Type 3: After Energy Demand Reduction

Type 5. After Energy Demand Reduction	
Assessor Name: User Details: Stroma Number:	
	า: 1.0.1.25
Property Address: L4 3BF West	
Address: , NW1 1JD 1. Overall dwelling dimensions:	
Area(m²) Av. Height(m)	Volume(m³)
Ground floor	270.9 (3a)
Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 86 (4)	
Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = $	270.9 (5)
2. Ventilation rate:	
main secondary other total heating heating	m³ per hour
Number of chimneys $0 + 0 + 0 = 0 \times 40 = 0$	0 (6a)
Number of open flues $0 + 0 + 0 = 0 \times 20 = 0$	0 (6b)
Number of intermittent fans 0 x 10 =	0 (7a)
Number of passive vents 0 x 10 =	0 (7b)
Number of flueless gas fires 0 x 40 =	0 (7c)
Air cha	anges <mark>per</mark> hour
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ \div (5) =	0 (8)
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)	
Number of storeys in the dwelling (ns) Additional infiltration [(9)-1]x0.1 =	0 (9)
Additional infiltration [(9)-1]x0.1 = Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction	0 (10)
if both types of wall are present, use the value corresponding to the greater wall area (after	(11)
deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0	0 (12)
If no draught lobby, enter 0.05, else enter 0	0 (13)
Percentage of windows and doors draught stripped	0 (14)
Window infiltration 0.25 - [0.2 x (14) ÷ 100] =	0 (15)
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$	0 (16)
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area	3 (17)
If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$	0.15 (18)
Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used	
Number of sides sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] =$	0 (19) 1 (20)
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$	0.15 (21)
Infiltration rate modified for monthly wind speed	0.13
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Monthly average wind speed from Table 7	
(22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7	
Wind Factor (22a)m = (22)m ÷ 4	
(22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18	

	ation rate (<u>`</u>			1	i 	`	ì	1	1	T	1	
0.19 Calculate effe		0.18 nange r	0.16 rate for t	0.16 he appli	0.14 cable ca	0.14 Se	0.14	0.15	0.16	0.17	0.18]	
If mechanica		•										0.5	(2
If exhaust air h	eat pump usi	ing Appe	endix N, (2	(3b) = (23a	a) × Fmv (e	equation (N5)) , othe	rwise (23b	o) = (23a)			0.5	(2
If balanced with	n heat recove	ery: effici	iency in %	allowing t	for in-use f	actor (fror	n Table 4h	n) =				64.6	(2
a) If balance	ed mechan	ical ve	ntilation	with he	at recov	ery (MV	HR) (24a	a)m = (2)	2b)m + (23b) × [1 – (23c)	÷ 100]	
24a)m= 0.37	0.36	0.36	0.34	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.35]	(2
b) If balance	ed mechan	ical ve	ntilation	without	heat red	covery (I	MV) (24k	o)m = (22	2b)m + (23b)	_	_	
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(2
c) If whole h if (22b)r	ouse extra n < 0.5 × (2			•	•				.5 × (23t	o)			
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
d) If natural if (22b)r	ventilation $n = 1$, then			•	•				0.5]			_	
24d)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
Effective air	change ra	ate - en	iter (24a) or (24l	o) or (24	c) or (24	ld) in bo	x (25)				_	
25)m= 0.37	0.36	0.36	0.34	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.35		(2
