Type 4: After Energy Demand Reduction

			User D	etails:						
Assessor Name: Software Name:	Stroma FS	AP 2012		Stroma Softwa	-			Versic	n: 1.0.1.25	
		Р	roperty i	Address:	L4 3BF	East				
Address :	, NW1 1JD									
1. Overall dwelling dime	ensions:		A ***	n/m2\		Av. Hai	iaht/m\		Valuma/m	.3)
Ground floor			Area	a(m²) 86	(1a) x	Av. He	.15	(2a) =	Volume(m 270.9	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+	(1d)+(1e)+(1r	n)		(4)], ,		` ^
Dwelling volume			′ <u> </u>)+(3c)+(3d	l)+(3e)+	.(3n) =	270.9	(5)
2. Ventilation rate:										
2. Voltalation rate.	main	secondar	у	other		total			m³ per ho	ur
Number of chimneys	heating 0	heating + 0] + [0] = [0	X 4	40 =	0	(6a)
Number of open flues	0	+ 0	ī + Ē	0] = [0	x 2	20 =	0	(6b)
Number of intermittent fa	ans				, <u> </u>	0	x -	10 =	0	(7a)
Number of passive vents	3				Ē	0	x -	10 =	0	(7b)
Number of flueless gas f	ires				Ī	0	X 4	40 =	0	(7c)
					_			Air ob	anges nor b	
Inditantian due to object	us flues and f	(60) (6b) (7	(a) ((7b) ((70) -	\ _		_		nanges per h	
Infiltration due to chimne If a pressurisation test has be					ontinue fro	0 om (9) to (÷ (5) =	0	(8)
Number of storeys in t						(0) 10 (0	(9)
Additional infiltration							[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0					•	uction			0	(11)
if both types of wall are p deducting areas of openi	•	, ,	the great	er wall are	a (after					
If suspended wooden	• ,.		.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, en	nter 0.05, else	enter 0							0	(13)
Percentage of window	s and doors dr	aught stripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	00] =			0	(15)
Infiltration rate				(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value,	q50, expresse	ed in cubic metre	s per ho	our per so	quare m	etre of e	nvelope	area	3	(17)
If based on air permeabi									0.15	(18)
Air permeability value applie	•	on test has been dor	ne or a deg	gree air pei	meability	is being us	sed			_
Number of sides shelters Shelter factor	ea			(20) = 1 - [0.075 x (1	9)1 =			0	(19)
Infiltration rate incorpora	ting shelter fac	tor.		(20) = (18)		- /1			0.15	(20)
Infiltration rate modified t	-			(=-)	(= 3)				0.15	(∠1)
Jan Feb	Mar Apr	May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp		- 1			•				1	
(22)m= 5.1 5	4.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
W. 15-11 (00.)	100	l l							I	
Wind Factor $(22a)m = (2(22a)m) = (2(22a)m) = (22a)m = ($	22)m ÷ 4 1.23 1.1	1.08 0.95	0.95	0.92	1	1.08	1.12	1.18		
(22a)m= 1.27 1.25	1.20 1.1	1.00 0.95	0.95	0.92	I	1.08	1.12	1.18		

	ation rate	<u> </u>			1	i 	`	ì	T	T	T	1	
0.19 Calculate effe		0.18 nange r	0.16 rate for t	0.16 he appli	0.14 cable ca	0.14 ISE	0.14	0.15	0.16	0.17	0.18]	
If mechanica		_										0.5	(2
If exhaust air h	eat pump usi	ing Appe	endix N, (2	3b) = (23a	a) × Fmv (equation (N5)) , othe	rwise (23b	o) = (23a)			0.5	(2
If balanced with	n heat recove	ery: effici	iency in %	allowing t	for in-use f	actor (fror	n Table 4h	n) =				64.6	(2
a) If balance	d mechan	nical ve	ntilation	with he	at recov	ery (MV	HR) (24a	a)m = (2)	2b)m + (23b) × [1 – (23c)	÷ 100]	
24a)m= 0.37	0.36	0.36	0.34	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.35]	(2
b) If balance	d mechan	nical ve	ntilation	without	heat red	covery (l	MV) (24k	o)m = (22	2b)m + (23b)	_	_	
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(2
c) If whole h if (22b)r	ouse extra n < 0.5 × (2			•	•				.5 × (23k	o)		_	
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
