



#### Site Details:

526698 184030

| Client Ref:<br>Report Ref:<br>Grid Ref: | New_Mews_St_Johns_Wood<br>HMD-2531065<br>526690, 183998 | _Park_NW8_6NN |
|-----------------------------------------|---------------------------------------------------------|---------------|
| Map Name:                               | National Grid                                           | Ν             |
| Map date:                               | 2010                                                    |               |
| Scale:                                  | 1:10,000                                                | T I           |
| Printed at:                             | 1:10,000                                                | S             |





Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

 $\ensuremath{\mathbb{C}}$  Crown copyright and database rights 2015 Ordnance Survey 100035207

Production date: 14 October 2015

To view map legend click here <u>Legend</u>





#### Site Details:

526698 184030

| Client Ref:<br>Report Ref:<br>Grid Ref: | New_Mews_St_Johns_Wood<br>HMD-2531065<br>526690, 183998 | _Park_NW8_6NN |
|-----------------------------------------|---------------------------------------------------------|---------------|
| Map Name:                               | National Grid                                           | Ν             |
| Map date:                               | 2014                                                    |               |
| Scale:                                  | 1:10,000                                                | ° ▼ ¹         |
| Printed at:                             | 1:10,000                                                | S             |





Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

 $\ensuremath{\mathbb{C}}$  Crown copyright and database rights 2015 Ordnance Survey 100035207

Production date: 14 October 2015

To view map legend click here <u>Legend</u>

Appendix C Ground and Water Ltd Ground Investigation Report for the site at Land Off Middlefield



#### **GROUND INVESTIGATION REPORT**

for the site at

#### LAND OFF MIDDLEFIELD, SOUTH HAMPSTEAD, LONDON NW8 6NE

on behalf of

LIV-INTERNATIONAL

| Report Referen                                        | ce: GWPR1403/GIR/November 2015                   | Status: FINAL                                                      |  |  |  |
|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Issue:                                                | Prepared By:                                     | Verified By:                                                       |  |  |  |
| V1.03<br>NOVEMBER                                     | Ment                                             | Sat. Williams                                                      |  |  |  |
| 2015                                                  | Megan James BSc. (Hons)<br>Geotechnical Engineer | Francis Williams M.Geol. (Hons) FGS<br>CEnv AGS MSoBRA<br>Director |  |  |  |
| File Reference: Ground and Water/Project Files/       |                                                  |                                                                    |  |  |  |
| GWPR1403 Land on Middleneid, South Hampstead, London. |                                                  |                                                                    |  |  |  |

Ground and Water Limited 15 Bow Street, Alton, Hampshire GU34 1NY Tel: 0333 600 1221 E-mail: enquiries@groundandwater.co.uk Website: www.groundandwater.co.uk

# CONTENTS

## 1.0 INTRODUCTION

- 1.1 General
- 1.2 Aims of Investigation
- 1.3 Conditions and Limitations

#### 2.0 SITE SETTING

- 2.1 Site Location
- 2.2 Site Description
- 2.3 Proposed Development
- 2.4 Geology
- 2.5 Slope Stability and Subterranean Developments
- 2.6 Hydrogeology and Hydrology
- 2.7 Radon

#### 3.0 FIELDWORK

- 3.1 Scope of Works
- 3.2 Sampling Procedure

# 4.0 ENCOUNTERED GROUND CONDITIONS

- 4.1 Soil Conditions
- 4.2 Foundation Exposures
- 4.3 Roots Encountered
- 4.4 Groundwater Conditions
- 4.5 Obstructions

#### 5.0 IN-SITU AND LABORATORY GEOTECHNICAL TESTING

- 5.1 In-Situ Geotechnical Testing
- 5.2 Laboratory Geotechnical Testing
  - 5.2.1 Atterberg Limit Test
  - 5.2.2 Comparison of Soil's Moisture Content with Index Properties 5.2.2.1 Liquidity Index Analysis
    - 5.2.2.2 Liquid Limit
  - 5.2.3 Moisture Content Profiling
  - 5.2.4 Swelling
  - 5.2.5 BRE Special Digest 1
- 5.3 Chemical Laboratory Testing Human Health Risk Assessment
  - 5.3.1 Soil Assessment Criteria
  - 5.3.2 Determination of Representative Contamination Concentration

# 6.0 ENGINEERING CONSIDERATIONS

6.1 Soil Characteristics and Geotechnical Parameters

# FIGURES

- Figure 1 Site Location Plan
- Figure 2 Site Development Area
- Figure 3 Aerial View of Site
- Figure 4 Trial Hole Location Plan
- Figure 5Foundation Exposure TP/FE1
- Figure 6 Foundation Exposure Photographs
- Figure 7Moisture Content Profile WS1
- Figure 8Moisture Content Profile WS2

# **APPENDICES**

- Appendix A Conditions and Limitations
- Appendix B Fieldwork Logs
- Appendix C Geotechnical Laboratory Test Results
- Appendix D Chemical Laboratory Test Results
- Appendix E Soil Assessment Criteria
- Appendix F Waste Hazard Assessment

# **1.0 INTRODUCTION**

# 1.1 General

Ground and Water Limited were instructed by Liv-International on the 22<sup>nd</sup> September 2015 to undertake a Ground Investigation on the land off Middlefield, London NW8 6NE. The scope of the investigation was detailed within the Ground and Water Limited fee proposal ref.: GWQ2589, dated 10<sup>th</sup> September 2015 and a further e-mail and phone call, dated 22/09/15.

# 1.2 Aims of the Investigation

The aim of the investigation was understood to be to supply the client and their designers with information regarding the ground conditions underlying the site to assist them in preparing an appropriate scheme for development.

The investigation was to be undertaken to provide parameters for the design of foundations by means of in-situ and laboratory geotechnical testing undertaken on soil samples recovered from trial holes.

The requirements of the London Borough of Camden, Camden Geological, Hydrogeological and Hydrological Study, Guidance for Subterranean Development (November 2010) was reviewed with respect to this report.

Included within the fee proposal was an allowance to undertake chemical laboratory testing on soil samples recovered from the site to enable recommendations for the safe redevelopment of the site and the protection of site workers, end-users and the public from any potential contamination identified.

A Desk Study and full scale contamination assessment were not part of the remit of this report.

The techniques adopted for the investigation were chosen considering the anticipated ground conditions and development proposals on-site, and bearing in mind the nature of the site, limitations to site access and other logistical limitations.

# **1.3** Conditions and Limitations

This report has been prepared based on the terms, conditions and limitations outlined within Appendix A.

#### 2.0 SITE SETTING

#### 2.1 Site Location

The site comprised an approximately  $590m^2$  rectangular shaped plot of land, orientated in a west to east direction, located to the rear of No. 1 – 13 Middlefield. The site was located on the western side of the St Johns Wood Park, opposite Marion Court. The site was located in the South Hampstead/Primrose Hill area of north-west London within the London Borough of Camden.

The national grid reference for the centre of the site was approximately TQ 26682 83992. A site location plan is given within Figure 1. A plan showing the boundary of the site is provided in Figure 2.

#### 2.2 Site Description

The site was occupied by a terrace of 14No single storey lock up residential garages. The remainder of the site comprised tarmac hard landscaping, accessed via double gates of St Johns Wood Park. Mature trees were noted in the north-east corner of the site with two-storey residential houses with off-road parking and private rear gardens were noted to the south.

An aerial view of the site is provided within Figure 3.

#### 2.3 Proposed Development

At the time of reporting, November 2015, the full extent of proposed development was not known to Ground and Water Limited however the development was understood to include the construction of a basement founded at 5.00 - 6.00m bgl.

#### 2.4 Geology

The BGS Geological Map (Solid and Drift) for the North London area (Sheet No. 256), and Figures 3 and 4 of the Camden Geological, Hydrogeological and Hydrological Study, revealed that the site was underlain by the London Clay Formation.

#### London Clay Formation

The London Clay Formation comprises stiff grey fissured clay, weathering to brown near surface. Concretions of argillaceous limestone in nodular form (Claystones) occur throughout the formation. Crystals of Gypsum (Selenite) are often found within the weathered part of the London Clay Formation, and precautions against sulphate attack to concrete are sometimes required. The lowest part of the formation is a sandy bed with black rounded gravel and occasional layers of sandstone and is known as the Basement Bed.

A Ground Investigation, undertaken by Ground and Water Limited, on the neighbouring site revealed the following ground conditions:

Made Ground was proved from ground level to 0.50 - 1.10m bgl. Soils described as representative of Head Deposits were encountered underlying the Made Ground within TP/FE1. The deposits comprised a mid to dark brown, orange brown and grey mottled gravelly silty clay. The gravel was occasional, fine to medium, sub-angular to rounded flints. The base of the Head Deposits was not proven within TP/FE1, which was excavated to a depth of 1.50m bgl.

Soils described as the London Clay Formation were encountered underlying the Made Ground within BH1 for the remaining depth of borehole, a maximum of 12.50m bgl. The deposits encountered were described as a mid to dark brown, orange brown and locally light grey mottled silty clay becoming a dark brown to dark grey silty clay, with fine selenite crystals and claystones, at depth.

The London Clay Formation was shown to have very low to very high undrained shear strength (20 – 190kPa).

No groundwater was encountered during drilling although shallow groundwater levels were noted within the well installed on subsequent visits.

Roots were noted to 0.80m bgl by the supervising engineer. Geotechnical testing identified fine rootlets to 1.50m bgl.

A BGS borehole ~60m north of the site, drilled to 11.12m bgl, revealed ~0.50m of Made Ground to overlie firm to stiff brown, becoming grey with depth, silty clays. Claystone bands and selenite crystals were noted at depth.

No areas of Made Ground or Worked Ground were noted within a 250m radius of the site.

#### 2.5 Slope Stability and Subterranean Developments

The site was not situated within an area where a natural or man-made slope of greater than 7° was present (Figure 16 Camden Geological, Hydrogeological and Hydrological Study).

Figure 17 of the Camden Geological, Hydrogeological and Hydrological Study indicated that the site was not situated within an area prone to landslides.

Figure 18 of the Camden Geological, Hydrogeological and Hydrological Study indicated that the Jubilee Underground Line was situated beneath the extreme west of the site running north to south. An underground section/tunnel of the London Overground was situated running east to west ~50m north of the site. No other major subterranean infrastructure (including existing and proposed tunnels) were noted within close proximity to the site.

#### 2.6 Hydrogeology and Hydrology

A study of the aquifer maps on the Environment Agency website, and Figure 8 of the Camden Geological, Hydrogeological and Hydrological Study, revealed the site to be located on **Unproductive Strata** relating to the bedrock deposits of the London Clay Formation. No designation was given for any superficial deposits due to their likely absence.

Superficial (Drift) deposits are permeable unconsolidated (loose) deposits, for example, sands and gravels. The bedrock is described as solid permeable formations e.g. sandstone, chalk and limestone.

Unproductive strata are rock layers with low permeability that have negligible significance for water supply or river base flow. These were formerly classified as non-aquifers.

Examination of the Environment Agency records, and Figure 8 of the Camden Geological, Hydrogeological and Hydrological Study, showed that the site fell within a Groundwater Source Protection Zone 2 (Outer Zone) as classified in the Policy and Practice for the Protection of Groundwater.

A Groundwater Source Protection Zone 2 (Outer Zone) is defined by a 400 day travel time from a point below the water table. This zone has a minimum radius of 250 or 500 metres around the source, depending on the size of the abstraction. A Groundwater Source Protection Zone 1 (Inner Zone) was noted ~830m south-east.

5

No surface water features were noted within a 250m radius of the site.

From analysis of hydrogeological and topographical maps groundwater was anticipated to be encountered at depth (>10m below existing ground level (bgl)) and it was considered that the groundwater was flowing in a south-easterly direction in alignment with the groundwater source protection zones, towards the inner zone.

Examination of the Environment Agency records showed that the site was **not** situated within flood zone or flood warning area.

# 2.7 Radon

BRE 211 (2007) Map 5 of the London, Sussex and west Kent area revealed the site was located within an area where mandatory protection measures against the ingress of Radon were **unlikely to be** required. The site **was not** located within an area where a risk assessment was required.

# 3.0 FIELDWORK

# 3.1 Scope of Works

Fieldwork was undertaken on the 25<sup>th</sup> and 28<sup>th</sup> September 2015 and comprised the drilling of two Premier Windowless Sampler Boreholes (WS1 and WS2) to a depth of 12.45m bgl and the hand excavation of one trial pit foundation exposure (TP/FE1). Standard Penetration Testing was undertaken within both boreholes at 1.00m intervals. Two Super Heavy Dynamic Probes (SHDP) (DP1 and DP2) were undertaken through the base of WS1 and WS2 (12.50m bgl) to a depth of 16.20m and 16.30m bgl respectively.

Two small diameter combined bio-gas and groundwater monitoring well were installed within WS1 and WS2 to 5.00m bgl. The construction of the wells installed can be seen tabulated below.

| Combined Bio-gas and Groundwater Monitoring Well Construction                                                                                                                                                        |      |      |      |    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|----|--|--|
| Depth of<br>Trial HoleDepth of<br>Installation<br>(m bgl)Thickness of<br>slotted piping<br>with gravel filter<br>pack (m)Depth of plain<br>piping with<br>bentonite seal<br>(m bgl)Pipin<br>extern<br>diame<br>(m mm |      |      |      |    |  |  |
| WS1                                                                                                                                                                                                                  | 5.00 | 4.00 | 1.00 | 63 |  |  |
| WS2                                                                                                                                                                                                                  | 5.00 | 4.00 | 1.00 | 63 |  |  |

The approximate locations of the trial holes can be seen within Figure 4.

Prior to commencing the ground investigation, a walkover survey was carried out to identify the presence of underground services and drainage. Where underground services/drainage were suspected and/or positively identified, exploratory positions were relocated away from these areas.

Upon completion of the site works, the trial holes were backfilled and made good/reinstated in relation to the surrounding area.

# 3.2 Sampling Procedures

Small disturbed samples were recovered from the trial hole at the depths shown on the trial hole records. Soil samples were generally retrieved from each change of strata and/or at specific areas of concern. Samples were also taken at approximately 0.5m intervals during broad homogenous soil horizons.

A selection of samples were despatched for geotechnical testing purposes. A selection of samples were despatched for geotechnical testing purposes. A programme of chemical laboratory testing, scheduled by Ground and Water Limited and carried out by QTS Environmental Limited, was undertaken on samples recovered from the trial holes.

#### 4.0 ENCOUNTERED GROUND CONDITIONS

#### 4.1 Soil Conditions

All exploratory holes were logged by James Dalziel and Francis Williams of Ground and Water Limited generally in accordance with BS EN 14688 'Geotechnical Investigation and Testing – Identification and Classification of Soil'.

The ground conditions encountered within the trial holes constructed on the site generally conformed to that anticipated from examination of the geology map. Made Ground was noted to overlie Head Deposits (possibly Made Ground) and the London Clay Formation.

The ground conditions encountered during the investigation are described in this section. For more complete information about the Made Ground, Head Deposits (possibly Made Ground) and the London Clay Formation at particular points, reference must be made to the individual trial hole logs within Appendix B.

The trial hole location plan can be viewed in Figure 4.

For the purposes of discussion the succession of conditions encountered within the trial holes in descending order can be summarised as follows:

#### Made Ground Head Deposits (possibly Made Ground) (TP/FE1 and WS2 only) London Clay Formation (WS1 and WS2 only)

#### Made Ground

Made Ground was encountered from ground level within all trial holes. The Made Ground was noted to comprise a layer of tarmac overlying a reddish-brown, and locally black, very gravelly medium to coarse grained sand to a depth of 0.30 - 0.40m bgl. The gravel was abundant, fine to coarse, sub-rounded to sub-angular brick, concrete, tarmac, limestone and carbonaceous material (clinker/tarmac/ash). From 0.40m to 0.65m bgl within WS2 the Made Ground comprised a mid to dark brown gravelly silty clay. The gravel was occasional, fine, sub-angular to sub-rounded brick and carbonaceous material (clinker/ash).

#### Head Deposits (possibly Made Ground)

Soils described as representative of Head Deposits, possibly Made Ground, were encountered underlying the Made Ground within WS2 from 0.65m to 1.50m bgl and for the remaining depth of TP/FE1, from 0.30m to 0.70m bgl. The deposits comprised a mid-brown to orange brown clayey gravelly sand, locally a sandy gravelly clay. The sand was medium to coarse grained. The gravel was fine to medium, sub-angular to rounded flint. From 0.50m bgl within TP/FE1 the deposits comprised a mid-brown very slightly gravelly silty clay. The gravel was rare, fine, sub-angular to sub-rounded flint.

#### London Clay Formation

Soils described as representative of the London Clay Formation were encountered underlying the Made Ground within WS1 from 0.40m bgl and the Head Deposits (possibly Made Ground) within WS2 from 1.50m bgl. The London Clay Formation was proved for the remaining depth of both boreholes, a maximum of 12.45m bgl. The deposits generally comprised mid to light brown, with light grey mottling, silty clays. Claystones, fine selenite crystals and sandy/silty lenses were noted

with depth. From 10.00m bgl within WS1, and from 9.50m bgl within WS2, the deposits were noted to become dark grey brown to dark grey and rare shell fragments were noted within WS2.

For details of the composition of the soils encountered at particular points, reference must be made to the individual trial hole logs within Appendix B.

#### 4.2 Foundation Exposures

A description of the foundation layout and ground conditions encountered within the hand dug trial pit foundation exposure is given within this section of the report.

#### TP/FE1

Trial pit foundation exposure TP/FE1 was hand excavated from ground level in front of an existing garage. The exact location of the trial hole can be seen in Figure 4 with a section drawing of the foundation encountered in Figure 5. Photographs of the foundation exposure are given in Figure 6.

The foundation layout encountered consisted of a brick wall to ground level. The brick wall continued from ground level to a depth of 0.20m bgl and was noted to rest upon a concrete footing which stepped out by 0.15m and was 0.50m in thickness. The foundation was noted to rest on Head Deposits (possibly Made Ground) at 0.70m bgl, described as mid-brown very slightly gravelly silty clay. The gravel was rare, fine, sub-angular to sub-rounded flint. The ground conditions encountered directly surrounding the foundation are shown in Figure 5. Photographs of the foundation exposure are given in Figure 6.

#### 4.3 Roots Encountered

Roots were noted to 2.70m and 2.00m bgl in WS1 and WS2 respectively. Black, fibrous, possibly decaying roots/rootlets were noted to 3.00m bgl within WS2.

It must be noted that the chance of determining actual depth of root penetration through a narrow diameter borehole is low. Roots may be found to greater depths at other locations on the site, particularly close to trees and/or trees that have been removed both within the site and its close environs.

# 4.4 Groundwater Conditions

No groundwater was encountered during the construction of the boreholes. Standing water was noted at the base of the trial pit foundation exposure during construction.

The standing groundwater level noted during two return visits to the site can be seen tabulated overleaf.

| Groundwater Observations |                         |                  |                                                                     |      |            |  |
|--------------------------|-------------------------|------------------|---------------------------------------------------------------------|------|------------|--|
| Project Ref              | Site Location           | Borehole<br>Ref. | rehole Groundwater<br>Ref. reading (m bgl)                          |      | Date       |  |
| GWPR1403                 | Land off<br>Middlefield | WS1              | 2.59                                                                | 5.10 | 23/10/2015 |  |
| GWPR1403                 | Land off<br>Middlefield | WS2              | 0.52                                                                | 4.45 | 23/10/2015 |  |
| GWPR1403                 | Land off<br>Middlefield | WS1              | 0.94                                                                | 5.10 | 03/11/2015 |  |
| GWPR1403                 | Land off<br>Middlefield | WS2              | 0.23 (some water<br>flowed into well<br>when bung was<br>taken off) | 4.45 | 03/11/2015 |  |

The standing water levels recorded within the monitoring wells during the two return visits is likely to represent surface water or perched groundwater migrating through the Made Ground, granular Head Deposits (possibly Made Ground), claystone bands and/or the silty/sandy lenses in the London Clay Formation and collecting within the installed standpipe.

A rising head test was undertaken within WS2 to provide an indication as to the rate of water ingress into the monitoring well. The water within WS2 was bailed out to a standing level of 4.01m bgl. The standing water level was monitored over time to determine a rate of infiltration.

| Results of Rising Head Test Within WS2 |      |  |  |  |  |
|----------------------------------------|------|--|--|--|--|
| Time (mins) Depth to water (m bgl)     |      |  |  |  |  |
| 0                                      | 4.01 |  |  |  |  |
| 1                                      | 3.96 |  |  |  |  |
| 2                                      | 3.90 |  |  |  |  |
| 3                                      | 3.88 |  |  |  |  |
| 4                                      | 3.84 |  |  |  |  |
| 5                                      | 3.82 |  |  |  |  |
| 10                                     | 3.73 |  |  |  |  |

An infiltration rate of 5.82x10<sup>-6</sup>m/s was recorded (standing water level rose 0.28m in 10 minutes).

Exact groundwater levels may only be determined through long term measurements from monitoring wells installed on-site. It should be noted that changes in groundwater level do occur for

a number of reasons including seasonal effects and variations in drainage.

The site investigation was conducted in September, October and November 2015, when groundwater levels should be rising from their annual minimum (i.e. lowest) and towards their annual maximum (i.e. highest). The long-term groundwater elevation might increase at some time in the future due to seasonal fluctuation in weather conditions. Isolated pockets of groundwater may be perched within any Made Ground found at other locations around the site.

#### 4.5 Obstructions

No artificial or natural sub-surface obstructions were noted during construction of the trial holes.

# 5.0 INSITU AND LABORATORY GEOTECHNICAL TESTING

#### 5.1 In-Situ Geotechnical Testing

Standard Penetration Testing (SPT) was undertaken within both boreholes at 1.00m intervals to a depth of 12.45m bgl. The results of the SPT's have not been amended to take into account hammer efficiency, rod lengths and overburden pressure in accordance with Eurocode 7. Two Super Heavy Dynamic Probes (SHDP) (DP1 and DP2) were undertaken through the base of WS1 and WS2 (12.50m bgl) to 16.20m and 16.30m bgl respectively.

Windowless Sampler Boreholes provide samples of the ground for assessment but they do not give any engineering data.

The Standard Penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. The test uses a thick-walled sample tube, with an outside diameter of 50 mm and an inside diameter of 35 mm, and a length of around 650mm. This is driven into the ground at the bottom of a borehole by blows from a slide hammer with a weight of 63.5 kg falling through a distance of 760 mm. The sample tube is driven 150 mm into the ground and then the number of blows needed for the tube to penetrate each 150 mm up to a depth of 450 mm is recorded. The sum of the number of blows is termed the "standard penetration resistance" or the "N-value".

Super Heavy Dynamic Probing involves the driving of a metal cone into the ground via a series of steel rods. These rods are driven from the surface by a hammer system that lifts and drops a 63.5kg hammer onto the top of the rods through a set height, thus ensuring a consistent energy input. The number of hammer blows that are required to drive the cone down by each 100mm increment are recorded. These blow counts then provide a comparative assessment from which correlations have been published, based on dynamic energy, which permits engineering parameters to be generated. (*The Dynamic Probe 'Super Heavy' (SHDP) Tests were conducted in accordance with BS 1377; 1990; Part 9, Clause 3.2*).

The granular soils of the Head Deposits (possibly Made Ground) was classified based on the table below.

| Correlation between normalised SPT blow counts $(N_1)_{60}$ or equivalent 'SPT's derived from SHDP results and granular classification. |         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Classification Equivalent SPT Blow Counts (N1)                                                                                          |         |  |  |  |
| Extremely Dense                                                                                                                         | >58     |  |  |  |
| Very Dense                                                                                                                              | 42 – 58 |  |  |  |
| Dense                                                                                                                                   | 25 - 42 |  |  |  |
| Medium 8 – 25                                                                                                                           |         |  |  |  |
| Loose 3-8                                                                                                                               |         |  |  |  |
| Very Loose                                                                                                                              | 0-3     |  |  |  |

The cohesive soils of the London Clay Formation were classified based on the table overpage.

12

| Undrained Shear Strength from Field Inspection/ SPT blow counts (N1)60 or equivalent 'SPT's derived from<br>SHDP results<br>Cohesive Soils (EN ISO 14688-2:2004 & Stroud (1974)) |                                                                 |                                  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|--|--|--|--|--|--|
| Classification                                                                                                                                                                   | Classification Undrained Shear Strength (kPa) Field Indications |                                  |  |  |  |  |  |  |
| Extremely High                                                                                                                                                                   | >300                                                            | -                                |  |  |  |  |  |  |
| Very High                                                                                                                                                                        | 150 - 300                                                       | Brittle or very tough            |  |  |  |  |  |  |
| High                                                                                                                                                                             | 75 – 150                                                        | Cannot be moulded in the fingers |  |  |  |  |  |  |
| Medium                                                                                                                                                                           | Can be moulded in the fingers by strong<br>pressure             |                                  |  |  |  |  |  |  |
| Low                                                                                                                                                                              | 20-40                                                           | Easily moulded in the fingers    |  |  |  |  |  |  |
| Very Low                                                                                                                                                                         | Exudes between fingers when squeezed in the fist                |                                  |  |  |  |  |  |  |
| Extremely Low                                                                                                                                                                    | <10                                                             | -                                |  |  |  |  |  |  |

An interpretation of the in-situ geotechnical testing results is given in the table below.

| Interpretation of In-situ Geotechnical Testing Results (SPT and SHDP) |                                                                  |                                                     |                       |        |                                                      |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|-----------------------|--------|------------------------------------------------------|--|
|                                                                       | SPT "N" Blow                                                     | Equivalent                                          | Soil Ty               | vpe    |                                                      |  |
| Strata                                                                | Counts/Equivalent<br>SPT "N" Blow<br>Counts derived<br>from SHDP | Undrained Shear<br>Strength (kPa)<br>Cohesive Soils | Cohesive Granular     |        | Trial Hole/s                                         |  |
| Granular Head<br>Deposits<br>(possibly Made<br>Ground)                | 18                                                               | -                                                   | -                     | Medium | WS2 (0.65 – 1.50m bgl)                               |  |
| London Clay<br>Formation                                              | 7 - 42                                                           | 35 - 210                                            | Low – Very High       | -      | WS1 (0.40 – 12.45m bgl)<br>WS2 (1.50 – 12.45m bgl)   |  |
| Assumed London<br>Clay Formation*                                     | 17 - 177                                                         | 85 - >300                                           | High – Extremely High | -      | DP1 (12.50 – 16.20m bgl)<br>DP2 (12.50 – 16.30m bgl) |  |

\*based on results of the dynamic probing.

