Type 5: After CHP

User Details:												
Assessor Name: Software Name:	Stroma FS			a Num are Ver	sion:		Versic	on: 1.0.1.25				
Address :	, NW1 1JD	F	торепу	Address	LD 3BF	vvest						
1. Overall dwelling dimen												
Ground floor				a(m²) 86	(1a) x	Av. He i 3	ight(m) .15	(2a) =	Volume(m³) 270.9	(3a)		
Total floor area TFA = (1a)	+(1b)+(1c)+	(1d)+(1e)+(1	n)	86	(4)							
Dwelling volume					(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	270.9	(5)		
2. Ventilation rate:				_								
Number of chimneys Number of open flues	main heating 0	secondal heating + 0 + 0	ry + +	0 0] = [total 0 0	x2	40 = 20 =	m ³ per hour](6a)](6b)		
Number of intermittent fan	5				Ļ	0		10 =	0	(7a)		
Number of passive vents				_		0	x ′	10 =	0	(7b)		
Number of flueless gas fires 0 x 40 = 0 (7 Air changes per hour												
Infiltration due to chimneys					continue fr	0 om (9) to (÷ (5) =	0	(8)		
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) 0 (6) Number of storeys in the dwelling (ns) 0 (1) 0 (1) Additional infiltration [(9)-1]x0.1 = 0 (1) Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction 0 (1) if both types of wall are present, use the value corresponding to the greater wall area (after 0 (1)												
deducting areas of opening If suspended wooden flo			.1 (seale	ed), else	enter 0				0	(12)		
If no draught lobby, ente	r 0.05, else (enter 0							0	(13)		
Percentage of windows	and doors dr	aught stripped							0	(14)		
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)		
Infiltration rate				(8) + (10)		· · · ·			0	(16)		
Air permeability value, q			•	•	•	etre of e	nvelope	area	3	(17)		
If based on air permeability Air permeability value applies						is hoing us	ed		0.15	(18)		
Number of sides sheltered				giee all pel	meability	is being ut	500		0	(19)		
Shelter factor				(20) = 1 -	[0.075 x (1	9)] =			1	(20)		
Infiltration rate incorporatir	ig shelter fac	tor		(21) = (18)) x (20) =				0.15	(21)		
Infiltration rate modified for	monthly wir	nd speed				-	_			_		
Jan Feb M	lar Apr	May Jun	Jul	Aug	Sep	Oct	Nov	Dec				
Monthly average wind spe	ed from Tabl	e 7				-						
(22)m= 5.1 5 4	.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7				
Wind Factor (22a)m = (22)	m ÷ 4											
(22a)m= 1.27 1.25 1.	23 1.1	1.08 0.95	0.95	0.92	1	1.08	1.12	1.18				