d) If natural if (22b)r	ventilation n = 1, then			•	•				0.5]			_	
24d)m= 0	0	0	0	0	0	0	0	0	0	0	0		(2
Effective air	change ra	ate - en	iter (24a) or (24l	o) or (24	c) or (24	d) in bo	x (25)				_	
25)m= 0.37	0.36	0.36	0.34	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.35		(2
3. Heat losse	s and heat	t loss p	paramet	er:								_	_
ELEMENT	Gross area (n		Openin m		Net Ar A ,ı		U-val W/m2		A X U (W/		k-valu kJ/m²-		A X k kJ/K
Vin <mark>dows</mark> Type	1				2.85	x1	/[1/(1.3)+	- 0.04] =	3.52				(2
Vin <mark>dows</mark> Type	2 2				6.67	x1	/[1/(1.3)+	- 0.04] =	8.24				(2
Vindows Type	3				2.85	x1	/[1/(1.3)+	- 0.04] =	3.52				(2
loor					6	х	0.1	=	0.6				(2
Valls	64		23.7	7	40.23	3 x	0.11	=	4.43				(2
otal area of e	lements, n	m²			70								(3
Party wall					25	X	0	=	0				(3
Party wall					32	X	0	=	0				(3
Party floor					80					[(3
Party ceiling					86					[(3
nternal wall **					93								(3
for windows and * include the area						lated using	g formula 1	1/[(1/U-valu	ue)+0.04] a	as given in	paragrapi	h 3.2	
abric heat los	ss, W/K = 5	S (A x	U)				(26)(30) + (32) =				34.4	(3
eat capacity	Cm = S(A)	x k)						((28).	(30) + (3	2) + (32a).	(32e) =	32581	.5 (3
	paramete	r (TMF	P = Cm -	•					ative Value			250	(3
					•	4 1		a indicative	values of	TMD in T	abla 1f		
or design assess an be used inste	ad of a detail	iled calcu	ulation.				recisely the	o maicative	, values of	11011 111 1	able II		
or design asses	ad of a detail es : S (L x	iled calcu Y) calc	ulation. culated (using Ap	pendix		recisely the	e maicauve	values of	TIVII III T	аые п	7	(3

Ventila	tion hea	it loss ca	alculated	l monthly	y				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	ı	
(38)m=	32.92	32.59	32.25	30.57	30.24	28.56	28.56	28.23	29.23	30.24	30.91	31.58	ı	(38)
Heat tr	ansfer c	oefficier	nt, W/K		-	-		-	(39)m	= (37) + (3	38)m	-		
(39)m=	74.32	73.98	73.65	71.97	71.64	69.96	69.96	69.63	70.63	71.64	72.31	72.98	ı	
Heat lo	ss para	meter (H	HLP), W/	m²K						Average = = (39)m ÷		12 /12=	71.89	(39)
(40)m=	0.86	0.86	0.86	0.84	0.83	0.81	0.81	0.81	0.82	0.83	0.84	0.85	ı	
Numbe	er of day	s in mor	nth (Tab	le 1a)					,	Average =	Sum(40) ₁	12 /12=	0.84	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	ı	
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31	ı	(41)
		ing ener	gy requi	rement:								kWh/ye	ear:	(42)
if TF		9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		57		(42)
								(25 x N) to achieve		o target e		5.16	ı	(43)
			person per				-	o acmeve	a water us	e larger of				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate			day for ea						3 3 1					
(44)m=	104.68	100.87	97.07	93.26	89.45	85.65	85.65	89.45	93.26	97.07	100.87	104.68		
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x E	OTm / 3600		Total = Sui oth (see Ta			1141.97	(44)
(45)m=	155.24	135.77	140.11	122.15	117.2	101.14	93.72	107.54	108.83	126.83	138.44	150.34		
lf instant	taneous w	ator hoatii	na at noint	of use (no	hot water	r storage)	enter () in	boxes (46		Γotal = Su	m(45) ₁₁₂ =	=	1497.31	(45)
(46)m=	23.29	20.37	21.02	18.32	17.58	15.17	14.06	16.13	16.32	19.02	20.77	22.55	ı	(46)
	storage		21.02	10.32	17.50	13.17	14.00	10.13	10.32	19.02	20.77	22.00		(40)
Storag	e volum	e (litres)	includin	g any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0	ı	(47)
Otherw	-	stored	nd no ta hot wate		•			(47) ombi boil	ers) ente	er 'O' in (47)			
	-		eclared le	oss facto	or is kno	wn (kWh	n/day):					0	ı	(48)