It must be noted that field measurements of undrained shear strength are dependent on a number of variables including disturbance of sample, method of investigation and also the size of specimen or test zone etc.

The test results are presented on the trial hole log within Appendix B.

#### 5.2 Laboratory Geotechnical Testing

A programme of geotechnical laboratory testing scheduled by Ground and Water Limited and carried out by K4 Soils Laboratory and QTS Environmental Limited was undertaken on samples recovered from the London Clay Formation. The results of the tests are presented in Appendix C.

The test procedures used were generally in accordance with the methods described in BS1377:1990.

Details of the specific tests used in each case are given overpage.

| Standard Methodology for Laboratory Geotechnical Testing                                                                                                                                     |                                                                  |                 |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------|--|--|--|--|
| Test                                                                                                                                                                                         | Standard                                                         | Number of Tests |  |  |  |  |
| Atterberg Limit Tests                                                                                                                                                                        | BS1377:1990:Part 2:Clauses 3.2, 4.3 & 5                          | 6               |  |  |  |  |
| Moisture Content                                                                                                                                                                             | BS1377:1990:Part 2:Clause 3.2                                    | 8               |  |  |  |  |
| Swelling Test                                                                                                                                                                                | BS1377:1990:Part 5:Clause 3 & 4                                  | 1               |  |  |  |  |
| BRE Special Digest 1 (incl. Ph, Electrical<br>Conductivity, Total Sulphate, W/S<br>Sulphate, Total Chlorine, W/S Chlorine,<br>Total Sulphur, Ammonium as NH4, W/S<br>Nitrate, W/S Magnesium) | BRE Special Digest 1 "Concrete in Aggressive Ground (BRE, 2005). | 2               |  |  |  |  |

#### 5.2.1 Atterberg Limit Tests

A précis of Atterberg Limit Tests undertaken on six samples of the London Clay Formation can be seen tabulated below.

| Atterberg Limit Tests Results Summary |                                                          |                   |                |                            |       |      |      |
|---------------------------------------|----------------------------------------------------------|-------------------|----------------|----------------------------|-------|------|------|
| Stratum/Trial<br>Hole/Depth (m        | Stratum/Trial Moisture Passing 425 Modified Soil Class C | Consistency Index | Volume<br>Pote | Volume Change<br>Potential |       |      |      |
| bgl)                                  | Content (%)                                              | µm sieve (%)      | PI (%)         |                            | (Ic)  | BRE  | NHBC |
| London Clay<br>Formation<br>WS1/2.70  | 31                                                       | 100               | 47.00          | CV                         | Stiff | High | High |
| London Clay<br>Formation<br>WS1/6.00  | 30                                                       | 100               | 40.00          | СН                         | Stiff | High | High |
| London Clay<br>Formation<br>WS1/11.00 | 27                                                       | 100               | 52.00          | CV                         | Stiff | High | High |
| London Clay<br>Formation<br>WS2/3.00  | 31                                                       | 100               | 52.00          | CV                         | Stiff | High | High |
| London Clay<br>Formation<br>WS2/7.60  | 29                                                       | 100               | 48.00          | CV                         | Stiff | High | High |
| London Clay<br>Formation<br>WS2/11.60 | 27                                                       | 99                | 45.54          | CV                         | Stiff | High | High |

NB: NP – Non-plastic

BRE Volume Change Potential refers to BRE Digest 240 (based on Atterberg results) Soil Classification based on British Soil Classification System. Consistency Index (Ic) based on BS EN ISO 14688-2:2004.

#### 5.2.2 Comparison of Soil's Moisture Content with Index Properties

#### 5.2.2.1 Liquidity Index Analyses

The results of the Atterberg Limit tests undertaken on six samples of the London Clay Formation were analysed to determine the Liquidity Index of the samples. This gives an indication as to whether the samples recovered showed a moisture deficit and their degree of consolidation. The results are tabulated overpage.

The test results are presented within Appendix C.

| Liquidity Index Calculations Summary                                                                   |                            |                         |                                     |                    |                          |  |
|--------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|-------------------------------------|--------------------|--------------------------|--|
| Stratum/Trial Hole/Depth                                                                               | Moisture<br>Content<br>(%) | Plastic<br>Limit<br>(%) | Modified<br>Plasticity<br>Index (%) | Liquidity<br>Index | Result                   |  |
| London Clay Formation<br>WS1/2.70m bgl (Brown and grey silty CLAY with traces of<br>selenite crystals) | 31                         | 30                      | 47.00                               | 0.02               | Heavily Overconsolidated |  |
| London Clay Formation<br>WS1/6.00m bgl (Brown silty CLAY with numerous selenite<br>crystals)           | 30                         | 28                      | 40.00                               | 0.05               | Heavily Overconsolidated |  |
| London Clay Formation<br>WS1/11.00m bgl (Dark grey silty CLAY)                                         | 27                         | 25                      | 52.00                               | 0.04               | Heavily Overconsolidated |  |
| London Clay Formation<br>WS2/3.00m bgl (Brown and grey silty CLAY)                                     | 31                         | 28                      | 52.00                               | 0.06               | Heavily Overconsolidated |  |
| London Clay Formation<br>WS2/7.60m bgl (Brown silty CLAY with traces of selenite<br>crystals)          | 29                         | 27                      | 48.00                               | 0.04               | Heavily Overconsolidated |  |
| London Clay Formation<br>WS2/11.60m bgl (Dark grey silty CLAY with rare fine<br>gravel)                | 27                         | 25                      | 45.54                               | 0.04               | Heavily Overconsolidated |  |

The samples of the London Clay Formation tested were shown to be heavily overconsolidated.

#### 5.2.2.2 Liquid Limit

A comparison of the soil moisture content and the liquid limit can be seen tabulated overpage.

| Moisture Content vs. Liquid Limit                                                                      |                                 |                          |                          |                                                           |
|--------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|--------------------------|-----------------------------------------------------------|
| Strata/Trial Hole/Depth/Soil Description                                                               | Moisture<br>Content<br>(MC) (%) | Liquid Limit<br>(LL) (%) | 40% Liquid<br>Limit (LL) | Result                                                    |
| London Clay Formation<br>WS1/2.70m bgl (Brown and grey silty CLAY with traces of<br>selenite crystals) | 31                              | 77                       | 30.8                     | MC > 0.4 x LL<br>(Not Significantly Desiccated)           |
| London Clay Formation<br>WS1/6.00m bgl (Brown silty CLAY with numerous selenite<br>crystals)           | 30                              | 68                       | 27.2                     | MC > 0.4 x LL<br>(Not Significantly Desiccated)           |
| London Clay Formation<br>WS1/11.00m bgl (Dark grey silty CLAY)                                         | 27                              | 77                       | 30.8                     | MC < 0.4 x LL<br>(Potential Significant Moisture Deficit) |
| London Clay Formation<br>WS2/3.00m bgl (Brown and grey silty CLAY)                                     | 31                              | 80                       | 32                       | MC < 0.4 x LL<br>(Potential Significant Moisture Deficit) |
| London Clay Formation<br>WS2/7.60m bgl (Brown silty CLAY with traces of selenite<br>crystals)          | 29                              | 75                       | 30                       | MC < 0.4 x LL<br>(Potential Significant Moisture Deficit) |
| London Clay Formation<br>WS2/11.60m bgl (Dark grey silty CLAY with rare fine<br>gravel)                | 27                              | 71                       | 28.4                     | MC < 0.4 x LL<br>(Potential Significant Moisture Deficit) |

The results in the table above indicated that a potential significant moisture deficit was present within four samples of the London Clay Formation tested (WS1/11.00m, WS2/3.00m, WS2/7.60m and WS2/11.60m bgl). The moisture content values were below 40% of the liquid limits.

The samples were described as a brown to dark grey silty clay with traces of selenite crystals noted within the samples at WS1/2.70m, WS1/6.00m and WS2/7.60m bgl and rare fine gravel noted within the sample at WS2/11.60m bgl. Roots were noted to 2.70m and 2.00m bgl in WS1 and WS2 respectively. Therefore the potential moisture deficits recorded within the samples are likely to be associated the heavily overconsolidated nature of the soils and the presence of fine gravels within the sample at WS2/11.60m bgl rather than the moisture demand from roots/trees. Black, fibrous, possibly decaying roots/rootlets were noted to 3.00m bgl within WS2 and therefore the moisture deficit noted within the sample at WS2/3.00m bgl could be associated with the moisture demand from roots/trees.

# 5.2.3 Moisture Content Profiling

Moisture content versus depth plots for WS1 and WS2 can be seen within Figure 6 and Figure 7 respectively.

The moisture content profile for WS1 shows an expected decrease in moisture content with depth with subtle variations in moisture content likely caused by minor variations in geology. The results of the moisture content profiling therefore do not indicate a potential moisture deficit within the soils of WS1.

The moisture content profile for WS2 shows a variation in moisture content with depth. The moisture content was noted to increase with depth to 3.00m bgl indicating a slight moisture

deficit at the near surface. Roots were noted to 2.00m bgl with black, fibrous, possibly decaying roots/rootlets noted to 3.00m bgl. Therefore the potential moisture deficit noted is likely to be associated with the moisture demand from roots/trees.

#### 5.2.4 Swelling Test

A one dimensional Swelling Test was undertaken on a disturbed sample obtained from WS1 at a depth of 3.70m bgl.

The results of the test are tabulated below.

| One Dimensional Consolidation Test – Swelling                                                                                                                             |         |                |                            |                            |                        |            |                             |                                |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------------------------|----------------------------|------------------------|------------|-----------------------------|--------------------------------|-------------------------------|
| Stratum/Depth                                                                                                                                                             |         | Height<br>(mm) | Moisture<br>Content<br>(%) | Bulk<br>Density<br>(Mg/m³) | Dry Density<br>(Mg/m³) | Void Ratio | Degree of<br>Saturation (%) | Particle<br>Density<br>(Mg/m³) | Swelling<br>Pressure<br>(kpa) |
| London Clay<br>Formation<br>WS1/3.70m bgl<br>(Brown and orangish<br>brown mottled bluish<br>grey slightly fissured<br>silty CLAY with<br>occasional selenite<br>crystals) | Initial | 16.00          | 30.2                       | 1.86                       | 1.43                   | 0.89       | 91                          | 2.70                           | 50                            |
|                                                                                                                                                                           | Final   | 16.51          | 36.3                       | 1.88                       | 1.38                   | 0.95       | 103                         | -                              | -                             |

It must be noted that the sample was remoulded and this must be taken into account in final design.

#### 5.2.5 BRE Special Digest 1

In accordance with BRE Special Digest 1 'Concrete in Aggressive Ground' (BRE, 2005) two samples of the London Clay Formation (WS1/4.00–4.45m and WS2/9.80m bgl) were scheduled for laboratory analysis to determine parameters for concrete specification.

The results are given within Appendix D and a summary is tabulated below.

| Summary of Results of BRE Special Digest Testing |       |         |         |  |
|--------------------------------------------------|-------|---------|---------|--|
| Determinand                                      | Unit  | Minimum | Maximum |  |
| рН                                               | -     | 7.8     | 8.2     |  |
| Ammonium as NH <sub>4</sub>                      | mg/kg | 9.9     | 32.8    |  |
| Sulphur                                          | %     | 0.44    | 0.66    |  |
| Chloride (water soluble)                         | mg/kg | 157     | 187     |  |
| Magnesium (water soluble)                        | mg/l  | 68      | 240     |  |
| Nitrate (water soluble)                          | mg/kg | <3      | <3      |  |
| Sulphate (water soluble)                         | mg/l  | 957     | 3220    |  |
| Sulphate (total)                                 | mg/kg | 3117    | 9168    |  |

GWPR1403/GIR/November 2015 Ground Investigation Report

# 5.3 Chemical Laboratory Testing – Human Health Risk Assessment

A programme of chemical laboratory testing, scheduled by Ground and Water Limited and carried out by QTS Environmental Limited, was undertaken on two samples of Made Ground (WS1/0.25m and WS2/0.25m bgl).

A Desk Study and full scale contamination assessment were not part of the remit of this report. However, two soil samples were sent off for analysis for a broad range of contaminants in accordance with DEFRA/CLEA methodologies. The samples tested and the reasons for testing can be seen tabulated below.

| Methodology for Sampling Locations and Chemical Laboratory Testing |               |                                      |  |  |
|--------------------------------------------------------------------|---------------|--------------------------------------|--|--|
| Trial Hole                                                         | Depth (m bgl) | Sampling Strategy                    |  |  |
| WS1                                                                | 0.25m         | Representative sample of Made Ground |  |  |
| WS2                                                                | 0.25m         | Representative sample of Made Ground |  |  |

The site comprised a rectangular shaped plot of land,  $\sim$ 590m<sup>2</sup> (0.059 ha) in area with two sampling locations, given an unknown hotspot shape, the sampling density means that a hotspot with an area of approximately 442.5m<sup>2</sup> and a radius of approximately 11.9m would be encountered (CLR 4).

Soil sampling depths were chosen to reflect the receptors of concern, human health, and typically comprised a surface or near surface sample and then at approximately 0.50m depth increments thereafter, extending into the underlying natural soils. The receptors relevant to the sampling depths can be seen below:

| Near surface samples     | Direct ingestion, dermal contact and dust inhalation.<br>Protection of end-users and maintenance workers e.g. Landscape<br>Gardeners.<br>Protection of shallow rooted plants. |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| >0.5m below ground level | Protection of deep rooted plants.                                                                                                                                             |  |  |  |

The depth of soil sampling can be seen within the trial hole logs presented in Appendix B.

The analysis suite is presented below and comprised:

- Semi Metals and Heavy Metals incl. Arsenic, Cadmium, Chromium (incl. Hexavalent Chromium), Copper, Lead, Mercury, Nickel, Selenium, Vanadium, (WS1/0.25m and WS2/0.25m bgl);
- Asbestos Screen (WS1/0.25m and WS2/0.25m bgl);
- Polycyclic Aromatic Hydrocarbons (PAHs) incl. Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Benzo(ghi)perylene (WS1/0.25m and WS2/0.25m bgl);
- Fuel Oils Speciated TPH including full aliphatic/aromatic split (WS2/0.25m bgl);
- BTEX compounds (Benzene, Toluene, Ethylbenzene, Xylene) and MTBE used as marker compounds for Volatile Organic Compounds (VOCs) (WS2/0.25m bgl).

The chemical laboratory results are presented in Appendix D.

#### 5.3.1 Soil Assessment Criteria

The derivation of Soil Assessment Criteria used within this report can be seen within Appendix E.

#### 5.3.2 Determination of Representative Contamination Concentration

At the time of reporting, November 2015, the full extent of proposed development was not known to Ground and Water Limited however the development was understood to include the construction of a basement founded at 5.00 - 6.00m bgl.

The results of the chemical laboratory testing were compared to the LQM/CIEH Suitable 4 Use Levels (S4UL), and C4SL LLTC for Lead, for a *'Residential with homegrown produce'* land-use scenario, as this was considered the most appropriate land-use scenario. The C4SL LLTC for Lead was compared to a *'Residential with homegrown produce'* land-use scenario.

Where no LQM/CIEH S4UL/C4SL LLTC was available for a particular determinant then preliminary reference was made to the laboratory detection limit of the determinant. If a positive concentration was noted then further risk assessment was undertaken.

For Cyanide, where no SGC/GAC or C4SL LLTC was available a Site Specific Assessment Criteria of 10mg/kg was adopted. This is based on ICRCL 59/83, TCL, ATRISK (SOIL) Screening Value and Dutch Intervention Value (ranging from 20 - 34mg/kg). Therefore, a SSAC of ~10mg/kg is considered conservative.

Where a contaminant of concern's LQM/CIEH S4UL/C4SL LLTC varies according to the Soil's Organic Matter (SOM), the SOM recorded for each soil sample was used to derive the appropriate SGV/GAC. The average SOM of the samples analysed was 2.7% (SOM ranged between 2.5 - 2.8%).

The results of the comparison of the representative contaminant concentrations are presented in the table overpage:

| Soil Guideline Values and General Acceptance Criteria Results |                                                                           |  |  |  |  |
|---------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
|                                                               | Sample Location                                                           |  |  |  |  |
|                                                               | Where available LQM/CIEH S4UL/, CSL4 LLTC or GAC were exceeded for        |  |  |  |  |
| Substance                                                     | relevant land-use scenario                                                |  |  |  |  |
|                                                               | "Residential with home-grown produce" and "Residential with plant untake" |  |  |  |  |
|                                                               | Land-Use Scenarios                                                        |  |  |  |  |
| Arsenic                                                       | None                                                                      |  |  |  |  |
| Boron                                                         | None                                                                      |  |  |  |  |
| Cadmium                                                       | None                                                                      |  |  |  |  |
| Chromium (III)                                                | None                                                                      |  |  |  |  |
| Hexavalent Chromium (VI)                                      | None                                                                      |  |  |  |  |
| Copper                                                        | None                                                                      |  |  |  |  |
| Lead                                                          | None                                                                      |  |  |  |  |
| Mercury (Elemental)                                           | None                                                                      |  |  |  |  |
| Nickel                                                        | None                                                                      |  |  |  |  |
| Selenium                                                      | None                                                                      |  |  |  |  |
| Vanadium                                                      | None                                                                      |  |  |  |  |
| Zinc                                                          | None                                                                      |  |  |  |  |
| Cyanide (Total)                                               | None                                                                      |  |  |  |  |
| Total Phenol                                                  | None                                                                      |  |  |  |  |
| Naphthalene                                                   | None                                                                      |  |  |  |  |
| Acenapthylene                                                 | None                                                                      |  |  |  |  |
| Acenapthene                                                   | None                                                                      |  |  |  |  |
| Fluorene                                                      | None                                                                      |  |  |  |  |
| Phenanthrene                                                  | None                                                                      |  |  |  |  |
| Anthracene                                                    | None                                                                      |  |  |  |  |
| Fluoranthene                                                  | None                                                                      |  |  |  |  |
| Pyrene                                                        | None                                                                      |  |  |  |  |
| Benzo(a)anthracene                                            | None                                                                      |  |  |  |  |
| Chrysene                                                      | None                                                                      |  |  |  |  |
| Benzo(b)fluoranthene                                          | None                                                                      |  |  |  |  |
| Benzo(k)fluoranthene                                          | None                                                                      |  |  |  |  |
| Benzo(a)pyrene                                                | None                                                                      |  |  |  |  |
| Indeno(1,2,3-cd)pyrene                                        | None                                                                      |  |  |  |  |
| Dibenz(a,h)anthracene                                         | None                                                                      |  |  |  |  |
| Benzo(ghi)perylene                                            | None                                                                      |  |  |  |  |
| TPH C5 – C6 (aliphatic)                                       | None                                                                      |  |  |  |  |
| TPH C6 – C8 (aliphatic)                                       | None                                                                      |  |  |  |  |
| TPH C8 - C10 (alipnatic)                                      | None                                                                      |  |  |  |  |
| TPH C10 - C12 (alipnatic)                                     | None                                                                      |  |  |  |  |
| TPH C12 - C16 (aliphatic)                                     | None                                                                      |  |  |  |  |
| TPH C16 - C21 (aliphatic)                                     | None                                                                      |  |  |  |  |
| TPH C21 - C34 (aliphauc)                                      | None                                                                      |  |  |  |  |
| TPU C7 C9 (aromatic)                                          | None                                                                      |  |  |  |  |
| TPH $C_{1} = C_{0}$ (dromatic)                                | None                                                                      |  |  |  |  |
| TPH $CS = C10$ (aromatic)                                     | None                                                                      |  |  |  |  |
| TPH C12 – C16 (aromatic)                                      | None                                                                      |  |  |  |  |
| TPH $C16 - C21$ (aromatic)                                    | None                                                                      |  |  |  |  |
| TPH C21 - C35 (aromatic)                                      | None                                                                      |  |  |  |  |
| Renzene                                                       | None                                                                      |  |  |  |  |
| Toluene                                                       | None                                                                      |  |  |  |  |
| Fthvlhenzene                                                  | None                                                                      |  |  |  |  |
| Xvlene (o, m & p)                                             | None                                                                      |  |  |  |  |
| MTBE                                                          | None                                                                      |  |  |  |  |
| Asbestos Screen                                               | None                                                                      |  |  |  |  |

# Chemical laboratory testing of the Made Ground revealed no elevated levels of

20

determinants above the guideline levels for a '*Residential with homegrown produce'* land-use scenarios.

In addition, the intrusive investigation did not reveal any visual or olfactory evidence to suggest any hydrocarbon-type contamination in the trial holes excavated on the site. The chemical laboratory results have verified that no elevated concentrations of aliphatic/aromatic hydrocarbons ( $C_5$ - $C_{35}$ ) or BTEX compounds are present in the soils underlying the site.

#### 6.0 ENGINEERING CONSIDERATIONS

#### 6.1 Soil Characteristics and Geotechnical Parameters

Based on the results of the intrusive investigation and geotechnical laboratory testing the following interpretations have been made with respect to engineering considerations.

• Made Ground was proved from ground level to 0.30 – 0.65m bgl.

As a result of the inherent variability Made Ground, it is usually unpredictable in terms of bearing capacity and settlement characteristics. Foundations should, therefore, be taken through any Made Ground and either into, or onto a suitable underlying natural stratum of adequate bearing characteristics.

Made Ground may be found to deeper depth at other locations on the site, especially close to former structures/foundations and service runs.

 Soils described as representative of Head Deposits, possibly Made Ground, were encountered underlying the Made Ground within WS2 from 0.65m to 1.50m bgl and for the remaining depth of TP/FE1, from 0.30m to 0.70m bgl. The deposits comprised a medium dense mid-brown to orange brown clayey gravelly sand, locally a sandy gravelly clay. The sand was medium to coarse grained. The gravel was fine to medium, sub-angular to rounded flint. From 0.50m bgl within TP/FE1 the deposits comprised a mid-brown very slightly gravelly silty clay. The gravel was rare, fine, sub-angular to sub-rounded flint.

The medium granular Head Deposits, possibly Made Ground was considered likely to have **low volume change potential** in accordance with BRE240 and NHBC Standards Chapter 4.2.

The cohesive Head Deposits, possibly Made Ground was considered likely to have **medium to high volume change potential** in accordance with BRE240 and NHBC Standards Chapter 4.2.

Given their variable and limited thickness and that the basement construction will likely bypass these soils, the Head Deposits (possibly Made Ground) have not been considered as a founding stratum for the proposed development.

 Soils described as representative of the London Clay Formation were encountered underlying the Made Ground within WS1 from 0.40m bgl and the Head Deposits (possibly Made Ground) within WS2 from 1.50m bgl. The London Clay Formation was proved for the remaining depth of both boreholes, a maximum of 12.45m bgl. The results of the dynamic probing indicated that the London Clay Formation was proved for the remaining depth of DP1 and DP2, a maximum depth of 16.20m and 16.30m bgl respectively.

The deposits generally comprised a mid to light brown, with light grey mottling, silty clay. Claystones, fine selenite crystals and sandy/silty lenses were noted with depth. From 10.00m bgl within WS1 and from 9.50m bgl within WS2 the deposits were noted to become dark grey brown to dark grey and rare shell fragments were noted within WS2.

The London Clay Formation was shown to have low to very high undrained shear strength (35 - 210kPa). The assumed London Clay Formation from the results of the dynamic probing was shown to have high to extremely high undrained shear strength (85 - >300kPa).

Geotechnical testing revealed the soils of the London Clay Formation to have a **high volume change potential** in accordance with both BRE240 and NHBC Standards Chapter 4.2. Consistency Index calculations indicated these soils to be soft to stiff. The deposits of the London Clay Formation were shown to be heavily overconsolidated cohesive soils.

Potential significant moisture deficits were present within four samples of the London Clay Formation tested (WS1/11.00m, WS2/3.00m, WS2/7.60m and WS2/11.60m bgl). The moisture content values were below 40% of the liquid limits. The samples were described as a brown to dark grey silty clay with traces of selenite crystals noted within the samples at WS1/2.70m, WS1/6.00m and WS2/7.60m bgl and rare fine gravel noted within the sample at WS2/11.60m bgl. Roots were noted to 2.70m and 2.00m bgl in WS1 and WS2 respectively. Therefore the potential moisture deficits recorded within the samples are likely to be associated the heavily overconsolidated nature of the soils and the presence of fine gravels within the sample at WS2/11.60m bgl rather than the moisture demand from roots/trees. Black, fibrous, possibly decaying roots/rootlets were noted to 3.00m bgl within WS2 therefore the moisture deficit noted within the sample at WS2/3.00m bgl could be associated with the moisture deficit at the near surface (<3.0m bgl) which was likely to be associated with the moisture deficit at the near surface (<3.0m bgl) which was likely to be associated with the moisture deficit at from roots/trees.

