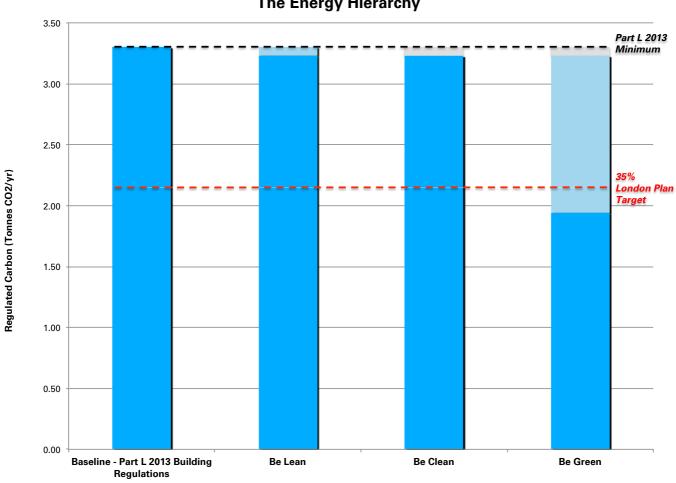
Planning Statement eight associates Energy Assessment Ellerdale Road **Eight Associates** 5th Floor 81 Southwark Street London SE1 0HX +44 (0) 20 3179 0420 www.eightassociates.co.uk info@eightassociates.co.uk **Document information:** Prepared for: Date of current issue: Matthew Berry-McIntosh 10/12/2015 Charles Edward Construction Issue number: 1 Our reference: 1587-Energy Assessment-1512-10YP.docx Assessment information: Prepared by: Quality assured by: Panayiota Paraskeva Chris Hocknell Signature: Signature: Chris Hocknell Panayiota Paraskeva **Disclaimer:** This report is made on behalf of Eight Associates. By receiving the report and acting on it, the client - or any third party relying on it - accepts that no individual is personally liable in contract, tort or breach of statutory duty (including negligence). Contents: Establishing Emissions: The Carbon Profile5 'Be Lean': Demand Reduction Measures6 'Be Clean': Heating Infrastructure & CHP8 'Be Clean': Site Wide Networks and CHP......10

Executive Summary Energy Assessment Ellerdale Road

About the Scheme:	The project consists of the new construction of a 3 storey dwelling at 1 Ellerdale Road in the London Borough of Camden, with two basement levels and a small garden. The dwelling has a total Gross Internal Area of 221 m ² .			
Planning Policy	The scheme does not have to comply with the London Plan Policy based on the floor area, however the aspiration of the scheme is to achieve a 35% carbon reduction target (beyond Part L 2013) as set out in The London Plan Policy 5.2.			
	The scheme complies with the 2013 Building Regulations Part L and the minimum energy efficiency targets in the following documents have been followed:			
	 New build (Part L1A) – The actual building CO₂ emissions rate (DER) is no greater than the notional building CO₂ target emissions rate. 			
The Energy Hierarchy:	The proposed scheme has followed the energy hierarchy that is illustrated below:			
	Reduce the need for energy Use energy more efficiently Supply energy from renewable sources Ensure that any continuing use of fossil fuels should use clean technologies and to be efficient			

The resulting energy savings are shown below in accordance with the GLA's Energy Hierarchy:

GLA's Energy Hierarchy – Regulated Carbon Emissions				
	Baseline:	Be Lean:	Be Clean:	Be Green:
CO ₂ emissions (Tonnes CO ₂ /yr)	3.31	3.23	-	1.94
CO ₂ emissions saving (Tonnes CO ₂ /yr)	-	0.07	-	1.29
Saving from each stage (%)	-	2.2	-	39.0
Total CO ₂ emissions saving (Tonnes CO ₂ /yr) 1.36				


41.2% Total carbon emissions savings over Part L of the Building Regulations 2013 achieved

Executive Summary Energy Assessment Ellerdale Road

GLA's Energy Hierarchy -**Regulated Carbon Emissions:**

A graphical illustration of how the scheme performs in relation to Building Regulations and the Energy Hierarchy is shown below.

Figure:

Summary:

As demonstrated above the development will reduce carbon emissions by 2.2% from the fabric energy efficiency measures described in the 'Be Lean' section, and will reduce total carbon emissions by 41.2% over Building Regulations with the further inclusion of low and zero carbon technologies (PV panels).

The Energy Hierarchy

Executive Summary Energy Assessment Ellerdale Road

Shortfall in Emissions:

As set out in Policy 5.2 of the London Plan, if the development fails to meet the 35% target, the annual shortfall is determined by subtracting the overall regulated carbon dioxide savings from the target savings. The result is then multiplied by the assumed lifetime of the development's services (e.g. 30 years) to give the cumulative shortfall. The cumulative shortfall is multiplied by the carbon dioxide off-set price to determine the required cash-in-lieu contribution, as shown below.

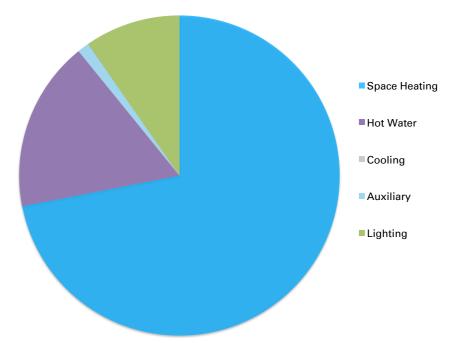
Carbon Dioxide Emissions – Regulated (Tonnes CO ₂ /yr)					
	(Tonnes CO ₂ /yr)	%			
Savings from 'Be Lean-After energy demand reduction	0.07	2.2%			
Savings from 'Be Clean-After CHP	0.00	0.0%			
Savings from 'Be Green-After renewable energy	1.29	39.0%			
Total Cumulative Savings	1.36	41.2%			
Total Target Savings	1.16	35%			
Annual Surplus	0.21				
	Annual Shortfall (Tonnes CO2/yr)	Cumulative Shortfall (Tonnes CO2)			
Shortfall	-	-			
Carbon offset contribution required: £0					

Total Carbon Emissions:

As required by the GLA both the regulated and unregulated emissions of the development must be quantified and demonstrated. The total emissions for the scheme are shown below.

Carbon Dioxide Emissions – Regulated and Unregulated (Tonnes CO_2 /yr)						
	Regulated Emissions	Unregulated Emissions	Total Emissions			
Baseline: Part L 2013	3.31	1.53	4.83			
Be Lean: After demand reduction	3.23	1.53	4.76			
Be Clean: After CHP	-	-	-			
Be Green: After Renewable energy	1.94	1.53	3.47			

Introduction Energy Assessment Ellerdale Road


Aim of this study:	The purpose of an energy assessment is to demonstrate that climate change mitigation measures comply with London Plan energy policies, including the energy hierarchy. It also ensures energy remains an integral part of the development's design and evolution.
Methodology:	The methodology in this report follows the guidance set out by the Greater London Authority (GLA) for developing energy strategies as detailed in the document "ENERGY PLANNING: Greater London Authority guidance on preparing energy assessments (April 2014)"
	This report has followed these documents and comprises the following components:
	 BASELINE: A calculation of the Part L 2013 Building Regulations complaint CO₂ emission baseline using approved software. The baseline assumes a gas boiler would provide heating and any active cooling would be electrically powered.
	• LEAN: A calculation of the impact of demand reduction measures. For example, passive design measures, including optimising orientation and site layout, natural ventilation and lighting, thermal mass and solar shading, and active design measures such as high efficacy lighting and efficient mechanical ventilation with heat recovery.
	 COOLING HIERARCHY: in accordance with Policy 5.9 of London Plan, measures that are proposed to reduce the demand for cooling have been set out such as minimisation of solar and internal gains and night cooling strategies.
	• CLEAN: in accordance with Policy 5.6 of London Plan, this report has demonstrated how the scheme has selected heating, cooling and power systems to minimise carbon emissions. This comprises an evaluation of the feasibility of connecting to existing low carbon heat networks, planned networks, site-wide and communal heat networks and CHP.
	• GREEN: in accordance with Policy 5.7 of London Plan, this report has conducted a feasibility assessment of renewable energy technologies. This comprised a site-specific analysis of the technologies and if applicable how they would be integrated into the heating and cooling strategy for the scheme.
	Please note that these findings are currently subject to a detailed analysis from a building services design engineer and qualified quantity surveyor.

Establishing Emissions: The Carbon Profile Energy Assessment Ellerdale Road

Building Regulations Part L 2013
Minimum Compliance:The 'baseline' carbon emissions for the development are 3.31 Tonnes CO2/yr.
The pie chart below provides a breakdown of the scheme's baseline carbon emissions by
system over the course of one year.Carbon Emissions in Tonnes
CO2/yrHeatingHot WaterCoolingAuxiliaryLighting

0.57

2.38

Baseline CO₂ Breakdown

0.00

0.04

0.32

Overview:

The chart above shows that space heating is the primary source of carbon emissions, and domestic hot water is the second largest, across the scheme as a whole.

'Be Lean': Demand Reduction Measures Energy Assessment Ellerdale Road

Be Lean - Summary:

Demand reduction measures have reduced the scheme's carbon emissions by 2.2% over the minimum Part L 2013 Building Regulations baseline.

Site Layout Passive Design measures:

The development is located at the rear of land at 1 Ellerdale Road and is protected by other developments on two sides. The compact shape of the dwelling means that the external area is minimised and consequently the heat losses through the building envelope are reduced. Windows (total glazing area is 33.3% of the external wall) are mainly facing south (29%) to exploit the passive solar heat gains and reduce the heating demand. However, there are few openings that are placed towards the north (4.3%) in order to enable cross ventilation, resulting in more effective air change rate and reducing the overheating risk.

Building Fabric

Passive Design measures:

Element	Minimum Building	Proposed U value
	Regulations U value	
	W/m²K	W/m²K
External Wall	0.30	0.18
Basement Wall	0.30	0.18
Ground Floor	0.25	0.11
Flat Roof	0.20	0.11
Glazing (window)	2.00	1.20
Glazing (rooflight)	2.00	1.20
Doors	2.00	1.20

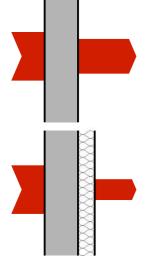
Airtightness:

The target air permeability for the scheme has been modelled as 3 m³/(hr.m²) @ 50 pa.

This will require careful attention to two key areas:

- Structural leakage
- Services leakage

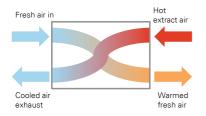
Structural leakage occurs at joints in the building fabric and around window and door openings, loft hatches and access openings. There will also be some diffusion through materials such and cracks in masonry walls typically this is caused by poor perpends in blockwork inner leafs. Structural leakage is hard to remedy retrospectively. Good detailing at the design stage is therefore essential.


Services leakage occurs at penetrations from pipes and cables entering the building. These can be sewerage pipes, water pipes and heating pipes. As well as electricity cables there may also be telecommunication cables. Attention therefore, needs to be paid to sealing all penetrations during constriction.

Thermal Bridging:

The scheme has been indicatively modelled with the default thermal bridge y-values for all junction types, $0.15W/m^2K$.

Thermal Mass:


The thermal mass of the scheme has been indicatively modelled as 250 kJ/m²K (medium).

Graphic illustrations of the heat flow through a wall and how is it minimized with low uvalue (consequence of the additional insulation).

'Be Lean': Demand Reduction Measures Energy Assessment Ellerdale Road

Energy Efficient Services Active Design measures:

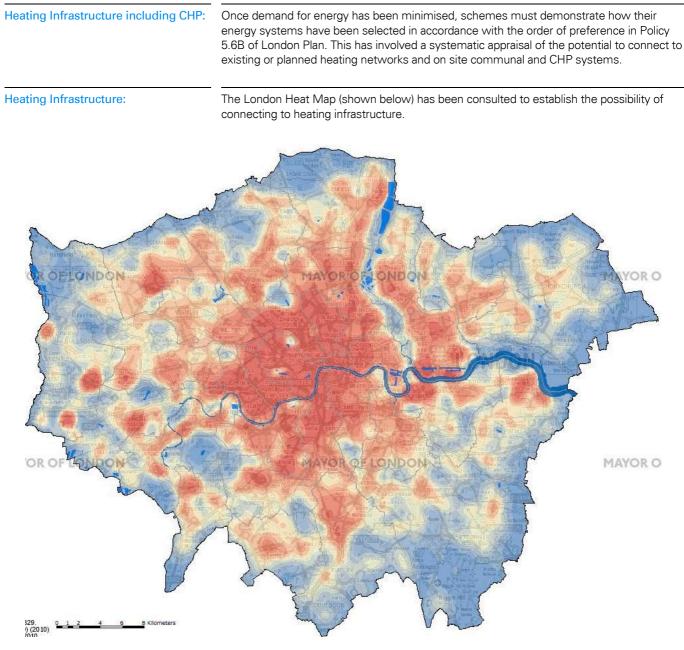
Graphic illustration of a heat recovery unit, which exploits the extract hot air of the room to heat the cold supply air.

Heating:

Heating will be provided by a gas boiler, featuring time and temperature zone control by suitable arrangement of plumbing and electrical services, delayed thermostat and a weather compensator. The heat will be distributed via radiators. The gas boiler will have a minimum efficiency of 89.5%.

Ventilation:

Balanced mechanical ventilation with heat recovery (90% efficiency) will be provided to dwellings and wet rooms with a specific fan power of 0.52 W/l/s.

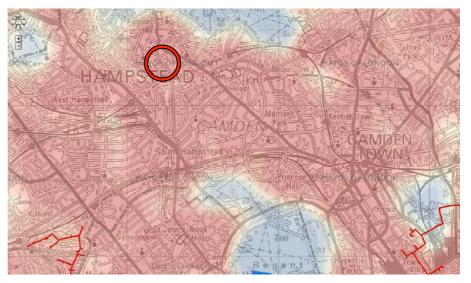

Air Conditioning

Cooling will be provided to the principle four rooms by split systems, the systems will have an energy label class of A.

Lighting:

High efficient lighting has been specified for the development.

'Be Clean': Heating Infrastructure & CHP Energy Assessment Ellerdale Road


Source: http://www.londonheatmap.org.uk/Mapping

'Be Clean': Connection to Existing and Planned Networks Energy Assessment Ellerdale Road

Existing and Planned Networks:

Existing networks:

A review of the London Heat Map demonstrates that there are no existing networks present within connectable range of the scheme. A map of the existing and potential networks in the scheme's location is shown below.

There are no existing or potential networks within the vicinity of the scheme, therefore a connection is not possible.

Existing DH Networks
 Potential DH Networks

'Be Clean': Site Wide Networks and CHP Energy Assessment Ellerdale Road

Site-wide Heat Networks:	In accordance with section 8.2 of the GLA guidance for Energy Planning, where it is demonstrable that a site wide network is not feasible then an individual heating strategy can be implemented. A site wide network will not be adopted because is only one dwelling and local conditions are not favourable to centralised distribution. Therefore, it is considered that distribution losses would be relatively large and the effectiveness and carbon reducing potential would be undermined when compared to an individual servicing strategy.		
Combined Heat and Power (CHP)	In accordance with section 8.3 of the GLA guidance for Energy Planning where connection to an area wide heat network will not be available in the foreseeable future i.e. 5 years following completion, or the development is of such a scale that it could be the catalyst for an area wide heat network, applicants should evaluate the feasibility of on-site CHP GLA guidance stipulates that small, or purely residential developments of less than 350 dwellings will not be expected to include on-site CHP. CHP systems are best utilised where there is a consistent and high demand for heat. Because of the small electricity supplies and demand of this scheme, a CHP installed to meet the base heat load would typically require the export of electricity to the grid. The administrative burden of managing CHP electricity sales at a small scale without an active energy service companies (ESCOs) is prohibitive for smaller operators of residential developments.		
	The heat demand profile of this residential scheme is not suitable to CHP. The implemented fabric improvements from the 'Be Lean' scenario have also reduced the energy demand from space heating to hot water. For CHP systems to be economically viable they need to run for at least 5,000 hours per year. Therefore, a CHP system would most likely be oversized, and as a result less efficient and economic.		

compared to an incandescent bulb and their

life span is up to 41 times more.

'Be Clean': Cooling Energy Assessment Ellerdale Road

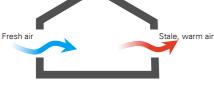
Policy 5.9 Overheating and Cooling: The aim of this policy is to reduce the impact of the urban heat island effect in London and encourage the design of spaces to avoid overheating and excessive heat generation, and to mitigate overheating due to the impact of climate change. Where design measures and the use of natural and/or mechanical ventilation are not enough to guarantee the occupant's comfort, in line with the cooling hierarchy the development's cooling strategy must include details of the active cooling plant being proposed, including efficiencies, and the ability to take advantage of free cooling and/or renewable cooling sources. Where appropriate, the cooling strategy should investigate the opportunities to improve cooling efficiencies through the use of locally available sources such as ground cooling and river/dock water-cooling. The Cooling Hierarchy: Major developments should reduce potential overheating and reliance on air conditioning systems and demonstrate this with the Cooling Hierarchy: 1) Minimise internal heat generation through energy efficient design 2) Reduce the amount of heat entering the building in summer (e.g. shading and fenestration) 3) Manage the heat within the building through thermal mass, room height and green roofs **Passive ventilation** 4) 5) **Mechanical ventilation** 6) Active cooling systems (ensuring the lowest carbon option) **Avoiding Overheating** The following measures have been taken in accordance with the cooling hierarchy to reduce Measures taken: overheating and the need for cooling: Minimise internal heat generation through energy efficient design 1) Internal heat gains have been minimised where possible. Energy Efficient appliances will help reduce internal heat gain and reduce the cooling requirement. LED bulbs can emit 80% less heat

Energy efficient lighting will also be specified (>45 lumens per circuit watt). LED lighting will be specified and a lumen per circuit watt figure of 9W/m² will be targeted.

'Be Clean': Cooling Energy Assessment Ellerdale Road

Avoiding Overheating 2) Reduce the amount of heat entering the building in summer (e.g. shading Measures taken: and fenestration) Direct solar gains will be controlled in the following ways: Solar control – all methods controlling solar gain to within tolerable limits have been considered. The location, size, design and type of window openings and glazing have been optimised, and reduced solar gain factors from low emissivity windows with a g-value of 0.55 have been specified. Dark-coloured curtain/roller blinds will be specified to limit solar gain. The shading has also been optimised to avoid substantially reducing daylighting or increasing the requirement for electric lighting. Heat transfer and infiltration has been controlled in the following ways: Insulation levels have been maximised and the resulting u-values are lower than required by Building Regulations. The build-ups therefore prevent the penetration of heat as much as practically possible. See the 'Be Lean' section of this report for target u values. A reduced air permeability rate of 3 m³/(hr.m²) @ 50 pa has been targeted to minimise uncontrolled air infiltration. This will require attention to detailing and sealing. See 'Be Lean' section of this report for details of how this will be achieved. Manage the heat within the building through thermal mass, room height and 3) green roofs. The following measures have been specified to manage heat accumulation within the building: High thermal mass - exposed building fabric materials such as masonry or concrete have been utilised in the form of concrete floors and dense masonry external walls. These materials act as 'thermal batteries'; they absorb heat gains during the day when the building is occupied and 'store' it for an extended period, thereby helping to stabilise daytime temperatures. At night this heat can be dissipated, which 'resets' the heating cycle. Ventilation will also be used at night to purge the stored heat within the structure. A 'ground coupled' system that uses the Examples of how the thermal mass absorbs thermal storage capacity of the ground has not been specified as the heat during day and emits it during night. passive ventilation option has been selected instead.

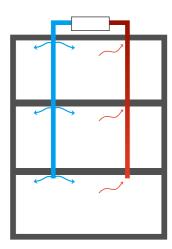
'Be Clean': Cooling Energy Assessment Ellerdale Road


Avoiding Overheating Measures taken:

- Room heights high ceilings are traditionally used in hot climates to allow thermal stratification so that occupants can inhabit the lower cooler space, and to decrease the transfer of heat gain through the roof. The existing building has floor to ceiling heights of approximately 2.8m. As the roof will be well insulated to achieve a U-value of 0.11 W/m²K, there will be minimal penetration of heat through the roof.
- Green roofs a green roof has been specified for the scheme. This will
 act as an insulation barrier and the ecological processes will reduce the
 amount of solar energy absorbed by the roof membrane, so will reduce
 temperatures below the surface and cool the building areas directly
 below.

4) Passive ventilation

Ventilation that does not use fans or mechanical system has been specified to reduce the cooling load.


• Openable windows are specified on the two main external facades of the building. Cross ventilation will be achieved by opening windows on two facades and ensuring there is a clear path for airflow.

Typical building section demonstrating passive cross ventilation.

'Be Clean': Cooling Energy Assessment Ellerdale Road

Avoiding Overheating Measures taken:

Typical building section demonstrating a simple method of supply and extract ventilation system.

5) Mechanical ventilation

Passive ventilation will not be adequate to cool the building to the required temperature. Mechanical ventilation will be utilised in the following forms:

- A mixed mode system will be implemented. This will be complimentary to the passive cooling measures taken. During summer months, mechanical ventilation using fans will circulate and remove hot air from the building. The building will also adopt a zoned design to allow natural ventilation where possible and mechanical ventilation where there are increased cooling loads.
- Fan powered ventilation: single point extracts will be used in WCs and kitchen. A whole building system will be specified which will use air handling units with separate supply and extract fans. Heat recovery units will also be specified to reduce energy demand, optimal performance will be achieved by the reduced air permeability rate of 3 m³/(hr.m²) @ 50 pa.
- The mechanical systems will have the following efficiencies which are in compliance with the Domestic Building Services Compliance Guide:
 - ✓ Specific fan power of 0.52 W/l/s for whole ventilation systems with heat recovery
 - ✓ Heat recovery efficiency of 90%

Overheating Risk:

The overheating risk considering all the above strategies, described passive measures, has been assessed for the development and is presented in the table below:

Dwellings	Overheating risk according to SAP
1 Ellerdale Road	Slight

According to the GLA guidance on preparing energy assessments (April 2015), Section 11, a dynamic modelling to assess the risk of overheating should be carried out. However, due to the overheating results of SAP showing that there is no significant risk of overheating, it has been considered that a dynamic modelling is not required.

