

Audit Sheet

Revision	Description	Date	Issued by	Reviewed by
-	Draft for Comment	Nov 2011	C Parkin	
02	For Planning	Feb 2012	C Parkin	C Dougan
03	Revised for Planning	Oct 2012	C Parkin	C Dougan

This report is provided for the stated purposes and for the sole use of the named Client. It will be confidential to the Client and the client's professional advisers. Hoare Lea accepts responsibility to the Client alone that the report has been prepared with the skill, care and diligence of a competent engineer, but accepts no responsibility whatsoever to any parties other than the Client. Any such parties rely upon the report at their own risk. Neither the whole nor any part of the report nor reference to it may be included in any published document, circular or statement nor published in any way without Hoare Lea's written approval of the form and content in which it may appear.

6 Nutley Terrace

Energy Efficiency Statement & Code for Sustainable Homes Pre-assessment

Contents

1.0	Executive Summary	2
2.0	Introduction	3
3.0	Summary of Key Points from Camden Sustainability Supplementary Planning Guidance	3
4.0	Summary of Key Points from Part L1A 2010	
4.1	Achievement of Compliance	3
4.2	Fabric Performance	3
4.3	Fixed Building Services Performance	4
5.0	Proposed Measures to meet Camden Sustainability Policies and Part L1A 2010	5
5.1	Software Modelling	5
5.2	Baseline Energy Assessment	5
5.3	Fabric Performance (be lean)	5
5.4	Fixed Building Services Performance (be lean)	5
5.5	Air Source Heat Pumps (be lean/green)	
5.6	Solar PV (be green)	6
5.7	Other low Carbon and renewable technologies	
5.8	Headline Camden Policies and Summary	6
6.0	Part L1A 2010 Results	6
6.1	Criterion 1	
6.2	Criterion 2	6
6.3	Criterion 3	
Appen	idix A – Part L1A Building Regulations Compliance Report & SAP Worksheet	7
Appen	dix B – Code for Sustainable Homes Pre-assessment	8

1.0 Executive Summary

To meet the requirements of the London Borough of Camden planning policies relating to energy and sustainability and to meet the requirements of the Building Regulation Approved Document Part L1A 2010 the following measures are proposed:

- Enhanced building fabric performance U-values and air tightness
- Enhanced buildings services performance high efficiency equipment and low energy lighting
- Use of air source heat pumps and underfloor heating
- Use of solar PV

Use of micro-CHP, solar hot water and wind turbines were considered but are not feasible on this development.

The proposed measures result in the following outcomes:

- Approximately 50% CO2 reduction compared to a Part L 2010 compliant dwelling. This is compared to the planning target of a 25% reduction.
- A 17% reduction in CO2 emissions from low and zero Carbon technologies. This figure is derived from the SAP calculations undertaken and comes from a combination of Air Source Heat Pumps and solar PV. Air source heat pumps and solar PV are recognised as renewable technologies under Camden planning policy guidance CPG3 on Sustainability.
- Dwellings that can work with natural ventilation and maintain occupant comfort
- Code for Sustainable Homes (CSH) Level 4 compliance with a 65% of the energy credits achievable (15% higher than Camden target of 50%)

In addition to the energy credits it is proposed that approximately 65% of the CSH Water credits are achievable, 50% of the Materials credits and 75% of the Waste credits. The full CSH pre-assessment is appended to this document. The pre-assessment demonstrates one possible route to achieving CSH Level 4 and a minimum of 50% of credits in the Energy, Water, Materials and Waste sections.

2.0 Introduction

This report has been prepared to provide a summary of the energy efficiency measures for the proposed 6 Nutley Terrace development. It is intended to address the London Borough of Camden's policies relating to climate change and sustainable design and construction, specifically CS 13 – Tackling Climate Change through Promoting Higher Environmental Standards and DP22 – Promoting Sustainable Design and Construction. It is also written with the requirements of the Camden Planning Guidance 3 – Sustainability document in mind.

3.0 Summary of Key Points from Camden Sustainability Supplementary Planning Guidance

The list below gives the headline requirements of the Camden sustainability planning guidance relating to energy:

- Follow the "be lean, be clean, be green" approach
- Account for regulated and unregulated energy using modelled or benchmark data for minor developments
- Demonstrate via modelling that overheating is not an issue
- Demonstrate that natural ventilation has been considered in the design
- Connect to existing district heating networks or provide CHP onsite
- Aim to achieve a 20% CO2 reduction from renewables
- Aim to achieve at least 50% of energy credits under the Code for Sustainable Homes

4.0 Summary of Key Points from Part L1A 2010

Part L1A 2010 gives five criteria by which a development must provide evidence of compliance (refer to table below). Note that Criteria 4 and 5 will be evidenced at the construction/completion stage. This report addresses steps taken to improve the design in order to meet Criterion 1, 2 and 3.

CRITERION 1:	"The calculated rate of CO ₂ emissions from the dwelling (the Dwelling Emission Rate, DER) must not be greater than the Target Emission Rate, TER)"
CRITERION 2:	"The performance of the building fabric and the fixed building services [heating, hot water and fixed lighting systems] should achieve reasonable overall standards of energy efficiency"
CRITERION 3:	"The dwelling has appropriate passive control measures to limit the effect of solar gains on indoor temperatures in summer, regardless of whether or not the dwelling has mechanical cooling."
CRITERION 4:	"The performance of the dwelling, as built, is consistent with the DER"
CRITERION 5:	"The necessary provisions for energy efficient operation of the dwelling should be put in place."

4.1 Achievement of Compliance

Some additional information on how to meet each criterion is provided below:

Criterion 1

To pass Criterion 1, the Dwelling Emission Rate (DER) must be less than the Target Emissions Rate (TER), i.e. DER<TER.

The development aims to demonstrate a good level of energy efficiency that will reduce carbon emissions due to heating, hot water generation, lighting, fans and pumps.

Criterion 2

To pass Criterion 2 the minimum performance standards set out in the Approved Documents and supporting documentation must be met or exceeded. These are set out in Sections 4.2 and 4.3.

Criterion 3

To pass Criterion 3, the dwelling must have less than a "High" risk of high internal temperatures. The table below shows the range of possible outcomes ranging from "Not Significant" to "High".

T threshold	Likelihood of high internal temperature in hot weather
<20.5°C	Not significant
≤ 20.5°C and <22°C	Slight
≤ 22.0°C and <22°C	Medium
≥ 23.5°C	High

4.2 Fabric Performance

The limiting standards from the approved documents relating to building fabric are shown in the table below:

	Approved Document L1A 2010 Table 2	Approved Document C 2004
Element	Maximum area-weighted average U-value (W/m².K)	Absolute Maximum U- value (W/m².K)
Roof	0.20	0.35
Wall	0.30	0.7
Ground Floor	0.25	0.7
Party Wall	0.2	No limit
Windows, roof windows, glazed rooflights, curtain walling and pedestrian doors	2.0	No limit

Other limiting standards are:

- 1. Air permeability shall be <10 m³/hr.m² @ 50Pa
- 2. Thermal bridging "the building fabric should be constructed such that there are no reasonably avoidable thermal bridges".

4.3 Fixed Building Services Performance

The limiting standards from the approved documents and supporting documents relating to building services are shown below:

Plant Item	Criteria
Air Source Heat Pumps (space heating)	COP > 2.2
Air Source Heat Pumps (DHW)	COP > 2.0
Air Source Heat Pumps	Seasonal Performance Factor > 2.7
Air Source Heat Pumps (cooling)	EER > 2.4
Ventilation unit (MVHR) Specific Fan Power	<1.5W/l/s
MVHR heat recovery efficiency	>70%

Minimum efficiency standards also apply to domestic lighting installations.

For fixed internal lighting these are:

- 1. At least 75% of frequently used light fittings shall be low energy type.
- 2. Low energy lights shall have an efficacy >45 lumens per circuit Watt

For fixed external lighting these are:

- 1. External lighting with automatic presence and daylight control shall have a lamp capacity of <100 Watts
- 2. External lighting with automatic presence and manual control shall have an efficacy >45 lumens per circuit Watt

5 of 10

5.0 Proposed Measures to meet Camden Sustainability Policies and Part L1A 2010

The following section summarises the proposed energy efficiency strategy.

5.1 Software Modelling

A sample SAP assessment (using NHER software Plan Assessor Version v5.4.1) has been carried out on the proposed development. The SAP worksheets are contained within the Appendices.

5.2 Baseline Energy Assessment

The baseline CO2 emissions are based on a Part L 2010 compliant building. The Target Emission Rate (TER) figures are used to calculate the baseline. The baseline shown is for the single house modelled.

kgCO2 per annum						
Space Heating Domestic Hot Cooling Lighting Fans & Pump Water						
10,374	791	0	720	74		

Total CO2 emissions are 11,959 kg per annum.

5.3 Fabric Performance (be lean)

To reduce energy demand by passive means (be lean) the building fabric performance will significantly exceed the requirements of Part L1A 2010.

The values in the table below are those currently proposed.

Element	U-value (W/m².K)
Roof	0.13
External Wall	0.18
Ground Floor	0.18
Party Wall	N/A
Windows and glazed rooflights	1.5

Air permeability target construction value of shall be $< 3.5 \text{ m}^3/\text{hr.m}^2$ @ 50Pa to achieve a maximum of 5 m³/hr.m² @ 50Pa.

It is assumed that quality assured accredited construction details to limit the effects of thermal bridging will not be employed. Refer to "Limiting thermal bridging and air leakage: robust construction details for dwellings and similar buildings", TSO, 2001 for such details. The default thermal bridge y-value of 0.15 is therefore assumed.

All windows are assumed to be fully openable and provide (as a minimum) single sided ventilation to assist in reducing summertime temperatures. Glazing areas are limited to reduce overheating risk and to reduce heat loss.

A medium [thermal] weight structure is assumed.

5.4 Fixed Building Services Performance (be lean)

To further reduce energy demand by active means (*be lean*) the building services performance will significantly exceed the requirements of Part L1A 2010.

The following plant criteria are proposed:

Plant Item	Proposed Design
Air Source Heat Pumps (space heating)	COP > 2.8
Air Source Heat Pumps (DHW)	COP > 2.2
Air Source Heat Pumps	Seasonal Performance Factor > 3.0
Air Source Heat Pumps (cooling)	EER > 2.8
Ventilation unit (MVHR) Specific Fan Power	< 0.7W/l/s
MVHR heat recovery efficiency	>85%

In addition, the MVHR unit will be SAP Appendix Q registered.

Lighting is assumed to meet the minimum standards.

5.5 Air Source Heat Pumps (be lean/green)

Air source heat pumps are proposed as an appropriate low carbon technology for this development. The ASHPs will be linked to an underfloor heating system which shall run at low temperature appropriate for use with ASHPs. This is an efficient means of providing space heating and provides a comfortable living environment by the use of a radiant heating source.

The table below shows the CO2 emissions from the analysed house with air source heat pumps.

kgCO2 per annum						
Space Heating	Domestic Hot Water	Cooling	Lighting	Fans & Pumps		
5037	555	8	700	970		

Total CO2 emissions after the application of ASHPs are 7,270 kg per annum.

ASHPs outdoor condenser units will be located at the rear of the properties gardens and will visually screened. Acoustic mitigation measures will be put in place to ensure that noise is not a nuisance for the neighbours. A noise level of 40dBA at 1m from the nearest residential window will be targeted. This should meet any planning conditions relating to noise and will ensure noise is not a nuisance

5.6 Solar PV (be green)

Solar PV panels are proposed as an appropriate renewable technology for this development. The proposed panel layouts are shown on the architect's drawings.

The table below shows the CO2 emissions from the analysed house with air source heat pumps and solar PV.

kgCO2 per annum					
Space Heating	Domestic Hot Water	Cooling	Lighting	Fans & Pumps	Solar PV Generation
5037	555	8	700	970	-1512

Total CO2 emissions after the application of solar PV are 5,758 kg per annum.