The heavily overconsolidated cohesive soils of the London Clay Formation were considered a suitable bearing stratum for moderately loaded footings/foundations. Settlements on loading are likely to be moderate.

The final design of foundations will need to take into account the volume change potential of the soil, the depth of root penetration and/or desiccation and the likely serviceability and settlement requirements of the proposed structure. These parameters for design are discussed in the next section of this report.

• No groundwater was encountered during the construction of the trial holes. During two return visits to the site, standing water levels of 2.59m and 0.94m bgl were recorded within WS1 with water levels of 0.52m and 0.23m bgl recorded within WS2. Standing water was noted at the base of the trial pit foundation exposure during construction.

The standing water levels recorded within the monitoring wells during the two return visits are likely to represent surface water or perched groundwater migrating through the Made Ground, granular Head Deposits (possibly Made Ground), claystone bands and/or the silty/sandy lenses in the London Clay Formation and collecting within the installed standpipe. Standing water was noted at the base of the trial pit foundation exposure during construction.

A rising head test was undertaken within WS2 to provide an indication as to the rate of water ingress into the monitoring well. An infiltration rate of  $5.82 \times 10^{-6}$  was recorded (standing water level rose 0.28m in 10 minutes).

 Roots were noted to 2.70m and 2.00m bgl in WS1 and WS2 respectively. Black, fibrous, 23 possibly decaying roots/rootlets were noted to 3.00m bgl within WS2.











| Project:<br>Land off Middlefield, South Har<br>6NE | Figure 6               |              |  |  |  |
|----------------------------------------------------|------------------------|--------------|--|--|--|
| Client:<br>Liv-International                       | Date:<br>November 2015 |              |  |  |  |
| Photographs: Foundation<br>Exposure TP/FE1         | Ref:<br>GWPR1403       | ground&water |  |  |  |

# APPENDIX A Conditions and Limitations

The ground is a product of continuing natural and artificial processes. As a result, the ground will exhibit a variety of characteristics that vary from place to place across a site, and also with time. Whilst a ground investigation will mitigate to a greater or lesser degree against the resulting risk from variation, the risks cannot be eliminated.

The investigation, interpretations, and recommendations given in this report were prepared for the sole benefit of the client in accordance with their brief; as such these do not necessarily address all aspects of ground behaviour at the site. No liability is accepted for any reliance placed on it by others unless specifically agreed in writing.

Current regulations and good practice were used in the preparation of this report. An appropriately qualified person must review the recommendations given in this report at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

This report is based on readily available geological records, the recorded physical investigation, the strata observed in the works, together with the results of completed site and laboratory tests. Whilst skill and care has been taken to interpret these conditions likely between or below investigation points, the possibility of other characteristics not revealed cannot be discounted, for which no liability can be accepted. The impact of our assessment on other aspects of the development required evaluation by other involved parties.

The opinions expressed cannot be absolute due to the limitations of time and resources within the context of the agreed brief and the possibility of unrecorded previous in ground activities. The ground conditions have been samples or monitored in recorded locations and tests for some of the more common chemicals generally expected. Other concentrations of types of chemicals may exist. It was not part of the scope of this report to comment on environment/contaminated land considerations.

The conclusions and recommendations relate to the land off Middlefield, South Hampstead, London NW8 6NE.

Trial hole is a generic term used to describe a method of direct investigation. The term trial pit, borehole or window sampler borehole implies the specific technique used to produce a trial hole.

The depth to roots and/or of desiccation may vary from that found during the investigation. The client is responsible for establishing the depth to roots and/or of desiccation on a plot-by-plot basis prior to the construction of foundations. Where trees are mentioned in the text this means existing trees, recently removed trees (approximately 15 years to full recovery on cohesive soils) and those planned as part of the site landscaping.

Ownership of copyright of all printed material including reports, laboratory test results, trial pit and borehole log sheets, including drillers log sheets, remain with Ground and Water Limited. Licence is for the sole use of the client and may not be assigned, transferred or given to a third party.

GWPR1403/GIR/November 2015 Ground Investigation Report

# APPENDIX B Fieldwork Logs
| roj | ect Na           | ame                |                 |                           | Pi           | www.g           | roundandv | /ater.co.uk      |                                                                                                                  | Sheet 1 o<br>Hole Typ           | of 2<br>De |
|-----|------------------|--------------------|-----------------|---------------------------|--------------|-----------------|-----------|------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|
| an  | d off N          | Viddlefiel         | d,              |                           | G            | WPR1            | 403       | Co-ords:         | : -                                                                                                              | WLS                             |            |
| OC  | ation:           | South              | Hamps           | stead, London             | NW8 6        | NE              |           | Level:           | -                                                                                                                | Scale<br>1:50                   |            |
| lie | nt:              | Liv Inte           | ernatio         | nal                       |              |                 |           | Dates:           | 25/09/2015                                                                                                       | Logged E<br>JD                  | Зу         |
| II  | Water<br>Strikes | Sampl<br>Depth (m) | es & In<br>Type | Situ Testing<br>Results   | Depth<br>(m) | Level<br>(m AOD | Legend    |                  | Stratum Description                                                                                              |                                 |            |
|     |                  | 0.10               | D               |                           | 0.20         |                 |           | MADE GROUN       | D: Tarmac                                                                                                        |                                 | _          |
|     |                  | 0.50               | D               |                           | 0.40         |                 | 200000    | to coarse graine | D: Reddisn-brown very gravelly sanded. Gravel is abundant, fine to coars<br>sub-angular brick, concrete and tarr | a. Sand is medium<br>le,<br>nac | Æ          |
|     |                  | 0.80               | D               |                           |              |                 |           | LONDON CLAY      | FORMATION: Light brown silty CL                                                                                  | AY with light grey              | -          |
|     |                  | 1.00<br>1.00       | SPT<br>SPTLS    | N=7<br>(1,0/              |              |                 |           | Yellow-orange s  | 0.80m bgl.<br>sandv inclusions noted from ~1.00m                                                                 | bal. Clavstone                  | -1         |
|     | 10               |                    |                 | 1,2,2,2)                  |              |                 |           | noted with depth | h.                                                                                                               | arrow and mara                  | -          |
| ð   |                  | 1.70               | D               |                           |              |                 | 1         | abundant from ~  | ~6.00m bgl.                                                                                                      | arger and more                  | -          |
|     |                  | 2.00               | SPT<br>SPTLS    | N=9                       |              |                 | 1         | Colour becomes   | s dark grey-brown from ~10.00m bgl                                                                               |                                 | -2         |
| ġ   |                  | 2.00               |                 | 2,2,2,3)                  |              |                 |           |                  |                                                                                                                  |                                 | -          |
|     |                  | 2.70               | D               |                           |              |                 |           |                  |                                                                                                                  |                                 | -          |
| ģ   |                  | 3.00               | SPT             | N=13                      |              |                 |           |                  |                                                                                                                  |                                 | -3         |
|     |                  | 3.00               | SPTLS           | (2,3/<br>3,3,3,4)         |              |                 |           |                  |                                                                                                                  |                                 | -          |
| į,  |                  | 3 70               |                 |                           |              |                 | 15        |                  |                                                                                                                  |                                 | -          |
|     |                  | 4 00               | SPT             | N=21                      |              |                 |           |                  |                                                                                                                  |                                 | -4         |
| ŝ   |                  | 4.00               | SPTLS           | (3,4/<br>5,6,5,5)         |              |                 | 115       |                  |                                                                                                                  |                                 |            |
|     |                  |                    |                 |                           |              | 10              | 1.5       |                  |                                                                                                                  |                                 | -          |
| 5   |                  | 4.70               | D               |                           |              |                 | 1.0       |                  |                                                                                                                  |                                 | -          |
|     |                  | 5.00<br>5.00       | SPTLS           | N=18<br>(4,4/<br>4,5,4,5) |              |                 |           |                  |                                                                                                                  |                                 | - 5        |
| č   |                  | 5.70               | D               |                           |              |                 |           |                  |                                                                                                                  |                                 | -          |
|     |                  | 6.00               | SPT<br>SPTLS    | N=27<br>(5.6/             |              |                 |           |                  |                                                                                                                  |                                 | -6         |
|     |                  | 0.00               | 0 20            | 6,7,7,7)                  |              |                 | 100       |                  |                                                                                                                  |                                 | -          |
| č   |                  | 6.70               | D               |                           |              |                 |           |                  |                                                                                                                  |                                 | -          |
| 9   |                  | 7.00               | SPT             | N=27                      |              |                 |           |                  |                                                                                                                  |                                 | -7         |
|     |                  | 7.00               |                 | 7,7,6,7)                  |              |                 | 1         |                  |                                                                                                                  |                                 | -          |
| 8   |                  | 7.70               | D               |                           |              |                 |           |                  |                                                                                                                  |                                 | -          |
|     |                  | 8.00               | SPT             | N=35                      |              |                 |           |                  |                                                                                                                  |                                 | -8         |
|     |                  | ð.UU               | SPILS           | (6,77<br>8,9,9,9)         |              |                 |           |                  |                                                                                                                  |                                 | -          |
|     |                  | 8.70               | D               |                           |              |                 |           |                  |                                                                                                                  |                                 | -          |
|     |                  | 9.00               | SPT             | N=34                      |              |                 |           |                  |                                                                                                                  |                                 | -9         |
|     |                  | 9.00               | SPTLS           | (7,7/<br>8,9,8,9)         |              |                 | 1.8.2     |                  |                                                                                                                  |                                 | -          |
|     |                  | 0.70               |                 |                           |              |                 | 565       |                  |                                                                                                                  |                                 | -          |
|     |                  | 9.70               |                 |                           |              |                 |           |                  |                                                                                                                  |                                 | -          |
| -m  | arks:            | No arou            | Type<br>ndwate  | Results<br>er encountered | <u> </u>     |                 |           |                  | Continued next sheet                                                                                             | -                               | -          |
|     |                  | Thin, fib          | rous ro         | oots noted to 2           | .70m b       | gl.             |           |                  |                                                                                                                  |                                 |            |

| gn<br>&v | vate             | a<br>r                                             |                                                      |                                                                                  |                                      | Tel: 03<br>email:<br>www.g | 333 600 12<br>enquiries@<br>roundandv | 21<br>)groundandwate<br>vater.co.uk                                                        | er.co.uk                                                                                                                                                          | WS1<br>Sheet 2 o                                        | f 2 |
|----------|------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|----------------------------|---------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----|
| Proj     |                  | ame<br>Aiddlofio                                   | Id                                                   |                                                                                  | Pr                                   |                            | NO.                                   | Co-ords                                                                                    | : -                                                                                                                                                               | Hole Typ                                                | e   |
| Loc      | ation:           | South                                              | iu,<br>Hamps                                         | tead, London                                                                     | NW8 6                                | NE                         | 403                                   | Level:                                                                                     | -                                                                                                                                                                 | Scale<br>1:50                                           |     |
| Clie     | nt:              | Liv Int                                            | ernatior                                             | nal                                                                              | 1                                    | 1                          |                                       | Dates:                                                                                     | 25/09/2015                                                                                                                                                        | Logged E<br>JD                                          | Зy  |
| Well     | Water<br>Strikes | Samp<br>Depth (m)                                  | Ies & In<br>Type                                     | Situ Testing<br>Results                                                          | Depth<br>(m)                         | Level<br>(m AOD            | Legend                                |                                                                                            | Stratum Description                                                                                                                                               | on                                                      |     |
|          |                  | 10.00<br>10.70<br>11.00<br>11.00<br>11.70<br>12.00 | D<br>SPTLS<br>D<br>SPT<br>SPTLS                      | (9,9/<br>9,12,12,9)<br>N=38<br>(8,9/<br>9,9,10,10)<br>N=37<br>(8,9/<br>9,9,10,9) | 12.45                                |                            |                                       | Yellow-oranges<br>noted with deptl<br>Selenite crystals<br>abundant from<br>Colour becomes | 2.30m bgl.<br>sandy inclusions noted from ~1<br>h.<br>s noted from ~2.00m bgl becor<br>~6.00m bgl.<br>s dark grey-brown from ~10.00<br>End of Borehole at 12.45 m | 1.00m bgl. Claystone<br>ming larger and more<br>0m bgl. |     |
|          |                  |                                                    |                                                      |                                                                                  |                                      |                            |                                       |                                                                                            |                                                                                                                                                                   |                                                         | ŀ   |
| Rem      | arks:            | No grou<br>Thin, fik<br>50mm o<br>SHDP u           | I Type<br>undwate<br>prous ro<br>combine<br>undertal | Results<br>or encountered<br>ots noted to 2<br>ed bio-gas and<br>ken from base   | d.<br>2.70m b<br>d groun<br>e of bor | gl.<br>dwatei<br>ehole (   | r monitor<br>(12.00m                  | ing well insta<br>bgl) to 16.20                                                            | alled to 5.00m bgl.<br>m bgl.                                                                                                                                     | AG                                                      | s   |

| roj     | ect Na           | ame                  |              |                           | Pr           | oject N          | lo.                                        | Oc. ender                                                               |                                                                                                                           | Hole Type                                                                                   | 2<br>;      |
|---------|------------------|----------------------|--------------|---------------------------|--------------|------------------|--------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|
| an      | d off N          | Viddlefiel           | d,           |                           | G            | WPR1             | 403                                        | Co-ords:                                                                | -                                                                                                                         | WLS                                                                                         |             |
| C       | ation:           | South I              | Hamps        | stead, London             | NW8 6        | NE               |                                            | Level:                                                                  | -                                                                                                                         | Scale<br>1:50                                                                               |             |
| lie     | nt:              | Liv Inte             | ernatio      | nal                       |              |                  |                                            | Dates:                                                                  | 28/09/2015                                                                                                                | Logged By<br>FW                                                                             | 1           |
| I       | Water<br>Strikes | Sample               | es & In      | Situ Testing              | Depth<br>(m) | Level<br>(m AOD) | Legend                                     |                                                                         | Stratum Description                                                                                                       |                                                                                             |             |
|         |                  | 0.10<br>0.25<br>0.50 | D<br>D<br>D  | roouto                    | 0.40         |                  |                                            | MADE GROUNE<br>sandy gravel. G<br>limestone, black<br>(clinker, tarmac, | D: Concrete/tarmac over a black and<br>iravel is fine to coarse, abundant, pi<br>limestone and black carbonaceous<br>ash) | d red to pink brown<br>nk<br>material                                                       | -           |
|         |                  | 0.80<br>1.00         | D<br>SPT     | N=18                      | 0.65         |                  |                                            | MADE GROUNE<br>occcasional, fine<br>carbonaceous m                      | D: Mid to dark brown gravelly silty cl<br>a, sub-angular to sub-rounded brick<br>naterial (ash/clinker)                   | ay. Gravel is rand                                                                          |             |
|         |                  | 1.00<br>1.40         | SPTLS<br>D   | (3,3/<br>4,5,5,4)         | 1.50         |                  |                                            | HEAD DEPOSIT<br>very clayey grav<br>is medium to coa                    | FS (possible Made Ground): Mid bro<br>elly SAND locally a sandy gravelly o<br>arse grained. Gravel is fine to medi        | wn to orange brown<br>clay. Sand<br>um,                                                     |             |
|         |                  | 1.70                 | D            |                           |              |                  | x - x - x                                  | Sub-angular to re                                                       | Dunded flint.                                                                                                             |                                                                                             | ŀ           |
|         |                  | 2.00<br>2.00         | SPT<br>SPTLS | N=11<br>(1,2/<br>2,3,3,3) |              |                  | × × ×                                      | CLAY.                                                                   | d from ~2.00m bgl and fine selinite                                                                                       | crystals.                                                                                   | -2          |
| 9       |                  | 2 60                 |              |                           |              |                  | x<br>x<br>x                                | Less grey mottlir                                                       | ng with depth.                                                                                                            | -                                                                                           | -           |
|         |                  | 2.00                 |              |                           |              |                  | × 1                                        | Rare fine sand a                                                        | and silt from ~3.00m bg.I                                                                                                 | -                                                                                           | -           |
|         |                  | 3.00<br>3.00         | SPT<br>SPTLS | N=14<br>(2,3/<br>3,4,4,3) |              |                  |                                            |                                                                         |                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-                                                                  | -3          |
|         |                  | 3.80                 | D            | N 47                      | 1.00         |                  |                                            |                                                                         |                                                                                                                           | -<br>-<br>-<br>-<br>-                                                                       |             |
|         |                  | 4.00                 | SPTLS        | (2,3/<br>3,4,5,5)         | 4.00         |                  |                                            | LONDON CLAY<br>selenite crystals                                        | FORMATION: Mid to dark brown si<br>and claystones.                                                                        | Ity CLAY with                                                                               | -4          |
|         |                  | 4.80<br>5.00         | D<br>SPT     | N=20                      |              |                  |                                            |                                                                         |                                                                                                                           | -<br>-<br>-<br>-<br>-                                                                       | -5          |
|         |                  | 5.00                 | SPTLS        | (4,4/<br>4,5,5,6)         |              |                  |                                            |                                                                         |                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-                                                                  | -<br>-<br>- |
| X       |                  | 5.70                 | D            |                           |              |                  | × ×                                        |                                                                         |                                                                                                                           | -                                                                                           | ·           |
| ×.<br>× |                  | 6.00<br>6.00         | SPT<br>SPTLS | N=26<br>(5,5/<br>5,6,7,8) |              |                  |                                            |                                                                         |                                                                                                                           | -<br>                                                                                       | -6          |
| Š       |                  | 6.70                 | D            |                           |              |                  | x = = = = = = = = = = = = = = = = = = =    |                                                                         |                                                                                                                           | -                                                                                           | [           |
|         |                  | 7.00<br>7.00         | SPT<br>SPTLS | N=29<br>(5,6/             |              |                  | (1) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3 |                                                                         |                                                                                                                           | -<br>-<br>-<br>-                                                                            | -7          |
|         |                  | 7.60                 | D            | 7,7,8,7)                  |              |                  | 2 3                                        |                                                                         |                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-                                                                  | -           |
|         |                  | 8.00<br>8.00         | SPT<br>SPTLS | N=33<br>(6,7/<br>7,8,9,9) |              |                  |                                            |                                                                         |                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -8          |
|         |                  | 8.70                 | D            |                           |              |                  | X 38 X                                     |                                                                         |                                                                                                                           | -<br>-<br>-<br>-                                                                            | -           |
|         |                  | 9.00<br>9.00         | SPT<br>SPTLS | N=34<br>(6,7/<br>9.7.9.9) |              |                  |                                            |                                                                         |                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -9          |
|         |                  | 9.80                 | D            | - ,- ,- ,- /              | 9.50         |                  |                                            | LONDON CLAY<br>with selenite crys                                       | FORMATION: Dark brown grey to stals. Rare shell fragments noted.                                                          | dark grey silty CLAY                                                                        | -           |
| X       |                  |                      | Туре         | Results                   |              |                  | x = -x                                     |                                                                         | Continued next sheet                                                                                                      |                                                                                             |             |
| em      | narks:           | No grou              | ndwate       | er encountere             | d.           |                  |                                            |                                                                         |                                                                                                                           |                                                                                             | N           |

| św   | ate              | r                   |                   |                                   |              | email:          | enquiries@<br>roundand | ∠ı<br>⊉groundandwat<br>vater.co.uk | er.co.uk                   | WS2                        | 2         |
|------|------------------|---------------------|-------------------|-----------------------------------|--------------|-----------------|------------------------|------------------------------------|----------------------------|----------------------------|-----------|
|      |                  |                     |                   |                                   |              |                 | 1                      |                                    |                            | Sheet 2                    | of 2      |
| -roj |                  | ame<br>Aiddlaffe'   | d                 |                                   | Pr           |                 | NO.<br>402             | Co-ords                            | : -                        |                            | /pe       |
|      | u OIT N          | South               | u,<br>Hamno       | tead London                       |              |                 | 403                    |                                    |                            | VVLO<br>Soci               | <u> </u>  |
| _006 | ation.           | Jouin               | namps             | idau, LUNUUN                      | 11000        |                 |                        | Level:                             | -                          | 1:50                       |           |
| Clie | nt:              | Liv Inte            | ernatior          | nal                               |              |                 |                        | Dates:                             | 28/09/2015                 | Logged<br>FW               | By        |
| /ell | Water<br>Strikes | Sampl               | es & In           | Situ Testing<br>Results           | Depth<br>(m) | Level<br>(m AOD | Legend                 |                                    | Stratum Description        | on                         |           |
|      |                  | 10.00<br>10.00      | SPT               | N=38<br>(9.9/                     |              |                 | X X                    | LONDON CLA                         | Y FORMATION: Dark brown gr | rey to dark grey silty CLA | Y         |
|      |                  |                     |                   | 10,9,10,9)                        |              |                 | × × ×                  | with selenite of                   |                            | oled.                      | -         |
|      |                  | 10.60               | D                 |                                   |              |                 | x × -                  |                                    |                            |                            | -         |
|      |                  | 11.00               | SPT               | N=37                              |              |                 |                        |                                    |                            |                            | - 11      |
|      |                  | 11.00               | SPTLS             | (9,10/<br>9,9,10,9)               |              |                 |                        |                                    |                            |                            | -         |
|      |                  | 11.60               | П                 |                                   |              |                 |                        |                                    |                            |                            | -         |
|      |                  | 11.00               |                   |                                   |              |                 |                        |                                    |                            |                            | -         |
|      |                  | 12.00               | D                 |                                   |              |                 | x - x                  |                                    |                            |                            | - 12      |
|      |                  |                     |                   |                                   | 12 45        |                 | X X                    |                                    |                            |                            |           |
|      |                  |                     |                   |                                   | 12.40        |                 |                        |                                    | End of Borehole at 12.45 m | 1                          | -         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | - 13      |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            |           |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | -         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            |           |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | - 14      |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | Ē         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | -         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | Ę         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | - 15      |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | ŀ         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | Ē         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | - 16      |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | -         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | Ę         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            |           |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | - 17      |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | ŀ         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | -         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | - 18      |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | Ę         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            |           |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | F         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | - 19      |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | Ę         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | ł         |
|      |                  |                     |                   |                                   |              |                 |                        |                                    |                            |                            | ŀ         |
| 201  |                  | Nerri               | Туре              | Results                           | ]            |                 |                        |                                    |                            |                            |           |
| kem  | arks:            | No grou<br>White fi | nawate<br>ne root | er encountered<br>lets noted to ~ | a.<br>2.00m  | bgl             |                        |                                    |                            |                            |           |
|      |                  | Black, fi           | brous,            | possibly deca                     | ying roo     | ots/roo         | tlets not              | ed to 3.00m                        | bgl.                       | A                          | <b>JS</b> |

|                     | DYNAMIC                                           | PROBING                                                                                     | ;<br>                                     |                 |                 | Probe  | e No DF    | 21        |              |
|---------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|-----------------|--------|------------|-----------|--------------|
| Client              | Liv Interna                                       | tional                                                                                      |                                           |                 |                 | Shee   | t 1 of 2   |           |              |
| Site                | Land off M                                        | liddlefield,                                                                                |                                           |                 |                 | Proje  | ct No GWPR | 1403      |              |
| Ε-                  | N                                                 | ' - L                                                                                       | evel -                                    |                 |                 | Date   | 25/09/2015 | Logged by | Hogg         |
| Depth<br>(m)        | Readings                                          | S                                                                                           | 10                                        | Diagra          | m (N10          | 0 Valu | ies)       | 0         | Torque       |
| (11)                |                                                   |                                                                                             |                                           |                 | <br>  · · · · · |        |            |           | (INITI)<br>0 |
| 1.0                 | ······································            |                                                                                             |                                           |                 |                 |        |            |           | _            |
| 2.0-                | ······································            | - <u>-</u> |                                           |                 |                 |        |            |           | -            |
| 3.0                 | · · · · · · · · · · · · · · · · · · ·             | - <u> </u>                                                                                  |                                           |                 |                 |        |            |           | _            |
| 4.0                 |                                                   | - <u>-</u>                                                                                  |                                           |                 |                 |        |            |           |              |
| 5.0-                |                                                   | - <u> </u>                                                                                  |                                           |                 |                 |        |            |           | _            |
| 6.0                 | — <u> </u>                                        | · · ·                                                                                       |                                           |                 |                 |        |            |           | _            |
| 7.0                 | ∸ <u>→</u> <u>→</u><br>∸ <u>→</u> <u>→</u><br>∸ . | - <u>-</u>                                                                                  |                                           |                 |                 |        |            |           | _            |
| 8.0-                | — <u>·</u><br><br><br>                            | - <u> </u>                                                                                  |                                           |                 |                 |        |            |           | -            |
| 9.0                 |                                                   |                                                                                             |                                           |                 |                 |        |            |           | _            |
| -                   |                                                   | Ground and Water Ltd                                                                        | <b>F</b> =#11:53                          |                 |                 |        |            |           | 0.040        |
| gro                 | und                                               | Tel: 0333 600 1221<br>email: enquiries@groundandwa<br>www.groundandwater.co.uk              | <i>⊢all Heigh</i><br>Iter.co.uk<br>Hammer | n. 75<br>W/t 63 | 50              | Ein    | al Depth   | 6 20      | ACS          |
| CALIFIC AND ADDRESS | Anterio și di segundarmit                         |                                                                                             | Probe Tvi                                 | pe DI           | PSH             | Loc    | a Scale 1  | :50       | 400          |