'Be Clean': Cooling Energy Assessment Ellerdale Road

Efficiency Measures taken:

6) Active cooling systems (ensuring the lowest carbon option)

Passive design measures and the use of natural and mechanical ventilation result in slightly overheating risk. In order to guarantee the occupant's comfort, an air conditioning system has been specified for. Following the methodology of the cooling hierarchy has progressively reduced the demand for cooling.

The monthly cooling requirements of the dwelling are presented in the table below.

	Monthly Cooling Requirement (kWh/m²/year)			
Dwellings	June	July	August	Annual
1 Ellerdale Road	0.74	0.93	0.73	2.39

To ensure the cooling system is the most carbon efficient possible the following parameters have been selected:

- Location: Indoor cooling units have been specified on a localised basis where internal gains are too high. The units will be fully fitted with local temperature controls for optimal usage.
- The location of the outdoor units that 'dump' the heat has been carefully considered so not to cause problems for people and the environment, and not to add to the urban heat island effect. They will be located on the roof space and will allow adequate air movement around the condensing units, this will ensure maximum operating efficiency and will limit the impacts of dumped heat on people and the environment.
- The AC systems will have the following efficiencies which are in compliance with the Domestic Building Services Compliance Guide:
 ✓ Energy label class of A.

'Be Green': Renewable Energy Energy Assessment Ellerdale Road

In line with Policy 5.7 of the London Plan the feasibility of renewable energy technolo has been considered. A detailed site-specific analysis and associated carbon saving calculations have also been provided for renewable energy technologies for the feasib options.			
Each technology has been assessed under 5 broader categories. There are key criteria for each category on which the technology is evaluated. The key criteria have been given a weighting based on a tick-system, a graphical representation of this is shown below:			
\checkmark \checkmark \checkmark \checkmark \checkmark = 1 scored out of a possible 5			
The weighting of each of the criteria within the categories is shown below:			
 Local, site-specific impact: (Maximum score of 4) Local planning criteria = Land used by all components = Noise impact from operation = Suitability and design impact: (Maximum score of 4) Interaction on the current building design = Building orientation suitability = Buildability of installation = Economic viability: (Maximum score of 5) Capital cost of all components = Grants and funding available = De bail optication (complexible) = 5.5.10, 10.15, addition 			
 Payback periods (years) 3-5, 5-10, 10-15 = ✓ ✓ ✓ Operation and maintenance: (Maximum score of 3) Servicing requirements (low or high) = ✓ Maintenance costs (low or high) = ✓ Resource use from future maintenance (low or high) = ✓ CO₂ and sustainability: (Maximum score of 10) Carbon saving per year = ✓ ✓ ✓ ✓ Impact of future grid decarbonisation (gas vs. electric) = ✓ ✓ Local air quality/pollution = ✓ ✓ 			

Key comments on each of the criteria and the corresponding score will be provided in a table (example below) for each of the technologies. The score for each of the criteria will be summed and each of the technologies will then be ranked. The assessment of each technology is undertaken on the following pages.

Renewable	Local, site-specific	Suitability and	Economic	Operation and	CO₂ and
Technology	impact	design impact	viability	maintenance	sustainability
	~ ~ ~ ~ ~		~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~	

'Be Green': Renewable Energy Energy Assessment Ellerdale Road

Biomass & Biofuel:

Rejected

Biomass is normally considered a carbon 'neutral' fuel, as the carbon dioxide emitted on burning has been recently absorbed from the atmosphere by photosynthesis. Although some form of fossil fuel derived inputs are required in the production and transportation of the fuel.

Wood is seen as a by-product of other industries and the small quantity of energy for drying, sawing, pelleting and delivery are typically discounted. Biomass from coppicing is likely to have external energy inputs from fertiliser, cutting, drying etc. and these may need to be considered. In this toolkit, all biomass fuels are considered to have zero net carbon emissions.

Biomass can be burnt directly to provide heat in buildings. Wood from forests, urban tree pruning, farmed coppices or farm and factory waste, is the most common fuel and is used commercially in the form of wood chips or pellets. Biomass boilers can also be designed to burn smokeless to comply with the Clean Air Acts.

Boilers can be fed automatically by screw drives from fuel hoppers. This typically involves daily addition of bagged fuels.

A biomass boiler could be installed on site for supplementary LTHW heating; however, a major factor influencing the suitability of a biomass boiler is the availability of the biomass fuel. A local and reliable fuel source would be essential for the biomass boiler to be an efficient replacement for a conventional boiler system. Therefore, a very comprehensive feasibility assessment needs to be undertaken to understand the practicalities of such a system.

It is estimated that the heating and hot water demand of the site is too small to meet the required CO_2 emissions reduction if a biomass boiler was a standalone system. Therefore a biomass boiler would need to be combined with energy demand reduction measures and/or CHP. In order to meet the 35% CO_2 emissions reduction a biomass boiler would need to be installed. The likely installed cost would be circa £15,000. The additional cost of providing and storing the bio-fuel also needs to be accounted for. The site is likely to be unsuitable for biomass boilers due to site constraints such as limited transport/access issues, and storage of the biomass fuel. A detailed feasibility study will be required to investigate the suitability.

Renewable Technology	Local, site-specific impact	Suitability and design impact	Economic viability	Operation and maintenance	CO ₂ and sustainability
Biomass Boiler	• • • • •	~ ~ ~ ~ ~	<i>~~~</i> ~	v v v	~~~~~ ~~~~~
	Local air quality impacts, increased transport usage on the restricted site, increased plant space.	Increase in plant space required, orientation fine, slightly increased buildability issues.	Increased capital costs of installation, typical payback of 8 years	Increased maintenance relative to gas boiler, resource use not significantly increased if well serviced.	Very low carbon intensity of feedstock if properly procured. Decarbonisation impact not applicable, air quality issues.

'Be Green': Renewable Energy Energy Assessment Ellerdale Road

Photovoltaic (PV):

Accepted

Photovoltaic systems convert energy from the sun into electricity through semi conductor cells. Systems consist of semi-conductor cells connected together and mounted into modules. Modules are connected to an inverter to turn the direct current (DC) output into alternating current (AC) electricity for use in buildings.

Photovoltaic systems can be discreet through being designed as an integral part of the roof. An 'invisible' design using slates or shingles as opposed to an architectural statement could be preferable in a sensitive area.

Photovoltaics supply electricity to the building and are attached to electricity gird or to any other electrical load. Excess electricity can be sold to the National Grid when the generated power exceeds the local need. PV systems require only daylight, not sunlight to generate electricity (although more electricity is produced with more sunlight), so energy can still be produced in overcast or cloudy conditions.

The cost of PV cells is heavily dependent on the size of the array. There are significant cost reductions available for larger installations.

The most suitable location for mounting photovoltaic panels is on roofs as they usually have the greatest exposure to the sun. The proposed site has a potential useable roof area of approximately 65 m² and is orientated southwest.

Renewable Technology	Local, site-specific impact	Suitability and design impact	Economic viability	Operation and maintenance	CO ₂ and sustainability
Photovoltaic	No local air quality impacts, use of unutilised roof space, conservation officer has concerns for part	Can be added to the roof, good orientation, and slightly increased buildability issues for wiring and metering.	Increased capital costs of installation, typical payback of 8 years, Feed in Tariff available.	Limited servicing and maintenance i.e. 1 visit per year, inverter will require replacement.	High carbon saving from electricity, uses minimal grid electricity, no local air impact, high embodied energy
	of the site, no noise issues.				of panels.

'Be Green': Renewable Energy Energy Assessment Ellerdale Road

Solar Thermal:

Rejected

Solar water heating systems use the energy from the sun to heat water for domestic hot water needs. The systems use a heat collector, generally mounted on the roof in which a fluid is heated by the sun. This fluid is used to heat up water that is stored in either a separate hot water cylinder or a twin coil hot water cylinder inside the building. The systems work very successfully in all parts of the UK, as they can work in diffuse light conditions.

Like photovoltaic panels the most suitable location for mounting solar hot water panels is on roofs as they usually have the greatest exposure to the sun. The proposed site has a potential useable roof area of approximately 65 m^2 and is orientated southwest.

It is estimated that the CO_2 emissions reduction that would be produced by solar hot water as a standalone system would not be adequate to achieve the required CO_2 emissions reduction target. Therefore a solar hot water system would need to be combined with more energy efficiency strategies, a CHP or additional renewable technologies to achieve the carbon reduction target.

Renewable Technology	Local, site-specific impact	Suitability and design impact	Economic viability	Operation and maintenance	CO ₂ and sustainability
Solar Thermal	~ ~ ~ ~ ~	~ ~ ~ ~ ~	~~ ~~~	~ ~ ~ ~	<i></i>
	No local air quality impacts, use of unutilised roof space, conservation officer has concerns for part of the site, no noise issues.	Can be added to the roof, good orientation, and slightly increased buildability issues for piping and cylinders.	Increased capital costs of installation, typical payback of 8 years, Renewable Heat Incentive available.	Limited servicing and maintenance i.e. 1 visit every two years, heat transfer fluid requires replacing every 10 years.	Lower carbon saving as primarily displacing gas, uses minimal grid electricity, no local air impact, medium embodied energy of panels.

'Be Green': Renewable Energy Energy Assessment Ellerdale Road

Wind Energy:

Rejected

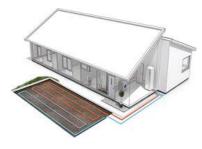
Wind energy is a cost effective method of renewable power generation. Wind turbines can produce electricity without carbon dioxide emissions in ranges from watts to megawatt outputs. The most common design is for three blades mounted on a horizontal axis, which is free to rotate into the wind on a tall tower.

The blades drive a generator either directly or via a gearbox to produce electricity. The electricity can either be linked to the grid or charge batteries. An inverter is required to convert the electricity from direct current (DC) to alternating current (AC) for feeding into the grid.

Modern quiet wind turbines are becoming viable in low density areas where ease of maintenance and immediate connection to the grid or direct use of the electricity in a building, may make them cost effective, despite lower wind speeds than open areas.

Wind turbines are generally less suited to dense urban areas as their output will be affected by potentially lower and more disrupted wind speeds, and their use of much more cost effective machines may be prohibited by their proximity to some building types. Small turbines can be used in inner city areas mounted on buildings, although there are relatively few installations.

Typically a 1.5 kW turbine can provide 4,000 kWh of electrical power annually. To achieve the required CO_2 emissions reduction target approximately 1 turbines would be required as a standalone solution. The indicative cost of a smaller roof mounted turbine is £2,000/kW so achieving the required CO_2 emissions reduction would cost approximately £3,000.


A detailed wind resource evaluation would be required for the site to fully understand the generation potential and payback period. Also, it is likely that planning restrictions and resistance from small groups within the local community could also affect the viability of wind energy for the project.

Renewable Technology	Local, site-specific impact	Suitability and design impact	Economic viability	Operation and maintenance	CO₂ and sustainability
Wind Energy	No local air quality impacts, use of unutilised roof space, conservation officer will have concerns for the site, minor noise	Can be added to the roof, relatively limited wind speeds in local area, increased buildability issues for wiring and metering.	Medium capital costs of installation, typical payback < 5 years, Feed in Tariff available.	Very limited servicing and maintenance, costs of 2-3% typical.	High carbon saving from electricity, output limited from urban installation, consumes little grid electricity, no local air impact,
	ISSUES.				low embodied energy of panels.

'Be Green': Renewable Energy Energy Assessment Ellerdale Road

Ground Source Heat Pump (GSHP):

Rejected

Geo-thermal energy is essentially heat collected from the ground. Heat obtained from the ground may be considered it as a source of heating and cooling within the UK by the use of a geo-thermal heat pump or ground source heat pumps.

A ground source heat pump is a device for converting energy in the form of low level heat to heat at a usable temperature. The heat pump consists of five main parts; ground collector loop/or bores, heat exchanger, compressor, condenser heat exchanger and expansion valve.

At approximately 1.2-1.5 metres down below ground level the temperature is a constant 10 to 12° C. Any bores would need to be sunk to an effective depth of 50 - 120m and a ground feasibility report would be required to ascertain if this method of heat source was viable.

From the bores pre-insulated pipework is laid in the ground to the heat exchanger device. The system is filled with water and antifreeze. The cooled water is pumped around the loop / bore gathering energy as it circulates. The water that has been heated to 10-12°C is returned to the ground source heat exchanger where the energy is transferred to the refrigerant gas. For every 1kW of energy used to compress the refrigerant, the process 'gives up' 4 kW of energy for use in the system being used to heat the building.

Typical costs for an installation this are in the region of £16,000-20,000 for a smaller commercial or domestic size installation, with general installation costs at £1200 /kW of energy produced.

Renewable Technology	Local, site-specific impact	Suitability and design impact	Economic viability	Operation and maintenance	CO₂ and sustainability
GSHP	No local air quality impacts, not visible so conservation friendly, no noise issues, however the constrained site may prohibit its installation.	Can be added to the roof, good air- flow on roof, increased buildability issues for pipework and heating emitters internally.	High capital costs of installation, typical payback of 15 years where gas is displaced, Renewable Heat Incentive available.	Limited servicing and maintenance i.e. 1 visit per year, mechanical parts may require replacement over lifespan.	Limited carbon saving from gas displacement, consumes some electricity so benefits from decarbonisation, no local air impact, high embodied energy of
					equipment.

'Be Green': Renewable Energy Energy Assessment Ellerdale Road

Air Source Heat Pump (ASHP):

Rejected

Air source heat pump systems work on the same principle as a ground source heat pump although they use the outside air as the heat source.

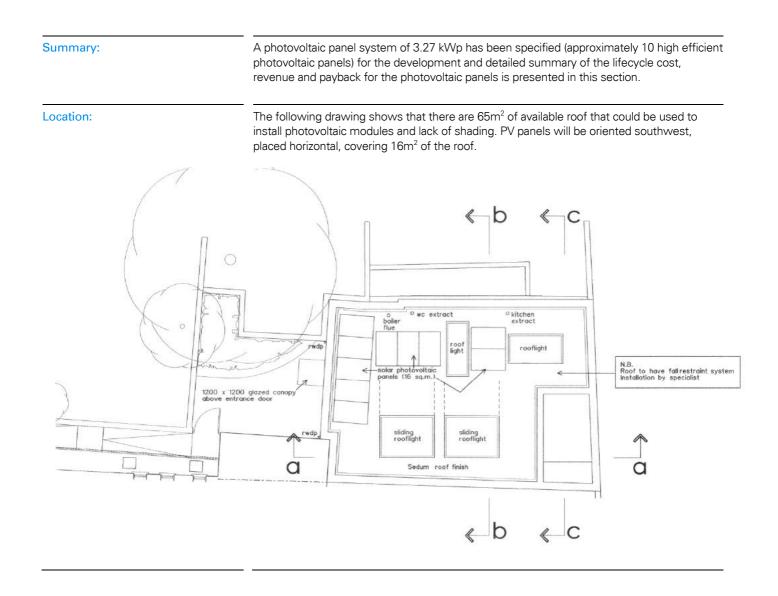
The coefficients of performance given by air source heat pump systems are inferior to that of ground source systems due to varying air temperatures. In the depth of winter the energy efficiency of an air source system will be lower than that of a ground source system, and it is likely that more back-up heat will be required if an air source unit is fitted. This back-up heat often comes from a direct electric heater. They operate over a varying temperatures range of -15° C to $+25^{\circ}$ C, however, the performance will reduce to below the required 3 to 1 carbon saving ratio in winter, and the also require a defrosting mechanism to melt ice that forms on the air heat exchanger.

ASHPs are cheaper to install than ground source heat pumps but are only available on a relatively small scale. If applied across a larger site a number of plant zones would be required for generation of heat, leading to increased plant space requirements. Typical costs for an installation this are in the region of £10,000 for a smaller commercial or domestic size installation.

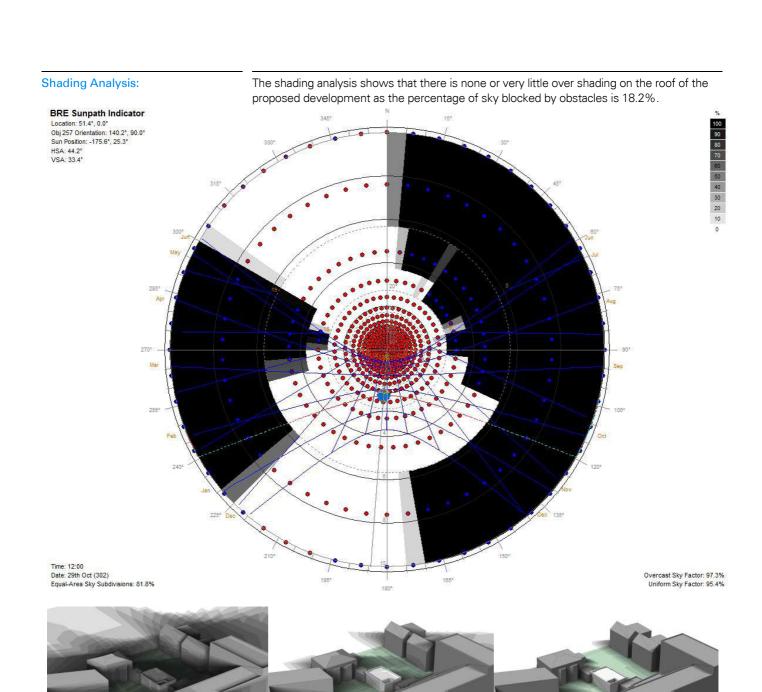
Carbon dioxide emissions savings will typically be less than that of the ground source heat pump. Air source heat pumps may be more suitable as an HVAC solution.

Renewable	Local, site-specific	Suitability and	Economic	Operation and	CO₂ and sustainability
Technology	impact	design impact	viability	maintenance	
ASHP	No local air quality impacts, conservation officer may have minor concerns over visual impact, no noise issues.	Can be added to the roof, good air- flow on roof, increased buildability issues for pipework and heating emitters internally.	Medium- high capital costs of installation, typical payback >15 years where gas is displaced, Renewable Heat Incentive available.	Limited servicing and maintenance i.e. 1 visit per year, mechanical parts may require replacement over lifespan.	Limited carbon saving from gas displacement, less efficient in winter, consumes electricity so benefits from decarbonisation, no local air impact, high embodied energy of equipment.

'Be Green': Summary of Renewable Technologies Energy Assessment Ellerdale Road


Summary Comparison Matrix:

An assessment of the feasibility of each of the technologies is shown below.


Renewable Technology	Local, site- specific impact	Suitability and design impact	Economic viability	Operation and maintenance	CO₂ and sustainability	Total Score
Biomass Boiler	• • • • •	V V V V	~~ ~~~~	v v v	<i>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </i>	15 out of 26
Photovoltaic	~ ~ ~ ~ ~	~~ ~~	~~ ~~~	~ ~ /	<i>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </i>	17 out of 26
Solar Thermal	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~ ~~	~~ ~~~	~~~	~~~~	16 out of 26
Wind Energy	v v v v	~~ ~	<i>~~~</i>	~ ~ ~ ~	<i>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </i>	17 out of 26
GSHP	~ ~ ~ ~ ~	~~ ~~	••••	~ ~ ~ ~	~~~~~ ~~~~~	15 out of 26
ASHP	~ ~ ~ ~ ~	~~ ~~	~~ ~~~~	~~ ~	<i>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </i>	15 out of 26

Renewable Technology Conclusion & Specification: Photovoltaic panels and wind energy have scored the best. It is assumed that wind energy would be considered unsuitable for the area by conservation criteria and that the local residents would raise concerns over potential noise and turbulence. Therefore, photovoltaic panels have been considered to be the optimum balance of sustainable and economic objectives.

'Be Green': Photovoltaic Energy Assessment Ellerdale Road

'Be Green': Photovoltaic Energy Assessment Ellerdale Road

December

March

June

'Be Green': Photovoltaic Energy Assessment Ellerdale Road

Lifecycle Cost:	The lifecycle of the proposed high efficiency panels is 25 years. cost of the panels, the maintenance of the system and replacer								
	The total costs for the proposed system's lifetime is:								
	 Capital Cost = £6,540 Maintenance Cost = £1,500 Operation Cost = £900 (replacement inverters etc.) Total Costs = £7,600 								
Revenue and Payback Parameters:	• The cost of electricity to be displaced is 12p/kWh.								
	 The 3.27kWp system is estimated to generate 2,487 kWh/yr. Based on the assumption that 50% of the electricity will be used on site, an offset saving of £149/yr will be achieved. 								
	• With the current Feed in Tariff, a tariff of 14.77p/kWh will be received for generation, and 4.77p/kWh will be received for export, which gives an additional saving of £427 per year.								
Summary Performance Calculations:	The following tables summarise the reduction in carbon emissions and the life cycle cost of the photovoltaic system.								
	Energy and Carbon Performance Criteria	Value							
	Predicted Annual Energy Saved (kWh/yr)	2,487							
	Annual Carbon Emissions Reductions (kg CO ₂ /year)	1,291							
	CO ₂ Emissions Reduction (%)	39.0							
	Cost Performance Criteria	Value							
	Total Cost Over Life Cycle (£)	8,940							
	Predicted Annual Savings (£) 576								
	Payback Period (yeas)	15.5							

Conclusion Energy Assessment Ellerdale Road

Summary

The baseline carbon emissions for the scheme are 3.31 Tonnes CO₂/yr.

As demonstrated, the development will reduce carbon emissions by 2.2% from the fabric energy efficiency measures described in the "Be Lean" section, and will reduce total carbon emissions by 41.2% over Building Regulations with the further inclusion of low and zero carbon technologies.

GLA's Energy Hierarchy – Regulated Carbon Emissions										
	Baseline:	Be Lean:	Be Clean:	Be Green:						
CO ₂ emissions (Tonnes CO ₂ /yr)	3.31	3.23	-	1.94						
CO ₂ emissions saving (Tonnes CO ₂ /yr)	-	0.07	-	1.29						
	-	2.2	-	39.0						
Total CO ₂ emissions saving (Tonnes CO ₂ /yr)	1.36									

41.2% Total carbon emissions savings over Part L of the Building Regulations 2013 achieved

Appendix Energy Assessment Ellerdale Road

Further Information:

As required by the GLA, the emission figures and details of the calculations and methodology used to determine the figures provided within the report can be found in the following pages:

Baseline – TER from the Lean SAP TER Worksheets.

Lean – DER from the Lean SAP DER Worksheets.

Clean – There in no CHP scenario.

Green - DER from the Green SAP DER Worksheets.