3. Heat losse	s and heat	t loss p	paramet	er:								_	
ELEMENT	Gross area (n		Openin m		Net Ar A ,r		U-val W/m2		A X U (W/	K)	k-valu kJ/m²·		A X k kJ/K
Vin <mark>dows</mark> Type	e 1				2.85	x1	/[1/(1.3)+	- 0.04] =	3.52				(2
Nin <mark>dows</mark> Type	2				6.67	x1	/[1/(1.3)+	- 0.04] =	8.24				(2
Windows Type	e 3				2.85	x1	/[1/(1.3)+	- 0.04] =	3.52				(2
Floor					6	x	0.1	=	0.6				(2
<i>N</i> alls	64		23.7	7	40.23	3 X	0.11	=	4.43				(2
Total area of e	elements, n	m²			70								(3
Party wall					25	X	0	=	0				(3
Party wall					32	X	0	=	0				(3
Party floor					80								(3
Party ceiling					86					[(3
nternal wall **					93								(3
for windows and it include the area						lated using	g formula 1	1/[(1/U-valu	ле)+0.04] а	as given in	paragrapi	h 3.2	
abric heat los	ss, $W/K = S$	S (A x	U)				(26)(30) + (32) =				34.4	(3
leat capacity	Cm = S(A)	xk)						((28).	(30) + (3	2) + (32a).	(32e) =	32581.	.5 (3
	paramete	r (TMF	• = Cm ÷	: TFA) ir					ative Value			250	(3
Thermal mass	•									T. 10 . T			
For design assess an be used inste	sments where ad of a detail	led calcu	ulation.				recisely the	e indicative	e values of	· IMP In T	able 1f		
or design asses	sments where ad of a detail es:S(L x	led calcu Y) calc	ulation. culated ι	using Ap	pendix l		recisely the	e indicative	e values of	· IMP IN T	able 1f	7	(3

Ventila	tion hea	nt loss ca	alculated	l monthly	y				(38)m	= 0.33 × (25)m x (5))		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	32.92	32.59	32.25	30.57	30.24	28.56	28.56	28.23	29.23	30.24	30.91	31.58		(38)
Heat tr	ansfer c	oefficier	nt, W/K		-	-		<u>-</u>	(39)m	= (37) + (3	38)m	-		
(39)m=	74.32	73.98	73.65	71.97	71.64	69.96	69.96	69.63	70.63	71.64	72.31	72.98		
Heat lo	ss para	meter (F	HLP), W/	′m²K						Average = = (39)m ÷		12 /12=	71.89	(39)
(40)m=	0.86	0.86	0.86	0.84	0.83	0.81	0.81	0.81	0.82	0.83	0.84	0.85		
Numbe	er of day	s in mor	nth (Tab	le 1a)					,	Average =	Sum(40) ₁	12 /12=	0.84	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			gy requi	rement:								kWh/ye	ear:	
if TF				[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		.57		(42)
								(25 x N)		o torgot o		5.16		(43)
			not water person per				-	to achieve	a water us	se target o				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate			day for ea						СОР	001	1101			
(44)m=	104.68	100.87	97.07	93.26	89.45	85.65	85.65	89.45	93.26	97.07	100.87	104.68		
Energy o	content of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	m x nm x E)Tm / 3600		Γotal = Su oth (see Ta			1141.97	(44)
(45)m=	155.24	135.77	140.11	122.15	117.2	101,14	93.72	107.54	108.83	126.83	138.44	150.34		
If instant	lanaaya y	ratar baati	aa at naint	of upo /no	, bot water	· otorogo)	antar O in	havea (16		Γotal = Su	m(45) ₁₁₂ =	=	1497.31	(45)
ı			· ·	,		,.		boxes (46,	. ,	10.00	00.77	00.55		(40)
(46)m= Water	23.29 storage	20.37 loss:	21.02	18.32	17.58	15.17	14.06	16.13	16.32	19.02	20.77	22.55		(46)
	_		includin	ig any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
Otherw	•	stored	nd no ta hot wate		•			(47) ombi boil	ers) ente	er '0' in (47)			
	-		eclared l	oss facto	or is kno	wn (kWh	n/day):					0		(48)
Tempe	rature fa	actor fro	m Table	2b								0		(49)
			storage eclared o			or is not		(48) x (49)	=		1	10		(50)
Hot wa	ter stora	age loss	factor fr	om Tabl							0.	.02		(51)
	-	from Tal		JII 4.5							1.	.03		(52)