| L            | DYNAMIC PRO                                           | BING                            |               |                        |               | Probe       | No DP                     |                    |                |
|--------------|-------------------------------------------------------|---------------------------------|---------------|------------------------|---------------|-------------|---------------------------|--------------------|----------------|
| Clien        | t Liv International                                   |                                 |               |                        |               | Sheet       | 2 of 2                    |                    |                |
| Site         | Land off Middlefield,                                 |                                 |               |                        |               | Projec      | ct No GWPR                | 1403               |                |
| E -          | N -                                                   | Le                              | evel          | -                      |               | Date        | 25/09/2015                | Logged by <b>J</b> | Hogg           |
| Depth<br>(m) | Readings<br>Blows/100mm                               |                                 | 1             | Diagrai                | <i>m (N10</i> | 00 Value    | <b>es)</b>                | )                  | Torque<br>(Nm) |
| 11.0         |                                                       |                                 |               |                        |               |             |                           |                    | -              |
| 13.0-        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                 | * <b>•</b> •• |                        |               |             |                           |                    | -              |
| 14.0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |                                 |               |                        | <b>→</b> ,    |             |                           |                    | -              |
| 15.0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |                                 |               |                        |               | <b>⇒</b>    | <b>→</b>                  |                    |                |
| 16.0         | <u>413848</u>                                         |                                 |               |                        |               |             | <b>&gt;</b>               | →<br>→             | •              |
| 17.0         |                                                       |                                 |               |                        |               |             |                           |                    | -              |
| 18.0         |                                                       |                                 |               |                        |               |             |                           |                    | -              |
| 19.0         |                                                       |                                 |               |                        |               |             |                           |                    |                |
|              |                                                       |                                 |               |                        |               |             |                           | 1                  |                |
| gro          | Ground and Wa<br>Tel: 0333 600 1<br>email: enquiries  | ter Ltd<br>221<br>@groundandwat | Fall F        | Height 75              | 0             | Con         | ne Base Diameter <b>4</b> | 3                  |                |
| &W           | ater www.groundand                                    | water.co.uk                     | Ham.<br>Prob  | mer Wt 63<br>e Type DF | .50<br>PSH    | Fina<br>Log | al Depth 1<br>Scale 1     | 6.20<br>:50        | AGS            |

| D            | YNAMIC PRO                                                            | BING                                                            |                         |            | Probe No                   | DP      | 2                  |                |
|--------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------|------------|----------------------------|---------|--------------------|----------------|
| Client       | Liv International                                                     |                                                                 |                         |            | Sheet 1 of                 | f 2     |                    |                |
| Site         | Land off Middlefield,                                                 |                                                                 |                         |            | Project No                 | o GWPR1 | 403                |                |
| E -          | N -                                                                   | Level                                                           | -                       |            | Date 28/0                  | 9/2015  | Logged by <b>J</b> | Hogg           |
| Depth<br>(m) | Readings<br>Blows/100mm                                               |                                                                 | Diagra                  | m (N100    | 0 Values)<br><sup>30</sup> | 40      |                    | Torque<br>(Nm) |
| 1.0          |                                                                       |                                                                 |                         |            |                            |         |                    | 0              |
| 2.0          |                                                                       |                                                                 |                         |            |                            |         |                    |                |
| 3.0          |                                                                       |                                                                 |                         |            |                            |         |                    |                |
| 4.0          |                                                                       |                                                                 |                         |            |                            |         |                    |                |
| 5.0-         |                                                                       |                                                                 |                         |            |                            |         |                    |                |
| 6.0          |                                                                       |                                                                 |                         |            |                            |         |                    |                |
| 7.0-         |                                                                       |                                                                 |                         |            |                            |         |                    |                |
| 8.0          |                                                                       |                                                                 |                         |            |                            |         |                    |                |
| 9.0-         |                                                                       |                                                                 |                         |            |                            |         |                    |                |
| grou<br>&wa  | Ground and Wa<br>Tei: 0333 600 1<br>email: enquiries<br>www.groundand | iter Ltd<br>221<br>@groundandwater.co.uk<br>dwater.co.uk<br>Han | Height 75<br>nmer Wt 63 | 50<br>5.50 | Cone Bas                   | th 16   | .30                | GS             |

| DYNAMIC PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BING                                                              |                            |             | Probe No D         | 22                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------|-------------|--------------------|-------------------|
| Client Liv International                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |                            |             | Sheet 2 of 2       |                   |
| Site Land off Middlefield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                 |                            |             | Project No GWPR    | 1403              |
| E - N -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level                                                             | -                          |             | Date 28/09/2015    | Logged by J Hogg  |
| Depth Readings<br>(m) Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | Diagrai                    | m (N10      | 0 Values)<br>30    | Torque<br>10 (Nm) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |                            |             |                    |                   |
| $13.0 \begin{array}{c} - & - & - & - & - & - & - & - & - & - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                 | ►<br>■<br>■<br>↓           |             |                    |                   |
| $14.0 \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |                            |             |                    |                   |
| $15.0 \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |                            | <b>→</b> →→ | <b>≵</b>           |                   |
| $16.0 - \frac{36}{43} - \frac{36}{50} - \frac{37}{38} - \frac{38}{37} - \frac{38}{38} - \frac{38}{37} - \frac{38}{38} - \frac{38}{38}$ |                                                                   |                            |             | <b>•</b>           | <b>→</b>          |
| 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                            |             |                    |                   |
| 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                            |             |                    |                   |
| 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                            |             |                    |                   |
| Ground and W<br>Tel: 0333 600<br>email: enquirie<br>www.groundar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ater Ltd Fal<br>1221<br>©groundandwater.co.uk<br>dwater.co.uk Ha. | ll Height 75<br>mmer Wt 63 | 50<br>5.50  | Cone Base Diameter | 43<br>16.30       |

### APPENDIX C Geotechnical Laboratory Test Results

| K           | Soils              | )        |                     |                                                                                                             | S                                                                   | ummary of C                             | lassific | ation     | Test F  | Results       |          |       |            |
|-------------|--------------------|----------|---------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|----------|-----------|---------|---------------|----------|-------|------------|
| Job No.     |                    |          | Project             | Name                                                                                                        |                                                                     |                                         |          |           |         |               | Prog     | ramme |            |
| 1           | 9639               |          | Land ad             | djacen                                                                                                      | t to 1B St Johns Wood                                               | d Park, NW8                             |          |           |         | Samples r     | received | 08/   | 10/2015    |
| Project No. |                    |          | Client              |                                                                                                             |                                                                     |                                         |          |           |         | Project sta   | arted    | 08/   | 10/2015    |
| GW          | PR1403             | 3        | Ground              | I and V                                                                                                     | Vater Ltd                                                           |                                         |          |           |         | Testing St    | arted    | 23/   | 10/2015    |
| Hole No.    |                    | Sam      | nple                |                                                                                                             | · Soil Des                                                          | scription                               | NMC      | Passing   | LL      | PL            | PI       | Re    | emarks     |
|             | Ref                | Тор      | Base                | Туре                                                                                                        |                                                                     |                                         | %        | %         | %       | %             | %        |       |            |
| WS1         |                    | 0.80     |                     | D                                                                                                           | Brown silty CLAY wit<br>and sandstone fragm                         | h rare fine gravel<br>ients             | 33       |           |         |               |          |       |            |
| WS1         |                    | 1.00     |                     | D                                                                                                           | Brown silty CLAY wit                                                | h rare fine gravel                      | 31       |           |         |               |          |       |            |
| WS1         |                    | 1.70     |                     | D                                                                                                           | Brown with orangish<br>CLAY                                         | brown staining silty                    | 30       |           |         |               |          |       |            |
| WS1         |                    | 2.00     |                     | D                                                                                                           | Brown with grey stair                                               | ning silty CLAY                         | 29       |           |         |               |          |       |            |
| WS1         |                    | 2.70     |                     | D                                                                                                           | Brown and grey silty of selenite crystals                           | CLAY with traces                        | 31       | 100       | 77      | 30            | 47       |       |            |
| WS1         |                    | 3.00     |                     | D                                                                                                           | Brown with grey stair                                               | Brown with grey staining silty CLAY     |          |           |         |               |          |       |            |
| WS1         |                    | 6.00     |                     | D                                                                                                           | Brown silty CLAY wit selenite crystals                              | h numerous                              | 30       | 100       | 68      | 28            | 40       |       |            |
| WS1         |                    | 11.00    |                     | D                                                                                                           | Dark grey silty CLAY                                                |                                         | 27       | 100       | 77      | 25            | 52       |       |            |
| WS2         |                    | 1.70     |                     | D                                                                                                           | Brown with grey stair traces of fine rootlets                       | ning silty CLAY with                    | 26       |           |         |               |          |       |            |
| WS2         |                    | 2.00     |                     | D                                                                                                           | Brown with grey stair<br>traces of fine rootlets                    | ning silty CLAY with                    | 29       |           |         |               |          |       |            |
| WS2         |                    | 2.60     |                     | D                                                                                                           | Brown and grey mott<br>brown staining silty C<br>roots and rootlets | led and orangish<br>CLAY with traces of | 30       |           |         |               |          |       |            |
| WS2         |                    | 3.00     |                     | D                                                                                                           | Brown and grey silty                                                | 31                                      | 100      | 80        | 28      | 52            |          |       |            |
| ch          | Test N             | lethods  | : BS137             | 7: Part 2: 1990: Checked                                                                                    |                                                                     |                                         |          |           | ked and |               |          |       |            |
| - 🗷 -       | Natural<br>Atterbe | Moisture | Content<br>clause 4 | Int : clause 3.2 Test Report by K4 SOILS LABORATORY Approv<br>e 4.3 and 5.0 Unit 8 Olds Close Olds Approach |                                                                     |                                         |          |           | proved  |               |          |       |            |
| :(≱≮):      |                    | 5        |                     | Watford Herts WD18 9RU Initials                                                                             |                                                                     |                                         |          |           | J.P     |               |          |       |            |
|             |                    |          |                     |                                                                                                             |                                                                     |                                         | Tel: (   | 01923 711 | 288     | _             |          | Date: | 27/10/2015 |
| 2519        | Appro              | ved Sign | atories:            | ttories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R1(a) -Rev. 0                                         |                                                                     |                                         |          |           |         | R1(a) -Rev. 0 |          |       |            |

| K           | 1<br>Soils         | )          |            |          | Sumi                                   | mary of C       | lassific             | ation <sup>-</sup>   | Fest F             | Results     |          |          |               |
|-------------|--------------------|------------|------------|----------|----------------------------------------|-----------------|----------------------|----------------------|--------------------|-------------|----------|----------|---------------|
| Job No.     |                    |            | Project    | Name     | ;                                      |                 |                      |                      |                    |             | Progr    | amme     |               |
| 1           | 9639               |            | Land ad    | diacen   | t to 1B St Johns Wood Parl             | k NW8           |                      |                      |                    | Samples r   | eceived  | 08/1     | 0/2015        |
| Declaration | 5005               |            |            | Jucch    |                                        | K, 11110        |                      |                      |                    | Schedule    | received | 08/1     | 0/2015        |
| Project No. |                    |            | Client     |          |                                        |                 |                      |                      |                    | Project sta | irted    | 09/1     | 0/2015        |
| GW          | PR1403             | 3          | Ground     | i and V  | Vater Ltd                              | r               |                      |                      |                    | Testing St  | arted    | 23/1     | 0/2015        |
| Hole No.    |                    | Sam        | iple       | 1        | - Soil Description                     | on              | NMC                  | Passing<br>425µm     | LL                 | PL          | PI       | Re       | marks         |
|             | Ref                | Тор        | Base       | Туре     |                                        |                 | %                    | %                    | %                  | %           | %        |          |               |
| WS2         |                    | 7.60       |            | D        | Brown silty CLAY with trac<br>crystals | ces of selenite | 29                   | 100                  | 75                 | 27          | 48       |          |               |
| WS2         |                    | 11.60      |            | D        | Dark grey silty CLAY with<br>gravel    | rare fine       | 27                   | 99                   | 71                 | 25          | 46       |          |               |
|             |                    |            |            |          |                                        |                 |                      |                      |                    |             |          |          |               |
|             |                    |            |            |          |                                        |                 |                      |                      |                    |             |          |          |               |
|             |                    |            |            |          |                                        |                 |                      |                      |                    |             |          |          |               |
|             |                    |            |            |          |                                        |                 |                      |                      |                    |             |          |          |               |
|             |                    |            |            |          |                                        |                 |                      |                      |                    |             |          |          |               |
|             |                    |            |            |          |                                        |                 |                      |                      |                    |             |          |          |               |
|             |                    |            |            |          |                                        |                 |                      |                      |                    |             |          |          |               |
|             |                    |            |            |          |                                        |                 |                      |                      |                    |             |          |          |               |
|             |                    |            |            |          |                                        |                 |                      |                      |                    |             |          |          |               |
|             |                    |            |            |          |                                        |                 |                      |                      |                    |             |          |          |               |
| db          | Test N             | lethods    | : BS137    | 7: Par   | t 2: 1990:                             | _               |                      |                      |                    |             |          | Chec     | ked and       |
| - 🛒 -       | Natural<br>Attorba | Moisture   | Content    | : clause | e 3.2                                  | Test R          | eport by h           |                      |                    | ATORY       |          | App      | proved        |
| : (32) :    | Allerbe            | ig Limits: | uause 4.   | 5 0110 5 |                                        | Ur              | Watford              | Herts WI             | ь Appro<br>018 9RU | aun         |          | Initials | J.P           |
|             |                    |            |            |          |                                        |                 | Tel: (<br>Email: .la | )1923 711<br>mes@k44 | 288<br>soils.com   | n           |          | Date:    | 27/10/2015    |
| 2519        | Appro              | ved Sign   | atories: I | K.Phau   | ure (Tech.Mgr) J.Phaure (Lat           | o.Mgr)          | _man. va             |                      |                    |             |          | MSF-5-F  | ₹1(a) -Rev. 0 |

|         | 4                  | ONE DIME                     | NSIONAL CONS               | SOLID             | ATIC             | DN 1         | TEST                    | Job        | Ref          | f              |      |           |                |                | 19     | 9639           |         |           |            |
|---------|--------------------|------------------------------|----------------------------|-------------------|------------------|--------------|-------------------------|------------|--------------|----------------|------|-----------|----------------|----------------|--------|----------------|---------|-----------|------------|
| ,<br>   | Soils              |                              |                            |                   |                  |              |                         | Bore       | ehol         | le/Pi          | it N | 0.        |                |                | V      | VS1            |         |           |            |
| Site    | e Name             | Land adjacent to 1B          | St Johns Wood Par          | k, NW8            |                  |              |                         | Sam        | nple         | No             | •    |           |                |                |        | -              |         |           |            |
| Proj    | ject ID            | GWPR1403                     | Client                     | Gro               | ound a           | ind V        | Vater Ltd               | Dep        | th           |                |      |           |                |                | 3      | 5.70           |         |           |            |
|         |                    |                              | -                          | -                 |                  |              |                         | San        | nple         | Тур            | be   |           |                |                |        | D              |         |           |            |
| So      | oil Description    | Brown and orangis            | h brown mottled blu        | ish grey          | slight           | ly fis       | sured silty             | San        | nple         | Re             | ceiv | ved       |                |                | 08/1   | 0/201          | 5       |           |            |
|         |                    | CLA                          | r with occasional se       | elenite c         | rystais          | 5            |                         | Sch        | edu          | le re          | ece  | ived      |                |                | 08/1   | 0/201          | 5       |           |            |
| Tes     | t Method           | BS1377:Part 5:1990           | , clause 3                 |                   |                  |              |                         | Pr<br>Date | ojec<br>e Te | et Si<br>est s | tart | ed<br>ted | +              |                | 09/1   | 0/201<br>0/201 | 5<br>5  |           |            |
| L       | 0.960              |                              |                            |                   |                  |              |                         |            |              |                |      |           |                |                |        |                |         |           |            |
|         | 0.950              |                              |                            |                   |                  |              |                         |            | _            | -              |      |           |                | _              | _      |                | _       | _         | -          |
|         | 0.940              |                              |                            |                   |                  |              |                         |            |              | _              |      |           |                |                |        |                | _       |           | 4          |
|         | 0.930              |                              |                            |                   |                  |              |                         |            |              |                |      |           |                |                |        |                |         |           |            |
| Ratio   | 0.000              |                              |                            |                   |                  |              |                         |            |              |                |      |           |                |                |        |                |         |           |            |
| oids    | 0.920              |                              | <u> </u>                   |                   |                  |              |                         |            |              |                |      |           |                |                |        |                |         |           | Π          |
| >       | 0.910              |                              |                            |                   |                  |              |                         |            |              | +              |      |           |                |                |        |                | -       | -         |            |
|         | 0.900 -            |                              |                            |                   |                  |              |                         |            |              | +              |      |           |                | _              | _      |                | -       | _         |            |
|         | 0.890              |                              | e <sub>o</sub>             |                   |                  |              |                         |            | _            | +              |      |           |                |                |        |                | _       | _         |            |
|         | 0.880 -            |                              |                            |                   |                  |              |                         |            |              |                |      |           |                |                |        |                |         |           |            |
|         | 0.970              |                              |                            |                   |                  |              |                         |            |              |                |      |           |                |                |        |                |         |           |            |
|         | 0.870              |                              |                            |                   |                  |              |                         |            |              |                |      |           |                |                |        |                |         |           |            |
|         | 0.860              |                              |                            |                   |                  |              |                         |            |              |                |      |           | 1              |                |        |                |         |           |            |
| e)      | 0.05               |                              |                            |                   |                  |              |                         |            |              |                |      |           |                |                |        |                |         |           | ٦          |
| g tim   | 0.04               |                              |                            |                   |                  |              |                         |            | -            |                | _    |           |                |                |        |                |         |           | _          |
| /r (lo  | 0.03               |                              |                            |                   |                  |              |                         |            |              |                |      |           |                |                |        |                |         |           |            |
| ′ m²/}  | 0.01               |                              |                            |                   |                  |              |                         |            | _            |                |      |           |                |                |        |                |         |           |            |
| ú       | 0.00               |                              | 10                         |                   |                  |              |                         |            |              |                |      | 10        |                |                |        |                |         | 1/        |            |
|         | I                  |                              | 10                         | ,                 | Applie           | d Pr         | essure kPa              |            |              |                |      | 10        | 00             |                |        |                |         | 10        | J000       |
| Арр     | lied               | My Cv                        | Cv C                       | sec               | I                | Prep         | aration                 |            |              |                |      |           |                |                |        |                |         |           |            |
| Pres    | sure Voids rat     | io ( t50, log<br>m2/MN m2/yr | ( t90, root )              |                   |                  | Orien        | tation wthin            | samnle     |              |                |      |           |                | Ve             | rtical |                |         |           |            |
| 50      | 0.0 0.894          |                              | -                          | -                 |                  | onen         |                         | sumple     |              |                |      |           |                |                | rtiodi |                | _       |           |            |
| 2       | 5 0.918<br>8 0.927 | 0.51                         |                            |                   |                  | Parti        | cle density             |            |              |                |      |           | assun          | ned            |        | 2.70           | J       |           | Mg/m3      |
| 3       | 3 0.944<br>5 0.947 | 0.94                         |                            |                   | :                | Spec         | imen details            | 3          |              |                |      |           | Initia<br>74 C | al             |        | Fina           | al      |           | mm         |
| 2       | 2 0.954            | 1.2                          |                            |                   |                  | Heig         | ht                      |            |              |                |      |           | 16.0           | )0             |        | 16.5           | 1       |           | mm         |
|         |                    |                              |                            |                   |                  | Mois<br>Bulk | ture Content<br>density | t          |              |                |      | ⊢         | 30.2<br>1.8    | 2<br>6         |        | 36.3<br>1.88   | 3<br>3  |           | %<br>Mg/m3 |
|         |                    |                              |                            |                   | l                | Dry o        | density                 |            |              |                |      |           | 1.4            | 3              |        | 1.3            | В<br>14 |           | Mg/m3      |
|         |                    |                              |                            |                   | :                | Satu         | ration                  |            |              |                |      | E         | 0.85<br>91     | 7 <del>4</del> |        | 103            | 94<br>} |           | %          |
|         |                    |                              |                            | 1                 | Aver<br>Swel     | age tempera  | ature fo<br>e           | r tes      | st           |                |      |           | 2              | 0.0<br>50      |        |                |         | oC<br>kPa |            |
|         |                    |                              |                            |                   | ;                | Settle       | ement on sa             | turation   | n            |                |      |           |                |                |        |                |         |           | %          |
|         |                    |                              |                            |                   | I                | Rem          | arks                    |            |              |                |      | Г         |                |                |        |                |         |           | ĺ          |
|         |                    |                              |                            |                   |                  |              |                         |            |              |                | _    |           |                |                |        |                |         |           | 1          |
| đ       | Ð                  |                              | Test Report by K           | 4 SOIL            | S LAB            | OR/          | ATORY                   |            |              |                |      |           |                | С              | hecke  | ed and         | d Ap    | pro       | ved        |
| G.      | 5                  |                              | Unit 8 Olds C<br>Watford F | Herts W           | us Ap<br>D18 9   | proa<br>RU   | cn                      |            |              |                |      |           |                |                | _      |                |         |           |            |
| <u></u> | ショ                 |                              | Tel: 0<br>Email: Jar       | 1923 71<br>nes@k4 | 1 288<br>Isoils. | com          |                         |            |              |                |      |           |                | Initia         | als    |                | ۲       | K.P       |            |
| UX      | 4.5                |                              |                            |                   |                  |              |                         |            |              |                |      |           |                | Date           | :      | :              | 26/1    | 0/20      | 015        |
| 251     | 9 Approve          | d Signatories: K.Phaur       | e (Tech.Mar) J.Phau        | ire (Lab.         | .Mar)            |              |                         |            |              |                |      |           |                | 1              |        |                | MSF-    | 5-R6      | 3 (Rev. 0  |

Sulphate Content (Gravimetric Method) for 2:1 Soil: Water Extract and pH Value - Summary of Results Tested in accordance with BS1377 : Part 3 : 1990, clause 5.3 and clause 9 Job No. Project Name Programme Samples received 08/10/2015 19639 Land adjacent to 1B St Johns Wood Park, NW8 08/10/2015 Schedule received Client Project started 09/10/2015 Project No. GWPR1403 Ground and Water Ltd 14/10/2015 **Testing Started** Sample Dry Mass SO3 SO4 passing Content Content Hole No. Soil description pН Remarks 2mm Ref Тор Base Туре % g/l g/l WS1 1.70 D Brown with orangish brown staining silty CLAY 100 0.33 0.39 7.96 Brown and grey mottled and orangish brown WS2 2.60 D staining silty CLAY with traces of roots and 100 0.66 0.79 7.89 rootlets Test Report by K4 SOILS LABORATORY Checked and Approved Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Initials J.P Tel: 01923 711 288 Email: James@k4soils.com Date: 27/10/2015 MSF-5-R29 (Rev. 0) Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) 2510

# APPENDIX D Chemical Laboratory Test Results



Francis Williams Ground & Water Ltd 2 The Long Barn Norton Farm Selborne Road Alton Hampshire GU34 3NB



# **QTS Environmental Ltd**

Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN **t:** 01622 850410 russell.jarvis@qtsenvironmental.com

# **QTS Environmental Report No: 15-36274**

| Site Reference:        | Land adjacent 1b St Johns Wood Park, NW8 |
|------------------------|------------------------------------------|
| Project / Job Ref:     | GWPR1403                                 |
| Order No:              | None Supplied                            |
| Sample Receipt Date:   | 08/10/2015                               |
| Sample Scheduled Date: | 08/10/2015                               |
| Report Issue Number:   | 1                                        |
| Reporting Date:        | 14/10/2015                               |

Authorised by: Russell Jarvis

Director **On behalf of QTS Environmental Ltd**  Authorised by:

Q KOL Kevin Old Director **On behalf of QTS Environmental Ltd** 





| Soil Analysis Certificate                      |                 |               |               |               |               |  |
|------------------------------------------------|-----------------|---------------|---------------|---------------|---------------|--|
| QTS Environmental Report No: 15-36274          | Date Sampled    | 25/09/15      | 28/09/15      | 25/09/15      | 28/09/15      |  |
| Ground & Water Ltd                             | Time Sampled    | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Site Reference: Land adjacent 1b St Johns Wood | TP / BH No      | WS1           | WS2           | WS1           | WS2           |  |
| Park, NW8                                      |                 |               |               |               |               |  |
| Project / Job Ref: GWPR1403                    | Additional Refs | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Order No: None Supplied                        | Depth (m)       | 4.00 - 4.45   | 9.80          | 0.25          | 0.25          |  |
| Reporting Date: 14/10/2015                     | QTSE Sample No  | 171170        | 171171        | 171172        | 171173        |  |

| Determinand                                    | Unit     | RL     | Accreditation |       |       |              |              |  |
|------------------------------------------------|----------|--------|---------------|-------|-------|--------------|--------------|--|
| Asbestos Screen                                | N/a      | N/a    | ISO17025      |       |       | Not Detected | Not Detected |  |
| рН                                             | pH Units | N/a    | MCERTS        | 7.8   | 7.9   | 8.2          | 8.3          |  |
| Total Cyanide                                  | mg/kg    | < 2    | NONE          |       |       | < 2          | < 2          |  |
| Total Sulphate as SO <sub>4</sub>              | mg/kg    | < 200  | NONE          | 9168  | 3117  |              |              |  |
| Total Sulphate as SO <sub>4</sub>              | %        | < 0.02 | NONE          | 0.92  | 0.31  |              |              |  |
| W/S Sulphate as $SO_4$ (2:1)                   | mg/l     | < 10   | MCERTS        | 3220  | 957   | 423          | 418          |  |
| W/S Sulphate as $SO_4$ (2:1)                   | g/l      | < 0.01 | MCERTS        | 3.22  | 0.96  | 0.42         | 0.42         |  |
| Total Sulphur                                  | %        | < 0.02 | NONE          | 0.44  | 0.66  |              |              |  |
| Organic Matter                                 | %        | < 0.1  | MCERTS        |       |       | 2.8          | 2.5          |  |
| Total Organic Carbon (TOC)                     | %        | < 0.1  | MCERTS        |       |       | 1.6          | 1.4          |  |
| Ammonium as NH <sub>4</sub>                    | mg/kg    | < 0.5  | NONE          | 9.9   | 32.8  |              |              |  |
| Ammonium as NH <sub>4</sub>                    | mg/l     | < 0.05 | NONE          | 0.99  | 3.28  |              |              |  |
| W/S Chloride (2:1)                             | mg/kg    | < 1    | MCERTS        | 187   | 157   |              |              |  |
| W/S Chloride (2:1)                             | mg/l     | < 0.5  | MCERTS        | 93.5  | 78.4  |              |              |  |
| Water Soluble Nitrate (2:1) as NO <sub>3</sub> | mg/kg    | < 3    | MCERTS        | < 3   | < 3   |              |              |  |
| Water Soluble Nitrate (2:1) as NO <sub>3</sub> | mg/l     | < 1.5  | MCERTS        | < 1.5 | < 1.5 |              |              |  |
| Arsenic (As)                                   | mg/kg    | < 2    | MCERTS        |       |       | 4            | 8            |  |
| W/S Boron                                      | mg/kg    | < 1    | NONE          |       |       | 1.8          | 1.4          |  |
| Cadmium (Cd)                                   | mg/kg    | < 0.2  | MCERTS        |       |       | < 0.2        | < 0.2        |  |
| Chromium (Cr)                                  | mg/kg    | < 2    | MCERTS        |       |       | 14           | 49           |  |
| Chromium (hexavalent)                          | mg/kg    | < 2    | NONE          |       |       | < 2          | < 2          |  |
| Copper (Cu)                                    | mg/kg    | < 4    | MCERTS        |       |       | 6            | 22           |  |
| Lead (Pb)                                      | mg/kg    | < 3    | MCERTS        |       |       | 45           | 39           |  |
| W/S Magnesium                                  | mg/l     | < 0.1  | NONE          | 240   | 68    |              |              |  |
| Mercury (Hg)                                   | mg/kg    | < 1    | NONE          |       |       | < 1          | < 1          |  |
| Nickel (Ni)                                    | mg/kg    | < 3    | MCERTS        |       |       | 6            | 9            |  |
| Selenium (Se)                                  | mg/kg    | < 3    | NONE          |       |       | < 3          | < 3          |  |
| Vanadium (V)                                   | mg/kg    | < 2    | NONE          |       |       | 27           | 105          |  |
| Zinc (Zn)                                      | mg/kg    | < 3    | MCERTS        |       |       | 50           | 50           |  |
| Total Phenols (monohydric)                     | mg/kg    | < 2    | NONE          |       |       | < 2          | < 2          |  |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than  $30^{\circ}$ C

Analysis carried out on the dried sample is corrected for the stone content

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Soils/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Marcus Jones

RL: Reporting Limit

Pinch Test: Where pinch test is positive it is reported "Loose Fibres - PT" with type(s).