Appendix Energy Assessment Ellerdale Road

Baseline Scenario

				User D	etails:						
Assessor Name: Software Name:	Stroma FS	AP 201			Strom Softwa	are Ve	rsion:		Versic	on: 1.0.1.25	
A 1 1	4 Ellendele I	2!	Р	roperty .	Address	: House	1-LEAN				
Address : 1. Overall dwelling dimer	1 Ellerdale F	Road									
	1510115.			۸ro	a(m²)			ight(m)		Volume(m ³)	
Basement					• •	(1a) x	-	.65	(2a) =	177.55	(3a)
Ground floor						(1b) x		3	(2b) =](3b)
First floor]	201	
	\ - (4 1 \ - (4 - \ -)					(1c) x		3	(2c) =	262.32	(3c)
Total floor area TFA = (1a	ı)+(1b)+(1c)+(1d)+(1e	e)+(1r	1) 23	21.44	(4)					_
Dwelling volume						(3a)+(3b)+(3c)+(3d	l)+(3e)+	.(3n) =	640.87	(5)
2. Ventilation rate:	main	-	econdar		othor		total			m ³ nor hou	
	heating		eating	у 	other		total			m ³ per hou	
Number of chimneys	0	+	0	+	0	=	0	X 4	40 =	0	(6a)
Number of open flues	0	+	0	+	0] = [0	x	20 =	0	(6b)
Number of intermittent far	IS					Γ	4	× 1	10 =	40	(7a)
Number of passive vents						Γ	0	x	10 =	0	(7b)
Number of flueless gas fir	es					Ē	0	X	40 =	0	(7c)
									Air ch	anges per ho	ur
Infiltration due to chimney	rs, flu <mark>es an</mark> d fa	ans = (6	a)+(6b)+(7	a)+(7b)+(7c) =	Г	40		÷ (5) =	0.06	(8)
If a pressurisation test has be	en ca <mark>rried o</mark> ut or	is intende	ed, procee	d to (17), d	otherwise o	continue fr	rom (9) to ((16)			_
Number of storeys in th	e dwelling (ns	5)								0	(9)
Additional infiltration			_					[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0.2 if both types of wall are pre							ruction			0	(11)
deducting areas of opening			ponung ic	ine great	er wall are	a (allel					
If suspended wooden fl	oor, enter 0.2	(unseal	ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else e	enter 0								0	(13)
Percentage of windows	and doors dr	aught st	ripped							0	(14)
Window infiltration					0.25 - [0.2	x (14) ÷ 1	= [00]			0	(15)
Infiltration rate					(8) + (10)	+ (11) + (1	12) + (13) -	+ (15) =		0	(16)
Air permeability value, o	q50, expresse	d in cub	oic metre	s per ho	our per s	quare m	etre of e	nvelope	area	5	(17)
If based on air permeabilit	ty value, then	(18) = [(1	7) ÷ 20]+(8	8), otherw	ise (18) = ((16)				0.31	(18)
Air permeability value applies		on test has	s been dor	ne or a deg	gree air pe	rmeability	is being u	sed			_
Number of sides sheltered	d				(20) - 1	[0 075 x (/	10)1			2 0.85	(19)
Shelter factor $(20) = 1 - [0.075 \times (19)] =$											(20)
Infiltration rate incorporati	-		ı		(21) = (18	j ⊼ (∠∪) =				0.27	(21)
Infiltration rate modified fo			1	Jul	Δυσ	Son	Oct	Nov	Doo		
	Mar Apr	May	Jun	Jui	Aug	Sep	Oct		Dec	l	
Monthly average wind spectrum (22)m= 5.1 5			2.0	2.0	27	А	4.0	A F	47	1	
(22)m= 5.1 5	4.9 4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7	l	

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
Adjust	ed infiltr	ation rat	e (allow	ing for sl	nelter ar	nd wind s	speed) =	(21a) x	(22a)m					
	0.34	0.33	0.33	0.29	0.29	0.25	0.25	0.25	0.27	0.29	0.3	0.31]	
		<i>ctive air</i> al ventila	-	rate for t	he appl	icable ca	se		-	-	-	-	-	
				endix N, (2	23h) - (23)	a) x Emv (4	auation (N	(5)) othe	rwise (23t	(23a)				0 (23a)
				ciency in %) = (20a)				0 (23b)
			-	entilation	-					2b)m + (23b) × [1 – (23c)	L) ÷ 1001	0 (23c)
(24a)m=		0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) lf	balance	ed mech	anical ve	entilation	without	heat rec	covery (N	и ЛV) (24t)m = (2	1 2b)m + (i	23b)	1	1	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24b)
c) If	whole h	iouse ex	tract ver	ntilation of	or positiv	ve input v	ventilatio	on from a	outside	-	-	-	-	
i	if (22b)r	n < 0.5 >	< (23b), t	then (24	c) = (23l	o); other	wise (24	c) = (22k	o) m + 0	.5 × (23t) 		1	
(24c)m=		0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous)m = (221	•	•				0.51				
(24d)m=	· /	0.56	0.55	0.54	0.54	0.53	0.53	0.53 + [(2	0.54	0.54	0.54	0.55		(24d
		change	rate - ei	nter (24a) or (24	b) or (24	L c) or (24	d) in box	(25)				1	
(25)m=	0.56	0.56	0.55	0.54	0.54	0.53	0.53	0.53	0.54	0.54	0.54	0.55	1	(25)
													1	
S. Re ELEN		s and ne Gros		paramet Openin		Net Ar	222	U-val		AXU		k-value	<u>_</u>	AXk
ELEN		area		r		A ,r		W/m2		(W/	K)	kJ/m ² ·		kJ/K
Doo <mark>rs</mark>						1.76	×	1	=	1.76				(26)
Windo	ws Type	e 1				0.65	x1.	/[1/(1.4)+	0.04] =	0.86				(27)
Windo	ws Type	e 2				4.82	x1.	/[1/(1.4)+	0.04] =	6.39				(27)
Windo	ws Type	e 3				7.7	x1.	/[1/(1.4)+	0.04] =	10.21				(27)
Windo	ws Type	e 4				8.78	x1.	/[1/(1.4)+	0.04] =	11.64				(27)
Windo	ws Type	e 5				4.17	x1.	/[1/(1.4)+	0.04] =	5.53				(27)
Windo	ws Type	e 6				4.5	x1.	/[1/(1.4)+	0.04] =	5.97				(27)
Rooflig	ghts Typ	be 1				2.2758	15 x1	/[1/(1.7) +	0.04] =	3.86888	6			(27b)
Rooflig	ghts Typ	e 2				2.2758	15 x1	/[1/(1.7) +	0.04] =	3.86888	6			(27b)
Rooflig	ghts Typ	be 3				3.2862	77 x1	/[1/(1.7) +	0.04] =	5.58667	1			(27b)
Floor						87.44	4 X	0.13	=	11.367	2			(28)
Walls -	Type1	176.	88	0		176.8	8 X	0.18	=	31.84	i F		= i	(29)
Walls ⁻	Type2	139.	89	44.2	5	95.64	t X	0.18	=	17.22	i F		= i	(29)
Roof		87.4	14	11.1	2	76.32	<u>2</u> X	0.13	=	9.92	i F		Ξ i	(30)
Total a	area of e	elements	s, m²			491.6	5				L		I	(31)
						-								
Party v	wall					12.41	x	0	=	0	[(32)

* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 ** include the areas on both sides of internal walls and partitions

Fabric heat loss, $W/K = S (A \times U)$

(26)	(30) + (32) =	-
(-)	()	

146.14 (33)

Heat c	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a)	(32e) =	64317.84	(34)
Therm	al mass	parame	ter (TMF	- = Cm -	: TFA) ir	n kJ/m²K			Indica	tive Value:	Medium		250	(35)
	0	sments wh ad of a dei			construct	ion are noi	t known pr	ecisely the	indicative	e values of	TMP in Te	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated	using Ap	pendix I	<						24.58	(36)
			are not kn	own (36) =	= 0.15 x (3	1)								_
	abric he									(36) =	(170.72	(37)
Ventila			1	d monthly						= 0.33 × (_	1	
(20)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(20)
(38)m=	117.87	117.39	116.93	114.77	114.36	112.47	112.47	112.12	113.2	114.36	115.18	116.04		(38)
		coefficier	· · · · · · · · · · · · · · · · · · ·						. ,	= (37) + (3	,		1	
(39)m=	288.59	288.12	287.66	285.49	285.08	283.2	283.2	282.85	283.92	285.08	285.9	286.76	005.40	
Heat lo	oss para	meter (H	HLP), W	/m²K						Average = = (39)m ÷		12/12=	285.49	(39)
(40)m=	1.3	1.3	1.3	1.29	1.29	1.28	1.28	1.28	1.28	1.29	1.29	1.29		—
Numbe	er of day	vs in mor	nth (Tab	le 1a)						Average =	Sum(40)₁	12 /12=	1.29	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31]	(41)
4. Wa	ater heat	ting ener	rgy <mark>requ</mark>	irement:								kWh/y	ear:	
if TF if TF Annua <i>Reduce</i>	A > 13.9 A £ 13.9 I averag	9, N = 1 e hot wa al average	+ 1.76 x ater usag	ge in litre usage by	es per da	ay Vd,av Iwelling is	erage = designed t)2)] + 0.0 (25 x N) to achieve	+ 36		9)	03 5.16]	(42) (43)
	Jan	Feb	Mar	- · ·	May	Jun	Jul	Δυσ	Sep	Oct	Nov	Dec	1	
Hot wate				Apr ach month	Vd,m = fa			Aug (43)	Jeh		INOV	Dec	J	
(44)m=	116.77	112.53	108.28	104.03	99.79	95.54	95.54	99.79	104.03	108.28	112.53	116.77	1	
)) Tm / 3600		Total = Su	m(44) _{1 12} =	=	1273.89	(44)
(45)m=	173.17	151.46	156.29	136.26	130.74	112.82	104.55	119.97	121.4	141.48	154.44	167.71	1	
	taneous w	vater heatii	l ng at point	t of use (no	hot water	storage),	enter 0 in	boxes (46)		Total = Su	m(45) _{1 12} =	:	1670.28	(45)
(46)m=	25.98	22.72	23.44	20.44	19.61	16.92	15.68	18	18.21	21.22	23.17	25.16	1	(46)
· · ·	storage		20.11	20.11	10.01	10.02	10.00	10	10.21	21.22	20.11	20.10		(- /
Storag	e volum	e (litres)	includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0]	(47)
Otherv	-	stored			velling, e ncludes i			(47) ombi boil	ers) ente	er '0' in (47)		_	
	-		eclared I	oss facto	or is kno	wn (kWł	n/day):					0	1	(48)
Tempe	erature f	actor fro	m Table	2b								0	ĺ	(49)
			-	, kWh/ye cylinder l	ear loss fact	or is not		(48) x (49)	=			0	j	(50)

Hot water storage loss factor from Table 2 (kWh/litre/day) 0 If community heating see section 4.3 0 Volume factor from Table 2a 0												(51) (52)		
Temperature factor from Table 2b 0												(53)		
Energy lost from water storage, kWh/year $(47) \times (51) \times (52) \times (53) = 0$												(54)		
Enter (50) or (54) in (55)												0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
	-	-	-	-		-		-	-	-		m Append	l lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
						Ū	0	U	0	0				
Primary circuit loss (annual) from Table 3 0 (58) Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m (58)														
	-	factor fi					. ,	• •		r thermo	stat)			
(59)m=									0		0	0		(59)
								_	-			-		
		lculated	1	-	,	,	、 ,			1	1	1	1	
(61)m=	50.96	46.03	50.96	49.32	50.85	47.12	48.69	50.85	49.32	50.96	49.32	50.96		(61)
Total h	eat req	uired for	water h	eating ca	alculated	for eacl	n month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)r	n
(62)m=	224.13	197.48	207.25	185.57	181.59	159.94	153.23	170.82	170.71	192.44	203.75	218.67		(62)
Solar D⊦	W input	calculated	using App	endix G or	Appendix	H (negativ	ve quantity	v) (enter '0	' if no sola	r contributi	ion to wate	er heating)		
(add ad	ddi <mark>tiona</mark>	l lines if	FGHRS	and/or V	WWHRS	applies	, see Ap	pendix G	3)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter											
(64)m=	<mark>22</mark> 4.13	197.48	207.25	185.57	181.59	159.94	153.23	170.82	170.71	19 <mark>2.44</mark>	203.75	218.67		
			7					Outp	out from wa	ater heate	r (annual)₁	12	2 <mark>265.59</mark>	(64)
Heat g	ains fro	m water	heating,	kWh/mo	onth 0.2	5 ′ [0.85	× (45)m	+ (61)m	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]	
(65)m=	70.32	61.87	64.71	57.63	56.18	49.29	46.93	52.6	52.69	59.78	63.68	68.5		(65)
inclu	de (57)	n in calo	ulation	of (65)m	only if c	vlinder is	s in the c	dwellina	or hot w	ater is fr	om com	munity h	eating	
	. ,	ains (see		. ,	•	,						,	g	
Metabo	Jiic gain Jan	is (Table Feb	<u>5), vvat</u> Mar	ts Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49		(66)
										101.40	101.40	101.40		(00)
-		(calcula	· · · ·	·	· ·	i	,			00.70	00.04	05.00	l	(67)
(67)m=	34.86	30.96	25.18	19.06	14.25	12.03	13	16.9	22.68	28.79	33.61	35.83		(67)
		ins (calc	1					,					I	
(68)m=	390.99	395.05	384.83	363.06	335.58	309.76	292.51	288.45	298.68	320.44	347.92	373.74		(68)
Cookin	g gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a)	, also se	e Table	5	-			
(69)m=	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15		(69)
Pumps	and fai	ns gains	(Table &	5a)										
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	, aporatio	n (nega	tive valu	es) (Tab	le 5)				•	•	•	1	
	-	-121.19	· -	-121.19	-121.19	, -121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19		(71)
Water	heating	gains (T	able 5)										I	
(72)m=	94.52	92.06	86.97	80.05	75.52	68.46	63.08	70.7	73.19	80.35	88.44	92.07		(72)
(. <u> </u>	2											L,	ł	. /

Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$														
(73)m= 591.81 589.52	568.42	533.62	496.8	46	61.7	440.04	447.	.49	465.99	501.03	3 541.41	573.09		(73)
6. Solar gains:														
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.														
Orientation: Access F Table 6d	Area m²		Flux Table 6			g_ Table 6b		FF Table Co			Gains			
	·				Tabl	e oa				_	Table 6c		(W)	_
Southeast 0.9x 0.77	×	7.	7	×	36	.79	x		0.63	×	0.7	=	173.17	(77)
Southeast 0.9x 0.77	×	8.7	78	×	36.79		x		0.63	×	0.7	=	98.73	(77)
Southeast 0.9x 0.77	x	7.	7	×	62	.67	x		0.63	×	0.7	=	294.97	(77)
Southeast 0.9x 0.77	×	8.7	78	×	62	.67	x		0.63	×	0.7	=	168.17	(77)
Southeast 0.9x 0.77	x	7.	7	×	85	.75	x		0.63	x	0.7	=	403.59	(77)
Southeast 0.9x 0.77	x	8.7	78	×	85	.75	x		0.63	×	0.7	=	230.1	(77)
Southeast 0.9x 0.77	x	7.	7	×	106	6.25	x		0.63	×	0.7	=	500.07	(77)
Southeast 0.9x 0.77	x	8.7	78	×	106	6.25	x		0.63	x	0.7	=	285.1	(77)
Southeast 0.9x 0.77	x	7.	7	x	119	9.01	x		0.63	x	0.7	=	560.12	(77)
Southeast 0.9x 0.77	x	8.7	78	×	119	9.01	x		0.63	x	0.7	=	319.34	(77)
Southeast 0.9x 0.77	x	7.	7	× [118	3.15	х		0.63	x	0.7	=	556.07	(77)
Southeast 0.9x 0.77	×	-8.7	78	×	118	3.15	x		0.63	x	0.7		317.03	(77)
Southeast 0.9x 0.77	×	7.	7	x	113	3.91	×		0.63	x	0.7	=	5 <mark>36.11</mark>	(77)
Southeast 0.9x 0.77	×	8.7	78	×	113	3.91	x		0.63	x	0.7	=	3 <mark>05.65</mark>	(77)
Southeast 0.9x 0.77	×	7.	7	×	104	1.39	x		0.63	x	0.7	=	4 <mark>91.31</mark>	(77)
Southeast 0.9x 0.77	×	8.7	78	×	104	4.39	х		0.63	x	0.7	=	2 <mark>80.11</mark>	(77)
Southeast 0.9x 0.77	×	7.	7	×	92	.85	x		0.63	x	0.7	=	437	(77)
Southeast 0.9x 0.77	×	8.7	78	×	92	.85	x		0.63	x	0.7	=	249.15	(77)
Southeast 0.9x 0.77	x	7.	7	×	69	.27	x		0.63	×	0.7	=	326	(77)
Southeast 0.9x 0.77	x	8.7	78	×	69	.27	x		0.63	x	0.7	=	185.86	(77)
Southeast 0.9x 0.77	x	7.	7	×	44	.07	x		0.63	x	0.7	=	207.42	(77)
Southeast 0.9x 0.77	x	8.7	78	×	44	.07	x		0.63	x	0.7	=	118.25	(77)
Southeast 0.9x 0.77	x	7.	7	×	31	.49	x		0.63	x	0.7	=	148.2	(77)
Southeast 0.9x 0.77	×	8.7	78	×	31	.49	x		0.63	x	0.7	=	84.49	(77)
Southwest0.9x 0.77	x	4.1	7	×	36	.79			0.63	×	0.7	=	93.78	(79)
Southwest0.9x 0.77	x	4.	5	×	36	.79			0.63	x	0.7	=	50.6	(79)
Southwest0.9x 0.77	x	4.1	7	×	62	.67			0.63	x	0.7	=	159.74	(79)
Southwest0.9x 0.77	x	4.	5	×	62	.67			0.63	×	0.7	=	86.19	(79)
Southwest0.9x 0.77	×	4.1	7	×	85	.75			0.63	×	0.7	=	218.57	(79)
Southwest0.9x 0.77	×	4.	5	×	85	.75			0.63	×	0.7	=	117.93	(79)
Southwest0.9x 0.77	x	4.1	7	×	106	6.25			0.63	×	0.7	=	270.82	(79)
Southwest _{0.9x} 0.77	x	4.	5	×「		6.25			0.63	×	0.7	=	146.12	(79)
Southwest0.9x 0.77		4.1	7	×「	119	9.01			0.63	×	0.7	=	303.34	(79)
Southwest0.9x 0.77	x	4.	5	×Г	119	9.01			0.63	x	0.7	=	163.67	(79)
										_	•		n	

