## PRICE&MYERS

## Central Somers Town, London, NW1 1DN

Polygon Residential, Plot 6 - SUDS Drainage Statement

Version 1

Prepared by: John Ling MEng November 2015 23468 Checked by: Kirsty Burwood MEng

 Version
 Date
 By

 1
 20.11.15
 JL

Notes Issued for Planning

# structures  $\downarrow$  geometrics  $\diamondsuit$  sustainability  $\bigcirc$  infrastructure

30 Newman Street London W1T1LT T 020 7631 5128 F 020 7462 1390 E mail@pricemyers.com www.pricemyers.com

## 1 The Site

The site is located in the London Borough of Camden, located west of Purchese Street, with Hampden Close to the north and residential properties fronting on to Coopers Lane to the east. The site area is approximately 600m<sup>2</sup> virtually all of which is soft landscaping.

The site is located within Flood Zone 1 and so the flood risk is considered to be 'low'

The location of the existing site and proposed site boundary is shown below in Figure 1. National grid reference TQ2983283192



Figure 1 - Proposed site Imagery © 2015. The GeoInformation Group, Map data © 2015 Google

The Environment Agency (EA) indicative flood outline map shows that the site is located within Flood Zone 1, therefore the flood risk is considered to be 'low'. Camden's Strategic Flood Risk Assessment (SFRA) 2014, also shows the proposed development to be outside of any Local Flood Risk Zones as illustrated in Figure 2.

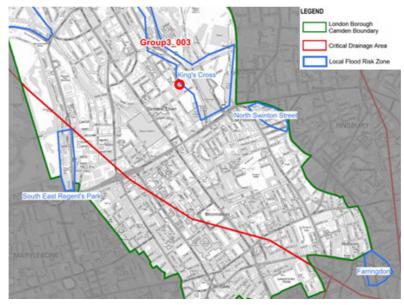



Figure 2 – Camden SFRA 2014, Critical Drainage Areas/ Local Flood Risk Zones

## 2 Development Proposals

It is proposed that a 3 storey residential plot consisting of 14 units be constructed to form part of the wider Somers Town development. The wider proposals involve the redevelopment of the existing Edith Neville Primary School, a new community hub including a nursery and children's play facilities. Extensive improvements to surrounding public open spaces are also proposed along with the development of a further two nearby residential plots.

Development proposals, for the residential plot considered in this report, are shown below in Figure 3. The design is being carried out by Duggan Morris Architects and the proposals can be seen in their drawings.

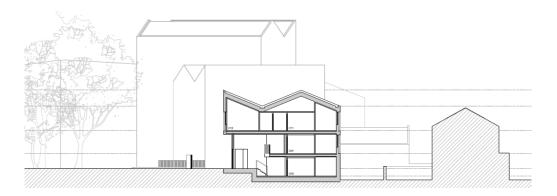



Figure 3 – Plot 6, Proposed Section Plan

## 3 Existing Drainage

## Surface Water Run-Off

The site area is approximately  $604m^2$  (0.060 ha), virtually all of which is soft landscaping. The Greenfield run-off rate for the site was estimated using the Greenfield run-off estimator tool (uksuds.com, Appendix A) using the BFI specified from FEH data. The 1 in 100 year Greenfield run-off rate can be calculated by multiplying the 100 year growth curve factor by  $Q_{bar}$ . The Greenfield run-off rate is estimated based on a minimum area of 0.1ha. Therefore the rate will be interpolated for Plot 6's site area.

 $Q_{100GF} = 3.19 \times 0.36 \times 0.60 = 3.06$  l/sec

## Foul Water

As previously mentioned, the existing site area is currently comprises entirely of soft landscaped area. Therefore, no foul flows currently discharge from the site.

Thames Water record plans indicate that a 2134mm diameter storm drain runs adjacent to the eastern edge of the site. Further survey investigations have confirmed the exact location of the sewer in relation to the proposed residential plot and are presented in Appendix B.

This shows that the sewer runs under the eastern edge of the proposed development. Therefore, a build over agreement with Thames Water will be required prior to the construction of the new residential plot.

## 4 Proposed Drainage

## Surface Water Run-Off

The proposed development will increase the impermeable areas on the site, therefore the peak surface water flow rate and volume to the public sewer will be increased. The proposed run-off rate for the 1 in 100 year storm event was calculated using the modified rational method for the proposed impermeable areas as shown below. This includes a 30% allowance for climate change:

 $\begin{array}{l} Q_{100} = 2.78 \ x \ 0.060 \ x \ 106.32 = 17.73 \ \text{l/sec} \\ Q_{100 \ \text{+cc}} = 2.78 \ x \ 0.060 \ x \ 138.216 = 23.05 \ \text{l/sec} \end{array}$ 

FEH data was used to determine the depth of rainfall for the 1 in 100 year 6 hour rainfall event. This was found to be 77.24 mm. The pre-development volume of run-off (V) can therefore be calculated as below:

$$\begin{split} V_{_{100}} &= (0.077 \ x \ 604) = 46.51 \ m^3 \\ V_{_{100+cc}} &= (46.51) \\ 1.3 &= 60.46 \ m^3 \end{split} \tag{1.3 = 30\% allowance for climate change}$$

The surface water drainage system will be designed for the 1 in 100 year + 30% for climate change storm event to reduce the flood risk on site and within the public sewer network downstream of the site outfall.

## SUDS Assessment

The London Plan states that new developments should aim to achieve Greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the Sustainable Drainage Systems (SUDS) hierarchy. SUDS can reduce the impact of urbanisation on watercourse flows, ensure the protection and enhancement of water quality and encourage recharge of groundwater in a manner that mimics natural conditions. The SUDS hierarchy states that storing rainwater for reuse within the building should be prioritised, followed by infiltration techniques. However, published information confirms that the site is underlain by London Clay which is unsuitable for the use of infiltration techniques. Furthermore, infiltration systems must be constructed at least 5m away from structures which is not possible on this site as the building covers the entire site footprint.

Therefore, in accordance with the London Plan, surface water should be attenuated to the Greenfield run-off rate of 3.06 l/sec.

However, the joint Defra and EA R&D Technical Report (Preliminary Rainfall Runoff Management for Developments) states that the minimum limiting discharge for attenuation systems in 5 l/sec, as lower flow rates require small diameter flow control devices which are at risk of blockages. Therefore, surface water from the site will be attenuated to 5 l/sec before draining to the public sewers. Preliminary calculations (Appendix C) show that a storage volume of 16m<sup>3</sup> is required to attenuate surface water to 5 l/sec for the 1 in 100 year plus 30% (climate change) storm event. This volume will be provided in a below ground attenuation tank.

The proposed location of the surface water attenuation tank is shown in the preliminary surface water drainage sketch presented in Appendix D. The attenuated flows will discharge via gravity to the 1245x813mm public sewer in Purchese Street. This is shown on Thames Water record plans as running from south to north, adjacent to the western site boundary.