Adjust	ed infiltra	ation rat	e (allowi	ing for sl	helter an	d wind s	peed) =	(21a) x	(22a)m					
~	0.19	0.19	0.18	0.16	0.16	0.14	0.14	0.14	0.15	0.16	0.17	0.18		
	ate effec echanica		-	rate for i	the appli	cable ca	se						0.5	(23a)
				endix N. (2	23b) = (23a) × Fmv (e	equation (N	N5)) . othe	rwise (23b) = (23a)			0.5	
					allowing for					, (,			64.6	
			-	-	with hea					2h)m + (23h) x [′	1 – (23c)		(200)
(24a)m=	i	0.36	0.36	0.34	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.35		(24a)
		d mech	I anical ve	I	i without	heat rec	L overv (N	I /I\/) (24h	l = (22)	l 2b)m + ('	L 23h)			
(24b)m=		0		0		0			0	0	0	0		(24b)
		ouse ex	r tract ver	ntilation of	or positiv	re input v	ventilatio	n from c	utside					
,					c) = (23b	•				5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	se positiv	e input	ventilatio	on from l	oft	•	•			
	if (22b)m	n = 1, th	en (24d)	m = (22	b)m othe	rwise (2	, 	0.5 + [(2	2b)m² x	0.5]			1	
(24d)m=		0	0	0	0	0	0	0	0	0	0	0		(24d)
				<u> </u>	a) or (24b	, ,	, <u> </u>	<u>,</u>	· ,	1	1	1	I	()
(25)m=	0.37	0.36	0.36	0.34	0.34	0.32	0.32	-0.32	0.33	0.34	0.35	0.35		(25)
3. He	at l <mark>osse</mark> s	s and he	eat loss	param <mark>et</mark>	er:									
ELEN	/IENT	Gros		Openir		Net Ar		U-valu		AXU		k-value		A X k
Windo		are <mark>a</mark>	(m²)	n	1 ²	A ,r		W/m2		(W/I	K)	kJ/m²·l	1	kJ/K
	ws Type					2.85	=	/[1/(1.3)+	Ļ	3.52				(27)
	ws Type					6.67		/[1/(1.3)+	L L	8.24				(27)
	ws Type	3			\	2.85	x1/	/[1/(1.3)+	0.04] =	3.52	Ľ,			(27)
Walls		64		23.7	7	40.23	3 X	0.11	= [4.43			\exists	(29)
Roof		86		0		86	x	0.1	=	8.6				(30)
Total a	area of e	lements	, m²			150								(31)
Party v	wall					25	x	0	=	0				(32)
Party v	wall					32	x	0	=	0				(32)
Party f	loor					86								(32a)
Interna	al wall **					93								(32c)
					indow U-va Ils and part		ated using	formula 1	/[(1/U-valu	ie)+0.04] a	as given in	paragraph	3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30)	+ (32) =				42.4	. (33)
Heat c	apacity	Cm = S((A x k)						((28)	(30) + (32	2) + (32a).	(32e) =	24785	5.5 (34)
Therm	al mass	parame	eter (TMF	⁻ = Cm -	÷ TFA) in	ı kJ/m²K			Indica	tive Value	: Medium		250	(35)
	ign assess used instea				e constructi	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in Ta	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated	using Ap	pendix ł	<						7	(36)
			are not kn	nown (36) :	= 0.15 x (3	1)				(0.0)				
	abric hea		-11-1	1						(36) =			49.4	(37)
ventila	ation hea		i	i	i			•		-	25)m x (5)	i	l	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(38)m=	32.92	32.59	32.25	30.57	30.24	28.56	28.56	28.23	29.23	30.24	30.91	31.58		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	82.32	81.98	81.65	79.97	79.64	77.96	77.96	77.63	78.63	79.64	80.31	80.98		
Heat lo	ss para	imeter (H	HLP), W	/m²K						Average = = (39)m ÷		12 /12=	79.89	(39)
(40)m=	0.96	0.95	0.95	0.93	0.93	0.91	0.91	0.9	0.91	0.93	0.93	0.94		
Numbe	er of day	s in moi	nth (Tab	le 1a)						Average =	Sum(40)1.	12 /12=	0.93	(40)
lunioe	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
I			1	1								II		
4. Wa	ter heat	ting enei	rgy requ	irement:								kWh/ye	ear:	
		ipancy, l		[4	(0.000	40 (T	- 40.0		040 (57		(42)
	A > 13.9 A £ 13.9		+ 1.76 X	: [1 - exp	(-0.0003	49 X (1F	-A -13.9)2)] + 0.0	JU13 X (IFA -13.	9)			
Annual	averag	e hot wa		ge in litre								i.16		(43)
				usage by a r day (all w				to achieve	a water us	se target o	f			
	Jan	Feb	, Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate				ach month				U U	Geb	Oci	1100			
(44)m=	104.68	100.87	97.07	93.26	89.45	85.65	85.65	89.45	93.26	97.07	100.87	104.68		
										Total = Su			1141.97	(44)
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D	0Tm / 3600) kWh/mor	nth (see Ta	bles 1b, 1	c, 1d)		
(45)m=	155.24	135.77	140.11	122.15	117.2	101.14	93.72	107.54	108.83	126.83	138.44	150.34		_
lf instant	aneous w	vater heatii	ng at point	t of use (no	hot water	storage),	enter 0 in	boxes (46		Tota <mark>l = S</mark> u	n(45) ₁₁₂ =	- [1 <mark>497.31</mark>	(45)
(46)m=	23.29	20.37	21.02	18.32	17.58	15.17	14.06	16.13	16.32	19.02	20.77	22.55		(46)
	storage													
-		. ,		ng any so			-		ame ves	sel		0		(47)
Otherw	vise if no	o stored		ank in dw er (this ir	-			• •	ers) ente	er '0' in (47)			
	storage		adarad I	oss facto	or is kno	$(k)\Lambda/k$	v/dav/):							(40)
			m Table			WII (KVVI	i/uay).					0		(48) (49)
				. ∠b e, kWh/ye	ar			(48) x (49)) =			0 10		(43)
			•	cylinder l		or is not		(10) x (10)	, –			10		(30)
		-		rom Tabl	e 2 (kW	h/litre/da	ıy)				0.	02		(51)
	•	leating s from Ta	ee secti	on 4.3										(52)
			m Table	2b								.03 .6		(52) (53)
•				, kWh/ye	ear			(47) x (51)) x (52) x (53) =		.03		(54)
•••		(54) in (5	-	, ,						,		03		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
If cylinde	r contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	x H	
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)