			m Table	2b								.6		(53)
Energy	lost fro	m water	storage	, kWh/ye	ear			(47) x (51)	x (52) x (53) =	1.	.03		(54)
Enter	(50) or (54) in (5	55)	-							1.	.03		(55)
Water	storage	loss cal	culated f	or each	month			((56)m = (55) × (41)r	m				

If cylinder conta	nins dedicate	ed solar sto	rage, (57)	m = (56)m	x [(50) – ([H11)] ÷ (5	0), else (5	7)m = (56)	m where ((H11) is fro	om Append	lix H	
(57)m= 32.0°	1 28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
Primary circ	uit loss (ar	nnual) fro	om Table		•	•	•	•	•		0		(58)
Primary circ	•	,			(59)m = ((58) ÷ 36	65 × (41)	m				•	
(modified	by factor f	rom Tab	le H5 if t	here is	solar wat	ter heati	ng and a	cylinde	r thermo	stat)		_	
(59)m= 23.20	3 21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi loss	calculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m= 0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total heat re	equired for	water h	eating ca	alculated	d for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 210.5	2 185.7	195.38	175.64	172.48	154.63	149	162.82	162.32	182.11	191.94	205.62		(62)
Solar DHW inp	ut calculated	using App	endix G o	r Appendix	ι Η (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add addition	nal lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (3)					
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	water hea	iter											
(64)m= 210.5	2 185.7	195.38	175.64	172.48	154.63	149	162.82	162.32	182.11	191.94	205.62		
	•						Outp	out from wa	ater heate	r (annual) ₁	12	2148.15	(64)
Heat gains f	rom water	heating	, kWh/m	onth 0.2	5 ′ [0.85	× (45)m	+ (61)m	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 95.8	4 85.09	90.81	83.41	83.19	76.42	75.38	79.98	78.98	86.39	88.83	94.21		(65)
include (5	7)m in cal	culation	of (65)m	only if c	ylinder i	s in the	dwelling	or hot w	ate <mark>r is fr</mark>	om com	munity h	eating	
5. Internal	gains (see	e Table 5	and 5a):									
Metabolic ga													
Jar		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 128.3	5 128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35		(66)
Lighting gair	ns (calcula	ted in A	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m= 20.6	18.33	14.91	11.29	8.44	7.12	7.7	10	13.43	17.05	19.9	21.21		(67)
Appliances (gains (calc	culated in	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5	•	•	•	
(68)m= 231.5	2 233.93	227.87	214.98	198.71	183.42	173.21	170.8	176.86	189.75	206.02	221.31		(68)
Cooking gai	ns (calcula	ated in A	ppendix	L, equa	tion L15	or L15a), also se	ee Table	5				
(69)m= 35.83	_`	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83		(69)
Pumps and	fans gains	(Table	5а)	•	•	•	•	•	•	•	!		
(70)m= 0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses e.g.	evaporation	n (nega	tive valu	es) (Tab	le 5)							•	
(71)m= -102.6	8 -102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68		(71)
Water heatir	ng gains (rable 5)					l	l					
(72)m= 128.8		122.05	115.85	111.82	106.14	101.32	107.5	109.69	116.12	123.37	126.63		(72)
Total intern	al gains =	 -	!	!	(66))m + (67)m	n + (68)m -	⊦ (69)m + ((70)m + (7	(1)m + (72))m	•	
(73)m= 442.4	_	426.34	403.62	380.47	358.19	343.73	349.81	361.49	384.42	410.79	430.65		(73)
6. Solar ga													
Solar gains ar		using sola	r flux from	Table 6a	and assoc	iated equa	itions to co	nvert to th	ne applicat	ole orienta	tion.		