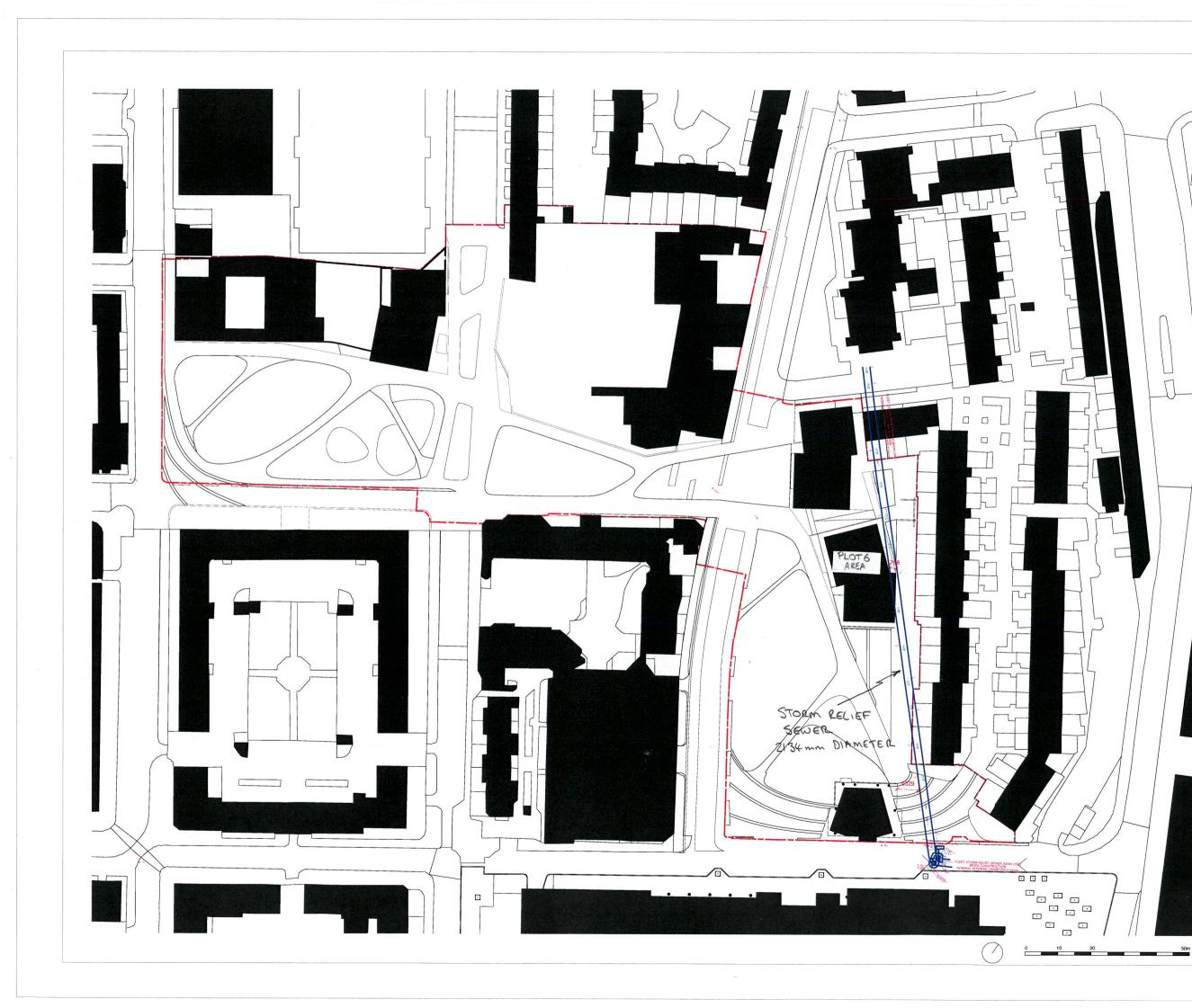
Rainwater harvesting is also an option that could be incorporated into the detailed design. The attenuation tank will be designed to cope with surface water from all the roof and hardstanding areas. This is because the amount of storage available within the rainwater harvester is dependent on the water demand from the building users. If a storm were to occur during a period when there was little water demand from the building users (and the harvester is full) the inflow to the harvester will be equal to the outflow, providing no attenuation benefits before entering the attenuation tank.

Further details of the SUDS strategy are provided in the Camden drainage proforma document in Appendix E.

## SUDS Maintenance

It is the responsibility of the site owners to ensure that the SUDS are maintained throughout their life. Maintenance and cleaning of gullies, drain manholes (including catchpits) and attenuation tanks will assure adequate performance. A maintenance program is outlined in the table below.

| SUDS<br>Element     | Maintenance           |                                                                                                                                            |                                                                    |
|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Maintenance Failu   |                       | Failure of components, blockage from debris                                                                                                |                                                                    |
|                     | Maintenance<br>Period | Maintenance Task                                                                                                                           | Frequency                                                          |
| age                 |                       | Inspect and identify any elements that are not operating correctly.                                                                        | Monthly for three<br>months,<br>then six monthly or<br>as required |
| Attenuation Storage | Regular               | Remove sediment/debris from catchment surface that may lead to blockage of structures.                                                     | Monthly or as required                                             |
|                     |                       | Remove sediment/debris from catchpits/gullies and control structures.                                                                      | Annually, after<br>severe<br>storms or as<br>required              |
|                     | Remedial<br>Work      | Repair inlets, outlets, vents, overflows and control structures.                                                                           | As required                                                        |
|                     | Monitoring            | Inspect all inlets, outlets, vents, overflows<br>and control structures to ensure they are in<br>good condition and operating as designed. | Annually or after<br>severe<br>storms                              |


## Foul Water

Guidance has been taken from Table 5 of 'Building Regulations - Part H' to approximate the proposed flow rate from the proposed development based on the proposed number of dwellings. The proposed 3 storey residential plot will comprise of 14 dwellings. Therefore, the proposed foul water discharge rate has been calculated to be 4.5 litres/ sec.

As previously stated Thames Water record plans indicate that a 1245x813mm public sewer runs adjacent to the western site boundary. It is proposed that foul water discharges from the site to this sewer via a new gravity fed connection.

A S106 application will need to be made to Thames Water to permit the proposed connection.

## APPENDIX A – Public Sewer Survey



## **INFORMATION**



notes

L Π

Central Somers Town

### drawing title

Central Somers Town - Lot 4 Site Plan showing sewer location

| drawn                                     | size                | date                          | scale |
|-------------------------------------------|---------------------|-------------------------------|-------|
| MJ                                        | A1                  | 19 10 15                      | 1:500 |
| drawing number                            |                     | revision                      |       |
| 246-SK                                    | -49                 |                               | -     |
| REPORT DISC<br>DO NOT SCAL<br>COPYRIGHT © | E FROM THIS DRAWING | USE LATEST RE<br>CHECK DIMENS |       |

SOMERS TOWN POLYGON RESIDENTIAL, PLOT6 - DRAINAGE STATEMENT

## APPENDIX B – Greenfield Run-off Calculations



| Site name:     | Plot 6, Central Somers Town |
|----------------|-----------------------------|
| Site location: | NW1 1DN                     |

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the CIRIA SUDS Manual (2007). It is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

## Greenfield runoff estimation for sites

## Site coordinates

| Latitude:  | 51.53241° N        |
|------------|--------------------|
| Longitude: | 0.1303° W          |
|            |                    |
| Reference: | gcpvjj1n5c3r / 0.1 |
| Date:      | 9 Nov 2015         |

## Site characteristics

| Total site area               | 0.1 | ha |
|-------------------------------|-----|----|
| Significant public open space | 0   | ha |
| Area positively drained       | 0.1 | ha |

## Methodology

| Greenfield runoff method | IH124                       |
|--------------------------|-----------------------------|
| Obar estimation method   | Calculate from SPR and SAAR |
| SPR estimation method    | Calculate from SOIL type    |
| SOIL type                |                             |
| HOST class               | N/A                         |
| SPR                      | 0.30                        |

## Hydrological characteristics

| Default | Edited                                               |                                                  |
|---------|------------------------------------------------------|--------------------------------------------------|
| 620     | 620                                                  | mm                                               |
| 20      | 20                                                   | mm                                               |
| 0.4     | 0.4                                                  |                                                  |
| 0.75    | 0.75                                                 |                                                  |
| 6       | 6                                                    |                                                  |
| 0.85    | 0.85                                                 |                                                  |
| 1.62    | 1.62                                                 |                                                  |
| 2.3     | 2.3                                                  |                                                  |
| 3.19    | 3.19                                                 |                                                  |
|         | 620<br>20<br>0.4<br>0.75<br>6<br>0.85<br>1.62<br>2.3 | 62062020200.40.40.750.75660.850.851.621.622.32.3 |

## Greenfield runoff rates

| Qbar           | 0.40 |      |     |
|----------------|------|------|-----|
| Goul           | 0.16 | 0.16 | l/s |
| 1 in 1 year    | 5.00 | 5.00 | l/s |
| 1 in 30 years  | 5.00 | 5.00 | l/s |
| 1 in 100 years | 5.00 | 5.00 | l/s |