5.7 Other low Carbon and renewable technologies

There are no district networks in the local area which can be feasibly connected to and the site is not appropriate for a Strategic Site to support large scale CHP units to feed a wider district network.

An assessment has been made of micro-CHP units. However, the CO2 reduction benefit of installing these units is very limited. This is due to the mismatch between the high thermal output from the micro-CHP units and the low heat load of each house which leads to the units operating inefficiently. CHP is therefore not appropriate for this development.

Solar thermal panels were considered for the development however the available roof space has been taken by solar PV panels. It is therefore not possible to locate any solar hot water panels on the roof. Inclusion of solar water hot water panels would also reduce the contribution of the low Carbon heat from the ASHPs.

Wind turbines were considered for the development but are not considered appropriate due the excessive height that would be required for them to be clear above trees in the vicinity of the development. Wind turbines are unlikely to be acceptable in the townscape and may produce noise complaints that are not possible to treat with acoustic measures.

5.8 Headline Camden Policies and Summary

The sections above outline the proposed "be lean, be clean, be green" approach in line with the Camden hierarchy.

Overheating is addressed under Part L Criterion 3 below.

The main living areas of House 6B will be provided with comfort cooling due to market expectation. However, occupants will always have the choice of using natural ventilation as an alternative. Designing an appropriate, low energy cooling system into the scheme at an early stage will avoid occupants retrofitting inefficient systems at a later date. As can be seen in the SAP worksheet results and above, CO2 emissions due to cooling are negligible.

The proposed measures results in a DER approximately 50% lower than the TER (see Appendices).

The Borough's requirements for Code for Sustainable Homes are exceeded.

6.0 Part L1A 2010 Results

See the Appendices for the building regulations compliance reports.

6.1 Criterion 1

The area weighted TER is 23.13kgCO₂/m²/yr The area weighted DER is 11.7kgCO₂/m²/yr

The building is therefore in compliance with the requirements for Part L1A criterion 1.

6.2 Criterion 2

All of the fabric and building services performance standards are shown in the previous sections to be met or exceeded.

The building is therefore in compliance with the requirements for Part L1A criterion 2.

6.3 Criterion 3

The house assessed has an overheating risk of "Not Significant". Therefore the building is compliance with the requirements for Part L1A criterion 3. This also satisfies the Camden policy on preventing overheating and demonstrates that the building can be comfortably occupied without the need for comfort cooling.

Energy Efficiency Statement & Code for Sustainable Homes Pre-assessment

Appendix A – Part L1A Building Regulations Compliance Report & SAP Worksheet

SAP 2009 Worksheet

Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mrs Vicki Limbrick	Assessor number	5907
Client		Last modified	15/11/2011
Address	6B Nutley Terrace 6B, London, NM3* **		

		Area (m²)			Average storey height (m)	Volume (m³)	
Lowest occupied		186.50	(1a)	x	2.70 (2a) =	503.55	(3a
+1		142.50	(1b)	x	2.70 (2b) =	384.75	(3b
+2		126.00	(1c)	x	2.70 (2c) =	340.20	(3c
+3		93.30	(1d)	x	2.50 (2d) =	233.25	(3d
Total floor area	(1a) + (1b) + (1c) + (1d)(1n) = [548.30	(4)				
Dwelling volume					(3a) + (3b) + (3c) + (3d)(3	Bn) = 1461.75	(5)
2. Ventilation rate							
						m³ per hour	

2. Ventilation rate				
			m³ per hour	
Number of chimneys	0	x 40 =	0	(6a)
Number of open flues	0	x 20 =	0	(6b)
Number of intermittent fans	0	x 10 =	0	(7a)
Number of passive vents	0	x 10 =	0	(7b)
Number of flueless gas fires	0	x 40 =	0	(7c)
			Air changes per hour	

Infiltration due to chimneys, flues, fans, PSVs	(6a	a) + (6b) + (7a) + (7b) + (7c) =	0	÷ (5) =	0.00	(8)
If a managed and the state of t	- (17) athemysics continue from	(0) += (1.0)			

If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)

Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area

If based on air permeability value, then (18) = $[(17) \div 20] + (8)$, otherwise (18) = (16)

Air permeability value applies if a pressurisation test has been done, or a design or specified air permeability is being used

in permeasine, value apprecia if a pressurior test has been asine, or a design or specified an permeasine, is being asca

Infiltration rate modified for monthly wind speed:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average v	vind speed	from Table	· 7										
(22)m	5.40	5.10	5.10	4.50	4.10	3.90	3.70	3.70	4.20	4.50	4.80	5.10	
										∑(22)1	.12 =	54.10	(22)
Wind Factor (22a)	m = (22)m -	÷ 4											
(22a)m	1.35	1.27	1.27	1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.20	1.27	
										∑(22a)1	.12 =	13.52	(22a)
Adjusted infiltration	n rate (allo	owing for sh	nelter and v	vind speed) = (21) × (2	2a)m							
(22b)m	0.31	0.29	0.29	0.26	0.24	0.23	0.21	0.21	0.24	0.26	0.28	0.29	

5.00

0.25

(17)

If mechanical v	e air change entilation:	air change	rate throug	h system								0.50	(23a
If exhaust air h		· ·	· ·	•	Emy (equa	tion (NS)) c	ntharwise (22h) - (22a	.)			0.50] (23k
If balanced wit		•						230) - (230	• 7			75.65	(230
		•	,	Ü		•	•					73.03	(230
a) If balanced r		1							0.20	0.20	0.40	0.42	7 (24
(24a)m	0.43	0.42	0.42	0.38	0.36	0.35	0.34	0.34	0.36	0.38	0.40	0.42	(24
Effective air chang							0.24	0.24	0.26	0.20	0.40	0.42	7 (25)
(25)m	0.43	0.42	0.42	0.38	0.36	0.35	0.34	0.34	0.36	0.38	0.40	0.42	(25)
3. Heat losses an	d heat loss	paramete	r										
The κ-value is the	heat capac	ity per unit	area, see To	able 1e.									
Ele	ement		Gross		nings,	Net area	U-va	•	A x U,	к-va	•	Ахк,	
			Area, m²	n	n²	A, m²		m²K	W/K	kJ/n		kJ/K	_
Window*						70.10	x 1.	42 =	99.20	N,	/A	N/A	(27)
Roof window*						2.20	x 1.	42 =	3.11	N,	/A	N/A	(27a
Basement floor						186.50	x 0.	18 =	33.57	N,		N/A	(28)
Basement wall						134.03	x 0.	18 =	24.13	N,	/A	N/A	(29)
Party Wall						25.38	x 0.	00 =	0.00	N/	/A	N/A	(32)
External wall						347.92	x 0.	18 =	62.63	N,	/A	N/A	(29
Roof						196.50	x 0.	13 =	25.54	N,	/A	N/A	(30)
Total area of exter	nal elemer	its ∑A, m²				937.25	(31)						
* for windows and	roof windo	ows, effect	ive window	U-value is o	calculated (using formu	la 1/[(1/U\	/alue)+0.04	4] paragrap	h 3.2			
Fabric heat loss, W	//K = ∑(A ×	U)							(2	6)(30) + (3	32) =	248.18	(33)
Heat capacity Cm	= Σ(A x κ)							(28)	(30) + (32)	+ (32a)(32	2e) =	N/A	(34)
Thermal mass para	ameter (TM	1P) in kJ/m	²K						Calculat	ted separate	ely =	250.00	(35)
Thermal bridges: \(\)	(L x Ψ) cal	culated usi	ng Appendix	K K								140.59	(36)
if details of the	rmal bridgi	ng are not	known then	(36) = 0.1	5 x (31)								
Total fabric heat lo	oss									(33) + (3	36) =	388.76	(37)
Ventilation heat lo	ss calculate	ed monthly	0.33 x (25)m x (5)									_
(38)m	209.32	200.96	200.96	184.22	173.07	167.49	161.91	161.91	175.86	184.22	192.59	200.96	(38)
Heat transfer coef			· ·										7
(39)m	598.09	589.72	589.72	572.99	561.83	556.26	550.68	550.68	564.62	572.99	581.35	589.72] 7
									Average = 2	∑(39)112/	12 =	573.22	(39)
Heat loss paramet				1.05	1.02	1.01	1.00	1.00	1.02	1.05	1.06	1.00	٦
(40)m	1.09	1.08	1.08	1.05	1.02	1.01	1.00	1.00	1.03	1.05	1.06	1.08	_ ☐ (40\
									Average = 2	∑(40)112/	12 =	1.05	(40)
4. Water heating	energy red	quirement											
											k	Wh/year	
Assumed occupan	cy, N									3.45	(42))	
if TFA > 13.9, N	•	x [1 - exp(-	-0.000349 x	(TFA - 13.9)²)] + 0.001	.3 x (TFA - 1	3.9)						
If TFA ≤ 13.9, N													
Annual average ho		age in litre	s per dav Vd	,average =	(25 x N) +	36				116.25	5 (43))	
Annual average ho		_		_			to achieve	a water us	e target of				
per person per day		_			3	-			- ,				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot water usage in	litres per	day for eac	ch month Vd	,m = facto	r from Tabl	e 1c x (43)							_
(44)m	127.87	123.22	118.57	113.92	109.27	104.62	104.62	109.27	113.92	118.57	123.22	127.87	

(45)m	190.09	166.25	171.56	149.57	143.51	123.84	114.76	131.69	133.26	155.30	169.52	184.09
										∑(45)1	.12 = 1	833.43
f instantaneous v	vater heatin	ng at point (of use (no h	not water st	orage), ent	er 0 in box	es (46) to (6	51)				
or community he		-	-					,				
Distribution loss	0.15 x (45)m	n										
(46)m	28.51	24.94	25.73	22.44	21.53	18.58	17.21	19.75	19.99	23.30	25.43	27.61
Vater storage los	ss:	•										
) If manufacture	r's declared	loss factor	is known (I	kWh/day):					2.50	(47)		
Temperature 1	actor from	Table 2b							0.54	(48)		
Energy lost fro	m water sto	orage, kW	h/day (47)) x (48)					1.35	(49)		
nter (49) or (54)	in (55)								1.35	(55)		
Vater storage los		d for each m	nonth = (55) x (41)m								
(56)m	41.85	37.80	41.85	40.50	41.85	40.50	41.85	41.85	40.50	41.85	40.50	41.85
cylinder contair	s dedicated	l solar stora	nge, = (56)n	n x [(50) - (H	H11)] ÷ (50)	, else = (56)m where (H11) is fror	n Appendix	ίΗ		
(57)m	41.85	37.80	41.85	40.50	41.85	40.50	41.85	41.85	40.50	41.85	40.50	41.85
rimary circuit los	ss (annual) f	rom Table	3					3	360.00	(58)		
rimary circuit los	ss for each r	month (58)	÷ 365 × (41	.)m								
modified by facto	or from Tab	le H5 if the	re is solar v	vater heatir	ng and a cyl	inder therr	nostat)					
(59)m	30.58	27.62	30.58	29.59	30.58	29.59	30.58	30.58	29.59	30.58	29.59	30.58
ombi loss for ea	ch month fr	om Table 3	a, 3b or 3c	(enter '0' if	not a coml	oi boiler)						
(61)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
otal heat require	ed for water	heating ca	lculated fo	r each mon	th 0.85 × (4	5)m + (46)ı	m + (57)m -	+ (59)m + (6	51)m			
(62)m	262.51	231.67	243.98	219.66	215.94	193.93	187.18	204.11	203.35	227.73	239.61	256.52
olar DHW input	calculated u	ising Appen	ıdix H (nega	ative quanti	ity) ('0' ente	ered if no s	olar contrib	ution to wa	ater heating	g)		
(63)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
										∑(63)1	.12 =	0.00
output from wate	er heater fo	r each mon	th, kWh/m	onth (62)m	n + (63)m							
(64)m	262.51	231.67	243.98	219.66	215.94	193.93	187.18	204.11	203.35	227.73	239.61	256.52
(- '/										∑(64)1	.12 = 2	686.18
(2.7,												
	set to 0											
f(64)m < 0 then see that $f(64)m < 0$ then see that $f(64)m < 0$ then $f(64)m < 0$		ng, kWh/mc	onth 0.25 ×	: [0.85 × (45	5)m + (61)m	n] + 0.8 × [(4	16)m + (57)	m + (59)m]				

