

Audit Sheet

Revision	Description	Date	Issued by	Reviewed by
-	Draft for Comment	Nov 2011	C Parkin	
02	For Planning	Feb 2012	C Parkin	C Dougan

This report is provided for the stated purposes and for the sole use of the named Client. It will be confidential to the Client and the client's professional advisers. Hoare Lea accepts responsibility to the Client alone that the report has been prepared with the skill, care and diligence of a competent engineer, but accepts no responsibility whatsoever to any parties other than the Client. Any such parties rely upon the report at their own risk. Neither the whole nor any part of the report nor reference to it may be included in any published document, circular or statement nor published in any way without Hoare Lea's written approval of the form and content in which it may appear.

6 Nutley Terrace

Energy Efficiency Statement & Code for Sustainable Homes Pre-assessment

Contents

1.0	Executive Summary	2
2.0	Introduction	
3.0	Summary of Key Points from Camden Sustainability Supplementary Planning Guidance	3
4.0	Summary of Key Points from Part L1A 2010	
4.1	Achievement of Compliance	3
4.2	Fabric Performance	3
4.3	Fixed Building Services Performance	4
5.0	Proposed Measures to meet Camden Sustainability Policies and Part L1A 2010	5
5.1	Software Modelling	5
5.2	Fabric Performance	5
5.3	Fixed Building Services Performance	5
5.4	Air Source Heat Pumps (be green)	5
5.5	Headline Camden Policies	5
6.0	Part L1A 2010 Results	6
6.1	Criterion 1	6
6.2	Criterion 2	6
6.3	Criterion 3	6
Appen	idix A – Part L1A Building Regulations Compliance Report & SAP Worksheet	7
Appen	idix B – Code for Sustainable Homes Pre-assessment	8

1.0 Executive Summary

To meet the requirements of the London Borough of Camden planning policies relating to energy and sustainability and to meet the requirements of the Building Regulation Approved Document Part L1A 2010 the following measures are proposed:

- Enhanced building fabric performance U-values and air tightness
- Enhanced buildings services performance high efficiency equipment and low energy lighting
- Use of air source heat pumps and underfloor heating

Use of micro-CHP has been shown not to be effective on this development.

The proposed measures result in the following outcomes:

- A minimum of 25% CO2 reduction compared to a Part L 2010 compliant dwelling
- More than 20% CO2 reduction due to the use of ASHPs when compared to the same building being heated by direct electric heating and when taking into account regulated and unregulated energy uses
- Dwellings that can work with natural ventilation and maintain occupant comfort
- Code for Sustainable Homes (CSH) Level 3 compliance with a minimum of 50% of the energy credits achievable

In addition to the energy credits it is proposed that approximately 65% of the CSH Water credits are achievable, 50% of the Materials credits and 75% of the Waste credits. The full CSH pre-assessment is appended to this document. The pre-assessment demonstrates one possible route to achieving CSH Level 3 and a minimum of 50% of credits in the Energy, Water, Materials and Waste sections.

2.0 Introduction

This report has been prepared to provide a summary of the energy efficiency measures for the proposed 6 Nutley Terrace development. It is intended to address the London Borough of Camden's policies relating to climate change and sustainable design and construction, specifically CS 13 – Tackling Climate Change through Promoting Higher Environmental Standards and DP22 – Promoting Sustainable Design and Construction. It is also written with the requirements of the Camden Supplementary Planning Guidance document in mind.

3.0 Summary of Key Points from Camden Sustainability Supplementary Planning Guidance

The list below gives the headline requirements of the Camden sustainability planning guidance relating to energy:

- Follow the "be lean, be clean, be green" approach
- Account for regulated and unregulated energy using modelled or benchmark data for minor developments
- Demonstrate via modelling that overheating is not an issue
- Demonstrate that natural ventilation has been considered in the design
- Connect to existing district heating networks or provide CHP onsite
- Aim to achieve a 20% CO2 reduction from renewables
- Aim to achieve 50% of energy credits under the Code for Sustainable Homes

4.0 Summary of Key Points from Part L1A 2010

Part L1A 2010 gives five criteria by which a development must provide evidence of compliance (refer to table below). Note that Criteria 4 and 5 will be evidenced at the construction/completion stage. This report addresses steps taken to improve the design in order to meet Criterion 1, 2 and 3.

CRITERION 1:	"The calculated rate of CO ₂ emissions from the dwelling (the Dwelling Emission Rate, DER) must not be greater than the Target Emission Rate, TER)"
CRITERION 2:	"The performance of the building fabric and the fixed building services [heating, hot water and fixed lighting systems] should achieve reasonable overall standards of energy efficiency"
CRITERION 3:	"The dwelling has appropriate passive control measures to limit the effect of solar gains on indoor temperatures in summer, regardless of whether or not the dwelling has mechanical cooling."
CRITERION 4:	"The performance of the dwelling, as built, is consistent with the DER"
CRITERION 5:	"The necessary provisions for energy efficient operation of the dwelling should be put in place."

4.1 Achievement of Compliance

Some additional information on how to meet each criterion is provided below:

Criterion 1

To pass Criterion 1, the Dwelling Emission Rate (DER) must be less than the Target Emissions Rate (TER), i.e. DER<TER.

The development aims to demonstrate a good level of energy efficiency that will reduce carbon emissions due to heating, hot water generation, lighting, fans and pumps.

Criterion 2

To pass Criterion 2 the minimum performance standards set out in the Approved Documents and supporting documentation must be met or exceeded. These are set out in Sections 4.2 and 4.3.

Criterion 3

To pass Criterion 3, the dwelling must have less than a "High" risk of high internal temperatures. The table below shows the range of possible outcomes ranging from "Not Significant" to "High".

T threshold	Likelihood of high internal temperature in hot weather
<20.5°C	Not significant
≤ 20.5°C and <22°C	Slight
< 22.0°C and <22°C	Medium
≥ 23.5°C	High

4.2 Fabric Performance

The limiting standards from the approved documents relating to building fabric are shown in the table below:

	Approved Document L1A 2010 Table 2	Approved Document C 2004
Element	Maximum area-weighted average U-value (W/m².K)	Absolute Maximum U- value (W/m².K)
Roof	0.20	0.35
Wall	0.30	0.7
Ground Floor	0.25	0.7
Party Wall	0.2	No limit
Windows, roof windows, glazed rooflights, curtain walling and pedestrian doors	2.0	No limit

3 of 10

Other limiting standards are:

- 1. Air permeability shall be <10 m³/hr.m² @ 50Pa
- 2. Thermal bridging "the building fabric should be constructed such that there are no reasonably avoidable thermal bridges".

4.3 Fixed Building Services Performance

The limiting standards from the approved documents and supporting documents relating to building services are shown below:

Plant Item	Criteria
Air Source Heat Pumps (space heating)	COP > 2.2
Air Source Heat Pumps (DHW)	COP > 2.0
Air Source Heat Pumps	Seasonal Performance Factor > 2.7
Air Source Heat Pumps (cooling)	EER > 2.4
Ventilation unit (MVHR) Specific Fan Power	<1.5W/l/s
MVHR heat recovery efficiency	>70%

Minimum efficiency standards also apply to domestic lighting installations.

For fixed internal lighting these are:

- 1. At least 75% of frequently used light fittings shall be low energy type.
- 2. Low energy lights shall have an efficacy >45 lumens per circuit Watt

For fixed external lighting these are:

- 1. External lighting with automatic presence and daylight control shall have a lamp capacity of <100 Watts
- 2. External lighting with automatic presence and manual control shall have an efficacy >45 lumens per circuit Watt

5 of 10

5.0 Proposed Measures to meet Camden Sustainability Policies and Part L1A 2010

The following section summarises the proposed energy efficiency strategy.

5.1 Software Modelling

A sample SAP assessment (using NHER software Plan Assessor Version v5.2) has been carried out on the proposed development. The results are contained within the Appendices.

5.2 Fabric Performance

To reduce energy demand by passive means (*be lean*) the building fabric performance will significantly exceed the requirements of Part L1A 2010.

The values in the table below are those currently proposed.

Element	U-value (W/m².K)
Roof	0.13
External Wall	0.18
Ground Floor	0.18
Party Wall	N/A
Windows and glazed rooflights	1.5

Air permeability target construction value of shall be < $3.5 \text{ m}^3/\text{hr.m}^2$ @ 50Pa to achieve a maximum of 5 m³/hr.m² @ 50Pa.