Southwest0.9x	0.77) ×	4.17	×	118.15	1	0.63	x	0.7	=	301.14	(79)
Southwest _{0.9x}	0.77	x	4.5	x	118.15]	0.63	x	0.7	 =	162.49	(79)
Southwest _{0.9x}	0.77	x	4.17	x	113.91]	0.63	x	0.7	 =	290.33	(79)
Southwest _{0.9x}	0.77	」 】	4.5	x	113.91]	0.63	x	0.7	=	156.65](79)
Southwest _{0.9x}	0.77] x	4.17	x	104.39]	0.63	x	0.7	=	266.07](79)
Southwest _{0.9x}	0.77	」 】	4.5	x	104.39]	0.63	x	0.7	=	143.56](79)
Southwest0.9x	0.77	x	4.17	x	92.85]	0.63	x	0.7	=	236.66](79)
Southwest _{0.9x}	0.77	x	4.5	x	92.85	ĺ	0.63	x	0.7	=	127.7	_ (79)
Southwest _{0.9x}	0.77	x	4.17	x	69.27	İ	0.63	x	0.7	=	176.55	(79)
Southwest0.9x	0.77	x	4.5	x	69.27	İ	0.63	x	0.7	=	95.26	(79)
Southwest _{0.9x}	0.77	×	4.17	×	44.07	Ì	0.63	x	0.7	=	112.33	(79)
Southwest _{0.9x}	0.77	x	4.5	x	44.07		0.63	x	0.7	=	60.61	(79)
Southwest _{0.9x}	0.77	x	4.17	x	31.49]	0.63	x	0.7	=	80.26	(79)
Southwest _{0.9x}	0.77	×	4.5	x	31.49		0.63	x	0.7	=	43.3	(79)
Northwest 0.9x	0.77	x	0.65	x	11.28	×	0.63	x	0.7	=	2.24	(81)
Northwest 0.9x	0.77	x	4.82	×	11.28	×	0.63	x	0.7	=	16.62	(81)
Northwest 0.9x	0.77	×	0.65	x	22.97	×	0.63	x	0.7	=	4.56	(81)
Northwest 0.9x	0.77	×	4.82	X	22.97	x	0.63	x	0.7	=	33.83	(81)
Northwest 0.9x	0.77	×	0.65	х	41.38	x	0.63	x	0.7	=	8.22	(81)
Northwest 0.9x	0.77	×	4.82	×	41.38	×	0.63	×	0.7	=	60.95	(81)
Northwest 0.9x	0.77	x	0.65	x	67.96	×	0.63	x	0.7	=	13.5	(81)
Northwest 0.9x	0.77	x	4.82	×	67.9 <mark>6</mark>	х	0.63	×	0.7	=	100.1	(81)
Northwest 0.9x	0.77	x	0.65	x	91.35	×	0.63	x	0.7	=	18.15	(81)
Northwest 0.9x	0.77	x	4.82	X	91.35	×	0.63	x	0.7	=	1 <mark>34.56</mark>	(81)
Northwest 0.9x	0.77	X	0.65	X	97.38	×	0.63	x	0.7	=	19.35	(81)
Northwest 0.9x	0.77	X	4.82	X	97.38	×	0.63	X	0.7	=	143.45	(81)
Northwest 0.9x	0.77	X	0.65	X	91.1	×	0.63	X	0.7	=	18.1	(81)
Northwest 0.9x	0.77	X	4.82	X	91.1	×	0.63	X	0.7	=	134.2	(81)
Northwest 0.9x	0.77	X	0.65	×	72.63	×	0.63	x	0.7	=	14.43	(81)
Northwest 0.9x	0.77	×	4.82	×	72.63	×	0.63	X	0.7	=	106.98	(81)
Northwest 0.9x	0.77	X	0.65	X	50.42	X	0.63	X	0.7	=	10.02	(81)
Northwest 0.9x	0.77	X X	4.82	x	50.42	X	0.63	x	0.7	=	74.27	(81)
Northwest 0.9x	0.77	X X	0.65	x	28.07	X	0.63	x	0.7	=	5.58	(81) (81)
Northwest 0.9x	0.77	x x	4.82	x x	28.07	x x	0.63	x x	0.7	=	41.34	(81)
Northwest 0.9x	0.77	^ x	0.65	x	14.2 14.2	x	0.63	x	0.7	=	2.82	(81)
Northwest 0.9x		^ x		x		x		x		-	20.91	(81)
Northwest 0.9x	0.77	^ x	0.65	x	9.21	x	0.63	x	0.7	=	1.83 13.57	(81)
Rooflights 0.9x	1	^ x	2.28	x	26	x	0.63	x	0.7	- _	23.49	(82)
Rooflights 0.9x	1	^ x	2.28	x	26	^ ×	0.63	x	0.7	- =	23.49	(82)
Rooflights 0.9x	1	x	3.29	x x	26	^ x	0.63	x	0.7	=	67.82	(82)
		1	0.20	1		1	0.00		0.7	1	01.02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Rooflights 0.9x	1) ×	2.28	×	54] ×	0.63	x	0.7] =	48.78	(82)
Rooflights 0.9x	1] x	2.28	 x	54	」 】 ×	0.63	x	0.7]] =	48.78	(82)
Rooflights 0.9x	1	l x	3.29	l x	54	」 】 x	0.63	x	0.7] _	140.87	(82)
Rooflights 0.9x	1] x	2.28	 x	96	」 】 ×	0.63	x	0.7]] =	86.71	(82)
Rooflights 0.9x	1] x	2.28	 x	96	」 】 ×	0.63	x	0.7]] =	86.71	(82)
Rooflights 0.9x	1	x	3.29	l x	96	」 】 x	0.63	x	0.7] _	250.43	(82)
Rooflights 0.9x	1	x	2.28	x	150] x	0.63	x	0.7	 =	135.49	(82)
Rooflights 0.9x	1	x	2.28	x	150] x	0.63	x	0.7	=	135.49	(82)
Rooflights 0.9x	1	x	3.29	x	150	x	0.63	x	0.7	=	391.3	(82)
Rooflights 0.9x	1	x	2.28	×	192	x	0.63	x	0.7	=	173.43	(82)
Rooflights 0.9x	1	x	2.28	x	192	x	0.63	x	0.7	i =	173.43	(82)
Rooflights 0.9x	1	×	3.29	×	192	x	0.63	x	0.7	=	500.86	(82)
Rooflights 0.9x	1	x	2.28	×	200	x	0.63	x	0.7	=	180.65	(82)
Rooflights 0.9x	1	x	2.28	×	200	x	0.63	x	0.7	=	180.65	(82)
Rooflights 0.9x	1	x	3.29	×	200	x	0.63	x	0.7	i =	521.73	(82)
Rooflights 0.9x	1	x	2.28	×	189	x	0.63	x	0.7	j =	170.72	(82)
Rooflights 0.9x	1	x	2.28	×	189	x	0.63	x	0.7	i =	170.72	(82)
Rooflights 0.9x	1	x	3.29	×	189	x	0.63	x	0.7	=	493.03	(82)
Rooflights 0.9x	1	x	2.28	x	157	x	0.63	x	0.7	- 1	1 <mark>41.81</mark>	(82)
Roof <mark>lights</mark> 0.9x	1	x	2.28	x	157	i 🗴	0.63	x	0.7	=	141.81	(82)
Roof <mark>lights</mark> 0.9x	1	x	3.29	x	157	x	0.63	x	0.7	=	4 <mark>09.56</mark>	(82)
Roof <mark>lights</mark> 0.9x	1	x	2.28	x	115	x	0.63	x	0.7	=	103.88	(82)
Rooflights 0.9x	1	x	2.28	x	115	×	0.63	x	0.7	=	103.88	(82)
Rooflights 0.9x	1	x	3.29	x	115	x	0.63	x	0.7] =	299.99	(82)
Rooflights 0.9x	1	x	2.28	x	66	x	0.63	x	0.7] =	59.62	(82)
Rooflights 0.9x	1	x	2.28	×	66	x	0.63	x	0.7] =	59.62	(82)
Rooflights 0.9x	1	x	3.29	×	66	×	0.63	x	0.7	=	172.17	(82)
Rooflights 0.9x	1	x	2.28	x	33	x	0.63	x	0.7	=	29.81	(82)
Rooflights 0.9x	1	x	2.28	x	33	x	0.63	x	0.7	=	29.81	(82)
Rooflights 0.9x	1	x	3.29	x	33	x	0.63	x	0.7	=	86.09	(82)
Rooflights 0.9x	1	x	2.28	x	21	x	0.63	x	0.7	=	18.97	(82)
Rooflights 0.9x	1	x	2.28	x	21	x	0.63	x	0.7	=	18.97	(82)
Rooflights 0.9x	1	×	3.29	×	21) ×	0.63	x	0.7] =	54.78	(82)
Solar gains in wa	tts. calcula	ated	for each mon	th		(83)m	n = Sum(74)m (82)m				

Solar g	ains in t	watts, ca	alculatec	for eacl	n month			(83)m = S	um(74)m	(82)m				
(83)m=	549.93	985.89	1463.22	1977.99	2346.88	2382.56	2275.51	1995.65	1642.54	1122	668.04	464.37		(83)
Total g	ains – ir	nternal a	and solar	(84)m =	= (73)m -	+ (83)m	, watts							
(84)m=	1141.75	1575.41	2031.64	2511.6	2843.68	2844.26	2715.55	2443.14	2108.53	1623.04	1209.45	1037.46		(84)
7. Me	an inter	nal temp	perature	(heating	season)								
Temp	erature	during h	neating p	eriods ir	n the livir	ng area f	rom Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	tion fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(86)m= 1 1 0.98 0.92 0.79 0.61 0.45 0.52 0.79 0.97 1 1	(86)
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)	
(87)m= 19.48 19.73 20.1 20.53 20.83 20.96 20.99 20.99 20.88 20.43 19.86 19.44	(87)
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)	
(88)m= 19.84 19.84 19.85 19.85 19.86 19.86 19.86 19.86 19.85 19.85 19.85 19.84	(88)
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	
$ (89)m = \begin{bmatrix} 1 & 0.99 & 0.97 & 0.9 & 0.73 & 0.51 & 0.34 & 0.4 & 0.7 & 0.96 & 1 & 1 \end{bmatrix} $	(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 17.82 18.18 18.72 19.32 19.7 19.85 19.85 19.76 19.19 18.37 17.76	(90)
$fLA = Living area \div (4) = 0.2'$	
	(31)
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$	
(92)m= 18.27 18.6 19.09 19.65 20.01 20.14 20.16 20.16 20.06 19.52 18.77 18.21	(92)
Apply adjustment to the mean internal temperature from Table 4e, where appropriate	(02)
(93)m= 18.27 18.6 19.09 19.65 20.01 20.14 20.16 20.06 19.52 18.77 18.21 2 Space booting convironment 2 Space booting convironment 2 18.77 18.21	(93)
8. Space heating requirement	
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Utilisation factor for gains, hm:	
(94)m= 1 0.99 0.97 0.89 0.74 0.54 0.37 0.43 0.72 0.95 0.99 1	(94)
Useful gains, hmGm , W = (94)m x (84)m	
(95)m= 1139.12 1560.94 1965.19 2241.71 2101.4 1521.87 1001.86 1050.04 1521.96 1542.03 1202.08 1035.88	(95)
Monthly average external temperature from Table 8	
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2	(96)
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m– (96)m]	
(97)m= 4030.18 3947.34 3621.24 3068.2 2367.71 1568.5 1008.41 1062.95 1693.35 2544.11 3336.34 4017.25	(97)
Space heating requirement for each month, kWh/month = 0.024 x [(97)m – (95)m] x (41)m	
(98)m= 2150.95 1603.66 1232.1 595.08 198.14 0 0 0 0 745.55 1536.67 2218.13	
Total per year (kWh/year) = $Sum(98)_{15912}$ = 10280).28 (98)
Space heating requirement in kWh/m²/year 46.4	42 (99)
9a. Energy requirements – Individual heating systems including micro-CHP)	
Space heating:	
Fraction of space heat from secondary/supplementary system 0	(201)
Fraction of space heat from main system(s) $(202) = 1 - (201) =$ 1	(202)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1	(204)
Efficiency of main space heating system 1 93.	4 (206)
Efficiency of secondary/supplementary heating system, %	(208)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kv	 Wh/year
Space heating requirement (calculated above)	
2150.95 1603.66 1232.1 595.08 198.14 0 0 0 745.55 1536.67 2218.13	
$(211)m = \{[(98)m \times (204)] \} \times 100 \div (206)$	(211)
2302.95 1716.98 1319.16 637.13 212.14 0 0 0 0 798.23 1645.26 2374.87	()
Total (kWh/year) =Sum(211) _{1510, 12} = 11006	6.72 (<mark>211</mark>)

Space heating fuel (secondary), kWh/month

$([(00)m) \times (201)] \times 100 \times (200)$								
= {[(98)m x (201)] } x 100 ÷ (208)				_			•	
(215)m= 0 0 0 0 0	0	0 0	0	0	0	0		
			Total (kWh/y	ear) =Sum(2 15) _{15,10. 1}	2=	0	(21
Water heating								
Output from water heater (calculated above)							-	
224.13 197.48 207.25 185.57 181.59	159.94 15	53.23 170	82 170.71	192.44	203.75	218.67		
Efficiency of water heater						_	80.3	(21
(217)m= 89.34 89.17 88.79 87.78 85.27	80.3 8	80.3 80.	3 80.3	88.13	89.09	89.39		(21)
Fuel for water heating, kWh/month								
$(219)m = (64)m \times 100 \div (217)m$	100.47	0.00 040	70 040 0	040.07	000 74	044.00	1	
(219)m= 250.88 221.47 233.41 211.42 212.96	199.17 19	0.82 212		218.37	228.71	244.62		_ /~
• • • • •			Total = Sum(2637.15	(21
Annual totals Space heating fuel used, main system 1				K	Wh/yea	r	kWh/yea	r T
								4
Water heating fuel used							2637.15	
Electricity for pumps, fans and electric keep-hot								
central heating pump:						30]	(23
boi <mark>ler with a fan-assisted flue</mark>						45		(23
Total electricity for the above, kWh/year			sum of (230a) (230g) =			75	(23
Electricity for lighting							615.59	(23
12a. CO2 emissions – Individual heating system	ns includir	na micro-C	HP					
12a. 002 emissions - mainidar nearing system		ig miero-c						
	Energ							
					ion fac	tor	Emission	
	kWh/y			Emiss kg CO		tor	Em<mark>issio</mark>ns kg CO2/ye	
Space heating (main system 1)		/ear			2/kWh	tor =		
Space heating (main system 1) Space heating (secondary)	kWh/y	vear ×		kg CO	2/kWh 16		kg <mark>CO2/</mark> ye	ar
	kWh/y (211)	vear × ×		kg CO 0.2	2/kWh 16 19	=	kg <mark>CO2/</mark> ye	ar (26 (26
Space heating (secondary) Water heating	kWh/y (211) : (215) : (219) :	vear × ×) + (264) =	kg CO 0.2 0.5	2/kWh 16 19	=	kg <mark>CO2/</mark> ye	ar (26
Space heating (secondary) Water heating Space and water heating	kWh/y (211) : (215) : (219) :	/ear x x x (262) + (263) + (264) =	kg CO 0.2 0.5	2/kWh 16 19 16	=	kg CO2/ye	ar (26 (26 (26
Space heating (secondary)	kWh/y (211) : (215) : (219) : (261) +	/ear x x (262) + (263 x) + (264) =	kg CO 0.2 0.5 0.2	2/kWh 16 19 16	-	kg CO2/ye	ar (26) (26) (26) (26)

TER =

14.93 (273)

Appendix Energy Assessment Ellerdale Road

LEAN Scenario

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201			Strom Softwa	are Vei	rsion:		Versio	on: 1.0.1.25	
		P	roperty <i>i</i>	Address	House	1-LEAN				
	Ellerdale Road									
1. Overall dwelling dimensi	ons:		Aro	a(m²)			abt(m)		Volume(m ³)	
Basement			Alea	· /	(1a) x	Av. Hei	,	(2a) =	177.55	(3a)
Ground floor					(10) x			(2b) =](3b)
First floor							3		201	1
Total floor area TFA = (1a)+	(1b) , (1c) , (1d) , (1c), (1r			(1c) x		3	(2c) =	262.32	(3c)
	(10)+(10)+(10)+(10)	;)+(11	1) 22	21.44	(4)) · (0 -) · (0 -l)		(2)		-
Dwelling volume					(3a)+(3b)+(3c)+(3d)	+(3e)+	.(3n) =	640.87	(5)
2. Ventilation rate:	main s	econdar	v	other		total			m ³ per hour	
	heating h	neating		other		totai		40		-
Number of chimneys	0 +	0	_ + _	0		0		40 =	0	(6a)
Number of open flues	0 +	0	+	0	_ = _	0		20 =	0	(6b)
Number of intermittent fans						0	X	10 =	0	(7a)
Number of passive vents						0	X	10 =	0	(7b)
Number of flueless gas fires						0	X	40 =	0	(7c)
								Air ch	nanges per hou	ır
Infiltration due to chimneys,						0		÷ (5) =	0	(8)
If a pressurisation test has been Number of storeys in the o		ea, proceed	a to (17), c	otherwise (continue ir	om (9) to (1	16)		0	(9)
Additional infiltration	two in ig (iio)						[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0.25	for steel or timber	frame or	0.35 foi	r masonr	y constr	ruction			0	(11)
if both types of wall are prese deducting areas of openings)		ponding to	the great	er wall are	a (after					-
If suspended wooden floo	•	led) or 0.	1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, enter	0.05, else enter 0								0	(13)
Percentage of windows ar	nd doors draught st	tripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00]			0	(15)
Infiltration rate				(8) + (10)	+ (11) + (1	12) + (13) +	(15) =		0	(16)
Air permeability value, q50	•				•	etre of er	nvelope	area	3	(17)
If based on air permeability									0.15	(18)
Air permeability value applies if a	a pressurisation test ha	s been don	e or a deg	gree air pe	rmeability	is being us	ed			
Number of sides sheltered Shelter factor				(20) = 1 -	[0.075 x (1	19)] =			2 0.85	(19) (20)
Infiltration rate incorporating	shelter factor			(21) = (18)) x (20) =				0.13	(21)
Infiltration rate modified for r		t								」 `
Jan Feb Ma	r Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Monthly average wind speed	from Table 7									
(22)m= 5.1 5 4.9	4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7]	

Wind Factor (22a)m = (22)m \div 4								
(22a)m= 1.27 1.25 1.23 1.1 1.08	0.95 0.9	95 0.92	1	1.08	1.12	1.18		
Adjusted infiltration rate (allowing for shelter an	d wind spee	d) = (21a) x	(22a)m					
0.16 0.16 0.16 0.14 0.14	0.12 0.1	12 0.12	0.13	0.14	0.14	0.15		
Calculate effective air change rate for the applie If mechanical ventilation:	cable case							(23a)
If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equati	on (N5)) . other	wise (23b)) = (23a)		l	0.5	(23a) (23b)
If balanced with heat recovery: efficiency in % allowing for				()			76.5	(230) (23c)
a) If balanced mechanical ventilation with hea				2b)m + (i	23b) × [1	l (23c) – 1		(200)
(24a)m= 0.28 0.28 0.27 0.26 0.25	0.24 0.2	24 0.24	0.24	0.25	0.26	0.27	-	(24a)
b) If balanced mechanical ventilation without	heat recove	ry (MV) (24b)m = (22	2b)m + (2	23b)			
(24b)m= 0 0 0 0 0	0 (0 0	0	0	0	0		(24b)
c) If whole house extract ventilation or positiv	•							
if (22b)m < 0.5 × (23b), then (24c) = (23b	,.	<u> </u>	,		, 			
(24c)m= 0 0 0 0 0	0 (0	0	0	0		(24c)
 d) If natural ventilation or whole house positivity if (22b)m = 1, then (24d)m = (22b)m other 				0.51				
(24d)m= 0 0 0 0 0	0 (0	0	0	0		(24d)
Effective air change rate - enter (24a) or (24b) or (24c) or	(24d) in box	(25)					
(25)m= 0.28 0.28 0.27 0.26 0.25	0.24 0.2	24 0.24	0.24	0.25	0.26	0.27		(25)
3. Heat losses and heat loss parameter:								
ELEMENT Gross Openings	Net Area	U-valu	Je	AXU		k-value	,	AXk
area (m²) m²	A ,m²	W/m2	ĸ	(VV/I	<)	kJ/m²∙ł	<	kJ/K
Doors	1.76	x 1.2	=	2.112				(26)
Windows Type 1	0.71	x1/[1/(1.2)+	0.04] =	0.81				(27)
Windows Type 2	5.29	x1/[1/(1.2)+	0.04] =	6.06				(27)
Windows Type 3	8.46	x1/[1/(1.2)+	· L	9.69				(27)
Windows Type 4	9.64	x1/[1/(1.2)+	L	11.04				(27)
Windows Type 5	4.58	x1/[1/(1.2)+	L	5.24				(27)
Windows Type 6	4.94	x1/[1/(1.2)+	Ľ	5.66				(27)
Rooflights Type 1	2.5	x1/[1/(1.2) +		3				(27b)
Rooflights Type 2	2.5	x1/[1/(1.2) +	0.04] =	3				(27b)
Rooflights Type 3	3.61	x1/[1/(1.2) +	0.04] =	4.332				(27b)
Floor	87.44	× 0.11	=	9.61840	1			(28)
Walls Type1 176.88 0	176.88	x 0.18	=	31.84				(29)
Walls Type2 139.89 48.42	91.47	x 0.18	=	16.46				(29)
Roof 87.44 12.22	75.22	x 0.11	=	8.27				(30)
Total area of elements, m ²	491.65							(31)
Party wall	12.41	x 0	=	0				(32)
	1	· · · · · · · · · · · · · · · · · · ·	// / / I I	.) 0.047 -			~ ~	

* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 ** include the areas on both sides of internal walls and partitions

Fabric heat loss, $W/K = S (A \times U)$

(26)	(30)	+ (32) =
------	------	----------

135.73 (33)

Heat c	apacity	Cm = S	(Axk)						((28)	(30) + (32	2) + (32a)	(32e) =	63515.68	(34)
Therm	al mass	parame	eter (TMI	- = Cm -	÷ TFA) ir	ו kJ/m²K	<u> </u>		Indica	tive Value	: Medium		250	(35)
	•		ere the de tailed calc	etails of the ulation.	e construct	ion are no	t known pr	ecisely the	e indicative	values of	TMP in Ta	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix l	К						73.75	(36)
if details	s of therma	al bridging	are not kr	nown (36) =	= 0.15 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			209.47	(37)
Ventila	ation hea	at loss ca	alculated	d monthly	у	_		-	(38)m	= 0.33 × (25)m x (5)	-	_	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	59.23	58.56	57.88	54.51	53.84	50.47	50.47	49.79	51.81	53.84	55.18	56.53		(38)
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	268.7	268.03	267.36	263.99	263.31	259.94	259.94	259.27	261.29	263.31	264.66	266.01		
Heat lo	oss para	imeter (I	HLP), W	/m²K	•	-	•	•		Average = = (39)m ÷	Sum(39)₁ · (4)	₁₂ /12=	263.82	(39)
(40)m=	1.21	1.21	1.21	1.19	1.19	1.17	1.17	1.17	1.18	1.19	1.2	1.2		
Numb	er of day	/s in mo	nth (Tab	le 1a)	•	•	•	•	,	Average =	Sum(40)₁	₁₂ /12=	1.19	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
													·	
4. Wa	ater hea	ting ene	rgy requ	irement:								kWh/y	ear:	
if <mark>T</mark> F				(1 - exp	(-0.0003	349 x (TF	=A -13.9)2)] + 0.(0013 x (⁻	ΓFA -13		03		(42)
Reduce	the annua	al average	hot water	ge in litre usage by r day (all w	5% if the a	welling is	designed a			se target o		6.16]	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Hot wat				ach month	-			-					1	
(44)m=	116.77	112.53	108.28	104.03	99.79	95.54	95.54	99.79	104.03	108.28	112.53	116.77]	
				I			I				I m(44) _{1 12} =		1273.89	(44)
Energy	content of	hot water	used - ca	lculated me	onthly $= 4$.	190 x Vd,ı	m x nm x D	0Tm / 3600) kWh/mor	oth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	173.17	151.46	156.29	136.26	130.74	112.82	104.55	119.97	121.4	141.48	154.44	167.71		
lf instan	itaneous v	vater heati	ng at poin	t of use (no	o hot water	r storage),	enter 0 in	boxes (46		Total = Su	m(45) _{1 12} =	=	1670.28	(45)
(46)m=	25.98	22.72	23.44	20.44	19.61	16.92	15.68	18	18.21	21.22	23.17	25.16]	(46)
	storage								-				1	
-		. ,		ng any se			-		ame ves	sel		0		(47)
	•	-		ank in dw er (this ir	-			. ,	ars) ante	ar '()' in <i>(</i>	(47)			
	storage		not walt	51 (UIIS II	10100031	nstantal)			
	-		eclared I	oss facto	or is kno	wn (kWł	n/dav):					0	1	(48)
			m Table			(- , , -					0	1	(49)
-				e, kWh/ye	ear			(48) x (49)) =			0]	(50)
-	-		-	cylinder		or is not			,			•	J	(00)