include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating

5. Internal gains	s (see Table	5 and 5a)											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains (Table 5), Wa	atts											
(66)m	207.28	207.28	207.28	207.28	207.28	207.28	207.28	207.28	207.28	207.28	207.28	207.28	(66)
Lighting gains (ca	Iculated in A	ppendix L,	equation L	9 or L9a), a	lso see Tab	le 5							
(67)m	191.74	170.30	138.50	104.85	78.38	66.17	71.50	92.94	124.74	158.39	184.86	197.07	(67)
Appliances gains	(calculated i	n Appendix	L, equatio	n L13 or L1	3a), also se	e Table 5							
(68)m	951.88	961.76	936.87	883.88	816.98	754.12	712.12	702.24	727.13	780.12	847.01	909.88	(68)
Cooking gains (ca	Iculated in A	Appendix L,	equation L	15 or L15a)	, also see T	able 5							
(69)m	59.18	59.18	59.18	59.18	59.18	59.18	59.18	59.18	59.18	59.18	59.18	59.18	(69)
Pumps and fans g	gains (Table	5a)											
(70)m	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	(70)
Losses e.g. evapo	ration (nega	itive values) (Table 5)										
(71)m	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	(71)
Water heating ga	ins (Table 5)												
(72)m	162.83	160.14	154.55	146.95	142.01	135.07	129.16	136.73	139.42	147.28	156.16	160.15	(72)
(, 2,	102.03	100.14	157.55	140.55	172.01	133.07	123.10	150.75	133.42	147.20	150.10	100.13	J (,

(73)m 1444.73 1430.47 1368.19 1273.95 1175.66 1093.63 1051.06 1070.18 1129.57 1224.07 1326.31 1405.37 (73)

6. Solar gains

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Rows (74) to (82) are used 12 times, one for each month, repeating as needed if there is more than one window type.

	Access factor Table 6d	or	Area m²	So	lar flux W/	_	Specific dat or Table 6b	a F	F Specific da or Table 60		Gains (W)	
North	0.54] x	5.75	x	10.73	x 0.9 x	0.65	х	0.70	=	13.64	(7
North	0.77	x	16.95	x	10.73	x 0.9 x	0.65	х	0.70	=	57.33	(7
East	0.77	x	3.60	x	19.87	x 0.9 x	0.65	х	0.70	=	22.56	(7
South	0.54	x	10.00	x	47.32	x 0.9 x	0.65	х	0.70	=	104.65	- (7
South	1.00	x	26.80	x	47.32	x 0.9 x	0.65	х	0.70	=	519.35	- (7
West	0.54	x	2.50	x	19.87	x 0.9 x	0.65	х	0.70	=	10.99	_] (8
West	0.77	x	4.50	x	19.87	x 0.9 x	0.65	х	0.70	=	28.20	_] (8
Rooflights	1.00	x	2.20	x	26.00	x 0.9 x	0.65	Х	0.70	=	23.42] (8
Solar gains in watts, calcul	ated for each	month ∑(7	4)m(82)m	1								٠.
(83)m 780.1		1739.05	2166.66	2445.68	2533.90	2460.90	2229.43	1923.48	1495.82	933.27	668.20	(8
Total gains - internal and s	solar (73)m + (8	83)m		•	•				•	•		-
(84)m 2224.8	36 2751.22	3107.24	3440.61	3621.34	3627.53	3511.96	3299.62	3053.04	2719.89	2259.58	2073.58	(8
7. Mean internal temper	ature (heating	z season)										
Temperature during heati		-	rea from Ta	ble 9, Th1('	°C)						21.00	(8
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	-
Jtilisation factor for gains	for living area	, η1,m (see	Table 9a)									
(86)m 1.00	1.00	1.00	0.99	0.96	0.84	0.62	0.66	0.92	0.99	1.00	1.00	(8
Mean internal temp of livi	ng area T1 (ste	eps 3 to 7 i	n Table 9c)									
(87)m 19.96	20.08	20.26	20.47	20.72	20.88	20.94	20.94	20.82	20.54	20.18	19.98	(8
Temperature during heati	ng periods in t	he living a	rea from Ta	ble 9, Th2(°	°C)							
(88)m 20.03	20.02	20.02	20.05	20.06	20.07	20.08	20.08	20.06	20.05	20.04	20.02	(8
Utilisation factor for gains	for rest of dw	elling η2,m	(see Table	9a)								_
(89)m 1.00	1.00	1.00	0.98	0.93	0.76	0.49	0.52	0.87	0.99	1.00	1.00	(8
Mean internal temperatur	e in the rest o	f dwelling	T2 (follow s	teps 3 to 7	in Table 9c				_			_
(90)m 18.59	18.78	19.05	19.38	19.74	19.95	20.01	20.01	19.87	19.47	18.94	18.64	(9
iving area fraction							fLA 8	37.50	÷ (4) =	=	0.16	(9
Mean internal temperatur	e for the whol	le dwelling	fLA x T1 +(1 - fLA) x T2					_			_
(92)m 18.83	18.99	19.24	19.55	19.89	20.10	20.16	20.15	20.03	19.64	19.14	18.86	(9
Apply adjustment to the n	nean internal t	emperatui	e from Tab	le 4e, wher	e appropria	ite			_			,
(93)m 18.83	18.99	19.24	19.55	19.89	20.10	20.16	20.15	20.03	19.64	19.14	18.86	(9
8. Space heating require	ment											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Set Ti to the mean interna	l temperature	obtained a	at step 11 o	-	so that tim	= (93)m ar	_	-	isation facto	or for gains	using Table	e 9a
Utilisation factor for gains	, ηm											
(94)m 1.00	1.00	0.99	0.98	0.93	0.77	0.50	0.53	0.87	0.98	1.00	1.00	(9
Jseful gains, ηmGm, W =	(94)m x (84)m											
(95)m 2223.4	15 2745.80	3088.39	3377.41	3361.54	2782.89	1772.67	1765.17	2653.65	2676.12	2256.17	2072.54	(9
Monthly average external	temperature f	from Table	8									
(96)m 4.50	5.00	6.80	8.70	11.70	14.60	16.90	16.90	14.30	10.80	7.00	4.90	(9
Heat loss rate for mean in	ternal tempera	ature, Lm,	W									
(97)m 8558.9	90 8249.49	7338.30	6218.13	4604.11	3058.51	1793.12	1792.34	3232.77	5066.85	7058.17	8230.12	(9

(50)111	1713.37	3030.40	3101.33	20 13.31	J 32 11 17	0.00		(1)4/1 /) 5/0	0)4 5 40	42	I .]] (00)
							Total per y	ear (kWh/ر	$year) = \sum (98)$			24361.15] (98) ¬
Space heating re	quirement i	in kWh/m²/	year							(98)	÷ (4)	44.43	(99)
8c. Space coolii	ng requirem	nent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Calculated for Ju	ne, July and	l August. Se	e Table 10b	•	•			Ū	•				
Heat loss rate Ln	n (calculated	d using 24°C	internal te	mperature	and extern	al tempera	ture from T	able 10)					
(100)m	0.00	0.00	0.00	0.00	0.00	4783.80	3414.20	3414.20	0.00	0.00	0.00	0.00	(100)
Utilisation factor	for loss, ηn	n											
(101)m	0.00	0.00	0.00	0.00	0.00	0.77	0.90	0.87	0.00	0.00	0.00	0.00	(101)
Useful loss, ηmL	m (Watts) =	(100)m x (1	.01)m										
(102)m	0.00	0.00	0.00	0.00	0.00	3676.09	3059.03	2981.74	0.00	0.00	0.00	0.00	(102)
Gains (internal g	ains as for h	eating exce	pt that colu	ımn (A) of ⁻	Гable 5 is al	ways used;	solar gains	calculated	for				
applicable weath	ner region b	ased on Tab	le 10, not 1	Table 6a)									
(103)m	0.00	0.00	0.00	0.00	0.00	4043.59	3864.43	3628.93	0.00	0.00	0.00	0.00	(103)
Space cooling re	quirement f	or the mont	th, whole d	welling, co	ntinuous (k	Wh) = 0.02	4 x [(103)m	- (102)m] x	k (41)m				
set (104)m to ze	ro if (104)m	< 3 x (98)m	with (98)m	n with (98)r	n calculated	d using wea	ther data f	rom Table 1	10				
(104)m	0.00	0.00	0.00	0.00	0.00	264.60	599.22	481.51	0.00	0.00	0.00	0.00]
									Tota	ıl = ∑(104)6	8 =	1345.33	(104)
Cooled fraction									fc = co	oled area ÷	(4) =	0.18	(105)
Intermittency fac	ctor (Table :	10b)											
(106)m	0.00	0.00	0.00	0.00	0.00	0.25	0.25	0.25	0.00	0.00	0.00	0.00]
									Tota	ıl = ∑(106)6	8 =	0.75	(106)
Space cooling re	guirement f	or month =	(104)m x (1	L05) x (106)	ım								_
(107)m	0.00	0.00	0.00	0.00	0.00	12.06	27.32	21.95	0.00	0.00	0.00	0.00]
		•	•						Tota	ıl = Σ(107)6	8 =	61.34	(107)
Space cooling re	guirement i	n kWh/m²/\	/ear							(107) ÷		0.11	(108)
space seemily s	,	, , , ,								(===7	()] (===,
9a. Energy Req	uirements -	Individual l	neating sys	tems inclu	ding micro-	СНР							
Space heating:													
Fraction of space	heating fro	om seconda	ry/supplem	entary syst	em (Table	11)			0.00	(201)			
Fraction of space	heating fro	om main sys	tem(s) 1 -	(201)					1.00	(202)			
Fraction of main	heating fro	m main syst	em 2						0.00	(203)			
Fraction of total	space heat	from main s	vstem 1 (2	.02) x [1 - (2	203)]				1.00	(204)			
Fraction of total	•		,	, , ,					0.00	(205)			
Efficiency of mai				.0=, // (=00)					250.00	(206)			
(from database of				nronriate h	y the amou	nt shown in	n the 'snace				f Tahle 1c)	
Cooling System E					y the amou	iic siiowii ii	Tine space		3.78	(209)	Tubic 4c,	,	
Cooming System 2	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating re					•	Juli	Jui	Aug	Зер	Oct	1404	Dec	
(98)m	4713.57	1		2045.31	924.47	0.00	0.00	0.00	0.00	1778.70	3457.43	3 4581.24	7
Space heating fu			1	1	!			0.00	0.00	17770770	1 0 .071 .0		
(211)m	1885.43		1264.77	818.13	369.79	0.00	0.00	0.00	0.00	711.48	1382.97	7 1832.50	7
\+J···	2003.43	1 - 17 3.33	1 /	510.13	1 203.73	ļ	Total per ye		1		-	9744.46	」 (211)
Water besting							i otai pei ye	.ai (KVVII/ ye	.ui j — <u>Z(</u> ZI	±,1±J, ±U	.12 -	J/ TT.TU] (411)
Water heating:		and the second	,										
Output from wat					245.04	102.02	107.40	20444	202.25	227.72	220.04	350.53	٦
(64)m	262.51	231.67	243.98	219.66	215.94	193.93	187.18	204.11	203.35	227.73	239.61	-]
										∑(64)1	.12 = [2686.18	(64)
Efficiency of wat	er heater pe	er month											

0.00

0.00

0.00

1778.70 3457.43 4581.24

Space heating requirement for each month, $kWh/month = 0.024 \times [(97)m - (95)m] \times (41)m$ 4713.57 3698.48 3161.93 2045.31 924.47

