Type 6: After Energy Demand Reduction

			User D	etails:						
Assessor Name: Software Name:	Stroma FS	AP 2012	Iroportu	Strom Softwa	a Num are Ver	ber: sion:		Versic	on: 1.0.1.25	
Address :	NW1 1.ID	F	торепу	Address.	LO SDF	East				
1. Overall dwelling dimer	sions:									
Ground floor			Area	a(m²) 86	(1a) x	Av. He	ight(m) .15	(2a) =	Volume(m 270.9	3) (3a)
Total floor area TFA = (1a)+(1b)+(1c)+((1d)+(1e)+(1	n)	86	(4)			-		
Dwelling volume					(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	270.9	(5)
2. Ventilation rate:		_								
Number of chimneys Number of open flues Number of intermittent fan	main heating 0 S	seconda heating + 0 + 0	ry + +	0 0] = [] = [total 0 0 0 0		40 = 20 = 10 =	m³ per hou 0 0 0 0	(6a) (6b) (7a)
Number of passive vents						0	x ·	10 =	0	(7b)
Number of flueless gas fire	es					0	X	40 =	0	(7c)
Infiltration due to chimney	s, flues and fa en carried out or	ans = (6a)+(6b)+(r is intended, procee	7a)+(7b)+(ed to (17), e	7c) = otherwise c	continue fr	0 om (9) to ((16)	Air ch ÷ (5) =	nanges per h	our (8)
Number of storeys in the Additional infiltration Structural infiltration: 0.2 if both types of wall are pre- deducting areas of opening	e dwelling (ns 25 for steel or esent, use the va gs); if equal user	timber frame of lue corresponding to 0.35	0.35 fo the great	r masonr ter wall are	ry constr a (after	uction	[(9)	-1]x0.1 =	0	(9) (10) (11)
If suspended wooden flo	oor, enter 0.2	(unsealed) or 0	.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else e	enter 0							0	(13)
Percentage of windows	and doors dr	aught stripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	[00] =			0	(15)
Inflitration rate		din cubic motr	o nor ha	(0) + (10)	+(11)+(1	(13) + (13) -	+ (15) =	0.000	0	(16)
If based on air permeabilit	y value then	$(18) = [(17) \div 20] + (18)$	8), otherw	ise (18) = (quare m 16)		invelope	alea	3	(17)
Air permeability value applies	if a pressurisatio	on test has been do	ne or a de	gree air pe	rmeability	is being u	sed		0.15	(10)
Number of sides sheltered	1					-			0	(19)
Shelter factor				(20) = 1 -	[0.075 x (1	9)] =			1	(20)
Infiltration rate incorporation	ng shelter fac	tor		(21) = (18)) x (20) =				0.15	(21)
Infiltration rate modified fo	r monthly win	nd speed							1	
Jan Feb I	Var Apr	May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Tabl	e 7							•	
(22)m= 5.1 5 4	4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7	J	
Wind Factor (22a)m = (22)m ÷ 4	I I	1	1			1	1	1	
(22a)m= 1.27 1.25 1	.23 1.1	1.08 0.95	0.95	0.92	1	1.08	1.12	1.18	J	

