Type 3: After Renewable Energy

Type 5. After Kerlewable Effe	i gy									
		User D	etails:							
Assessor Name: Software Name: Stroma F	SAP 2012		Strom Softwa	are Vei	sion:		Versio	on: 1.0.1.25		
Address NIW/1 1 IF		operty A	Address	L4 3BF	vvest					
Address: , NW1 1JD 1. Overall dwelling dimensions:										
1. Overall dwelling differisions.		Δrea	a(m²)		Av He	ight(m)		Volume(m³	,	
Ground floor			· ,	(1a) x		.15	(2a) =	270.9	(3a)	
Total floor area TFA = (1a)+(1b)+(1c)-	+(1d)+(1e)+ (1n	,		(4)]` ′		``	
, , , , ,	. (14) 1 (15) 1 (11)	′ L	00) . (2a) . (2a	4) . (2 a) .	(2n)		٦	
Dwelling volume				(3a)+(3b))+(3C)+(3C	d)+(3e)+	.(3n) =	270.9	(5)	
2. Ventilation rate:			-4l u		4-4-1			ma3 man havv	_	
main heating	secondary heating	y	other		total			m³ per hou	r	
Number of chimneys 0	+ 0	+	0] = [0	X 4	40 =	0	(6a)	
Number of open flues 0	+ 0] + [0	=	0	x 2	20 =	0	(6b)	
Number of intermittent fans		_		, E	0	x ′	10 =	0	(7a)	
Number of passive vents					0	x ′	10 =	0		
Number of flueless gas fires				<u> </u>	0	X 4	10 =	0	(7c)	
Table of Hadrice gas mos				L				0	(10)	
							Air ch	anges <mark>per</mark> ho	ur	
Infiltration due to chimneys, flues and	fans = (6a) + (6b) + (7a)	a)+(7b)+(7	7c) =	Г	0	<u> </u>	÷ (5) =	0	(8)	
If a pressurisation test has been carried out				continue fr	om (9) to (` ′	
N <mark>umbe</mark> r of storeys in the dw <mark>elling</mark> (r	ns)							0	(9)	
Additional infiltration						[(9)-	-1]x0.1 =	0	(10)	
Structural infiltration: 0.25 for steel of				•	uction			0	(11)	
if both types of wall are present, use the videducting areas of openings); if equal use	·	tne greate	er waii are	a (arter						
If suspended wooden floor, enter 0.	2 (unsealed) or 0.	1 (seale	ed), else	enter 0				0	(12)	
If no draught lobby, enter 0.05, else	enter 0							0	(13)	
Percentage of windows and doors of	Iraught stripped							0	(14)	
Window infiltration			0.25 - [0.2		_			0	(15)	
Infiltration rate			(8) + (10)					0	(16)	
Air permeability value, q50, express		•		•	etre of e	envelope	area	3	(17)	
If based on air permeability value, the Air permeability value applies if a pressurisa					is heina u	sed		0.15	(18)	
Number of sides sheltered	non toot nad boom done	o or a acg	groo an po	modelinty	io boiling a	50 u		0	(19)	
Shelter factor			(20) = 1 -	[0.075 x (1	9)] =			1	(20)	
Infiltration rate incorporating shelter fa	ctor		(21) = (18	x (20) =				0.15	(21)	
Infiltration rate modified for monthly w	ind speed						'		_	
Jan Feb Mar Apr	May Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Monthly average wind speed from Tal	ole 7									
(22)m= 5.1 5 4.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7			
Mind Footon (00-) (00)										
Wind Factor (22a)m = (22) m ÷ 4 (22a)m= 1.27 1.25 1.23 1.1	1.08 0.95	0.95	0.92	1	1.08	1.12	1.18			
(22a)m= 1.27 1.25 1.23 1.1	1.00 0.95	<u>ს.</u> ყე	0.92	<u> </u>	1.08	1.12	1.10			

	ation rate (<u>`</u>			1	i 	`	ì	1	1	T	1	
0.19 Calculate effe		0.18 nange r	0.16 rate for t	0.16 he appli	0.14 cable ca	0.14 Se	0.14	0.15	0.16	0.17	0.18]	
If mechanica		•										0.5	(2
If exhaust air h	eat pump usi	ing Appe	endix N, (2	(3b) = (23a	a) × Fmv (e	equation (N5)) , othe	rwise (23b	o) = (23a)			0.5	(2
If balanced with	n heat recove	ery: effici	iency in %	allowing t	for in-use f	actor (fror	n Table 4h	n) =				64.6	(2
a) If balance	ed mechan	ical ve	ntilation	with he	at recov	ery (MV	HR) (24a	a)m = (2)	2b)m + (23b) × [1 – (23c)	÷ 100]	
24a)m= 0.37	0.36	0.36	0.34	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.35]	(2
b) If balance	ed mechan	ical ve	ntilation	without	heat red	covery (I	MV) (24k	o)m = (22	2b)m + (23b)	_	_	
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(2