Tempe	rature fa	actor fro	m Table	2b								0	ı	(49)
			storage eclared o			or is not		(48) x (49)	=		1	10		(50)
Hot wa	iter stora	age loss	factor fr	om Tabl							0.	02		(51)
	-	eaung s from Tal	ee section	JII 4.3							1	.03	ı	(52)
			m Table	2b								.6	ı	(53)
			storage		ear			(47) x (51)	x (52) x (53) =		03	ı	(54)
		54) in (5	_					/			-	.03	ı	(55)
	storage	loss cal	culated f	or each	month			((56)m = (55) × (41)r	m				

If cylinder conta	ins dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m= 32.0°	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
Primary circ	uit loss (ar	nual) fro	m Table		•	•	•	•			0		(58)
Primary circ	•	,			59)m = ((58) ÷ 36	65 × (41)	m					
(modified	by factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)		_	
(59)m= 23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi loss	alculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m= 0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total heat re	quired for	water h	eating ca	alculated	for eacl	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 210.5	2 185.7	195.38	175.64	172.48	154.63	149	162.82	162.32	182.11	191.94	205.62		(62)
Solar DHW inpu	ut calculated	using App	endix G oı	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add addition	nal lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (3)					
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	water hea	iter											
(64)m= 210.5	2 185.7	195.38	175.64	172.48	154.63	149	162.82	162.32	182.11	191.94	205.62		
	•						Outp	out from wa	ater heate	r (annual) ₁	12	2148.15	(64)
Heat gains f	om water	heating	kWh/m	onth 0.2	5 ′ [0.85	× (45)m	+ (61)m	n] + 0.8 x	c [(46)m	+ (57)m	+ (59)m]	
(65)m= 95.84	85.09	90.81	83.41	83.19	76.42	75.38	79.98	78.98	86.39	88.83	94.21		(65)
include (5	7)m in cal	culation	of (65)m	only if c	ylinder i	s in the	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Internal	gains (see	e Table 5	and 5a):									
Metabolic ga													
Jar		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 128.3	5 128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35		(66)
Lighting gair	ıs (calcula	ted in Ar	pendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m= 20.64	18.33	14.91	11.29	8.44	7.12	7.7	10	13.43	17.05	19.9	21.21		(67)
Appliances (ains (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Tal	ble 5	ļ.	!		
(68)m= 231.5	2 233.93	227.87	214.98	198.71	183.42	173.21	170.8	176.86	189.75	206.02	221.31		(68)
Cooking gair	ns (calcula	ted in A	ppendix	L. eguat	tion L15	or L15a	L	ee Table	5	<u> </u>	<u> </u>	ı	
(69)m= 35.83	_`	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83		(69)
Pumps and	ans gains	(Table	 5a)	Į.	Į.	Į.	Į.			Į.			
(70)m= 0		0	0	0	0	0	0	0	0	0	0		(70)
Losses e.g.	evaporatio	n (nega	tive valu	es) (Tab	le 5)	!	!	!		<u>!</u>	<u>!</u>		
(71)m= -102.6		,		-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68		(71)
Water heatin	ng gains (1	rable 5)		<u> </u>	<u> </u>	<u> </u>	<u> </u>	l		<u> </u>	<u> </u>	l	
(72)m= 128.8	``	122.05	115.85	111.82	106.14	101.32	107.5	109.69	116.12	123.37	126.63		(72)
Total intern	ļ			ļ				L + (69)m + ((70)m + (7		l	l	
(73)m= 442.4	_	426.34	403.62	380.47	358.19	343.73	349.81	361.49	384.42	410.79	430.65		(73)
6. Solar gai		.20.0	100.02	333111	000.10	0 .0 0	0.010.	001110	001112		100.00		()
Solar gains ar		using sola	r flux from	Table 6a	and assoc	iated equa	itions to co	onvert to th	e applicat	ole orientat	ion.		
