloro-3-methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
2,4,6-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
2,4,5-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
2-Methylnaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
2-Chloronaphthalene Dimethylphthalate	µg/l	0.05	NONE NONE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
2,6-Dinitrotoluene	μg/l μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.05	
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
2,4-Dinitrotoluene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Dibenzofuran	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
1-Chlorophenyl phenyl ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Diethyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
1-Nitroaniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Azobenzene Bromophenyl phenyl ether	μg/l μg/l	0.05	NONE NONE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
Hexachlorobenzene	µg/I µg/I	0.05	NONE	< 0.05	< 0.05	< 0.05	
Phenanthrene	µg/l	0.02	ISO 17025	< 0.02	< 0.02	< 0.02	
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Carbazole	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Dibutyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Anthraquinone	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Butyl benzyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	
Benzo(a)anthracene Chrysene	µg/l	0.01 0.01	ISO 17025 ISO 17025	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	
Benzo(b)fluoranthene	μg/l μg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene Benzo(ghi)perylene	µg/l	0.01 0.01	ISO 17025 ISO 17025	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	

Analytical Report Number: 15-65272

Project / Site name: St Giles Circus

Lab Sample Number				405637	405638	405639	
Sample Reference				PB5	PB4	PB2	1
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	
Date Sampled				07/01/2015	07/01/2015	07/01/2015	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs TICs							
SVOCs TICs Compound Name		N/A	NONE	None Detected	None Detected	None Detected	
SVOC % Match	%	N/A	NONE	0	0	0	

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 15-65272

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Boron in water	Determination of boron by acidification followed by ICP-MS. Accredited matrices: SW, GW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
BTEX and MTBE in water	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073W-PL	w	ISO 17025
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	w	ISO 17025
PRO (Waters)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L073W-PL	W	NONE
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.	In-house method based on USEPA 8270	L070-UK	w	NONE
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L070-UK	w	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L010-PL	w	NONE
Tentatively identified compounds (SVOC) in water	Determination of semi-volatile organic compounds total ion count in water by extraction with hexane followed by GC-MS followed by a full library scan.	In-house method based on USEPA 8270	L070-UK	w	NONE
Tentatively identified compounds (VOC) in water	Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan.	In-house method based on USEPA8260	L073W-PL	w	NONE
Thiocyanate in water	Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW.	In house method based on SMWW 4500- CN-M. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
TPH in (Water)		In-house method	L070-UK		NONE

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number : 15-65272

Project / Site name: St Giles Circus

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-UK	W	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073W-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

14. PHOTOGRAPHS

Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVEST	IGATIO	i 2N	el: 020 8811 288 ax: 020 8811 288 mail: si@concept	31	ants	s.co.uk
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB0	1	
Carried out for	Consolidated Developments Limited	Date		Photograph	01 8	k	02

	He way	-
ST. GILES CIRCUS 14/2669 PB1 800-950m TOP BOTTOM	*	

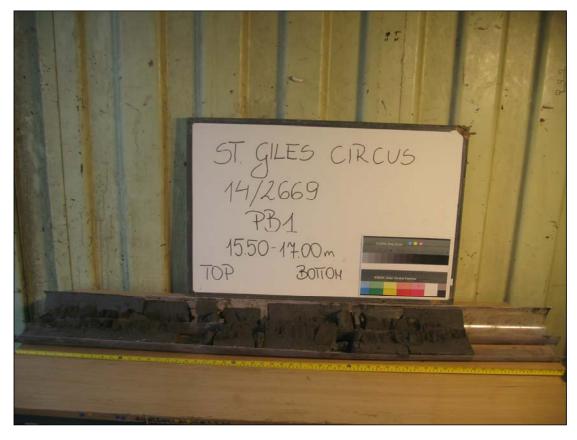
Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVESTIGATIONS		F 2N	Tel: 020 8811 2880 Fax: 020 8811 2881 email: si@conceptconsultants.co.ul		
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01	
Carried out for	Consolidated Developments Limited	Date		Photograph	03 & 04	

statistic true and a second	
LES CI 2669 B-1 - 11.00 m BOITO	
Pt	
A Contraction of the second se	

Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVEST	CONCEPT SITE INVESTIGATIONS			
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	05 & 06