Adjust	ed infiltra	ation rat	e (allowi	ing for sl	nelter an	d wind s	peed) =	(21a) x	(22a)m	-	-		_	
. .	0.19	0.19	0.18	0.16	0.16	0.14	0.14	0.14	0.15	0.16	0.17	0.18		
Calcul If m	late effec	ctive air (change	rate for t	the applie	cable ca	se						0.5	(220)
lf ext	naust air he	eat pump i	usina App	endix N. (2	23b) = (23a	i) x Fmv (e	equation (N	N5)) . othe	rwise (23b) = (23a)			0.5	(23b)
lf bal	anced with	heat reco	overv: effic	iencv in %	allowing f	or in-use f	actor (from	n Table 4h) =	, (,			0.5	(230)
a) If	halance	d mech	anical ve	ntilation	with he	at recove	⊃rv (M\\/F	HR) (24a	(2)m – (2)	2h)m + ('	23h) v ['	1 – (23c)	<u>64.0</u>	(230)
(24a)m=	0.37	0.36	0.36	0.34	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.35]	(24a)
b) If	halance	d mech:	anical ve	I	without	heat rec	overv (N	///) (24h	m = (22)	2h)m + ('	23h)]	
(24b)m=								0	0		0	0	1	(24b)
c) If	whole h		tract ver	I	or positiv	e input v	ventilatio	n from c	utside				1	
0) 11	if (22b)n	ו < 0.5 ×	(23b), 1	then (24	c) = (23b); other	vise (24	c) = (22k	o) m + 0.	.5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	se positiv	/e input	ventilatio	n from l	oft			•		
	if (22b)n	n = 1, the	en (24d)	m = (22	b)m othe	erwise (2	4d)m = 0	0.5 + [(2	2b)m² x	0.5]	-		1	
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0	J	(24d)
Effe	ctive air	change	rate - er	nter (24a	a) or (24b	o) or (24	c) or (24	d) in boy	(25)	1	1	1	1	()
(25)m=	0.37	0.36	0.36	0.34	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.35		(25)
3. He	eat l <mark>osse</mark>	s and he	at loss	paramet	er:									
ELEN	ME NT	Gros	s	Openir	igs	Net Ar	ea	U-valu	Je	AXU		k-value	e l	AXk
Windo		area	(m²)	n	72	A ,r	n²	VV/m2	K	(VV/	<)	KJ/m-	ĸ	KJ/K
Windo	ws Type					2.85		/[1/(1.3)+	0.04] =	3.52				(27)
vvindo	ws Type	2				6.67		/[1/(1.3)+	0.04] =	8.24				(27)
vvindo	ows Type	.3			\	2.85	x1/	/[1/(1.3)+	0.04] =	3.52	Ľ,			(27)
walls		64	·	23.7	7	40.23	3 X	0.11	= [4.43			\exists	(29)
Roof		86		0		86	×	0.1	=	8.6				(30)
Total a	area of e	lements	, m²			150								(31)
Party	wall					25	x	0	=	0				(32)
Party	wall					32	x	0	=	0				(32)
Party	floor					86								(32a)
Interna	al wall **					93								(32c)
* for wir	ndows and	roof winde	ows, use e	effective w	indow U-va	alue calcul	ated using	formula 1	/[(1/U-valu	ıe)+0.04] a	is given in	paragraph	1 3.2	
Fabric	be the area	e W/K -	sides of ir - ς (Δ v	iternai wai	is and part	ltions		(26)(30)	+ (32) =				40.4	(22)
Heat	ranacity	Cm - S(- 0 (/	0)				(_0)(00)	((28)	(30) + (32)	(32a)	(32e) -	42.4	(33)
Therm	apacity	narame	ter (TMF		- TFA) in	n k. l/m²K			Indica	tive Value	: Medium	(020) =	24765.	(35)
For des	ian assess	ments wh	ere the de	tails of the	constructi	ion are noi	t known pr	eciselv the	indicative	values of	TMP in Ta	able 1f	250	(33)
can be	used inste	ad of a de	tailed calc	ulation.				, ,						
Therm	nal bridge	es : S (L	x Y) cal	culated	using Ap	pendix I	<						7	(36)
if details	s of therma	al bridging	are not kr	nown (36) :	= 0.15 x (3	1)			(00)	(00)				—
i otal f	abric ne		ملماريما	اللغة محما					(33) +	(36) =	05)		49.4	(37)
ventila					y Marit	l	11	Λ	(38)m	$= 0.33 \times ($	∠5)m x (5)		1	
	Jan	гер	Iviar	l Abr	iviay	Jun	Jui	Aug	Sep		INOV	Dec	J	