HR Wallingford Ltd, the Environment Agency and any local authority are not liable for the performance of a drainage scheme which is based upon the output of this report.



| Site name:     | Plot 6, Central Somers Town |
|----------------|-----------------------------|
| Site location: | NW1 1DN                     |

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the CIRIA SUDS Manual (2007). It is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

## Greenfield runoff estimation for sites

## Site coordinates

| Latitude:  | 51.53241° N        |
|------------|--------------------|
| Longitude: | 0.1303° W          |
|            |                    |
| Reference: | gcpvjj1n5c3r / 0.1 |
| Date:      | 9 Nov 2015         |

## Site characteristics

| Total site area               | 0.1 | ha |
|-------------------------------|-----|----|
| Significant public open space | 0   | ha |
| Area positively drained       | 0.1 | ha |

## Methodology

| Greenfield runoff method         | FEH                         |     |
|----------------------------------|-----------------------------|-----|
|                                  |                             |     |
| Qmed estimation method           | Calculate from BFI and SAAR |     |
| BFI and SPR estimation method    | Specify BFI manually        |     |
| HOST class                       | N/A                         |     |
| BFI / BFIHOST                    | 0.33                        |     |
| Qmed                             | 0.321                       | l/s |
| Qbar / Qmed<br>Conversion Factor | 1.136                       |     |

## Hydrological characteristics

| Default | Edited                                               |                                                  |
|---------|------------------------------------------------------|--------------------------------------------------|
| 620     | 620                                                  | mm                                               |
| 20      | 20                                                   | mm                                               |
| 0.4     | 0.4                                                  |                                                  |
| 0.75    | 0.75                                                 |                                                  |
| 6       | 6                                                    |                                                  |
| 0.85    | 0.85                                                 |                                                  |
| 1.62    | 1.62                                                 |                                                  |
| 2.3     | 2.3                                                  |                                                  |
| 3.19    | 3.19                                                 |                                                  |
|         | 620<br>20<br>0.4<br>0.75<br>6<br>0.85<br>1.62<br>2.3 | 62062020200.40.40.750.75660.850.851.621.622.32.3 |

## Greenfield runoff rates

| Oreenlield fulloit fales | Default | Edited |     |
|--------------------------|---------|--------|-----|
| Qbar                     | 0.36    | 0.36   | l/s |
| 1 in 1 year              | 5.00    | 5.00   | l/s |
| 1 in 30 years            | 5.00    | 5.00   | l/s |
| 1 in 100 years           | 5.00    | 5.00   | l/s |

SOMERS TOWN POLYGON RESIDENTIAL, PLOT6 - DRAINAGE STATEMENT

## APPENDIX C – Micro Drainage Calculations

| Price & Mye | rs                       |                        |              |               |                   |                           |                    |                   | Page 1  |             |
|-------------|--------------------------|------------------------|--------------|---------------|-------------------|---------------------------|--------------------|-------------------|---------|-------------|
| 30 Newman S |                          |                        |              | Job           | no 2340           | 68                        |                    |                   |         |             |
| London      |                          |                        |              |               |                   | MERS TOWN                 | J                  |                   | 4       |             |
| W1T 1LT     |                          |                        | PLOT         |               |                   |                           |                    |                   | سر      |             |
| Date 05.11. | 15                       |                        |              | -             |                   | y dramdee                 | 20                 |                   | - Micro |             |
|             |                          |                        |              |               | -                 | y uranidet                | 211                |                   | Draina  | וחו         |
| File 151105 |                          | srcx                   |              |               | ked by            |                           |                    |                   |         | <u>ر</u> د. |
| Micro Drain | age                      |                        |              | Sour          | ce Cont           | trol 2015                 | 5.1                |                   |         |             |
|             | 0                        |                        | 1            | . 10          |                   | D. I.                     |                    | (                 |         |             |
|             | Summary                  | OI RESI                | ults I       | or I          | JU year           | Return .                  | Period             | (+30%)            | -       |             |
|             |                          | F                      | Half Dr      | ain Ti        | me • 28           | minutes.                  |                    |                   |         |             |
|             |                          | 1                      | iuii bi      |               | . 20              | minaceo.                  |                    |                   |         |             |
|             | Storm                    | Max                    | Max          |               | lax               | Max                       | Max                | Max               | Status  |             |
|             | Event                    | Level<br>(m)           | Deptn<br>(m) |               | (s)               | Control $\Sigma$<br>(1/s) | (l/s)              | (m <sup>3</sup> ) |         |             |
|             |                          | (,                     | (,           | (-            | , .,              | (_/0)                     | (1)0)              | ( )               |         |             |
|             | min Summer               |                        |              |               | 0.0               | 4.9                       | 4.9                | 11.1              |         |             |
|             | min Summer               |                        |              |               | 0.0               | 4.9                       | 4.9                | 13.3              |         |             |
|             | min Summer<br>min Summer |                        |              |               | 0.0               | 4.9<br>4.9                | 4.9<br>4.9         | 13.3<br>11.2      |         |             |
|             | min Summer<br>min Summer |                        |              |               | 0.0               | 4.9                       | 4.9<br>4.9         | 9.0               |         |             |
|             | min Summer               |                        |              |               | 0.0               | 4.9                       | 4.9                | 9.0<br>7.0        |         |             |
|             | min Summer               |                        |              |               | 0.0               | 4.9                       | 4.9                | 4.5               |         |             |
|             | min Summer               |                        |              |               | 0.0               | 4.4                       | 4.0                |                   |         |             |
|             | min Summer               |                        |              |               | 0.0               | 4.4                       | 4.4                |                   |         |             |
|             | min Summer               |                        |              |               | 0.0               | 4.1<br>3.6                | 4.1<br>3.6         |                   |         |             |
|             | min Summer               |                        |              |               | 0.0               | 2.9                       | 2.9                |                   |         |             |
|             | min Summer               |                        |              |               |                   | 2.9                       | 2.9                |                   |         |             |
|             |                          |                        |              |               | 0.0               |                           |                    |                   |         |             |
|             | min Summer               |                        |              |               | 0.0               | 1.5                       | 1.5                | 1.1               |         |             |
|             | min Summer<br>min Summer |                        |              |               | 0.0               | 1.2                       | 1.2                |                   |         |             |
|             | min Summer               |                        |              |               | 0.0               | 0.9                       | 0.9                | 0.8               |         |             |
|             | min Summer               |                        |              |               | 0.0               | 0.6                       | 0.7                | 0.7               |         |             |
|             | min Summer               |                        |              |               | 0.0               | 0.0                       | 0.8                |                   |         |             |
|             | min Summer               |                        |              |               | 0.0               | 0.4                       | 0.4                |                   |         |             |
|             | min Winter               |                        |              |               | 0.0               | 4.9                       | 4.9                | 12.8              |         |             |
|             |                          | Storm<br>Event         |              | Rain<br>m/hr) | Flooded<br>Volume | Discharge<br>Volume       | e Time-Pe<br>(mins |                   |         |             |
|             |                          | Evenc                  | (11          | uu/ 111 )     | (m <sup>3</sup> ) | (m <sup>3</sup> )         | (IIIII)            | )                 |         |             |
|             | 1 ⊑                      | min Sur                | mmor 10      | 8 220         | 0.0               | 15.5                      | ,                  | 21                |         |             |
|             |                          | ) min Su<br>) min Su   |              | 9.266         | 0.0               |                           |                    | 32                |         |             |
|             |                          | ) min Sur<br>) min Sur |              | 4.817         | 0.0               |                           |                    | 50                |         |             |
|             |                          | ) min Sur<br>) min Sur |              | 2.511         | 0.0               |                           |                    | 82                |         |             |
|             |                          | min Sur<br>min Sur     |              | 3.643         | 0.0               |                           |                    | .14               |         |             |
|             |                          | min Sur<br>min Sur     |              | 8.757         | 0.0               |                           |                    | 44                |         |             |
|             |                          | min Su                 |              | 3.517         | 0.0               |                           |                    | 202               |         |             |
|             |                          | min Su                 |              | 0.710         | 0.0               |                           |                    | 258               |         |             |
|             |                          | min Su                 |              | 8.935         | 0.0               |                           |                    | 14                |         |             |
|             |                          | min Su                 |              | 7.702         | 0.0               |                           |                    | 374               |         |             |
|             |                          | min Su                 |              | 6.089         | 0.0               |                           |                    | 92                |         |             |
|             |                          | min Su                 |              | 4.367         | 0.0               |                           |                    | 34                |         |             |
|             |                          | min Sur<br>min Sur     |              | 3.127         | 0.0               |                           |                    | 96                |         |             |
|             |                          | min Sur<br>min Sur     |              | 2.465         | 0.0               |                           |                    | 44                |         |             |
|             |                          | min Sur<br>min Sur     |              | 1.761         | 0.0               |                           |                    | .84               |         |             |
|             |                          | min Sur<br>min Sur     |              | 1.387         | 0.0               |                           |                    | 96                |         |             |
|             |                          | min Sur<br>min Sur     |              | 1.151         | 0.0               |                           |                    | 500               |         |             |
|             |                          | min Sur<br>min Sur     |              | 0.988         | 0.0               |                           |                    | 60                |         |             |
|             |                          | min Su                 |              | 0.869         | 0.0               |                           |                    | 48                |         |             |
|             |                          | min Wi                 |              |               | 0.0               |                           |                    | 22                |         |             |
|             | 10                       |                        |              |               | 0.0               | ± / • -                   |                    |                   |         |             |