	ST. GI 14/2 73 11.00 TOP	
	LES CIT 1,669 31)-12.50m BOTTOH	
		E .
A D		ALE RE.
		Para L

Unit 8, Warple Mew Warple Way London W3 0RF	© CONCEPT SITE INVEST	IGATIO	ns F	el: 020 8811 288 ax: 020 8811 288 mail: si@concept	-
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	07 & 08


Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVEST	IGATIC	F 2NC	el: 020 8811 288 ax: 020 8811 288 mail: si@concept	31	ts.co.uk
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01	
Carried out for	Consolidated Developments Limited	Date		Photograph	09 &	10

Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVEST	IGATIC	ns F	el: 020 8811 288 ax: 020 8811 288 mail: si@concept	-
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	11 & 12

Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVEST	IGATIC	ns F	el: 020 8811 288 ax: 020 8811 288 mail: si@concept	
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	13 & 14

Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVEST	IGATIC	F 2NC	el: 020 8811 288 ax: 020 8811 288 mail: si@concept	
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	15 & 16

Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVEST	IGATIC	ns F	⁻ el: 020 8811 288 Fax: 020 8811 288 email: si@concept	31
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	17 & 18

Photograph No 17

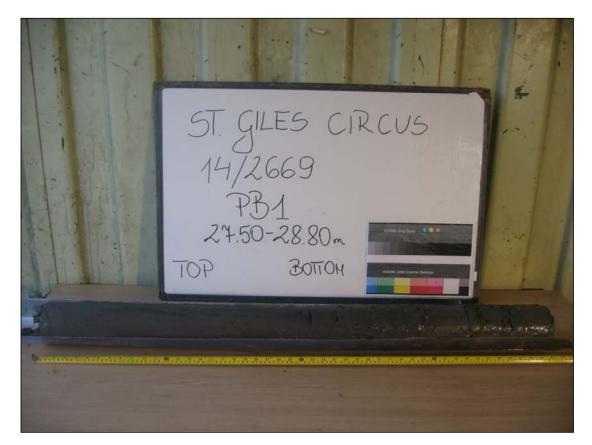
Unit 8, Warple Mew Warple Way London W3 0RF	S CONCEPT SITE INVEST	IGATIO	n 2n	el: 020 8811 288 ax: 020 8811 288 mail: si@concept	
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	19 & 20
				•	

		e	ax: 020 8811 288 mail: si@concept		s.co.ı
St Giles Circus	Job No.	14/2669	HOLE	PB01	
Consolidated Developments Limited	Date		Photograph	21 &	22
14/2669 PB1					
	14/2669 PB1	Consolidated Developments Limited Date	Consolidated Developments Limited Date	Consolidated Developments Limited Date Photograph ST. GILES CIRCUS 14/2669 14/2669 PB1	Consolidated Developments Limited Date Photograph 21 & ST. GILES CIRCUS 14/2669 14/2669 PB1

Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVEST	IGATIC	F 2NC	el: 020 8811 288 ax: 020 8811 288 mail: si@concept	81
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	23 & 24