Subcontracted analysis <sup>(S)</sup>





| Soil Analysis Certificate - Speciated PAHs |                 |               |               |  |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|--|
| QTS Environmental Report No: 15-36274      | Date Sampled    | 25/09/15      | 28/09/15      |  |  |  |  |  |  |
| Ground & Water Ltd                         | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |  |
| Site Reference: Land adjacent 1b St Johns  | TP / BH No      | WS1           | WS2           |  |  |  |  |  |  |
| Wood Park, NW8                             |                 |               |               |  |  |  |  |  |  |
| Project / Job Ref: GWPR1403                | Additional Refs | None Supplied | None Supplied |  |  |  |  |  |  |
| Order No: None Supplied                    | Depth (m)       | 0.25          | 0.25          |  |  |  |  |  |  |
| Reporting Date: 14/10/2015                 | QTSE Sample No  | 171172        | 171173        |  |  |  |  |  |  |

| Determinand            | Unit  | RL    | Accreditation |       |       |  |
|------------------------|-------|-------|---------------|-------|-------|--|
| Naphthalene            | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |
| Acenaphthylene         | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |
| Acenaphthene           | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |
| Fluorene               | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |
| Phenanthrene           | mg/kg | < 0.1 | MCERTS        | 1.82  | 0.13  |  |
| Anthracene             | mg/kg | < 0.1 | MCERTS        | 0.25  | < 0.1 |  |
| Fluoranthene           | mg/kg | < 0.1 | MCERTS        | 7.58  | 0.45  |  |
| Pyrene                 | mg/kg | < 0.1 | MCERTS        | 5.82  | 0.42  |  |
| Benzo(a)anthracene     | mg/kg | < 0.1 | MCERTS        | 2.43  | 0.28  |  |
| Chrysene               | mg/kg | < 0.1 | MCERTS        | 2.62  | 0.37  |  |
| Benzo(b)fluoranthene   | mg/kg | < 0.1 | MCERTS        | 2.97  | 0.93  |  |
| Benzo(k)fluoranthene   | mg/kg | < 0.1 | MCERTS        | 1.31  | 0.38  |  |
| Benzo(a)pyrene         | mg/kg | < 0.1 | MCERTS        | 1.33  | 0.34  |  |
| Indeno(1,2,3-cd)pyrene | mg/kg | < 0.1 | MCERTS        | 1.32  | 0.67  |  |
| Dibenz(a,h)anthracene  | mg/kg | < 0.1 | MCERTS        | 0.21  | 0.13  |  |
| Benzo(ghi)perylene     | mg/kg | < 0.1 | MCERTS        | 1.14  | 0.65  |  |
| Total EPA-16 PAHs      | mg/kg | < 1.6 | MCERTS        | 28.8  | 4.7   |  |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

QTS Environmental Ltd - Registered in England No 06620874





| Soil Analysis Certificate - TPH CWG Banded |                 |               |  |  |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|--|--|--|--|--|--|--|
| QTS Environmental Report No: 15-36274      | Date Sampled    | 28/09/15      |  |  |  |  |  |  |  |
| Ground & Water Ltd                         | Time Sampled    | None Supplied |  |  |  |  |  |  |  |
| Site Reference: Land adjacent 1b St Johns  | TP / BH No      | WS2           |  |  |  |  |  |  |  |
| Wood Park, NW8                             |                 |               |  |  |  |  |  |  |  |
| Project / Job Ref: GWPR1403                | Additional Refs | None Supplied |  |  |  |  |  |  |  |
| Order No: None Supplied                    | Depth (m)       | 0.25          |  |  |  |  |  |  |  |
| Reporting Date: 14/10/2015                 | QTSE Sample No  | 171173        |  |  |  |  |  |  |  |

| Determinand          | Unit  | RL     | Accreditation |        |  |  |
|----------------------|-------|--------|---------------|--------|--|--|
| Aliphatic >C5 - C6   | mg/kg | < 0.01 | NONE          | < 0.01 |  |  |
| Aliphatic >C6 - C8   | mg/kg | < 0.05 | NONE          | < 0.05 |  |  |
| Aliphatic >C8 - C10  | mg/kg | < 2    | MCERTS        | < 2    |  |  |
| Aliphatic >C10 - C12 | mg/kg | < 2    | MCERTS        | < 2    |  |  |
| Aliphatic >C12 - C16 | mg/kg | < 3    | MCERTS        | < 3    |  |  |
| Aliphatic >C16 - C21 | mg/kg | < 3    | MCERTS        | < 3    |  |  |
| Aliphatic >C21 - C34 | mg/kg | < 10   | MCERTS        | 78     |  |  |
| Aliphatic (C5 - C34) | mg/kg | < 21   | NONE          | 78     |  |  |
| Aromatic >C5 - C7    | mg/kg | < 0.01 | NONE          | < 0.01 |  |  |
| Aromatic >C7 - C8    | mg/kg | < 0.05 | NONE          | < 0.05 |  |  |
| Aromatic >C8 - C10   | mg/kg | < 2    | MCERTS        | < 2    |  |  |
| Aromatic >C10 - C12  | mg/kg | < 2    | MCERTS        | < 2    |  |  |
| Aromatic >C12 - C16  | mg/kg | < 2    | MCERTS        | < 2    |  |  |
| Aromatic >C16 - C21  | mg/kg | < 3    | MCERTS        | < 3    |  |  |
| Aromatic >C21 - C35  | mg/kg | < 10   | MCERTS        | 52     |  |  |
| Aromatic (C5 - C35)  | mg/kg | < 21   | NONE          | 52     |  |  |
| Total >C5 - C35      | mg/kg | < 42   | NONE          | 129    |  |  |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C





| oil Analysis Certificate - BTEX / MTBE    |                 |               |  |  |  |  |  |  |  |  |
|-------------------------------------------|-----------------|---------------|--|--|--|--|--|--|--|--|
| QTS Environmental Report No: 15-36274     | Date Sampled    | 28/09/15      |  |  |  |  |  |  |  |  |
| Ground & Water Ltd                        | Time Sampled    | None Supplied |  |  |  |  |  |  |  |  |
| Site Reference: Land adjacent 1b St Johns | TP / BH No      | WS2           |  |  |  |  |  |  |  |  |
| Wood Park, NW8                            |                 |               |  |  |  |  |  |  |  |  |
| Project / Job Ref: GWPR1403               | Additional Refs | None Supplied |  |  |  |  |  |  |  |  |
| Order No: None Supplied                   | Depth (m)       | 0.25          |  |  |  |  |  |  |  |  |
| Reporting Date: 14/10/2015                | QTSE Sample No  | 171173        |  |  |  |  |  |  |  |  |

| Determinand  | Unit  | RL  | Accreditation |     |
|--------------|-------|-----|---------------|-----|
| Benzene      | ug/kg | < 2 | MCERTS        | < 2 |
| Toluene      | ug/kg | < 5 | MCERTS        | < 5 |
| Ethylbenzene | ug/kg | < 2 | MCERTS        | < 2 |
| p & m-xylene | ug/kg | < 2 | MCERTS        | < 2 |
| o-xylene     | ug/kg | < 2 | MCERTS        | < 2 |
| MTBE         | ug/kg | < 5 | MCERTS        | < 5 |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

QTS Environmental Ltd - Registered in England No 06620874





| Soil Analysis Certificate - Sample Descriptions          |  |
|----------------------------------------------------------|--|
| QTS Environmental Report No: 15-36274                    |  |
| Ground & Water Ltd                                       |  |
| Site Reference: Land adjacent 1b St Johns Wood Park, NW8 |  |
| Project / Job Ref: GWPR1403                              |  |
| Order No: None Supplied                                  |  |
| Reporting Date: 14/10/2015                               |  |

| QTSE Sample No | TP / BH No | Additional Refs | Depth (m)   | Moisture<br>Content (%) | Sample Matrix Description                |
|----------------|------------|-----------------|-------------|-------------------------|------------------------------------------|
| \$ 171170      | WS1        | None Supplied   | 4.00 - 4.45 | 20.5                    | Light brown sandy clay                   |
| 171171         | WS2        | None Supplied   | 9.80        | 19.1                    | Brown sandy clay                         |
| \$ 171172      | WS1        | None Supplied   | 0.25        | 7                       | Brown sand with concrete and brick       |
| 171173         | WS2        | None Supplied   | 0.25        | 6.6                     | Light brown sand with brick and concrete |

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample <sup>I/S</sup> Unsuitable Sample <sup>U/S</sup>

*\$ samples exceeded recommended holding times* 





| Soil Analysis Certificate - Methodology & Miscellaneous Information |
|---------------------------------------------------------------------|
| QTS Environmental Report No: 15-36274                               |
| Ground & Water Ltd                                                  |
| Site Reference: Land adjacent 1b St Johns Wood Park, NW8            |
| Project / Job Ref: GWPR1403                                         |
| Order No: None Supplied                                             |
| Reporting Date: 14/10/2015                                          |

| Matrix | Analysed<br>On | Determinand                                                                                                                                               | Brief Method Description                                                                                                                            | Method<br>No |
|--------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Soil   | D              | Boron - Water Soluble                                                                                                                                     | Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES                                                           | E012         |
| Soil   | AR             | BTEX                                                                                                                                                      | Determination of BTEX by headspace GC-MS                                                                                                            | E001         |
| Soil   | D              | Cations                                                                                                                                                   | Determination of cations in soil by aqua-regia digestion followed by ICP-OES                                                                        | E002         |
| Soil   | D              | Chloride - Water Soluble (2:1)                                                                                                                            | Determination of chloride by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Call   |                |                                                                                                                                                           | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of                                              | F01/         |
| Soli   | AR             | Chromium - Hexavalent                                                                                                                                     | 1,5 diphenylcarbazide followed by colorimetry                                                                                                       | EUT6         |
| Soil   | AR             | Cyanide - Complex                                                                                                                                         | Determination of complex cyanide by distillation followed by colorimetry                                                                            | E015         |
| Soil   | AR             | Cyanide - Free                                                                                                                                            | Determination of free cyanide by distillation followed by colorimetry                                                                               | E015         |
| Soil   | AR             | Cyanide - Total                                                                                                                                           | Determination of total cyanide by distillation followed by colorimetry                                                                              | E015         |
| Soil   | D              | Cyclohexane Extractable Matter (CEM)                                                                                                                      | Gravimetrically determined through extraction with cyclohexane                                                                                      | E011         |
| Soil   | AR             | Diesel Range Organics (C10 - C24)                                                                                                                         | Determination of hexane/acetone extractable hydrocarbons by GC-FID                                                                                  | E004         |
| Soil   | AR             | Electrical Conductivity                                                                                                                                   | Determination of electrical conductivity by addition of saturated calcium sulphate followed by<br>electrometric measurement                         | E022         |
| Soil   | AR             | Electrical Conductivity                                                                                                                                   | Determination of electrical conductivity by addition of water followed by electrometric measurement                                                 | E023         |
| Soil   | D              | Elemental Sulphur                                                                                                                                         | Determination of elemental sulphur by solvent extraction followed by GC-MS                                                                          | E020         |
| Soil   | AR             | EPH (C10 – C40)                                                                                                                                           | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                  | E004         |
| Soil   | AR             | EPH Product ID                                                                                                                                            | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                  | E004         |
| Soil   | AR             | EPH TEXAS (C6-C8, C8-C10, C10-C12,<br>C12-C16, C16-C21, C21-C40)                                                                                          | Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS                                       | E004         |
| Soil   | D              | Fluoride - Water Soluble                                                                                                                                  | Determination of Fluoride by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Soil   | D              | FOC (Fraction Organic Carbon)                                                                                                                             | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate                    | E010         |
| Soil   | D              | Loss on Ignition @ 450oC                                                                                                                                  | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace                                      | E019         |
| Soil   | D              | Magnesium - Water Soluble                                                                                                                                 | Determination of water soluble magnesium by extraction with water followed by ICP-OES                                                               | E025         |
| Soil   | D              | Metals                                                                                                                                                    | Determination of metals by aqua-regia digestion followed by ICP-OES                                                                                 | E002         |
| Soil   | AR             | Mineral Oil (C10 - C40)                                                                                                                                   | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                 | E004         |
| Soil   | AR             | Moisture Content                                                                                                                                          | Moisture content; determined gravimetrically                                                                                                        | E003         |
| Soil   | D              | Nitrate - Water Soluble (2:1)                                                                                                                             | Determination of nitrate by extraction with water & analysed by ion chromatography                                                                  | E009         |
| Soil   | D              | Organic Matter                                                                                                                                            | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                | E010         |
| Soil   | AR             | PAH - Speciated (EPA 16)                                                                                                                                  | Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards               | E005         |
| Soil   | AR             | PCB - 7 Congeners                                                                                                                                         | Determination of PCB by extraction with acetone and hexane followed by GC-MS                                                                        | E008         |
| Soil   | D              | Petroleum Ether Extract (PEE)                                                                                                                             | Gravimetrically determined through extraction with petroleum ether                                                                                  | E011         |
| Soil   | AR             | pH                                                                                                                                                        | Determination of pH by addition of water followed by electrometric measurement                                                                      | E007         |
| Soil   | AR             | Phenols - Total (monohydric)                                                                                                                              | Determination of phenols by distillation followed by colorimetry                                                                                    | E021         |
| Soil   | D              | Phosphate - Water Soluble (2:1)                                                                                                                           | Determination of phosphate by extraction with water & analysed by ion chromatography                                                                | E009         |
| Soil   | D              | Sulphate (as SO4) - Total                                                                                                                                 | Determination of total sulphate by extraction with 10% HCI followed by ICP-OES                                                                      | E013         |
| Soil   | D              | Sulphate (as SO4) - Water Soluble (2:1)                                                                                                                   | Determination of sulphate by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Soil   | D              | Sulphate (as SO4) - Water Soluble (2:1)                                                                                                                   | Determination of water soluble sulphate by extraction with water followed by ICP-OES                                                                | E014         |
| Soil   | AR             | Sulphide                                                                                                                                                  | Determination of sulphide by distillation followed by colorimetry                                                                                   | E018         |
| Soil   | D              | Sulphur - Total                                                                                                                                           | Determination of total sulphur by extraction with aqua-regia followed by ICP-OES                                                                    | E024         |
| Soil   | AR             | SVOC                                                                                                                                                      | Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-<br>MS                                          | E006         |
| Soil   | AR             | Thiocyanate (as SCN)                                                                                                                                      | Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry | E017         |
| Soil   | D              | Toluene Extractable Matter (TEM)                                                                                                                          | Gravimetrically determined through extraction with toluene                                                                                          | E011         |
| Soil   | D              | Total Organic Carbon (TOC)                                                                                                                                | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                | E010         |
| Soil   | AR             | TPH CWG (ali: C5- C6, C6-C8, C8-C10,<br>C10-C12, C12-C16, C16-C21, C21-C34,<br>aro: C5-C7, C7-C8, C8-C10, C10-C12,<br>C12-C16, C16-C21, C21-C35)          | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS      | E004         |
| Soil   | AR             | TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10<br>C12, C12-C16, C16-C35, C35-C44, aro:<br>C5-C7, C7-C8, C8-C10, C10-C12, C12-<br>C16, C16-C21, C21-C35, C35-C44) | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS      | E004         |
| Soil   | AR             | VOCs                                                                                                                                                      | Determination of volatile organic compounds by headspace GC-MS                                                                                      | E001         |
| Soil   | AR             | VPH (C6-C8 & C8-C10)                                                                                                                                      | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                                                                           | E001         |

D Dried AR As Received

### APPENDIX E Soil Assessment Criteria

# Appendix E

#### Soil Guideline Values and Genera Assessment Criteria

#### E1 Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'.

#### E1.1 Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA Guidance comprises the following documents:

EA Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
 EA Science Report SC050021/SR3: Updated technical background to the CLEA model.
 EA CLEA Bulletin (2009).
 CLEA software version 1.06 (2009)
 Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

• do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures.

• do not cover risks to the environment, such as groundwater, ecosystems or buildings.

• do not provide a definitive test for telling when human health risks are significant.

• are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

#### E1.2 Land-use Scenarios

The CLEA model uses a range of standard land-use scenarios to develop conceptual exposure models as follows:

#### 1 Residential (with home grown produce) (RwHP)

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur. (Residential without homegrown produce (RwoHP)).

### 2) Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

# 3) Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a three-storey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

# E1.4 LQM/CIEH SUITABLE 4 USE LEVELS (S4UL)

For derivation of these S4UL reference must be made to:

Nathanial, P., McCaffrey, C., Gillet, A., Ogden, R., Nathanial, J.,. *The LQM/CIEH S4UL's for Human Health Risk Assessment*. Land Quality Press. 2015

The LQM/CIEH S4UL for a given land use is the concentration of the contaminant in soil at which the predicted daily exposure, as calculated by the CLEA software, equals the Health Criteria Value.

The final output for each contaminant represents a synthesis of new toxicological (and fate and transport) reviews published since the preparation of the  $2^{nd}$  edition LQM/CIEH GAC's (Nathanial et al., 2009).

In the derivation of LQM/CIEH S4UL's the principles of 'minimal' or 'tolerable' risk enshrined in SR2, which has not been withdrawn, has been maintained.

S4UL's have been derived for the basic CLEA land-uses, as described above, and for two new land uses:

- Public Open Spaces near Residential Housing (POSresi)
- Public Park (POSpark).

#### Public Open Spaces near Residential Housing (POSresi)

Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930's – 1970's housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soils with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

#### Public Park (POSpark)

An area of open space, usually owned and maintained by the local authority, provided for recreational uses including family visists and picnics, children's play area, informal sporting activities (not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into places of residence will be negligible.

#### E1.5 Category 4 Screening Levels (C4SLs)

In the case of Lead, no SGV or GAC has been published to date. This is likely to be due to the toxicity review that is currently being undertaken by the Environment Agency. In the absence of updated toxicity information the SGV derived using CLEA 1.06 methodology and related toxicity will be used.

The overall objective of the C4SLs research project was to assist the provision of technical guidance in support of Defra's revised Statutory Guidance (SG) for Part 2A of the Environmental Protection Act 1990 (Part 2A) (Defra, 2012a). Specifically, the project aimed to deliver:

• A methodology for deriving C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space; and

• A demonstration of the methodology, via the derivation of C4SLs for six substances – arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.

To help achieve a more targeted approach to identifying and managing contaminated land in relation to the risk (or possibility) of harm to human health, the revised SG presented a new four category system for considering land under Part 2A, ranging from Category 4, where there is no risk that land poses a

significant possibility of significant harm (SPOSH), or the level of risk is low, to Category 1, where the risk that land poses a significant possibility of significant harm (SPOSH) is unacceptably high. More specific guidance on what type of land should be considered as Category 4 (Human Health) is provided in Paragraphs 4.21 and 4.22 of the revised SG, as follows:

"4.21 The local authority should consider that the following types of land should be placed into Category 4: Human Health:

(a) Land where no relevant contaminant linkage has been established.

(b) Land where there are only normal levels of contaminants in soil, as explained in Section 3 of this Guidance.

(c) Land that has been excluded from the need for further inspection and assessment because contaminant levels do not exceed relevant generic assessment criteria in accordance with Section 3 of this Guidance, or relevant technical tools or advice that may be developed in accordance with paragraph 3.30 of this Guidance.

(d) Land where estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure (e.g. in relation to average estimated national levels of exposure to substances commonly found in the environment, to which receptors are likely to be exposed in the normal course of their lives).

4.22 The local authority may consider that land other than the types described in paragraph 4.21 should be placed into Category 4: Human Health if following a detailed quantitative risk assessment it is satisfied that the level of risk posed is sufficiently low."

The C4SLs are intended as "relevant technical tools" (in relation to Paragraph 4.21(c)) to help local authorities and others when deciding to stop further assessment of a site, on the grounds that it falls within Category 4 (Human Health).

The Impact Assessment (IA), which accompanied the revised SG (Defra, 2012b) provides further information on the nature and potential role of the C4SLs. Paragraph 47(h) of the IA states that:

"The new statutory guidance will bring about a situation where the current SGVs/GACs are replaced with more pragmatic (but still strongly precautionary) Category 4 screening levels (C4SLs) which will provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land."

A key distinction between the Soil Guideline Values (SGVs) and the C4SLs is the level of risk that they describe. As described by the Environment Agency (2009a): "SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health."

The implication of Paragraph 47(h) of the IA is that minimal risk is well within Category 4 and that the C4SLs should describe a higher level of risk which, whilst not minimal, can still be considered low enough to allow a judgement to be made

that land containing substances at, or below, the C4SLs would typically fall within Category 4. This reflects Paragraph 4.20 of the revised SG, which states:

"4.20 The local authority should not assume that land poses a significant possibility of significant harm if it considers that there is no risk or that the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4: Human Health" case. The authority may decide that the land is a Category 4: Human Health case as soon as it considers it has evidence to this effect, and this may happen at any stage during risk assessment including the early stages."

C4SLs, therefore, should not be viewed as "SPOSH levels" and they should not be used as a legal trigger for the determination of land under Part 2A.

The generic screening values referred to before usually take the form of riskbased Soil Guideline Values (SGVs) or other Generic Assessment Criteria (GACs) that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) model, as described in the Environment Agency's SR2, SR3 and SR7 reports (EA, 2009b & c; EA, 2008). It is anticipated that C4SLs will be used in a similar manner; as generic screening criteria that can be used within a GQRA, albeit describing a higher level of risk than the SGVs.

The suggested approach to the development of C4SLs consists of the retention and use of the CLEA framework, modified according to considerations of the underlying science within the context of Defra's policy objectives relating to the revised SG. Within this context, it is suggested that the development of C4SLs may be achieved in one of three ways, namely:

• By modifying the toxicological parameters used within CLEA (while maintaining current exposure parameters);

• By modifying the exposure parameters embedded within CLEA (while maintaining current toxicological "minimal risk" interpretations); and

• By modifying both toxicological and exposure parameters.

There is also a suggested check on "other considerations" (e.g., background levels, epidemiological data, sources of uncertainty) within the approach, applicable to all three options.

It is suggested that a new term is defined for the toxicological guidance values associated with the derivation of C4SLs – a Low Level of Toxicological Concern (LLTC). A LLTC should represent an intake of low concern that remains suitably protective of health, and definitely does not approach an intake level that could be defined as SPOSH.