c) If whole h if (22b)r	ouse extra n < 0.5 × (2			•	•				.5 × (23b	o)		_	
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
d) If natural if (22b)r	ventilation $n = 1$, then			•	•				0.5]			_	
24d)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
Effective air	change ra	ate - en	iter (24a) or (24l	o) or (24	c) or (24	ld) in bo	x (25)				_	
25)m= 0.37	0.36	0.36	0.34	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.35		(2
3. Heat losse	s and heat	t loss p	paramet	er:								_	
ELEMENT	Gross area (n		Openin m		Net Ar A ,r		U-val W/m2		A X U (W/	K)	k-valu kJ/m²·		A X k kJ/K
Vin <mark>dows</mark> Type	e 1				2.85	x1	/[1/(1.3)+	- 0.04] =	3.52				(2
Nin <mark>dows</mark> Type	2				6.67	x1	/[1/(1.3)+	- 0.04] =	8.24				(2
Windows Type	e 3				2.85	x1	/[1/(1.3)+	- 0.04] =	3.52				(2
Floor					6	x	0.1	=	0.6				(2
Valls	64		23.7	7	40.23	3 X	0.11	=	4.43				(2
Total area of e	elements, n	m²			70								(3
Party wall					25	X	0	=	0				(3
Party wall					32	X	0	=	0				(3
Party floor					80								(3
Party ceiling					86					[(3
nternal wall **					93								(3
for windows and it include the area						lated using	g formula 1	1/[(1/U-valu	ле)+0.04] а	as given in	paragrapi	h 3.2	
abric heat los	ss, $W/K = S$	S (A x	U)				(26)(30) + (32) =				34.4	(3
Heat capacity Cm = S(A x k)							((28)(30) + (32) + (32a)(32e) =					32581.	.5 (3
	paramete	r (TMF	• = Cm ÷	: TFA) ir					ative Value			250	(3
Thermal mass	•									T. 10 . T			
For design assess an be used inste	sments where ad of a detail	led calcu	ulation.				recisely the	e indicative	e values of	· IMP In T	able 1f		
or design asses	sments where ad of a detail es:S(L x	led calcu Y) calc	ulation. culated ι	using Ap	pendix l		recisely the	e indicative	e values of	· IMP IN T	able 1f	7	(3

Ventila	Ventilation heat loss calculated monthly $ (38)m = 0.33 \times (25)m \times (5) $													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	32.92	32.59	32.25	30.57	30.24	28.56	28.56	28.23	29.23	30.24	30.91	31.58		(38)
Heat tr	ansfer o	coefficier	nt, W/K					•	(39)m	= (37) + (37)	38)m			
(39)m=	74.32	73.98	73.65	71.97	71.64	69.96	69.96	69.63	70.63	71.64	72.31	72.98		
Heat Id	ss para	meter (F	HLP), W/	′m²K						Average = = (39)m ÷	Sum(39) ₁ .	12 /12=	71.89	(39)
(40)m=	0.86	0.86	0.86	0.84	0.83	0.81	0.81	0.81	0.82	0.83	0.84	0.85		
Numbe	er of day	s in moi	nth (Tab	le 1a)					,	Average =	Sum(40) ₁	12 /12=	0.84	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	iter heat	ting ener	rgy requi	rement:								kWh/ye	ear:	
Assum	ed occu	ıpancy, İ	N								2	.57		(42)
if TF		9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (¯	ΓFA -13.		.51		(12)
								(25 x N)				5.16		(43)
			not water person per				-	to achieve	a water us	se target o	I			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate			day for ea						СОР		1101			
(44)m=	104.68	100.87	97.07	93.26	89.45	85.65	85.65	89.45	93.26	97.07	100.87	104.68		
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x E	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		1141.97	(44)
(45)m=	155.24	135.77	140.11	122.15	117.2	101,14	93.72	107.54	108.83	126.83	138.44	150.34		
								!		Γotal = Su	m(45) ₁₁₂ =	=	1497.31	(45)
				,		storage),	i	boxes (46 ₎	, ,			1		
(46)m= Water	23.29 storage	20.37	21.02	18.32	17.58	15.17	14.06	16.13	16.32	19.02	20.77	22.55		(46)
	•		includin	ig any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
_		` ,	nd no ta				•							, ,
Otherw	vise if no	stored	hot wate	er (this in	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
	storage				!	(1.14/1	. /-) .							(40)
,			eclared l		or is kno	wn (Kvvr	i/day):					0		(48)
•			m Table					(48) x (49)				0		(49)
•			storage eclared o	-		or is not		(40) X (49)	-		1	10		(50)