Orientation:		_	Area		Flu			g_		FF		Gains	
	Table 6d		m²			ble 6a	Т	able 6b	T	able 6c		(W)	

Northeast _{0.9x}	0.77	X	2.85	X	11.28	x	0.7	X	1.11	=	52	(75)
Northeast _{0.9x}	0.77	x	2.85	X	22.97	x	0.7	x [1.11	=	105.84	(75)
Northeast _{0.9x}	0.77	x	2.85	X	41.38	x	0.7	x	1.11	=	190.69	(75)
Northeast _{0.9x}	0.77	X	2.85	X	67.96	x	0.7	x	1.11	=	313.17	(75)
Northeast _{0.9x}	0.77	x	2.85	X	91.35	x	0.7	x	1.11	=	420.96	(75)
Northeast _{0.9x}	0.77	x	2.85	X	97.38	X	0.7	x	1.11	=	448.79	(75)
Northeast _{0.9x}	0.77	x	2.85	X	91.1	x	0.7	x	1.11	=	419.84	(75)
Northeast _{0.9x}	0.77	x	2.85	X	72.63	x	0.7	x	1.11	=	334.7	(75)
Northeast _{0.9x}	0.77	x	2.85	X	50.42	X	0.7	x	1.11	=	232.36	(75)
Northeast 0.9x	0.77	x	2.85	X	28.07	x	0.7	x	1.11	=	129.35	(75)
Northeast _{0.9x}	0.77	×	2.85	x	14.2	x	0.7	×	1.11	=	65.43	(75)
Northeast _{0.9x}	0.77	x	2.85	x	9.21	x	0.7	×	1.11	=	42.46	(75)
Southeast 0.9x	0.77	×	6.67	x	36.79	x	0.7	x	1.11	=	132.28	(77)
Southeast 0.9x	0.77	×	2.85	x	36.79	x	0.7	x	1.11	=	169.56	(77)
Southeast 0.9x	0.77	x	6.67	x	62.67	x	0.7	×	1.11	<u> </u>	225.32	(77)
Southeast 0.9x	0.77	x	2.85	x	62.67	х	0.7	×	1.11	=	288.83	(77)
Southeast 0.9x	0.77	x	6.67	x	85.75	x	0.7	x	1.11	=	308.29	(77)
Southeast 0.9x	0.77	x	2.85	X	85.75	Х	0.7	Х	1.11	=	395.19	(77)
Southeast 0.9x	0.77	×	6.67	х	106.25	х	0.7	х	1.11		381.99	(77)
Southeast _{0.9x}	0.77	X	2.85	х	106.25	×	0.7	х	1.11	=	489.66	(77)
Southeast _{0.9x}	0.77	x	6.67	x	119.01	x	0.7	х	1.11	=	427.86	(77)
Southeast _{0.9x}	0.77	X	2.85	X	119.01	х	0.7	x	1.11	=	548.45	(77)
Southeast 0.9x	0.77	i x	6.67	x	118.15	Х	0.7	х	1.11	=	424.76	(77)
Southeast 0.9x	0.77	×	2.85	х	118.15	x	0.7	х	1.11	=	544.49	(77)
Southeast 0.9x	0.77	×	6.67	x	113.91	x	0.7	×	1.11	-	409.52	(77)
Southeast 0.9x	0.77	×	2.85	X	113.91	x	0.7	×	1.11		524.95	(77)
Southeast 0.9x	0.77	x	6.67	X	104.39	x	0.7	×	1.11	=	375.3	(77)
Southeast 0.9x	0.77	x	2.85	x	104.39	x	0.7	×	1.11	=	481.08	(77)
Southeast 0.9x	0.77	x	6.67	x	92.85	x	0.7	×	1.11	=	333.81	(77)
Southeast 0.9x	0.77	×	2.85	X	92.85	x	0.7	×	1.11	=	427.9	(77)
Southeast 0.9x	0.77	x	6.67	x	69.27	x	0.7	×	1.11	=	249.03	(77)
Southeast 0.9x	0.77	x	2.85	x	69.27	x	0.7	×	1.11	=	319.22	(77)
Southeast 0.9x	0.77	×	6.67	x	44.07	x	0.7	×	1.11		158.44	(77)
Southeast 0.9x	0.77	×	2.85	X	44.07	x	0.7	x [1.11	-	203.1	(77)
Southeast 0.9x	0.77	×	6.67	X	31.49	x	0.7	x [1.11		113.2	(77)
Southeast _{0.9x}	0.77	×	2.85	x	31.49	x	0.7		1.11	-	145.11	(77)
_				•		,						_
Solar gains in w	atts, calcu	ulated	for each mon	th		(83)m	n = Sum(74)m	(82)m				
(83)m= 353.84	619.99 89	94.17	1184.81 1397.2	28 14	118.04 1354.3	119 ²	1.07 994.08	697.59	426.96	300.78		(83)
Total gains – in	ternal and	solar	(84)m = (73) r	n + (83)m , watts							
(84)m= 796.32	1060.37 13	320.51	1588.43 1777.7	75 17	776.24 1698.03	1540	0.88 1355.56	1082.0	1 837.75	731.43		(84)
7. Mean intern	al tempera	ature (heating seaso	on)								
Temperature of	luring hea	ting pe	eriods in the li	ving	area from Tal	ole 9	, Th1 (°C)				21	(85)
Utilisation factor	or for gain	s for li	ving area, h1	m (s	ee Table 9a)							_
Stroma FSAP 2012	version 1.0	Mar ₅ (s	SAPP.52 - hMa	X	Jun Jul	Α	ug Sep	Oct	Nov	Dec	Page	5 of 7

	_	
(86)m= 0.98 0.91 0.76 0.54 0.37 0.25 0.18 0.21 0.36 0.67 0.93 0.99		(86)
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)	_	
(87)m= 20.47 20.74 20.92 20.99 21 21 21 21 21 20.98 20.74 20.42		(87)
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)		