©1982-2015 XP Solutions

| Price & Myers                                                                               |                                                          |                                           |                          |                                 |                          | Page 2                          |                          |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|--------------------------|---------------------------------|--------------------------|---------------------------------|--------------------------|
| 30 Newman Street                                                                            | ) Newman Street Job no 23468                             |                                           |                          |                                 |                          |                                 |                          |
| London                                                                                      | CENTRAL SO                                               | MERS TOW                                  | N                        |                                 | 4                        |                                 |                          |
| W1T 1LT                                                                                     |                                                          |                                           | PLOT 6                   |                                 |                          |                                 | Micco                    |
| Date 05.11.15                                                                               |                                                          |                                           | Designed b               | y dramde                        | en                       |                                 |                          |
| File 151105 Tank_P6.                                                                        | srcx                                                     |                                           | Checked by               | -                               |                          |                                 | Drainag                  |
| Micro Drainage                                                                              |                                                          |                                           | Source Con               |                                 | 5.1                      |                                 |                          |
|                                                                                             |                                                          |                                           |                          | 0101 101                        | 0.1                      |                                 |                          |
| Summary                                                                                     | of Resi                                                  | ults f                                    | or 100 year              | Return                          | Period                   | (+30응)                          |                          |
| <b>_</b>                                                                                    |                                                          |                                           | <u> </u>                 |                                 |                          |                                 | -                        |
| Storm                                                                                       | Max                                                      | Max                                       | Max                      | Max                             | Max                      | Max                             | Status                   |
| Event                                                                                       |                                                          | -                                         | Infiltration             |                                 |                          |                                 |                          |
|                                                                                             | (m)                                                      | (m)                                       | (1/s)                    | (1/s)                           | (1/s)                    | (m³)                            |                          |
| 30 min Winter                                                                               | 99.282                                                   | 0.782                                     | 0.0                      | 4.9                             | 4.9                      | 15.6                            | ОК                       |
| 60 min Winter                                                                               | 99.282                                                   | 0.782                                     | 0.0                      | 4.9                             | 4.9                      | 15.6                            | ОК                       |
| 120 min Winter                                                                              | 99.104                                                   | 0.604                                     | 0.0                      | 4.9                             | 4.9                      | 12.1                            | ОК                       |
| 180 min Winter                                                                              | 98.928                                                   | 0.428                                     | 0.0                      | 4.9                             | 4.9                      | 8.5                             | ОК                       |
| 240 min Winter                                                                              | 98.794                                                   | 0.294                                     | 0.0                      | 4.9                             | 4.9                      | 5.9                             | O K                      |
| 360 min Winter                                                                              | 98.651                                                   | 0.151                                     | 0.0                      | 4.4                             | 4.4                      | 3.0                             | O K                      |
| 480 min Winter                                                                              | 98.609                                                   | 0.109                                     | 0.0                      | 3.7                             | 3.7                      | 2.2                             | O K                      |
| 600 min Winter                                                                              | 98.592                                                   | 0.092                                     | 0.0                      | 3.1                             | 3.1                      | 1.8                             | O K                      |
| 720 min Winter                                                                              | 98.582                                                   | 0.082                                     | 0.0                      | 2.7                             | 2.7                      | 1.6                             | O K                      |
| 960 min Winter                                                                              | 98.570                                                   | 0.070                                     | 0.0                      | 2.2                             | 2.2                      | 1.4                             | ΟK                       |
| JOO MITH WINCCT                                                                             |                                                          |                                           |                          |                                 |                          |                                 |                          |
| 1440 min Winter                                                                             |                                                          | 0.057                                     | 0.0                      | 1.5                             | 1.5                      | 1.1                             | O K                      |
|                                                                                             | 98.557                                                   |                                           | 0.0                      | 1.5<br>1.1                      | 1.5<br>1.1               |                                 |                          |
| 1440 min Winter                                                                             | 98.557<br>98.547                                         | 0.047                                     |                          |                                 |                          | 0.9                             | O K                      |
| 1440 min Winter<br>2160 min Winter                                                          | 98.557<br>98.547<br>98.542                               | 0.047<br>0.042                            | 0.0                      | 1.1                             | 1.1                      | 0.9                             | 0 K<br>0 K               |
| 1440 min Winter<br>2160 min Winter<br>2880 min Winter                                       | 98.557<br>98.547<br>98.542<br>98.535                     | 0.047<br>0.042<br>0.035                   | 0.0                      | 1.1<br>0.9                      | 1.1<br>0.9               | 0.9<br>0.8<br>0.7               | 0 K<br>0 K<br>0 K        |
| 1440 min Winter<br>2160 min Winter<br>2880 min Winter<br>4320 min Winter                    | 98.557<br>98.547<br>98.542<br>98.535<br>98.531           | 0.047<br>0.042<br>0.035<br>0.031          | 0.0<br>0.0<br>0.0        | 1.1<br>0.9<br>0.6<br>0.5        | 1.1<br>0.9<br>0.6        | 0.9<br>0.8<br>0.7<br>0.6        | 0 K<br>0 K<br>0 K        |
| 1440 min Winter<br>2160 min Winter<br>2880 min Winter<br>4320 min Winter<br>5760 min Winter | 98.557<br>98.547<br>98.542<br>98.535<br>98.531<br>98.528 | 0.047<br>0.042<br>0.035<br>0.031<br>0.028 | 0.0<br>0.0<br>0.0<br>0.0 | 1.1<br>0.9<br>0.6<br>0.5<br>0.4 | 1.1<br>0.9<br>0.6<br>0.5 | 0.9<br>0.8<br>0.7<br>0.6<br>0.6 | 0 K<br>0 K<br>0 K<br>0 K |