If comr	nunity ł	age loss neating s from Tal	ee secti	rom Tabl on 4.3	e 2 (kW	h/litre/da	ıy)				г	0		(51)
		actor fro		2b								0 0		(52)
•				e, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
0.		(54) in (5	•	,, , , , , , , , , , , , , , , , ,	Jul			() / (0.)	(° <u>-</u>) / (,		0		(55)
	. ,	. , .		for each	month			((56)m = (55) × (41)r	m		-	1	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0	1	(56)
` '		-	-	prage, (57)		-		-	-	-			l lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0	1	(57)
						Ů	Ů	ů	•	Ū		-		
	•	•	,	om Table		50)m - ((EO) · 20	SE y (11)	m			0	İ	(58)
	-			for each Ie H5 if t	,		. ,	. ,		r thermo	stat)			
(59)m=	0	0	0	0	0		0		0	0	0	0		(59)
			[(04)	(00) . 0		L					i	
			1	month (, 	, , I	· · ·		49.32	50.00	40.22	50.00	l	(61)
(61)m=	50.96	46.03	50.96	49.32	50.85	47.12	48.69	50.85		50.96	49.32	50.96		
			· · · · · ·	<u> </u>	· · · · · ·	· · · · · ·		· /		-	. ,	· ,	(59)m + (61) I	
(62)m=	224.13	197.48	207.25	185.57	181.59	159.94	153.23	170.82	170.71	192.44	203.75	218.67		(62)
				endix G or						r contributi	on to wate	er heating)		
(add ad	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix C))				1	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater he <mark>a</mark>	ter											
(64)m=	<mark>22</mark> 4.13	197.48	<mark>20</mark> 7.25	185.57	181.59	159.94	153.23	170.82	170.71	192.44	203.75	218.67		
								Outp	out from wa	ater heatei	<mark>(annual)</mark> ₁	12	22 <mark>65.59</mark>	(64)
Hea <mark>t g</mark>	ains fro	m water	heating	, <mark>kWh</mark> /me	onth 0.2	5 ´ [0.85	× (45)m	1 + (61)m	n] + 0.8 x	(<mark>46)m</mark>	+ (57)m	+ (59)m]	
(65)m=	70.32	61.87	64.71	57.63	56.18	49.29	46.93	52.6	52.69	59.78	63.68	68.5		(65)
inclu	de (57)	m in calo	ulation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ernal da	ains (see	e Table 5	5 and 5a):	•		-				-	-	
		is (Table) -									
Melabl	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49		(66)
	n nains			ı opendix									ł	
(67)m=	34.86	30.96	25.18	19.06	14.25	12.03	13	16.9	22.68	28.79	33.61	35.83	1	(67)
											00.01	00.00	Í	()
		· ·	1	Append	· ·	1	1	, 			0.47.00	070 74	I	(68)
(68)m=	390.99	395.05	384.83	363.06	335.58	309.76	292.51	288.45	298.68	320.44	347.92	373.74	l	(00)
		<u>`</u>	r	ppendix I	· ·		, <u> </u>	1					I	(22)
(69)m=	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15		(69)
Pumps	and fa	ns gains	(Table !	5a)	·	·	·						1	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	vaporatio	n (nega	tive valu	es) (Tab	le 5)								
(71)m=	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19		(71)
Water	heating	gains (T	able 5)											
(72)m=	94.52	92.06	86.97	80.05	75.52	68.46	63.08	70.7	73.19	80.35	88.44	92.07		(72)

G91-6 G91-6 G92-6 G92-7 440-04 447-49 460-99 G01-33 G14.41 G73-00 (73) Sourpassa Garage quises Filt Garage quises	Total internal g	ains =					(66))m + (67)m	1 + (68	3)m +	(69)m + (70)m +	(71)m + (72)	m		
Solar gains are calculated using solar fux from Table 6a and associated equations to convert to the applicability of the appl	(73)m= 591.81	589.52	568.42	533.62	496.8	4	61.7	440.04	447	.49	465.99	501.03	3 541.41	573.09		(73)
Orientation: Access Factor Table 60 Area m ⁿ Flux Table 6a g_ Table 6b FF Table 6c Gains (W) Southeast 0, av Southeast 0, av	6. Solar gains:													-		
Table 6d m ² Table 6a Table 6b Table 6b Table 6c (W) Southeast 0.s 0.77 × 8.46 × 36.79 × 0.55 × 0.8 = 119.83 (77) Southeast 0.sk 0.77 × 8.46 × 62.67 × 0.55 × 0.8 = 119.83 (77) Southeast 0.sk 0.77 × 8.46 × 62.67 × 0.65 × 0.8 = 119.12 (77) Southeast 0.sk 0.77 × 8.46 × 106.25 × 0.55 × 0.8 = 542.16 (77) Southeast 0.sk 0.77 × 8.46 × 106.25 × 0.55 × 0.8 = 312.32 (77) Southeast 0.sk 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 34.82 (77) Southeast 0.sk 0.77<	Solar gains are cal	culated u	ising sola	r flux from	Table 6a	and	assoc	iated equa	tions	to coi	nvert to the	e applic	able orientat	ion.		
Southeast 0.40 0.77 × 8.46 × 36.79 × 0.55 × 0.8 = 199.83 (77) Southeast 0.9 0.77 × 8.46 × 62.67 × 0.55 × 0.8 = 199.83 (77) Southeast 0.9 0.77 × 8.46 × 62.67 × 0.55 × 0.8 = 199.83 (77) Southeast 0.9 0.77 × 8.46 × 62.67 × 0.55 × 0.8 = 199.422 (77) Southeast 0.9 0.77 × 8.46 × 106.25 × 0.55 × 0.8 = 549.83 (77) Southeast 0.9 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 349.82 (77) Southeast 0.9 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 348.2 (77) Southeast 0.9 0.77 × 8.46			actor							т						
Southeast 0.9: 0.77 x 0.64 x 36.79 x 0.55 x 0.8 = 100.15 171 Southeast 0.9: 0.77 x 8.46 x 62.67 x 0.55 x 0.8 = 100.15 171 Southeast 0.9: 0.77 x 8.46 x 62.67 x 0.55 x 0.8 = 142.22 (77) Southeast 0.9: 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 454.18 (77) Southeast 0.9: 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 454.18 (77) Southeast 0.9: 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 444.22 (77) Southeast 0.9: 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 449.82 (77) Southeast 0.9: 0.77 x 8.46		ible 6d					Ia	DIE 6a		18	adle 6D		I able 6C		(VV)	
Southeast 0,9; 0.77 x 8.46 x 62.67 x 0.55 x 0.8 = 123.3 771 Southeast 0,9; 0.77 x 8.46 x 65.75 x 0.55 x 0.8 = 123.3 771 Southeast 0,9; 0.77 x 8.46 x 85.75 x 0.55 x 0.8 = 142.22 771 Southeast 0,9; 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 522.06 771 Southeast 0,9; 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 641.01 771 Southeast 0,9; 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 660.97 777 Southeast 0,9; 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 662.67 777 Southeast 0,9; 0.77 x 8.46 x	Southeast 0.9x	0.77	x	8.4	46	x	3	36.79	x		0.55	x	0.8	=	189.83	(77)
Southeast 0.9 0.77 x 0.64 x 0.27 x 0.64 x 0.55 x 0.8 = 18422 (77) Southeast 0.9 0.77 x 8.46 x 85.75 x 0.55 x 0.8 = 442.42 (77) Southeast 0.9 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 442.42 (77) Southeast 0.9 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 614.01 (77) Southeast 0.9 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 644.7 (77) Southeast 0.9 0.77 x 8.46 x 118.15 x 0.55 x 0.8 = 647.29 (77) Southeast 0.9 0.77 x 8.46 x 113.91 x 0.55 <		0.77	x	9.6	64	x	3	36.79	x		0.55	x	0.8	=	108.15	(77)
Southeast 0, x 0.77 x 8.46 x 85.75 x 0.55 x 0.8 = 442.42 (7) Southeast 0, x 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 252.06 (7) Southeast 0, x 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 548.18 (7) Southeast 0, x 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 614.01 (7) Southeast 0, x 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 614.01 (7) Southeast 0, x 0.77 x 8.46 x 118.15 x 0.55 x 0.8 = 587.68 (77) Southeast 0, x 0.77 x 8.46 x 113.91 x 0.55 x 0.8 = 587.68 (77) Southeast 0, x 0.77 x 8.46	Southeast 0.9x	0.77	x	8.4	46	x	6	62.67	x		0.55	x	0.8	=	323.35	(77)
Southeast 0.9 0.77 × 9.64 × 85.75 × 0.55 × 0.8 = 252.06 (7) Southeast 0.9 0.77 × 8.46 × 106.25 × 0.55 × 0.8 = 548.18 (7) Southeast 0.9 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 614.01 (7) Southeast 0.9 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 614.01 (7) Southeast 0.9 0.77 × 8.46 × 118.15 × 0.55 × 0.8 = 349.82 (7) Southeast 0.9 0.77 × 8.46 × 113.91 × 0.55 × 0.8 = 587.68 (7) Southeast 0.9 0.77 × 8.46 × 0.85 × 0.8 = 587.68	Southeast 0.9x	0.77	x	9.6	64	x	6	62.67	x		0.55	×	0.8	=	184.22	(77)
Southeast 0.x 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 544.18 (77) Southeast 0.9x 0.77 x 9.64 x 106.25 x 0.55 x 0.8 = 544.18 (77) Southeast 0.9x 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 644.01 (77) Southeast 0.9x 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 649.57 677 Southeast 0.9x 0.77 x 8.46 x 113.91 x 0.55 x 0.8 = 547.28 (77) Southeast 0.9x 0.77 x 8.46 x 113.91 x 0.55 x 0.8 = 548.28 (77) Southeast 0.9x 0.77 x 8.46 x 113.91 x 0.55 x 0.8 = 548.28 (77) Southeast 0.9x 0.77 x 8.46	Southeast 0.9x	0.77	x	8.4	16	x	8	35.75	x		0.55	x	0.8	=	442.42	(77)
Southeast 0.x 0.77 x 9.64 x 106.25 x 0.87 x 0.88 = 312.32 (77) Southeast 0.9x 0.77 x 8.46 x 119.01 x 0.55 x 0.88 = 614.01 (77) Southeast 0.9x 0.77 x 8.46 x 119.01 x 0.55 x 0.88 = 349.82 (77) Southeast 0.9x 0.77 x 8.46 x 118.15 x 0.55 x 0.88 = 349.82 (77) Southeast 0.9x 0.77 x 8.46 x 113.91 x 0.55 x 0.88 = 587.69 (77) Southeast 0.9x 0.77 x 8.46 x 104.39 x 0.55 x 0.88 = 587.69 (77) Southeast 0.9x 0.77 x 8.46 x 104.39 x 0.55 x 0.88 = 272.93 (77) Southeast 0.9x 0.77 x 8.4	Southeast 0.9x	0.77	x	9.6	64	x	8	35.75	x		0.55	x	0.8	=	252.06	(77)
Southeast 0.5x 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 614.01 (77) Southeast 0.5x 0.77 × 9.64 × 119.01 × 0.55 × 0.8 = 614.01 (77) Southeast 0.5x 0.77 × 9.64 × 118.15 × 0.55 × 0.8 = 614.01 (77) Southeast 0.5x 0.77 × 9.64 × 118.15 × 0.55 × 0.8 = 537.69 (77) Southeast 0.5x 0.77 × 8.46 × 113.91 × 0.55 × 0.8 = 537.69 (77) Southeast 0.5x 0.77 × 8.46 × 104.39 × 0.65 × 0.8 = 334.83 (77) Southeast 0.5x 0.77 × 8.46 × 92.85 × 0.55 × 0.8	Southeast 0.9x	0.77	x	8.4	16	x	1	06.25	x		0.55	x	0.8	=	548.18	(77)
Southeast 0.9x 0.77 x 9.64 x 119.01 x 0.55 x 0.8 = 349.82 (77) Southeast 0.9x 0.77 x 8.46 x 118.15 x 0.55 x 0.8 = 6.97, (77) Southeast 0.9x 0.77 x 8.46 x 118.15 x 0.55 x 0.8 = 6.97, (77) Southeast 0.9x 0.77 x 8.46 x 113.91 x 0.55 x 0.8 = 5.97, 60 (77) Southeast 0.9x 0.77 x 8.46 x 104.39 x 0.55 x 0.8 = 5.98, 60 (77) Southeast 0.9x 0.77 x 8.46 x 104.39 x 0.55 x 0.8 = 5.98, 60 (77) Southeast 0.9x 0.77 x 8.46 x 92.85 x 0.55 x 0.8 = 272.93 (77) Southeast 0.9x 0.77 x 8.46 44.07	Southeast 0.9x	0.77	x	9.6	64	x	1	06.25	x		0.55	x	0.8	=	312.32	(77)
Southeast 0.9: 0.77 × 0.846 × 118.15 × 0.055 × 0.8 = 0.000.67 (77) Southeast 0.9: 0.77 × 8.46 × 118.15 × 0.55 × 0.8 = 0.477 (77) Southeast 0.9: 0.77 × 8.46 × 118.15 × 0.55 × 0.8 = 587.69 (77) Southeast 0.9: 0.77 × 8.46 × 114.39 × 0.55 × 0.8 = 587.69 (77) Southeast 0.9: 0.77 × 8.46 × 104.39 × 0.55 × 0.8 = 598.68 (77) Southeast 0.9: 0.77 × 8.46 × 92.85 × 0.55 × 0.8 = 396.85 (77) Southeast 0.9: 0.77 × 8.46 × 92.85 × 0.55 × 0.8 = 272.93 (77) Southeast 0.9: 0.77 × 8.46 <td>Southeast 0.9x</td> <td>0.77</td> <td>x</td> <td>8.4</td> <td>46</td> <td>x</td> <td>1</td> <td>19.01</td> <td>x</td> <td></td> <td>0.55</td> <td>x</td> <td>0.8</td> <td>=</td> <td>614.01</td> <td>(77)</td>	Southeast 0.9x	0.77	x	8.4	46	x	1	19.01	x		0.55	x	0.8	=	614.01	(77)
Southeast 0.9* 0.77 × 9.64 × 118.15 × 0.55 × 0.8 = 347.29 (77) Southeast 0.9* 0.77 × 8.46 × 113.91 × 0.55 × 0.8 = 347.29 (77) Southeast 0.9* 0.77 × 9.64 × 113.91 × 0.55 × 0.8 = 538.58 (77) Southeast 0.9* 0.77 × 8.46 × 104.39 × 0.55 × 0.8 = 538.58 (77) Southeast 0.9* 0.77 × 8.46 × 92.85 × 0.55 × 0.8 = 272.93 (77) Southeast 0.9* 0.77 × 8.46 × 92.85 × 0.55 × 0.8 = 272.93 (77) Southeast 0.9* 0.77 × 8.46 × 92.85 × 0.55 × 0.8 = 227.37 (77) Southeast 0.9* 0.77 × 8.46	Southeast 0.9x	0.77	x	9.6	64	x	1	19.01	x		0.55	x	0.8	=	349.82	(77)
Southeast 0.9x0.000.00Southeast 0.9x0.77x0.88=587.69(77)Southeast 0.9x0.77x0.88=587.69(77)Southeast 0.9x0.77x0.88=587.69(77)Southeast 0.9x0.77x0.88=538.58(77)Southeast 0.9x0.77x8.86(77)Southeast 0.9x0.77x8.86(77)Southeast 0.9x0.77x8.86\$0.88=538.580.88=538.58(0.88=\$0.88=\$Southeast 0.9x0.77x8.86\$0.86\$\$\$\$\$\$Southeast 0.9x0.77x8.86\$\$\$ <th< td=""><td>Southeast 0.9x</td><td>0.77</td><td>x</td><td>8.4</td><td>16</td><td>x</td><td>1</td><td>18.15</td><td>x</td><td></td><td>0.55</td><td>x</td><td>0.8</td><td>=</td><td>609.57</td><td>(77)</td></th<>	Southeast 0.9x	0.77	x	8.4	16	x	1	18.15	x		0.55	x	0.8	=	609.57	(77)
Southeast 0.9x0.77x9.64x113.91x0.55x0.8=334.83(77)Southeast 0.9x0.77x9.64x104.39x0.55x0.8=538.58(77)Southeast 0.9x0.77x9.64x104.39x0.55x0.8=334.83(77)Southeast 0.9x0.77x9.64x104.39x0.55x0.8=479.05(77)Southeast 0.9x0.77x9.64x92.85x0.55x0.8=272.93(77)Southeast 0.9x0.77x8.46x92.85x0.55x0.8=272.93(77)Southeast 0.9x0.77x8.46x92.85x0.55x0.8=272.93(77)Southeast 0.9x0.77x8.46x69.27x0.55x0.8=203.61(77)Southeast 0.9x0.77x8.46x44.07x0.55x0.8=227.37(77)Southeast 0.9x0.77x8.46x31.49x0.55x0.8=129.54(77)Southeast 0.9x0.77x8.46x31.49x0.55x0.8=129.54(77)Southeast 0.9x0.77x4.58x36.790.55x <td>Southeast 0.9x</td> <td>0.77</td> <td>×</td> <td>9.6</td> <td>64</td> <td>x</td> <td>1</td> <td>18.15</td> <td>x</td> <td></td> <td>0.55</td> <td>x</td> <td>0.8</td> <td></td> <td>347.29</td> <td>(77)</td>	Southeast 0.9x	0.77	×	9.6	64	x	1	18.15	x		0.55	x	0.8		347.29	(77)
Southeast $0.9x$ 0.77 x 8.46 x 104.39 x 0.55 x 0.8 $=$ 538.58 (77) Southeast $0.9x$ 0.77 x 9.64 x 104.39 x 0.55 x 0.8 $=$ 336.85 (77) Southeast $0.9x$ 0.77 x 8.46 x 92.85 x 0.55 x 0.8 $=$ 479.06 (77) Southeast $0.9x$ 0.77 x 9.64 x 92.85 x 0.55 x 0.8 $=$ 272.93 (77) Southeast $0.9x$ 0.77 x 8.46 x 99.27 x 0.55 x 0.8 $=$ 236.11 (77) Southeast $0.9x$ 0.77 x 8.46 x 69.27 x 0.55 x 0.8 $=$ 227.37 (77) Southeast $0.9x$ 0.77 x 8.46 x 44.07 x 0.55 x 0.8 $=$ 227.37 (77) Southeast $0.9x$ 0.77 x 8.46 x 41.07 x 0.55 x 0.8 $=$ 129.54 (77) Southeast $0.9x$ 0.77 x 8.46 x 31.49 x 0.55 x 0.8 $=$ 129.54 (77) Southeast $0.9x$ 0.77 x 8.46 x 31.49 x 0.55 x 0.8 $=$ 102.77 (79) Southeast $0.9x$ <	Southeast 0.9x	0.77	×	8.4	16	x	1	13.91	×		0.55	x	0.8	=	5 <mark>87.69</mark>	(77)
Southeast $0.9x$ 0.77 x 9.64 104.39 x 0.55 x 0.8 $=$ 306.85 (77) Southeast $0.9x$ 0.77 x 8.46 92.85 x 0.55 x 0.8 $=$ 479.05 (77) Southeast $0.9x$ 0.77 x 9.64 x 92.85 x 0.55 x 0.8 $=$ 479.05 (77) Southeast $0.9x$ 0.77 x 9.64 x 92.85 x 0.55 x 0.8 $=$ 272.93 (77) Southeast $0.9x$ 0.77 x 8.46 x 69.27 x 0.55 x 0.8 $=$ 203.61 (77) Southeast $0.9x$ 0.77 x 8.46 x 44.07 x 0.55 x 0.8 $=$ 227.37 (77) Southeast $0.9x$ 0.77 x 8.46 x 44.07 x 0.55 x 0.8 $=$ 129.54 (77) Southeast $0.9x$ 0.77 x 8.46 x 31.49 x 0.55 x 0.8 $=$ 129.54 (77) Southeast $0.9x$ 0.77 x 8.46 x 31.49 x 0.55 x 0.8 $=$ 129.54 (77) Southwest $0.9x$ 0.77 x 4.58 x 36.79 0.55 x 0.8 $=$ 129.56 (77) Southwest $0.9x$ 0.77 x 4	Southeast 0.9x	0.77	x	9.6	64	x	1	13.91	x		0.55	x	0.8	=	3 <mark>34.83</mark>	(77)
NoteNoteSoutheast 0.9x 0.77 x 8.46 x 92.85 x 0.55 x 0.8 $=$ 479.05 (77) Southeast 0.9x 0.77 x 9.64 x 92.85 x 0.55 x 0.8 $=$ 272.93 (77) Southeast 0.9x 0.77 x 8.46 x 69.27 x 0.55 x 0.8 $=$ 272.93 (77) Southeast 0.9x 0.77 x 9.64 x 69.27 x 0.55 x 0.8 $=$ 220.61 (77) Southeast 0.9x 0.77 x 8.46 x 44.07 x 0.55 x 0.8 $=$ 227.37 (77) Southeast 0.9x 0.77 x 8.46 x 44.07 x 0.55 x 0.8 $=$ 129.54 (77) Southeast 0.9x 0.77 x 8.46 31.49 x 0.55 x 0.8 $=$ 129.54 (77) Southwest 0.9x 0.77 x 4.58 36.79 0.55 x 0.8 $=$ 102.77 (79) Southwest 0.9x 0.77 x 4.58 36.79 0.55 x 0.8 $=$ 175.05 (79) Southwest 0.9x 0.77 x 4.58 85.75 0.55 x 0.8 $=$ 239.51 (79)																