It is assumed that quality assured accredited construction details to limit the effects of thermal bridging will not be employed. Refer to "Limiting thermal bridging and air leakage: robust construction details for dwellings and similar buildings", TSO, 2001 for such details. The default thermal bridge y-value of 0.15 is therefore assumed.

All windows are assumed to be fully openable and provide (as a minimum) single sided ventilation to assist in reducing summertime temperatures. Glazing areas are limited to reduce overheating risk and to reduce heat loss.

A medium [thermal] weight structure is assumed.

5.3 Fixed Building Services Performance

To further reduce energy demand by active means (*be lean*) the building services performance will significantly exceed the requirements of Part L1A 2010.

The following plant criteria are proposed:

Plant Item	Proposed Design
Air Source Heat Pumps (space heating)	COP > 2.8
Air Source Heat Pumps (DHW)	COP > 2.2
Air Source Heat Pumps	Seasonal Performance Factor > 3.0
Air Source Heat Pumps (cooling)	EER > 2.8
Ventilation unit (MVHR) Specific Fan Power	< 0.7W/l/s
MVHR heat recovery efficiency	>85%

In addition, the MVHR unit will be SAP Appendix Q registered.

Lighting is assumed to meet the minimum standards.

5.4 Air Source Heat Pumps (be green)

Air source heat pumps are proposed as an appropriate renewable technology for this development. The ASHPs will be linked to an underfloor heating system which shall run at low temperature appropriate for use with ASHPs. This is an efficient means of providing space heating and provides a comfortable living environment by the use of a radiant heating source.

A comparison with gas fired boilers using the SAP assessment software was undertaken and ASHPs were shown to be considerably more efficient – even when providing water at high temperatures for domestic hot water use.

5.5 Headline Camden Policies

The sections above outline the proposed "be lean, be clean, be green" approach.

As this is a minor development a full energy assessment listing out baseline energy demand, reductions due to each technology and a full estimation of unregulated emissions has not been undertaken.

Overheating is addressed under Part L Criterion 3 below.

The main living areas of House 6B will be provided with comfort cooling due to market expectation. However, occupants will always have the choice of using natural ventilation as an alternative. Designing an appropriate, low energy cooling system into the scheme at an early stage will avoid occupants retrofitting inefficient systems at a later date. As can be seen in the SAP worksheet results, CO2 emissions due to cooling are negligible.

There are no district networks in the local area which can be feasibly connected to and the site is not appropriate for a Strategic Site to support large scale CHP units to feed a wider district network.

An assessment has been made of micro-CHP units. However, the CO2 reduction benefit of installing these units is very limited. This is due to the mismatch between the high thermal output from the micro-CHP units and the low heat load of each house which leads to the units operating inefficiently. CHP is therefore not appropriate for this development.

The use of ASHPs will contribute to a significant reduction in CO2 emissions – exceeding 20% when taking into account regulated and unregulated energy. This figure has been estimated from the SAP software by establishing the difference in CO2 emissions between a direct electric system and the ASHP system.

The proposed measures results in a DER approximately 35% lower than the TER (see Appendices).

6.0 Part L1A 2010 Results

See the Appendices for the building regulations compliance reports.

6.1 Criterion 1

The area weighted TER is $14.46 \text{ kgCO}_2/\text{m}^2/\text{yr}$ The area weighted DER is $23.13 \text{ kgCO}_2/\text{m}^2/\text{yr}$

The building is therefore in compliance with the requirements for Part L1A criterion 1.

6.2 Criterion 2

All of the fabric and building services performance standards are shown in the previous sections to be met or exceeded.

The building is therefore in compliance with the requirements for Part L1A criterion 2.

6.3 Criterion 3

The house assessed has an overheating risk of "Not Significant". Therefore the building is compliance with the requirements for Part L1A criterion 3. This also satisfies the Camden policy on preventing overheating and demonstrates that the building can be comfortably occupied without the need for comfort cooling.

Appendix A – Part L1A Building Regulations Compliance Report & SAP Worksheet

7 of 10

L1A 2010 - Regulations Compliance Report

Design - Draft

This design draft submission provides evidence towards compliance with Part L of the Building Regulations, in accordance with Appendix A of AD L1A. It has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the 'as built' property. This report covers only items included within the SAP and is not a complete report of regulations compliance.

Assessor name	Mrs Vicki Limbrick	Assessor number	5907
Client		Last modified	15/11/2011
Address	6B Nutley Terrace 6B, London, NM3* **		

Check	Evidence	Produced by	OK?
Criterion 1: predicted carbon dioxi	de emission from proposed dwelling does not exceed the target		
TER (kg CO₂/m².a)	Fuel = Electricity Fuel factor = 1.47 TER = 23.13	Authorised SAP Assessor	
DER for dwelling as designed (kg CO ₂ /m ² .a)	DER = 14.46	Authorised SAP Assessor	
Are emissions from dwelling as designed less than or equal to the carget?	DER 14.46 < TER 23.13	Authorised SAP Assessor	Passed
Criterion 2: the performance of the	e building fabric and the heating, hot water and fixed lighting systems	s should be no worse than the design	limits
abric U-values			
Are all U-values better than the design limits in Table 2?	Element Weighted average Highest Wall 0.18 (max 0.30) 0.18 (max 0.70) Party wall 0.00 (max 0.20) N/A Floor 0.18 (max 0.25) 0.18 (max 0.70) Roof 0.13 (max 0.20) 0.13 (max 0.35) Openings 1.50 (max 2.00) 1.50 (max 3.30)	Authorised SAP Assessor	Passe
Thermal bridging			
How has the loss from thermal pridges been calculated?	Thermal bridging calculated using default y-value of 0.15	Authorised SAP Assessor	
Heating and hot water systems			
Does the efficiency of the heating systems meet the minimum value set out in the Domestic Heating Compliance Guide?	Main heating system: Electricity, Heat pump - wet system Air-to-water Secondary heating system: None	Authorised SAP Assessor	
Does the insulation of the hot water cylinder meet the standards set out in the Domestic Heating Compliance Guide?	Cylinder volume = 260.00 litres Declared cylinder loss = 2.50kWh/day Maximum permitted cylinder loss = 2.62kWh/day Primary hot water pipes are insulated	Authorised SAP Assessor	Passed
Do controls meet the minimum controls provision set out in the Domestic Heating Compliance Guide?	Space heating control: Time and temperature zone control Hot water control: No boiler interlock (main system 1)	Authorised SAP Assessor	Passe
	Cylinder thermostat Separate water control		

Check	Evidence	Produced by	OK?
Fixed internal lighting			
Does fixed internal lighting comply with paragraphs 42 to 44?	Schedule of installed fixed internal lighting Standard lights = 4 Low energy lights = 12 Percentage of low energy lights = 75 % Minimum = 75 %	Authorised SAP Assessor	Passed
Criterion 3: the dwelling has appro	priate passive control measures to limit solar gains		
Does the dwelling have a strong tendency to high summertime temperatures?	Overheating risk (June) = Not significant Overheating risk (July) = Not significant Overheating risk (August) = Not significant Region = Thames Thermal mass parameter = 250.00 Ventilation rate in hot weather = 5.00 ach Blinds/curtains = None	Authorised SAP Assessor	Passec
Criterion 4: the performance of the	e dwelling, as designed, is consistent with the DER		
	e dwelling, as designed, is consistent with the DEN		
Design air permeability (m³/(h.m²) at 50Pa)	Design air permeability = 5.00 Max air permeability = 10.00	Authorised SAP Assessor	Passec
Design air permeability	Design air permeability = 5.00	Authorised SAP Assessor Authorised SAP Assessor	Passed

SAP 2009 Worksheet

Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mrs Vicki Limbrick	Assessor number	5907
Client		Last modified	15/11/2011
Address	6B Nutley Terrace 6B, London, NM3* **		

