Type 6: After CHP

Type of Arter of II							
	User Det	tails:					
Assessor Name: Software Name: Stroma FSAP 2012	_	Stroma N Software	on: 1.0.1.25				
	Property Ac	ddress: L5	3BF East				
Address: , NW1 1JD							
Overall dwelling dimensions:							
	Area(ı			eight(m)	1	Volume(m³)	_
Ground floor	86	6 (1a)	X ;	3.15	(2a) =	270.9	(3a)
Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+$.(1n) 86	6 (4)					
Dwelling volume		(3a)+(3b)+(3c)+(3	d)+(3e)+	.(3n) =	270.9	(5)
2. Ventilation rate:							
main secon heating heati		ther	total			m³ per hou	r
Number of chimneys 0 + 0	-	0	= 0	X 4	10 =	0	(6a)
Number of open flues 0 + 0	+	0	= 0	x 2	20 =	0	(6b)
Number of intermittent fans			0	<u> </u>	10 =	0	(7a)
Number of passive vents			0	<u> </u>	10 =	0	(7b)
Number of flueless gas fires			0	x 4	10 =	0	(7c)
					Air ch	anges per ho	ur
Infiltration due to chimneys, flues and fans = (6a)+(6b)			0		÷ (5) =	0	(8)
If a pressurisation test has been carried out or is intended, pro	oceed to (17), oth	herwise contii	nue from (9) to	(16)	ı		٦
Number of storeys in the dwelling (ns) Additional infiltration				1(0)	·1]x0.1 =	0	(9)
Structural infiltration: 0.25 for steel or timber frame	a or 0.35 for n	masonry co	onstruction	[(9)-	1]XU.1 =	0	(10)
if both types of wall are present, use the value correspondi		•				0	(11)
deducting areas of openings); if equal user 0.35					,		_
If suspended wooden floor, enter 0.2 (unsealed) of	or 0.1 (sealed)	l), else ente	er 0			0	(12)
If no draught lobby, enter 0.05, else enter 0	.1					0	(13)
Percentage of windows and doors draught strippe		.25 - [0.2 x (1	4) : 1001 -			0	(14)
Window infiltration Infiltration rate			4) ÷ 100] = 1) + (12) + (13)	± (15) =		0	= (15)
Air permeability value, q50, expressed in cubic me					area	0	(16)
If based on air permeability value, then $(18) = [(17) \div 2]$	•		ic metre or	crivelope	arca	0.15	(17)
Air permeability value applies if a pressurisation test has been			ability is being ι	ısed		0.15	(10)
Number of sides sheltered						0	(19)
Shelter factor	(2	20) = 1 - [0.07	75 x (19)] =			1	(20)
Infiltration rate incorporating shelter factor	(2	21) = (18) x (2	20) =			0.15	(21)
Infiltration rate modified for monthly wind speed							
Jan Feb Mar Apr May Ju	ın Jul	Aug S	Sep Oct	Nov	Dec		
Monthly average wind speed from Table 7							
(22)m= 5.1 5 4.9 4.4 4.3 3.8	3.8	3.7	4 4.3	4.5	4.7		
Wind Factor (22a)m = (22)m ÷ 4							
(22a)m= 1.27 1.25 1.23 1.1 1.08 0.9	5 0.95	0.92	1 1.08	1.12	1.18		
		-				1	

Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m			
0.19 0.19 0.18 0.16 0.16 0.14 0.14 0.14 0.15 0.	16 0.17	0.18	1
Calculate effective air change rate for the applicable case	!		