Primar	y circuit	loss (ar	nnual) fro		0]	(58)							
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heati	ng and a	, cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41)m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat requ	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × 0	(45)m +	(46)m +	(57)m +	(59)m + (61))m
(62)m=	210.52	185.7	195.38	175.64	172.48	154.63	149	162.82	162.32	182.11	191.94	205.62		(62)
Solar DI	-IW input of	calculated	using App	endix G or	Appendix	H (negati	ve quantity	y) (enter '0	' if no sola	r contribut	ion to wate	er heating)	1	
(add a	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter			-	-		-	-	-	-		
(64)m=	210.52	185.7	195.38	175.64	172.48	154.63	149	162.82	162.32	182.11	191.94	205.62		
			-			-	-	Outp	out from w	ater heate	r (annual)₁	12	2148.15	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	n + (61)m	n] + 0.8 x	۲ ((46)m	+ (57)m	+ (59)m]	
(65)m=	95.84	85.09	90.81	83.41	83.19	76.42	75.38	79.98	78.98	86.39	88.83	94.21		(65)
in <mark>clu</mark>	ıde (57)ı	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Int	ternal ga	ains (see	Table {	5 and 5a):									_
			e 5), Wat											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	128.35	128.35	12 <mark>8.35</mark>	128.35	128.35	128.35	128.35	128.35	128.35	12 <mark>8.35</mark>	128.35	128.35		(66)
Lightin	g gains	(calcula	ted in A	opendix	L, equat	ion L9 o	r L9a), a	lso see '	Table 5				1	
(67)m=	20.64	18.33	14.91	11.29	8.44	7.12	7.7	10	13.43	17.05	19.9	21.21		(67)
Applia	nces ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	' 3a), also	see Ta	ble 5				
(68)m=	231.52	233.93	227.87	214.98	198.71	183.42	173.21	170.8	176.86	189.75	206.02	221.31		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a), also se	e Table	5	1		1	
(69)m=	<u> </u>	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83		(69)
Pumps	and fai	ns gains	(Table (5a)									1	
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses	se.g. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)							1	
(71)m=	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68		(71)
Water	heating	gains (T	able 5)	I		I	I	1	I	I	I		1	
(72)m=	128.81	126.62	122.05	115.85	111.82	106.14	101.32	107.5	109.69	116.12	123.37	126.63		(72)
Total i	nternal	gains =	!			(66)	l m + (67)m	I 1 + (68)m +	⊦ (69)m + i	! (70)m + (7	1)m + (72)	m	1	
(73)m=	442.48	440.38	426.34	403.62	380.47	358.19	343.73	349.81	361.49	384.42	410.79	430.65		(73)
	lar gains	S:		1		1		I	1	1	1			
			using sola	r flux from	Table 6a	and assoc	iated equa	ations to co	onvert to th	e applicat	le orientat	ion.		
Orienta	ation: A	Access F	actor	Area		Flu	x		g_		FF		Gains	