		Area (m²)		Average storey height (m)	Volume (m³)
Lowest occupied		186.50 (1a)	x	2.70 (2a) =	503.55 (3a)
+1		142.50 (1b)	x	2.70 (2b) =	384.75 (3b)
+2		126.00 (1c)	x	2.70 (2c) =	340.20 (3c)
+3		93.30 (1d)	x	2.50 (2d) =	233.25 (3d)
Total floor area	(1a) + (1b) + (1c) + (1d)(1n) =	548.30 (4)			
Dwelling volume				(3a) + (3b) + (3c) + (3d)(3	sn) = 1461.75 (5)

2. Ventilation rate					
				m³ per hour	
Number of chimneys		0	x 40 =	0	(6a)
Number of open flues		0	x 20 =	0	(6b)
Number of intermittent fans		0	x 10 =	0	(7a)
Number of passive vents		0	x 10 =	0	(7b)
Number of flueless gas fires		0	x 40 =	0	(7c)
				Air changes pe hour	r
I City of the Line Clark Control of the Control of	(6) (61) (7) (71) (7)		. /=\	0.00	7 (0)

Infiltration due to chimneys, flues, fans, PSVs (6a) + (6b) + (7a) + (7b) + (7c) = \div (5) = 0.00

If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)

Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area

If based on air permeability value, then (18) = $[(17) \div 20] + (8)$, otherwise (18) = (16)

Air permeability value applies if a pressurisation test has been done, or a design or specified air permeability is being used

Number of sides on which dwelling is sheltered

Shelter factor 1 - [0.075 x (19)] = 0.92 (20)

Adjusted infiltration rate $(18) \times (20) =$ 0.23 (21)

Infiltration rate modified for monthly wind speed:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average v	vind speed	from Table	7										
(22)m	5.40	5.10	5.10	4.50	4.10	3.90	3.70	3.70	4.20	4.50	4.80	5.10	
										∑(22)1	.12 =	54.10	(22)
Wind Factor (22a)	m = (22)m ·	÷ 4											
(22a)m	1.35	1.27	1.27	1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.20	1.27	
										∑(22a)1	.12 =	13.52	(22a)
Adjusted infiltration rate (allowing for shelter and wind speed) = (21) × (22a)m													
(22b)m	0.31	0.29	0.29	0.26	0.24	0.23	0.21	0.21	0.24	0.26	0.28	0.29	

3.13

∑(22b)1...12 =

5.00

0.25

1

(17)

(19)

(22b)

If mechanical v	entilation	air change	rate through	h system								0.50	(23a
If exhaust air h		_	_	-	Emy (equa	tion (N5)) c	therwise (23h) = (23:	a)			0.50	(23b
If balanced wit		0	, ,	, , ,	, ,		,	230) (23	۵,			75.65	(23c
			-	_								73.03	(250
a) If balanced r	nechanical 0.43	ventilation 0.42	0.42			b)m + (23b) 0.35	x [1 - (23c)		0.26	0.20	0.40	0.42	7 (240
(24a)m			1	0.38	0.36	1	0.34	0.34	0.36	0.38	0.40	0.42	(24a
Effective air chang			1				0.24	0.24	0.26	0.20	0.40	0.42	7 (25)
(25)m	0.43	0.42	0.42	0.38	0.36	0.35	0.34	0.34	0.36	0.38	0.40	0.42	(25)
3. Heat losses an	d heat loss	paramete	r										
The κ-value is the	heat capaci	ity per unit	area, see To	able 1e.									
Ele	ement		Gross Area, m²		nings, n²	Net area A, m²	U-va W/i	•	A x U, W/K	к-va kJ/r	lue, n².K	Αxκ, kJ/K	
Window*						70.10	x 1.	42 =	99.20	N,	/A	N/A	(27)
Roof window*						2.20	x 1.	42 =	3.11	N,	/A	N/A	(27a
Basement floor						186.50	x 0.	18 =	33.57	N,	/A	N/A	(28)
Basement wall						134.03	x 0.:	18 =	24.13	N,	/A	N/A	(29)
Party Wall						25.38	x 0.0	00 =	0.00	N,	/A	N/A	(32)
External wall						347.92	x 0.:	18 =	62.63	N,	/A	N/A	(29a
Roof						196.50	x 0.:	13 =	25.54	N,	/A	N/A	(30)
Total area of exter	nal elemen	its ∑A, m²				937.25	(31)						
* for windows and	l roof windo	ows, effecti	ive window l	U-value is	calculated	using formu	la 1/[(1/U\	/alue)+0.0	4] paragra _l	oh 3.2			
Fabric heat loss, W	//K = ∑(A ×	U)							(2	26)(30) + (3	32) =	248.18	(33)
Heat capacity Cm	= Σ(A x κ)							(28)	.(30) + (32)	+ (32a)(32	2e) =	N/A	(34)
Thermal mass para	ameter (TN	IP) in kJ/m	²K						Calcula	ted separat	ely =	250.00	(35)
Thermal bridges: 2	<u>(</u> (L x Ψ) cald	culated usi	ng Appendix	κK								140.59	(36)
if details of the	rmal bridgi	ng are not	known then	(36) = 0.1	.5 x (31)								
Total fabric heat lo	oss									(33) + (3	36) =	388.76	(37)
Ventilation heat lo	ss calculate	ed monthly	0.33 x (25)m x (5)									
(38)m	209.32	200.96	200.96	184.22	173.07	167.49	161.91	161.91	175.86	184.22	192.59	200.96	(38)
Heat transfer coef	ficient, W/I	〈 (37)m +	(38)m						_	_			_
(39)m	598.09	589.72	589.72	572.99	561.83	556.26	550.68	550.68	564.62	572.99	581.35	589.72	
									Average =	∑(39)112/	′12 =	573.22	(39)
Heat loss paramet						T _		Γ	1	1 -		1	_
(40)m	1.09	1.08	1.08	1.05	1.02	1.01	1.00	1.00	1.03	1.05	1.06	1.08	<u>.</u>
									Average =	∑(40)112/	′12 =	1.05	(40)
4. Water heating	energy rec	quirement											
											k	(Wh/year	
Assumed occupan	cv. N									3.45	(42	2)	
If TFA > 13.9, N	•	x [1 - exp(-	0.000349 x	(TFA - 13.9	9)2)] + 0.001	l3 x (TFA - 1	3.9)				``	,	
If TFA ≤ 13.9, N		1-1			, ,,	- (,						
Annual average ho		age in litres	s per day Vd	.average =	= (25 x N) +	36				116.2	5 (43	3)	
Annual average ho		_		_			to achieve	a water us	e taraet of			•	
per person per day		-		,	9	- 3			39				
. ,	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot water usage in	n litres per o	day for eac	ch month Vd	,m = facto	r from Tab	e 1c x (43)							
(44)m	127.87	123.22	118.57	113.92	109.27	104.62	104.62	109.27	113.92	118.57	123.22	127.87	
													7