Southwest0.9x	0.77) ×	4.58	×	118.15	1	0.55	x	0.8	=	330	(79)
Southwest _{0.9x}	0.77] x	4.94	x	118.15]	0.55	x	0.8	=	177.97	(79)
Southwest _{0.9x}	0.77	x	4.58	x	113.91]	0.55	x	0.8	=	318.16](79)
Southwest _{0.9x}	0.77) x	4.94	x	113.91]	0.55	x	0.8	=	171.58](79)
Southwest _{0.9x}	0.77	x	4.58	x	104.39]	0.55	x	0.8	=	291.57	(79)
Southwest _{0.9x}	0.77	x	4.94	x	104.39		0.55	x	0.8	=	157.24	(79)
Southwest0.9x	0.77	x	4.58	x	92.85	ĺ	0.55	x	0.8	=	259.34	(79)
Southwest _{0.9x}	0.77	x	4.94	x	92.85	ĺ	0.55	x	0.8	=	139.86	(79)
Southwest _{0.9x}	0.77	x	4.58	x	69.27	ĺ	0.55	x	0.8	=	193.47	(79)
Southwest0.9x	0.77	×	4.94	x	69.27	İ	0.55	x	0.8	=	104.34	(79)
Southwest _{0.9x}	0.77	x	4.58	×	44.07	İ	0.55	x	0.8	=	123.09	(79)
Southwest _{0.9x}	0.77	x	4.94	x	44.07	Ì	0.55	x	0.8	=	66.38	(79)
Southwest _{0.9x}	0.77	x	4.58	x	31.49	Ì	0.55	x	0.8	=	87.95	(79)
Southwest _{0.9x}	0.77	x	4.94	x	31.49		0.55	x	0.8	=	47.43	(79)
Northwest 0.9x	0.77	x	0.71	x	11.28	x	0.55	x	0.8	=	2.44	(81)
Northwest 0.9x	0.77	x	5.29	x	11.28	×	0.55	x	0.8	=	18.2	(81)
Northwest 0.9x	0.77	x	0.71	×	22.97	×	0.55	x	0.8	=	4.97	(81)
Northwest 0.9x	0.77	x	5.29	X	22.97	x	0.55	x	0.8	=	37.05	(81)
Northwest 0.9x	0.77	x	0.71	x	41.38	x	0.55	x	0.8	=	8.96	(81)
Northwest 0.9x	0.77	x	5.29	x	41.38	×	0.55	x	0.8	=	66.75	(81)
Northwest 0.9x	0.77	x	0.71	x	67.96	x	0.55	x	0.8	=	14.71	(81)
Northwest 0.9x	0.77	×	5.29	×	67.9 <mark>6</mark>	х	0.55	x	0.8	=	109.61	(81)
Northwest 0.9x	0.77	×	0.71	x	91.35	×	0.55	x	0.8	=	19.78	(81)
Northwest 0.9x	0.77	x	5.29	x	91.35	×	0.55	x	0.8	=	147.34	(81)
Northwest 0.9x	0.77	x	0.71	x	97.38	x	0.55	x	0.8	=	21.08	(81)
Northwest 0.9x	0.77	x	5.29	x	97.38	×	0.55	x	0.8	=	157.08	(81)
Northwest 0.9x	0.77	×	0.71	×	91.1	×	0.55	x	0.8	=	19.72	(81)
Northwest 0.9x	0.77	x	5.29	x	91.1	x	0.55	x	0.8	=	146.95	(81)
Northwest 0.9x	0.77	×	0.71	×	72.63	×	0.55	x	0.8	=	15.72	(81)
Northwest 0.9x	0.77	×	5.29	x	72.63	×	0.55	x	0.8	=	117.15	(81)
Northwest 0.9x	0.77	x	0.71	x	50.42	×	0.55	x	0.8	=	10.92	(81)
Northwest 0.9x	0.77	×	5.29	x	50.42	×	0.55	x	0.8	=	81.33	(81)
Northwest 0.9x	0.77	x	0.71	X	28.07	×	0.55	x	0.8	=	6.08	(81)
Northwest 0.9x	0.77	X	5.29	X	28.07	×	0.55	x	0.8	=	45.27	(81)
Northwest 0.9x	0.77	X	0.71	X	14.2	×	0.55	x	0.8	=	3.07	(81)
Northwest 0.9x	0.77	x	5.29	X	14.2	×	0.55	x	0.8	=	22.9	(81)
Northwest 0.9x	0.77	×	0.71	×	9.21	×	0.55	x	0.8	=	1.99	(81)
Northwest 0.9x	0.77	×	5.29	×	9.21	×	0.55	x	0.8	=	14.86	(81)
Rooflights 0.9x	1	×	2.5	×	26	×	0.55	x	0.8	=	25.74	(82)
Rooflights 0.9x	1	×	2.5	×	26	×	0.55	x	0.8	=	25.74	(82)
Rooflights 0.9x	1	×	3.61	×	26	×	0.55	x	0.8	=	74.34	(82)

Rooflights 0.9x	1	x	2.5										
			2.5	×	54		x	0.55	X	0.8	=	53.46	(82)
Rooflights 0.9x	1	x	2.5	x	54		x	0.55	x	0.8	=	53.46	(82)
Rooflights 0.9x	1	x	3.61	×	54		x	0.55	x	0.8	=	154.39	(82)
Rooflights 0.9x	1	×	2.5	×	96		x	0.55	x	0.8	=	95.04	(82)
Rooflights 0.9x	1	×	2.5	×	96		x	0.55	x	0.8	=	95.04	(82)
Rooflights 0.9x	1	×	3.61	×	96		x	0.55	x	0.8	=	274.48	(82)
Rooflights 0.9x	1	x	2.5	×	150)	x	0.55	×	0.8	=	148.5	(82)
Rooflights 0.9x	1	x	2.5	×	150)	x	0.55	x	0.8	=	148.5	(82)
Rooflights 0.9x	1	x	3.61	×	150)	x	0.55	x	0.8	=	428.87	(82)
Rooflights 0.9x	1	x	2.5	×	192	2	x	0.55	x	0.8	=	190.08	(82)
Rooflights 0.9x	1	x	2.5	×	192	2	x	0.55	x	0.8	=	190.08	(82)
Rooflights 0.9x	1	×	3.61	×	192	2	x	0.55	x	0.8	=	548.95	(82)
Rooflights 0.9x	1	x	2.5	×	200)	x	0.55	x	0.8	=	198	(82)
Rooflights 0.9x	1	x	2.5	×	200)	x	0.55	x	0.8	=	198	(82)
Rooflights 0.9x	1	×	3.61	×	200)	x	0.55	x	0.8	=	571.82	(82)
Rooflights 0.9x	1	×	2.5] ×	189)	x	0.55	×	0.8	=	187.11	(82)
Rooflights 0.9x	1	×	2.5	X	189)	x	0.55	×	0.8	=	187.11	(82)
Rooflights 0.9x	1	×	3.61	×	189		х	0.55	х	0.8		540.37	(82)
Rooflights 0.9x	1	Ī×	2.5] ×	157		x	0.55	x	0.8	- 1	155.43	(82)
Rooflights 0.9x	1] ×	2.5	×	157		×	0.55	x	0.8	=	155.43	(82)
Rooflights 0.9x	1	Ī×	3.61] ×	157	· /	x	0.55	x	0.8	=	448.88	(82)
Rooflights 0.9x	1	Ī×	2.5	1 ×	115		x	0.55	x	0.8	=	113.85	(82)
Rooflights 0.9x	1] ×	2.5	j ×	115	; /	x	0.55	x	0.8	=	113.85	(82)
Rooflights 0.9x	1	Ī×	3.61	×	115	;	x	0.55	x	0.8	=	328.8	(82)
Rooflights 0.9x	1] ×	2.5] ×	66		x	0.55	x	0.8	=	65.34	(82)
Rooflights 0.9x	1	×	2.5] ×	66		x	0.55	x	0.8	=	65.34	(82)
Rooflights 0.9x	1	Ī×	3.61	Ī×	66		x	0.55	×	0.8	=	188.7	(82)
Rooflights 0.9x	1	×	2.5	Ī×	33		x	0.55	×	0.8	=	32.67	(82)
Rooflights 0.9x	1	×	2.5] ×	33		x	0.55	x	0.8	=	32.67	(82)
Rooflights 0.9x	1] ×	3.61	Ī×	33		x	0.55	x	0.8	=	94.35	(82)
Rooflights 0.9x	1] ×	2.5	Ī×	21		x	0.55	×	0.8	=	20.79	(82)
Rooflights 0.9x	1] ×	2.5	Ī ×	21		x	0.55	×	0.8	= =	20.79	(82)
Rooflights 0.9x	1] ×	3.61	İ ×	21		x	0.55	×	0.8	= =	60.04	(82)
		-		-								·	
Solar gains in watts	. calcul	ated	for each mon	th			(83)m	n = Sum(74)m	(82)m				
(83)m= 602.63 1080	-	-		-	610.82 24	1		6.85 1799.93	1229.5	1 732.05	508.87]	(83)

Solar gains in watts, calculated for each month $(83)m = Sum(74)m$ $(82)m$														
(83)m=	602.63	1080.36	1603.42	2167.51	2571.73	2610.82	2493.52	2186.85	1799.93	1229.51	732.05	508.87		(83)
Total gains – internal and solar (84)m = (73)m + (83)m , watts (84)m= 1194.44 1669.88 2171.84 2701.12 3068.53 3072.52 2933.55 2634.35 2265.91 1730.55 1273.47 1081.95														
(84)m=	1194.44	1669.88	2171.84	2701.12	3068.53	3072.52	2933.55	2634.35	2265.91	1730.55	1273.47	1081.95		(84)
7. Mean internal temperature (heating season)														
Temp	Temperature during heating periods in the living area from Table 9, Th1 (°C)													
Utilisa	ation fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)							_
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(86)m=	1	0.99	0.97	0.89	0.73	0.53	0.39	0.45	0.72	0.96	1	1		(86)
Mear	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)				1	
(87)m=	19.62	19.89	20.26	20.67	20.91	20.98	21	20.99	20.93	20.55	19.99	19.58		(87)
Tomr		durina k	neating p	oriode ir	rest of	dwelling	from To						1	
(88)m=	19.91	19.91	19.91	19.93	19.93	19.94	19.94	19.94	19.94	19.93	19.92	19.92	ĺ	(88)
													i	()
		<u> </u>	ains for I			<u> </u>	r		0.04	0.04	0.00	4	I	(80)
(89)m=	1	0.99	0.96	0.86	0.66	0.45	0.3	0.35	0.64	0.94	0.99	1		(89)
Mear	interna	l temper	ature in	the rest	of dwelli	ng T2 (f	ollow ste	ps 3 to 7	7 in Tabl	e 9c)				
(90)m=	18.07	18.46	19	19.56	19.85	19.93	19.94	19.94	19.89	19.42	18.61	18.01		(90)
									f	LA = Livin	g area ÷ (4	1) =	0.27	(91)
Mear	interna	l temper	ature (fo	r the wh	ole dwe	llina) = f	LA × T1	+ (1 – fL	A) × T2					
(92)m=	18.48	18.84	19.34	19.86	20.13	20.21	20.22	20.22	20.17	19.72	18.98	18.43		(92)
	adiustn	nent to t	he mean	interna	temper	i ature fro	m Table	4e, whe	ere appro	opriate			ł	
(93)m=	18.33	18.69	19.19	19.71	19.98	20.06	20.07	20.07	20.02	19.57	18.83	18.28		(93)
8. Sp	ace hea	ting requ	uirement			l								
			ternal ter		re obtair	ned at st	ep 11 of	Table 9t	o, so tha	t Ti,m=()	76)m an	d re-calc	ulate	
			or gains						,		,			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Util <mark>is</mark> a	ation fac	tor for g	ains, hm	:										
(94)m=	1	0.99	0.95	0.85	0.67	0.46	0.31	0.36	0.65	0.93	0.99	1		(94)
Us <mark>ef</mark> u	<mark>il g</mark> ains,	hmGm	, W = (94	4)m x (84	4)m									
(95)m=	11 <mark>91.22</mark>	1649.89	2074.03	2301.41	2043.75	1403.48	901.29	948.77	1462.89	16 <mark>10.34</mark>	1263.66	1080.1		(95)
Mo <mark>nt</mark> l	nly avera	age exte	rnal tem	<mark>pera</mark> ture	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for me	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m∙	– (96)m]			-	
(97)m=	3770.88	3696.46	3391.48	2853.83	2180.64	1420.5	903.13	952.72	1546.44	2361.82	3105.13	3745.9		(97)
Spac	e heatin	g require	ement fo	r each n	nonth, k	Wh/mon	th = 0.02	24 x [(97))m – (95)m] x (4′	1)m		-	
(98)m=	1919.26	1375.3	980.18	397.75	101.84	0	0	0	0	559.1	1325.86	1983.36		
								Tota	l per year	(kWh/year) = Sum(98	8)15,912 =	8642.66	(98)
Spac	e heatin	a reauire	ement in	kWh/m ²	/vear								39.03	(99)
		• •			.,									
			quiremen			ala 10h								
Calcu	Jan	Feb	July and Mar	August. Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	l	
Heat			lculated										i I	
(100)m=				0		· · · · ·	1923.56			0	0	0	l	(100)
	-	tor for lo					1020100		<u> </u>		•		i	~ /
(101)m=			0	0	0	0.95	0.97	0.96	0	0	0	0	l	(101)
		_	Vatts) = (-		0.07	0.00	Ŭ	Ŭ	Ŭ	Ū	İ	()
(102)m=		0		0		i	1872.35	1887.73	0	0	0	0	l	(102)
	_	-	lculated	_	-				_	Ū	Ū	Ū	i	
(103)m=	<u> </u>						3409.05		0	0	0	0	1	(103)
		, ,	ement fo	÷					-	-	-		x (41)m	()
			(104)m <			, wonny,	Jonana		– 0.01		,		× (+ 1 /111	
(104)m=		0	0	0	0	903.7	1143.3	893.05	0	0	0	0		
					<u> </u>				Total	= Sum(104)	=	2940.05	(104)
Stroma	ESAD 201	2 Version	: 1.0.1.25 (SAP 9 92)	- http://ww	NNN stroma	com			,			Pag] e 8 of 10

Cooled									f C =	cooled	area ÷ (4	4) =	0.72	(105)
	tency f	actor (Ta	able 10t	<u>)</u>										_
(106)m=	0	0	0	0	0	0.25	0.25	0.25	0	0	0	0		_
-									Tota	$I = Sum_0$	(104)	=	0	(106)
· -		· ·	1	month =	r`´´	r <u>í í</u>	r <u> </u>	r					1	
(107)m=	0	0	0	0	0	162.89	206.08	160.97	0	0	0	0		-
									Tota	l = Sum(107)	=	529.95	(107)
Space of	cooling	require	ment in	kWh/m²/	year				(107)) ÷ (4) =			2.39	(108)
9a. Ene	rgy rec	quiremer	nts – Ind	lividual h	eating s	ystems i	ncluding	ı micro-C	CHP)					
Space	heatir	ng:												_
Fractic	on of sp	ace hea	at from s	econdar	y/supple	mentary	v system						0	(201)
Fractic	on of sp	ace hea	at from r	nain syst	tem(s)			(202) = 1 ·	- (201) =				1	(202)
Fractic	on of to	tal heati	ng from	main sy	stem 1			(204) = (2	02) × [1 –	(203)] =		·	1	(204)
Efficie	ncy of I	main spa	ace hea	ting syste	em 1								93.3	(206)
Efficie	ncv of s	seconda	rv/supp	ementar	v heatin	a systen	n %						0	(208)
				ency Ra	-	geyeten	, , , , , , , , , , , , , , , , , , , ,							(209)
COOMI			1	1	r	i .			-	-		_	4.32	
L	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
		-	i È	calculate	1					550.4	4005.00	4000 00		
L	1919.26		980.18	397.75	101.84	0	0	0	0	559.1	1325.86	1983. <mark>3</mark> 6		
			1	100 ÷ (20										(211)
	2057.09	1474.06	1050.57	426.31	109.16	0	0	0	0	599.25		2125.79		_
								Tota	il (kWh/yea	ar) =Sum(2	211) _{15,10. 12}		9 <mark>263.3</mark>	(211)
Sp <mark>ace</mark>	heatin	g fuel (s	econda	'y), kWh/	month									
= {[(<mark>98)</mark>	m x (20	01)]}x 1	00 ÷ (20)8)				1		1		1		
(215) <mark>m=</mark>	0	0	0	0	0	0	0	0	0	0	0	0		_
								Tota	ıl (kWh/yea	ar) =Sum(2	215) _{15,10. 12}	_	0	(215)
Water h	neating	J												
Output			1	ulated a	1	1		1	1	1	1			
L	224.13	197.48	207.25	185.57	181.59	159.94	153.23	170.82	170.71	192.44	203.75	218.67		-
Efficien	,	1	1	1		1		1	1	1	1		81	(216)
(217)m=	89.23	89.02	88.53	87.12	84.11	81	81	81	81	87.72	88.94	89.28		(217)
		•	, kWh/m											
(219)m (219)m=		221.85	0 ÷ (217 234.11)m 213.01	215.89	197.45	189.18	210.89	210.76	219.38	229.09	244.92		
(210)	201110	221.00	20111	210.01	210.00	101110			l = Sum(2		220.00	211.02	2637.71	(219)
Snoos	ooolin	a fual k	Wh/mo	nth						1000/112			2037.71	(219)
(221)m				nun.										
(221)m=	0	0	0	0	0	37.71	47.7	37.26	0	0	0	0		
Ľ				I	I		I	I Tota	I I = Sum(2	1 21) ₆₈ =			122.67	(221)
ممر	totolo									 [4]	Mbboo			
Annual Space h			ed, main	system	1					ĸ	Wh/year		kWh/year 9263.3	٦
Water h														1
	-												2637.71	
Space of	cooling	tuel use	ed										122.67	

Electricity for pumps, fans and electric keep-hot						
mechanical ventilation - balanced, extract or posit	ive input from o	utside		508.21		(230a)
central heating pump:				30		(230c)
Total electricity for the above, kWh/year		sum of (230a)	(230g) =		538.21	(231)
Electricity for lighting					615.59	(232)
12a. CO2 emissions – Individual heating systems	including micro-	-CHP				
	Energy kWh/year		Emission fac kg CO2/kWh	ctor	Emissions kg CO2/yea	
Space heating (main system 1)	(211) x		0.216	=	2000.87	(261)
Space heating (secondary)	(215) x		0.519	=	0	(263)
Water heating	(219) x		0.216	=	569.75	(264)
Space and water heating	(261) + (262) + (26	63) + (264) =			2570.62	(265)
Space cooling	(221) x		0.519	=	63.67	(266)
Electricity for pumps, fans and electric keep-hot	(231) x		0.519	=	279.33	(267)
Electricity for lighting	(232) x		0.519	=	319.49	(268)
Total CO2, kg/year		sum of	f (265) (271) =		3233.11	(272)
Dwelling CO2 Emission Rate		(272) -	÷ (4) =		14.6	(273)
El rating (section 14)					84	(274)

Appendix Energy Assessment Ellerdale Road

GREEN Scenario

User Details: Ssessor Name: Stroma Number:														
Assessor Name: Software Name:	Stroma FSAP 201			Softwa	are Vei	rsion:		Versic	on: 1.0.1.25					
Address	1 Ellerdele Deed	Р	roperty <i>i</i>	Address	House	1-GREE	N							
Address : 1. Overall dwelling dimens	1 Ellerdale Road													
	5015.		Δrea	a(m²)		Av. Hei	aht(m)		Volume(m ³)					
Basement				. ,	(1a) x		65	(2a) =	177.55	(3a)				
Ground floor				67	(1b) x		3	(2b) =	201] (3b)				
First floor			8	7.44	(1c) x		3	(2c) =	262.32] (3c)				
Total floor area TFA = (1a)-	+(1b)+(1c)+(1d)+(1e	e)+(1r	n)	21.44	(4)			J		J				
Dwelling volume					(3a)+(3b)+(3c)+(3d))+(3e)+	.(3n) =	640.87	(5)				
2. Ventilation rate:		1												
		econdar heating	у	other		total			m ³ per hour					
Number of chimneys		0	+	0] = [0	× 4	40 =	0	(6a)				
Number of open flues	0 +	0] + [0] = [0	x	20 =	0	(6b)				
Number of intermittent fans					- Ē	0	x	10 =	0	(7a)				
Number of passive vents						0	x	10 =	0	(7b)				
Number of flueless gas fire	6					0	X	40 =	0	(7c)				
	Air ch													
Infiltration due to chimneys					continue fr	0 rom (9) to (÷ (5) =	0	(8)				
Number of storeys in the		<i></i>	<i>a to (11), t</i>			0111 (0) 10 (10)		0	(9)				
Additional infiltration	5.						[(9)	-1]x0.1 =	0	(10)				
Structural infiltration: 0.25	5 for steel or timber	frame or	0.35 foi	r masonr	y constr	uction			0	(11)				
if both types of wall are pres deducting areas of openings		sponding to	the great	er wall are	a (after					-				
If suspended wooden floo		led) or 0.	1 (seale	ed), else	enter 0				0	(12)				
If no draught lobby, enter	0.05, else enter 0								0	(13)				
Percentage of windows a	ind doors draught s	tripped							0	(14)				
Window infiltration				0.25 - [0.2	x (14) ÷ 1	00] =			0	(15)				
Infiltration rate						12) + (13) +			0	(16)				
Air permeability value, q5	•			•	•	etre of e	nvelope	area	3	(17)				
If based on air permeability									0.15	(18)				
Air permeability value applies it Number of sides sheltered	a pressurisation test ha	is been dor	e or a deg	gree air pei	rmeability	is being us	ed			(19)				
Shelter factor				(20) = 1 -	[0.075 x (1	[9]] =			2 0.85	(19)				
Infiltration rate incorporating	g shelter factor			(21) = (18)) x (20) =				0.13	(21)				
Infiltration rate modified for	monthly wind spee						-							
Jan Feb M	ar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]					
Monthly average wind spee	d from Table 7													
(22)m= 5.1 5 4.9	9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7						

Wind Factor (22a)m = (22)m \div 4								
(22a)m= 1.27 1.25 1.23 1.1 1.08	0.95 0.9	95 0.92	1	1.08	1.12	1.18		
Adjusted infiltration rate (allowing for shelter an	d wind spee	d) = (21a) x	(22a)m					
0.16 0.16 0.16 0.14 0.14	0.12 0.1	12 0.12	0.13	0.14	0.14	0.15		
Calculate effective air change rate for the applie If mechanical ventilation:	cable case							(23a)
If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equati	on (N5)) . other	wise (23b)) = (23a)		l	0.5	(23a) (23b)
If balanced with heat recovery: efficiency in % allowing for				()			76.5	(230) (23c)
a) If balanced mechanical ventilation with hea				2b)m + (i	23b) × [1	l (23c) – I		(200)
(24a)m= 0.28 0.28 0.27 0.26 0.25	0.24 0.2	24 0.24	0.24	0.25	0.26	0.27	-	(24a)
b) If balanced mechanical ventilation without	heat recove	ry (MV) (24b)m = (22	2b)m + (2	23b)			
(24b)m= 0 0 0 0 0	0 (0 0	0	0	0	0		(24b)
c) If whole house extract ventilation or positiv	•							
if (22b)m < 0.5 × (23b), then (24c) = (23b	,.	<u> </u>	,		, 			
(24c)m= 0 0 0 0 0	0 (0	0	0	0		(24c)
 d) If natural ventilation or whole house positivity if (22b)m = 1, then (24d)m = (22b)m other 				0.51				
(24d)m= 0 0 0 0 0	0 (0	0	0	0		(24d)
Effective air change rate - enter (24a) or (24b) or (24c) or	(24d) in box	(25)					
(25)m= 0.28 0.28 0.27 0.26 0.25	0.24 0.2	24 0.24	0.24	0.25	0.26	0.27		(25)
3. Heat losses and heat loss parameter:								
ELEMENT Gross Openings	Net Area	U-valu	Je	AXU		k-value	,	AXk
area (m²) m²	A ,m²	W/m2	ĸ	(VV/I	<)	kJ/m²∙ł	<	kJ/K
Doors	1.76	x 1.2	=	2.112				(26)
Windows Type 1	0.71	x1/[1/(1.2)+	0.04] =	0.81				(27)
Windows Type 2	5.29	x1/[1/(1.2)+	0.04] =	6.06				(27)
Windows Type 3	8.46	x1/[1/(1.2)+	· L	9.69				(27)
Windows Type 4	9.64	x1/[1/(1.2)+	L	11.04				(27)
Windows Type 5	4.58	x1/[1/(1.2)+	L	5.24				(27)
Windows Type 6	4.94	x1/[1/(1.2)+	Ľ	5.66				(27)
Rooflights Type 1	2.5	x1/[1/(1.2) +		3				(27b)
Rooflights Type 2	2.5	x1/[1/(1.2) +	0.04] =	3				(27b)
Rooflights Type 3	3.61	x1/[1/(1.2) +	0.04] =	4.332				(27b)
Floor	87.44	× 0.11	=	9.61840	1			(28)
Walls Type1 176.88 0	176.88	x 0.18	=	31.84				(29)
Walls Type2 139.89 48.42	91.47	x 0.18	=	16.46				(29)
Roof 87.44 12.22	75.22	x 0.11	=	8.27				(30)
Total area of elements, m ²	491.65							(31)
Party wall	12.41	x 0	=	0				(32)
	1	· · · · · · · · · · · · · · · · · · ·	// / / I I	.) 0.047 -			~ ~	

* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 ** include the areas on both sides of internal walls and partitions

Fabric heat loss, $W/K = S (A \times U)$

(26)	(30)	+ (32) =
------	------	----------

135.73 (33)

Heat c	apacity	Cm = S	(Axk)						((28)	(30) + (32	2) + (32a)	(32e) =	63515.68	(34)	
Therm	al mass	parame	eter (TMI	- = Cm -	÷ TFA) ir	ו kJ/m²K	<u> </u>		Indica	tive Value	: Medium		250	(35)	
	•		ere the de tailed calc	etails of the ulation.	e construct	ion are no	t known pr	ecisely the	e indicative	values of	TMP in Ta	able 1f			
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix l	К						73.75	(36)	
if details	s of therma	al bridging	are not kr	nown (36) =	= 0.15 x (3	1)									
Total f	abric he	at loss							(33) +	(36) =			209.47	(37)	
Ventila	ation hea	at loss ca	alculated	d monthly	у	_		-	(38)m	= 0.33 × (25)m x (5)	-	_		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
(38)m=	59.23	58.56	57.88	54.51	53.84	50.47	50.47	49.79	51.81	53.84	55.18	56.53		(38)	
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m				
(39)m=	268.7	268.03	267.36	263.99	263.31	259.94	259.94	259.27	261.29	263.31	264.66	266.01			
Heat lo	oss para	imeter (I	HLP), W	/m²K	•	-	•	•		Average = = (39)m ÷	Sum(39)₁ · (4)	₁₂ /12=	263.82	(39)	
(40)m=	1.21	1.21	1.21	1.19	1.19	1.17	1.17	1.17	1.18	1.19	1.2	1.2			
Numb	Average = Sum(40) _{1 12} /12= 1.19														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)	
													·		
4. Wa	ater hea	ting ene	rgy requ	irement:								kWh/y	ear:		
if <mark>T</mark> F	⁻ A > 13.			(1 - exp	(-0.0003	349 x (TF	=A -13.9)2)] + 0.(0013 x (⁻	ΓFA -13		03		(42)	
Reduce	if TFA £ 13.9, N = 1 nnual average hot water usage in litres per day Vd,average = (25 x N) + 36 educe the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of pot more that 125 litres per person per day (all water use, hot and cold)														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]		
Hot wat				ach month	-			-					1		
(44)m=	116.77	112.53	108.28	104.03	99.79	95.54	95.54	99.79	104.03	108.28	112.53	116.77]		
							I				I m(44) _{1 12} =		1273.89	(44)	
Energy	content of	hot water	used - ca	lculated me	onthly $= 4$.	190 x Vd,ı	m x nm x D	0Tm / 3600) kWh/mor	oth (see Ta	ables 1b, 1	c, 1d)			
(45)m=	173.17	151.46	156.29	136.26	130.74	112.82	104.55	119.97	121.4	141.48	154.44	167.71			
lf instan	itaneous v	vater heati	ng at poin	t of use (no	o hot water	r storage),	enter 0 in	boxes (46		Total = Su	m(45) _{1 12} =	=	1670.28	(45)	
(46)m=	25.98	22.72	23.44	20.44	19.61	16.92	15.68	18	18.21	21.22	23.17	25.16]	(46)	
	storage								-				1		
-		. ,		ng any se			-		ame ves	sel		0		(47)	
	•	-		ank in dw er (this ir	-			. ,	ars) ante	ar '()' in <i>(</i>	(47)				
	storage		not walt	51 (UIIS II	10100031	nstantal)				
	-		eclared I	oss facto	or is kno	wn (kWł	n/dav):					0	1	(48)	
			m Table			(- , , -					0	1	(49)	
-				e, kWh/ye	ear			(48) x (49)) =			0]	(50)	
-	-		-	cylinder		or is not			,			•	J		

If comr	iter stor nunity h e factor	0		(51) (52)										
		actor fro		2b								0 0		(52)
•				e, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
0.		(54) in (5	•	,, , , , , , , , , , , , , , , , ,	Jul			() / (0.)	(°-) / (°	,		0		(55)
	. ,	. , .		for each	month			((56)m = (55) × (41)r	m		-	1	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0	1	(56)
` '		-	-	prage, (57)		-		-	-	-			l lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0	1	(57)
						Ů	Ů	ů	•	Ū		-		
	•	•	,	om Table		50)m - ((EO) · 20	SE y (11)	m			0	İ	(58)
	-			for each Ie H5 if t	,		. ,	. ,		r thermo	stat)			
(59)m=	0	0	0	0	0		0		0	0	0	0		(59)
			[(04)	(00) . 0		L					i	
			1	month (, 	, , I	· · ·		49.32	50.00	40.22	50.00	l	(61)
(61)m=	50.96	46.03	50.96	49.32	50.85	47.12	48.69	50.85		50.96	49.32	50.96		
			· · · · · ·	<u> </u>	· · · · · ·	· · · · · ·		· /		-	. ,	· ,	(59)m + (61) I	
(62)m=	224.13	197.48	207.25	185.57	181.59	159.94	153.23	170.82	170.71	192.44	203.75	218.67		(62)
				endix G or						r contributi	on to wate	er heating)		
(add ad	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix C))				1	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater he <mark>a</mark>	ter											
(64)m=	<mark>22</mark> 4.13	197.48	<mark>20</mark> 7.25	185.57	181.59	159.94	153.23	170.82	170.71	192.44	203.75	218.67		
								Outp	out from wa	ater heatei	<mark>(annual)</mark> ₁	12	22 <mark>65.59</mark>	(64)
Hea <mark>t g</mark>	ains fro	m water	heating	, <mark>kWh</mark> /me	onth 0.2	5 ´ [0.85	× (45)m	1 + (61)m	n] + 0.8 x	(<mark>46)m</mark>	+ (57)m	+ (59)m]	
(65)m=	70.32	61.87	64.71	57.63	56.18	49.29	46.93	52.6	52.69	59.78	63.68	68.5		(65)
inclu	de (57)	m in calo	ulation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ernal da	ains (see	e Table 5	5 and 5a):	•		-				-	-	
		is (Table) -									
Melabl	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49	151.49		(66)
	n nains			ı opendix									ł	
(67)m=	34.86	30.96	25.18	19.06	14.25	12.03	13	16.9	22.68	28.79	33.61	35.83	1	(67)
											00.01	00.00	Í	()
		· ·	1	Append	· ·	1	1	, 			0.47.00	070 74	I	(68)
(68)m=	390.99	395.05	384.83	363.06	335.58	309.76	292.51	288.45	298.68	320.44	347.92	373.74	l	(00)
		<u>`</u>	r	ppendix I	· ·		, <u> </u>	1					I	(22)
(69)m=	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15	38.15		(69)
Pumps	and fa	ns gains	(Table !	5a)	·	·	·						1	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	vaporatio	n (nega	tive valu	es) (Tab	le 5)								
(71)m=	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19	-121.19		(71)
Water	heating	gains (T	able 5)											
(72)m=	94.52	92.06	86.97	80.05	75.52	68.46	63.08	70.7	73.19	80.35	88.44	92.07		(72)

G91-6 G91-6 G92-6 G92-7 440-04 447-49 460-99 G01-33 G14.41 G73-00 (73) Sourpassa Garage quises Filt Garage quises	Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$																
Solar gains are calculated using solar fux from Table 6a and associated equations to convert to the applicability of the appl	(73)m= 591.81	589.52	568.42	533.62	496.8	4	61.7	440.04	447	.49	465.99	501.03	3 541.41	573.09		(73)	
Orientation: Access Factor Table 60 Area m ⁿ Flux Table 6a g_ Table 6b FF Table 6c Gains (W) Southeast 0, av Southeast 0, av	6. Solar gains:													-			
Table 6d m ² Table 6a Table 6b Table 6b Table 6c (W) Southeast 0.s 0.77 × 8.46 × 36.79 × 0.55 × 0.8 = 119.83 (77) Southeast 0.sk 0.77 × 8.46 × 62.67 × 0.55 × 0.8 = 119.83 (77) Southeast 0.sk 0.77 × 8.46 × 62.67 × 0.65 × 0.8 = 119.12 (77) Southeast 0.sk 0.77 × 8.46 × 106.25 × 0.55 × 0.8 = 542.16 (77) Southeast 0.sk 0.77 × 8.46 × 106.25 × 0.55 × 0.8 = 312.32 (77) Southeast 0.sk 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 34.82 (77) Southeast 0.sk 0.77<	Solar gains are cal	culated u	ising sola	r flux from	Table 6a	and	assoc	iated equa	tions	to coi	nvert to the	e applic	able orientat	ion.			
Southeast 0.40 0.77 × 8.46 × 36.79 × 0.55 × 0.8 = 199.83 (77) Southeast 0.9 0.77 × 8.46 × 62.67 × 0.55 × 0.8 = 199.83 (77) Southeast 0.9 0.77 × 8.46 × 62.67 × 0.55 × 0.8 = 199.83 (77) Southeast 0.9 0.77 × 8.46 × 62.67 × 0.55 × 0.8 = 199.422 (77) Southeast 0.9 0.77 × 8.46 × 106.25 × 0.55 × 0.8 = 549.83 (77) Southeast 0.9 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 349.82 (77) Southeast 0.9 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 348.2 (77) Southeast 0.9 0.77 × 8.46			actor							т							
Southeast 0.9: 0.77 x 0.64 x 36.79 x 0.55 x 0.8 = 100.15 171 Southeast 0.9: 0.77 x 8.46 x 62.67 x 0.55 x 0.8 = 100.15 171 Southeast 0.9: 0.77 x 8.46 x 62.67 x 0.55 x 0.8 = 142.22 (77) Southeast 0.9: 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 454.18 (77) Southeast 0.9: 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 454.18 (77) Southeast 0.9: 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 444.22 (77) Southeast 0.9: 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 449.82 (77) Southeast 0.9: 0.77 x 8.46		ible 6d					Ia	DIE 6a		18	adle 6D		I able 6C		(VV)		
Southeast 0,9; 0.77 x 8.46 x 62.67 x 0.55 x 0.8 = 123.3 771 Southeast 0,9; 0.77 x 8.46 x 65.75 x 0.55 x 0.8 = 123.3 771 Southeast 0,9; 0.77 x 8.46 x 85.75 x 0.55 x 0.8 = 142.22 771 Southeast 0,9; 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 522.06 771 Southeast 0,9; 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 641.01 771 Southeast 0,9; 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 644.24 771 Southeast 0,9; 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 64.729 777 Southeast 0,9; 0.77 x 8.46 x	Southeast 0.9x	0.77	x	8.4	46	x	3	36.79	x		0.55	x	0.8	=	189.83	(77)	
Southeast 0.9 0.77 x 0.64 x 0.27 x 0.64 x 0.55 x 0.8 = 18422 (77) Southeast 0.9 0.77 x 8.46 x 85.75 x 0.55 x 0.8 = 442.42 (77) Southeast 0.9 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 442.42 (77) Southeast 0.9 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 614.01 (77) Southeast 0.9 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 644.7 (77) Southeast 0.9 0.77 x 8.46 x 118.15 x 0.55 x 0.8 = 647.29 (77) Southeast 0.9 0.77 x 8.46 x 113.91 x 0.55 <		0.77	x	9.6	64	x	3	36.79	x		0.55	x	0.8	=	108.15	(77)	
Southeast 0, x 0.77 x 8.46 x 85.75 x 0.55 x 0.8 = 442.42 (7) Southeast 0, x 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 252.06 (7) Southeast 0, x 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 548.18 (7) Southeast 0, x 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 614.01 (7) Southeast 0, x 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 614.01 (7) Southeast 0, x 0.77 x 8.46 x 118.15 x 0.55 x 0.8 = 587.68 (77) Southeast 0, x 0.77 x 8.46 x 113.91 x 0.55 x 0.8 = 587.68 (77) Southeast 0, x 0.77 x 8.46	Southeast 0.9x	0.77	x	8.4	46	x	6	62.67	x		0.55	×	0.8	=	323.35	(77)	
Southeast 0.9 0.77 × 9.64 × 85.75 × 0.55 × 0.8 = 252.06 (7) Southeast 0.9 0.77 × 8.46 × 106.25 × 0.55 × 0.8 = 548.18 (7) Southeast 0.9 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 614.01 (7) Southeast 0.9 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 614.01 (7) Southeast 0.9 0.77 × 8.46 × 118.15 × 0.55 × 0.8 = 349.82 (7) Southeast 0.9 0.77 × 8.46 × 113.91 × 0.55 × 0.8 = 587.68 (7) Southeast 0.9 0.77 × 8.46 × 0.85 × 0.8 = 587.68	Southeast 0.9x	0.77	x	9.6	64	x	6	62.67	x		0.55	×	0.8	=	184.22	(77)	
Southeast 0.x 0.77 x 8.46 x 106.25 x 0.55 x 0.8 = 544.18 (77) Southeast 0.9x 0.77 x 9.64 x 106.25 x 0.55 x 0.8 = 544.18 (77) Southeast 0.9x 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 644.01 (77) Southeast 0.9x 0.77 x 8.46 x 119.01 x 0.55 x 0.8 = 649.57 677 Southeast 0.9x 0.77 x 8.46 x 113.91 x 0.55 x 0.8 = 547.28 (77) Southeast 0.9x 0.77 x 8.46 x 113.91 x 0.55 x 0.8 = 548.28 (77) Southeast 0.9x 0.77 x 8.46 x 113.91 x 0.55 x 0.8 = 548.28 (77) Southeast 0.9x 0.77 x 8.46	Southeast 0.9x	0.77	x	8.4	16	x	8	35.75	x		0.55	x	0.8	=	442.42	(77)	
Southeast 0.x 0.77 x 9.64 x 106.25 x 0.87 x 0.88 = 312.32 (77) Southeast 0.9x 0.77 x 8.46 x 119.01 x 0.55 x 0.88 = 614.01 (77) Southeast 0.9x 0.77 x 8.46 x 119.01 x 0.55 x 0.88 = 349.82 (77) Southeast 0.9x 0.77 x 8.46 x 118.15 x 0.55 x 0.88 = 349.82 (77) Southeast 0.9x 0.77 x 8.46 x 113.91 x 0.55 x 0.88 = 587.69 (77) Southeast 0.9x 0.77 x 8.46 x 104.39 x 0.55 x 0.88 = 587.69 (77) Southeast 0.9x 0.77 x 8.46 x 104.39 x 0.55 x 0.88 = 272.93 (77) Southeast 0.9x 0.77 x 8.4	Southeast 0.9x	0.77	x	9.6	64	x	8	35.75	x		0.55	x	0.8	=	252.06	(77)	
Southeast 0.5x 0.77 × 8.46 × 119.01 × 0.55 × 0.8 = 614.01 (77) Southeast 0.5x 0.77 × 9.64 × 119.01 × 0.55 × 0.8 = 614.01 (77) Southeast 0.5x 0.77 × 9.64 × 118.15 × 0.55 × 0.8 = 614.01 (77) Southeast 0.5x 0.77 × 9.64 × 118.15 × 0.55 × 0.8 = 537.69 (77) Southeast 0.5x 0.77 × 8.46 × 113.91 × 0.55 × 0.8 = 537.69 (77) Southeast 0.5x 0.77 × 8.46 × 104.39 × 0.65 × 0.8 = 334.83 (77) Southeast 0.5x 0.77 × 8.46 × 92.85 × 0.55 × 0.8	Southeast 0.9x	0.77	x	8.4	16	x	1	06.25	x		0.55	x	0.8	=	548.18	(77)	
Southeast 0.9x 0.77 x 9.64 x 119.01 x 0.55 x 0.8 = 349.82 (77) Southeast 0.9x 0.77 x 8.46 x 118.15 x 0.55 x 0.8 = 6.97, (77) Southeast 0.9x 0.77 x 8.46 x 118.15 x 0.55 x 0.8 = 6.97, (77) Southeast 0.9x 0.77 x 8.46 x 113.91 x 0.55 x 0.8 = 5.97, 60 (77) Southeast 0.9x 0.77 x 8.46 x 104.39 x 0.55 x 0.8 = 5.98, 60 (77) Southeast 0.9x 0.77 x 8.46 x 104.39 x 0.55 x 0.8 = 5.98, 60 (77) Southeast 0.9x 0.77 x 8.46 x 92.85 x 0.55 x 0.8 = 272.93 (77) Southeast 0.9x 0.77 x 8.46 44.07	Southeast 0.9x	0.77	x	9.6	64	x	1	06.25	x		0.55	x	0.8	=	312.32	(77)	
Southeast 0.9, 0.77 × 0.46 × 118.15 × 0.055 × 0.8 0.94 (77) Southeast 0.9, 0.77 × 9.64 × 118.15 × 0.55 × 0.8 = 0.94.7 (77) Southeast 0.9, 0.77 × 8.46 × 113.91 × 0.55 × 0.8 = 587.69 (77) Southeast 0.9, 0.77 × 8.46 × 104.39 × 0.55 × 0.8 = 587.69 (77) Southeast 0.9, 0.77 × 8.46 × 104.39 × 0.55 × 0.8 = 598.56 (77) Southeast 0.9, 0.77 × 8.46 × 92.85 × 0.55 × 0.8 = 272.93 (77) Southeast 0.9, 0.77 × 8.46 × 69.27 × 0.55 × 0.8 = 203.61 (77) Southeast 0.9, 0.77 × 8.46 ×	Southeast 0.9x	0.77	x	8.4	46	x	1	19.01	x		0.55	x	0.8	=	614.01	(77)	
Southeast 0.9* 0.77 × 9.64 × 118.15 × 0.55 × 0.8 = 347.29 (77) Southeast 0.9* 0.77 × 8.46 × 113.91 × 0.55 × 0.8 = 347.29 (77) Southeast 0.9* 0.77 × 9.64 × 113.91 × 0.55 × 0.8 = 538.58 (77) Southeast 0.9* 0.77 × 8.46 × 104.39 × 0.55 × 0.8 = 538.58 (77) Southeast 0.9* 0.77 × 8.46 × 92.85 × 0.55 × 0.8 = 272.93 (77) Southeast 0.9* 0.77 × 8.46 × 92.85 × 0.55 × 0.8 = 272.93 (77) Southeast 0.9* 0.77 × 8.46 × 92.85 × 0.55 × 0.8 = 227.37 (77) Southeast 0.9* 0.77 × 8.46	Southeast 0.9x	0.77	x	9.6	64	x	1	19.01	x		0.55	x	0.8	=	349.82	(77)	
Southeast 0.9x0.000.00Southeast 0.9x0.77x0.88=587.69(77)Southeast 0.9x0.77x0.88=587.69(77)Southeast 0.9x0.77x0.88=587.69(77)Southeast 0.9x0.77x0.88=538.58(77)Southeast 0.9x0.77x8.86(77)Southeast 0.9x0.77x8.86(77)Southeast 0.9x0.77x8.86\$0.88=538.580.88=538.58(0.88=\$0.88=\$Southeast 0.9x0.77x8.86\$0.86\$\$\$\$\$\$\$\$\$\$\$\$\$\$ <th colspa<="" td=""><td>Southeast 0.9x</td><td>0.77</td><td>x</td><td>8.4</td><td>16</td><td>x</td><td>1</td><td>18.15</td><td>x</td><td></td><td>0.55</td><td>x</td><td>0.8</td><td>=</td><td>609.57</td><td>(77)</td></th>	<td>Southeast 0.9x</td> <td>0.77</td> <td>x</td> <td>8.4</td> <td>16</td> <td>x</td> <td>1</td> <td>18.15</td> <td>x</td> <td></td> <td>0.55</td> <td>x</td> <td>0.8</td> <td>=</td> <td>609.57</td> <td>(77)</td>	Southeast 0.9x	0.77	x	8.4	16	x	1	18.15	x		0.55	x	0.8	=	609.57	(77)
Southeast 0.9x0.77x9.64x113.91x0.55x0.8=334.83(77)Southeast 0.9x0.77x9.64x104.39x0.55x0.8=538.58(77)Southeast 0.9x0.77x9.64x104.39x0.55x0.8=334.83(77)Southeast 0.9x0.77x9.64x104.39x0.55x0.8=479.05(77)Southeast 0.9x0.77x9.64x92.85x0.55x0.8=272.93(77)Southeast 0.9x0.77x8.46x92.85x0.55x0.8=272.93(77)Southeast 0.9x0.77x8.46x92.85x0.55x0.8=272.93(77)Southeast 0.9x0.77x8.46x69.27x0.55x0.8=203.61(77)Southeast 0.9x0.77x8.46x44.07x0.55x0.8=227.37(77)Southeast 0.9x0.77x8.46x31.49x0.55x0.8=129.54(77)Southeast 0.9x0.77x8.46x31.49x0.55x0.8=129.54(77)Southeast 0.9x0.77x4.58x36.790.55x <td>Southeast 0.9x</td> <td>0.77</td> <td>×</td> <td>9.6</td> <td>64</td> <td>x</td> <td>1</td> <td>18.15</td> <td>x</td> <td></td> <td>0.55</td> <td>x</td> <td>0.8</td> <td></td> <td>347.29</td> <td>(77)</td>	Southeast 0.9x	0.77	×	9.6	64	x	1	18.15	x		0.55	x	0.8		347.29	(77)	
Southeast $0.9x$ 0.77 x 8.46 x 104.39 x 0.55 x 0.8 $=$ 538.58 (77) Southeast $0.9x$ 0.77 x 9.64 x 104.39 x 0.55 x 0.8 $=$ 336.85 (77) Southeast $0.9x$ 0.77 x 8.46 x 92.85 x 0.55 x 0.8 $=$ 479.06 (77) Southeast $0.9x$ 0.77 x 9.64 x 92.85 x 0.55 x 0.8 $=$ 272.93 (77) Southeast $0.9x$ 0.77 x 8.46 x 99.27 x 0.55 x 0.8 $=$ 236.11 (77) Southeast $0.9x$ 0.77 x 8.46 x 69.27 x 0.55 x 0.8 $=$ 227.37 (77) Southeast $0.9x$ 0.77 x 8.46 x 44.07 x 0.55 x 0.8 $=$ 227.37 (77) Southeast $0.9x$ 0.77 x 8.46 x 41.07 x 0.55 x 0.8 $=$ 129.54 (77) Southeast $0.9x$ 0.77 x 8.46 x 31.49 x 0.55 x 0.8 $=$ 129.54 (77) Southeast $0.9x$ 0.77 x 8.46 x 31.49 x 0.55 x 0.8 $=$ 102.77 (79) Southeast $0.9x$ <	Southeast 0.9x	0.77	×	8.4	16	x	1	13.91	×		0.55	x	0.8	=	5 <mark>87.69</mark>	(77)	
Southeast $0.9x$ 0.77 x 9.64 104.39 x 0.55 x 0.8 $=$ 306.85 (77) Southeast $0.9x$ 0.77 x 8.46 92.85 x 0.55 x 0.8 $=$ 479.05 (77) Southeast $0.9x$ 0.77 x 9.64 x 92.85 x 0.55 x 0.8 $=$ 479.05 (77) Southeast $0.9x$ 0.77 x 9.64 x 92.85 x 0.55 x 0.8 $=$ 272.93 (77) Southeast $0.9x$ 0.77 x 8.46 x 69.27 x 0.55 x 0.8 $=$ 203.61 (77) Southeast $0.9x$ 0.77 x 8.46 x 44.07 x 0.55 x 0.8 $=$ 227.37 (77) Southeast $0.9x$ 0.77 x 8.46 x 44.07 x 0.55 x 0.8 $=$ 129.54 (77) Southeast $0.9x$ 0.77 x 8.46 x 31.49 x 0.55 x 0.8 $=$ 129.54 (77) Southeast $0.9x$ 0.77 x 8.46 x 31.49 x 0.55 x 0.8 $=$ 129.54 (77) Southwest $0.9x$ 0.77 x 4.58 x 36.79 0.55 x 0.8 $=$ 129.56 (77) Southwest $0.9x$ 0.77 x 4	Southeast 0.9x	0.77	x	9.6	64	x	1	13.91	x		0.55	x	0.8	=	3 <mark>34.83</mark>	(77)	
NoteNoteSoutheast 0.9x 0.77 x 8.46 x 92.85 x 0.55 x 0.8 $=$ 479.05 (77) Southeast 0.9x 0.77 x 9.64 x 92.85 x 0.55 x 0.8 $=$ 272.93 (77) Southeast 0.9x 0.77 x 8.46 x 69.27 x 0.55 x 0.8 $=$ 272.93 (77) Southeast 0.9x 0.77 x 9.64 x 69.27 x 0.55 x 0.8 $=$ 220.61 (77) Southeast 0.9x 0.77 x 8.46 x 44.07 x 0.55 x 0.8 $=$ 227.37 (77) Southeast 0.9x 0.77 x 8.46 x 44.07 x 0.55 x 0.8 $=$ 129.54 (77) Southeast 0.9x 0.77 x 8.46 31.49 x 0.55 x 0.8 $=$ 129.54 (77) Southwest 0.9x 0.77 x 4.58 36.79 0.55 x 0.8 $=$ 102.77 (79) Southwest 0.9x 0.77 x 4.58 36.79 0.55 x 0.8 $=$ 175.05 (79) Southwest 0.9x 0.77 x 4.58 85.75 0.55 x 0.8 $=$ 239.51 (79)																	