Hot wa	iter stor	age loss	factor fr	om Tabl							0.	.02		(51)
	-	•	ee secti	on 4.3										(==)
		from Tal		2h							.03		(52) (53)	
Temperature factor from Table 2b Energy lost from water storage, kWh/year									x (52) x (53) -		.03		
•		(54) in (5	-	, 12 VII/ y C	<i>-</i> 41			() X (O1)	, A (52) A ((54) (55)			
Enter (50) or (54) in (55) Water storage loss calculated for each month $((56)m = (55) \times (41)m)$											` '			
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
		l	I	I	l	I	I	1	I	<u> </u>	<u> </u>			

If cylinder conta	nins dedicate	ed solar sto	rage, (57)	m = (56)m	x [(50) – ([H11)] ÷ (5	0), else (5	7)m = (56)	m where ((H11) is fro	om Append	lix H	
(57)m= 32.0°	1 28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
Primary circ	uit loss (ar	nnual) fro	om Table		•	•	•	•	•		0		(58)
Primary circ	•	,			(59)m = ((58) ÷ 36	65 × (41)	m				•	
(modified	by factor f	rom Tab	le H5 if t	here is	solar wat	ter heati	ng and a	cylinde	r thermo	stat)		_	
(59)m= 23.20	3 21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi loss	calculated	for each	month ((61)m =	(60) ÷ 36	65 × (41)m						
(61)m= 0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total heat re	equired for	water h	eating ca	alculated	d for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 210.5	2 185.7	195.38	175.64	172.48	154.63	149	162.82	162.32	182.11	191.94	205.62		(62)
Solar DHW inp	ut calculated	using App	endix G o	r Appendix	ι Η (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add addition	nal lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (3)					
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	water hea	iter											
(64)m= 210.5	2 185.7	195.38	175.64	172.48	154.63	149	162.82	162.32	182.11	191.94	205.62		
	•						Outp	out from wa	ater heate	r (annual) ₁	12	2148.15	(64)
Heat gains f	rom water	heating	, kWh/m	onth 0.2	5 ′ [0.85	× (45)m	+ (61)m	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 95.8	4 85.09	90.81	83.41	83.19	76.42	75.38	79.98	78.98	86.39	88.83	94.21		(65)
include (5	7)m in cal	culation	of (65)m	only if c	ylinder i	s in the	dwelling	or hot w	ate <mark>r is fr</mark>	om com	munity h	eating	
5. Internal	gains (see	e Table 5	and 5a):									
Metabolic ga													
Jar		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 128.3	5 128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35	128.35		(66)
Lighting gair	ns (calcula	ted in A	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m= 20.6	18.33	14.91	11.29	8.44	7.12	7.7	10	13.43	17.05	19.9	21.21		(67)
Appliances (gains (calc	culated in	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5		•	•	
(68)m= 231.5	2 233.93	227.87	214.98	198.71	183.42	173.21	170.8	176.86	189.75	206.02	221.31		(68)
Cooking gai	ns (calcula	ated in A	ppendix	L, equa	tion L15	or L15a), also se	ee Table	5				
(69)m= 35.83	_`	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83	35.83		(69)
Pumps and	fans gains	(Table	5а)	•	•	•	•	•	•	•	!		
(70)m= 0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses e.g.	evaporation	n (nega	tive valu	es) (Tab	ole 5)							•	
(71)m= -102.6	8 -102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68	-102.68		(71)
Water heatir	ng gains (rable 5)					l	l					
(72)m= 128.8		122.05	115.85	111.82	106.14	101.32	107.5	109.69	116.12	123.37	126.63		(72)
Total intern	al gains =	 -	!	!	(66))m + (67)m	n + (68)m -	⊦ (69)m + ((70)m + (7	(1)m + (72))m	•	
(73)m= 442.4	_	426.34	403.62	380.47	358.19	343.73	349.81	361.49	384.42	410.79	430.65		(73)
6. Solar ga													
Solar gains ar		using sola	r flux from	Table 6a	and assoc	iated equa	itions to co	nvert to th	ne applicat	ole orienta	tion.		