#### E1.6 CL:AIRE Generic Assessment Criteria (GAC)

For derivation of the CL:AIRE Generic Assessment Criteria (GAC) reference should be made to the following report:

CL:AIRE, *The Soil Generic Assessment Criteria for Human Health Risk Assessment.* Contaminated Land: Applications in the Real Environment. 2009. Within this report CL:AIRE provided Generic Assessment Criteria (GAC's) in accordance with the CLEA software and the principles outlined above for a further 35 contaminants sometime encountered on land affected by contamination.

#### E1.7 Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of an S4UL/GAC/C4SL is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses then a DQRA may be undertaking to develop site specific values for relevant soil contaminants.

 $\Rightarrow$  Establishing the plausibility that generic exposure pathways exist in practice by measurement and observation.

#### Developing more accurate parameters using site data.

#### E1.8 Phytotoxicity

 $\Rightarrow$ 

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

• ICRCL 70/90: Notes on the restoration and aftercare of metalliferous mining sites for pasture and grazing.

#### E1.8 Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95<sup>th</sup> percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

The DEFRA discussion paper Assessing risks from land contamination – a proportionate approach ('the way forward') (CLAN06/2006) aimed to increase understanding of the role that statistics can play in quantifying the uncertainty attached to the estimates of the mean concentration of contaminants in soil. In direct response CLAIRE/CIEH published a joint report, *Guidance in comparing soil contamination data with a critical concentration* (CLAIRE/CIEH 2008). A software implementation of the statistical techniques given in the report was published by ESI International (2008).

#### **Treatment of Hot-Spots**

 $\Rightarrow$  A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.

 $\Rightarrow$  Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hot-spot(s) may be excluded and the mean of the remaining data assessed.

#### E2 Ground and Water Limited Soil Assessment Criteria

The Soil Assessment Criteria used in the preparation of this report are tabulated in the following pages:

# C4SL Low Level of Toxicological Concern

| C4SL Low Level of Toxicological Concern |                 |                  |                      |                       |                    |                    |  |  |
|-----------------------------------------|-----------------|------------------|----------------------|-----------------------|--------------------|--------------------|--|--|
| Contaminant                             | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg) | Allotment<br>(mg/kg) | Commercial<br>(mg/kg) | POSresi<br>(mg/kg) | POSpark<br>(mg/kg) |  |  |
|                                         |                 |                  |                      |                       |                    |                    |  |  |
| Lead                                    | <210            | <330             | <84                  | <6000                 | <760               | <1400              |  |  |
|                                         |                 |                  |                      |                       |                    |                    |  |  |

# **Phytotoxicity Recommendations**

ICRCL 70/90 Restoration of metalliferous mining areas

| Phytotoxicity (Harmful to Plants) Threshold Trigger Values |                                                                                                         |  |  |  |  |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Copper                                                     | 250mg/kg                                                                                                |  |  |  |  |  |  |  |
| Zinc                                                       | 1000mg/kg                                                                                               |  |  |  |  |  |  |  |
| Notes:                                                     |                                                                                                         |  |  |  |  |  |  |  |
| Many cultivars and specifically                            | grasses have a high tolerance and there will be no ill-effect at the threshold trigger values given for |  |  |  |  |  |  |  |
| neutral or near neutral pH. Site                           | e observation of plant vitality may give additional guidance.                                           |  |  |  |  |  |  |  |

# Cont'd from previous page: LQM CIEH Suitable 4 Use Levels (S4UL's)

| LQM/CIEH Suitable 4 Use Levels – Metals and Semi-metals |                 |                  |                      |                       |                    |                    |  |  |  |  |
|---------------------------------------------------------|-----------------|------------------|----------------------|-----------------------|--------------------|--------------------|--|--|--|--|
| Contaminant                                             | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg) | Allotment<br>(mg/kg) | Commercial<br>(mg/kg) | POSresi<br>(mg/kg) | POSpark<br>(mg/kg) |  |  |  |  |
| Metals:                                                 |                 |                  |                      |                       |                    |                    |  |  |  |  |
| Arsenic                                                 | 37              | 40               | 43                   | 640                   | 79                 | 170                |  |  |  |  |
| Beryllium                                               | 1.7             | 1.7              | 35                   | 12                    | 2.2                | 63                 |  |  |  |  |
| Boron                                                   | 290             | 11000            | 45                   | 240000                | 21000              | 46000              |  |  |  |  |
| Cadmium                                                 | 11              | 85               | 1.9                  | 190                   | 120                | 532                |  |  |  |  |
| Chromium (III)                                          | 910             | 910              | 18000                | 8600                  | 1500               | 33000              |  |  |  |  |
| Chromium (VI)                                           | 6               | 6                | 1.8                  | 33                    | 7.7                | 20                 |  |  |  |  |
| Copper                                                  | 2400            | 7100             | 520                  | 68000                 | 12000              | 44000              |  |  |  |  |
| Elemental<br>Mercury                                    | 1.2             | 1.2              | 21                   | 58                    | 16                 | 30                 |  |  |  |  |
| Inorganic<br>Mercury                                    | 40              | 56               | 19                   | 1100                  | 120                | 240                |  |  |  |  |
| Methylmercury                                           | 11              | 15               | 6                    | 320                   | 40                 | 68                 |  |  |  |  |
| Nickel                                                  | 180             | 180              | 230                  | 980                   | 230                | 3400               |  |  |  |  |
| Selenium                                                | 250             | 430              | 88                   | 12000                 | 1100               | 1800               |  |  |  |  |
| Vanadium                                                | 410             | 1200             | 91                   | 9000                  | 2000               | 5000               |  |  |  |  |
| Zinc                                                    | 3700            | 40000            | 620                  | 730000                | 81000              | 170000             |  |  |  |  |

| LQM/CIEH Suitable 4 Use Levels – BTEX Compounds |                        |                     |                  |                      |                       |                    |                    |  |  |  |
|-------------------------------------------------|------------------------|---------------------|------------------|----------------------|-----------------------|--------------------|--------------------|--|--|--|
| Contaminant                                     | Soil Organic<br>Matter | RwHP<br>(mg/kg)     | RwoHP<br>(mg/kg) | Allotment<br>(mg/kg) | Commercial<br>(mg/kg) | POSresi<br>(mg/kg) | POSpark<br>(mg/kg) |  |  |  |
|                                                 |                        |                     |                  |                      |                       |                    |                    |  |  |  |
|                                                 | 1.0% SOM               | 0.087               | 0.38             | 0.017                | 27                    | 72                 | 90                 |  |  |  |
| Benzene                                         | 2.5% SOM               | 0.170               | 0.70             | 0.034                | 47                    | 72                 | 100                |  |  |  |
|                                                 | 6.0% SOM               | 0.370               | 1.40             | 0.075                | 90                    | 73                 | 110                |  |  |  |
|                                                 |                        |                     |                  |                      |                       |                    |                    |  |  |  |
|                                                 | 1.0% SOM               | 130                 | 880              | 22                   | 56000                 | 56000              | 87000              |  |  |  |
| Toluene                                         | 2.5% SOM               | 290                 | 1900             | 51                   | 110000                | 56000              | 95000              |  |  |  |
|                                                 | 6.0% SOM               | 660                 | 3900             | 120                  | 180000                | 56000              | 100000             |  |  |  |
|                                                 |                        |                     |                  |                      |                       |                    |                    |  |  |  |
|                                                 | 1.0% SOM               | 47                  | 83               | 16                   | 5700                  | 24000              | 17000              |  |  |  |
| Ethylbenzene                                    | 2.5% SOM               | 110                 | 190              | 39                   | 13000                 | 24000              | 22000              |  |  |  |
|                                                 | 6.0% SOM               | 260                 | 440              | 91                   | 27000                 | 25000              | 27000              |  |  |  |
|                                                 |                        |                     |                  |                      |                       |                    |                    |  |  |  |
|                                                 | 1.0% SOM               | 60                  | 88               | 28                   | 6600                  | 41000              | 17000              |  |  |  |
| o-Xylene                                        | 2.5% SOM               | 140                 | 210              | 67                   | 15000                 | 42000              | 24000              |  |  |  |
|                                                 | 6.0% SOM               | 330                 | 480              | 160                  | 33000                 | 43000              | 33000              |  |  |  |
|                                                 |                        |                     |                  |                      |                       |                    |                    |  |  |  |
|                                                 | 1.0% SOM               | 59                  | 82               | 31                   | 6200                  | 41000              | 17000              |  |  |  |
| m-Xylene                                        | 2.5% SOM               | 140                 | 190              | 74                   | 14000                 | 42000              | 24000              |  |  |  |
|                                                 | 6.0% SOM               | 320                 | 450              | 170                  | 31000                 | 43000              | 33000              |  |  |  |
|                                                 |                        |                     |                  |                      |                       |                    |                    |  |  |  |
|                                                 | 1.0% SOM               | 56                  | 79               | 29                   | 5900                  | 41000              | 17000              |  |  |  |
| p-Xylene                                        | 2.5% SOM               | 130                 | 180              | 69                   | 14000                 | 42000              | 23000              |  |  |  |
|                                                 | 6.0% SOM               | 310                 | 430              | 160                  | 30000                 | 43000              | 31000              |  |  |  |
|                                                 | The mo                 | st health protectiv | e value in each  | scenario for Xylene  | is highlighted in bol | d.                 |                    |  |  |  |

#### Cont'd from previous page:

| LQM/CIEH Suitable 4 Use Levels For TPH |          |                              |                              |                      |                              |                              |                               |  |  |
|----------------------------------------|----------|------------------------------|------------------------------|----------------------|------------------------------|------------------------------|-------------------------------|--|--|
| Alipl                                  | natic    | RwHP<br>(mg/kg)              | RwoHP<br>(mg/kg)             | Allotment<br>(mg/kg) | Commercial<br>(mg/kg)        | POSresi<br>(mg/kg)           | POSpark<br>(mg/kg)            |  |  |
|                                        | 1.0% SOM | 42                           | 42                           | 730                  | 3,200 (304) <sup>sol</sup>   | 570,000 (304) <sup>sol</sup> | 95,000 (304) <sup>sol</sup>   |  |  |
| EC 5-6                                 | 2.5% SOM | 78                           | 78                           | 1,700                | 5,900 (558) <sup>sol</sup>   | 590,000                      | 130,000 (558) <sup>sol</sup>  |  |  |
|                                        | 6.0% SOM | 160                          | 160                          | 3,900                | 12,000 (1150) <sup>sol</sup> | 600,000 <sup>1</sup>         | 180,000 (1150) <sup>sol</sup> |  |  |
|                                        |          |                              |                              |                      |                              |                              |                               |  |  |
|                                        | 1.0% SOM | 100                          | 100                          | 2,300                | 7,800 (144) <sup>sol</sup>   | 600,000                      | 150,000 (144) <sup>sol</sup>  |  |  |
| EC >6-8                                | 2.5% SOM | 230                          | 230                          | 5,600                | 17,000 (322) <sup>sol</sup>  | 610,000                      | 220,000 (322) <sup>sol</sup>  |  |  |
|                                        | 6.0% SOM | 530                          | 530                          | 13,000               | 40,000 (736) <sup>sol</sup>  | 620,000                      | 320,000 (736) <sup>sol</sup>  |  |  |
|                                        |          |                              |                              |                      |                              |                              |                               |  |  |
|                                        | 1.0% SOM | 27                           | 27                           | 320                  | 2,000 (78) <sup>sol</sup>    | 13,000                       | 14,000 (78) <sup>sol</sup>    |  |  |
| EC >8-10                               | 2.5% SOM | 65                           | 65                           | 770                  | 4,800 (118) <sup>vap</sup>   | 13,000                       | 18,000 (118) <sup>vap</sup>   |  |  |
|                                        | 6.0% SOM | 150                          | 150                          | 1,700                | 11,000 (451) <sup>vap</sup>  | 13,000                       | 21,000 (451) <sup>vap</sup>   |  |  |
|                                        |          |                              |                              |                      |                              |                              |                               |  |  |
|                                        | 1.0% SOM | 130 (48) <sup>vap</sup>      | 130 (48) <sup>vap</sup>      | 2,200                | 9,700 (48) <sup>sol</sup>    | 13,000                       | 21,000 (48) <sup>sol</sup>    |  |  |
| EC >10-12                              | 2.5% SOM | 330 (118) <sup>vap</sup>     | 330 (118) <sup>vap</sup>     | 4,400                | 23,000 (118) <sup>vap</sup>  | 13,000                       | 23,000 (118) <sup>vap</sup>   |  |  |
|                                        | 6.0% SOM | 760 (283) <sup>vap</sup>     | 770 (283) <sup>vap</sup>     | 7,300                | 47,000 (283) <sup>vap</sup>  | 13,000                       | 24,000 (283) <sup>vap</sup>   |  |  |
|                                        |          |                              |                              |                      |                              |                              |                               |  |  |
|                                        | 1.0% SOM | 1,100 (24) <sup>sol</sup>    | 1,100 (24) <sup>sol</sup>    | 11,000               | 59,000 (24) <sup>sol</sup>   | 13,000                       | 25,000 (24) <sup>sol</sup>    |  |  |
| EC >12-16                              | 2.5% SOM | 2,400 (59) <sup>sol</sup>    | 2,400 (59) <sup>sol</sup>    | 13,000               | 82,000 (59) <sup>sol</sup>   | 13,000                       | 25,000 (59) <sup>sol</sup>    |  |  |
|                                        | 6.0% SOM | 4,300 (142) <sup>sol</sup>   | 4,400 (142) <sup>sol</sup>   | 13,000               | 90,000 (142) <sup>sol</sup>  | 13,000                       | 26,000 (142) <sup>sol</sup>   |  |  |
|                                        |          |                              |                              |                      |                              |                              |                               |  |  |
|                                        | 1.0% SOM | 65,000 (8.48) <sup>sol</sup> | 65,000 (8.48) <sup>sol</sup> | 260,000              | 1,600,000                    | 250,000                      | 450,000                       |  |  |
| EC >16-35                              | 2.5% SOM | 92,000 (21) <sup>sol</sup>   | 92,000 (21) <sup>sol</sup>   | 270,000              | 1,700,000                    | 250,000                      | 480,000                       |  |  |
|                                        | 6.0% SOM | 110,000                      | 110,000                      | 270,000              | 1,800,000                    | 250,000                      | 490,000                       |  |  |
|                                        |          |                              |                              |                      |                              |                              |                               |  |  |
|                                        | 1.0% SOM | 65,000 (8.48) <sup>sol</sup> | 65,000 (8.48) <sup>sol</sup> | 260,000              | 1,600,000                    | 250,000                      | 450,000                       |  |  |
| EC >35-44                              | 2.5% SOM | 92,000 (21) <sup>sol</sup>   | 92,000 (21) <sup>sol</sup>   | 270,000              | 1,700,000                    | 250,000                      | 480,000                       |  |  |
|                                        | 6.0% SOM | 110,000                      | 110,000                      | 270,000              | 1,800,000                    | 250,000                      | 490,000                       |  |  |

E.

#### Cont'd from previous page:

| LQM/CIEH Suitable 4 Use Levels For TPH |          |                 |                            |                      |                               |                    |                              |  |  |
|----------------------------------------|----------|-----------------|----------------------------|----------------------|-------------------------------|--------------------|------------------------------|--|--|
| Aroma                                  | tic      | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg)           | Allotment<br>(mg/kg) | Commercial<br>(mg/kg)         | POSresi<br>(mg/kg) | POSpark<br>(mg/kg)           |  |  |
|                                        | 1.0% SOM | 70              | 370                        | 13                   | 26,000 (1220) <sup>sol</sup>  | 56,000             | 76,000 (1220 <sup>sol</sup>  |  |  |
| EC 5-7<br>(Ponzono)                    | 2.5% SOM | 140             | 690                        | 27                   | 46,000 (2260) <sup>sol</sup>  | 56,000             | 84,000 (2260) <sup>sol</sup> |  |  |
| (Belizelle)                            | 6.0% SOM | 300             | 1,400                      | 57                   | 86,000 (4710) <sup>sol</sup>  | 56,000             | 92,000 (4710) <sup>sol</sup> |  |  |
|                                        |          |                 |                            |                      |                               |                    |                              |  |  |
|                                        | 1.0% SOM | 130             | 860                        | 22                   | 56,000 (869) <sup>vap</sup>   | 56,000             | 87,000 (869) <sup>sol</sup>  |  |  |
| EC >7-8                                | 2.5% SOM | 290             | 1,800                      | 51                   | 110,000 (1920) <sup>sol</sup> | 56,000             | 95,000 (1920) <sup>sol</sup> |  |  |
| (Toluene)                              | 6.0% SOM | 660             | 3,900                      | 120                  | 180,000 (4360) <sup>vap</sup> | 56,000             | 100,000 (4360) vap           |  |  |
|                                        |          |                 |                            |                      |                               |                    |                              |  |  |
|                                        | 1.0% SOM | 34              | 47                         | 8.6                  | 3,500 (613) <sup>vap</sup>    | 5,000              | 7,200 (613) <sup>vap</sup>   |  |  |
| EC >8-10                               | 2.5% SOM | 83              | 110                        | 21                   | 8,100 (1500) <sup>vap</sup>   | 5,000              | 8,500 (1500) <sup>vap</sup>  |  |  |
|                                        | 6.0% SOM | 190             | 270                        | 51                   | 17,000 (3850) <sup>vap</sup>  | 5,000              | 9,300 (3580) <sup>vap</sup>  |  |  |
|                                        |          |                 |                            |                      |                               |                    |                              |  |  |
|                                        | 1.0% SOM | 74              | 250                        | 13                   | 16,000 (364) <sup>sol</sup>   | 5,000              | 9,200 (364) <sup>sol</sup>   |  |  |
| EC >10-12                              | 2.5% SOM | 180             | 590                        | 31                   | 28,000 (899) <sup>sol</sup>   | 5,000              | 9,700 (889) <sup>sol</sup>   |  |  |
|                                        | 6.0% SOM | 380             | 1,200                      | 74                   | 34,000 (2150) <sup>sol</sup>  | 5,000              | 10,000                       |  |  |
|                                        |          |                 |                            |                      |                               |                    |                              |  |  |
|                                        | 1.0% SOM | 140             | 1,800                      | 23                   | 36,000 (169) <sup>sol</sup>   | 5,100              | 10,000                       |  |  |
| EC >12-16                              | 2.5% SOM | 330             | 2,300 (419) <sup>sol</sup> | 57                   | 37,000                        | 5,100              | 10,000                       |  |  |
|                                        | 6.0% SOM | 660             | 2,500                      | 130                  | 38,000                        | 5,000              | 10,000                       |  |  |
|                                        |          |                 |                            |                      |                               |                    |                              |  |  |
|                                        | 1.0% SOM | 260             | 1,900                      | 46                   | 28,000                        | 3,800              | 7,600                        |  |  |
| EC >16-21                              | 2.5% SOM | 540             | 1,900                      | 110                  | 28,000                        | 3,800              | 7,700                        |  |  |
|                                        | 6.0% SOM | 930             | 1,900                      | 260                  | 28,000                        | 3,800              | 7,800                        |  |  |
|                                        |          |                 |                            |                      |                               |                    |                              |  |  |
|                                        | 1.0% SOM | 1,100           | 1,900                      | 370                  | 28,000                        | 3,800              | 7,800                        |  |  |
| EC >21-35                              | 2.5% SOM | 1,500           | 1,900                      | 820                  | 28,000                        | 3,800              | 7,800                        |  |  |
|                                        | 6.0% SOM | 1,700           | 1,900                      | 1,600                | 28,000                        | 3,800              | 7,900                        |  |  |
|                                        |          |                 |                            |                      |                               |                    |                              |  |  |
|                                        | 1.0% SOM | 1,100           | 1,900                      | 370                  | 28,000                        | 3,800              | 7,800                        |  |  |
| EC >35-44                              | 2.5% SOM | 1,500           | 1,900                      | 820                  | 28,000                        | 3,800              | 7,800                        |  |  |
|                                        | 6.0% SOM | 1,700           | 1,900                      | 1,600                | 28,000                        | 3,800              | 7,900                        |  |  |
|                                        |          |                 |                            |                      |                               |                    |                              |  |  |
|                                        | 1.0% SOM | 1,600           | 1,900                      | 1,200                | 28,000                        | 3,800              | 7,800                        |  |  |
| EC >44-70                              | 2.5% SOM | 1,800           | 1,900                      | 2,100                | 28,000                        | 3,800              | 7,800                        |  |  |
|                                        | 6.0% SOM | 1,900           | 1,900                      | 3,000                | 28,000                        | 3,800              | 7,900                        |  |  |

SOM = Soil Organic Matter Content (%)

|                       |          |                 |                             | ,                    | ···· <b>/</b> ··· · · · · · |                    | -1                 |
|-----------------------|----------|-----------------|-----------------------------|----------------------|-----------------------------|--------------------|--------------------|
| Determinant           | s        | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg)            | Allotment<br>(mg/kg) | Commercial<br>(mg/kg)       | POSresi<br>(mg/kg) | POSpark<br>(mg/kg) |
|                       | 1.0% SOM | 210             | 3,000 (57.0) <sup>sol</sup> | 34                   | 84,000(57.0) <sup>sol</sup> | 15,000             | 29,000             |
| Acenapthene           | 2.5% SOM | 510             | 4,700(141) <sup>sol</sup>   | 85                   | 97,000(141) <sup>sol</sup>  | 15,000             | 30,000             |
|                       | 6.0% SOM | 1100            | 6,000(336) <sup>sol</sup>   | 200                  | 100,000                     | 15,000             | 30,000             |
| Acenapthylene         | 1.0% SOM | 170             | 2,900(86.1) <sup>sol</sup>  | 28                   | 83,000(86.1) <sup>sol</sup> | 15,000             | 29,000             |
|                       | 2.5% SOM | 420             | 4,600(212) <sup>sol</sup>   | 69                   | 97,000(212) <sup>sol</sup>  | 15,000             | 30,000             |
|                       | 6.0% SOM | 920             | 6,000(506) <sup>sol</sup>   | 160                  | 100,000                     | 15,000             | 30,000             |
|                       | 1.0% SOM | 2,400           | 31,000(1.17) <sup>vap</sup> | 380                  | 520,000                     | 74,000             | 150,000            |
| Anthracene            | 2.5% SOM | 5,400           | 35,000                      | 950                  | 540,000                     | 74,000             | 150,000            |
|                       | 6.0% SOM | 11,000          | 37,000                      | 2,200                | 540,000                     | 74,000             | 150,000            |
|                       | 1.0% SOM | 7.20            | 11                          | 2.90                 | 170                         | 29                 | 49                 |
| Benzo(a)anthracene    | 2.5% SOM | 11              | 14                          | 6.50                 | 170                         | 29                 | 56                 |
|                       | 6.0% SOM | 13              | 15                          | 13                   | 180                         | 29                 | 62                 |
| Benzo(a)pyrene        | 1.0% SOM | 2.20            | 3.20                        | 0.97                 | 35                          | 5.70               | 11                 |
|                       | 2.5% SOM | 2.70            | 3.20                        | 2.00                 | 35                          | 5.70               | 12                 |
|                       | 6.0% SOM | 3.00            | 3.20                        | 3.50                 | 36                          | 5.70               | 13                 |
|                       | 1.0% SOM | 2.60            | 3.90                        | 0.99                 | 44                          | 7.10               | 13                 |
| Benzo(b)flouranthene  | 2.5% SOM | 3.30            | 4.00                        | 2.10                 | 44                          | 7.20               | 15                 |
|                       | 6.0% SOM | 3.70            | 4.00                        | 3.90                 | 45                          | 7.20               | 16                 |
|                       | 1.0% SOM | 320             | 360                         | 290                  | 3,900                       | 640                | 1,400              |
| Benzo(ghi)perylene    | 2.5% SOM | 340             | 360                         | 470                  | 4,000                       | 640                | 1,500              |
|                       | 6.0% SOM | 350             | 360                         | 640                  | 4,000                       | 640                | 1,600              |
|                       | 1.0% SOM | 77              | 110                         | 37                   | 1,200                       | 190                | 370                |
| Benzo(k)flouranthene  | 2.5% SOM | 93              | 110                         | 75                   | 1,200                       | 190                | 410                |
|                       | 6.0% SOM | 100             | 110                         | 130                  | 1,200                       | 190                | 440                |
|                       | 1.0% SOM | 15              | 30                          | 4.10                 | 350                         | 57                 | 93                 |
| Chrysene              | 2.5% SOM | 22              | 31                          | 9.40                 | 350                         | 57                 | 110                |
|                       | 6.0% SOM | 27              | 32                          | 19                   | 350                         | 57                 | 120                |
|                       | 1.0% SOM | 0.24            | 0.31                        | 0.14                 | 3.50                        | 0.57               | 1.10               |
| Dibenzo(ah)anthracene | 2.5% SOM | 0.28            | 0.32                        | 0.27                 | 3.60                        | 0.57               | 1.30               |
|                       | 6.0% SOM | 0.30            | 0.32                        | 0.43                 | 3.60                        | 0.58               | 1.40               |

# LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's)

| LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's) |          |                 |                             |                      |                                         |                    |                           |  |
|-----------------------------------------------------------------------------|----------|-----------------|-----------------------------|----------------------|-----------------------------------------|--------------------|---------------------------|--|
| Determinar                                                                  | nts      | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg)            | Allotment<br>(mg/kg) | Commercial<br>(mg/kg)                   | POSresi<br>(mg/kg) | POSpark<br>(mg/kg)        |  |
|                                                                             | 1.0% SOM | 280             | 1,500                       | 52                   | 2,3000                                  | 3,100              | 6,300                     |  |
| Flouranthene                                                                | 2.5% SOM | 560             | 1,600                       | 130                  | 2,3000                                  | 3,100              | 6,300                     |  |
|                                                                             | 6.0% SOM | 890             | 1,600                       | 290                  | 2,3000                                  | 3,100              | 6,300                     |  |
|                                                                             | 1.0% SOM | 170             | 2,800 (30.9) <sup>sol</sup> | 27                   | 63,000(30.9) <sup>sol</sup>             | 9,900              | 20,000                    |  |
| Flourene                                                                    | 2.5% SOM | 400             | 3,800(76.5) <sup>sol</sup>  | 67                   | 68,000                                  | 9,900              | 20,000                    |  |
|                                                                             | 6.0% SOM | 860             | 4,500(183) <sup>sol</sup>   | 160                  | 71,000                                  | 9,900              | 20,000                    |  |
|                                                                             | 1.0% SOM | 27              | 45                          | 9.50                 | 500                                     | 82                 | 150                       |  |
| Indeno(123-cd)pyrene                                                        | 2.5% SOM | 36              | 46                          | 21                   | 510                                     | 82                 | 170                       |  |
|                                                                             | 6.0% SOM | 41              | 46                          | 39                   | 510                                     | 82                 | 180                       |  |
|                                                                             | 1.0% SOM | 2.30            | 2.6                         | 4.10                 | 190 <sup>†</sup> (76.4) <sup>sol</sup>  | 4,900 <sup>†</sup> | 1,200 <sup>†</sup> (76.4) |  |
| Napthalene                                                                  | 2.5% SOM | 5.60            | 5.6                         | 10                   | 460 <sup>f</sup> (183) <sup>sol</sup>   | 4,900 <sup>†</sup> | 1,900 <sup>†</sup> (183)  |  |
|                                                                             | 6.0% SOM | 13              | 13                          | 24                   | 1,100 <sup>†</sup> (432) <sup>sol</sup> | 4,900 <sup>†</sup> | 3,000                     |  |
|                                                                             | 1.0% SOM | 95              | 1,300(183) <sup>sol</sup>   | 18                   | 22,000                                  | 3,100              | 6,200                     |  |
| Phenanthrene                                                                | 2.5% SOM | 220             | 1,500                       | 38                   | 22,000                                  | 3,100              | 6,200                     |  |
|                                                                             | 6.0% SOM | 440             | 1,500                       | 90                   | 23,000                                  | 3,100              | 6,300                     |  |
|                                                                             | 1.0% SOM | 620             | 3,700                       | 110                  | 54,000                                  | 7,400              | 15,000                    |  |
| Pyrene                                                                      | 2.5% SOM | 1200            | 3,800                       | 270                  | 54,000                                  | 7,400              | 15,000                    |  |
|                                                                             | 6.0% SOM | 2000            | 3,800                       | 620                  | 54,000                                  | 7,400              | 15,000                    |  |
| Coal Tar                                                                    | 1.0% SOM | 0.79            | 1.2                         | 0.32                 | 15                                      | 2.20               | 4.40                      |  |
| (Benzo(a)pyrene used                                                        | 2.5% SOM | 0.98            | 1.2                         | 0.67                 | 15                                      | 2.20               | 4.70                      |  |
| as marker compound                                                          | 6.0% SOM | 1.10            | 1.2                         | 1.20                 | 15                                      | 2.20               | 4.80                      |  |

 $^{\mathsf{vap}}-\mathsf{GAC}$  presented exceeds the vapour saturation limit, which is presented in brackets.