energy content of	hot water u	used - calcu	ılated mont	thly = 4.190) x Vd,m x n	nm x Tm/36	00 kWh/r	month (see	Tables 1b,	1c 1d)		
(45)m	190.09	166.25	171.56	149.57	143.51	123.84	114.76	131.69	133.26	155.30	169.52	184.09
										∑(45)1	.12 = 1	833.43
f instantaneous w	vater heatin	g at point o	of use (no h	ot water st	orage), ent	er 0 in boxe	es (46) to (6	51)				
or community he	rating includ	le distributi	ion loss who	ether or no	t hot water	tank is pre	sent					
Distribution loss (0.15 x (45)m	1										
(46)m	28.51	24.94	25.73	22.44	21.53	18.58	17.21	19.75	19.99	23.30	25.43	27.61
Vater storage los	s:											
) If manufacture	's declared	loss factor	is known (k	(Wh/day):					2.50	(47)		
Temperature f	actor from	Table 2b							0.54	(48)		
Energy lost fro	m water sto	orage, kWi	h/day (47)	x (48)					1.35	(49)		
nter (49) or (54)	in (55)								1.35	(55)		
Vater storage los	s calculated	for each m	nonth = (55) x (41)m								
(56)m	41.85	37.80	41.85	40.50	41.85	40.50	41.85	41.85	40.50	41.85	40.50	41.85
cylinder contain	s dedicated	solar stora	ige, = (56)m	า x [(50) - (H	H11)] ÷ (50)	, else = (56	m where (H11) is fror	n Appendix	с Н		
(57)m	41.85	37.80	41.85	40.50	41.85	40.50	41.85	41.85	40.50	41.85	40.50	41.85
rimary circuit los	s (annual) f	rom Table :	3					3	360.00	(58)		
rimary circuit los	s for each n	nonth (58)	÷ 365 × (41)m								
nodified by facto	or from Tabl	e H5 if the	re is solar w	ater heatir	ng and a cyl	inder therr	nostat)					
(59)m	30.58	27.62	30.58	29.59	30.58	29.59	30.58	30.58	29.59	30.58	29.59	30.58
ombi loss for ead	ch month fro	om Table 3	a, 3b or 3c	(enter '0' if	not a comb	oi boiler)						
(61)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
otal heat require	d for water	heating ca	Iculated for	r each mon	th 0.85 × (4	5)m + (46)ı	n + (57)m +	+ (59)m + (6	51)m			
(62)m	262.51	231.67	243.98	219.66	215.94	193.93	187.18	204.11	203.35	227.73	239.61	256.52
olar DHW input o	calculated u	sing Appen	dix H (nega	ntive quanti	ty) ('0' ente	ered if no so	olar contrib	ution to wa	ater heatin	g)		
(63)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
										∑(63)1	.12 =	0.00
utput from wate	r heater for	each mon	th, kWh/m	onth (62)m	n + (63)m							
(64)m	262.51	231.67	243.98	219.66	215.94	193.93	187.18	204.11	203.35	227.73	239.61	256.52
										∑(64)1	.12 = 2	686.18
(64)m < 0 then s	et to 0											
eat gains from w	ater heatin	g, kWh/mc	onth 0.25 ×	[0.85 × (45)m + (61)m	n] + 0.8 × [(4	6)m + (57)	m + (59)m]				
_	121.14	107.61	114.98	105.80	105.66	97.25	96.10	101.73	100.38	109.58	112.44	119.15
(65)m	121.14	107.01	114.50	105.00	105.00	37.23	30.10	101.75	100.50	105.50	112.77	113.13

5. Internal gains	(see Table	5 and 5a)											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains (Table 5), Wa	atts											
(66)m	207.28	207.28	207.28	207.28	207.28	207.28	207.28	207.28	207.28	207.28	207.28	207.28	(66)
Lighting gains (cal	culated in A	ppendix L,	equation L	9 or L9a), a	lso see Tab	le 5							
(67)m	191.74	170.30	138.50	104.85	78.38	66.17	71.50	92.94	124.74	158.39	184.86	197.07	(67)
Appliances gains (calculated i	n Appendix	L, equatio	n L13 or L1	3a), also se	e Table 5							
(68)m	951.88	961.76	936.87	883.88	816.98	754.12	712.12	702.24	727.13	780.12	847.01	909.88	(68)
Cooking gains (cal	culated in A	Appendix L,	equation L	15 or L15a)	, also see T	able 5							
(69)m	59.18	59.18	59.18	59.18	59.18	59.18	59.18	59.18	59.18	59.18	59.18	59.18	(69)
Pumps and fans g	ains (Table !	5a)											
(70)m	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	(70)
Losses e.g. evapo	ration (nega	itive values) (Table 5)										
(71)m	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	(71)
Water heating gai	ins (Table 5))											
(72)m	162.83	160.14	154.55	146.95	142.01	135.07	129.16	136.73	139.42	147.28	156.16	160.15	(72)

Page 3

SAP version 9.90

(73)m 1444.73 1430.47 1368.19 1273.95 1175.66 1093.63 1051.06 1070.18 1129.57 1224.07 1326.31 1405.37 (73)

6. Solar gains

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Rows (74) to (82) are used 12 times, one for each month, repeating as needed if there is more than one window type.

	Access fact Table 6d	_	Area m²	So	lar flux W/	_	Specific dat or Table 6b	a F	F Specific da or Table 60		Gains (W)	
North	0.54	x	5.75	x	10.73	x 0.9 x	0.65	х	0.70	=	13.64	(74
North	0.77	x	16.95	x	10.73	x 0.9 x	0.65	х	0.70	=	57.33	(7
East	0.77	x	3.60	x	19.87	x 0.9 x	0.65	х	0.70	=	22.56	(7
South	0.54	х	10.00	x	47.32	x 0.9 x	0.65	x	0.70	=	104.65	(7
South	1.00	x	26.80	x	47.32	x 0.9 x	0.65	х	0.70	=	519.35	(7
West	0.54	x	2.50	x	19.87	x 0.9 x	0.65	x	0.70	=	10.99	(8
West	0.77	x	4.50	x	19.87	x 0.9 x	0.65	х	0.70	=	28.20	(8
Rooflights	1.00	x	2.20	x	26.00	x 0.9 x	0.65	х	0.70	=	23.42	(8
Solar gains in watts, ca	culated for each	_ ı month ∑(7	4)m(82)m	1								
(83)m 78	0.13 1320.75	1739.05	2166.66	2445.68	2533.90	2460.90	2229.43	1923.48	1495.82	933.27	668.20	(8
Total gains - internal ar	ıd solar (73)m +	(83)m										
(84)m 222	4.86 2751.22	3107.24	3440.61	3621.34	3627.53	3511.96	3299.62	3053.04	2719.89	2259.58	2073.58	(8
7. Mean internal tem	perature (heatir	ng season)										
Temperature during he			rea from Ta	ble 9, Th1('	°C)						21.00	(8
j	an Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor for ga	ins for living are	a, η1,m (se	e Table 9a)									
(86)m 1	.00 1.00	1.00	0.99	0.96	0.84	0.62	0.66	0.92	0.99	1.00	1.00	(8
Mean internal temp of	living area T1 (st	teps 3 to 7 i	n Table 9c)									
(87)m	0.96 20.08	20.26	20.47	20.72	20.88	20.94	20.94	20.82	20.54	20.18	19.98	(8
Temperature during he	ating periods in	the living a	rea from Ta	ble 9, Th2('	°C)							
(88)m 20	0.01 20.02	20.02	20.05	20.06	20.07	20.08	20.08	20.06	20.05	20.04	20.02	(8
Utilisation factor for ga	ins for rest of dv	velling η2,n	n (see Table	9a)								_
(89)m 1	.00 1.00	1.00	0.98	0.93	0.76	0.49	0.52	0.87	0.99	1.00	1.00	(8
Mean internal tempera	ture in the rest	of dwelling	T2 (follow s	teps 3 to 7	in Table 9c				_			,
(90)m 18	3.59 18.78	19.05	19.38	19.74	19.95	20.01	20.01	19.87	19.47	18.94	18.64	(9
Living area fraction							fLA 8	37.50	÷ (4) =	=	0.16	(9
Mean internal tempera												,
	3.81 18.99	19.24	19.55	19.89	20.10	20.16	20.15	20.03	19.64	19.14	18.86	(9
Apply adjustment to th										1	1	1.
(93)m 18	3.81 18.99	19.24	19.55	19.89	20.10	20.16	20.15	20.03	19.64	19.14	18.86	(9
8. Space heating requ	irement											
J	an Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Set Ti to the mean inte	rnal temperatur	e obtained	at step 11 o	f Table 9b,	so that tim	= (93)m ar	nd recalculat	e the util	isation facto	or for gains	using Table	9a
Utilisation factor for ga	ins, 🛚 m											_
(94)m 1	.00 1.00	0.99	0.98	0.93	0.77	0.50	0.53	0.87	0.98	1.00	1.00	(9
Useful gains, @mGm, W	' = (94)m x (84)n	1										,
(95)m 222	2745.80	3088.39	3377.41	3361.54	2782.89	1772.67	1765.17	2653.65	2676.12	2256.17	2072.54	(9
Monthly average exter	nal temperature	from Table	8									,
(96)m 4	.50 5.00	6.80	8.70	11.70	14.60	16.90	16.90	14.30	10.80	7.00	4.90	(9
Heat loss rate for mear	internal tempe	rature, Lm,	W								1	,
(97)m 855	8249.49	7338.30	6218.13	4604.11	3058.51	1793.12	1792.34	3232.77	5066.85	7058.17	8230.12	(9