Orientation:	Access F	actor	Area		Flu	IX		g_		FF		Gains	
						ble 6a		able 6b		• • •		Canto	

Southeast 0.9x 0.77	· x	6.67		x 3	6.79	l x	0.7	x	1.11		132.28	(77)
Southeast 0.9x 0.77		6.67	_		62.67] ^ x	0.7	- ^	1.11	=	225.32	
Southeast 0.9x 0.77		6.67		-	35.75] ^ x	0.7	_ ^	1.11	╡ -	308.29	
Southeast 0.9x 0.77		6.67	=		06.25] ^] _X	0.7	_ ^	1.11	_	381.99	(77)
Southeast 0.9x 0.77		6.67			19.01] ^] _X	0.7	_	1.11	= =	427.86	(77)
Southeast 0.9x 0.77		6.67			18.15] ^] _X	0.7	_ ^	1.11	= -	424.76	(77)
Southeast 0.9x 0.77		6.67					0.7	_	1.11	- -	409.52	
Southeast 0.9x 0.77		6.67					0.7	_ ^	1.11		375.3	(***) (77)
Southeast 0.9x 0.77		6.67			12.85	x x	0.7	-	1.11	╡ -	333.81	
Southeast 0.9x 0.77	_	6.67	_		9.27] ^ x	0.7	- ^	1.11	- -	249.03	(**) (77)
Courth cost a c] ^ x		_		╡		= (* *) (77)
Courth a cot a c		6.67			4.07] ^ x	0.7	_	1.11	= -	158.44	\\ \(\begin{align*} (77) \\ (77) \end{align*}
O = v tlaves = t		6.67			31.49] ^]	0.7	╡╏		=	113.2	╡゛゛
Courthouseate		2.85			6.79]]	0.7	X	1.11	=	169.56	(79)
Courthouseater		2.85			2.67]]	0.7	X	1.11	_ =	288.83	(79)
Courthouseate		2.85	_		35.75]]	0.7	_ X	1.11	_ =	395.19	(79)
Courthouseate		2.85		-	06.25]]	0.7	X	1.11	_ =	489.66	(79)
Couthweate	_	2.85			19.01		0.7	X	1.11	_ =	548.45	(79)
Cauthurant		2.85			18.15		0.7	X	1.11		544.49	(79)
0		2.85			13.91		0.7	X	1.11	╡ -	524.95	(79)
Southwesto s		2.85	4		04.39		0.7	X	1.11	_ =	481.08	(79)
Southwesto.9x 0.77		2.85			2.85		0.7	X	1.11	=	427.9	(79)
Southwesto.9x 0.77		2.85	7	\	9.27		0.7	X	1.11	_ =	319.22	<u> </u> (79)
Southwests 5		2.85	=		4.07] I	0.7	X	1.11	_ =	203.1	(79)
Southwesto.9x 0.77		2.85			1.49] i	0.7	X	1.11	=	145.11	<u> </u> (79)
Northwest 0.9x 0.77		2.85	'		1.28	X	0.7	×	1.11	=	52	(81)
Northwest 0.9x 0.77		2.85	=		2.97	X	0.7	×	1.11	=	105.84	(81)
Northwest 0.9x 0.77		2.85	=		1.38	X	0.7	X	1.11	=	190.69	(81)
Northwest 0.9x 0.77	×	2.85	;	×6	57.96	X	0.7	X	1.11	=	313.17	(81)
Northwest 0.9x 0.77	×	2.85	;	×9	1.35	X	0.7	X	1.11	=	420.96	(81)
Northwest 0.9x 0.77	×	2.85	;	×	7.38	X	0.7	X	1.11	_ =	448.79	(81)
Northwest 0.9x 0.77	×	2.85	;	x	91.1	X	0.7	X	1.11	=	419.84	(81)
Northwest 0.9x 0.77	×	2.85	;	×	2.63	X	0.7	X	1.11	=	334.7	(81)
Northwest 0.9x 0.77	×	2.85	;	×	0.42	X	0.7	X	1.11	=	232.36	(81)
Northwest 0.9x 0.77	X	2.85	:	×2	8.07	X	0.7	X	1.11	=	129.35	(81)
Northwest 0.9x 0.77	×	2.85	;	×	14.2	X	0.7	X	1.11	=	65.43	(81)
Northwest 0.9x 0.77	X	2.85	:	X	9.21	X	0.7	X	1.11	=	42.46	(81)
Solar gains in watts, c				4440.04		Ė	n = Sum(74)m.		100.00	200.70	1	(83)
(83)m= 353.84 619.99	894.17			1418.04		1191	1.07 994.08	697.59	426.96	300.78]	(03)
Total gains – internal a		1588.43 1		1776.24		15/0	0.88 1355.56	1082.0	1 837.75	731.43	1	(84)
` '				1770.24	1096.03	1540	7.66 1333.36	1002.0	1 037.75	731.43]	(04)
7. Mean internal tem		`	<i></i>									
Temperature during	•			_		ole 9	, Th1 (°C)				21	(85)
Utilisation factor for g				`					1		1	
Stroma ESAP 2012 VER Br	1.0.4.25	SAP 9.52 -	http://www	w.stroma	l _{com} ul	<u> </u>	ug Sep	Oct	Nov	Dec	Page 9	5 of 8

(86)m=	0.98	0.91	0.76	0.54	0.37	0.25	0.18	0.21	0.36	0.67	0.93	0.99		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Tabl	e 9c)					
(87)m=	20.47	20.74	20.92	20.99	21	21	21	21	21	20.98	20.74	20.42		(87)
Temp	erature	during h	eating p	eriods ir	rest of	dwelling	from Ta	ble 9, T	h2 (°C)					
(88)m=	20.2	20.2	20.2	20.22	20.22	20.24	20.24	20.25	20.23	20.22	20.22	20.21		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	ee Table	9a)						