<sup>sol</sup> – GAC presented exceeds the soil saturation limit, which is presented in brackets.

Cont'd Overleaf:

Cont'd from previous page:

# LQM/CIEH Suitable 4 Use Levels (cont.)

| LQM CIEH Genera           | al Assessm      | ent Criter       | ia: Volatile and  | Semi-Volat            | ile Organic C      | ompounds                     |
|---------------------------|-----------------|------------------|-------------------|-----------------------|--------------------|------------------------------|
| Contaminant               | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg) | Allotment (mg/kg) | Commercial<br>(mg/kg) | POSresi<br>(mg/kg) | POSpark<br>(mg/kg)           |
| Chloroalkanes & alkenes   |                 |                  |                   |                       |                    |                              |
|                           |                 |                  |                   |                       |                    |                              |
| 1,2 Dichloroethane        |                 |                  |                   |                       |                    |                              |
| 1.0% SOM                  | 0.0071          | 0.0092           | 0.0046            | 0.67                  | 29                 | 21                           |
| 2.5% SOM                  | 0.011           | 0.013            | 0.0083            | 0.97                  | 29                 | 24                           |
| 6.0% SOM                  | 0.019           | 0.023            | 0.016             | 1.70                  | 29                 | 28                           |
|                           |                 |                  |                   |                       |                    |                              |
| 1,1,2,2 Tetrachloroethane |                 |                  |                   |                       |                    |                              |
| 1.0% SOM                  | 1.60            | 3.90             | 0.41              | 270                   | 1,400              | 1,800                        |
| 2.5% SOM                  | 3.40            | 8.00             | 0.89              | 550                   | 1,400              | 2,100                        |
| 6.0% SOM                  | 7.50            | 17               | 2.00              | 1,100                 | 1,400              | 2,300                        |
|                           |                 |                  |                   |                       |                    |                              |
| 1.1.1.2 Tetrachloroethane |                 |                  |                   |                       |                    |                              |
| 1.0% SOM                  | 1 20            | 1 50             | 0 79              | 110                   | 1.400              | 1.500                        |
| 2.5% SOM                  | 2.80            | 3.50             | 1.90              | 250                   | 1.400              | 1.800                        |
| 6.0% SOM                  | 6.40            | 8.20             | 4.40              | 560                   | 1.400              | 2.100                        |
|                           |                 |                  |                   |                       | ,                  | ,                            |
| Tetrachloroethene         |                 |                  |                   |                       |                    |                              |
| 1.0% SOM                  | 0.18            | 0.18             | 0.65              | 19                    | 1,400              | 810 <sup>sol</sup> (424)     |
| 2.5% SOM                  | 0.39            | 0.40             | 1.50              | 42                    | 1,400              | 1,100 <sup>sol</sup> (951)   |
| 6.0% SOM                  | 0.90            | 0.92             | 3.60              | 95                    | 1,400              | 1,500                        |
|                           |                 |                  |                   |                       |                    |                              |
| 1,1,1 Trichloroethane     |                 |                  |                   |                       |                    |                              |
| 1.0% SOM                  | 8.80            | 9.00             | 48                | 660                   | 140,000            | 57,000 <sup>vap</sup> (1425) |
| 2.5% SOM                  | 18              | 18               | 110               | 1,300                 | 140,000            | 76,000 <sup>vap</sup> (2915) |
|                           |                 |                  |                   | 3,000                 | 140,000            | 100,000                      |
| 6.0% SOM                  | 39              | 40               | 240               |                       |                    | <sup>vap</sup> (6392)        |
|                           |                 |                  |                   |                       |                    |                              |
| Tetrachloromethene        |                 |                  |                   |                       |                    |                              |
| 1.0% SOM                  | 0.026           | 0.026            | 0.45              | 2.90                  | 890                | 190                          |
| 2.5% SOM                  | 0.056           | 0.056            | 1.00              | 6.30                  | 920                | 270                          |
| 6.0% SOM                  | 0.130           | 0.130            | 2.40              | 14                    | 950                | 400                          |
|                           |                 |                  |                   |                       |                    |                              |
| Trichloroethene           |                 |                  |                   |                       | 100                |                              |
| 1.0% SOM                  | 0.016           | 0.017            | 0.041             | 1.20                  | 120                | /0                           |
| 2.5% SOM                  | 0.034           | 0.036            | 0.091             | 2.60                  | 120                | 91                           |
| 6.0% SOM                  | 0.075           | 0.080            | 0.210             | 5.70                  | 120                | 120                          |
| Total I and a star a      |                 |                  |                   |                       |                    |                              |
|                           | 0.01            | 1.20             | 0.42              | 00                    | 2 500              | 2 600                        |
| 1.0% SOIM                 | 0.91            | 1.20             | 0.42              | 170                   | 2,500              | 2,000                        |
| 2.5% SUIVI                | 1.70            | 2.10             | 0.83              | 250                   | 2,500              | 2,800                        |
| 0.0% SUIVI                | 3.40            | 4.20             | 1.70              | 530                   | 2,500              | 5,100                        |
| Vinyl Chloride            |                 |                  |                   |                       |                    |                              |
|                           | 0.00064         | 0.00077          | 0.00055           | 0.059                 | 3.50               | 4.80                         |
| 2.5% SOM                  | 0.00087         | 0.00100          | 0.00100           | 0.077                 | 3.50               | 5.00                         |
| 6.0% SOM                  | 0.00014         | 0.00150          | 0.00180           | 0.120                 | 3,50               | 5.40                         |
| 0.070 00111               | 0.00011         | 0.00100          | 0.00100           |                       |                    |                              |

| LQM CIEH General Assessment Criteria:<br>Volatile and Semi-Volatile Organic Compounds |                 |                           |                   |                             |                    |                             |  |  |  |
|---------------------------------------------------------------------------------------|-----------------|---------------------------|-------------------|-----------------------------|--------------------|-----------------------------|--|--|--|
| Contaminant                                                                           | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg)          | Allotment (mg/kg) | Commercial<br>(mg/kg)       | POSresi<br>(mg/kg) | POSpark<br>(mg/kg)          |  |  |  |
| Explosives                                                                            |                 |                           |                   |                             |                    |                             |  |  |  |
|                                                                                       |                 |                           |                   |                             |                    |                             |  |  |  |
| 2,4,6 Trinitrotoluene                                                                 |                 |                           |                   |                             |                    |                             |  |  |  |
| 1.0% SOM                                                                              | 1.60            | 65                        | 0.24              | 1,000                       | 130                | 260                         |  |  |  |
| 2.5% SOM                                                                              | 3.70            | 66                        | 0.58              | 1,000                       | 130                | 270                         |  |  |  |
| 6.0% SOM                                                                              | 8.10            | 66                        | 1.40              | 1,000                       | 130                | 270                         |  |  |  |
| RDX<br>(Hexogen/Cyclonite/1,3,5-<br>trinitro-1,3,5-<br>triazacyclohexane)             |                 |                           |                   |                             |                    |                             |  |  |  |
| 1.0% SOM                                                                              | 120             | 13,000                    | 17                | 210,000                     | 26,000             | 49,000(18.7) <sup>sol</sup> |  |  |  |
| 2.5% SOM                                                                              | 250             | 13,000                    | 38                | 210,000                     | 26,000             | 51,000                      |  |  |  |
| 6.0% SOM                                                                              | 540             | 13,000                    | 85                | 210,000                     | 27,000             | 53,000                      |  |  |  |
| HMX (Octogen/1,3,5,7-<br>tetrenitro-1,3,5,7-<br>tetrazacyclo-octane)                  |                 |                           |                   |                             |                    |                             |  |  |  |
| 1.0% SOM                                                                              | 5.70            | 67,00                     | 0.86              | 110,000                     | 13,000             | 23,000(0.35) <sup>Nap</sup> |  |  |  |
| 2.5% SOM                                                                              | 13              | 67,00                     | 1.90              | 110,000                     | 13,000             | $23,000(0.39)^{\text{vap}}$ |  |  |  |
| 6.0% SOIM                                                                             | 26              | 67,00                     | 3.90              | 110,000                     | 13,000             | 24,000(0.48)                |  |  |  |
| Atrazine                                                                              |                 |                           |                   |                             |                    |                             |  |  |  |
| 1.0% SOM                                                                              | 3.30            | 610                       | 0.50              | 9,300                       | 1,200              | 2,300                       |  |  |  |
| 2.5% SOM                                                                              | 7.60            | 620                       | 1.20              | 9,400                       | 1,200              | 2,400                       |  |  |  |
| 6.0% SOM                                                                              | 17.40           | 620                       | 2.70              | 9,400                       | 1,200              | 2,400                       |  |  |  |
| Pesticides                                                                            |                 |                           |                   |                             |                    |                             |  |  |  |
| Aldrin                                                                                |                 |                           |                   |                             |                    |                             |  |  |  |
| 1.0% SOM                                                                              | 5.70            | 7.30                      | 3.20              | 170                         | 18                 | 30                          |  |  |  |
| 2.5% SOM                                                                              | 6.60            | 7.40                      | 6.10              | 170                         | 18                 | 31                          |  |  |  |
| 6.0% SOM                                                                              | 7.10            | 7.50                      | 9.60              | 170                         | 18                 | 31                          |  |  |  |
|                                                                                       |                 |                           |                   |                             |                    |                             |  |  |  |
| Dieldrin                                                                              |                 |                           |                   |                             |                    |                             |  |  |  |
| 1.0% SOM                                                                              | 0.97            | 7.00                      | 0.17              | 170                         | 18                 | 30                          |  |  |  |
| 2.5% SOM                                                                              | 2.00            | 7.30                      | 0.41              | 1/0                         | 18                 | 30                          |  |  |  |
| 6.0% SOM                                                                              | 3.50            | 7.40                      | 0.96              | 170                         | 18                 | 31                          |  |  |  |
|                                                                                       |                 |                           |                   |                             |                    |                             |  |  |  |
| Dichlorvos                                                                            | 0.000           | 6.40                      | 0.0040            | 1.10                        | 10                 | 26                          |  |  |  |
| 1.0% SOM                                                                              | 0.032           | 6.40                      | 0.0049            | 140                         | 16                 | 26                          |  |  |  |
| 2.5% SOIM                                                                             | 0.066           | 6.50                      | 0.0100            | 140                         | 16                 | 20                          |  |  |  |
| 0.0% 2010                                                                             | 0.140           | 0.00                      | 0.0220            | 140                         | 10                 | 21                          |  |  |  |
| Alpha - Endosulfan                                                                    |                 | , van                     |                   |                             |                    |                             |  |  |  |
| 1.0% SOM                                                                              | 7.40            | 160(0.003) <sup>vap</sup> | 1.20              | 5,600(0.003) <sup>vap</sup> | 1,200              | 2,400                       |  |  |  |
| 2.5% SOM                                                                              | 18              | 280(0.007) <sup>vap</sup> | 2.90              | 7,400(0.007) <sup>vap</sup> | 1,200              | 2,400                       |  |  |  |
| 6.0% SOM                                                                              | 41              | 410(0.016) <sup>vap</sup> | 6.80              | 8,400(0.016)***             | 1,200              | 2,400                       |  |  |  |
Cont'd from previous page:

| Contaminant                       | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg)            | Allotment (mg/kg) | Commercial<br>(mg/kg)         | POSresi<br>(mg/kg)  | POSpark<br>(mg/kg)           |
|-----------------------------------|-----------------|-----------------------------|-------------------|-------------------------------|---------------------|------------------------------|
| Pesticides                        |                 |                             |                   |                               |                     |                              |
| Beta - Endosulfan                 |                 |                             |                   |                               |                     |                              |
| 1.0% SOM                          | 7.00            | 190(0.00007) <sup>vap</sup> | 1.10              | 6,300(0.00007) <sup>vap</sup> | 1,200               | 2,400                        |
| 2.5% SOM                          | 17              | 320(0.0002) <sup>vap</sup>  | 2.70              | 7,800(0.0002) <sup>vap</sup>  | 1,200               | 2,400                        |
| 6.0% SOM                          | 39              | 440(0.0004) <sup>vap</sup>  | 6.40              | 8700                          | 1,200               | 2,500                        |
| Alpha -                           |                 |                             |                   |                               |                     |                              |
| Hexachlorocyclohexanes            |                 |                             |                   |                               |                     |                              |
| 1.0% SOM                          | 0.23            | 6.90                        | 0.035             | 170                           | 24                  | 47                           |
| 2.5% SOM                          | 0.55            | 9.20                        | 0.087             | 180                           | 24                  | 48                           |
| 6.0% SOM                          | 1.20            | 11                          | 0.210             | 180                           | 24                  | 48                           |
| Beta -                            |                 |                             |                   |                               |                     |                              |
| Hexachlorocyclohexanes            |                 |                             |                   |                               |                     |                              |
| 1.0% SOM                          | 0.085           | 3.70                        | 0.013             | 65                            | 8.10                | 15                           |
| 2.5% SOM                          | 0.200           | 3.80                        | 0.032             | 65                            | 8.10                | 15                           |
| 6.0% SOM                          | 0.460           | 3.80                        | 0.077             | 65                            | 8.10                | 16                           |
|                                   |                 |                             |                   |                               |                     |                              |
| Gamma -<br>Hexachlorocyclohexanes |                 |                             |                   |                               |                     |                              |
| 1.0% SOM                          | 0.06            | 2 90                        | 0.0092            | 67                            | 8.2                 | 14                           |
| 2 5% SOM                          | 0.00            | 3 30                        | 0.0230            | 69                            | 8.2                 | 15                           |
| 6.0% SOM                          | 0.33            | 3.50                        | 0.0540            | 70                            | 8.2                 | 15                           |
| 0.070 50101                       | 0.55            | 5.50                        | 0.03+0            | 70                            | 0.2                 | 15                           |
| Chlorobenzenes                    |                 |                             |                   |                               |                     |                              |
| Chlorobenzene                     |                 |                             |                   |                               |                     |                              |
| 1.0% SOM                          | 0.46            | 0.46                        | 5.90              | 56                            | 11,000              | 1,300(675) <sup>sol</sup>    |
| 2.5% SOM                          | 1.00            | 1.00                        | 14                | 130                           | 13,000              | 2,000(1520) <sup>sol</sup>   |
| 6.0% SOM                          | 2.40            | 2.40                        | 32                | 290                           | 14,000              | 2,900                        |
|                                   |                 |                             |                   |                               |                     |                              |
| 1,2-Dichlorobenzene               |                 | -                           |                   |                               | 00.000              | 24.000(574)50                |
| 1.0% SOM                          | 23              | 24                          | 94                | 2,000 (571)                   | 90,000              | 24,000(5/1)                  |
| 2.5% SOM                          | 55              | 57                          | 230               | 4,800 (1370) <sup>sol</sup>   | 95,000              | 36,000(1370 <sup>,50)</sup>  |
| 6.0% SOM                          | 130             | 130                         | 540               | 11,000 (3240)                 | 98,000              | 51,000(3240)                 |
| 1,3-Dichlorobenzene               |                 |                             |                   |                               |                     |                              |
| 1.0% SOM                          | 0.40            | 0.44                        | 0.25              | 30                            | 300                 | 390                          |
| 2.5% SOM                          | 1.00            | 1.10                        | 0.60              | 73                            | 300                 | 440                          |
| 6.0% SOM                          | 2.30            | 2.50                        | 1.50              | 170                           | 300                 | 470                          |
|                                   |                 |                             |                   |                               |                     |                              |
| 1,4-Dichlorobenzene               |                 |                             |                   |                               |                     |                              |
| 1.0% SOM                          | 61              | 61                          | 15                | 4,400 (224) <sup>vap</sup>    | 17,000 <sup>g</sup> | 36,000 (224) <sup>vap</sup>  |
| 2.5% SOM                          | 150             | 150                         | 37                | 10,000 (540) <sup>vap</sup>   | 17,000 <sup>g</sup> | 36,000 (540) <sup>vap</sup>  |
| 6.0% SOM                          | 350             | 350                         | 88 <sup>g</sup>   | 25,000 (1280) <sup>vap</sup>  | 17,000 <sup>g</sup> | 36,000 (1280) <sup>vap</sup> |
|                                   |                 |                             |                   |                               |                     |                              |
| 1,2,3,-Trichlorobenzene           |                 |                             |                   | 100                           | 4.600               |                              |
| 1.0% SOM                          | 1.50            | 1.50                        | 4.70              | 102                           | 1,800               | //0(134                      |
| 2.5% SUM                          | 3.60            | 3.70                        | 12                | 250                           | 1,800               | 1,100(330)                   |
| 6.0% SOM                          | 8.60            | 8.80                        | 28                | 590                           | 1,800               | 1,600(789)                   |

Cont'd Overleaf:

| LQM CIEH General Assessment Criteria:<br>Volatile and Semi-Volatile Organic Compounds |                           |                            |                   |                              |                    |                            |
|---------------------------------------------------------------------------------------|---------------------------|----------------------------|-------------------|------------------------------|--------------------|----------------------------|
| Contaminant                                                                           | RwHP<br>(mg/kg)           | RwoHP<br>(mg/kg)           | Allotment (mg/kg) | Commercial<br>(mg/kg)        | POSresi<br>(mg/kg) | POSpark<br>(mg/kg)         |
| Chlorobenzenes                                                                        |                           |                            |                   |                              |                    |                            |
| 122                                                                                   |                           |                            |                   |                              |                    |                            |
| Trichlorobenzene                                                                      |                           |                            |                   |                              |                    |                            |
| 1.0% SOM                                                                              | 1.50                      | 1.50                       | 4.70              | 102                          | 1,800              | 770(134) <sup>vap</sup>    |
| 2.5% SOM                                                                              | 3.60                      | 3.70                       | 12                | 250                          | 1,800              | 1,100(330 <sup>)vap</sup>  |
| 6.0% SOM                                                                              | 8.60                      | 8.80                       | 28                | 590                          | 1,800              | 1,600(789) <sup>vap</sup>  |
|                                                                                       |                           |                            |                   |                              |                    |                            |
| 1,2,4,-<br>Trichlorobenzene                                                           |                           |                            |                   |                              |                    |                            |
| 1.0% SOM                                                                              | 2.60                      | 2.60                       | 55                | 220                          | 15,000             | 1,700(318) <sup>vap</sup>  |
| 2.5% SOM                                                                              | 6.40                      | 6.40                       | 140               | 530                          | 17,000             | 2,600(786) <sup>vap</sup>  |
| 6.0% SOM                                                                              | 15                        | 15                         | 320               | 1,300                        | 19,000             | 4,000(1880) <sup>vap</sup> |
|                                                                                       |                           |                            |                   |                              |                    |                            |
| 1,3,5,-                                                                               |                           |                            |                   |                              |                    |                            |
| Trichlorobenzene                                                                      | 0.00                      | 0.22                       | 4.70              | 22                           | 1 700              |                            |
| 1.0% SOM                                                                              | 0.33                      | 0.33                       | 4.70              | 23                           | 1,700              |                            |
| 2.5% SOM                                                                              | 1.00                      | 1.90                       | 12                | 130                          | 1,700              | 860(217) <sup>vap</sup>    |
| 0.078 50101                                                                           | 1.50                      | 1.50                       | 140               | 150                          | 1,000              | 000(217)                   |
| 1,2,3,4,-                                                                             |                           |                            |                   |                              |                    |                            |
| Tetrachlorobenzene                                                                    |                           |                            |                   |                              |                    |                            |
| 1.0% SOM                                                                              | 15                        | 24                         | 4.40              | 1,700(122 <sup>)vap</sup>    | 830                | 1,500(122) <sup>vap</sup>  |
| 2.5% SOM                                                                              | 36                        | 56                         | 11                | 3,080(304) <sup>vap</sup>    | 830                | 1,600                      |
| 6.0% SOM                                                                              | 78                        | 120                        | 26                | 4,400(728) <sup>vap</sup>    | 830                | 1,600                      |
| 4.2.2.5                                                                               |                           |                            |                   |                              |                    |                            |
| 1,2,3,5,-<br>Tetrachlobenzene                                                         |                           |                            |                   |                              |                    |                            |
| 1.0% SOM                                                                              | 0.66                      | 0.75                       | 0.38              | 49(39.4) <sup>vap</sup>      | 78                 | 110(39) <sup>vap</sup>     |
| 2.5% SOM                                                                              | 1.60                      | 1.90                       | 0.90              | 120(98.1) <sup>vap</sup>     | 79                 | 120                        |
| 6.0% SOM                                                                              | 3.70                      | 4.30                       | 2.20              | 240(235) <sup>vap</sup>      | 79                 | 130                        |
|                                                                                       |                           |                            |                   |                              |                    |                            |
| 1,2,4, 5,-                                                                            |                           |                            |                   |                              |                    |                            |
| 1 etrachlobenzene                                                                     | 0.22                      | 0.72                       | 0.06              | 42(10 7) <sup>sol</sup>      | 12                 | 25                         |
| 1.0% SOM                                                                              | 0.33                      | 0.73                       | 0.06              | 42(19.7)<br>$72(49.1)^{sol}$ | 13                 | 25                         |
| 6.0% SOM                                                                              | 1.60                      | 3.50                       | 0.10              | 96                           | 13                 | 20                         |
| 0.070 30101                                                                           | 1.00                      | 5.50                       | 0.07              | 50                           |                    | 20                         |
| Pentachlrobenzene                                                                     |                           |                            |                   |                              |                    |                            |
| 1.0% SOM                                                                              | 5.80                      | 19                         | 1.20              | 640(43.0) <sup>sol</sup>     | 100                | 190                        |
| 2.5% SOM                                                                              | 12                        | 30                         | 3.10              | 770(107) <sup>sol</sup>      | 100                | 190                        |
| 6.0% SOM                                                                              | 22                        | 38                         | 7.00              | 830                          | 100                | 190                        |
|                                                                                       |                           |                            |                   |                              |                    |                            |
| Hexachlorobenzene                                                                     |                           |                            |                   | l l a l a a su van           |                    |                            |
| 1.0% SOM                                                                              | 1.80(0.20) <sup>vap</sup> | 4.10 (0.20) <sup>vap</sup> | 0.47              | 110(0.20)***                 | 16                 | 30                         |
| 2.5% SOM                                                                              | 3.30(0.50)                | $5.70(0.50)^{10p}$         | 1.10              | 120                          | 16                 | 30                         |
| 0.0% SUIVI                                                                            | 4.90                      | 0.70 (1.2)                 | 2.30              | 120                          | 10                 | 30                         |
|                                                                                       |                           |                            |                   |                              |                    |                            |

| LQM CIEH General Assessment Criteria:        |                 |                         |                   |                               |                               |                               |
|----------------------------------------------|-----------------|-------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------|
| Volatile and Semi-Volatile Organic Compounds |                 |                         |                   |                               |                               |                               |
| Contaminant                                  | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg)        | Allotment (mg/kg) | Commercial<br>(mg/kg)         | POSresi<br>(mg/kg)            | POSpark<br>(mg/kg)            |
| Phenols &<br>Chlorophenols                   |                 |                         |                   |                               |                               |                               |
| Phenols                                      |                 |                         |                   |                               |                               |                               |
| 1.0% SOM                                     | 280             | 750                     | 66                | 760 <sup>dir</sup> (31,000)   | 760 <sup>dir</sup> (11,000)   | 760 <sup>dir</sup> (8,600)    |
| 2.5% SOM                                     | 550             | 1,300                   | 140               | 1,500 <sup>dir</sup> (35,000) | 1,500 <sup>dir</sup> (11,000) | 1,500 <sup>dir</sup> (9,700)  |
| 6.0% SOM                                     | 1100            | 2,300                   | 280               | 3,200 <sup>dir</sup> (37,000) | 3,200 <sup>dir</sup> (11,000) | 3,200 <sup>dir</sup> (11,000) |
| Chlorophenols (4<br>Congeners)               |                 |                         |                   |                               |                               |                               |
| 1.0% SOM                                     | 0.87            | 94                      | 0.13              | 3,500                         | 620                           | 1,100                         |
| 2.5% SOM                                     | 2.00            | 150                     | 0.30              | 4,000                         | 620                           | 1,100                         |
| 6.0% SOM                                     | 4.50            | 210                     | 0.70              | 4,300                         | 620                           | 1,100                         |
|                                              |                 |                         |                   |                               |                               |                               |
| Pentachlorophenols                           |                 |                         |                   |                               |                               |                               |
| 1.0% SOM                                     | 0.22            | 27(16.4) <sup>vap</sup> | 0.03              | 400                           | 60                            | 110                           |
| 2.5% SOM                                     | 0.52            | 29                      | 0.08              | 400                           | 60                            | 120                           |
| 6.0% SOM                                     | 1.20            | 31                      | 0.19              | 400                           | 60                            | 120                           |
|                                              |                 |                         |                   |                               |                               |                               |
| Others                                       |                 |                         |                   |                               |                               |                               |
| Carbon Disulphide                            |                 |                         |                   |                               |                               |                               |
| 1.0% SOM                                     | 0.14            | 0.14                    | 4.80              | 11                            | 11,000                        | 1,300                         |
| 2.5% SOM                                     | 0.29            | 0.29                    | 10                | 22                            | 11,000                        | 1,900                         |
| 6.0% SOM                                     | 0.62            | 0.62                    | 23                | 47                            | 12,000                        | 2,700                         |
|                                              |                 |                         |                   |                               |                               |                               |
| Hexachloro-1,3-<br>Butadiene                 |                 |                         |                   |                               |                               |                               |
| 1.0% SOM                                     | 0.29            | 0.32                    | 0.25              | 31                            | 25                            | 48                            |
| 2.5% SOM                                     | 0.70            | 0.78                    | 0.61              | 68                            | 25                            | 50                            |
| 6.0% SOM                                     | 1.60            | 1.80                    | 1.40              | 120                           | 25                            | 51                            |
|                                              |                 |                         |                   |                               |                               |                               |