(30)111	17 13.37	1 3030.40	3101.33	2013.31	J 32 11 17	0.00		// // /) F/O	0)4 5 40	42]] (00)
							Total per y	/ear (kWh/\	$/ear) = \sum (9)$			24361.15	<u> </u> (98)
Space heating re	quirement i	n kWh/m²/	year							(98)	÷ (4)	44.43	(99)
8c. Space coolii	ng requirem	ent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Calculated for Ju	ne, July and	August. Se	e Table 10b	•	•			J	•				
Heat loss rate Ln	n (calculated	d using 24°C	internal te	mperature	and extern	al tempera	ture from T	Table 10)					
(100)m	0.00	0.00	0.00	0.00	0.00	4783.80	3414.20	3414.20	0.00	0.00	0.00	0.00	(100)
Utilisation factor	for loss, 🗈	า											
(101)m	0.00	0.00	0.00	0.00	0.00	0.77	0.90	0.87	0.00	0.00	0.00	0.00	(101)
Useful loss, 2mL	m (Watts) =	(100)m x (1	01)m										
(102)m	0.00	0.00	0.00	0.00	0.00	3676.09	3059.03	2981.74	0.00	0.00	0.00	0.00	(102)
Gains (internal g	ains as for h	eating exce	pt that colu	ımn (A) of ī	Table 5 is al	ways used;	; solar gains	calculated	for				
applicable weath	ner region b	ased on Tab	le 10, not 1	able 6a)									
(103)m	0.00	0.00	0.00	0.00	0.00	4043.59	3864.43	3628.93	0.00	0.00	0.00	0.00	(103)
Space cooling re	quirement f	or the mon	h, whole d	welling, cor	ntinuous (k	Wh) = 0.02	4 x [(103)m	- (102)m] >	(41)m				
set (104)m to ze	ro_if (104)m	< 3 x (98)m	with (98)m	with (98)n	n calculated	d using wea	ather data f	rom Table :	10				_
(104)m	0.00	0.00	0.00	0.00	0.00	264.60	599.22	481.51	0.00	0.00	0.00	0.00]
									Tota	al = ∑(104)6	8 =	1345.33	(104)
Cooled fraction									fc = co	oled area ÷	(4) =	0.18	(105)
Intermittency fac	ctor (Table 1	LOb)											
(106)m	0.00	0.00	0.00	0.00	0.00	0.25	0.25	0.25	0.00	0.00	0.00	0.00]
									Tota	al = ∑(106)6	8 =	0.75	(106)
Space cooling re	quirement f	or month =	(104)m x (1	l05) x (106)	m								
(107)m	0.00	0.00	0.00	0.00	0.00	12.06	27.32	21.95	0.00	0.00	0.00	0.00]
									Tota	al = ∑(107)6	8 =	61.34	(107)
Space cooling re	quirement i	n kWh/m²/y	vear .							(107) ÷	(4) =	0.11	(108)
9a. Energy Req	uirements -	Individual l	neating sys	tems includ	ding micro-	СНР							
Space heating:													
Fraction of space	e heating fro	m seconda	ry/supplem	entary syst	em (Table	11)			0.00	(201)			
Fraction of space	e heating fro	om main sys	tem(s) 1 -	(201)					1.00	(202)			
Fraction of main	heating fro	m main syst	em 2						0.00	(203)			
Fraction of total	space heat	from main s	ystem 1 (2	02) x [1 - (2	203)]				1.00	(204)			
Fraction of total	space heat	from main s	ystem 2 (2	02) x (203)					0.00	(205)			
Efficiency of mai	n space hea	ting system	1 (%)						250.00	(206)			
(from database o				oropriate b	y the amou	nt shown ir	n the 'space	efficiency of	adjustmen	⊐ t' column o;	f Table 4c)	
Cooling System E							•	,	3.78	(209)	ŕ		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating re	quirement,	kWh/montl	n (as calcula	ted above	•				•				
(98)m	4713.57	3698.48	3161.93	2045.31	924.47	0.00	0.00	0.00	0.00	1778.70	3457.43	4581.24]
Space heating fu	el (main hea	ating system	n 1), kWh/n	nonth = (98	s)m x (204)	x 100 ÷ (20	6)	•				•	_
(211)m	1885.43	1479.39	1264.77	818.13	369.79	0.00	0.00	0.00	0.00	711.48	1382.97	1832.50]
						-	Total per ye	ear (kWh/ye	ear) = ∑(21	1)15, 10	.12 =	9744.46	(211)
Water heating:							. ,	•		-			
Output from wat	ter heater k	:Wh/month	(calculate	d above)									
(64)m	262.51	231.67	243.98	219.66	215.94	193.93	187.18	204.11	203.35	227.73	239.61	256.52	7
								1		Σ(64)1		2686.18	(64)
Efficiency of wat	er heater ne	er month								2(0 1/1			۱, ۳, ۲
Emercincy of wat	er neater pe												

0.00

0.00

0.00

1778.70 3457.43 4581.24

Space heating requirement for each month, $kWh/month = 0.024 \times [(97)m - (95)m] \times (41)m$ 4713.57 3698.48 3161.93 2045.31 924.47