(98)m

(217)m		250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	٦
Fuel for water he	250.00				230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	_
(219)m	105.01	92.67	97.59	87.86	86.38	77.57	74.87	81.64	81.34	91.09	95.84	102.61	7
(213)111	103.01	32.07	37.33	07.00	00.50	77.57				= Σ(219)1:		1074.47	」 ☐ (219)
Space cooling							10ta	i per yeur (i	(Willy year)	(215)1		1074.47	_ (213)
Space cooling fue	l kWh/mon	oth (107)m	÷ (209)										
(221)m	0.00	0.00	0.00	0.00	0.00	3.19	7.23	5.81	0.00	0.00	0.00	0.00	7
,								ļ.) = ∑(221)6		16.23	(221)
								a. pe. yea.	(, , ca.,	2(==1)0		10.20	(===/
Annual Totals Su	mmarv:									kWh/ye	ar	kWh/year	
Space heating fu	•	in system 1								.,		9744.46	(211)
Water heating fu		5,5.0 2										1074.47	(219)
Space cooling fue												16.23	(221)
Electricity for pur		nd electric k	reen-hot (1	Table 4f):								10.23	(221)
mechanical ve	•			-	input from	outsida				1747.6	7		(230a)
warm air heat			u, extract t	or positive	input iroini	outside				0.00	<u>′</u>		(230a)
central heatin										130.00			(230c)
oil boiler pum										0.00			(230d)
boiler flue fan										0.00			(230e)
maintaining el	ectric keep-	hot facility	for gas con	nbi boiler						0.00			(230f)
pump for sola		_								0.00			(230g)
Total electricity for	or the above	9							2	∑(230a)(23	30g) [1877.67	(231)
Elementato de objeto												4254.40	7 (222)
Electricity for ligh	iting (caicui	ated in App	enaix Lj:									1354.48	(232)
10a. Fuel costs -	Individual l	heating syst	tems inclu	ding micro-	СНР								
					Fuel	kWh/year			iel price able 12)		Fue	el cost £/yea	ır
Space heating - m	nain system	1				744.46	x		11.46	x 0.01 =		1116.72	(240)
Water heating co						074.47			11.46	x 0.01 =		123.13	(247)
Space cooling	st tottier ruc	-1)				.074.47					- 1		
						16 23				1			=
r unips, ians and	alactric kaar	n-hot				16.23	×		11.46	x 0.01 =	: <u> </u>	1.86	(248)
Energy for lightin	electric keep	o-hot			1	877.67	x x		11.46 11.46	x 0.01 =	: [: [1.86 215.18	(248)
Energy for lightin	g				1		×		11.46	x 0.01 =	: [: [1.86 215.18 155.22	(248) (249) (250)
Additional standi	g ng charges (1	877.67	x x		11.46 11.46 11.46	x 0.01 = x 0.01 = x 0.01 =		1.86 215.18 155.22 0.00	(248) (249) (250) (251)
	g ng charges (1	877.67	x x		11.46 11.46 11.46	x 0.01 =		1.86 215.18 155.22	(248) (249) (250)
Additional standi	g ng charges (Table 12)	tems inclu	ding micro	1	877.67	x x		11.46 11.46 11.46	x 0.01 = x 0.01 = x 0.01 =		1.86 215.18 155.22 0.00	(248) (249) (250) (251)
Additional standi	g ng charges (- Individual	Table 12) heating sys	items inclu	ding micro	1	877.67	x x		11.46 11.46 11.46	x 0.01 = x 0.01 = x 0.01 =		1.86 215.18 155.22 0.00	(248) (249) (250) (251)
Additional standing Total energy cost	g ng charges (- Individual tor (Table 12	Table 12) heating sys	items inclu	ding micro	1	877.67	x x		11.46 11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 =	=	1.86 215.18 155.22 0.00 1612.11	(248) (249) (250) (251) (255)
Additional standing Total energy cost 11a. SAP rating Energy cost deflate	g ng charges (- Individual tor (Table 12	Table 12) heating sys	tems inclu	ding micro	1	877.67	x x		11.46 11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	=	1.86 215.18 155.22 0.00 1612.11	(248) (249) (250) (251) (255) (256)
Additional standing Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto	g ng charges (- Individual tor (Table 12	Table 12) heating sys	items inclu	ding micro	1	877.67	x x		11.46 11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	=	1.86 215.18 155.22 0.00 1612.11 0.47 1.28	(248) (249) (250) (251) (255) (256)
Additional standing Total energy cost 11a. SAP rating Energy cost deflar Energy cost facto SAP value	g ng charges (- Individual tor (Table 12	Table 12) heating sys	tems inclu	ding micro	1	877.67	x x		11.46 11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	=	1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18	(248) (249) (250) (251) (255) (255) (256) (257)
Additional standing Total energy cost 11a. SAP rating Energy cost deflar Energy cost facto SAP value SAP rating SAP band	g ng charges (- Individual tor (Table 1: r (ECF)	Table 12) heating sys			1 1	877.67 354.48	x x		11.46 11.46 11.46 (240)(242	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	=	1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18	(248) (249) (250) (251) (255) (255) (256) (257)
Additional standing Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto SAP value SAP rating	g ng charges (- Individual tor (Table 1: r (ECF)	Table 12) heating sys			-CHP	877.67 354.48	x x	[(2	11.46 11.46 11.46 (240)(242 55) x (256)	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	=	1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B	(248) (249) (250) (251) (255) (255) (256) (257)
Additional standing Total energy cost 11a. SAP rating Energy cost deflar Energy cost facto SAP value SAP rating SAP band	g ng charges (- Individual tor (Table 1: r (ECF)	Table 12) heating sys			-CHP	877.67 354.48 nicro-CHP Energy	x x	[(2	11.46 11.46 11.46 (240)(242 55) x (256)	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	0] =	1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B	(248) (249) (250) (251) (255) (256) (257) (258)
Additional standing Total energy cost 11a. SAP rating Energy cost deflar Energy cost facto SAP value SAP rating SAP band 12a. Carbon dio	g ng charges (- Individual tor (Table 12 r (ECF)	Table 12) heating sys 2)			-CHP	877.67 354.48 nicro-CHP Energy Vh/year	x x x	[(2	11.46 11.46 11.46 (240)(242 55) x (256)	x 0.01 = x 0.01 = x 0.01 = + (245)(2	0] =	1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B	(248) (249) (250) (251) (255) (256) (257) (258)
Additional standing Total energy cost 11a. SAP rating Energy cost deflar Energy cost facto SAP value SAP rating SAP band 12a. Carbon dio Space heating - m	g ng charges (- Individual tor (Table 12 r (ECF)	Table 12) heating sys 2)			-CHP	877.67 354.48 nicro-CHP Energy Vh/year	x x x	[(2	11.46 11.46 11.46 (240)(242 55) x (256)	x 0.01 = x 0.01 = x 0.01 = + (245)(2	0] =	1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B Emissions agCO2/year)	(248) (249) (250) (251) (255) (255) (256) (257) (258)
Additional standing Total energy cost 11a. SAP rating Energy cost deflar Energy cost factor SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating	g ng charges (- Individual tor (Table 12 r (ECF) xide emission	Table 12) heating sys 2)			-CHP	877.67 354.48 nicro-CHP Energy Vh/year	x x x	[(2	11.46 11.46 11.46 (240)(242 55) x (256) missions Factor 0.517	x 0.01 = x 0.01 = x 0.01 = + (245)(2	=	1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B Emissions (gCO2/year) 5037.89 555.50	(248) (249) (250) (251) (255) (256) (257) (258) (258)
Additional standing Total energy cost 11a. SAP rating Energy cost deflar Energy cost factor SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating Space and water	g ng charges (- Individual tor (Table 12 r (ECF) xide emission	Table 12) heating sys 2)			-CHP including m kv 9	877.67 354.48 nicro-CHP Energy Wh/year 744.46 074.47	x x x	[(26	11.46 11.46 11.46 (240)(242 55) x (256) missions Factor 0.517 1) + (262) +	x 0.01 = + (245)(245) ÷ [(4) + 45.	=	1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B Emissions agCO2/year) 5037.89 555.50 5593.39	(248) (249) (250) (251) (255) (255) (256) (257) (258) (261) (264) (265)
Additional standing Total energy cost 11a. SAP rating Energy cost deflar Energy cost factor SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating Space and water Space cooling	g ng charges (- Individual tor (Table 12 r (ECF) xide emission	Table 12) heating sys 2) ons - Individ			-CHP	877.67 354.48 354.48 Nicro-CHP Energy Vh/year 744.46 074.47	x x x x x x	[(2	11.46 11.46 11.46 (240)(242 55) x (256) missions Factor 0.517 0.517 1) + (262) +	x 0.01 = x 0.01 = x 0.01 = x 0.01 = + (245)(245) ÷ [(4) + 45.	=	1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B Emissions (gCO2/year) 5037.89 555.50 5593.39 8.39	(248) (249) (250) (251) (255) (255) (256) (257) (258) (261) (264) (265) (266)
Additional standing Total energy cost 11a. SAP rating Energy cost deflar Energy cost factor SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating Space and water	g ng charges (- Individual tor (Table 12 r (ECF) xide emission	Table 12) heating sys 2) ons - Individ			-CHP	877.67 354.48 nicro-CHP Energy Wh/year 744.46 074.47	x x x	[(2	11.46 11.46 11.46 (240)(242 55) x (256) missions Factor 0.517 1) + (262) +	x 0.01 = + (245)(245) ÷ [(4) + 45.	=	1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B Emissions agCO2/year) 5037.89 555.50 5593.39	(248) (249) (250) (251) (255) (255) (256) (257) (258) (261) (264) (265)

Lighting	1354.48	x	0.517	=	700.27	(268)
Total carbon dioxide emissions				∑(261)(271) =	7272.80	(272)
Dwelling carbon dioxide emissions rate				(272) ÷ (4) =	13.26	(273)
El value					83.57]
El rating (see section 14)					84	(274)
FI hand					R	1

	Energy kWh/year		Primary Ene Factor	rgy	Primary Energy	′
Space heating - main system 1	9744.46	х	2.92	=	28453.83	(261*)
Water heating	1074.47	х	2.92	=	3137.46	(264*)
Space and water heating			(261*) + (262*)	+ (263*) + (264*) =	31591.29	(265*)
Space cooling	16.23	х	2.92	=	47.38	(266*)
Pumps, fans and electric keep-hot	1877.67	x	2.92	=	5482.79	(267*)
Lighting	1354.48	x	2.92	=	3955.08	(268*)
Total primary energy kWh/year				∑(261*)(271*) =	41076.54	(272*)
Primary energy kWh/m2/year				(272*) ÷ (4) =	74.92	(273*)

TER 2009 Worksheet

Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mrs Vicki Limbrick	Assessor number	5907
Client		Last modified	15/11/2011
Address	6B Nutley Terrace 6B, London, NM3* **		

		Area (m²)			Average storey height (m)			Volume (m³)	
Lowest occupied		186.50	(1a)	x	2.70	(2a)	=	503.55	(3
+1		142.50	(1b)	x	2.70	(2b)	=	384.75	(3)
+2		126.00	(1c)	x	2.70	(2c)	=	340.20	(3
+3		93.30	(1d)	х	2.50	(2d)	=	233.25	(30
Total floor area	(1a) + (1b) + (1c) + (1d)(1n) = [548.30	(4)						
Dwelling volume					(3a) + (3b) + (3d	c) + (3c	d)(3n) =	= 1461.75	(5)

2. Ventilation rate					
				m³ per hour	
Number of chimneys		0	x 40 =	0	(6a)
Number of open flues		0	x 20 =	0	(6b)
Number of intermittent fans		3	x 10 =	30	(7a)
Number of passive vents		0	x 10 =	0	(7b)
Number of flueless gas fires		0	x 40 =	0	(7c)
				Air changes pe hour	er
Infiltration due to chimneys, flues, fans, PSVs	(6a) + (6b) + (7a) + (7b) + (7c) =	30	÷ (5) =	0.02	(8)