(88)m= 20.2 20.2 20.2 20.22 20.22 20.24 20.24 20.25 20.23 20.22 20.22 20.21		(88)
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)		
(89)m= 0.97 0.89 0.73 0.51 0.34 0.22 0.15 0.17 0.32 0.62 0.91 0.98		(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)	•	
(90)m= 19.51 19.89 20.12 20.21 20.22 20.24 20.24 20.25 20.23 20.2 19.91 19.45	1	(90)
fLA = Living area ÷ (4) =	0.34	(91)
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$		_
(92)m= 19.83 20.17 20.39 20.48 20.49 20.5 20.5 20.5 20.49 20.46 20.19 19.77]	(92)
Apply adjustment to the mean internal temperature from Table 4e, where appropriate	J	
(93)m= 19.83 20.17 20.39 20.48 20.49 20.5 20.5 20.5 20.49 20.46 20.19 19.77		(93)
8. Space heating requirement		
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calc	culate	
the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec		
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm:	J	
(94)m= 0.97 0.89 0.73 0.52 0.35 0.23 0.16 0.19 0.33 0.64 0.91 0.98]	(94)
Useful gains, hmGm , W = (94)m x (84)m	1	
(95)m= 771.39 944.14 970.19 827.2 628.93 412.57 272.66 285.44 451.32 690.93 765.21 715.69		(95)
Monthly average external temperature from Table 8	·	
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2		(96)
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m-(96)m]	1	(07)
(97)m= 1154.4 1129.96 1023.13 833.1 629.37 412.59 272.66 285.44 451.52 706.54 946.43 1136.62	J	(97)
Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ (98)m = 284.96 124.87 39.39 4.24 0.33 0 0 0 0 11.61 130.47 313.17	1	
Total per year (kWh/year) = Sum(98) _{15,912} =	909.06	(98)
		」(99)
Space heating requirement in kWh/m²/year	10.57	
9b. Energy requirements – Community heating scheme		
This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none	0	(301)
Fraction of space heat from community system 1 – (301) =	1	(302)
		_(002)
The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.	rie iallei	
Fraction of heat from Community boilers	1	(303a)
Fraction of total space heat from Community boilers (302) x (303a) =	1	(304a)
Factor for control and charging method (Table 4c(3)) for community heating system	1	(305)
Distribution loss factor (Table 12c) for community heating system	1.2	` ☐(306)
		``
Space heating Annual space heating requirement	kWh/year	٦
, united opaco floating requirement	309.00	┙

Space heat from Community boilers	(98) x (304a)	x (305) x (306) =	1090.87	(307a)
Efficiency of secondary/supplementary heating system in	% (from Table 4a or Appe	endix E)	0	(308
Space heating requirement from secondary/supplementa	ry system (98) x (301) x	(100 ÷ (308) =	0	(309)
Water heating Annual water heating requirement			2148.15	_
If DHW from community scheme: Water heat from Community boilers	(64) x (303a)	x (305) x (306) =	2577.77	(310a)
Electricity used for heat distribution	0.01 × [(307a)(30	07e) + (310a)(310e)] =	36.69	(313)
Cooling System Energy Efficiency Ratio			0	(314)
Space cooling (if there is a fixed cooling system, if not en	ter 0) = (107) ÷ (31	4) =	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input	it from outside		328.52	(330a)
warm air heating system fans			0	(330b)
pump for solar water heating			0	(330g)
Total electricity for the above, kWh/year	=(330a) + (33	30b) + (330g) =	328.52	(331)
Energy for lighting (calculated in Appendix L)			364.52	(332)
12b. CO2 Emissions – Community heating scheme	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year	