(89)m=	0.97	0.89	0.73	0.51	0.34	0.22	0.15	0.17	0.32	0.62	0.91	0.98		(89)
Mean	Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)													
(90)m=	19.51	19.89	20.12	20.21	20.22	20.24	20.24	20.25	20.23	20.2	19.91	19.45		(90)
									f	LA = Livin	g area ÷ (4) =	0.34	(91)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling) = f	LA × T1	+ (1 – fL	.A) × T2					
(92)m=	19.83	20.17	20.39	20.48	20.49	20.5	20.5	20.5	20.49	20.46	20.19	19.77		(92)
			r	r		1	m Table							
(93)m=	19.83	20.17	20.39	20.48	20.49	20.5	20.5	20.5	20.49	20.46	20.19	19.77		(93)
			uirement				an 11 af	Table O	46-	4 T: /'	7C\	ما مم ممام	loto	
				nperaturusing Ta		ied at st	ерттог	Table 9	o, so tha	t 11,m=(76)m an	d re-calc	uiate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	1:										
(94)m=	0.97	0.89	0.73	0.52	0.35	0.23	0.16	0.19	0.33	0.64	0.91	0.98		(94)
				4)m x (8					171/00					(05)
	771.39	944.14	970.19	827.2	628.93	412.57	272.66	285.44	451.32	690.93	765.21	715.69		(95)
(96)m=		4.9	6.5	perature 8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
						l .	=[(39)m :		<u> </u>					, ,
(97)m=			1023.13		629.37	412.59	272.66	285.44	451.52	706.54	946.43	1136.62		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	Wh/mon	th = 0.02	24 x [(97)m – (95)m] x (4 ⁻	1)m			
(98)m=	284.96	124.87	39.39	4.24	0.33	0	0	0	0	11.61	130.47	313.17		
								Tota	l per year	(kWh/year	r) = Sum(9	18) _{15,912} =	909.06	(98)
Space	e heatin	g require	ement in	kWh/m²	² /year								10.57	(99)
9b. En	ergy rec	Juiremer	nts – Cor	mmunity	heating	scheme	;							
						-	ater heat	• .	-		unity scl	neme.		(204)
	•			•		•	heating ((Lable 1)	1) 'U' IT N	one		ļ	0	(301)
Fractio	n of spa	ce heat	from co	mmunity	system	1 – (30	1) =						1	(302)
includes	boilers, h	eat pumps	s, geotherr	mal and wa			orocedure r stations.			up to four (other heat	sources; th	he latter	
			Commun	•									0.6	(303a)
Fractio	n of cor	nmunity	heat fro	m heat s	source 2								0.4	(303b)
Fractio	n of tota	al space	heat fro	m Comn	nunity C	HP				(3	02) x (303	sa) =	0.6	(304a)
Fractio	n of tota	al space	heat fro	m comm	nunity he	eat sourc	e 2			(3	02) x (303	8b) =	0.4	(304b)
Factor	Factor for control and charging method (Table 4c(3)) for community heating system 1 (305)												(305)	

Space heating		ŗ		_
Annual space heating requirement Space heat from Community CHP Space heating requirement from secondary/supplementary system (89) x (301) x 100 + (308) = 0 (309) Water heating Annual water heating requirement from secondary/supplementary system (89) x (301) x 100 + (308) = 0 (309) Water heating Annual water heating requirement If DHW from community Scheme: Water heat from Community CHP Space heating requirement If DHW from community Scheme: If DHW from community Scheme: Space heating requirement If DHW from community Scheme: If DHW from community Scheme: Space heating requirement If DHW from community Scheme: Space cooling (if there is a fixed cooling system, if not enter 0) = (107) + (314) = 0 (314) Space cooling (if there is a fixed cooling system, if not enter 0) = (107) + (314) = 0 (315) Space heating system fans pump for solar water heating Total electricity for the above, kWh/year Total electricity for the above, kWh/year Electricity generated by PVs (Appendix M) (negative quantity) = (330, 330, 330, 330, 330, 330, 330, 330	Distribution loss factor (Table 12c) for community heating syst	rem [(306)