				_
nfiltration due to chimneys, flues, fans, PSVs	(6a) + (6b) + (7a) + (7b) + (7c) = 30	÷ (5) =	0.02	(8)
, , , , ,		_ ` '		٠, ١

If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)

10.00 Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 0.52

If based on air permeability value, then (18) = $[(17) \div 20] + (8)$, otherwise (18) = (16)

Air permeability value applies if a pressurisation test has been done, or a design or specified air permeability is being used

Number of sides on which dwelling is sheltered 2 (19)

1 - [0.075 x (19)] = Shelter factor 0.85 (20)

Adjusted infiltration rate $(18) \times (20) =$ 0.44 (21)

Infiltration rate modified for monthly wind speed:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average v	wind speed	from Table	7										
(22)m	5.40	5.10	5.10	4.50	4.10	3.90	3.70	3.70	4.20	4.50	4.80	5.10	
										∑(22)1	.12 =	54.10	(22)
Wind Factor (22a)	m = (22)m -	÷ 4											
(22a)m	1.35	1.27	1.27	1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.20	1.27]
										∑(22a)1	.12 =	13.52	(22a)
Adjusted infiltration	on rate (allo	wing for sh	elter and v	vind speed) = (21) × (2	2a)m							
(22b)m	0.60	0.56	0.56	0.50	0.45	0.43	0.41	0.41	0.46	0.50	0.53	0.56]

∑(22b)1...12 = 5.98 (22b)

(17)

Calculate effective air change rate for the applicable case: If mechanical ventilation: air change rate through system N/A (23a) If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a) N/A (23b)If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = N/A (23c)d) If natural ventilation or whole house positive input ventilation from loft if $(22b)m \ge 1$, then (24d)m = (22b)m; otherwise $(24d)m = 0.5 + [(22b)m2 \times 0.5]$ (24d)m 0.68 0.66 0.66 0.62 0.60 0.59 0.58 0.58 0.61 0.62 0.64 0.66 (24d)Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25) (25)m 0.66 0.66 0.60 0.59 0.58 0.58 0.61 0.62 0.64 0.66 (25)3. Heat losses and heat loss parameter The κ -value is the heat capacity per unit area, see Table 1e. Element U-value, к-value, Gross Openings, Net area AxU, Ахк, W/m²K kJ/m².K Area, m² m² A, m² W/K kJ/K Doors 1.85 2.00 = 3.70 N/A N/A (26)Window* 135.22 1.85 250.42 N/A N/A (27)Х Basement floor 186.50 0.25 46.62 N/A N/A (28)х Party Wall 25.38 0.00 â 0.00 N/A N/A (32)N/A N/A External wall 414.98 0.35 145.24 (29a) (30)198.70 0.16 N/A N/A Roof х 31.79 Total area of external elements ∑A, m² 937.25 for windows and roof windows, effective window U-value is calculated using formula 1/[(1/UValue)+0.04] paragraph 3.2 Fabric heat loss, W/K = Σ (A × U) (26)...(30) + (32) =477.77 (33)Heat capacity $Cm = \sum (A \times \kappa)$ (28)...(30) + (32) + (32a)...(32e) =N/A (34)Thermal mass parameter (TMP) in kJ/m²K Calculated separately = 250.00 (35)Thermal bridges: Σ(L x Ψ) calculated using Appendix K 103.10 (36)if details of thermal bridging are not known then $(36) = 0.15 \times (31)$ Total fabric heat loss (33) + (36) =580.87 Ventilation heat loss calculated monthly 0.33 x (25)m x (5) 327.24 317.94 317.94 300.94 290.79 286.07 281.59 281.59 293.24 300.94 309.18 317.94 (38)mHeat transfer coefficient, W/K (37)m + (38)m 866.94 862.46 862.46 874.12 881.82 890.05 (39)m 908.11 898.81 898.81 881.82 871.67 898.81 Average = $\sum (39)1...12/12 =$ 882.99 (39)Heat loss parameter (HLP), W/m²K (39)m \div (4) (40)m 1.66 1.64 1.64 1.61 1.59 1.58 1.57 1.57 1.59 1.61 1.62 1.64 Average = $\sum (40)1...12/12 =$ 1.61 4. Water heating energy requirement kWh/year 3.45 Assumed occupancy, N If TFA > 13.9, N = 1 + 1.76 x $[1 - \exp(-0.000349 \times (TFA - 13.9)^2)] + 0.0013 \times (TFA - 13.9)$ If TFA \leq 13.9, N = 1 122.37 Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 Annual average hot water usage has been reduced by 5% if the dwelling is designed to achieve a water use target of not more than 125 litres per person per day (all water use, hot and cold) Feb Jul Aug Jan Mar Apr Mav Jun Sep Oct Nov Dec Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43) 134.60 129.71 119.92 115.03 110.13 110.13 115.03 119.92 124.82 129.71 (44)m 124.82 134.60

1468.42

∑(44)1...12 =

Lifeigy content of	hot water i			thly = 4.190						1c 1d)		1	,
(45)m	200.09	175.00	180.59	157.44	151.07	130.36	120.80	138.62	140.27	163.47	178.44	193.78	_
										∑(45)1	.12 = 1	1929.93	(45)
If instantaneous v		• .	•		•			51)					
For community he	eating includ	de distributi	on loss wh	ether or no	t hot water	tank is pre	sent						
Distribution loss	0.15 x (45)m	1		1	Γ					1			٦
(46)m	30.01	26.25	27.09	23.62	22.66	19.55	18.12	20.79	21.04	24.52	26.77	29.07	(46)
Water storage los													
b) If manufacture		-								1			
Cylinder volun				_					150.00	(50)			
If community I			٥,		•	•							
Otherwise if n					us combi bo	oilers) entei	r '0' in box ((50)		1			
Hot water stor				n/litre/day)					0.02	(51)			
If community I	heating see	SAP 2009 s	ection 4.3										
Volume factor	from Table	2a							0.93	(52)			
Temperature f	actor from	Table 2b							0.54	(53)			
Energy lost fro	om water sto	orage, kWl	n/day (50)	x (51) x (52	2) x (53)				1.44	(54)			
Enter (49) or (54)	in (55)								1.44	(55)			
Water storage los	s calculated	l for each m	onth = (55) x (41)m									_
(56)m	44.53	40.22	44.53	43.09	44.53	43.09	44.53	44.53	43.09	44.53	43.09	44.53	(56)
If cylinder contain	s dedicated	solar stora	ge, = (56)n	า x [(50) - (H	H11)] ÷ (50)	, else = (56)m where (H11) is fror	n Appendix	(H			_
(57)m	44.53	40.22	44.53	43.09	44.53	43.09	44.53	44.53	43.09	44.53	43.09	44.53	(57)
Primary circuit los	ss (annual) f	rom Table 3	3					(510.00	(58)			
Primary circuit los	ss for each n	nonth (58) -	÷ 365 × (41)m									
(modified by factor	or from Tabl	le H5 if ther	e is solar v	vater heatir	ng and a cyl	inder therr	nostat)						,
(59)m	51.81	46.79	51.81	50.14	51.81	50.14	51.81	51.81	50.14	51.81	50.14	51.81	(59)
Combi loss for each	ch month fr	om Table 3	a, 3b or 3c	(enter '0' if	not a comb	oi boiler)							7
(61)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat require										1			7
(62)m	296.43	262.02	276.92	250.67	247.40	223.59	217.13	234.95	233.50	259.81	271.67	290.12	(62)
Solar DHW input													٦
(63)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00]
										∑(63)1	.12 =	0.00	(63)
Output from water										l	T	T	٦
(64)m	296.43	262.02	276.92	250.67	247.40	223.59	217.13	234.95	233.50	259.81	271.67	290.12]
										∑(64)1	.12 = 3	3064.21	(64)
if (64)m < 0 then s	set to 0												
Heat gains from v													7
_	442.00	127.80	137.11	126.93	127.30	117.93	117.23	123.16	121.22	131.42	133.92	141.50	(65)
(65)m	143.60												
(65)m)m in calcul			cylinder is ir	the dwelli	ng or hot w	ater is fron	n communi	ty heating				
(65)m)m in calcul	ation of (65		cylinder is ir	the dwelli	ng or hot w	ater is fron	n communi	ty heating				

Jan Feb Mar Oct Dec Apr May Jun Jul Aug Sep Nov Metabolic gains (Table 5), Watts 172.74 172.74 172.74 172.74 (66)m 172.74 172.74 172.74 172.74 172.74 172.74 172.74 172.74 Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 36.04 46.85 62.88 79.84 93.19 99.34 (67)m 96.66 85.85 69.82 52.86 39.51 33.36 (67)Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 637.76 644.38 627.70 592.20 547.38 505.26 477.12 470.50 487.18 522.68 567.50 609.62 (68)m Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table $5\,$