CO2 from other sources of space and water heating (not	kWh/year	kg CO2/kWh	kg CO <mark>2/yea</mark> r	(367a)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) If there is Co	kWh/year	kg CO2/kWh to (366) for the second fuel	kg CO <mark>2/yea</mark> r	(367a) (367)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) If there is Co	kWh/year CHP) HP using two fuels repeat (363)	kg CO2/kWh to (366) for the second fuel	kg CO2/year	⊒` =
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x	kg CO2/kWh to (366) for the second fuel 0 = 0.52 =	89 890.37	(367)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x [(313) x	kg CO2/kWh to (366) for the second fuel 0 = 0.52 =	89 890.37 19.04 909.41	(367)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems	(307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3	kg CO2/kWh to (366) for the second fuel 0 = 0.52 = 0.72) = 0 = 0.52	89 890.37 19.04 909.41	(367) (372) (373)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems CO2 associated with space heating (secondary)	(307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3	kg CO2/kWh to (366) for the second fuel 0 = 0.52 = 772) =	89 890.37 19.04 909.41	(367) (372) (373) (374)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems CO2 associated with space heating (secondary) CO2 associated with water from immersion heater or inst	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3 (309) x antaneous heater (312) x (373) + (374) + (375) =	kg CO2/kWh to (366) for the second fuel 0 = 0.52 = 772) =	89 890.37 19.04 909.41 0 909.41	(367) (372) (373) (374) (375)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems CO2 associated with space heating (secondary) CO2 associated with water from immersion heater or instantal CO2 associated with space and water heating	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3 (309) x antaneous heater (312) x (373) + (374) + (375) =	kg CO2/kWh to (366) for the second fuel 0 = 0.52 = 0.72) = 0 = 0.22 = 0.22	89 890.37 19.04 909.41 0 909.41 170.5	(367) (372) (373) (374) (375) (376)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems CO2 associated with space heating (secondary) CO2 associated with water from immersion heater or inst Total CO2 associated with space and water heating CO2 associated with electricity for pumps and fans within CO2 associated with electricity for lighting Total CO2, kg/year sum of (376)(382)	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3 (309) x antaneous heater (312) x (373) + (374) + (375) = dwelling (331)) x (332))) x	kg CO2/kWh to (366) for the second fuel 0 = 0.52 = 0.22 = 0.52 = 0.52	89 890.37 19.04 909.41 0 909.41 170.5	(367) (372) (373) (374) (375) (376) (378)
CO2 from other sources of space and water heating (not Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community systems CO2 associated with space heating (secondary) CO2 associated with water from immersion heater or inst Total CO2 associated with space and water heating CO2 associated with electricity for pumps and fans within CO2 associated with electricity for lighting	kWh/year CHP) HP using two fuels repeat (363) (307b)+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(3 (309) x antaneous heater (312) x (373) + (374) + (375) = dwelling (331)) x (332))) x	kg CO2/kWh to (366) for the second fuel 0 = 0.52 = 0.22 = 0.52 = 0.52	89 890.37 19.04 909.41 0 909.41 170.5 189.18	(367) (372) (373) (374) (375) (376) (378) (379)