Orientation:	Access F	actor	Area		Flu	IX		g_		FF		Gains	
						ble 6a		able 6b		• • •		Canto	

Courthograf			1		ı		- .		_		—
Southeast 0.9x 0.7	7 ×	6.67	X	36.79	X	0.7	X	1.11	_ =	132.28	(77)
Southeast 0.9x 0.7	7 ×	6.67	X	62.67	X	0.7	X	1.11	=	225.32	(77)
Southeast 0.9x 0.7	7 ×	6.67	X	85.75	X	0.7	X	1.11	=	308.29	(77)
Southeast 0.9x 0.7	7 ×	6.67	X	106.25	х	0.7	X	1.11	=	381.99	(77)
Southeast 0.9x 0.7	7 x	6.67	X	119.01	X	0.7	X	1.11	=	427.86	(77)
Southeast 0.9x 0.7	7 ×	6.67	X	118.15	X	0.7	x	1.11	=	424.76	(77)
Southeast 0.9x 0.7	7 ×	6.67	X	113.91	X	0.7	x	1.11	=	409.52	(77)
Southeast 0.9x 0.7	7 ×	6.67	X	104.39	x	0.7	x	1.11	=	375.3	(77)
Southeast 0.9x 0.7	7 ×	6.67	X	92.85	x	0.7	x	1.11	=	333.81	(77)
Southeast 0.9x 0.7	7 ×	6.67	X	69.27	x	0.7	x	1.11	=	249.03	(77)
Southeast 0.9x 0.7	7 x	6.67	X	44.07	x	0.7	x	1.11	=	158.44	(77)
Southeast 0.9x 0.7	7 x	6.67	X	31.49	X	0.7	x	1.11	=	113.2	(77)
Southwest _{0.9x} 0.7	7 ×	2.85	x	36.79		0.7	x	1.11	=	169.56	(79)
Southwest _{0.9x} 0.7	7 ×	2.85	x	62.67		0.7	x	1.11	_ =	288.83	(79)
Southwest _{0.9x} 0.7	7 ×	2.85	x	85.75	ĺ	0.7	×	1.11	= =	395.19	(79)
Southwest _{0.9x} 0.7	7 ×	2.85	X	106.25	ĺ	0.7	x	1.11	_ =	489.66	(79)
Southwest _{0.9x} 0.7	7 ×	2.85	x	119.01		0.7	x	1.11	=	548.45	(79)
Southwest _{0.9x} 0.7	7 x	2.85	X	118.15		0.7	Х	1.11		544.49	(79)
Southwest _{0.9x} 0.7	7 x	2.85	х	113.91	١.	0.7	х	1.11	=	524.95	(79)
Southwest _{0.9x} 0.7	7 ×	2.85	х	104.39		0.7	х	1.11	=	481.08	(79)
Southwest _{0.9x} 0.7	7 ×	2.85	x	92.85		0.7	х	1.11	=	427.9	(79)
Southwest _{0.9x} 0.7	7 x	2.85	x	69.27		0.7	х	1.11	_ =	319.22	(79)
Southwest _{0.9x} 0.7	7 X	2.85	x	44.07		0.7	x	1.11	=	203.1	(79)
Southwest _{0.9x} 0.7	7 x	2.85	х	31.49		0.7	x	1.11	=	145.11	(79)
Northwest 0.9x 0.7	7 x	2.85	X	11.28	x	0.7	x	1.11	=	52	(81)
Northwest 0.9x 0.7	7 x	2.85	X	22.97	x	0.7	x	1.11	=	105.84	(81)
Northwest 0.9x 0.7	7 ×	2.85	X	41.38	x	0.7	x	1.11	=	190.69	(81)
Northwest 0.9x 0.7	7 ×	2.85	X	67.96	x	0.7	x	1.11	=	313.17	(81)
Northwest 0.9x 0.7	7 ×	2.85	X	91.35	x	0.7	x	1.11	=	420.96	(81)
Northwest 0.9x 0.7	7 ×	2.85	X	97.38	x	0.7	x	1.11	=	448.79	(81)
Northwest 0.9x 0.7	7 ×	2.85	X	91.1	x	0.7	x	1.11	=	419.84	(81)
Northwest _{0.9x} 0.7	7 ×	2.85	X	72.63	x	0.7	x	1.11	=	334.7	(81)
Northwest 0.9x 0.7	7 ×	2.85	X	50.42	x	0.7	x	1.11	=	232.36	(81)
Northwest _{0.9x} 0.7	7 ×	2.85	X	28.07	x	0.7	x	1.11	=	129.35	(81)
Northwest _{0.9x} 0.7	7 ×	2.85	X	14.2	X	0.7	x	1.11	=	65.43	(81)
Northwest 0.9x 0.7	7 ×	2.85	X	9.21	X	0.7	x	1.11	=	42.46	(81)
Solar gains in watts,		i i		i	Ė	ı = Sum(74)m				1	(22)
(83)m= 353.84 619.99		ļl		118.04 1354.3	119	994.08	697.59	426.96	300.78	l	(83)
Total gains – internal (84)m= 796.32 1060.3		 	<u> </u>		1510	1255 56	1002.0	1 027 75	724 42	1	(94)
` '				776.24 1698.03	1540).88 1355.56	1082.0	1 837.75	731.43	l	(84)
7. Mean internal ten											
Temperature during	• .		•		ole 9	Th1 (°C)				21	(85)
Utilisation factor for	`	 	Ť		_			1 1		1	
Stroma ESAP 2012 VERS	n! 1.d. 1.25	SAP 9.52 - http://	<u> </u>	stromal com ul	A	ug Sep	Oct	Nov	Dec	Page	5 of 7

	_	
(86)m= 0.98 0.91 0.76 0.54 0.37 0.25 0.18 0.21 0.36 0.67 0.93 0.99		(86)
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)	_	
(87)m= 20.47 20.74 20.92 20.99 21 21 21 21 21 20.98 20.74 20.42		(87)
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)		
(88)m= 20.2 20.2 20.2 20.22 20.22 20.24 20.24 20.25 20.23 20.22 20.22 20.21		(88)