(69)m	40.27	40.27	40.27	40.27	40.27	40.27	40.27	40.27	40.27	40.27	40.27	40.27	(69)
Pumps and fans	gains (Table	5a)											
(70)m	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	(70)
Losses e.g. evap	oration (nega	ative values) (Table 5)										
(71)m	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	(71)
Water heating g	ains (Table 5)											
(72)m	193.01	190.18	184.29	176.29	171.10	163.79	157.57	165.54	168.37	176.65	185.99	190.19	(72)
Total internal ga	ins (66)m +	(67)m + (68)m + (69)m	+ (70)m +	(71)m + (72	.)m							
(73)m	1012.25	1005.22	966.63	906.17	842.81	787.22	755.56	767.71	803.25	863.99	931.50	983.97	(73)
6. Solar gains													
•	alaulatad us	ina solar flu	w from Tab	lo Ca and a	ssasiated a	auations to	convert to	the applica	ubla arianti	ation			
Solar gains are of Rows (74) to (82		-	-							ition.			
Details for mont			-		_	sueu ij tileri	e is more ti	iun one wii	idow type.				
Details for mont				_		los flus \A//	2 a	Cassific dat	ha FF	Cuasifia da		Caina (M)	
	,	Access facto Table 6d	л	Area m²	50	lar flux W/	_	Specific dat or Table 6b		Specific da or Table 6c		Gains (W)	
East		0.77] x	135.22] x	19.87	x 0.9 x	0.72	x	0.70	=	938.59	(76)
Solar gains in wa	tts, calculate		J		J		, 1			2		2 2 2 2 3 3	1
(83)m	938.59	1819.25	2907.75	4317.31	5252.94	5481.17	5320.10	4630.20	3476.33	2215.50	1166.91	774.24	(83)
Total gains - inte				.027.02	0202.0	0.02.27	3320.10	.000.20	0 .7 0.00		1100.01	771	(00)
(84)m	1950.83	2824.47	3874.38	5223.48	6095.75	6268.40	6075.66	5397.91	4279.58	3079.49	2098.41	1758.21	(84)
(0.)	1300.00	1 202	1 007 1100	0220110		_ 02001.0	0070.00	0007.02	,,,,,,	00731.13		1730.21	(0.)
7. Mean intern	al temperati	ure (heating	g season)										
Temperature du	ring heating	periods in t	he living ar	ea from Ta	ble 9, Th1(°	C)						21.00	(85)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor	for gains fo	r living area	ı, η1,m (see	Table 9a)									
(86)m	1.00	1.00	0.99	0.97	0.89	0.75	0.55	0.61	0.90	0.99	1.00	1.00	(86)
Mean internal te	mp of living	area T1 (ste	eps 3 to 7 ir	n Table 9c)									
(87)m	18.96	19.18	19.60	20.09	20.58	20.86	20.97	20.96	20.68	20.06	19.37	19.00	(87)
Temperature du	ring heating	periods in t	he living ar	ea from Ta	ble 9, Th2(°	C)							
(88)m	19.58	19.59	19.59	19.61	19.63	19.63	19.64	19.64	19.62	19.61	19.60	19.59	(88)
Utilisation factor	for gains fo	r rest of dw	elling n2.m	(see Table	9a)								
(89)m	•									0.00			(89)
	1.00	1.00	0.99	0.95	0.84	0.63	0.38	0.43	0.83	0.98	1.00	1.00	(05)
Mean internal te		1.00	0.99					0.43	0.83	0.98	1.00	1.00	(03)
Mean internal to		1.00	0.99					19.63	19.45	18.86	1.00		(90)
(90)m	emperature i	1.00 n the rest o	0.99 of dwelling 1	Γ2 (follow s	teps 3 to 7	in Table 9c))	19.63	19.45	18.86	18.16	17.79	(90)
(90)m Living area fracti	emperature i 17.74 on	1.00 n the rest o 17.97	0.99 of dwelling T 18.38	Γ2 (follow s ⁻ 18.88	teps 3 to 7	in Table 9c) 19.57)	19.63			18.16	17.79	
(90)m Living area fracti Mean internal to	17.74 on emperature f	n the rest o	0.99 of dwelling T 18.38	T2 (follow single 18.88	teps 3 to 7	in Table 9c))	19.63	19.45 87.50	18.86	18.16	0.16	(90) (91)
(90)m Living area fracti Mean internal to (92)m	imperature i 17.74 on imperature f 17.93	1.00 n the rest of 17.97 for the whole 18.16	0.99 If dwelling 1 18.38 Ie dwelling 18.58	T2 (follow single 18.88) fLA x T1 +(1) 19.07	teps 3 to 7 19.34 1 - fLA) x T2 19.54	in Table 9c) 19.57 19.78	19.63	19.63	19.45	18.86] ÷ (4) =	18.16	0.16	(90)
(90)m Living area fracti Mean internal to (92)m Apply adjustmer	imperature i 17.74 on imperature f 17.93	1.00 n the rest o 17.97 for the whole 18.16 an internal t	0.99 If dwelling 1 18.38 Ie dwelling 18.58	T2 (follow single 18.88) fLA x T1 +(1) 19.07	teps 3 to 7 19.34 1 - fLA) x T2 19.54	in Table 9c) 19.57 19.78	19.63 19.85	19.63 fLA :	19.45 87.50 19.64	18.86] ÷ (4) =	18.16	0.16 17.98	(90) (91) (92)
(90)m Living area fracti Mean internal to (92)m	emperature i 17.74 on emperature f 17.93 at to the mea	1.00 n the rest of 17.97 for the whole 18.16	0.99 f dwelling 1 18.38 le dwelling 18.58 temperatur	T2 (follow s' 18.88 fLA x T1 +(1 19.07 e from Tabl	teps 3 to 7 19.34 1 - fLA) x T2 19.54	in Table 9c) 19.57 19.78 e appropria	19.63	19.63	19.45 87.50	18.86 ÷ (4) =	18.16	0.16 17.98	(90) (91)
(90)m Living area fracti Mean internal to (92)m Apply adjustmer	emperature i 17.74 on emperature f 17.93 at to the mea	1.00 n the rest o 17.97 for the whole 18.16 an internal t 18.16	0.99 f dwelling 1 18.38 le dwelling 18.58 temperatur	T2 (follow s' 18.88 fLA x T1 +(1 19.07 e from Tabl	teps 3 to 7 19.34 1 - fLA) x T2 19.54	in Table 9c) 19.57 19.78 e appropria	19.63 19.85	19.63 fLA :	19.45 87.50 19.64	18.86 ÷ (4) =	18.16	0.16 17.98	(90) (91) (92)
(90)m Living area fracti Mean internal to (92)m Apply adjustmer (93)m	emperature i 17.74 on emperature f 17.93 at to the mea	1.00 n the rest o 17.97 for the whole 18.16 an internal t 18.16	0.99 f dwelling 1 18.38 le dwelling 18.58 temperatur	T2 (follow s' 18.88 fLA x T1 +(1 19.07 e from Tabl	teps 3 to 7 19.34 1 - fLA) x T2 19.54	in Table 9c) 19.57 19.78 e appropria	19.63 19.85	19.63 fLA :	19.45 87.50 19.64	18.86 ÷ (4) =	18.16	0.16 17.98	(90) (91) (92)
(90)m Living area fracti Mean internal to (92)m Apply adjustmer (93)m	emperature i 17.74 on emperature f 17.93 at to the mea 17.93 g requireme	1.00 n the rest of 17.97 for the whole 18.16 an internal to 18.16 ent Feb	0.99 If dwelling 1 18.38 Ie dwelling 18.58 temperatur 18.58 Mar	18.88 fLA x T1 +(1 19.07 e from Table 19.07 Apr	teps 3 to 7 19.34 1 - fLA) x T2 19.54 le 4e, where 19.54	in Table 9c) 19.57 19.78 e appropria 19.78 Jun	19.63 19.85 ate 19.85	19.63 fLA 19.84 19.84	19.45 87.50 19.64 19.64 Sep	18.86 ÷ (4) = 19.05 19.05	18.16 18.35 18.35 Nov	17.79 0.16 17.98 17.98	(90) (91) (92) (93)
(90)m Living area fracti Mean internal to (92)m Apply adjustmen (93)m 8. Space heating	emperature i 17.74 on emperature f 17.93 at to the mea 17.93 g requirement Jan an internal te	1.00 n the rest o 17.97 for the whole 18.16 an internal t 18.16 ent Feb emperature	0.99 If dwelling 1 18.38 Ie dwelling 18.58 temperatur 18.58 Mar	18.88 fLA x T1 +(1 19.07 e from Table 19.07 Apr	teps 3 to 7 19.34 1 - fLA) x T2 19.54 le 4e, where 19.54	in Table 9c) 19.57 19.78 e appropria 19.78 Jun	19.63 19.85 ate 19.85	19.63 fLA 19.84 19.84	19.45 87.50 19.64 19.64 Sep	18.86 ÷ (4) = 19.05 19.05	18.16 18.35 18.35 Nov	17.79 0.16 17.98 17.98	(90) (91) (92) (93)
(90)m Living area fracti Mean internal to (92)m Apply adjustmen (93)m 8. Space heatin	emperature i 17.74 on emperature f 17.93 at to the mea 17.93 g requirement Jan an internal te	1.00 n the rest o 17.97 for the whole 18.16 an internal t 18.16 ent Feb emperature	0.99 If dwelling 1 18.38 Ie dwelling 18.58 temperatur 18.58 Mar	18.88 fLA x T1 +(1 19.07 e from Table 19.07 Apr	teps 3 to 7 19.34 1 - fLA) x T2 19.54 le 4e, where 19.54	in Table 9c) 19.57 19.78 e appropria 19.78 Jun	19.63 19.85 ate 19.85	19.63 fLA 19.84 19.84	19.45 87.50 19.64 19.64 Sep	18.86 ÷ (4) = 19.05 19.05	18.16 18.35 18.35 Nov	17.79 0.16 17.98 17.98 Dec using Table	(90) (91) (92) (93)
(90)m Living area fracti Mean internal to (92)m Apply adjustmen (93)m 8. Space heatin Set Ti to the mea	emperature i 17.74 on emperature f 17.93 at to the mea 17.93 g requirement Jan an internal teles for gains, no 1.00	1.00 n the rest o 17.97 for the whole 18.16 an internal t 18.16 ent Feb emperature m 1.00	dwelling 1 18.38 le dwelling 1 18.58 temperature 18.58 Mar obtained a 0.99	18.88 18.88 fLA x T1 +(1 19.07 e from Tabl 19.07 Apr t step 11 of	teps 3 to 7 19.34 1 - fLA) x T2 19.54 le 4e, where 19.54 May f Table 9b, s	in Table 9c) 19.57 19.78 e appropria 19.78 Jun so that tim	19.63 19.85 ate 19.85 Jul = (93)m an	19.63 fLA 19.84 19.84 Aug d recalculat	19.45 87.50 19.64 19.64 Sep	18.86 ÷ (4) = 19.05 19.05 Oct sation factor	18.16 18.35 18.35 Nov	17.79 0.16 17.98 17.98 Dec using Table	(90) (91) (92) (93)
(90)m Living area fracti Mean internal to (92)m Apply adjustmen (93)m 8. Space heatin Set Ti to the mea Utilisation factor (94)m	emperature i 17.74 on emperature f 17.93 at to the mea 17.93 g requirement Jan an internal teles for gains, no 1.00	1.00 n the rest o 17.97 for the whole 18.16 an internal t 18.16 ent Feb emperature m 1.00	dwelling 1 18.38 le dwelling 1 18.58 temperature 18.58 Mar obtained a 0.99	18.88 18.88 fLA x T1 +(1 19.07 e from Tabl 19.07 Apr t step 11 of	teps 3 to 7 19.34 1 - fLA) x T2 19.54 le 4e, where 19.54 May f Table 9b, s	in Table 9c) 19.57 19.78 e appropria 19.78 Jun so that tim	19.63 19.85 ate 19.85 Jul = (93)m an	19.63 fLA 19.84 19.84 Aug d recalculat	19.45 87.50 19.64 19.64 Sep	18.86 ÷ (4) = 19.05 19.05 Oct sation factor	18.16 18.35 18.35 Nov	17.79 0.16 17.98 17.98 Dec using Table 1.00	(90) (91) (92) (93)
(90)m Living area fraction Mean internal to (92)m Apply adjustmen (93)m 8. Space heatin Set Ti to the mean (94)m Useful gains, not only the control of the	emperature i 17.74 on emperature f 17.93 at to the mea 17.93 g requireme Jan an internal te for gains, n 1.00 Gm, W = (94 1949.27	1.00 n the rest of 17.97 for the whole 18.16 an internal to 18.16 ent Feb emperature m 1.00 l)m x (84)m 2815.48	o.99 f dwelling T 18.38 le dwelling 18.58 temperature 18.58 Mar obtained a 0.99	12 (follow s' 18.88 fLA x T1 + (1 19.07 e from Table 19.07 Apr t step 11 of 0.95 4950.60	teps 3 to 7 19.34 1 - fLA) x T2 19.54 le 4e, where 19.54 May f Table 9b, 9	in Table 9c) 19.57 19.78 e appropria 19.78 Jun so that tim 0.65	19.63 19.85 ate 19.85 Jul = (93)m an	19.63 fLA 19.84 19.84 Aug d recalculat	19.45 87.50 19.64 19.64 Sep te the utilis	18.86 ÷ (4) = 19.05 19.05 Oct sation facto 0.98	18.16 18.35 18.35 Nov r for gains 1.00	17.79 0.16 17.98 17.98 Dec using Table 1.00	(90) (91) (92) (93) 9a)
(90)m Living area fraction Mean internal to (92)m Apply adjustment (93)m 8. Space heatin Set Ti to the mean (94)m Useful gains, nmm (95)m	emperature i 17.74 on emperature f 17.93 at to the mea 17.93 g requireme Jan an internal te for gains, n 1.00 Gm, W = (94 1949.27	1.00 n the rest of 17.97 for the whole 18.16 an internal to 18.16 ent Feb emperature m 1.00 l)m x (84)m 2815.48	o.99 f dwelling T 18.38 le dwelling 18.58 temperature 18.58 Mar obtained a 0.99	12 (follow s' 18.88 fLA x T1 + (1 19.07 e from Table 19.07 Apr t step 11 of 0.95 4950.60	teps 3 to 7 19.34 1 - fLA) x T2 19.54 le 4e, where 19.54 May f Table 9b, 9	in Table 9c) 19.57 19.78 e appropria 19.78 Jun so that tim 0.65	19.63 19.85 ate 19.85 Jul = (93)m an	19.63 fLA 19.84 19.84 Aug d recalculat	19.45 87.50 19.64 19.64 Sep te the utilis	18.86 ÷ (4) = 19.05 19.05 Oct sation facto 0.98	18.16 18.35 18.35 Nov r for gains 1.00	17.79 0.16 17.98 17.98 Dec using Table 1.00	(90) (91) (92) (93) 9a)
(90)m Living area fraction Mean internal to (92)m Apply adjustment (93)m 8. Space heating Set Ti to the mean (94)m Useful gains, none (95)m Monthly average	emperature i 17.74 on emperature f 17.93 at to the mea 17.93 grequireme Jan an internal te for gains, ni 1.00 Gm, W = (94 1949.27 e external te 4.50	1.00 n the rest of 17.97 for the whole 18.16 an internal to 18.16 ent Feb emperature m 1.00 a) m x (84) m 2815.48 mperature for 15.00	o.99 f dwelling Tales and the second of the	12 (follow s' 18.88 fLA x T1 + (1 19.07 e from Table 19.07 Apr t step 11 of 0.95 4950.60 8 8.70	teps 3 to 7 19.34 1 - fLA) x T2 19.54 le 4e, where 19.54 May f Table 9b, 9 0.84	in Table 9c) 19.57 19.78 e appropria 19.78 Jun so that tim 0.65	19.63 19.85 ate 19.85 Jul = (93)m an 0.41 2492.13	19.63 fLA 19.84 19.84 Aug d recalculat 0.46 2466.55	19.45 87.50 19.64 19.64 Sep te the utilis 0.83	18.86 ÷ (4) = 19.05 19.05 Oct sation facto 0.98 3015.31	18.16 18.35 18.35 Nov r for gains 1.00 2094.51	17.79 0.16 17.98 17.98 Dec using Table 1.00	(90) (91) (92) (93) 9a) (94)
(90)m Living area fraction Mean internal to (92)m Apply adjustment (93)m 8. Space heatin Set Ti to the mean (94)m Useful gains, nmm (95)m Monthly average (96)m	emperature i 17.74 on emperature f 17.93 at to the mea 17.93 grequireme Jan an internal te for gains, n 1.00 Gm, W = (94 1949.27 e external te 4.50 r mean inter	1.00 n the rest of 17.97 for the whole 18.16 an internal to 18.16 ent Feb emperature m 1.00 a) m x (84) m 2815.48 mperature for 15.00	dwelling 1 18.38 le dwelling 1 18.58 temperature 18.58 Mar obtained a 0.99 3821.37 from Table 6.80 ature, Lm, V	r2 (follow s' 18.88	teps 3 to 7 19.34 1 - fLA) x T2 19.54 le 4e, where 19.54 May f Table 9b, 9 0.84	in Table 9c) 19.57 19.78 e appropria 19.78 Jun so that tim 0.65	19.63 19.85 ate 19.85 Jul = (93)m an 0.41 2492.13	19.63 fLA 19.84 19.84 Aug d recalculat 0.46 2466.55	19.45 87.50 19.64 19.64 Sep te the utilis 0.83	18.86 ÷ (4) = 19.05 19.05 Oct sation facto 0.98 3015.31	18.16 18.35 18.35 Nov r for gains 1.00 2094.51 7.00	17.79 0.16 17.98 17.98 Dec using Table 1.00 1757.17	(90) (91) (92) (93) 9a) (94)