Table 6b

0.7

0.7

x

X

Table 6c

1.11

1.11

x

х

x

х

Table 6a

36.79

62.67

m²

6.67

6.67

x

х

Table 6d

0.77

0.77

Southeast 0.9x

Southeast 0.9x

(77)

(77)

(W)

=

132.28

225.32

Southeast 0.9x	0.77	x	6.67	x	85.75	x	0.7	x	1.11	=	308.29	(77)
Southeast 0.9x	0.77	x	6.67	x	106.25	x	0.7	x	1.11	=	381.99	(77)
Southeast 0.9x	0.77	x	6.67	×	119.01	x	0.7	×	1.11	=	427.86	(77)
Southeast 0.9x	0.77	x	6.67	x	118.15	x	0.7	×	1.11	=	424.76	(77)
Southeast 0.9x	0.77	x	6.67	x	113.91	x	0.7	×	1.11	=	409.52	(77)
Southeast 0.9x	0.77	x	6.67	x	104.39	x	0.7	x	1.11	=	375.3	(77)
Southeast 0.9x	0.77	x	6.67	x	92.85	x	0.7	×	1.11	=	333.81	(77)
Southeast 0.9x	0.77	x	6.67	x	69.27	x	0.7	×	1.11	_ =	249.03	(77)
Southeast 0.9x	0.77	x	6.67	x	44.07	x	0.7	×	1.11	=	158.44	(77)
Southeast 0.9x	0.77	x	6.67	x	31.49	x	0.7	x	1.11	=	113.2	(77)
Southwest _{0.9x}	0.77	x	2.85	x	36.79]	0.7	×	1.11	=	169.56	(79)
Southwest _{0.9x}	0.77	x	2.85	x	62.67]	0.7	×	1.11	=	288.83	(79)
Southwest _{0.9x}	0.77	x	2.85	x	85.75]	0.7	×	1.11	=	395.19	(79)
Southwest _{0.9x}	0.77	x	2.85	x	106.25]	0.7	×	1.11	=	489.66	(79)
Southwest _{0.9x}	0.77	x	2.85	x	119.01]	0.7	×	1.11	=	548.45	(79)
Southwest _{0.9x}	0.77	x	2.85	x	118.15]	0.7	×	1.11	=	544.49	(79)
Southwest _{0.9x}	0.77	×	2.85	x	113.91	ĺ	0.7		1.11	=	524.95	(79)
Southwest0.9x	0.77	x	2.85	×	104.39		0.7	x	1.11	=	481.08	(79)
Southwest0.9x	0.77	Ī×	2.85	x	92.85	İ.	0.7	x	1.11	=	427.9	(79)
Sout <mark>hwest</mark> 0.9x	0.77	x	2.85	x	69.27	i /	0.7	x	1.11	=	319.22	(79)
Sout <mark>hwest</mark> 0.9x	0.77	x	2.85	x	44.07		0.7	×	1.11	=	203.1	(79)
Sout <mark>hwest</mark> 0.9x	0.77	x	2.85	x	31.4 <mark>9</mark>	1	0.7	x	1.11	=	145.11	(79)
Northwest 0.9x	0.77	x	2.85	x	11.28	×	0.7	×	1.11	=	52	(81)
Northwest 0.9x	0.77	x	2.85	x	22.97	x	0.7	×	1.11	=	105.84	(81)
Northwest 0.9x	0.77	x	2.85	x	41.38	x	0.7	×	1.11	=	190.69	(81)
Northwest 0.9x	0.77	x	2.85	x	67.96	x	0.7	×	1.11	=	313.17	(81)
Northwest 0.9x	0.77	x	2.85	x	91.35	x	0.7	×	1.11	=	420.96	(81)
Northwest 0.9x	0.77	x	2.85	x	97.38	x	0.7	×	1.11	=	448.79	(81)
Northwest 0.9x	0.77	x	2.85	x	91.1	x	0.7	×	1.11	=	419.84	(81)
Northwest 0.9x	0.77	x	2.85	x	72.63	x	0.7	×	1.11	=	334.7	(81)
Northwest 0.9x	0.77	x	2.85	x	50.42	x	0.7	×	1.11	=	232.36	(81)
Northwest 0.9x	0.77	x	2.85	x	28.07	x	0.7	×	1.11	=	129.35	(81)
Northwest 0.9x	0.77	x	2.85	x	14.2	x	0.7	×	1.11	=	65.43	(81)
Northwest 0.9x	0.77	x	2.85	x	9.21	x	0.7	×	1.11	=	42.46	(81)
_		_		-		-						_
Solar gains in	watts, calcul	lated	for each mon	th		(83)m	n = Sum(74)m	.(82)m				
(83)m= 353.84			1184.81 1397.2		1354.3	119 [,]	1.07 994.08	697.59	426.96	300.78		(83)
Total gains – ii	· · · · ·		· / · /	`							I	
(84)m= 796.32 1060.37 1320.51 1588.43 1777.75 1776.24 1698.03 1540.88 1355.56 1082.01 837.75 731.43 (84)												
7. Mean internal temperature (heating season)												
Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85)												
Utilisation fac	tor for gains	for li	ving area, h1,	m (s	ee Table 9a)				· · · · ·		l	