(98)m

(217)m	250.00	250.00	250.00	250.00	250.00	250.00	250.00	350.00	250.00	350.00	250.00	250.00	1
Fuel for water he	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00]
(219)m	105.01	92.67	97.59	87.86	86.38	77.57	74.87	81.64	81.34	91.09	95.84	102.61]
(213)111	103.01	32.07	37.33	07.00	00.50	77.57				= Σ(219)11		.074.47	(219)
Space cooling								, pe. yea. (.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2(=13)11			(===)
Space cooling fue	el. kWh/mon	th (107)m	÷ (209)										
(221)m	0.00	0.00	0.00	0.00	0.00	3.19	7.23	5.81	0.00	0.00	0.00	0.00]
				•	•		Tot	al per year	(kWh/year) = ∑(221)6	8 =	16.23	(221)
Annual Totals Su	mmary:									kWh/yea	ır kV	Wh/year	
Space heating fu	el used, mai	n system 1									9	744.46	(211)
Water heating fu	iel used										1	.074.47	(219)
Space cooling fue	el used											16.23	(221)
Electricity for pur	mps, fans ar	nd electric k	keep-hot (Table 4f):									
mechanical ve	entilation far	ns - balance	d, extract	or positive	input from	outside				1747.67	,		(230a)
warm air heat	ing system f	ans								0.00			(230b)
central heatin										130.00			(230c)
oil boiler pum										0.00			(230d)
boiler flue fan maintaining e		hot facility	for gas cou	mhi hoiler						0.00			(230e) (230f)
pump for sola		-	TOT BUS COT	nor boner						0.00			(230g)
Total electricity for		_								∑(230a)(23	0g) 1	.877.67	(231)
													•
Electricity for ligh	nting (calcul	ated in App	endix L):								1	.354.48	(232)
10a. Fuel costs -	. Individual k	neating sys	toms inclu	ding micro	CHD								
20011 0010	arviaaari	reating 575	cemo mera	amg mero		kWh/year		Fu	uel price		Fuel	cost £/yea	
						,,,			able 12)			•	
Space heating - m	nain system	1			9	744.46	×		11.46	x 0.01 =	1	.116.72	(240)
Water heating co	st (other fue	el)			1	074.47	x		11.46	x 0.01 =			(0.47)
Space cooling										J		123.13	(247)
-						16.23	x		11.46	x 0.01 =		1.86	(247)
Pumps, fans and	electric keep	o-hot				16.23 877.67			11.46 11.46	J 7			1
		o-hot			1		×			x 0.01 =		1.86	(248)
Pumps, fans and	g				1	877.67	x x		11.46	x 0.01 = x 0.01 =		1.86 215.18	(248) (249)
Pumps, fans and Energy for lightin	g ng charges (1	877.67	x x		11.46 11.46	x 0.01 = x 0.01 =		1.86 215.18 155.22	(248) (249) (250)
Pumps, fans and Energy for lightin Additional standi Total energy cost	g ng charges (Table 12)	tame inclu	uding micro	1	877.67	x x		11.46 11.46	x 0.01 = x 0.01 = x 0.01 =		1.86 215.18 155.22 0.00	(248) (249) (250) (251)
Pumps, fans and Energy for lightin Additional standi Total energy cost	g ng charges (Table 12) heating sys	stems inclu	iding micro	1	877.67	x x		11.46 11.46	x 0.01 = x 0.01 = x 0.01 =		1.86 215.18 155.22 0.00 612.11	[(248)] (249)] (250)] (251)] (255)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla	g ng charges (- Individual tor (Table 12	Table 12) heating sys	stems inclu	iding micro	1	877.67	x x		11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	54) 1	1.86 215.18 155.22 0.00 .612.11	[(248)] (249)] (250)] (251)] (255)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla Energy cost facto	g ng charges (- Individual tor (Table 12	Table 12) heating sys	stems inclu	iding micro	1	877.67	x x		11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 =	54) 1	1.86 215.18 155.22 0.00 612.11 0.47 1.28	[(248)] (249)] (250)] (251)] (255)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla Energy cost facto SAP value	g ng charges (- Individual tor (Table 12	Table 12) heating sys	stems inclu	iding micro	1	877.67	x x		11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	54) 1	1.86 215.18 155.22 0.00 612.11 0.47 1.28	[(248)] (249)] (250)] (251)] (255)] (256)] (257)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla Energy cost facto SAP value SAP rating	g ng charges (- Individual tor (Table 12	Table 12) heating sys	stems inclu	iding micro	1	877.67	x x		11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	54) 1	1.86 215.18 155.22 0.00 612.11 0.47 1.28 82.18	[(248)] (249)] (250)] (251)] (255)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla Energy cost facto SAP value	g ng charges (- Individual tor (Table 12	Table 12) heating sys	stems inclu	iding micro	1	877.67	x x		11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	54) 1	1.86 215.18 155.22 0.00 612.11 0.47 1.28	[(248)] (249)] (250)] (251)] (255)] (256)] (257)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla Energy cost facto SAP value SAP rating	g ng charges (- Individual tor (Table 12 or (ECF)	Table 12) heating sys			11	877.67 354.48	x x		11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	54) 1	1.86 215.18 155.22 0.00 612.11 0.47 1.28 82.18	[(248)] (249)] (250)] (251)] (255)] (256)] (257)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla Energy cost facto SAP value SAP rating SAP band	g ng charges (- Individual tor (Table 12 or (ECF)	Table 12) heating sys			-CHP	877.67 354.48 nicro-CHP	x x	[(2	11.46 11.46 (240)(242 55) x (256)	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	54) 1 	1.86 215.18 155.22 0.00 612.11 0.47 1.28 82.18 82 B	[(248)] (249)] (250)] (251)] (255)] (256)] (257)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla Energy cost facto SAP value SAP rating SAP band 12a. Carbon dio	g ng charges (- Individual tor (Table 12 or (ECF)	Table 12) heating sys			-CHP	877.67 354.48 nicro-CHP Energy Vh/year	x x x	[(2	11.46 11.46 (240)(242 55) x (256)	x 0.01 =	54) 1 	1.86 215.18 155.22 0.00 612.11 0.47 1.28 82.18 82 B missions	[(248)] (249)] (250)] (251)] (255) [(256)] (257)] (258)]
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla Energy cost facto SAP value SAP rating SAP band 12a. Carbon dio	g ng charges (- Individual tor (Table 12 or (ECF)	Table 12) heating sys			-CHP including m kv	877.67 354.48 nicro-CHP Energy Vh/year	x x x	[(2	11.46 11.46 (240)(242 55) x (256) missions Factor 0.517	x 0.01 =	54) 1 	1.86 215.18 155.22 0.00 612.11 0.47 1.28 82.18 82 B missions cO2/year)	[(248)] (249)] (250)] (251)] (255) [(257)] [(258)] (261)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost deflatenergy cost factors SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating	g ng charges (- Individual tor (Table 12 or (ECF) xide emission	Table 12) heating sys			-CHP including m kv	877.67 354.48 nicro-CHP Energy Vh/year	x x x	[(2	11.46 11.46 (240)(242 55) x (256) missions Factor 0.517	x 0.01 = x 0.	54) 1 Er (kg(1.86 215.18 155.22 0.00 612.11 0.47 1.28 82.18 82 B missions CO2/year) 6037.89	(248) (249) (250) (251) (255) (255) (256) (257) (258) (261) (264)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla Energy cost factor SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating Space and water	g ng charges (- Individual tor (Table 12 or (ECF) xide emission	Table 12) heating sys			-CHP including m kv 9	877.67 354.48 nicro-CHP Energy Vh/year 744.46 074.47	x x x x x	[(26	11.46 11.46 (240)(242 55) x (256) missions Factor 0.517 0.517 1) + (262) +	x 0.01 = x 0.	54) 1 Er (kg(1.86 215.18 155.22 0.00 612.11 0.47 1.28 82.18 82 B missions CO2/year) 6037.89 555.50 593.39	[(248)] (249)] (250)] (251)] (255) [(256)] (257)] [(258)] (261)] (264)] (265)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost deflatenergy cost factors SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating Space and water Space cooling	g ng charges (- Individual tor (Table 12 or (ECF) xide emission hain system heating	Table 12) heating sys			-CHP including m kV 9 1	877.67 354.48 354.48 Nicro-CHP Energy Vh/year 744.46 074.47	x x x x x x	[(2	11.46 11.46 (240)(242 55) x (256) missions Factor 0.517 0.517 1) + (262) +	x 0.01 = x 0.	54) 1 Er (kgC	1.86 215.18 155.22 0.00 612.11 0.47 1.28 82.18 82 B missions CO2/year) 6037.89 555.50 593.39 8.39	(248) (249) (250) (251) (255) (255) (256) (257) (258) (261) (264) (265) (266)
Pumps, fans and Energy for lightin Additional standi Total energy cost 11a. SAP rating Energy cost defla Energy cost factor SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating Space and water	g ng charges (- Individual tor (Table 12 or (ECF) xide emission hain system heating	Table 12) heating sys			-CHP including m kV 9 1	877.67 354.48 nicro-CHP Energy Vh/year 744.46 074.47	x x x x x	[(2	11.46 11.46 (240)(242 55) x (256) missions Factor 0.517 0.517 1) + (262) +	x 0.01 = x 0.	54) 1 Er (kgC	1.86 215.18 155.22 0.00 612.11 0.47 1.28 82.18 82 B missions CO2/year) 6037.89 555.50 593.39	[(248)] (249)] (250)] (251)] (255) [(256)] (257)] [(258)] (261)] (264)] (265)

Lighting	1354.48	x	0.517	=	700.27	(268)
Total carbon dioxide emissions				∑(261)(271) =	7272.80	(272)
Dwelling carbon dioxide emissions rate				(272) ÷ (4) =	13.26	(273)
El value					83.57]
El rating (see section 14)					84	(274)
FI hand					R	1

13a. Primary energy - Individual heating systems i	ncluding micro-CHP					
	Energy kWh/year		Primary Ene Factor	rgy	Primary Energy	′
Space heating - main system 1	9744.46	х	2.92	=	28453.83	(261*)
Water heating	1074.47	х	2.92	=	3137.46	(264*)
Space and water heating			(261*) + (262*)	+ (263*) + (264*) =	31591.29	(265*)
Space cooling	16.23	х	2.92	=	47.38	(266*)
Pumps, fans and electric keep-hot	1877.67	x	2.92	=	5482.79	(267*)
Lighting	1354.48	x	2.92	=	3955.08	(268*)
Total primary energy kWh/year				∑(261*)(271*) =	41076.54	(272*)
Primary energy kWh/m2/year				(272*) ÷ (4) =	74.92	(273*)

Appendix B – Code for Sustainable Homes Pre-assessment

breglobal

Results

Development Name: Nutley Terrace

Dwelling Description: Single Dwelling - Detached House

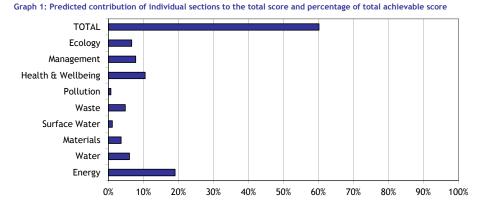
Name of Company: Hoare Lea Consulting Engineers

Code Assessor's Name:

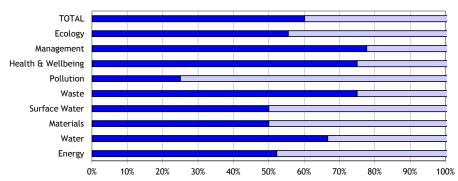
Company Address:

Hoare Lea Consulting Engineers

Notes/Comments:


PREDICTED RATING - CODE LEVEL: 3

Mandatory Requirements: All Levels


 % Points:
 60.15%
 - Code Level: 3

 Breakdown:
 Energy
 - Code Level: 4

 Water
 - Code Level: 4

Graph 2: Predicted percentage of credits achievable: Total and by Category

NOTE: The rating obtained by using this Pre Assessment Estimator is for guidance only. Predicted ratings may differ from those obtained through a formal assessment, which must be carried out by a licensed Code assessor.