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)		
(89)m= 0.97 0.89 0.73 0.51 0.34 0.22 0.15 0.17 0.32 0.62 0.91 0.98		(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)		
(90)m= 19.51 19.89 20.12 20.21 20.22 20.24 20.24 20.25 20.23 20.2 19.91 19.45		(90)
fLA = Living area ÷ (4) =	0.34	(91)
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$		_
(92)m= 19.83 20.17 20.39 20.48 20.49 20.5 20.5 20.5 20.49 20.46 20.19 19.77]	(92)
Apply adjustment to the mean internal temperature from Table 4e, where appropriate	I	
(93)m= 19.83 20.17 20.39 20.48 20.49 20.5 20.5 20.5 20.49 20.46 20.19 19.77		(93)
8. Space heating requirement		
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calc	culate	
the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec		
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm:		
(94)m= 0.97 0.89 0.73 0.52 0.35 0.23 0.16 0.19 0.33 0.64 0.91 0.98		(94)
Useful gains, hmGm , W = (94)m x (84)m	1	
(95)m= 771.39 944.14 970.19 827.2 628.93 412.57 272.66 285.44 451.32 690.93 765.21 715.69		(95)
Monthly average external temperature from Table 8		
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2		(96)
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m]	1	(07)
(97)m= 1154.4 1129.96 1023.13 833.1 629.37 412.59 272.66 285.44 451.52 706.54 946.43 1136.62	J	(97)
Space heating requirement for each month, $kWh/month = 0.024 \times [(97)m - (95)m] \times (41)m$ (98)m = 284.96 124.87 39.39 4.24 0.33 0 0 0 0 11.61 130.47 313.17	1	
Total per year (kWh/year) = Sum(98) _{15,912} =	909.06	(98)
		(99)
Space heating requirement in kWh/m²/year	10.57](99)
9b. Energy requirements – Community heating scheme		
This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none	0	(301)
Fraction of space heat from community system 1 – (301) =	1	(302)
](002)
The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; t includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.	rie iallei	
Fraction of heat from Community boilers	1	(303a)
Fraction of total space heat from Community boilers (302) x (303a) =	1	(304a)
Factor for control and charging method (Table 4c(3)) for community heating system	1	(305)
Distribution loss factor (Table 12c) for community heating system	1.2	` ☐(306)
		」 ` ′
Space heating Annual space heating requirement	kWh/year 909.06	٦
Author opass housing requirement	303.00	_

Space heat from Community boilers	(98) x (304a)	x (305) x (306) =	1090.87	(307a)
Efficiency of secondary/supplementary heating system in	% (from Table 4a or Appe	endix E)	0	(308
Space heating requirement from secondary/supplementa	ry system (98) x (301) x	(100 ÷ (308) =	0	(309)
Water heating Annual water heating requirement			2148.15	_
If DHW from community scheme: Water heat from Community boilers	(64) x (303a)	x (305) x (306) =	2577.77	(310a)
Electricity used for heat distribution	0.01 × [(307a)(30	07e) + (310a)(310e)] =	36.69	(313)
Cooling System Energy Efficiency Ratio			0	(314)
Space cooling (if there is a fixed cooling system, if not en	ter 0) = (107) ÷ (31	4) =	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input	it from outside		328.52	(330a)
warm air heating system fans			0	(330b)
pump for solar water heating			0	(330g)
Total electricity for the above, kWh/year	=(330a) + (33	30b) + (330g) =	328.52	(331)
Energy for lighting (calculated in Appendix L)			364.52	(332)