If mechanical ventilation:	10-1		0.5
If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (2	(3a)		0.5
If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) =			64.6
a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m	- 	<u> </u>	· -
(24a)m= 0.37 0.36 0.36 0.34 0.34 0.32 0.32 0.32 0.33 0.3	l	0.35	
b) If balanced mechanical ventilation without heat recovery (MV) (24b)m = (22b)m	```	_	1
	0	0	
c) If whole house extract ventilation or positive input ventilation from outside	(001-)		
if $(22b)m < 0.5 \times (23b)$, then $(24c) = (23b)$; otherwise $(24c) = (22b)m + 0.5 \times (24c)$	` í		1 ,
	0	0	
d) If natural ventilation or whole house positive input ventilation from loft if (22b)m = 1, then (24d)m = (22b)m otherwise (24d)m = 0.5 + [(22b)m² x 0.5]		_	-
(24d)m= 0 0 0 0 0 0 0 0 0 0 0	0	0	
Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25)			_
(25)m= 0.37 0.36 0.36 0.34 0.34 0.32 0.32 0.32 0.33 0.3	34 0.35	0.35	
3. Heat losses and heat loss parameter:	_		
	ΧU	k-value	e AXk
	(W/K)	kJ/m²-	
Windows Type 1 2.85 $x1/[1/(1.3) + 0.04] = 3$	3.52		(
Windows Type 2 6.67 x1/[1/(1.3)+ 0.04] = 8	3.24		
Windows Type 3 2.85 $\times 1/[1/(1.3) + 0.04] = 3$	3.52		
Walls 64 23.77 40.23 x 0.11 = 4	1.43		
Roof 86 0 86 x 0.1 =	8.6		
Total area of elements, m ²			
Party wall 25 x 0 =	0		<u> </u>
Party wall 32 x 0 =	0		
Dark floor			
	Į [
	041		(
* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0. ** include the areas on both sides of internal walls and partitions	.04] as given in	n paragrapi	1 3.2
Fabric heat loss, W/K = S (A x U) (26)(30) + (32) =			42.4
Heat capacity $Cm = S(A \times k)$ ((28)(30)	+ (32) + (32a)	(32e) =	24785.5
	/alue: Medium	,	250
For design assessments where the details of the construction are not known precisely the indicative value can be used instead of a detailed calculation.	es of TMP in T	able 1f	
Thermal bridges : S (L x Y) calculated using Appendix K			7
if details of thermal bridging are not known (36) = $0.15 \times (31)$,
Total fabric heat loss (33) + (36)	=		49.4
Ventilation heat loss calculated monthly (38)m = 0.3	33 × (25)m x (5	j)	
Vertiliation float 1000 calculated floriting	- (-) (-		

												l	
(38)m= 32.92	32.59	32.25	30.57	30.24	28.56	28.56	28.23	29.23	30.24	30.91	31.58		(38)
Heat transfer co		nt, W/K				·		· · · ·	= (37) + (38)m	1	ı	
(39)m= 82.32	81.98	81.65	79.97	79.64	77.96	77.96	77.63	78.63	79.64	80.31	80.98		¬(00)
Heat loss parar	neter (H	HLP), W	/m²K						Average = = (39)m ÷	Sum(39) ₁ . (4)	12 /12=	79.89	(39)
(40)m= 0.96	0.95	0.95	0.93	0.93	0.91	0.91	0.9	0.91	0.93	0.93	0.94		_
Number of days	s in mor	nth (Tah	lo 1a)					/	Average =	Sum(40) ₁	12 /12=	0.93	(40)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