|       | Stor  | m      | Rain    | Flooded | Discharge | Time-Peak |
|-------|-------|--------|---------|---------|-----------|-----------|
|       | Event |        | (mm/hr) | Volume  | Volume    | (mins)    |
|       |       |        |         | (m³)    | (m³)      |           |
|       |       |        |         |         |           |           |
|       |       | Winter |         | 0.0     | 22.5      | 33        |
| 60    | min   | Winter | 54.817  | 0.0     | 27.6      | 54        |
| 120   | min   | Winter | 32.511  | 0.0     | 32.8      | 88        |
| 180   | min   | Winter | 23.643  | 0.0     | 35.7      | 120       |
| 240   | min   | Winter | 18.757  | 0.0     | 37.8      | 150       |
| 360   | min   | Winter | 13.517  | 0.0     | 40.9      | 202       |
| 480   | min   | Winter | 10.710  | 0.0     | 43.2      | 254       |
| 600   | min   | Winter | 8.935   | 0.0     | 45.0      | 314       |
| 720   | min   | Winter | 7.702   | 0.0     | 46.6      | 372       |
| 960   | min   | Winter | 6.089   | 0.0     | 49.1      | 490       |
| 1440  | min   | Winter | 4.367   | 0.0     | 52.8      | 720       |
| 2160  | min   | Winter | 3.127   | 0.0     | 56.7      | 1076      |
| 2880  | min   | Winter | 2.465   | 0.0     | 59.6      | 1460      |
| 4320  | min   | Winter | 1.761   | 0.0     | 63.9      | 2148      |
| 5760  | min   | Winter | 1.387   | 0.0     | 67.1      | 2920      |
| 7200  | min   | Winter | 1.151   | 0.0     | 69.6      | 3744      |
| 8640  | min   | Winter | 0.988   | 0.0     | 71.7      | 4328      |
| 10080 | min   | Winter | 0.869   | 0.0     | 73.6      | 5000      |
|       |       |        |         |         |           |           |

| Price & Myers            |                       | Page 3    |
|--------------------------|-----------------------|-----------|
| 30 Newman Street         | Job no 23468          |           |
| London                   | CENTRAL SOMERS TOWN   | L.        |
| W1T 1LT                  | PLOT 6                | Micco     |
| Date 05.11.15            | Designed by dramdeen  | Drainage  |
| File 151105 Tank_P6.srcx | Checked by            | Dialitage |
| Micro Drainage           | Source Control 2015.1 |           |

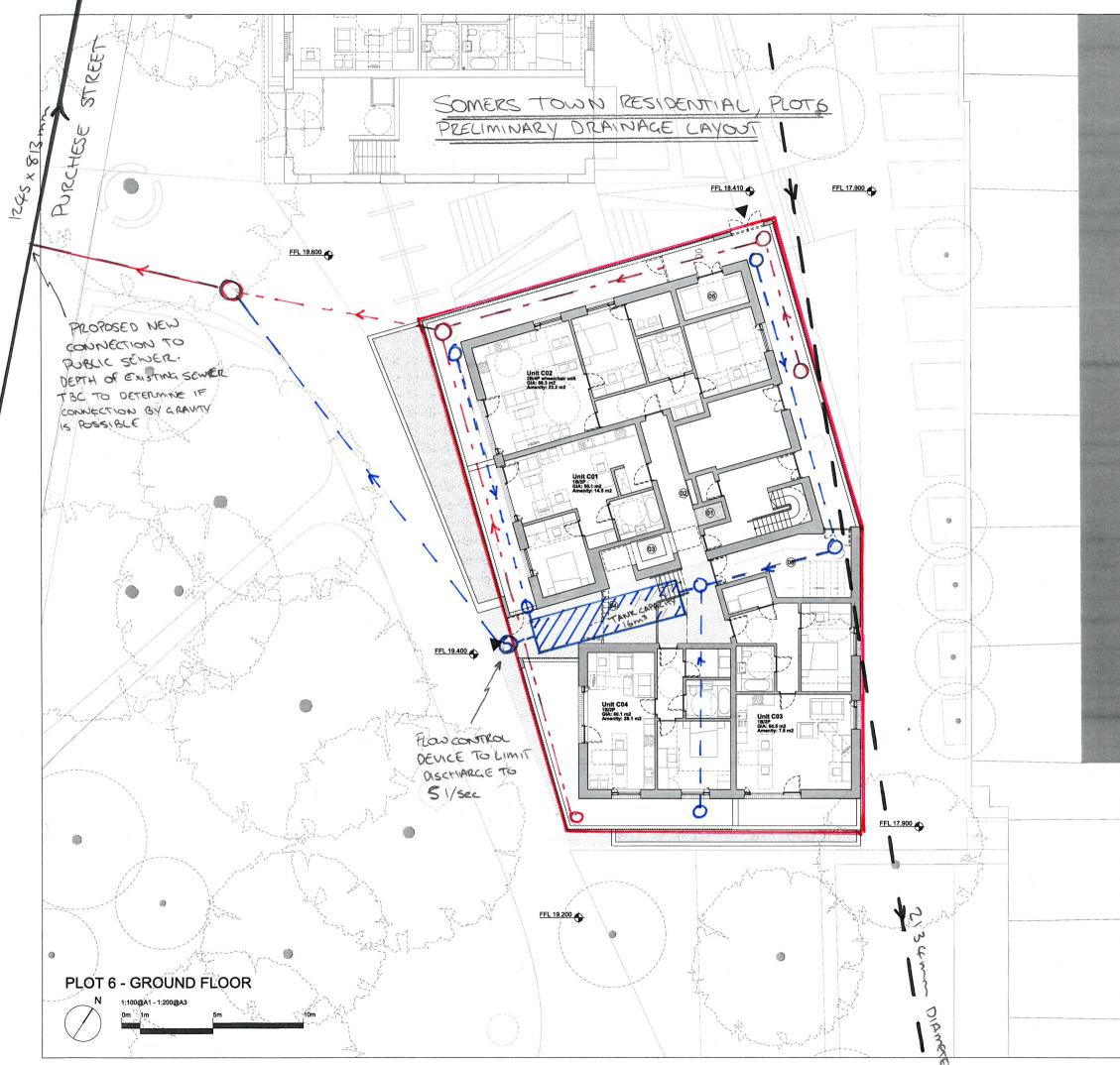
## Rainfall Details

| Rainfall Model        | FSR               | Winter Storms         | Yes   |
|-----------------------|-------------------|-----------------------|-------|
| Return Period (years) | 100               | Cv (Summer)           | 0.750 |
| Region                | England and Wales | Cv (Winter)           | 0.840 |
| M5-60 (mm)            | 20.800            | Shortest Storm (mins) | 15    |
| Ratio R               | 0.438             | Longest Storm (mins)  | 10080 |
| Summer Storms         | Yes               | Climate Change %      | +30   |

## <u>Time Area Diagram</u>

Total Area (ha) 0.060

| Time  | (mins) | Area  | Time  | (mins) | Area  | Time  | (mins) | Area  |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| From: | To:    | (ha)  | From: | To:    | (ha)  | From: | To:    | (ha)  |
| 0     | 4      | 0.020 | 4     | 8      | 0.020 | 8     | 12     | 0.020 |