(98)m 7623.70 6058.77 5033.00 3020.52 1278.74 0.00	0.00 0.00 0.00 3171.18 5768.39 7441.14
	Total per year (kWh/year) = Σ (98)15, 1012 = 39395.44 (98)
Space heating requirement in kWh/m²/year	(98) ÷ (4) 71.85 (99)
9a. Energy Requirements - Individual heating systems including micro-CHP	
Space heating:	
Fraction of space heating from secondary/supplementary system (Table 11)	0.10 (201)
Fraction of space heating from main system(s) 1 - (201)	0.90 (202)
Fraction of main heating from main system 2	0.00 (203)
Fraction of total space heat from main system 1 (202) x [1 - (203)]	0.90 (204)
Fraction of total space heat from main system 2 (202) x (203)	0.00 (205)
Efficiency of main space heating system 1 (%)	78.90 (206)
(from database or Table 4a/4b, adjusted where appropriate by the amount shown	
Efficiency of secondary/supplementary heating system, from Table 4a or Appendi	
Jan Feb Mar Apr May Jun	Jul Aug Sep Oct Nov Dec
Space heating requirement, kWh/month (as calculated above)	
(98)m 7623.70 6058.77 5033.00 3020.52 1278.74 0.00	0.00 0.00 0.00 3171.18 5768.39 7441.14
Space heating fuel (main heating system 1), kWh/month = (98)m x (204) x 100 ÷ (204)	206)
(211)m 8696.24 6911.14 5741.06 3445.46 1458.64 0.00	0.00 0.00 0.00 3617.31 6579.92 8488.00
	Total per year (kWh/year) = \sum (211)15, 1012 = 44937.77 (211)
Space heating fuel (secondary), kWh/month = (98) m x (201) x $100 \div (208)$	
(215)m 762.37 605.88 503.30 302.05 127.87 0.00	0.00 0.00 0.00 317.12 576.84 744.11
	Total per year (kWh/year) = Σ (215)15, 1012 = 3939.54 (215)
Water heating:	
Output from water heater, kWh/month (calculated above)	
(64)m 296.43 262.02 276.92 250.67 247.40 223.59	
	Σ (64)112 = 3064.21 (64)
Efficiency of water heater per month (217)m 78.42 78.37 78.24 77.93 76.90 68.80	68.80 68.80 68.80 77.95 78.33 78.42
(217)m	00.00 00.00 00.00 77.93 70.55 70.42
(219)m 377.99 334.32 353.95 321.64 321.71 324.98	3 315.60 341.50 339.39 333.32 346.84 369.94
(213)111 324.30	Total per year (kWh/year) = $\Sigma(219)112 = 4081.19$ (219)
	10tal pel year (KWII) year) - Z(213)112 - 4001.13 (213)
Annual Totals Summary:	kWh/year kWh/year
Space heating fuel used, main system 1	44937.77 (211)
Space heating fuel used, secondary	3939.54 (215)
Water heating fuel used	4081.19 (219)
Electricity for pumps, fans and electric keep-hot (Table 4f):	
mechanical ventilation fans - balanced, extract or positive input from outside	0.00 (230a)
warm air heating system fans	0.00 (230b)
central heating pump	130.00 (230c)
oil boiler pump	0.00 (230d)
boiler flue fan	45.00 (230e)
maintaining electric keep-hot facility for gas combi boiler	0.00 (230f)
pump for solar water heating	0.00 (230g) (230g) (231)
Total electricity for the above	∑(230a)(230g) 175.00 (231)
Electricity for lighting (calculated in Appendix L):	1706.98 (232)
12a. Carbon dioxide emissions - Individual heating systems including micro-CHF	

Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m

	Energy kWh/year		Emissions Factor		Emissions (kgCO2/year)	
Space heating - main system 1	44937.77	x	0.194	=	8717.93	(261)
Space heating - secondary	3939.54	x	0.422	=	1662.49	(263)
Water heating	4081.19	x	0.194	=	791.75	(264)
Space and water heating			(261) + (262) +	(263) + (264) =	11172.17	(265)
Pumps, fans and electric keep-hot	175.00	x	0.422	=	73.85	(267)
Lighting	1706.98	x	0.422	=	720.35	(268)
Total carbon dioxide emissions				∑(261)(271) =	11966.36	(272)
Emissions per m ² for space and water heating					20.51	(272a)
Emissions per m² for lighting					1.31	(272b)
Target Carbon Dioxide Emissions Rate (TER)		[(20.51	× FF × EFA) + (1.31	L × EFA)] × (0.6)	23.13	(273)

Energy Efficiency Statement & Code for Sustainable Homes Pre-assessment

Appendix B – Code for Sustainable Homes Pre-assessment

breglobal

Results

Development Name: Nutley Terrace

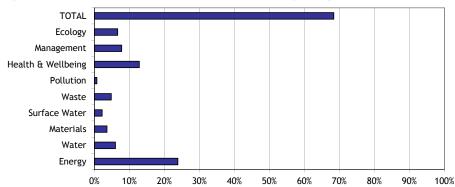
Dwelling Description: Single Dwelling - Detached House

Name of Company: Hoare Lea Consulting Engineers

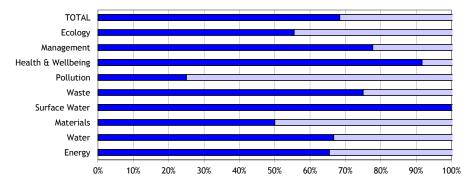
Code Assessor's Name:

Company Address: Hoare Lea Consulting Engineers

Notes/Comments:


PREDICTED RATING - CODE LEVEL: 4

Mandatory Requirements: All Levels


% Points: 68.39% - Code Level: 4
Breakdown: Energy - Code Level: 4

Water - Code Level: 4

Graph 1: Predicted contribution of individual sections to the total score and percentage of total achievable score

Graph 2: Predicted percentage of credits achievable: Total and by Category

NOTE: The rating obtained by using this Pre Assessment Estimator is for guidance only. Predicted ratings may differ from those obtained through a formal assessment, which must be carried out by a licensed Code assessor.

Hermission is given for any easing to be copied without intimigenent of copyright for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through the use of the estimator tool.

CATEGORY	Y 1 ENERGY	Overall Le	vel: 4	Overall Score	68.39		Evidence Required
% of Section	on Credits Predicted:	65.48		Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributi	ion to Overall % Score:	23.83 points		20.3 of 31 Credits	Level 4	·	required.)
Ene 1 Dwelling Emission Rate	Dwelling Emission Rate calculated using SAP 2 apply. The Code ene predicted score. Enter the predicted score. What is the	passed on the percentage impress (DER) over the Target Emission (2009). Minimum standards for early calculator can be used ore predicted number of credits? t CO ₂ emissions achieved?	on Rate (TER) as each Code level		Level 4		
Ene 2 Fabric Energy Efficiency	(kWh/m²/yr) of the dw 5 and 6. The Code e predicted score. Enter the predicted score Apartments OR End terrace	, Mid-terrace , Semi and Detached	ly at Code levels	3.1 of 9 Credits			
Ene 3 Energy Display Devices	Device is installed mor consumption. Select whether the EDI None Specif Primary Hea	ating only		2 of 2 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Ene 4 Drying Space	One credit is awarded for the provision of either internal or external secure drying space with posts and footings or fixings capable of holding 4m+ of drying line for 1-2 bed dwellings and 6m+ for dwellings with 3 bedrooms or greater. Will drying space meeting the criteria be provided? Yes OR No	1 of 1 Credits	-		
Ene 5 Energy Labelled White Goods	Credits are awarded where each dwelling is provided with either information about the EU Energy Labelling Scheme, White Goods with ratings ranging from A+ to B or a combination of the previous according to the technical guide. Select the appropriate option below EU Energy labelling information only A+ rated appliances A+, A and B rated appliances Combination of compliant rated white goods with EU Energy Labelling Scheme	2 of 2 Credits	-		
Ene 6 External Lighting	Credits are awarded based on the provision of space lighting* with dedicated energy efficient fittings and security lighting fittings with appropriate control gear Space Lighting None provided OR Non Code compliant lighting OR Code compliant lighting Security Lighting None provided OR Non Code compliant lighting OR Code compliant lighting OR Code compliant lighting Security Lighting None provided OR Non Code compliant lighting OR Code compliant lighting Security Lighting None provided OR Non Code compliant lighting OR Code compliant lighting Security Lighting None provided OR Non Code compliant lighting OR Code compliant lighting OR Code compliant lighting Security Lighting OR Code compliant light	2 of 2 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Ene 7 Low or Zero Carbon Technologies	Credits are awarded where there is a 10% or 15% reduction in CO ₂ emissions resulting from the use of low or zero carbon technologies. Select % contribution made by low or zero carbon technologies			·	·
	Less than 10% of demand OR 10% of demand or greater OR 15% of demand or greater	2 of 2 Credits	-		
Ene 8 Cycle Storage	Credits are awarded where adequate, safe, secure and weather proof cycle storage is provided according to the Code requirements. Fill in the development details below Number of bedrooms: Number of cycles stored per dwelling* * if you have storage for 1 cycle per two dwellings insert 0.5 in number of cycles stored per dwelling	2 of 2 Credits	-		
Ene 9 Home Office	A credit is awarded for the provision of a home office. The location, space and services provided must meet the Code requirements. Will there be provision for a Home Office? Yes OR No	1 of 1 Credits	-		