` /		ļ					ļ			ļ			
4. Water heati	na enei	rav regui	irement:								kWh/ye	ar.	
4. Water fleath	rig crici	igy roqui	irement.								KVVII/ y	Jui.	
Assumed occup if TFA > 13.9	, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		.57		(42)
if TFA £ 13.9 Annual average	•	ater usac	ne in litre	s ner ds	v Vd av	erane –	(25 v N)	+ 36		05	5.16		(43)
Reduce the annual									se target o		0.16		(43)
not more that 125 li	itres per p	person per	day (all w	ater use, l	not and co	ld)							
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage in	litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)				T		
(44)m= 104.68	100.87	97.07	93.26	89.45	85.65	85.65	89.45	93.26	97.07	100.87	104.68		_
Energy content of h	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	n x nm x E	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		1141.97	(44)
(45)m= 155.24	135.77	140.11	122.15	117.2	101.14	93.72	107.54	108.83	126.83	138.44	150.34		
If in a land and a second	to a to a a ti			111	()	2 11 12 11 2 12	h (40		Γotal = Su	m(45) ₁₁₂ =	=	1497.31	(45)
If instantaneous wa						1				1	ı	ſ	(40)
(46)m= 23.29 Water storage I	20.37 OSS:	21.02	18.32	17.58	15.17	14.06	16.13	16.32	19.02	20.77	22.55		(46)
Storage volume		includin	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If community he	,		0 ,			Ü							()
Otherwise if no	•			•			` '	ers) ente	er '0' in (47)			
Water storage I												1	
a) If manufactu				or is kno	wn (kWł	n/day):					0		(48)
Temperature fa											0		(49)
Energy lost from		_	-		or io not		(48) x (49)	=		1	10		(50)
b) If manufactuHot water stora			-							0	.02		(51)
If community he	-			- (77					.02		(- /
Volume factor f	rom Ta	ble 2a								1.	.03		(52)
Temperature fa	ctor fro	m Table	2b							0	.6		(53)
Energy lost from	n water	storage	, kWh/ye	ear			(47) x (51)	x (52) x (53) =	1.	.03		(54)
Enter (50) or (5	54) in (5	55)								1.	.03		(55)
Water storage I	oss cal	culated f	for each	month		_	((56)m = (55) × (41)r	n	_			
(56)m= 32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
If cylinder contains	dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)

Primary circuit loss (annual) from Table 3	0 (58)									
Primary circuit loss calculated for each month (59)m = (58) ÷ 365 ×	(41)m									
(modified by factor from Table H5 if there is solar water heating a	nd a cylinder thermostat)									
(59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26 23	26 22.51 23.26 22.51 23.26 (59)									
Combi loss calculated for each month (61)m = (60) \div 365 × (41)m										
	0 0 0 0 (61)									
Total heat required for water heating calculated for each month (62)	$m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$									
(62)m= 210.52 185.7 195.38 175.64 172.48 154.63 149 162										
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)										
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)										
	0 0 0 0 (63)									
Output from water heater										
(64)m= 210.52 185.7 195.38 175.64 172.48 154.63 149 162	.82 162.32 182.11 191.94 205.62									
	Output from water heater (annual) ₁₁₂ 2148.15 (64)									
Heat gains from water heating, kWh/month 0.25 $^{\prime}$ [0.85 \times (45)m + (6										
` '	. ,									
include (57)m in calculation of (65)m only if cylinder is in the dwel	ling or hot water is from community heating									