Space heat from Community CHP (90) x (304a) x (305) x (306) = (305) x (304a) x (305) x (306) = (306) x (304a) x (305) x (306) = (307) x	•	ſ		7
Space heat from heat source 2 (98) x (394b) x (305b) x (300b) = (307b) (307b)	, , ,	(98) x (304a) x (305) x (306) =		(307a)
Space heating requirement from secondary/supplementary system (98) x (301) x 100 + (308) = 0 (309)	·	(98) x (304b) x (305) x (306) =	509.07	(307b)
Water heating Calument (a)	Efficiency of secondary/supplementary heating system in % (f	rom Table 4a or Appendix E)	0	(308
Annual water heating requirement If DHW from community scheme: Water heat from Community CHP Water heat from heat source 2 (64) x (303b) x (305) x (306) = [1804.44] (310a Water heat from heat source 2 (64) x (303b) x (305) x (306) = [1202.96] (310b Electricity used for heat distribution 0.01 x [(307a)(307e) + (310a)(310e)] = 4.2.8 (313) Cooling System Energy Efficiency Ratio Space cooling (if there is a fixed cooling system, if not enter 0) = (107) + (314) = 0 (315) Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from outside warm air heating system fans pump for solar water heating Total electricity for the above, kWh/year Electricity generated by PVs (Appendix M) (negative quantity) Electricity generated by wind turbine (Appendix M) (negative quantity) 21b. CO2 Emissions - Community heating scheme Electrical efficiency of CHP unit Heat efficiency of CHP unit Energy kWh/year Energy kWh/year Energy kWh/year Emission factor kg CO2/kWh kg CO2/kwh kg CO2/kwh Water heated by CHP (310a) x 100 + (362) = (310a) x 100 + (362) = (311) x 0.22 (324) (334) Water heated by CHP (310a) x 100 + (362) = (350a) x 100 + (362) = (3	Space heating requirement from secondary/supplementary sy	stem (98) x (301) x 100 ÷ (308) =	0	(309)
Water heat from Community CHP (84) x (303a) x (305) x (306) =			2148.15	-]
Electricity used for heat distribution		(64) x (303a) x (305) x (306) =	1804.44	」 (310a)
Cooling System Energy Efficiency Ratio	Water heat from heat source 2	(64) x (303b) x (305) x (306) =	1202.96	(310b)
Space cooling (if there is a fixed cooling system, if not enter 0)	Electricity used for heat distribution	0.01 × [(307a)(307e) + (310a)(310e)] =	42.8	(313)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from outside warm air heating system fans pump for solar water heating Total electricity for the above, kWh/year Energy for lighting (calculated in Appendix L) Electricity generated by PVs (Appendix M) (negative quantity) 238.52 331) Electricity generated by wind turbine (Appendix M) (negative quantity) 12b. CO2 Emissions – Community heating scheme Electrical efficiency of CHP unit Energy kWh/year Energy kWh/year KWh/year Energy k	Cooling System Energy Efficiency Ratio		0	(314)
mechanical ventilation - balanced, extract or positive input from outside warm air heating system fans pump for solar water heating Total electricity for the above, kWh/year = (330a) + (330b) + (330c) = (332b) + (330c) = (332b) + (330c) + (330	Space cooling (if there is a fixed cooling system, if not enter 0)) = (107) ÷ (314) =	0	(315)
Total electricity for the above, kWh/year		m outside	328.52	(330a)
Total electricity for the above, kWh/year = (330a) + (330b) + (330g) = 328.52 (331) Energy for lighting (calculated in Appendix L)	warm air heating system fans		0	(330b)