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Mar

Jan

Feb

(86)m-	0.98	0.93	0.8	0.6	0.42	0.28	0.2	0.23	0.4	0.72	0.95	0.99		(86)
(86)m=										0.72	0.95	0.99		(00)
		· · ·	ature in	<u> </u>	<u> </u>	1	i	1	<u> </u>	00.05		00.00		(07)
(87)m=	20.33	20.62	20.86	20.98	21	21	21	21	21	20.95	20.63	20.28		(87)
		<u> </u>	neating p	i	r	<u> </u>	r	1			i			
(88)m=	20.12	20.12	20.13	20.14	20.15	20.16	20.16	20.17	20.16	20.15	20.14	20.13		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	(89)m= 0.98 0.91 0.77 0.56 0.38 0.24 0.16 0.19 0.35 0.68 0.93 0.98													(89)
Mean	interna	l temper	ature in	the rest	of dwell	ing T2 (f	ollow ste	eps 3 to	7 in Tabl	e 9c)				
(90)m=	19.25	19.66	19.97	20.12	20.14	20.16	20.16	20.17	20.15	20.1	19.7	19.18		(90)
								-	f	LA = Livin	g area ÷ (4	4) =	0.34	(91)
Mean internal temperature (for the whole dwelling) = fLA × T1 + (1 – fLA) × T2														
(92)m=	19.61	19.98	20.27	20.41	20.43	20.44	20.44	20.45	20.44	20.38	20.01	19.55		(92)
Apply	adjustn	nent to t	he mear	interna	l temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	19.61	19.98	20.27	20.41	20.43	20.44	20.44	20.45	20.44	20.38	20.01	19.55		(93)
8. Sp	ace hea	ting requ	uirement											
			ternal ter			ned at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the u			or gains			lun		A	Can	Oct	Nev	Dee		
L Itilis:	Jan ation fac	Feb	Mar ains, hm	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(94)m=	0.97	0.91	0.78	0.57	0.39	0.26	0.18	0.2	0.37	0.69	0.93	0.98		(94)
	L		, W = (94		4)m									
(95)m=	775.33	966.12	1027.4	905.25	693.83	455.56	299.72	314.12	497.72	745.3	779.37	718.04		(95)
Mo <mark>nt</mark> l	hly aver	age exte	rnal tem	perature	e from T	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
	r	r	an intern	· · · ·	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]	r			
			1124.48		695.34	455.64	299.73	314.13	498.45	779.1		1243.24		(97)
		ř. –	ement fo	i	r	1	r	1	<u> </u>	<u> </u>	ŕ	000 75		
(98)m=	361.09	181.8	72.23	10.92	1.13	0	0	0	0	25.14	185.48	390.75	4000 5	
								lota	l per year	(kwh/yeai	r) = Sum(9)	8)15,912 =	1228.5	
Spac	e heatin	g require	ement in	kWh/m ²	²/year								14.29	(99)
9b. En	ergy rec	quiremer	nts – Cor	mmunity	heating	scheme	;							
			bace hea								unity sch	neme.		
			from se				-	(Table 1	1) 'U' If N	one			0	(301)
Fractic	on of spa	ace heat	from co	mmunity	v system	1 – (301	1) =						1	(302)
includes	boilers, h	eat pump	y obtain he s, geotherr	mal and wa						up to four	other heat	sources; ti	he latter	
Fractio	on of hea	at from C	Commun	ity CHP									0.6	(303a)
Fractic	on of cor	nmunity	heat fro	m heat s	source 2								0.4	(303b)
Fractic	on of tota	al space	heat fro	m Comr	nunity C	HP				(3	02) x (303	a) =	0.6	(304a)
Fractic	on of tota	al space	heat fro	m comm	nunity he	eat sourc	e 2			(3	02) x (303	b) =	0.4	(304b)
Factor	for cont	trol and	charging	method	l (Table	4c(3)) fo	r commi	unitv hea	ating svs	tem			1	(305)
			33		(- (- /) - •		.,	5-90					`` ´