5. Internal gains (see Table 5 and 5a):										
Metabolic gains (Table 5), Watts										
	ug Sep Oct Nov Dec									
(66)m= 128.35 128.35 128.35 128.35 128.35 128.35 128.35 128.35	.35 128.35 128.35 128.35 (66)									
Lighting gains (calculated in Appendix L, equation L9 or L9a), also s	ee Table 5									
(67)m= 20.64 18.33 14.91 11.29 8.44 7.12 7.7 1	0 13.43 17.05 19.9 21.21 (67)									
Appliances gains (calculated in Appendix L, equation L13 or L13a),	also see Table 5									
(68)m= 231.52 233.93 227.87 214.98 198.71 183.42 173.21 176	0.8 176.86 189.75 206.02 221.31 (68)									
Cooking gains (calculated in Appendix L, equation L15 or L15a), als	o see Table 5									
(69)m= 35.83 35.83 35.83 35.83 35.83 35.83 35.83 35	83 35.83 35.83 35.83 (69)									
Pumps and fans gains (Table 5a)										
(70)m= 0 0 0 0 0 0 0 0	0 0 0 0 (70)									
Losses e.g. evaporation (negative values) (Table 5)										
(71)m= -102.68 -102.68 -102.68 -102.68 -102.68 -102.68 -102.68 -102.68 -102.68	2.68 -102.68 -102.68 -102.68 -102.68 (71)									
Water heating gains (Table 5)										
(72)m= 128.81 126.62 122.05 115.85 111.82 106.14 101.32 10	7.5 109.69 116.12 123.37 126.63 (72)									
	3)m + (69)m + (70)m + (71)m + (72)m									
(73)m= 442.48 440.38 426.34 403.62 380.47 358.19 343.73 348										
6. Solar gains:	.01 301.49 304.42 410.79 430.03									
Solar gains are calculated using solar flux from Table 6a and associated equations	to convert to the applicable orientation									
Orientation: Access Factor Area Flux										
Table 6d m ² Table 6a	g_ FF Gains Table 6b Table 6c (W)									
Northeast 0.9x 0.77 x 2.85 x 11.28 x										
Northeast 0.9x 0.77 x 2.85 x 22.97 x	0.7 × 1.11 = 105.84 (75)									

Northeast _{0.9x}	0.77	×	2.8	5	х Г	41.38] x		0.7	7 x [1.11		190.69	(75)
Northeast 0.9x	0.77	^ ^	2.8	=	x F	67.96	」^] ×		0.7	」^↓ フ _× 「	1.11	╡ -	313.17	(75)
Northeast 0.9x	0.77	x	2.8		×	91.35]		0.7	_	1.11	╡ -	420.96	(75)
Northeast _{0.9x}	0.77	×	2.8		x Γ	97.38]		0.7	_	1.11	╡ -	448.79	(75)
Northeast _{0.9x}	0.77	x	2.8		x [91.1] x		0.7		1.11	╡ -	419.84	(75)
Northeast _{0.9x}	0.77	x	2.8		x [72.63] x		0.7		1.11	╡ -	334.7	(75)
Northeast 0.9x	0.77	x	2.8		x [50.42] x		0.7		1.11	╡ -	232.36	(75)
Northeast _{0.9x}	0.77	×	2.8	_	x Γ	28.07]]		0.7	_	1.11	= =	129.35	(75)
Northeast _{0.9x}	0.77	x	2.8		x Γ	14.2]]		0.7		1.11	= =	65.43	(75)
Northeast 0.9x	0.77	×	2.8		x Γ	9.21]]		0.7		1.11	= =	42.46	(75)
Southeast 0.9x	0.77	×	6.6		x	36.79]]		0.7		1.11	= =	132.28	(77)
Southeast 0.9x	0.77	X	2.8		x	36.79]]		0.7		1.11	= =	169.56	(77)
Southeast 0.9x	0.77	×	6.6		x	62.67]]		0.7		1.11	╡ -	225.32	(77)
Southeast 0.9x	0.77	x	2.8		x	62.67]]		0.7		1.11	= =	288.83	(77)
Southeast 0.9x	0.77	X	6.6		x	85.75]]		0.7		1.11	= =	308.29	(77)
Southeast 0.9x	0.77	X	2.8		x	85.75) x		0.7	_	1.11	= =	395.19	(77)
Southeast _{0.9x}	0.77	X	6.6		x	106.25]]		0.7		1.11	_ =	381.99	(77)
Southeast 0.9x	0.77	x	2.8		x F	106.25	X		0.7	Х	1.11	=	489.66	(77)
Southeast 0.9x	0.77	x	6.6	7	x	119.01	X		0.7	X	1.11	= -	427.86	(77)
Southeast 0.9x	0.77	×	2.8	5	x	119.01	x		0.7	х	1.11		548.45	(77)
Southeast 0.9x	0.77	x	6.6	7	x	118.15	X		0.7	х	1.11	=	424.76	(77)
Southeast 0.9x	0.77	x	2.8	5	x	118.15	Х		0.7	х	1.11	-	544.49	(77)
Southeast 0.9x	0.77	x	6.6	7	x	113.91	X		0.7	х	1.11	= =	409.52	(77)
Southeast 0.9x	0.77	x	2.8	5	x	113.91	X		0.7	x	1.11	= =	524.95	(77)