(38)m=	32.92	32.59	32.25	30.57	30.24	28.56	28.56	28.23	29.23	30.24	30.91	31.58		(38)
Heat tr	ansfer c	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	82.32	81.98	81.65	79.97	79.64	77.96	77.96	77.63	78.63	79.64	80.31	80.98		
Heat In	iss nara	meter (F		/m²K					(40)m	Average = = (39)m ÷	Sum(39) _{1.}	12 /12=	79.89	(39)
(40)m=	0.96	0.95	0.95	0.93	0.93	0.91	0.91	0.9	0.91	0.93	0.93	0.94		
									· · · · · ·	Average =	Sum(40)₁.	₁₂ /12=	0.93	(40)
Numbe	er of day	/s in mo	nth (Tab	le 1a)	·	·	·			i		·		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
	_													
4. Wa	iter heat	ting ene	rgy requi	irement:								kWh/ye	ear:	
Assum	ed occu	ipancy,	N								2.	57		(42)
if TF if TF	A > 13.9 A £ 13.9	9, N = 1 9, N = 1	+ 1.76 x	: [1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.0	0013 x (TFA -13.	9)			
Annua	l averag	e hot wa	ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		95	.16		(43)
Reduce	the annua that 125	al average litres per	hot water person per	usage by r dav (all w	5% if the a rater use. I	lwelling is hot and co	designed (Id)	to achieve	a water us	se target o	r <u> </u>			
normore		E ch	Mor		Mov(lun		Aug	San	Oct	Nov	Dee		
Hot wate	er usage i	n litres per	r day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)	Sep	Oct	INOV	Dec		
(44)m=	104.68	100.87	97.07	93.26	89.45	85.65	85.65	89.45	93.26	97.07	100.87	104.68		
										Total = Su	m(44) ₁₁₂ =		1141.97	(44)
Energy o	content of	hot water	used - cal	lculated mo	onthly $= 4$.	190 x Vd,r	n x nm x D)Tm / 3600) kWh/mor	nth (<mark>see Ta</mark>	bles 1b, 1	c, 1d)		
(45)m=	155.24	135.77	140.11	122.15	117.2	101.14	93.72	107.54	108.83	126.83	138.44	150.34		
lf instant	aneous w	vater heati	na at point	t of use (no	o hot water	storage).	enter 0 in	boxes (46) to (61)	Tota <mark>l =</mark> Su	n(45) ₁₁₂ =	-	1 <mark>497.31</mark>	(45)
(46)m-	23.29	20.37	21 02	18 32	17 58	15 17	14.06	16.13	16.32	19.02	20.77	22 55		(46)
Water	storage	loss:	21.02	10.02	17.50	10.17	14.00	10.10	10.02	10.02	20.11	22.00		(10)
Storag	e volum	e (litres)) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If comr	nunity h	eating a	and no ta	ank in dw	velling, e	nter 110	litres in	(47)						
Otherw	ise if no	o stored	hot wate	er (this ir	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
a) If m	anufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/dav):					0		(48)
Tempe	erature f	actor fro	m Table	2b		,						0		(49)
Energy	v lost fro	m water	[.] storage	e, kWh/ye	ear			(48) x (49)) =		1	10		(50)
b) If m	anufact	urer's de	eclared o	cylinder l	oss fact	or is not	known:							
Hot wa	iter stora	age loss	tactor fr	rom I abl	e 2 (kW	h/litre/da	iy)				0.	02		(51)
Volume	e factor	from Ta	ble 2a	011 4.0							1.	03		(52)
Tempe	rature f	actor fro	m Table	2b							0	.6		(53)
Energy	v lost fro	m water	[.] storage	e, kWh/ye	ear			(47) x (51)	x (52) x (53) =	1.	03		(54)
Enter	(50) or ((54) in (5	55)								1.	03		(55)
Water	storage	loss cal	culated f	for each	month	-	-	((56)m = (55) × (41)	m				
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
If cylinde	er contains	s dedicate	d solar sto	orage, (57)i	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5 ⁻	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)

Primar	y circuit	loss (ar	nual) fro	om Table	93							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor fi	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	t cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss ca	culated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m	_					
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	neat requ	uired for	water he	eating ca	alculated	l for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	210.52	185.7	195.38	175.64	172.48	154.63	149	162.82	162.32	182.11	191.94	205.62		(62)
Solar DI	-IW input o	calculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or V	WWHRS	applies	, see Ap	pendix (G)				_	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter											
(64)m=	210.52	185.7	195.38	175.64	172.48	154.63	149	162.82	162.32	182.11	191.94	205.62		
						-		Outp	out from wa	ater heate	r (annual)₁	12	2148.15	(64)
Heat g	ains fro	m water	heating,	kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)m	n] + 0.8 >	(46)m	+ (57)m	+ (59)m]	
(65)m=	95.84	85.09	90.81	83.41	83.19	76.42	75.38	79.98	78.98	86.39	88.83	94.21		(65)
in <mark>clu</mark>	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is fr</mark>	om com	munity h	eating	
5. Int	ternai ga	ains (see	Table 5	5 and 5a)):								_	
Metab	olic gain	s (Table	5) Wat	ts										
motab	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	128.35	128.3 <mark>5</mark>	12 <mark>8.35</mark>	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35		(66)
Lightin	g gains	(calcula	ted in Ap	pendix	L, equat	ion L9 o	r L9a), a	lso see [·]	Table 5					
(67)m=	20.64	18.33	14.91	11. <mark>2</mark> 9	8.44	7.12	7.7	10	13.43	17.05	19.9	21.21		(67)
Applia	nces ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5				
(68)m=	231.52	233.93	227.87	214.98	198.71	183.42	173.21	170.8	176.86	189.75	206.02	221.31		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a), also se	e Table	5				
(69)m=	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83		(69)
Pumps	and fai	ns aains	(Table 5	5a)			ļ	1	1					
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses	se.a. ev	aporatio	n (nega	ı tive valu	es) (Tab	le 5)								
(71)m=	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68		(71)
Water	heating	aains (T	able 5)											
(72)m=	128.81	126.62	122.05	115.85	111.82	106.14	101.32	107.5	109.69	116.12	123.37	126.63		(72)
Total i	Internal	nains =				(66)	l)m + (67)m	L 1 + (68)m +	L + (69)m + ([L 1)m + (72))m		
(73)m=	442.48	440.38	426.34	403.62	380.47	358.19	343.73	349.81	361.49	384.42	410.79	430.65		(73)
6. So	lar gains	S:												
Solar o	ains are o	alculated	using sola	r flux from	Table 6a	and assoc	iated equa	itions to co	onvert to th	e applicab	le orientat	tion.		