Energy for lighting (calculated in Appendix L) Electricity generated by PVs (Appendix M) (negative quantity) 12b. CO2 Emissions - Community heating scheme Electrical efficiency of CHP unit Energy kWh/year kg CO2/kWh Kg CO2/kWh Emission factor kg CO2/kWh Kg CO2/kWh Kg CO2/kWh Emissions factor kg CO2/kWh Kg CO2/kWh Kg CO2/kWh Emissions factor kg CO2/kWh Kg CO2/kWh Emissions factor kg CO2/kWh Emissions factor kg CO2/kWh Kg CO2/kWh Kg CO2/kWh Emissions factor kg CO2/kWh Kg CO2/kWh Kg CO2/kWh Kg CO2/kWh Emissions factor kg CO2/kWh Kg CO2/	pump for solar water heating		0	(330g)
Electricity generated by PVs (Appendix M) (negative quantity) Electricity generated by wind turbine (Appendix M) (negative quantity) 12b. CO2 Emissions – Community heating scheme Electrical efficiency of CHP unit Energy kWh/year kg CO2/kWh kg CO2/year Space heating from CHP) Space heating from CHP) (307a) × 100 ÷ (362) = 1909.03 × 0.22	Total electricity for the above, kWh/year	=(330a) + (330b) + (330g) =	328.52	(331)
Electricity generated by wind turbine (Appendix M) (negative quantity) 12b. CO2 Emissions – Community heating scheme Electrical efficiency of CHP unit Energy kWh/year kg CO2/kWh kg CO2/year Space heating from CHP) (307a) × 100 ÷ (362) = 1909.03 × 0.22	Energy for lighting (calculated in Appendix L)		364.52	(332)
Space heating from CHP (307a) × 100 ÷ (362) = 1909.03 × 0.22 412.35 (363)	Electricity generated by PVs (Appendix M) (negative quantity)		-3 <mark>80.25</mark>	(333)
Electrical efficiency of CHP unit 35 (361)	Electricity generated by wind turbine (Appendix M) (negative of	quantity)	0	(334)
Heat efficiency of CHP unit				7
Energy kWh/year kg CO2/kWh kg CO2/year Space heating from CHP) (307a) × 100 ÷ (362) = 1909.03 × 0.22 412.35 (363) less credit emissions for electricity -(307a) × (361) ÷ (362) = 668.16 × 0.52 -346.77 (364) Water heated by CHP (310a) × 100 ÷ (362) = 4511.1 × 0.22 974.4 (365) less credit emissions for electricity -(310a) × (361) ÷ (362) = 1578.89 × 0.52 -819.44 (366) Efficiency of heat source 2 (%) If there is CHP using two fuels repeat (363) to (366) for the second fuel 85 (367b) CO2 associated with heat source 2 [(307b)+(310b)] × 100 ÷ (367b) × 0.22 = 435.06 (368) Electrical energy for heat distribution [(313) × 0.52 = 22.21 (372) Total CO2 associated with community systems (363)(366) + (368)(372) = 677.8 (373)	•	ļ	35	
kWh/year kg CO2/kWh kg CO2/kWh kg CO2/year Space heating from CHP) (307a) × 100 ÷ (362) = 1909.03 × 0.22 412.35 (363) less credit emissions for electricity -(307a) × (361) ÷ (362) = 668.16 × 0.52 -346.77 (364) Water heated by CHP (310a) × 100 ÷ (362) = 4511.1 × 0.22 974.4 (365) less credit emissions for electricity -(310a) × (361) ÷ (362) = 1578.89 × 0.52 -819.44 (366) Efficiency of heat source 2 (%) If there is CHP using two fuels repeat (363) to (366) for the second fuel 85 (367b) CO2 associated with heat source 2 [(307b)+(310b)] × 100 ÷ (367b) × 0.22 = 435.06 (368) Electrical energy for heat distribution [(313) × 0.52 = 22.21 (372) Total CO2 associated with community systems (363)(366) + (368)(372) = 677.8 (373)	Heat efficiency of CHP unit			(362)
less credit emissions for electricity $-(307a) \times (361) \div (362) =$ $(310a) \times 100 \div (362) =$ $(310a) \times 100 \div (362) =$ $(310a) \times (361) \div (362) =$ $(363) \times (366) \times (366) \times (366) =$ $(310a) \times (361) \times (366) \times (366) =$ $(310a) \times (361) \div (362) =$ $(310a) \times (361) \div (362) =$ $(310a) \times (361) \div (362) =$ $(363) \times (366) \times (366) =$ $(363) \times (366) \times (368) =$ $(363) \times (368$		6,		