| rice & Myers                                                                     |                                    |                        |                |             |            | Page 4         |
|----------------------------------------------------------------------------------|------------------------------------|------------------------|----------------|-------------|------------|----------------|
| 0 Newman Street                                                                  |                                    | Job no                 | 23468          |             |            |                |
| ondon                                                                            |                                    | CENTRAL                | SOMERS TO      | OWN         |            | Le             |
| 1T 1LT                                                                           |                                    | PLOT 6                 |                |             |            | Micco          |
| ate 05.11.15                                                                     |                                    | Designe                | d by dramo     | leen        |            |                |
| ile 151105 Tank_P                                                                | 6.srcx                             | Checked                |                | Drainago    |            |                |
| licro Drainage                                                                   |                                    | Source                 |                |             |            |                |
| itero brainage                                                                   |                                    | 504100                 | 001101 20      |             |            |                |
|                                                                                  |                                    | Model Det              | tails          |             |            |                |
|                                                                                  | Storage is (                       | Online Cover           | Level (m)      | 100.000     |            |                |
|                                                                                  | -                                  | lar Storag             |                |             |            |                |
|                                                                                  |                                    | Tar Storag             | e structu      |             |            |                |
|                                                                                  |                                    | vert Level (           |                | -           |            |                |
|                                                                                  | tion Coefficier<br>tion Coefficier |                        |                | Poros       | ity 0.95   |                |
| IIIIIICIA                                                                        | CION COEFFICIEN                    | it side (m/n           | 1) 0.00000     |             |            |                |
| Depth (m) A                                                                      | rea (m²) Inf. A                    | Area (m²) De           | epth (m) Are   | ea (m²) Inf | f. Area (m | <sup>2</sup> ) |
| 0.000                                                                            | 21.0                               | 0.0                    | 1.300          | 0.0         | 0          | .0             |
| 0.100                                                                            | 21.0                               | 0.0                    | 1.301          | 0.0         |            | .0             |
| 0.200                                                                            | 21.0                               | 0.0                    | 1.500          | 0.0         |            | .0             |
| 0.300                                                                            | 21.0                               | 0.0                    | 1.600          | 0.0         |            | .0             |
| 0.400                                                                            | 21.0                               | 0.0                    | 1.700          | 0.0         |            | .0             |
| 0.500                                                                            | 21.0                               | 0.0                    | 1.800          | 0.0         |            | .0             |
| 0.600<br>0.700                                                                   | 21.0<br>21.0                       | 0.0                    | 1.900<br>2.000 | 0.0         |            | .0             |
| 0.800                                                                            | 21.0                               | 0.0                    | 2.000          | 0.0         |            | .0             |
| 0.800                                                                            | 0.0                                | 0.0                    | 2.200          | 0.0         |            | .0             |
| 1.000                                                                            | 0.0                                | 0.0                    | 2.200          | 0.0         |            | .0             |
| 1.100                                                                            | 0.0                                | 0.0                    | 2.400          | 0.0         |            | .0             |
| 1.200                                                                            | 0.0                                | 0.0                    | 2.500          |             |            | .0             |
|                                                                                  | Hydro-Brake                        | - Ontimume             | ) Outflow (    | Control     |            |                |
|                                                                                  | <u>nyuro-brake</u>                 |                        | OULIIOW        |             |            |                |
|                                                                                  |                                    | it Reference           |                | 02-5000-120 |            |                |
|                                                                                  |                                    | ign Head (m            |                |             | 1.200      |                |
|                                                                                  | 5                                  | n Flow (1/s            |                | Cal         | 5.0        |                |
|                                                                                  |                                    | Flush-Flo              |                | Calc        |            |                |
|                                                                                  |                                    | iameter (mm            | e Minimise     | upstream s  | 102        |                |
|                                                                                  |                                    | rt Level (m            |                |             | 98.500     |                |
| Minimur                                                                          | n Outlet Pipe D                    |                        |                |             | 150        |                |
|                                                                                  | ested Manhole D                    |                        |                |             | 1200       |                |
|                                                                                  | Control                            | Points                 | Head (m) F     | 'low (l/s)  |            |                |
|                                                                                  | Design Point                       | (Calculated)           | 1.200          | 5.0         |            |                |
|                                                                                  |                                    | Flush-Flo <sup>™</sup> | 0.353          | 4.9         |            |                |
|                                                                                  |                                    | Kick-Flo®              |                | 4.0         |            |                |
|                                                                                  | Mean Flow over                     | Head Range             |                | 4.3         |            |                |
| The hydrological ca<br>Hydro-Brake Optimum<br>Hydro-Brake Optimum<br>invalidated | D as specified.                    | Should an              | other type o   | of control  | device ot  | her than a     |
| Depth (m) Flow (1/s                                                              | s) Depth (m) Fi                    | Low (l/s) De           | epth (m) Flo   | ow (l/s) De | epth (m) F | 'low (l/s)     |
| 0.100 3                                                                          | .4 0.300                           | 4.9                    | 0.500          | 4.8         | 0.800      | 4.1            |
| 0.200 4                                                                          | .7 0.400                           | 4.9                    | 0.600          | 4.6         | 1.000      | 4.6            |
|                                                                                  |                                    |                        |                |             |            |                |
|                                                                                  |                                    |                        |                |             |            |                |

| Price & Myers            |                       | Page 5   |
|--------------------------|-----------------------|----------|
| 30 Newman Street         | Job no 23468          |          |
| London                   | CENTRAL SOMERS TOWN   | 4        |
| W1T 1LT                  | PLOT 6                | — Micro  |
| Date 05.11.15            | Designed by dramdeen  |          |
| File 151105 Tank_P6.srcx | Checked by            | Drainage |
| Micro Drainage           | Source Control 2015.1 |          |

## Hydro-Brake Optimum® Outflow Control

| Depth (m) Flo  | w (l/s)    | Depth (m) Flow | (l/s)      | Depth (m) Flow | / (l/s)      | Depth (m)      | Flow (l/s)   |
|----------------|------------|----------------|------------|----------------|--------------|----------------|--------------|
| 1.200<br>1.400 | 5.0        | 2.400          | 6.9<br>7.1 | 5.000          | 9.7<br>10.2  | 8.000          | 12.1<br>12.5 |
| 1.600          | 5.7<br>6.0 | 3.000<br>3.500 | 7.6        |                | 10.6         | 9.000<br>9.500 | 12.8<br>13.2 |
| 2.000<br>2.200 | 6.3<br>6.6 | 4.000<br>4.500 | 8.7<br>9.2 | 7.000<br>7.500 | 11.4<br>11.8 |                |              |

## APPENDIX D – Preliminary Proposed Drainage Layout



*u*.

NOTES 1) MANHOLE POSITIONS ARE INDICATIVE 2) OWLY THE KEY MANHOLES ARESHOWN 3) APPROVAL FROM THAME WATER WILL BE REQUIRED TO BUILD OVER AND CONNECT PROPOSED ON ANNAGE INTO EXISTING PUBLIC SEWERS 4) LOCIATION OF EXISTING THAMES WATER SEWER IS INDICATIVE KEY = ROT BOUNDARY E EXISTING THAMES WATER STORM ORAIN = SURFACE WATER  $V \square$ ATTENUATION TANK (16m3 CAPACITY) = FLOW CONTROL DEVICE SURFACE WATER S) = PROPOSED SURFACE WATER DRAINAGE = PROPOSED FOIL WATER DRIAWAGE = PROPOSED COMBINED WATER DRAINACE = EXISTING THAMES WATER CONSINED PUBLIC SEWER 14.10.15 17.09.15 revisio PRICE&MYERS **Consulting Engineers** 30 Newman Street London W1T 1LT T 020 7631 5128 Job No 23468 Page 54004 Rev -

| Date | 17/11/15 | Eng JL   | Chd RB     |
|------|----------|----------|------------|
| Job  | POLYCON  | RESIDENT | IAL, PLOTG |

SOMERS TOWN POLYGON RESIDENTIAL, PLOT6 - DRAINAGE STATEMENT

## APPENDIX E – Camden SUDS Proforma

| for new developments |
|----------------------|
| ~                    |
| ainage Pro-forma     |
| Mater Dra            |
| Surface              |

current industry best practice and focuses on ensuring surface water drainage proposals meet national and local policy requirements. This pro-forma accompanies our advice note on surface water drainage. Developers should complete this form and submit it to the Local Defra/EA guidance on Rainfall Runoff Management and uses the storage calculator on <u>www.UKsuds.com</u>. This pro-forma is based on Planning Authority, referencing from where in their submission documents this information is taken. The pro-forma is supported by the The pro-forma should be considered alongside other supporting SuDS Guidance.