Orientation:	Access Factor Table 6d	m ²		Table 6a			g_ Table 6b		FF Table 6c	(W)		
Northeast 0.9x	0.77	x	2.85	x	11.28	×	0.7	×	1.11	=	52	(75)
Northeast 0.9x	0.77	x	2.85	x	22.97	×	0.7	×	1.11	=	105.84	(75)

Northeast 0.9x	0.77	x	2.85	×	41.38) ×	0.7	x	1.11] = [190.69	(75)
Northeast 0.9x	0.77	x	2.85	×	67.96	x	0.7	x	1.11	= = [313.17	(75)
Northeast 0.9x	0.77	x	2.85	x	91.35	x	0.7	x	1.11	=] = [420.96	(75)
Northeast 0.9x	0.77	x	2.85	×	97.38	x	0.7	x	1.11	= [448.79	(75)
Northeast 0.9x	0.77	x	2.85	×	91.1	x	0.7	x	1.11	=] = [419.84	(75)
Northeast 0.9x	0.77	x	2.85	x	72.63	x	0.7	x	1.11	= = [334.7	(75)
Northeast 0.9x	0.77	x	2.85	×	50.42	x	0.7	x	1.11	= [232.36	(75)
Northeast 0.9x	0.77	x	2.85	×	28.07	x	0.7	x	1.11] = [129.35	(75)
Northeast 0.9x	0.77	x	2.85	x	14.2	x	0.7	x	1.11] = [65.43	(75)
Northeast 0.9x	0.77	x	2.85	×	9.21	×	0.7	x	1.11] = [42.46	(75)
Southeast 0.9x	0.77	x	6.67	×	36.79	x	0.7	x	1.11] = [132.28	(77)
Southeast 0.9x	0.77	x	2.85	×	36.79	x	0.7	x	1.11	= [169.56	(77)
Southeast 0.9x	0.77	x	6.67	×	62.67	x	0.7	x	1.11] = [225.32	(77)
Southeast 0.9x	0.77	x	2.85	×	62.67	x	0.7	x	1.11] = [288.83	(77)
Southeast 0.9x	0.77	x	6.67	×	85.75	x	0.7	x	1.11	= [308.29	(77)
Southeast 0.9x	0.77	x	2.85	×	85.75	x	0.7	x	1.11	= = [395.19	(77)
Southeast 0.9x	0.77	x	6.67	×	106.25	x	0.7	x	1.11	= = [381.99	– (77)
Southeast 0.9x	0.77	x	2.85	x	106.25	x	0.7	х	1.11	= i	489.66	(77)
Southeast 0.9x	0.77	x	6.67	x	119.01	x	0.7	x	1.11	- -	427.86	(77)
Southeast 0.9x	0.77	x	2.85	x	119.01	i 🗴	0.7	x	1.11	= = [548.45	(77)
Southeast 0.9x	0.77	x	6.67	x	118.15	x	0.7	x	1.11	i = i	424.76	(77)
Southeast 0.9x	0.77	x	2.85	×	118.15	x	0.7	x	1.11	-] = [544.49	(77)
Southeast 0.9x	0.77	x	6.67	x	113.91	×	0.7	x	1.11] = [409.52	(77)
Southeast 0.9x	0.77	x	2.85	x	1/13.91	x	0.7	x	1.11] = [5 24.95	(77)
Southeast 0.9x	0.77	x	6.67	x	104.39	x	0.7	x	1.11] = [375.3	(77)
Southeast 0.9x	0.77	x	2.85	x	104.39	x	0.7	x	1.11	=	481.08	(77)
Southeast 0.9x	0.77	x	6.67	×	92.85	×	0.7	x	1.11] = [333.81	(77)
Southeast 0.9x	0.77	x	2.85	x	92.85	x	0.7	x	1.11] = [427.9	(77)
Southeast 0.9x	0.77	x	6.67	x	69.27	x	0.7	x	1.11	=	249.03	(77)
Southeast 0.9x	0.77	x	2.85	×	69.27	×	0.7	x	1.11] = [319.22	(77)
Southeast 0.9x	0.77	x	6.67	×	44.07	x	0.7	x	1.11] = [158.44	(77)
Southeast 0.9x	0.77	x	2.85	×	44.07	x	0.7	x	1.11	= [203.1	(77)
Southeast 0.9x	0.77	x	6.67	×	31.49	x	0.7	x	1.11	= [113.2	(77)
Southeast 0.9x	0.77	x	2.85	x	31.49	x	0.7	×	1.11] = [145.11	(77)
Color '			for orther the second	4 La		(00)	0	(00)				
Solar gains in $(83)m = 353.84$		17	1184 81 1397 2	$\frac{1}{28}$	118 04 1354 3	(83)m	$n = Sum(74)m \dots$	(82)m	9 426 96 3	00 78	l	(83)
Total gains – i	nternal and s	olar	(84)m = (73)n	<u>- '</u> n + (a	83)m , watts			551.0		55.75		(00)
(84)m= 796.32	1060.37 1320).51	1588.43 1777.7	/5 17	76.24 1698.03	1540	0.88 1355.56	1082.0	01 837.75 7	31.43		(84)
7. Mean inter	rnal temperat	ure (heating seaso	on)			· ·		· ·			
Temperature	during heatir	ng pe	eriods in the li	ving	area from Tab	ole 9	, Th1 (°C)]	21	(85)
Utilisation fac	ctor for gains	for li	ving area, h1,	m (s	ee Table 9a)		. ,			L		
	-			``	,							