CATEGOR	Y 1 ENERGY	Overall Level: 3	Overall Score	60.15		Evidence Required
% of Secti	ion Credits Predicted:	52.25	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribut	ion to Overall % Score:	19.02 points	16.2 of 31 Credits	Level 4		required.)
Ene 1 Dwelling Emission Rate	Dwelling Emission Rate calculated using SAP 2 apply. The Code ene predicted score. Enter the predicted score What is the	passed on the percentage improvement of the (DER) over the Target Emission Rate (TER) (2009. Minimum standards for each Code levergy calculator can be used to calculate the predicted number of credits? It CO ₂ emissions achieved?	as el	Level 4		
Ene 2 Fabric Energy Efficiency	(kWh/m²/yr) of the dw 5 and 6. The Code e predicted score. Enter the predicted score Apartments OR End terrace OR Staggered M	, Mid-terrace O , Semi and Detached •	els			
Ene 3 Energy Display Devices	Device is installed mor consumption. Select whether the EDD None Specif Primary Hea OR Electricity of	ating only		,		

Issue		Credits	Level	Assumptions Made	Evidence Required
Ene 4 Drying Space	One credit is awarded for the provision of either internal or external secure drying space with posts and footings or fixings capable of holding 4m+ of drying line for 1-2 bed dwellings and 6m+ for dwellings with 3 bedrooms or greater. Will drying space meeting the criteria be provided? Yes OR NO	1 of 1 Credits	-		
Ene 5 Energy Labelled White Goods	Credits are awarded where each dwelling is provided with either information about the EU Energy Labelling Scheme, White Goods with ratings ranging from A+ to B or a combination of the previous according to the technical guide. Select the appropriate option below EU Energy labelling information only A+ rated appliances A+, A and B rated appliances Combination of compliant rated white goods with EU Energy Labelling Scheme	2 of 2 Credits	-		
Ene 6 External Lighting	Credits are awarded based on the provision of space lighting* with dedicated energy efficient fittings and security lighting fittings with appropriate control gear Space Lighting None provided OR Non Code compliant lighting OR Code compliant lighting None provided OR Non Code compliant lighting OR Code compliant lighting on the code compliant lighting on the code compliant lighting on the code compliant lighting and controls Statutory safety lighting is not covered by this requirement	2 of 2 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Ene 7 Low or Zero Carbon Technologies	Credits are awarded where there is a 10% or 15% reduction in ${\rm CO_2}$ emissions resulting from the use of low or zero carbon technologies. Select % contribution made by low or zero carbon technologies				
	Less than 10% of demand OR 10% of demand or greater OR 15% of demand or greater	0 of 2 Credits	-		
Ene 8 Cycle Storage	Credits are awarded where adequate, safe, secure and weather proof cycle storage is provided according to the Code requirements. Fill in the development details below Number of bedrooms: Number of cycles stored per dwelling* * if you have storage for 1 cycle per two dwellings insert 0.5 in number of cycles stored per dwelling	1 of 2 Credits			
Ene 9 Home Office	A credit is awarded for the provision of a home office. The location, space and services provided must meet the Code requirements. Will there be provision for a Home Office? Yes OR NO O	1 of 1 Credits	1		

CATEGORY 2 WATER	Overall Level: 3	Overall Score	60.15		Evidence Required
% of Section Credits Predicted: 66.66		Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribution to Overall Score: 6.00 points		4 of 6 Credits	Level 4		required.)
Wat 1 Indoor Water Use Credits are awarded based on the water consumption, calculated us Tool. Minimum standards for each Select the predicted water use / Mandage greater than 120 litres / OR ≤ less than 120 litres / OR ≤ less than 110 litres / OR ≤ less than 105 litres / OR ≤ less than 90 litres / OR ≤ less than 80 litres / OR SELECTION OR SELECT	ring the Code Water Calculator code level apply. atory Requirement person/ day person/ day person/ day person/ day person/ day person/ day		Level 3 AND Level 4		
Wat 2 External Water Use A credit is awarded where a cor collecting rainwater for external outdoor space is provided the cred Select the scenario that applies No internal or communion OR Outdoor space with col OR Outdoor space without	irrigation purposes. Where no lit can be achieved by default. al outdoor space Olection system	1 of 1 Credits	-		

CATEGORY 3 MA	ATERIALS Overall Level: 3	Overall Score	60.15		Evidence Required
	edits Predicted: 50.00	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribution to	Overall Score: 3.60 points	12 of 24 Credits	All Levels		required.)
elemental Impact of Materials Green Calcu	datory Requirement: At least three of the five key building lents must achieve a Green Guide 2008 Rating of A+ to D. able Credits: Points are awarded on a scale based on the Guide Rating of the specifications. The Code Materials ulator can be used to predict a potential score.				
	Mandatory Requirement Will the mandatory requirement be met?	8 of 15 Credits	All Levels		
	What is the predicted number of credits?	8 or 15 Credits	All Levels		
Responsible eleme	its are awarded where materials used in the basic building lents are responsibly sourced. The Code Materials Calculator be used to predict a potential score.				
Basic Building Elements	What is the predicted number of credits? 3	3 of 6 Credits	-		
Responsible Sourcing of Materials -	its are awarded where materials used in the finishing tents are responsibly sourced. The Code Materials Calculator be used to predict a potential score. Enter the predicted Score What is the predicted number of credits?	1 of 3 Credits	_		
	mac is the predicted number of credits.	. o. o credits			

CATEGORY	4 SURFACE WATER RUN	N-OFF Overall Level: 3	Overall Score	60.15		Evidence Required
% of Sectio	n Credits Predicted: !	50.00%	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributio	on to Overall Score:	1.10 points	2 of 4 Credits	All Levels		required.)
Sur 1 Management of Surface Water Run-off from developments	no greater for the d development site and rainwater discharge ca reduced as far as pos criteria. Desiging the local drainage system used to improve water	t: Peak rate of run-off into watercourse: leveloped site than it was for the p that the additional predicted volume aused by the new development is entiresible in accordance with the assessmedrainage system to be able to cope w failure. Tradable Credits: Where SUDS are quality of the rainwater discharged or of the receiving waters.	re- of ely ent ith are			
	— Mandatory Requirement Will the mai	ndatory requirement be met?				
	5 mm of rai Runoff from	ito watercourses for the first	0 of 2 Credits	All Levels		
Sur 2 Flood Risk	Credits are awarded w low flood risk or where appropriate measures property and its content the technical guide.	there developments are located in areas re in areas of medium or high flood reare taken to prevent damage to the in accordance with the Code criterial billity of flooding (from PPS25*)	isk :he			
	All meas demonstrate Ground floo	obtion(s) flooding from FRA** Sures of protection are	2 of 2 Credits			
	* Planning Policy Statement 2 ** FRA - Flood Risk Assessmen	-				

CATEGORY 5	WASTE Overall Level:	3	Overall Score	60.15		Evidence Required
% of Section	Credits Predicted: 75.00%		Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
	to Overall Score: 4.80 points			All Levels		required.)
Storage of non- recyclable waste and	Mandatory Requirement: The space provided for wast should be sized to hold the larger of either all external corovided by the Local Authority or the min capacity of from BS 5906. Tradable Credits are awarded for internal and/or external recycling facilities.	ontainers alculated				
	─ Mandatory Requirement —					
	Will the minimum space be provided and be accessible to disabled people?	✓				
	Internal Recyclable household waste storage					
	Where there is no external recyclable waste storage and no Local Authority collection scheme					
	Internal storage (capacity 60 litres)		0 of 2 Credits			
	Local Authority collection Scheme					
	Post Collection sorting Internal storage (capacity 30 litres)		4 of 4 Credits	All Levels		
	Pre-collection sorting Internal storage (3 separate bins, capacity 30 litres)	abla				
	External Storage, no Local Authority collection scheme					
	3 separate internal storage bins (capacity 30 litres) AND					
	Houses External Storage(capacity 180 litres)		0 of 4 Credits			
	Flats		5 of 4 cicuits			
	Private recycling operator					
	3 or greater types of waste collected					