Water heated by CHP $(310a) \times 100 \div (362) =$ 4511.1×0.22 974.4 (365) less credit emissions for electricity $-(310a) \times (361) \div (362) =$ 1578.89×0.52 -819.44 (366) Efficiency of heat source 2 (%) If there is CHP using two fuels repeat (363) to (366) for the second fuel 85 $(367b)$ CO2 associated with heat source 2 $[(307b)+(310b)] \times 100 \div (367b) \times 0.22 =$ 435.06 (368) Electrical energy for heat distribution $[(313) \times 0.52] =$ 22.21 (372) Total CO2 associated with community systems $(363)(366) + (368)(372) =$ 677.8 (373)	Space heating from CHP) $(307a) \times 100 \div (362) =$	1909.03 × 0.22	412.35	(363)
less credit emissions for electricity $-(310a) \times (361) \div (362) =$ Efficiency of heat source 2 (%) If there is CHP using two fuels repeat (363) to (366) for the second fuel 85 (367b) CO2 associated with heat source 2 [(307b)+(310b)] \times 100 \div (367b) \times 0.22 = 435.06 (368) Electrical energy for heat distribution [(313) \times 0.52 = 22.21 (372) Total CO2 associated with community systems (363)(366) + (368)(372) = 677.8 (373)	less credit emissions for electricity $-(307a) \times (361) \div (362) =$	668.16 × 0.52	-346.77	(364)
Efficiency of heat source 2 (%) If there is CHP using two fuels repeat (363) to (366) for the second fuel 85 (367b) CO2 associated with heat source 2 [(307b)+(310b)] \times 100 \div (367b) \times 0.22 = 435.06 (368) Electrical energy for heat distribution [(313) \times 0.52 = 22.21 (372) Total CO2 associated with community systems (363)(366) + (368)(372) = 677.8 (373)	Water heated by CHP $(310a) \times 100 \div (362) =$	4511.1 × 0.22	974.4	(365)
CO2 associated with heat source 2 $ [(307b)+(310b)] \times 100 \div (367b) \times 0.22 = 435.06 $ (368) $ [(313) \times 0.52 = 22.21 $ (372) $ Total CO2 associated with community systems $ (363)(366) $+$ (368)(372) $=$ 677.8 (373)	less credit emissions for electricity $-(310a) \times (361) \div (362) =$	1578.89 × 0.52	-819.44	(366)
Electrical energy for heat distribution $ [(313) \times 0.52] = 22.21 (372) $ Total CO2 associated with community systems $ (363)(366) + (368)(372) = 677.8 (373) $	Efficiency of heat source 2 (%)	ing two fuels repeat (363) to (366) for the second fuel	85	(367b)
Total CO2 associated with community systems (363)(366) + (368)(372) = 677.8 (373)	CO2 associated with heat source 2 [(307b)+(310b)] x 100 ÷ (367b) x 0.22 =	435.06	(368)
	Electrical energy for heat distribution	[(313) x 0.52 =	22.21	(372)
CO2 associated with space heating (secondary) $(309) \times 0 = 0$ (374)	Total CO2 associated with community systems	(363)(366) + (368)(372) =	677.8	(373)
	CO2 associated with space heating (secondary)	(309) x 0 =	0	(374)

CO2 associated with water from immersion heater or instantaneous heater (375)0.22 Total CO2 associated with space and water heating (373) + (374) + (375) =(376)677.8 CO2 associated with electricity for pumps and fans within dwelling (331)) x (378) 170.5 0.52 CO2 associated with electricity for lighting (332))) x (379)0.52 189.18 Energy saving/generation technologies (333) to (334) as applicable x 0.01 = Item 1 0.52 -197.35 (380)sum of (376)...(382) =Total CO2, kg/year (383)840.14 $(383) \div (4) =$ **Dwelling CO2 Emission Rate** (384)9.77 El rating (section 14) (385) 91.41