Jul

Aug

Jun

Oct

Sep

Nov

Dec

Apr

May

Mar

Feb

Jan

(86)m=	0.98	0.93	0.8	0.6	0.42	0.28	0.2	0.23	0.4	0.72	0.95	0.99		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Tabl	e 9c)					
(87)m=	20.33	20.62	20.86	20.98	21	21	21	21	21	20.95	20.63	20.28		(87)
Temp	erature	durina h	eating r	beriods ir	rest of	dwelling	from Ta	ble 9 T	h2 (°C)					
(88)m=	20.12	20.12	20.13	20.14	20.15	20.16	20.16	20.17	20.16	20.15	20.14	20.13		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	0.98	0.91	0.77	0.56	0.38	0.24	0.16	0.19	0.35	0.68	0.93	0.98		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ng T2 (f	ollow ste	eps 3 to 3	7 in Tabl	le 9c)				
(90)m=	19.25	19.66	19.97	20.12	20.14	20.16	20.16	20.17	20.15	20.1	19.7	19.18		(90)
									f	fLA = Livin	g area ÷ (4	ł) =	0.34	(91)
Mean	interna	l temper	ature (fc	or the wh	ole dwe	llina) = f	LA x T1	+ (1 – fL	A) x T2			•		-
(92)m=	19.61	19.98	20.27	20.41	20.43	20.44	20.44	20.45	20.44	20.38	20.01	19.55		(92)
Apply	adjustn	nent to t	he mear	n internal	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	19.61	19.98	20.27	20.41	20.43	20.44	20.44	20.45	20.44	20.38	20.01	19.55		(93)
8. Spa	ace hea	ting requ	uirement	t										
Set Ti	to the r	nean int	ernal tei	mperatui	re obtair	ed at st	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	_
the ut	ilisation	factor fo	or gains	using Ta	ible 9a									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(04)m-			$\frac{0.78}{0.78}$	0.57	0.20	0.26	0.19	0.2	0.27	0.60	0.02	0.08		(94)
		hmGm	W = (9)	()m x (8	1)m	0.20	0.10	0.2	0.57	0.09	0.93	0.90		(04)
(95)m=	775.33	966.12	1027.4	905 25	693.83	455 56	299 72	314 12	497 72	745.3	779.37	718 04		(95)
Month	ly aver		rnal terr	perature	from T	able 8	200.12	014.12	401.12	140.0	110.01	710.04		(00)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	oss rate	e for mea	an interr	al tempe	erature.	L	I =[(39)m	I x [(93)m	l – (96)m	<u> </u>]				
(97)m=	1260.66	1236.66	1124.48	920.41	695.34	455.64	299.73	314.13	498.45	779.1	1036.98	1243.24		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	Nh/mon [·]	th = 0.02	24 x [(97)m – (95)m] x (4 ⁻	1)m			
(98)m=	361.09	181.8	72.23	10.92	1.13	0	0	0	0	25.14	185.48	390.75		
								Tota	l per year	(kWh/year	[.]) = Sum(98	8)15,912 =	1228.53	(98)
Space	e heatin	g require	ement in	kWh/m²	/year							Ī	14.29	(99)
9h En	erav rea	uiremer	ots – Cou	mmunitv	heating	scheme	2					L		_]
This na	art is use	ed for sp	ace hea	ating spa	ace cool	ing or wa	ater heat	ting prov	ided by	a comm	unity sch	eme		
Fractio	n of spa	ace heat	from se	condary/	/supplen	nentary l	heating	(Table 1	1) '0' if n	one	unity our		0	(301)
Fractio	n of spa	ace heat	from co	mmunity	, system	1 – (30 ⁻	1) =					[1	(302)