CATEGORY 2 WATER	Overall Level: 4	Overall Score	68.39		Evidence Required
% of Section Credits Predicted: 66.66		Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribution to Overall Score: 6.00 points		4 of 6 Credits	Level 4		required.)
Wat 1 Indoor Water Use Credits are awarded based on the water consumption, calculated usin Tool. Minimum standards for each consumption of the water use / Mandat Select the predicted water use / Mandat Select than 120 litres / per OR ≤ less than 120 litres / per OR ≤ less than 105 litres / per OR ≤ less than 90 litres / per OR ≤ less than 80 litres / per OR ≤ less tha	g the Code Water Calculator ode level apply. ory Requirement oerson/ day rson/ day rson/ day oerson/ day oerson/ day oerson/ day oerson/ day	3 of 5 Credits	Level 3 AND Level 4		
Wat 2 External Water Use A credit is awarded where a comp collecting rainwater for external ir outdoor space is provided the credit Select the scenario that applies No internal or communal OR Outdoor space with collection OR Outdoor space without collection	rigation purposes. Where no can be achieved by default. outdoor space ction system	1 of 1 Credits	-		

CATEGORY	7 3 MATERIALS	Overall Level: 4	Overall Score	68.39		Evidence Required
% of Section	on Credits Predicted:	50.00	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributi	on to Overall Score:	3.60 points	12 of 24 Credits	All Levels		required.)
Mat 1 Environm- ental Impact of Materials	elements must achiev Tradable Credits: Poi Green Guide Rating Calculator can be used Mandatory Requireme Will the ma	andatory requirement be met?	8 of 15 Credits	All Levels		
Mat 2 Responsible Sourcing of Materials - Basic Building Elements	elements are respons can be used to predict Enter the predicted S	·	3 of 6 Credits	-		
Mat 3 Responsible Sourcing of Materials - Finishing Elements	elements are respons can be used to predict Enter the predicted S		1 of 3 Credits	-		

CATEGORY	4 SURFACE WATER RUN-OFF Overall Level: 4	Overall Score	68.39		Evidence Required
% of Section	Credits Predicted: 100.00%	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributio	n to Overall Score: 2.20 points	4 of 4 Credits	All Levels		required.)
Management	<u>Mandatory Requirement:</u> Peak rate of run-off into watercourses is no greater for the developed site than it was for the predevelopment site and that the additional predicted volume of rainwater discharge caused by the new development is entirely reduced as far as possible in accordance with the assessment criteria. Desiging the drainage system to be able to cope with local drainage system failure. <u>Tradable Credits:</u> Where SUDS are used to improve water quality of the rainwater discharged or for protecting the quality of the receiving waters.				
	Mandatory Requirement Will the mandatory requirement be met? Select the appropriate option No SUDS				
	No SUDS No runoff into watercourses for the first 5 mm of rainfall				
	Runoff from hard surfaces will receive an appropriate level of treatment	2 of 2 Credits	All Levels		
Sur 2 Flood Risk	Credits are awarded where developments are located in areas of low flood risk or where in areas of medium or high flood risk appropriate measures are taken to prevent damage to the property and its contents in accordance with the Code criteria in the technical guide. Select the annual probability of flooding (from PPS25*)				
	Zone 1 - Low OR Zone 2 - Medium OR Zone 3 - High				
	Select the apropriate option(s)	2 of 2 Credits	-		
	Low risk of flooding from FRA** All measures of protection are demonstrated in FRA Ground floor level and access routes are 600 mm above design flood level				
	* Planning Policy Statement 25 - Planning and Flood Risk ** FRA - Flood Risk Assessment				

CATEGORY 5 W	VASTE	Overall Lev	el: 4	Overall Score	68.39		Evidence Required
	redits Predicted:			Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribution to	o Overall Score:	4.80 points		6 of 8 Credits	All Levels	·	required.)
Was 1 Storage of non- recyclable waste and recyclable	andatory Requireme ould be sized to hol ovided by the Loca om BS 5906. Traiternal and/ or exter Mandatory Requirem Will the minibe accessible Internal Recyclable in Where there storage and rescheme	ent: The space provided for volume to the larger of either all external Authority or the min capacidable Credits are awarded final recycling facilities. ent	nal containers ty calculated	0 of 2 Credits	All Levels		required.)
	Pre-collection	ge (capacity 30 litres)		4 of 4 Credits	All Levels		
	(capacity 30 AND Houses External Stor Flats Private recyc	age(capacity 180 litres)		0 of 4 Credits			

Issue		Credits	Level	Assumptions Made	Evidence Required
Was 2 Construction Site Waste Management	A credit is awarded where a compliant SWMP is provided with targets and procedures to minimise construction waste. Credits are available where the SWMP include procedures and commitments for diverting either 50% or 85% of waste generated from landfill. SWMP details Does the SWMP include: + No SWMP + SWMP with targets and procedures to minimise waste? + SWMP with procedures to divert 50% of waste + SWMP with procedures to divert 85% of waste				
Was 3 Composting	A credit is awarded where individual home composting facilities are provided, or where a community/ communal composting service, either run by the Local Authority or overseen by a management plan is in operation. Select the facilities available No composting facilities Individual composting facilities OR Communal/ community composting*? Local Authority OR Private with management plan * including if an automated waste collection system is in place		-		

CATEGORY	6 POLLUTION	Overall Level: 4	Overall Score	68.39		Evidence Required
% of Section Credits Predicted: 25.00%			Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributi	on to Overall Sc	ore: 0.70 points	1 of 4 Credits	All Levels		required.)
Pol 1 Global Warming Potential (GWP) of Insulants	substances (in r less than 5. Select the mo All ir OR Some	varded where <u>all</u> insulating materials only use manufacture AND installation) that have a GWP or st appropriate option		-		
	the operation of dwelling. Select the mo OR Less OR Less OR Class OR Class OR Class	rded on the basis of NOx emissions arising from f the space and water heating system within the st appropriate option	0 of 3 Credits	-		

CATEGOR'	Y 7 HEALTH & WELLBEING Overall Level: 4	Overall Score	68.39		Evidence Required
% of Secti	on Credits Predicted: 91.00%	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribut	on to Overall Score: 12.83 points	11 of 12 Credits	No level		required.)
Hea 1 Daylighting	Credits are awarded for ensuring key rooms in the dwelling have high daylight factors (DF) and a view of the sky. Select the compliant areas Room Kitchen: Avg DF of at least 2% Living Room*: Avg DF of at least 1.5% Dining Room*: Avg DF of at least 1.5% Study*: Avg DF of at least 1.5% W 80% of working plane in all above rooms receive direct light from the sky? Any room used for Ene 9 Home Office must also achieve a min DF of 1.5%.	2 of 3 Credits	-		
Hea 2 Sound Insulation	Credits are awarded where performance standards exceed those required in Building Regulations Part E. This can be demonstrated by carrying out pre-completion testing or through the use of Robust Details Limited. Select a type of property Detached Property Attached Properties: - Separating walls and floors only exist between non habitable spaces - Separating walls and floors exist between habitable spaces Select a performance standard Performance standard not sought Airborne: 3db higher; Impact: 3dB lower OR Airborne: 8db higher; Impact: 8dB lower				

Issue		Credits	Level	Assumptions Made	Evidence Required
Hea 3 Private Space	A credit is awarded for the provision of an outdoor space that is at least partially private. The space must allow easy access to all occupants. Will a private/ semi-private space be provided? Yes, private/semi-private space will be provided OR No private/semi-private space		·		
Hea 4 Lifetime Homes	Mandatory Requirement: Lifetime Homes is mandatory when a dwelling is to achieve Code Level 6. Tradable credits: Credits are awarded where the developer has implemented all of the principles of the Lifetime Homes scheme. Mandatory Requirement Dwelling to achieve Code Level 6? Lifetime Homes Compliance All Lifetime Homes criteria will be met OR Exemption from LTH criteria 2/3 applied Credit not sought	4 of 4 Credits	No level		

CATEGORY	8 MANAGEMENT Overall Level: 4	Overall Score	68.39		Evidence Required
% of Section	on Credits Predicted: 77.00%	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributi	on to Overall Score: 7.77 points	7 of 9 Credits	All Levels		required.)
	Credits are awarded where a simple guide is provided to each dwelling covering information relevant to the 'non-technical' home occupier, in accordance with the Code requirements. Tick the topics covered by the Home User Guide Operational Issues? Site and Surroundings? Is available in alternative formats?	3 of 3 Credits	-		
Man 2 Considerate Constructors Scheme	Credits are awarded where there is a commitment to comply with best practice site management principles using either the Considerate Constructors Scheme or an alternative locally/nationally recognised scheme.				
	Select the appropriate scheme and score				
	No scheme used Considerate Constructors OR Best Practice: Score between 24 and 31.5 OR Best Practice+: Score between 32 and 40 Alternative Scheme* OR Mandatory + 50% optional requirements OR Mandatory + 80% optional requirements	1 of 2 Credits	-		
	* In the first instance, contact a Code Service Provider if you are considering to use an alternative scheme.				
Man 3 Construction Site Impacts	Credits are awarded where there is a commitment and strategy to operate site management procedures on site as following: Tick the impacts that will be addressed Monitor, report and set targets, where applicable, for: CO2/ energy use from site activities CO2/ energy use from site related transport Positive CO2/ energy use from site activities CO3/ energy	1 of 2 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Man 4 Security	Credits are awarded for complying with Section 2 - Physical Security from Secured by Design - New Homes. An Architectural Liaison Officer (ALO), or alternative, needs to be appointed early in the design process and their recommendations incorporated. Secured by Design Compliance Credit not sought OR Secured by Design Section 2 Compliance		-		

CATEGORY	9 ECOLOGY Overall Level: 4	Overall Score	68.39		Evidence Required
% of Section	Credits Predicted: 55,00%	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribution	n to Overall Score: 6.66 points	5 of 9 Credits	All Levels		required.)
Eco 1 (Ecological Value of Site	One credit is awarded for developing land of inherently low value. Select the appropriate option Credit not sought OR Land has ecological value OR Land has low/ insignificant ecological value*	0 of 1 Credits	-		
a t	Low ecological value is determined either a) by using Checklist Eco 1 across the whole development site; or b) where an suitably qualified ecologist is appointed and can confirm or c) produces an independent ecological report of the site, that he construction zone is of low/ insignificant value; AND the rest of the levelopment site will remain undisturbed by the works.				
	A credit is awarded where there is a commitment to enhance the ecological value of the development site. Tick the appropriate boxes Will a Suitably Qualified Ecologist be appointed to recommend appropriate ecological features? AND Will all key recommendations be adopted?	1 of 1 Credits	-		
Protection of Ecological Features	A credit is awarded where there is a commitment to maintain and adequately protect features of ecological value. Type and protection of existing features Site with features of ecological value? OR Site of low ecological value (as Eco 1)? AND All* existing features potentially affected by site works are maintained and adequately protected? If a suitably qualified ecologist has confirmed that a feature can be removed due or insignificant ecological value or poor health conditions, as long all the rest have seen protected, then this box can be ticked.	1 of 1 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Eco 4 Change of Ecological Value of Site	Credits are awarded where the change in ecological value has been calculated in accordance with the Code requirements and is calculated to be: Change in Ecological Value Major negative change: fewer than -9 Minor negative change: between -9 and -3 OR Neutral: between -3 and +3 Minor enhancement: between +3 and +9 Major enhancement: greater than 9	2 of 4 Credits	-		
Eco 5 Building Footprint	Credits are awarded where the ratio of combined floor area of all dwellings on the site to their footprint is: Ratio of Net Internal Floor Area: Net Internal Ground Floor Area Credit Not Sought OR Houses: 2.5:1 OR Flats: 3:1 OR Houses: 3:1 OR Flats: 4:1 OR Houses & Flats Weighted (2.5:1 & 3:1) OR Houses & Flats Weighted (3:1 & 4:1)	1 of 2 Credits			