Southeast 0.9x	0.77	x	6.6	7	x	104.39	j×		0.7	×	1.11	_ =	375.3	(77)
Southeast _{0.9x}	0.77	x	2.8	5	x	104.39	x		0.7	×	1.11	=	481.08	(77)
Southeast 0.9x	0.77	x	6.6	7	x	92.85	x		0.7	×	1.11	=	333.81	(77)
Southeast _{0.9x}	0.77	x	2.8	5	x	92.85	x		0.7	x	1.11	=	427.9	(77)
Southeast _{0.9x}	0.77	X	6.6	7	x	69.27	x		0.7	×	1.11	=	249.03	(77)
Southeast 0.9x	0.77	X	2.8	5	x	69.27	x		0.7	×	1.11	=	319.22	(77)
Southeast _{0.9x}	0.77	x	6.6	7	x	44.07	x		0.7	×	1.11		158.44	(77)
Southeast 0.9x	0.77	X	2.8	5	x	44.07	X		0.7	x	1.11	=	203.1	(77)
Southeast 0.9x	0.77	X	6.6	7	x	31.49	x		0.7	×	1.11	=	113.2	(77)
Southeast 0.9x	0.77	X	2.8	5	x	31.49	x		0.7	x	1.11	=	145.11	(77)
							_							
Solar gains in y	watts, ca	lculated	for each	month			(83)m	n = Sur	m(74)m	(82)m			1	
(83)m= 353.84	619.99	894.17	l l	1397.28			119	1.07	994.08	697.59	426.96	300.78		(83)
Total gains – ir			` ´ 		·							1	1	(2.4)
(84)m= 796.32	1060.37	1320.51	1588.43	1777.75	1776	5.24 1698.03	1540	0.88	1355.56	1082.0	837.75	731.43		(84)
7. Mean interr	nal temp	erature	(heating	season)									
Temperature	_	٠.			•		ble 9	, Th1	(°C)				21	(85)
Utilisation fact	Ť				r				г		1	1	1	
Jan	Feb	Mar	Apr	May	Jı	ın Jul	A	ug	Sep	Oct	Nov	Dec		

(86)m=	0.98	0.93	0.8	0.6	0.42	0.28	0.2	0.23	0.4	0.72	0.95	0.99		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Tabl	e 9c)					
(87)m=	20.33	20.62	20.86	20.98	21	21	21	21	21	20.95	20.63	20.28		(87)
Temp	erature	during h	eating p	eriods ir	rest of	dwelling	from Ta	ble 9, T	h2 (°C)					
(88)m=	20.12	20.12	20.13	20.14	20.15	20.16	20.16	20.17	20.16	20.15	20.14	20.13		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	0.98	0.91	0.77	0.56	0.38	0.24	0.16	0.19	0.35	0.68	0.93	0.98		(89)
Mean	interna	l temper	ature in	the rest	of dwell	ing T2 (f	ollow ste	ps 3 to	7 in Tabl	le 9c)				
(90)m=	19.25	19.66	19.97	20.12	20.14	20.16	20.16	20.17	20.15	20.1	19.7	19.18		(90)
									1	fLA = Livin	g area ÷ (4	4) =	0.34	(91)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling) = f	LA × T1	+ (1 – fL	A) × T2					
(92)m=	19.61	19.98	20.27	20.41	20.43	20.44	20.44	20.45	20.44	20.38	20.01	19.55		(92)
			he mean		· ·	1	T T	r		r '	00.04	40.55		(02)
(93)m=	19.61	19.98	20.27 uirement	20.41	20.43	20.44	20.44	20.45	20.44	20.38	20.01	19.55		(93)
					e obtair	ned at sto	en 11 of	Table 9	h so tha	ıt Ti m=(76)m an	d re-calc	ulate	
			or gains			iou ut ot	ορ · · · ο·	A SIGNATURE OF THE PROPERTY OF				470 00.10	diato	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
			ains, hm											(0.4)
(94)m=	0.97	0.91	0.78 , W = (94	0.57	0.39	0.26	0.18	0.2	0.37	0.69	0.93	0.98		(94)
(95)m=	775.33	966.12	1027.4	905.25	693.83	455.56	299.72	314.12	497.72	745.3	779.37	718.04		(95)
			rnal tem			able 8								, ,
(96)m=		4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	for me	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
			1124.48		695.34	455.64	299.73	314.13	498.45	779.1	1036.98	1243.24		(97)
		g require	ement fo			Wh/mon		24 x [(97 0)m – (95 0	Î	1)m 185.48	390.75		
(98)m=	361.09	101.0	12.23	10.92	1.13		0		l per year	25.14			1228.53	(98)
Casa	- b4:			1.\ \	2/			1018	ıı pei yeai	(KVVII/yeai) = Sum(9	O)15,912 =		=
•		• •	ement in										14.29	(99)
			nts – Cor pace hea					ting prov	ided by	a comm	unity sch	nomo		
			from se	• .		_		.	•		urilly 301		0	(301)
Fraction of space heat from community system 1 – (301) =									1	(302)				