12b. CO2 Emissions – Community heating scheme	Energy kWh/year	Emission factor kg CO2/kWh	Emiss <mark>ions</mark> kg CO2/year	
CO2 from other sources of space and water heating (not	kWh/year	kg CO2/kWh	kg CO <mark>2/yea</mark> r	(367a)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) If there is Co	kWh/year	kg CO2/kWh to (366) for the second fuel	kg CO <mark>2/yea</mark> r	(367a) (367)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) If there is Co	kWh/year CHP) HP using two fuels repeat (363)	kg CO2/kWh to (366) for the second fuel	kg CO2/year	⊒` =
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x	kg CO2/kWh to (366) for the second fuel 0 = 0.52 =	89 890.37	(367)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x [(313) x	kg CO2/kWh to (366) for the second fuel 0 = 0.52 =	89 890.37 19.04 909.41	(367)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems	(307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3	kg CO2/kWh to (366) for the second fuel 0 = 0.52	89 890.37 19.04 909.41	(367) (372) (373)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems CO2 associated with space heating (secondary)	(307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3	kg CO2/kWh to (366) for the second fuel 0 = 0.52	89 890.37 19.04 909.41	(367) (372) (373) (374)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems CO2 associated with space heating (secondary) CO2 associated with water from immersion heater or inst	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3 (309) x antaneous heater (312) x (373) + (374) + (375) =	kg CO2/kWh to (366) for the second fuel 0 = 0.52	89 890.37 19.04 909.41 0 909.41	(367) (372) (373) (374) (375)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems CO2 associated with space heating (secondary) CO2 associated with water from immersion heater or instantal CO2 associated with space and water heating	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3 (309) x antaneous heater (312) x (373) + (374) + (375) =	kg CO2/kWh to (366) for the second fuel 0 = 0.52 = 0.52 = 0.22 = 0.22	89 890.37 19.04 909.41 0 909.41 170.5	(367) (372) (373) (374) (375) (376)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems CO2 associated with space heating (secondary) CO2 associated with water from immersion heater or inst Total CO2 associated with space and water heating CO2 associated with electricity for pumps and fans within CO2 associated with electricity for lighting Total CO2, kg/year sum of (376)(382)	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3 (309) x antaneous heater (312) x (373) + (374) + (375) = dwelling (331)) x (332))) x	kg CO2/kWh to (366) for the second fuel 0 = 0.52 = 0.22 = 0.52 =	89 890.37 19.04 909.41 0 909.41 170.5	(367) (372) (373) (374) (375) (376) (378)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems CO2 associated with space heating (secondary) CO2 associated with water from immersion heater or inst Total CO2 associated with space and water heating CO2 associated with electricity for pumps and fans within CO2 associated with electricity for lighting	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3 (309) x antaneous heater (312) x (373) + (374) + (375) = dwelling (331)) x (332))) x	kg CO2/kWh to (366) for the second fuel 0 = 0.52 = 0.22 = 0.52 =	89 890.37 19.04 909.41 0 909.41 170.5 189.18	(367) (372) (373) (374) (375) (376) (378) (379)