The com	munity so	heme mag	y obtain he	eat from se	everal sou	rces. The p	procedure	allows for	CHP and i	up to four (other heat	ו sources; tł	ne latter	
includes	boilers, h	eat pumps	s, geotheri	mal and wa	aste heat f	rom powe	r stations.	See Appel	ndix C.			r		-
Fractio	n of hea	at from C	Commun	ity boiler	S								1	(303a)
Fractio	n of tota	al space	heat fro	m Comn	nunity bo	oilers				(3	02) x (303	a) =	1	(304a)
Factor	for cont	rol and o	charging	method	(Table	4c(3)) fo	r commu	unity hea	ating sys	tem		[1	(305)
Distribu	ution los	s factor	(Table 1	12c) for c	commun	ity heati	ng syste	m					1.2	(306)
Space heating kWh/year										-				
Annual	space	heating	requiren	nent									1228.53	
												•		-

Space heat from Community boilers	(98) x (304a) x	(305) x (306) =	1474.24	(307a)
Efficiency of secondary/supplementary heating system in % (from	n Table 4a or Appen	dix E)	0	(308
Space heating requirement from secondary/supplementary syste	m (98) x (301) x 1	00 ÷ (308) =	0	(309)
Water heating Annual water heating requirement			2148.15	7
If DHW from community scheme: Water heat from Community boilers	(64) x (303a) x	(305) x (306) =	2577.77](310a)
Electricity used for heat distribution	0.01 × [(307a)(307	e) + (310a)(310e)] =	40.52	(313)
Cooling System Energy Efficiency Ratio			0	(314)
Space cooling (if there is a fixed cooling system, if not enter 0)	= (107) ÷ (314)	=	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from c	outside		328.52	(330a)
warm air heating system fans			0	(330b)
pump for solar water heating			0	(330g)
Total electricity for the above, kWh/year	=(330a) + (330b	o) + (330g) =	328.52	(331)
Energy for lighting (calculated in Appendix L)			364.52	(332)
12b. CO2 Emissions – Community heating scheme				
CO2 from other sources of space and water heating (not CHP) Efficiency of heat source 1 (%)	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year](367a)
CO2 associated with heat source 1 [(307b)+(3	10b)] x 100 ÷ (367b) x	0 =	983.41	(367)
Electrical energy for heat distribution	313) x	0.52 =	21.03	(372)
Total CO2 associated with community systems (3	63)(366) + (368)(372	e) =	1004.44	(373)
CO2 associated with space heating (secondary) (3	09) x	0 =	0	(374)
CO2 associated with water from immersion heater or instantaneo	ous heater (312) x	0.22 =	0	(375)
Total CO2 associated with space and water heating (3	873) + (374) + (375) =		1004.44	(376)
CO2 associated with electricity for pumps and fans within dwellin	g (331)) x	0.52 =	170.5	(378)
CO2 associated with electricity for lighting (3	32))) x	0.52 =	189.18	(379)
Total CO2, kg/year sum of (376)(382) =			1364.12	(383)
Dwelling CO2 Emission Rate (383) ÷ (4) =			15.86	(384)
El rating (section 14)			86.05	(385)