Distribution loss factor (Table 12c) for community heating	g system 1.4	(306)
Space heating	kWh/year	
Annual space heating requirement	1228.53	
Space heat from Community CHP	(98) x (304a) x (305) x (306) = 1031.97	(307a)
Space heat from heat source 2	(98) x (304b) x (305) x (306) = 687.98	(307b)
Efficiency of secondary/supplementary heating system in	% (from Table 4a or Appendix E) 0	(308
Space heating requirement from secondary/supplementa	ry system (98) x (301) x 100 ÷ (308) = 0	(309)
Water heating Annual water heating requirement	2148.15	1
If DHW from community scheme: Water heat from Community CHP	(64) x (303a) x (305) x (306) = 1804.44	(310a)
Water heat from heat source 2	(64) x (303b) x (305) x (306) = 1202.96	(310b)
Electricity used for heat distribution	0.01 × [(307a)(307e) + (310a)(310e)] = 47.27	(313)
Cooling System Energy Efficiency Ratio	0	(314)
Space cooling (if there is a fixed cooling system, if not er	ter 0) $= (107) \div (314) = 0$	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input	ut from outside 328.52	(330a)
warm air heating system fans		(330b)
pump for solar water heating		(330g)
Total electricity for the above, kWh/year	=(330a) + (330b) + (330g) = 328.52	(331)
Energy for lighting (calculated in Appendix L)	-(0504) + (0506) + (0506) - 320.52 364.52	(332)
12b. CO2 Emissions – Community heating scheme	304.32	
Electrical efficiency of CHP unit	35	(361)
Heat efficiency of CHP unit	40](362)
	Energy Emission factor Emissions	
	kWh/year kg CO2/kWh kg CO2/year	
Space heating from CHP) $(307a) \times 100 \div (362) =$	2579.92 × 0.22 557.26	(363)
less credit emissions for electricity $-(307a) \times (361) \div (362) =$	902.97 × 0.52 -468.64	(364)
Water heated by CHP $(310a) \times 100 \div (362) =$	4511.1 × 0.22 974.4	(365)
less credit emissions for electricity $-(310a) \times (361) \div (362) =$	1578.89 × 0.52 -819.44	(366)
Efficiency of heat source 2 (%) If there is C	HP using two fuels repeat (363) to (366) for the second fuel 85	(367b)
CO2 associated with heat source 2	$[(307b)+(310b)] \times 100 \div (367b) \times 0.22 = 480.52$	(368)
Electrical energy for heat distribution	[(313) x 0.52 = 24.53	(372)
Total CO2 associated with community systems	(363)(366) + (368)(372) = 748.63	(373)
CO2 associated with space heating (secondary)	$(309) \times 0 = 0$	(374)
CO2 associated with water from immersion heater or inst	antaneous heater (312) x 0.22 = 0	(375)
Total CO2 associated with space and water heating	(373) + (374) + (375) = 748.63	(376)

CO2 associated with electricity for pum	0).52	=	170.5	(378)		
CO2 associated with electricity for lighti	(332))) x	C).52	=	189.18	(379)	
Total CO2, kg/year	sum of (376)(382) =					1108.32	(383)
Dwelling CO2 Emission Rate	(383) ÷ (4) =					12.89	(384)
El rating (section 14)						88.66	(385)