Issue		Credits	Level	Assumptions Made	Evidence Required
Was 2 Construction Site Waste Management	A credit is awarded where a compliant SWMP is provided with targets and procedures to minimise construction waste. Credit are available where the SWMP include procedures and commitments for diverting either 50% or 85% of waste generated from landfill. SWMP details Does the SWMP include: + No SWMP + SWMP with targets and procedures to minimise waste? + SWMP with procedures to divert 50% of waste + SWMP with procedures to divert 85% of waste	s 1			
Was 3 Composting	A credit is awarded where individual home composting facilities are provided, or where a community/ communal composting service, either run by the Local Authority or overseen by a management plan is in operation. Select the facilities available No composting facilities Individual composting facilities OR Communal/ community composting*? Local Authority OR Private with management plan * including if an automated waste collection system is in place	g	-		

CATEGOR	Y 6 POLLU	TION Overal	l Level: 3	Overall Score	60.15		Evidence Required
_		Predicted: 25.00%		Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
	ion to Ove	rall Score: 0.70 points		1 of 4 Credits	All Levels		required.)
Pol 1 Global Warming Potential		is awarded where $\underline{\text{all}}$ insulating mes (in manufacture AND installation) th 5.					
(GWP) of Insulants	OR OR	the most appropriate option All insulants have a GWP less than 5 Some insulants have a GWP of less th No insulants have a GWP of less than		1 of 1 Credits	-		
Pol 2 NOx Emissions	the opera	re awarded on the basis of NOx emission tion of the space and water heating system the most appropriate option	•				
	OR OR OR OR	Greater than 100 mg/kWh Less than 100 mg/kWh Less than 70 mg/kWh Less than 40 mg/kWh Class 4 boiler Class 5 boiler	energy who do	0 of 3 Credits	-		

CATEGOR'	Y 7 HEALTH & WELLBEING Overall Level: 3	Overall Score	60.15		Evidence Required
% of Secti	on Credits Predicted: 75.00%	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribut	ion to Overall Score: 10.50 points	9 of 12 Credits	No level		required.)
Hea 1 Daylighting	Credits are awarded for ensuring key rooms in the dwelling have high daylight factors (DF) and a view of the sky. Select the compliant areas Room Kitchen: Avg DF of at least 2% Living Room*: Avg DF of at least 1.5% Dining Room*: Avg DF of at least 1.5% Study*: Avg DF of at least 1.5% Study*: Avg DF of at least 1.5% Any room used for Ene 9 Home Office must also achieve a min DF of 1.5%.	0 of 3 Credits	-		
Hea 2 Sound Insulation	Credits are awarded where performance standards exceed those required in Building Regulations Part E. This can be demonstrated by carrying out pre-completion testing or through the use of Robust Details Limited. Select a type of property Detached Property Attached Properties: Separating walls and floors only exist between non habitable spaces Separating walls and floors exist between habitable spaces Select a performance standard Performance standard of Select a performance standard of Airborne: 3db higher; Impact: 3dB lower OR Airborne: 5db higher; Impact: 5dB lower OR Airborne: 8db higher; Impact: 8dB lower	4 of 4 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Hea 3 Private Space	A credit is awarded for the provision of an outdoor space that is at least partially private. The space must allow easy access to all occupants. Will a private/ semi-private space be provided? Yes, private/semi-private space will be provided OR No private/semi-private space	1 of 1 Credits	·		
Hea 4 Lifetime Homes	Mandatory Requirement: Lifetime Homes is mandatory when a dwelling is to achieve Code Level 6. Tradable credits: Credits are awarded where the developer has implemented all of the principles of the Lifetime Homes scheme. Mandatory Requirement Dwelling to achieve Code Level 6? Lifetime Homes Compliance All Lifetime Homes criteria will be met OR Exemption from LTH criteria 2/3 applied Credit not sought	4 of 4 Credits	No level		

CATEGORY	8 MANAGEMENT Overall Level: 3	Overall Score	60.15		Evidence Required
% of Section	n Credits Predicted: 77.00%	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
	on to Overall Score: 7.77 points	7 of 9 Credits	All Levels		required.)
Man 1 Home User Guide	Credits are awarded where a simple guide is provided to each dwelling covering information relevant to the 'non-technical home occupier, in accordance with the Code requirements. Tick the topics covered by the Home User Guide Operational Issues? Site and Surroundings? Is available in alternative formats?		-		
Man 2 Considerate Constructors Scheme	Credits are awarded where there is a commitment to comply with best practice site management principles using either the Considerate Constructors Scheme or an alternative locally/nationally recognised scheme. Select the appropriate scheme and score No scheme used Considerate Constructors OR Best Practice: Score between 24 and 31.5 OR Best Practice+: Score between 32 and 40 Alternative Scheme* OR Mandatory + 50% optional requirements	1 of 2 Credits	-		
Man 3	OR Mandatory + 80% optional requirements * In the first instance, contact a Code Service Provider if you are considering to use an alternative scheme. Credits are awarded where there is a commitment and strategy				
Construction Site Impacts	to operate site management procedures on site as following: Tick the impacts that will be addressed Monitor, report and set targets, where applicable, for: CO2/ energy use from site activities O2/ energy use from site related transport O3/ energy use from site activities O4/ energy us	1 of 2 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Man 4 Security	Credits are awarded for complying with Section 2 - Physical Security from Secured by Design - New Homes. An Architectural Liaison Officer (ALO), or alternative, needs to be appointed early in the design process and their recommendations incorporated.				
	Secured by Design Compliance Credit not sought OR Secured by Design Section 2 Compliance	2 of 2 Credits	-		

CATEGORY 9 ECOLOGY Overall Level: 3	Overall Score	60.15		Evidence Required
% of Section Credits Predicted: 55.00%	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribution to Overall Score: 6.66 points	5 of 9 Credits	All Levels		required.)
Eco 1 Ecological Value of Site One credit is awarded for developing land of inherently low value. Select the appropriate option Credit not sought OR Land has ecological value OR Land has low/ insignificant ecological value*	0 of 1 Credits	-		
* Low ecological value is determined either a) by using Checklist Eco 1 across the whole development site; or b) where an suitably qualified ecologist is appointed and can confirm or c) produces an independent ecological report of the site, that the construction zone is of low/ insignificant value; AND the rest of the development site will remain undisturbed by the works.				
Eco 2 Ecological Enhancement A credit is awarded where there is a commitment to enhance the ecological value of the development site. Tick the appropriate boxes Will a Suitably Qualified Ecologist be appointed to recommend appropriate ecological features? AND Will all key recommendations be adopted?	1 of 1 Credits	-		
A credit is awarded where there is a commitment to maintain and adequately protect features of ecological value. Type and protection of existing features Site with features of ecological value? OR Site of low ecological value (as Eco 1)? AND All* existing features potentially affected by site works are maintained and adequately protected? *If a suitably qualified ecologist has confirmed that a feature can be removed due to insignificant ecological value or poor health conditions, as long all the rest have been protected, then this box can be ticked.	1 of 1 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Eco 4 Change of Ecological Value of Site	Credits are awarded where the change in ecological value has been calculated in accordance with the Code requirements and is calculated to be: Change in Ecological Value Major negative change: fewer than -9 Minor negative change: between -9 and -3 OR Neutral: between -3 and +3 Minor enhancement: between +3 and +9 Major enhancement: greater than 9	2 of 4 Credits			
Eco 5 Building Footprint	Credits are awarded where the ratio of combined floor area of all dwellings on the site to their footprint is: Ratio of Net Internal Floor Area: Net Internal Ground Floor Area Credit Not Sought OR Houses: 2.5:1 OR Flats: 3:1 OR Houses: 3:1 OR Flats: 4:1 OR Houses & Flats Weighted (2.5:1 & 3:1) OR Houses & Flats Weighted (3:1 & 4:1)	1 of 2 Credits			