Left Left	R.B.	E.S.	E.S.
		1	
BT. THE			
Let	29	29	29
EFT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
La La	BTA	Les	15-3
	2	2 1 1 1 1 1 1 2 2 B	2 1 1 1 1 1 1 2 2 B
and the second se	Let	La	La
La La	Para Para	BER .	BER .
The second second second second second second second second second second second second second second second se	1 2.3	1 1.1	1 1.1
ETE I	La la	Lage	Lage
Land Land	Pro-	P. 29	P. 29
Legal L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1
ET A			
Hard Hard	E.E.		
The second second second second second second second second second second second second second second second se			
THE REAL			
HET A			
B2B			
THE PARTY OF THE P			
E.E.			
The second second second second second second second second second second second second second second second se			
		5	5
5	5	5	5
15	15	15	15
BE A	15	15	15
U5	U5	U5	U5
US	US	.05	.05
CUS	CV5	CV5	CV5
CUS	CUS	CUS	CUS
CU5	CUS	CUS	CUS
CUS	CUS	CUS	CUS
2CV5	2CVS	2CV5	2CV5
RCUS	RCUS	RCUS	RCUS
RCUS	RCUS	RCUS	RCUS
IRCUS	IRCUS	IRCUS	IRCUS
IRCUS	IRCUS	IRCUS	IRCUS
CIRCUS M	CIRCUS	CIRCUS M	CIRCUS M
CIRCUS	CIRCUS	CIRCUS	CIRCUS
CIRCUS Dm	CIRCUS Dm	CIRCUS Dm	CIRCUS Dm
CIRCUS	CIRCUS Om	CIRCUS	CIRCUS
CIRCUS DAL TOM	CIRCUS DAL TOH	CIRCUS DAL TOH	CIRCUS DAL TOH
CIRCUS D.M.	CIRCUS DAM ITOM	CIRCUS DAM ITOM	CIRCUS DAM ITOM
CIRCUS 5Dan DITOH	CIRCUS 5Dan DTOH	CIRCUS 5Dan DTOH	CIRCUS 5Dan DTOH
CIRCUS 9 50m XOTTOH	CIRCUS 9 50m XOTTOH	CIRCUS 9 50m XOTTOH	CIRCUS 9 50m XOTTOH
S CIRCUS 9 H.5Dm BOTTOH	5 CIRCUS 9 H.5DAL BOTTON	S CIRCUS 9 H.5Dm BOTTOH	S CIRCUS 9 H.5Dm BOTTOH
5 CIRCUS 9 4.50m BOTTOH	S CIRCUS 9 4.50m BOTTOH	S CIRCUS 9 4.50m BOTTOH	S CIRCUS 9 4.50m BOTTOH
24.5Dm BOTTON	24.5Dm BOTTON	24.5Dm BOTTON	24.5Dm BOTTON
ES CIRCUS 69 1 24.50m 30TOH	ES CIRCUS 69 1 24.50m 30TOH	ES CIRCUS 69 1 24.50m 30TTOH	ES CIRCUS 69 1 24.50m 30TTOH
ES CIRCUS 69 1 24.50m BOTTON	ES CIRCUS 69 1 24.50m BOTTOH	ES CIRCUS 69 1 24.50m BOTTOH	ES CIRCUS 69 1 24.50m BOTTOH
ES CIRCUS 669 1 -24.50m BOTTON	ES CIRCUS 669 1 -24.50 BOTTON	ES CIRCUS 669 1 -24.50 M BOTTON	ES CIRCUS 669 1 -24.50 M BOTTON
ES CIRCUS 669 24.50 m 30TTOH	ES CIRCUS 669 1 -24.50m 30TOH	ES CIRCUS 669 24.50m 30TOH	ES CIRCUS 669 24.50m 30TOH
LES CIRCUS 2669 B1 D-24.50m BOTTOH	LES CIRCUS 2669 B1 D-24.50m BOTTOH	LES CIRCUS 2669 B1 D-24.50m BOTTON	LES CIRCUS 2669 B1 D-24.50m BOTTON
ILES CIRCUS 2669 B1 0-24.50m BOTTOH	ILES CIRCUS 2669 B1 0-24.50m BOTTON	ILES CIRCUS 2669 B1 0-24.50m BOTTON	ILES CIRCUS 2669 B1 0-24.50m BOTTON
JILES CIRCUS 2669 B1 20-24.50m B0TOH	JILES CIRCUS 2669 B1 D0-24.50m B0TOH	JILES CIRCUS 2669 B1 D0-24.50m B0TOH	JILES CIRCUS 2669 B1 D0-24.50m B0TOH
CILES CIRCUS 12669 PB1 00-24.50m BOTTOM	GILES CIRCUS 12669 PB1 00-24.50m BOTTON	GILES CIRCUS 12669 PB1 00-24.50m BOTTOH	GILES CIRCUS 12669 PB1 00-24.50m BOTTOH
GILES CIRCUS 12669 PB1 00-24.50m BOTTON	GILES CIRCUS 12669 PB1 00-24.50 m BOTTON	GILES CIRCUS 12669 PB1 00-24.50m BOTTON	GILES CIRCUS 12669 PB1 00-24.50m BOTTON
GILES CIRCUS /2669 PB1 200-24.50m BOTTOM	GILES CIRCUS /2669 PB1 200-24.50m BOTTON	GILES CIRCUS /2669 PB1 200-24.50m BOTTON	GILES CIRCUS /2669 PB1 200-24.50m BOTTON
GILES CIRCUS 1/2669 PB1 300-24.50 m 30TTOM	GILES CIRCUS 1/2669 PB1 30TOH BOTOH	GILES CIRCUS 1/2669 PB1 30TOH BOTOH	GILES CIRCUS 1/2669 PB1 30TOH BOTOH
GILES CIRCUS 1/2669 PB1 3.00-24.50m	GILES CIRCUS 1/2669 PB1 300-24.50m BOTTON	GILES CIRCUS 1/2669 PB1 3.00-24.50 m BOTTON	GILES CIRCUS 1/2669 PB1 3.00-24.50 m BOTTON
GILES CIRCUS 4/2669 PB1 2300-24.50m BOTTOM	GILES CIRCUS 4/2669 PB1 300-24.50m BOTTOM	GILES CIRCUS 4/2669 PB1 300-24.50m BOTTON	GILES CIRCUS 4/2669 PB1 300-24.50m BOTTON
F. GILES CIRCUS 4/2669 PB1 23.00-24.50 m BOTTON	F. GILES CIRCUS 4/2669 PB1 23.00-24.50m BOTTON	F. GILES CIRCUS 4/2669 PB1 23.00-24.50m BOTTON	F. GILES CIRCUS 4/2669 PB1 23.00-24.50m BOTTON
T. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	T GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	T GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	T GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH
DT. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	DT. GILES CIRCUS 14/2669 PB1 23.00-24.50 m BOTTON	DT. GILES CIRCUS 14/2669 PB1 23.00-24.50 m BOTTON	DT. GILES CIRCUS 14/2669 PB1 23.00-24.50 m BOTTON
DT. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	DT. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	DT. GILES CIRCUS 14/2669 PB1 23.00-24.50 BOTTON BOTTON	DT. GILES CIRCUS 14/2669 PB1 23.00-24.50 BOTTON BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50 m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOM	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50 M BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50 M BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 2300-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50 M BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50 M BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50 m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON
ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 30TON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 30TON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50 m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50 m TOP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 30TOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TOH
ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 30TON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TON
ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50 m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON
ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP 30TON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TON
ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTOH
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 30TON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TOH
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50 m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 30TOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 20TOH
ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 30TON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 30TON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP 30TON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m BOTTON	ST. GILES CIRCUS 14/2669 PB1 2300-24.50m DP 20TON	ST. GILES CIRCUS 14/2669 PB1 2300-24.50 m BOTTON	ST. GILES CIRCUS 14/2669 PB1 2300-24.50 m BOTTON
ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m DP BOTTOH	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON	ST. GILES CIRCUS 14/2669 PB1 23.00-24.50m TOP BOTTON

Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVEST	IGATIC	A 200	Fel: 020 8811 288 Fax: 020 8811 288 email: si@concept	-
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	25 & 26



Unit 8, Warple Mew Warple Way London W3 0RF	S CONCEPT SITE INVEST	IGATIO	F 2N	el: 020 8811 288 ax: 020 8811 288 mail: si@concept	
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	27 & 28

ST. GILES CIRCUS 14/2669 PB1 26.00-24.50 A TOP BOTTON
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Unit 8, Warple Mew Warple Way London W3 0RF	CONCEPT SITE INVEST	IGATIC	n sn	el: 020 8811 288 ax: 020 8811 288 mail: si@concept	
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01
Carried out for	Consolidated Developments Limited	Date		Photograph	29 & 30

n dan terdeni berakan kana dan dara berakan berakan berakan berakan berakan berakan berakan berakan berakan ber	By the star	14/2669 PB1 24.50-28.80m ТОР ВОТТОН	ST GILES CIR
**************************************			CV5

Unit 8, Warple Mew Warple Way London W3 0RF			F 2N	Tel: 020 8811 2880 Fax: 020 8811 2881 email: si@conceptconsultants.co.uk		
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01	
Carried out for	Consolidated Developments Limited	Date		Photograph	31 & 32	

Unit 8, Warple Mew Warple Way London W3 0RF	DIe Way CONCEPT SITE INVESTIGATIONS		F 2N	Tel: 020 8811 2880 Fax: 020 8811 2881 email: si@conceptconsultants.co.uk		
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01	
Carried out for	Consolidated Developments Limited	Date		Photograph	33 & 34	

Unit 8, Warple Mev Warple Way London W3 0RF	vs CONCEPT SITE INVES	TIGATIO	Tel: 020 8811 2880 Fax: 020 8811 2881 email: si@conceptconsultants.co				
Site Name	St Giles Circus	Job No.	14/2669	HOLE	PB01		
Carried out for	Consolidated Developments Limited	Date		Photograph	35 & 36		
	ST. GILES C 14/2669 PB1 31.80-32.00m TOP BOTTOM	KODAK Calar C	JS Rate C M				
		A. D. N. P. 0					