## 1. Site Details

| Site       Some Rs       Town, Not Yoon Resident, PLot 6         Address & post code or LPA reference       Nwi I DN       Nwi I DN         Grid reference       Nwi I DN       Tog 2 d § 32 2 § 3 [d 2         Is the existing site developed or Greenfield?       CREEN FIELD       Tog 2 d § 32 2 § 3 [d 2         Is the development in a LFRZ or in an area known to be at risk of surface or ground water flooding?       No         Total Site Area served by drainage system (excluding Existing Sinte 15 SOFT LANDSCAPED)       Ender 15 SOFT LANDSCAPED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|
| de or LPA reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Site                                                                                                   | SOMERS TOWN, HOLYCON RESIDENTIAL, PLOT 6 |
| Grid reference     TC3 2 4 3 2 4 3 2 4 2       Is the existing site developed or Greenfield?     C 4 C 6 N F (C L D)       Is the development in a LFRZ or in an area known to be at risk of surface or ground water flooding?     No       Total Site Area served by drainage system (excluding existing conen space) (Ha)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Address & post code or LPA reference                                                                   | NULLON                                   |
| Is the existing site developed or Greenfield? CREENFIGLD<br>Is the development in a LFRZ or in an area known to<br>be at risk of surface or ground water flooding?<br>Total Site Area served by drainage system (excluding<br>existing existing | Grid reference                                                                                         | 702983253192                             |
| Is the development in a LFRZ or in an area known to No<br>be at risk of surface or ground water flooding?<br>Total Site Area served by drainage system (excluding Extisminot Stree 13 Soft LANDSCAPED)<br>oben space) (Ha)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Is the existing site developed or Greenfield?                                                          | CREEN FIELD                              |
| Total Site Area served by drainage system (excluding Excertion Sine is SORT LANDSCAPED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Is the development in a LFRZ or in an area known to<br>be at risk of surface or ground water flooding? | 2                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Site Area served by drainage system (excluding open space) (Ha)*                                 | EXISTING SITE IS SOFT LANDSCAPED         |

\* The Greenfield runoff off rate from the development which is to be used for assessing the requirements for limiting discharge flow rates and attenuation storage from a site should be calculated for the area that forms the drainage network for the site whatever size of site and type of drainage technique. Please refer to the Rainfall Runoff Management document or CIRUA manual for detail on this.

# 2. Impermeable Area

|                                                     | Existing           | Proposed | Difference<br>(Proposed-Existina) | Notes for developers                                                                                                                                                                |
|-----------------------------------------------------|--------------------|----------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Impermeable area (ha)                               | 0                  | 0.06     | 0.06                              | If proposed > existing, then runoff rates and volumes will be increasing. Section 6 must be filled in. If proposed ≤ existing, then section 6 can be skipped & section 7 filled in. |
| Drainage Method<br>(infiltration/sewer/watercourse) | Infiltration Sever | Sevel    | NA                                | If different from the existing, please fill in section 3. If existing drainage is by infiltration and the proposed is not, discharge volumes may increase. Fill in section 6.       |

| Water via    |
|--------------|
| e Surface    |
| Discharge    |
| Proposing to |
| ы.<br>Ч      |

|                        | Yes | °N | es No Evidence that this is possible | Notes for developers                                                                                     |
|------------------------|-----|----|--------------------------------------|----------------------------------------------------------------------------------------------------------|
| Infiltration           |     | 2  | •                                    | e.g. soakage tests. Section 6 (infiltration) must be filled in if infiltration is proposed.              |
| To watercourse         |     | 1  |                                      | e.g. Is there a watercourse near by?                                                                     |
| To surface water sewer | 7   |    | CONFIRMATION TO BE OBTAINED FROM TW  | BE OBTANKO FLOW TW Confirmation from sewer provider that sufficient capacity exists for this connection. |
| Combination of above   |     | 7  |                                      | e.g. part infiltration part discharge to sewer or watercourse. Provide evidence above.                   |

\* TU = THAMES WATER

4. Peak Discharge Rates – This is the maximum flow rate at which storm water runoff leaves the site during a particular storm event.

|                                 | Existing<br>Rates (I/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Proposed<br>Rates (I/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Difference (l/s)<br>(Proposed-<br>Existing) | % Difference<br>(difference<br>/existing x<br>100) | % Difference Notes for developers<br>(difference<br>/existing x<br>100)                                                                                                                                                                             |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Greenfield QBAR                 | 3+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                         | N/A                                                | QBAR is approx. 1 in 2 storm event. Provide this if Section 6 (QBAR) is proposed.                                                                                                                                                                   |
| 1 in 1                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                                                    | Proposed discharge rates (with mitigation) should aim to be equivalent to greenfield rates                                                                                                                                                          |
| 1 in 30                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                                                    | for all corresponding storm events. As a minimum, peak discharge rates must be reduced                                                                                                                                                              |
| 1in 100                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                                                    | by 20% indiring existing sites for all corresponding rainfall events.                                                                                                                                                                               |
| 1 in 100 plus<br>climate change | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                                    | The proposed 1 in 100 +CC peak discharge rate (with mitigation) should aim to be<br>equivalent to greenfield rates. As a minimum, proposed 1 in 100 +CC peak discharge rate<br>must be reduced by 50% from the existing 1 in 100 runoff rate sites. |
|                                 | A DAMAGE AND A DAM | AND AND ADDRESS AN |                                             |                                                    |                                                                                                                                                                                                                                                     |

5. Calculate additional volumes for storage -The total volume of water leaving the development site. New hard surfaces potentially restrict the amount of stormwater that can go to the ground, so this needs to be controlled so not to make flood risk worse to properties downstream.

|                                        | Existing<br>Volume (m <sup>3</sup> ) | Proposed<br>Volume (m <sup>3</sup> ) | Difference (m <sup>3</sup> )<br>(Proposed-Existing) | Notes for developers                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GREENFIELD RUN<br>OFF VOLUME           | •                                    | N/A                                  | N/A                                                 |                                                                                                                                                                                                                                                                                                                                                                            |
| 1 in 1                                 | 1                                    | 5.60                                 | S-60                                                | Proposed discharge volumes (with mitigation) should be constrained to a value as close as is                                                                                                                                                                                                                                                                               |
| 1 in 30                                | 1                                    | 46.SI                                | 12.32                                               | reasonably practicable to the greenfield runoff volume wherever practicable and as a                                                                                                                                                                                                                                                                                       |
| 1in 100 6 hour                         | 1                                    | ともも                                  | 56.61                                               | minimum should be no greater than existing volumes for all corresponding storm events. Any<br>increase in volume increases flood risk elsewhere. Where volumes are increased section 6<br>must be filled in.                                                                                                                                                               |
| 1 in 100 6 hour plus<br>climate change | 1                                    | 23.05                                | 50.52                                               | The proposed 1 in 100 +CC discharge volume should be constrained to a value as close as<br>is reasonably practicable to the greenfield runoff volume wherever practicable. As a<br>minimum, to mitigate for climate change the proposed 1 in 100 +CC volume discharge from<br>site must be no greater than the existing 1 in 100 storm event. If not, flood risk increases |
|                                        |                                      |                                      |                                                     | under climate change.                                                                                                                                                                                                                                                                                                                                                      |

6. Calculate attenuation storage - Attenuation storage is provided to enable the rate of runoff from the site into the receiving watercourse to be limited to an acceptable rate to protect against erosion and flooding downstream. The attenuation storage volume is a function of the degree of development relative to the greenfield discharge rate.

|                                                            |       | Notes for developers                                                                    |
|------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|
| Storage Attenuation volume (Flow rate control) required to | 1 Cm3 | Volume of water to attenuate on site if discharging at a greenfield run off rate.       |
| meet greenneid run on rates (m.)                           |       |                                                                                         |
| Storage Attenuation volume (Flow rate control) required to |       | Volume or water to attenuate on site if discharging at a 50% reduction from             |
| reduce rates by 50% (m <sup>3</sup> )                      |       | existing rates. Can't be used where discharge volumes are increasing                    |
| Storage Attenuation volume (Flow rate control) required to |       | Volume of water to attenuate on site if discharging at a rate different from the        |
| meet [OTHER RUN OFF RATE (as close to greenfield rate as   |       | above – please state in 1 <sup>st</sup> column what rate this volume corresponds to. On |
| possible] (m <sup>3</sup> )                                |       | previously developed sites, runoff rates should not be more than three times the        |
|                                                            |       | calculated greenfield rate. Can't be used where discharge volumes are                   |
|                                                            |       | increasing                                                                              |
| Storage Attenuation volume (Flow rate control) required to |       | Volume of water to attenuate on site if discharging at existing rates. Can't be         |
| retain rates as existing (m <sup>3</sup>                   |       | used where discharge volumes are increasing                                             |

7. How is Storm Water stored on site?

attenuation storage and long term storage. The idea is that the additional volume does not get into the watercourses, or if it does it is at an exceptionally low rate. You can either infiltrate the stored water back to ground, or if this isn't possible hold it back with on site storage. Firstly, Storage is required for the additional volume from site but also for holding back water to slow down the rate from the site. This is known as can infiltration work on site?