The com	nmunity so	cheme ma	y obtain he	eat from se	everal sou	rces. The p	orocedure	allows for	CHP and i	up to four	other heat	sources; tl	ne latter	
			s, geotherr		aste heat i	from powe	r stations.	See Appe	ndix C.			ı		_
Fractio	n of hea	at from C	Commun	ity CHP								ļ	0.6	(303a)
Fractio	n of cor	nmunity	heat fro	m heat s	ource 2								0.4	(303b)
Fractio	n of tota	al space	heat fro	m Comn	nunity C	HP				(3	02) x (303	a) =	0.6	(304a)
Fractio	n of tota	al space	heat fro	m comm	unity he	eat sourc	e 2			(3	02) x (303	b) =	0.4	(304b)
Factor	for cont	rol and	charging	method	(Table	4c(3)) fo	r commu	unity hea	ating sys	tem		Ī	1	(305)

Distribution loss factor (Table 12c) fo	or community heating syster	n		1.4	(306)
Space heating				kWh/year	
Annual space heating requirement				1228.53	
Space heat from Community CHP		(98) x (304a) x	(305) x (306) =	1031.97	(307a)
Space heat from heat source 2		(98) x (304b) x	(305) x (306) =	687.98	(307b)
Efficiency of secondary/supplementa	0	(308			
Space heating requirement from sec	0	(309)			
Water heating Annual water heating requirement				2148.15	٦
If DHW from community scheme: Water heat from Community CHP		(64) x (303a) x	(305) x (306) =	1804.44	
Water heat from heat source 2			(305) x (306) =	1202.96	` (310b)
Electricity used for heat distribution			7e) + (310a)(310e)] =	47.27	` (313)
Cooling System Energy Efficiency Ra	atio			0	(314)
Space cooling (if there is a fixed coo		= (107) ÷ (314)) =	0	(315)
Electricity for pumps and fans within mechanical ventilation - balanced, ex	dwelling (Table 4f):	outeida		328.52	(330a)
warm air heating system fans	tract of positive input from	outside		0	(330b)
pump for solar water heating				0	(330g)
Total electricity for the above, kWh/y	328.52](331)			
Energy for lighting (calculated in App		=(330a) + (330		364.52	(332)
12b. CO2 Emissions – Community h				304.02	
Electrical efficiency of CHP unit	cating constite			35	(361)
Heat efficiency of CHP unit				40	(362)
		Energy	Emission factor		_
		kWh/year	kg CO2/kWh	kg CO2/year	_
Space meaning ment of in 7	(307a) × 100 ÷ (362) =	2579.92 ×	0.22	557.26	(363)
less credit emissions for electricity	$-(307a) \times (361) \div (362) =$	902.97 ×	0.52	-468.64	(364)
,	(310a) × 100 ÷ (362) =	4511.1 ×	0.22	974.4	(365)
less credit emissions for electricity	$-(310a) \times (361) \div (362) =$	1578.89 ×	0.52	-819.44	(366)
Efficiency of heat source 2 (%)	If there is CHP using	two fuels repeat (363) to	(366) for the second fue	85	(367b)
CO2 associated with heat source 2	[(307b)+(310b)] x 100 ÷ (367b) x	0.22	480.52	(368)
Electrical energy for heat distribution	[(313) x	0.52	24.53	(372)
Total CO2 associated with communit	ty systems (363)(366) + (368)(37	2) =	748.63	(373)
CO2 associated with space heating ((secondary)	309) x	0 =	0	(374)
CO2 associated with water from imm	nersion heater or instantane	ous heater (312) x	0.22	0	(375)
Total CO2 associated with space and	d water heating (373) + (374) + (375) =		748.63	(376)

CO2 associated with electricity for pumps and fans within dwelling (331)) x 170.5 (378)0.52 CO2 associated with electricity for lighting (379) (332))) x 189.18 0.52 Total CO2, kg/year sum of (376)...(382) = (383) 1108.32 $(383) \div (4) =$ **Dwelling CO2 Emission Rate** (384)12.89 El rating (section 14) (385) 88.66