Southwest0.9x	0.77) ×	4.58	×	118.15	1	0.55	x	0.8	=	330	(79)
Southwest _{0.9x}	0.77] x	4.94	x	118.15]	0.55	x	0.8	=	177.97	(79)
Southwest _{0.9x}	0.77	x	4.58	x	113.91]	0.55	x	0.8	=	318.16](79)
Southwest _{0.9x}	0.77) x	4.94	x	113.91]	0.55	x	0.8	=	171.58](79)
Southwest _{0.9x}	0.77	x	4.58	x	104.39]	0.55	x	0.8	=	291.57	(79)
Southwest _{0.9x}	0.77	x	4.94	x	104.39		0.55	x	0.8	=	157.24	(79)
Southwest0.9x	0.77	x	4.58	x	92.85	ĺ	0.55	x	0.8	=	259.34	(79)
Southwest _{0.9x}	0.77	x	4.94	x	92.85	ĺ	0.55	x	0.8	=	139.86	(79)
Southwest _{0.9x}	0.77	x	4.58	x	69.27	ĺ	0.55	x	0.8	=	193.47	(79)
Southwest0.9x	0.77	×	4.94	x	69.27	İ	0.55	x	0.8	=	104.34	(79)
Southwest _{0.9x}	0.77	x	4.58	×	44.07	İ	0.55	x	0.8	=	123.09	(79)
Southwest _{0.9x}	0.77	x	4.94	x	44.07	Ì	0.55	x	0.8	=	66.38	(79)
Southwest _{0.9x}	0.77	x	4.58	x	31.49	Ì	0.55	x	0.8	=	87.95	(79)
Southwest _{0.9x}	0.77	x	4.94	x	31.49		0.55	x	0.8	=	47.43	(79)
Northwest 0.9x	0.77	x	0.71	x	11.28	x	0.55	x	0.8	=	2.44	(81)
Northwest 0.9x	0.77	x	5.29	x	11.28	×	0.55	x	0.8	=	18.2	(81)
Northwest 0.9x	0.77	x	0.71	×	22.97	×	0.55	x	0.8	=	4.97	(81)
Northwest 0.9x	0.77	x	5.29	X	22.97	x	0.55	x	0.8	=	37.05	(81)
Northwest 0.9x	0.77	x	0.71	x	41.38	x	0.55	x	0.8	=	8.96	(81)
Northwest 0.9x	0.77	x	5.29	x	41.38	×	0.55	x	0.8	=	66.75	(81)
Northwest 0.9x	0.77	x	0.71	x	67.96	×	0.55	x	0.8	=	14.71	(81)
Northwest 0.9x	0.77	×	5.29	×	67.9 <mark>6</mark>	х	0.55	x	0.8	=	109.61	(81)
Northwest 0.9x	0.77	×	0.71	x	91.35	×	0.55	x	0.8	=	19.78	(81)
Northwest 0.9x	0.77	x	5.29	x	91.35	×	0.55	x	0.8	=	147.34	(81)
Northwest 0.9x	0.77	x	0.71	x	97.38	x	0.55	x	0.8	=	21.08	(81)
Northwest 0.9x	0.77	x	5.29	x	97.38	×	0.55	x	0.8	=	157.08	(81)
Northwest 0.9x	0.77	×	0.71	×	91.1	×	0.55	x	0.8	=	19.72	(81)
Northwest 0.9x	0.77	x	5.29	x	91.1	×	0.55	x	0.8	=	146.95	(81)
Northwest 0.9x	0.77	×	0.71	×	72.63	×	0.55	x	0.8	=	15.72	(81)
Northwest 0.9x	0.77	×	5.29	x	72.63	×	0.55	x	0.8	=	117.15	(81)
Northwest 0.9x	0.77	x	0.71	x	50.42	×	0.55	x	0.8	=	10.92	(81)
Northwest 0.9x	0.77	×	5.29	x	50.42	×	0.55	x	0.8	=	81.33	(81)
Northwest 0.9x	0.77	x	0.71	X	28.07	×	0.55	x	0.8	=	6.08	(81)
Northwest 0.9x	0.77	X	5.29	X	28.07	×	0.55	x	0.8	=	45.27	(81)
Northwest 0.9x	0.77	X	0.71	X	14.2	×	0.55	x	0.8	=	3.07	(81)
Northwest 0.9x	0.77	x	5.29	X	14.2	×	0.55	x	0.8	=	22.9	(81)
Northwest 0.9x	0.77	×	0.71	×	9.21	×	0.55	x	0.8	=	1.99	(81)
Northwest 0.9x	0.77	×	5.29	×	9.21	×	0.55	x	0.8	=	14.86	(81)
Rooflights 0.9x	1	×	2.5	×	26	×	0.55	x	0.8	=	25.74	(82)
Rooflights 0.9x	1	×	2.5	×	26	×	0.55	x	0.8	=	25.74	(82)
Rooflights 0.9x	1	×	3.61	×	26	×	0.55	x	0.8	=	74.34	(82)

Rooflights 0.9x	1	x	2.5										
			2.5	×	54		X	0.55	X	0.8	=	53.46	(82)
Rooflights 0.9x	1	x	2.5	x	54		x	0.55	x	0.8	=	53.46	(82)
Rooflights 0.9x	1	x	3.61	×	54		x	0.55	x	0.8	=	154.39	(82)
Rooflights 0.9x	1	×	2.5	×	96		x	0.55	x	0.8	=	95.04	(82)
Rooflights 0.9x	1	×	2.5	×	96		x	0.55	x	0.8	=	95.04	(82)
Rooflights 0.9x	1	×	3.61	×	96		x	0.55	x	0.8	=	274.48	(82)
Rooflights 0.9x	1	x	2.5	×	150)	x	0.55	×	0.8	=	148.5	(82)
Rooflights 0.9x	1	x	2.5	×	150)	x	0.55	x	0.8	=	148.5	(82)
Rooflights 0.9x	1	x	3.61	×	150)	x	0.55	x	0.8	=	428.87	(82)
Rooflights 0.9x	1	x	2.5	×	192	2	x	0.55	x	0.8	=	190.08	(82)
Rooflights 0.9x	1	x	2.5	×	192	2	x	0.55	x	0.8	=	190.08	(82)
Rooflights 0.9x	1	×	3.61	×	192	2	x	0.55	x	0.8	=	548.95	(82)
Rooflights 0.9x	1	x	2.5	×	200)	x	0.55	x	0.8	=	198	(82)
Rooflights 0.9x	1	x	2.5	×	200)	x	0.55	x	0.8	=	198	(82)
Rooflights 0.9x	1	×	3.61	×	200)	x	0.55	x	0.8	=	571.82	(82)
Rooflights 0.9x	1	×	2.5] ×	189)	x	0.55	×	0.8	=	187.11	(82)
Rooflights 0.9x	1	×	2.5	X	189)	x	0.55	×	0.8	=	187.11	(82)
Rooflights 0.9x	1	×	3.61	×	189		х	0.55	х	0.8		540.37	(82)
Rooflights 0.9x	1	Ī×	2.5] ×	157		x	0.55	x	0.8	- 1	155.43	(82)
Rooflights 0.9x	1] ×	2.5	×	157		×	0.55	x	0.8	=	155.43	(82)
Rooflights 0.9x	1	Ī×	3.61] ×	157	· /	x	0.55	x	0.8	=	448.88	(82)
Rooflights 0.9x	1	Ī×	2.5	1 ×	115		x	0.55	x	0.8	=	113.85	(82)
Rooflights 0.9x	1] ×	2.5	j ×	115	; /	x	0.55	x	0.8	=	113.85	(82)
Rooflights 0.9x	1	Ī×	3.61	×	115	;	x	0.55	x	0.8	=	328.8	(82)
Rooflights 0.9x	1] ×	2.5] ×	66		x	0.55	x	0.8	=	65.34	(82)
Rooflights 0.9x	1	×	2.5] ×	66		x	0.55	x	0.8	=	65.34	(82)
Rooflights 0.9x	1	Ī×	3.61	Ī×	66		x	0.55	×	0.8	=	188.7	(82)
Rooflights 0.9x	1	×	2.5	Ī×	33		x	0.55	×	0.8	=	32.67	(82)
Rooflights 0.9x	1	×	2.5] ×	33		x	0.55	x	0.8	=	32.67	(82)
Rooflights 0.9x	1] ×	3.61	Ī×	33		x	0.55	x	0.8	=	94.35	(82)
Rooflights 0.9x	1] ×	2.5	Ī×	21		x	0.55	×	0.8	=	20.79	(82)
Rooflights 0.9x	1] ×	2.5	Ī ×	21		x	0.55	×	0.8	= =	20.79	(82)
Rooflights 0.9x	1] ×	3.61	İ ×	21		x	0.55	×	0.8	= =	60.04	(82)
		-		-								·	
Solar gains in watts	. calcul	ated	for each mon	th			(83)m	n = Sum(74)m	(82)m				
(83)m= 602.63 1080	-	-		-	610.82 24	1		6.85 1799.93	1229.5	1 732.05	508.87]	(83)

Solar gains in watts, calculated for each month $(83)m = Sum(74)m$ $(82)m$														
(83)m=	602.63	1080.36	1603.42	2167.51	2571.73	2610.82	2493.52	2186.85	1799.93	1229.51	732.05	508.87		(83)
Total gains – internal and solar (84)m = (73)m + (83)m , watts														
(84)m=	1194.44	1669.88	2171.84	2701.12	3068.53	3072.52	2933.55	2634.35	2265.91	1730.55	1273.47	1081.95		(84)
7. Mean internal temperature (heating season)														
Temperature during heating periods in the living area from Table 9, Th1 (°C)											21	(85)		
Utilisation factor for gains for living area, h1,m (see Table 9a)														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(86)m=	1	0.99	0.97	0.89	0.73	0.53	0.39	0.45	0.72	0.96	1	1		(86)
Mear	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)				1	
(87)m=	19.62	19.89	20.26	20.67	20.91	20.98	21	20.99	20.93	20.55	19.99	19.58		(87)
Tomr		durina k	neating p	oriode ir	rest of	dwelling	from Ta						1	
(88)m=	19.91	19.91	19.91	19.93	19.93	19.94	19.94	19.94	19.94	19.93	19.92	19.92	l	(88)
													i	
	r	tor for g	ains for I		welling, 0.66	h2,m (se 0.45	e lable		0.64	0.94	0.99	4	I	(89)
(89)m=	1	0.99	0.96	0.86	0.00	0.45	0.3	0.35	0.64	0.94	0.99	1	l	(89)
Mear		l temper	ature in	the rest	of dwelli	r <u>~</u> ``	ollow ste	ps 3 to 7	7 in Tabl	e 9c)			1	
(90)m=	18.07	18.46	19	19.56	19.85	19.93	19.94	19.94	19.89	19.42	18.61	18.01		(90)
									f	LA = Livin	g area ÷ (4	4) =	0.27	(91)
Mear	interna	l temper	ature (fo	r the wh	ole dwe	lling) = f	LA × T1	+ (1 – fL	.A) × T2					
(92)m=	18.48	18.84	19.34	19.86	20.13	20.21	20.22	20.22	20.17	19.72	18.98	18.43		(92)
Apply	adjustn	nent to t	he mean	interna	l temper	ature fro	m Table	4e, whe	ere appro	priate			1	
(93)m=	18.33	18.69	19.19	19.71	19.98	20.06	20.07	20.07	20.02	19.57	18.83	18.28		(93)
8. Sp	ace hea	ting requ	uirement											
			ternal ter			ned at st	ep 11 of	Table 9t	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	_
the u			or gains						-			_		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
			ains, hm		0.07				0.05	0.00				(04)
(94)m=	1	0.99	0.95	0.85	0.67	0.46	0.31	0.36	0.65	0.93	0.99	1	i i	(94)
			, W = (94	· ·										(05)
			2074.03				901.29	948.77	1462.89	1610.34	1263.66	1080.1		(95)
	hly aver		rnal tem	perature	e from Ta	1								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	1 <mark>0.6</mark>	7.1	4.2		(96)
		r	an intern	· · ·	r	r	<u>, ,</u>		· /	-			1	
		3696.46				1420.5	903.13	952.72		2361.82		3745.9		(97)
Spac	e heatin	g require	ement fo	r each n	nonth, k	Wh/mon	th = 0.02	4 x [(97))m – (95)m] x (4′	1)m		1	
(98)m=	1919.26	1375.3	980.18	397.75	101.84	0	0	0	0	559.1	1325.86	1983.36		
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	8642.66	(98)
Spac	e heatin	g require	ement in	kWh/m ²	²/year								39.03	(99)
8c S	pace co	olina rea	quiremen	ıt										
			July and		See Tal	ble 10b								
Oulot	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Heat	L		lculated		,			-					1	
(100)m=	r	0	0	0	0		1923.56		0	0	0	0		(100)
Utilis	L	tor for lo	uss hm										ł	
(101)m=	r	0	0	0	0	0.95	0.97	0.96	0	0	0	0		(101)
		imLm (V	Vatts) = ((101)m				_		-	_	i	
(102)m=		0	0	0	0	î .	1872.35	1887.73	0	0	0	0	1	(102)
		l nains ca	L Iculated	for appli	i cable w			e Table	10)				i	. ,
(103)m=			0	0		1	3409.05		0	0	0	0	l	(103)
		u a reauire	ement fo	r month	whole a				-	-	-		x (41)m	
			(104)m <			y,	Jonana		, = 0.0		(• (• •)•••	
(104)m=	<u> </u>	0	0	0	0	903.7	1143.3	893.05	0	0	0	0		
						•			Total	= Sum(104)	=	2940.05	(104)
Stroma		2 Vorcion	: 1.0.1.25 (SVD 0 02)	http://w	ww.stroma							Pog	1 e. 8 of 10

	= cooled area ÷ (4	4) =	0.72	(105)
Intermittency factor (Table 10b)	1	-		_
(106)m= 0 0 0 0 0 0 0.25 0.25 0.25 0	0 0	0		-
	al = Sum(104)	= [0	(106)
Space cooling requirement for month = $(104)m \times (105) \times (106)m$	1 1			
(107)m= 0 0 0 0 0 162.89 206.08 160.97 0	0 0	0		-
Tota	al = Sum(107)	= [529.95	(107)
Space cooling requirement in kWh/m²/year (107	') ÷ (4) =		2.39	(108)
9a. Energy requirements – Individual heating systems including micro-CHP)				
Space heating:		-		-
Fraction of space heat from secondary/supplementary system			0	(201)
Fraction of space heat from main system(s) $(202) = 1 - (201) =$		[1	(202)
Fraction of total heating from main system 1 (204) = (202) × [1 –	- (203)] =	Ī	1	(204)
Efficiency of main space heating system 1		Ì	93.3	(206)
Efficiency of secondary/supplementary heating system, %		ľ	0	(208)
Cooling System Energy Efficiency Ratio		ľ	4.32	(209)
], ,
Jan Feb Mar Apr May Jun Jul Aug Sep	Oct Nov	Dec	kWh/yea	ır
Space heating requirement (calculated above) 1919.26 1375.3 980.18 397.75 101.84 0 0 0 0	559.1 1325.86	1983.36		
	559.1 1325.86	1963.30		
(211)m = {[(98)m x (204)] } x 100 ÷ (206)				(211)
2057.09 1474.06 1050.57 426.31 109.16 0 0 0 0 0	599.25 1421.07			-
Total (kWh/ye	ear) =Sum(211) _{15,10. 12}	=	9263.3	(211)
Space heating fuel (secondary), kWh/month				
= {[(98)m x (201)] } x 100 ÷ (208)				
(215)m= 0 0 0 0 0 0 0 0 0 0	0 0	0		-
l otal (kWh/ye	ear) =Sum(215) _{15,10. 12}		0	(215)
Water heating				
Output from water heater (calculated above) 224.13 197.48 207.25 185.57 181.59 159.94 153.23 170.82 170.71	192.44 203.75	218.67		
	192.44 203.75	210.07		
Efficiency of water heater			81	(216)
(217)m= 89.23 89.02 88.53 87.12 84.11 81 81 81 81 81	87.72 88.94	89.28		(217)
Fuel for water heating, kWh/month (219)m = $(64)m \times 100 \div (217)m$				
(219)m= (04)m × 100 ÷ (217)m (219)m= 251.19 221.85 234.11 213.01 215.89 197.45 189.18 210.89 210.76	219.38 229.09	244.92		
Total = Sum(2	219a) _{1.12} =		2637.71	(219)
Space cooling fuel, kWh/month.		L], ,
$(221)m = (107)m \div (209)$				
(221)m= 0 0 0 0 0 0 37.71 47.7 37.26 0	0 0	0		
Total = Sum(2	221) ₆₈ =		122.67	(221)
Annual totals	kWh/year	4		
Space heating fuel used, main system 1	9263.3]		
Water heating fuel used		L [2637.71	ĺ
Space cooling fuel used		[122.67	Ī

Electricity for pumps, fans and electric keep-hot						
mechanical ventilation - balanced, extract or positi	508.21		(230a)			
central heating pump:				30		(230c)
Total electricity for the above, kWh/year		sum of (230a)	(230g) =		538.21	(231)
Electricity for lighting					615.59	(232)
Electricity generated by PVs					-2486.81	(233)
12a. CO2 emissions – Individual heating systems	including micro-	CHP				
	Energy kWh/year		Emission fac kg CO2/kWh	tor	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x		0.216	=	2000.87	(261)
Space heating (secondary)	(215) x		0.519	=	0	(263)
Water heating	(219) x		0.216	=	569.75	(264)
Space and water heating	(261) + (262) + (26	63) + (264) =			2570.62	(265)
Space cooling	(221) x		0.519	=	63.67	(266)
Electricity for pumps, fans and electric keep-hot	(231) x		0.519	=	279.33	(267)
Electricity for lighting	(232) x		0.519	=	319.49	(268)
Energy saving/generation technologies Item 1			0.519	=	-1 <mark>2</mark> 90.66	(269)
Total CO2, kg/year		sum o	f (265) (271) =		1942.45	(272)
Dwelling CO2 Emission Rate		(272) -	÷ (4) =		8.77	(273)
El rating (section 14)					90	(274)