|                                                           |                                                                                                     |                                                                                                                      | Notes for developers                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infiltration                                              | State the Site's Geology and known Source<br>Protection Zones (SPZ)                                 | Site under tern                                                                                                      | Avoid infiltrating in made ground. Infiltration rates are highly variable<br>and refer to Environment Agency website to identify and source<br>protection zones (SPZ)                                                                                                                              |
|                                                           | Are infiltration rates suitable?                                                                    | ND-TBC by draved                                                                                                     | Infiltration rates should be no lower than 1x10 <sup>-6</sup> m/s.                                                                                                                                                                                                                                 |
|                                                           | State the distance between a proposed infiltration device base and the ground water (GW) level      | investigation                                                                                                        | Need 1m (min) between the base of the infiltration device & the water table to protect Groundwater quality & ensure GW doesn't enter infiltration devices. Avoid infiltration where this isn't possible.                                                                                           |
|                                                           | Were infiltration rates obtained by desk study or infiltration test?                                | (                                                                                                                    | Infiltration rates can be estimated from desk studies at most stages of the planning system if a back up attenuation scheme is provided.                                                                                                                                                           |
|                                                           | Is the site contaminated? If yes, consider advice from others on whether infiltration can happen.   |                                                                                                                      | Advice on contaminated Land in Camden can be found on our<br>supporting documents webpage Water should not be infiltrated<br>through land that is contaminated. The Environment Agency may<br>provide bespoke advice in planning consultations for contaminated<br>sites that should be considered |
| In light of the<br>above, is<br>infiltration<br>feasible? | Yes/No? If the answer is No, please identify how<br>the storm water will be stored prior to release | ND - AS a Sin decrered 11<br>12 also required from 5<br>2 any Structure, nor<br>12 as the number<br>12 as the entire | If infittation is not feasible how will the additional volume be stored?.<br>The applicant should then consider the following options in the next section.                                                                                                                                         |

Rootput.

| -                                                                                                                                                   | ods for dealing with the amoun<br>od attenuation volume in order      | مالم مم المسملة ما ما ما ما مع مالم مالم مالم مالم مالم                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The developer must confirm that either of the two methods for dealing with the amount of water that needs to be stored on site.                     | nd attenuation volume in order                                        | nt ot water that needs to be stored on site.                                                                                                                                                                                                                                                                                         |
| <b>Option 1 Simple</b> – Store both the additional volume an off rate. This is preferred if no infiltration can be made o                           | on site. This very simply satisfie                                    | <b>Option 1 Simple</b> – Store both the additional volume and attenuation volume in order to make a final discharge from site at the greenfield run off rate. This is preferred if no infiltration can be made on site. This very simply satisfies the runoff rates and volume criteria.                                             |
| <b>Option 2 Complex</b> – If some of the additional volume very low rate of 2 l/sec/hectare. A combined storage cused to slow the runoff from site. | of water can be infiltrated back<br>alculation using the partial perr | <b>Option 2 Complex</b> – If some of the additional volume of water can be infiltrated back into the ground, the remainder can be discharged at a very low rate of 2 l/sec/hectare. A combined storage calculation using the partial permissible rate of 2 l/sec/hectare and the attenuation rate used to slow the runoff from site. |
|                                                                                                                                                     |                                                                       | Notes for developers                                                                                                                                                                                                                                                                                                                 |
| Please confirm what option has been chosen and how much storage is required on site.                                                                | OPhon !<br>16m3 of storage                                            | The developer at this stage should have an idea of the site characteristics and be able to explain what the storage requirements are on site and how it will be achieved.                                                                                                                                                            |
| 8. Please confirm                                                                                                                                   |                                                                       |                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                     |                                                                       | Notes for developers                                                                                                                                                                                                                                                                                                                 |
| Which Drainage Systems measures have been used?                                                                                                     | Attenueshan tenk                                                      | SUDS can be adapted for most situations even where infiltration<br>isn't feasible e.g. impermeable liners beneath some SUDS devices<br>allows treatment but not infiltration. See CIRIA SUDS Manual C697.                                                                                                                            |
| Drainage system can contain in the 1 in 30 storm event without flooding                                                                             | 2                                                                     | This a requirement for sewers for adoption & is good practice even<br>where drainage system is not adopted.                                                                                                                                                                                                                          |
| Drainage system can contain in the 1 in 100 storm event without flooding                                                                            | >                                                                     | National standards require that the drainage system is designed so<br>that flooding does not occur during a 1 in 100 year rainfall event in<br>any part of: a building (including a basement); or in any utility plant<br>susceptible to water (e.g. pumping station or electricity substation)<br>within the development.           |
| Drainage system can contain in the 1 in 100 +CC storm event without flooding                                                                        | >                                                                     |                                                                                                                                                                                                                                                                                                                                      |
| Any flooding between the 1 in 30 & 1 in 100 plus climate                                                                                            |                                                                       | Safely: not causing property flooding or posing a hazard to site<br>users i.e. no deeper than 300mm on roads/footbaths. Flood waters                                                                                                                                                                                                 |

|                                                                                                                                 |                                                                            | must drain away at section 6 rates. Existing rates can be used<br>where runoff volumes are not increased.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How are rates being restricted (vortex control, orifice etc)                                                                    | Worker Control                                                             | Detail of how the flow control systems have been designed to avoid<br>pipe blockages and ease of maintenance should be provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Please confirm the owners/adopters of the entire drainage<br>systems throughout the development. Please list all the<br>owners. | Complen centry correct                                                     | If these are multiple owners then a drawing illustrating exactly what<br>features will be within each owner's remit must be submitted with<br>this Proforma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| How is the entire drainage system to be maintained?                                                                             | A maintenance schedule<br>13 provded within the<br>SUDS dranoge Statewart. | If the features are to be maintained directly by the owners as stated<br>in answer to the above question please answer yes to this question<br>and submit the relevant maintenance schedule for each feature. If it<br>is to be maintained by others than above please give details of each<br>feature and the maintenance schedule.<br>Clear details of the maintenance proposals of all elements of the<br>proposed drainage system must be provided. Details must<br>demonstrate that maintenance and operation requirements are<br>economically proportionate. Poorly maintained drainage can lead to<br>increased flooding problems in the future. |

relevant drawings that need to accompany your proforma, in particular exceedance routes and ownership and location of SuDS (maintenance 9. Evidence Please identify where the details quoted in the sections above were taken from. i.e. Plans, reports etc. Please also provide access strips etc

| Pro-forma Section | Document reference where details quoted above are taken from      | Page Number |
|-------------------|-------------------------------------------------------------------|-------------|
| Section 2         | POLYGON RESIDENTIAL, PLOT 6 - SUDS DRAINBAE STATEMENT             |             |
| Section 3         | 52                                                                |             |
| Section 4         |                                                                   |             |
| Section 5         |                                                                   |             |
| Section 6         |                                                                   |             |
| Section 7         | CONDON BORDOCH OF CAMPEN SFILD (F WUR 40)+ BUS REDOCH INFORMATION | when        |
| Section 8         | POLYGON RENDENTIAL, PLOT 6 - SUDS DRININAGE STATEMENT,            |             |

The above form should be completed using evidence from the Flood Risk Assessment and site plans. It should serve as a summary sheet of the drainage proposals and should clearly show that the proposed rate and volume as a result of development will not be increasing. If there is an increase in rate or volume, the rate or volume section should be completed to set out how the additional rate/volume is being dealt with.

| This form is completed using factual information from the Flood Risk Assessment and Site Plans and can be used as a summary of the surface water drainage strategy on this site. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Form Completed By こうせん しいつつ<br>Qualification of person responsible for signing off this pro-forma こいし たんいのをの WENG.                                                               |
| Company PANE & MYERS<br>On behalf of (Client's details) . CANNDEN CONTY CONNUL                                                                                                   |

UNCLASSIFIED