Г

Cont'd Overleaf:

| CL:AIRE Soil Generic Assessment Criteria |                     |                                             |                   |                    |
|------------------------------------------|---------------------|---------------------------------------------|-------------------|--------------------|
| Contaminant                              | Residential (mg/kg) | Residential without<br>plant uptake (mg/kg) | Allotment (mg/kg) | Commercial (mg/kg) |
| Metals:                                  |                     |                                             |                   |                    |
|                                          |                     |                                             |                   |                    |
| Antimony                                 | ND                  | 550                                         | ND                | 7500               |
| Barium                                   | ND                  | 1300                                        | ND                | 22000              |
| Molybdenum                               | ND                  | 670                                         | ND                | 17000              |
|                                          |                     |                                             |                   |                    |

ND – Not Derived.

NA – Not Applicable

Cont'd Overleaf:

| CL:AIRE General Assessment Criteria:<br>Volatile and Semi-Volatile Organic Compounds |                     |                                             |                   |                    |
|--------------------------------------------------------------------------------------|---------------------|---------------------------------------------|-------------------|--------------------|
| Contaminant                                                                          | Residential (mg/kg) | Residential without<br>plant uptake (mg/kg) | Allotment (mg/kg) | Commercial (mg/kg) |
| 1 1 2 Trichloroethane                                                                |                     |                                             |                   |                    |
|                                                                                      | 0.60                | 0.88                                        | 0.28              | 94                 |
| 2 5% SOM                                                                             | 1 20                | 1.8                                         | 0.61              | 190                |
| 6.0% SOM                                                                             | 2.70                | 3.9                                         | 1.40              | 400                |
|                                                                                      |                     | 0.0                                         | 1.10              |                    |
| 1,1-Dichloroethane                                                                   |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 2.40                | 2.50                                        | 9.20              | 280                |
| 2.5% SOM                                                                             | 3.90                | 4.10                                        | 17                | 450                |
| 6.0% SOM                                                                             | 7.40                | 7.70                                        | 35                | 850                |
|                                                                                      |                     |                                             |                   |                    |
| 1,1-Dichloroethene                                                                   |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 0.23                | 0.23                                        | 2.80              | 26                 |
| 2.5% SOM                                                                             | 0.40                | 0.41                                        | 5.60              | 46                 |
| 6.0% SOM                                                                             | 0.82                | 0.82                                        | 12                | 92                 |
|                                                                                      |                     |                                             |                   |                    |
| 1,2,4-Trimethylbenzene                                                               |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 0.35                | 0.41                                        | 0.38              | 42                 |
| 2.5% SOM                                                                             | 0.85                | 0.99                                        | 0.93              | 99                 |
| 6.0% SOM                                                                             | 2.00                | 2.30                                        | 2.20              | 220                |
|                                                                                      |                     |                                             |                   |                    |
| 1,2-Dichloropropane                                                                  | 0.001               |                                             |                   |                    |
| 1.0% SOM                                                                             | 0.024               | 0.024                                       | 0.62              | 3.3                |
| 2.5% SOM                                                                             | 0.042               | 0.042                                       | 1.20              | 5.9                |
| 6.0% SOIM                                                                            | 0.084               | 0.085                                       | 2.60              | 12                 |
| 2.4 Dimothylphonol                                                                   |                     |                                             |                   |                    |
|                                                                                      | 10                  | 210                                         | 2 10              | 16000*             |
| 2.5% SOM                                                                             | 13                  | /10                                         | 7 20              | 2/000*             |
| 6.0% SOM                                                                             | 43                  | 730                                         | 17                | 30000*             |
| 0.070 30101                                                                          | 57                  | 750                                         | 17                | 50000              |
| 2.4-Dinitrotoluene                                                                   |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 1.50                | 170*                                        | 0.22              | 3700*              |
| 2.5% SOM                                                                             | 3.20                | 170                                         | 0.49              | 3700*              |
| 6.0% SOM                                                                             | 7.20                | 170                                         | 1.10              | 3800*              |
|                                                                                      |                     |                                             |                   |                    |
| 2,6-Dinitrotoluene                                                                   |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 0.78                | 78                                          | 0.12              | 1900*              |
| 2.5% SOM                                                                             | 1.70                | 84                                          | 0.27              | 1900*              |
| 6.0% SOM                                                                             | 3.90                | 87                                          | 0.61              | 1900*              |
|                                                                                      |                     |                                             |                   |                    |
| 2-Chloronapthalene                                                                   |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 3.70                | 3.80                                        | 40                | 390*               |
| 2.5% SOM                                                                             | 9.20                | 9.30                                        | 98                | 960*               |
| 6.0% SOM                                                                             | 22                  | 22                                          | 230               | 2200*              |

| CL:AIRE General Assessment Criteria:<br>Volatile and Semi-Volatile Organic Compounds |                     |                                             |                   |                    |
|--------------------------------------------------------------------------------------|---------------------|---------------------------------------------|-------------------|--------------------|
| Contaminant                                                                          | Residential (mg/kg) | Residential without<br>plant uptake (mg/kg) | Allotment (mg/kg) | Commercial (mg/kg) |
| Diskourd                                                                             |                     |                                             |                   |                    |
|                                                                                      | <i>CC</i> *         | 220*                                        | 1.4               | 19000*             |
|                                                                                      | 66*                 | 220 <sup>+</sup>                            | 14                | 18000*             |
|                                                                                      | 160                 | 500*                                        | 30<br>00          | 33000*             |
| 8.0% SOIVI                                                                           | 300                 | 980.                                        | 63                | 48000              |
| Bis (2-ethylbeyyl) nhthalate                                                         |                     |                                             |                   |                    |
|                                                                                      | 280*                | 2700*                                       | Δ7*               | 85000*             |
| 2.5% SOM                                                                             | 610*                | 2800*                                       | 120*              | 86000*             |
| 6.0% SOM                                                                             | 1100*               | 2800*                                       | 280*              | 86000*             |
| 0.070 50101                                                                          | 1100                | 2000                                        | 200               | 00000              |
| Bromobenzene                                                                         |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 0.87                | 0.91                                        | 3.2               | 97                 |
| 2.5% SOM                                                                             | 2.0                 | 2.1                                         | 7.6               | 220                |
| 6.0% SOM                                                                             | 4.7                 | 4.9                                         | 18                | 520                |
|                                                                                      |                     |                                             |                   |                    |
| Bromodichloromethane                                                                 |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 0.016               | 0.019                                       | 0.016             | 2.1                |
| 2.5% SOM                                                                             | 0.030               | 0.034                                       | 0.032             | 3.7                |
| 6.0% SOM                                                                             | 0.061               | 0.070                                       | 0.068             | 7.6                |
|                                                                                      |                     |                                             |                   |                    |
| Bromoform                                                                            |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 2.8                 | 5.2                                         | 0.95              | 760                |
| 2.5% SOM                                                                             | 5.9                 | 11                                          | 2.1               | 1500               |
| 6.0% SOM                                                                             | 13                  | 23                                          | 4.6               | 3100               |
|                                                                                      |                     |                                             |                   |                    |
| Butyl benzyl phthalate                                                               |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 1400*               | 42000*                                      | 220*              | 940000*            |
| 2.5% SOM                                                                             | 3300*               | 44000*                                      | 550*              | 940000*            |
| 6.0% SOM                                                                             | 7200*               | 44000*                                      | 1300*             | 950000*            |
| Chlanasthans                                                                         |                     |                                             |                   |                    |
|                                                                                      | 0.2                 | 0 4                                         | 110               | 060                |
| 1.0% SOIV                                                                            | 8.3                 | 8.4                                         | 110               | 960                |
|                                                                                      | 11                  | 10                                          | 200               | 2100               |
| 8.0% 30101                                                                           | 18                  | 18                                          | 380               | 2100               |
| Chloromethane                                                                        |                     |                                             |                   |                    |
|                                                                                      | 0.0083              | 0.0085                                      | 0.066             | 1.0                |
| 2.5% SOM                                                                             | 0.0005              | 0.0005                                      | 0.000             | 1.0                |
| 6.0% SOM                                                                             | 0.0038              | 0.0033                                      | 0.13              | 1.2                |
| 0.070 50101                                                                          | 0.015               | 0.015                                       | 0.20              | 1.0                |
| Cis 1.2 Dichloroethene                                                               |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 0.11                | 0.12                                        | 0.26              | 14                 |
| 2.5% SOM                                                                             | 0.19                | 0.20                                        | 0.50              | 24                 |
| 6.0% SOM                                                                             | 0.37                | 0.39                                        | 1.0               | 47                 |

| CL:AIRE General Assessment Criteria:<br>Volatile and Semi-Volatile Organic Compounds |                     |                                             |                   |                    |
|--------------------------------------------------------------------------------------|---------------------|---------------------------------------------|-------------------|--------------------|
| Contaminant                                                                          | Residential (mg/kg) | Residential without<br>plant uptake (mg/kg) | Allotment (mg/kg) | Commercial (mg/kg) |
| Dichloromothana                                                                      |                     |                                             |                   |                    |
|                                                                                      | 0.58                | 2 10                                        | 0.10              | 270                |
| 2.5% SOM                                                                             | 0.38                | 2.10                                        | 0.10              | 270                |
| 6.0% SOM                                                                             | 1.70                | 2.80                                        | 0.19              | 560                |
| 0.070 30101                                                                          | 1.70                | 4.50                                        | 0.54              | 500                |
| Diethyl Phthalate                                                                    |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 120*                | 1800*                                       | 19*               | 150000*            |
| 2.5% SOM                                                                             | 260*                | 3500*                                       | 41*               | 220000*            |
| 6.0% SOM                                                                             | 570*                | 6300*                                       | 94*               | 290000*            |
|                                                                                      |                     |                                             |                   |                    |
| Di-n-butyl phthalate                                                                 |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 13*                 | 450*                                        | 2.00              | 15000*             |
| 2.5% SOM                                                                             | 31*                 | 450*                                        | 5.00              | 15000*             |
| 6.0% SOM                                                                             | 67*                 | 450*                                        | 12                | 15000*             |
|                                                                                      |                     |                                             |                   |                    |
| Di-n-octyl phthalate                                                                 |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 2300*               | 3400*                                       | 940*              | 89000*             |
| 2.5% SOM                                                                             | 2800*               | 3400*                                       | 2100*             | 89000*             |
| 6.0% SOM                                                                             | 3100*               | 3400*                                       | 3900*             | 89000*             |
|                                                                                      |                     |                                             |                   |                    |
| Hexachloroethane                                                                     |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 0.20                | 0.22                                        | 0.27              | 22*                |
| 2.5% SOM                                                                             | 0.48                | 0.54                                        | 0.67              | 53*                |
| 6.0% SOM                                                                             | 1.10                | 1.30                                        | 1.60              | 120*               |
| <b>.</b>                                                                             |                     |                                             |                   |                    |
| Isopropylbenzene                                                                     | 11                  | 12                                          | 22                | 4.400*             |
| 1.0% SOM                                                                             | 11                  | 12                                          | 32                | 1400*              |
| 2.5% SOM                                                                             | 27                  | 28                                          | 79                | 3300*              |
| 6.0% SOIM                                                                            | 04                  | 07                                          | 190               | 7700*              |
| Methyl tert-butyl ether                                                              |                     |                                             |                   |                    |
|                                                                                      | /9                  | 73                                          | 23                | 7900               |
| 2.5% SOM                                                                             | 84                  | 120                                         | 44                | 13000              |
| 6.0% SOM                                                                             | 160                 | 220                                         | 90                | 24000              |
| 0.070 30101                                                                          | 100                 | 220                                         |                   | 24000              |
| Propylbenzene                                                                        |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 34                  | 40                                          | 34                | 4100*              |
| 2.5% SOM                                                                             | 82                  | 97                                          | 83                | 9700*              |
| 6.0% SOM                                                                             | 190                 | 230                                         | 200               | 21000*             |
|                                                                                      |                     |                                             |                   |                    |
| Styrene                                                                              |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 8.10                | 35                                          | 1.60              | 3300*              |
| 2.5% SOM                                                                             | 19                  | 78                                          | 3.70              | 6500*              |
| 6.0% SOM                                                                             | 43                  | 170                                         | 8.70              | 11000*             |

| CL:AIRE General Assessment Criteria:<br>Volatile and Semi-Volatile Organic Compounds |                     |                                             |                   |                    |
|--------------------------------------------------------------------------------------|---------------------|---------------------------------------------|-------------------|--------------------|
| Contaminant                                                                          | Residential (mg/kg) | Residential without<br>plant uptake (mg/kg) | Allotment (mg/kg) | Commercial (mg/kg) |
| Total Cresols (2-, 3-, and 4-<br>methylphenol)                                       |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 80                  | 3700                                        | 12                | 160000             |
| 2.5% SOM                                                                             | 180                 | 5400                                        | 27                | 180000*            |
| 6.0% SOM                                                                             | 400                 | 6900                                        | 63                | 180000*            |
|                                                                                      |                     |                                             |                   |                    |
| Trans 1,2 Dichloroethene                                                             |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 0.19                | 0.19                                        | 0.93              | 22                 |
| 2.5% SOM                                                                             | 0.34                | 0.35                                        | 1.90              | 40                 |
| 6.0% SOM                                                                             | 0.70                | 0.71                                        | 0.24              | 81                 |
|                                                                                      |                     |                                             |                   |                    |
| Tributyl tin oxide                                                                   |                     |                                             |                   |                    |
| 1.0% SOM                                                                             | 0.25                | 1.40                                        | 0.042             | 130*               |
| 2.5% SOM                                                                             | 0.59                | 3.10                                        | 0.100             | 180*               |
| 6.0% SOM                                                                             | 1.30                | 5.70                                        | 0.240             | 200*               |
|                                                                                      |                     |                                             |                   |                    |

Notes: \*Soil concentration above soil saturation limit

# APPENDIX F Waste Hazard Assessment

# Waste Classification Report



# Job name

GWPR1403

# Waste Stream

Ground and Water V2 PA

### Comments

### Project

GWPR1403 Land adjacent 1b St Johns Wood Park, NW8

### Site

Land adjacent 1b St Johns Wood Park, NW8

#### **Classified by**

Name: Allvey , Phillip Date: 06/11/2015 16:30 UTC Telephone: 07740110219 Company: Ground and Water 15 Bow Street Alton GU34 1NY

### Report

Created by: Allvey , Phillip Created date: 06/11/2015 16:30 UTC

#### Job summary

| # Sample Name | Depth [m] | Classification Result | Hazardous properties | Page |
|---------------|-----------|-----------------------|----------------------|------|
| 1 WS1/0.25    |           | Non Hazardous         |                      | 2    |
| 2 WS2/0.25    |           | Non Hazardous         |                      | 4    |

| Appendices                                              | Page |
|---------------------------------------------------------|------|
| Appendix A: Classifier defined and non CLP determinands | 7    |
| Appendix B: Notes                                       | 9    |
| Appendix C: Version                                     | 9    |

#### Classification of sample: WS1/0.25

|   | Non Hazardous Waste    |  |
|---|------------------------|--|
|   | Classified as 17 05 04 |  |
| : | in the List of Waste   |  |

#### Sample details

| Sample Name:         | LoW Code: |                                                         |
|----------------------|-----------|---------------------------------------------------------|
| WS1/0.25             | Chapter:  | 17: Construction and Demolition Wastes (including       |
| Sample Depth:        |           | excavated soil from contaminated sites)                 |
| 0 m                  | Entry:    | 17 05 04 (Soil and stones other than those mentioned in |
| Moisture content: 0% | ·         | 17 05 03)                                               |
| (no correction)      |           | ,                                                       |

#### Hazard properties

#### None identified

# Determinands (Moisture content: 0%, no correction)

pH: (Whole conc. entered as: 8.2 pH, converted to conc.:8.2 pH or 8.2 pH)

salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.768 mg/kg or <0.000377%) IGNORED Because: "<LOD"

arsenic trioxide: (Cation conc. entered: 4 mg/kg, converted to compound conc.:5.281 mg/kg or 0.000528%) boron tribromide/trichloride/trifluoride (combined): (Cation conc. entered: 1.8 mg/kg, converted to compound conc.:24.174 mg/kg or 0.00242%)

cadmium sulfide: (Cation conc. entered: <0.2 mg/kg, converted to compound conc.:<0.257 mg/kg or <0.0000257%, Note 1 conc.: <0.00002%) IGNORED Because: "<LOD"

Chromium (III) Sulphate: (Whole conc. entered as: 14 mg/kg or 0.0014%)

chromium(VI) oxide: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.846 mg/kg or <0.000385%) IGNORED Because: "<LOD"

copper (I) oxide: (Cation conc. entered: 6 mg/kg, converted to compound conc.:6.755 mg/kg or 0.000676%) lead chromate: (Cation conc. entered: 45 mg/kg, converted to compound conc.:70.192 mg/kg or 0.00702%, Note 1 conc.: 0.0045%)

mercury dichloride: (Cation conc. entered: <1 mg/kg, converted to compound conc.:<1.353 mg/kg or <0.000135%) IGNORED Because: "<LOD"

nickel dihydroxide: (Cation conc. entered: 6 mg/kg, converted to compound conc.:9.477 mg/kg or 0.000948%) selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex: (Cation conc. entered: <3 mg/kg, converted to compound conc.:<7.661 mg/kg or <0.000766%) IGNORED Because: "<LOD"

divanadium pentaoxide; vanadium pentoxide: (Cation conc. entered: 27 mg/kg, converted to compound conc.:48.2 mg/kg or 0.00482%)

zinc chromate: (Cation conc. entered: 50 mg/kg, converted to compound conc.:138.707 mg/kg or 0.0139%) phenol: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD" naphthalene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" acenaphthylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" acenaphthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.0001%) IGNORED Because: "<LOD" fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.0000182%) anthracene: (Whole conc. entered as: 0.25 mg/kg or 0.00025%) fluoranthene: (Whole conc. entered as: 7.58 mg/kg or 0.000758%) pyrene: (Whole conc. entered as: 5.82 mg/kg or 0.000582%) benzo[a]anthracene: (Whole conc. entered as: 2.43 mg/kg or 0.000243%) chrysene: (Whole conc. entered as: 2.62 mg/kg or 0.000262%) benzo[b]fluoranthene: (Whole conc. entered as: 2.97 mg/kg or 0.000297%)

benzo[k]fluoranthene: (Whole conc. entered as: 1.31 mg/kg or 0.000131%) benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: 1.33 mg/kg or 0.000133%) indeno[123-cd]pyrene: (Whole conc. entered as: 1.32 mg/kg or 0.000132%) dibenz[a,h]anthracene: (Whole conc. entered as: 0.21 mg/kg or 0.000021%) benzo[ghi]perylene: (Whole conc. entered as: 1.14 mg/kg or 0.000114%)

#### Legend

This determinand has one or more of its Hazard Statements and Risk Phrases defined and maintained by the Classifier

#### Notes utilised in assessment

#### C14: Step 5

"identify whether any individual ecotoxic substance is present at or above a cut-off value ...", used on:

```
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "arsenic trioxide"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "copper (I) oxide"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "lead chromate"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "nickel dihydroxide"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "zinc chromate"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "phenanthrene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "anthracene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "fluoranthene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "pyrene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[a]anthracene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "chrysene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[b]fluoranthene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[k]fluoranthene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[a]pyrene; benzo[def]chrysene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "dibenz[a,h]anthracene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[ghi]perylene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "divanadium pentaoxide; vanadium
pentoxide"
```

#### Note 1 , used on:

Test: "HP 5 on STOT SE 2; H371, STOT RE 2; H373" for determinand: "lead chromate" Test: "HP 7 on Carc. 1B; H350, Carc. 1A; H350, Carc. 1B; H350i, Carc. 1A; H350i" for determinand: "lead chromate" Test: "HP 10 on Repr. 1A; H360, Repr. 1B; H360, Repr. 1B; H360F, Repr. 1A; H360F, Repr. 1A; H360D, Repr. 1B; H360D, Repr. 1B; H360FD, Repr. 1A; H360FD, Repr. 1A; H360Fd, Repr. 1B; H360Dfd, Repr. 1B; H360Df, Repr. 1A; H360Df, Repr.

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "lead chromate"

#### **Determinand notes**

```
Note 1, used on:
```

determinand: "lead chromate"

#### Note A , used on:

determinand: "zinc chromate"

#### Classification of sample: WS2/0.25

|   | Non Hazardous Waste    |  |
|---|------------------------|--|
|   | Classified as 17 05 04 |  |
| : | in the List of Waste   |  |

#### Sample details

| Sample Name:         | LoW Code: |                                                         |
|----------------------|-----------|---------------------------------------------------------|
| WS2/0.25             | Chapter:  | 17: Construction and Demolition Wastes (including       |
| Sample Depth:        |           | excavated soil from contaminated sites)                 |
| 0 m                  | Entry:    | 17 05 04 (Soil and stones other than those mentioned in |
| Moisture content: 0% | -         | 17 05 03)                                               |
| (no correction)      |           | ,                                                       |

#### Hazard properties

#### None identified

### **Determinands** (Moisture content: 0%, no correction)

pH: (Whole conc. entered as: 8.3 pH, converted to conc.:8.3 pH or 8.3 pH)

salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.768 mg/kg or <0.000377%) IGNORED Because: "<LOD"

arsenic trioxide: (Cation conc. entered: 8 mg/kg, converted to compound conc.:10.563 mg/kg or 0.00106%) boron tribromide/trichloride/trifluoride (combined): (Cation conc. entered: 1.4 mg/kg, converted to compound conc.:18.802 mg/kg or 0.00188%)

cadmium sulfide: (Cation conc. entered: <0.2 mg/kg, converted to compound conc.:<0.257 mg/kg or <0.0000257%, Note 1 conc.: <0.00002%) IGNORED Because: "<LOD"

Chromium (III) Sulphate: (Whole conc. entered as: 49 mg/kg or 0.0049%)

chromium(VI) oxide: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.846 mg/kg or <0.000385%) IGNORED Because: "<LOD"

copper (I) oxide: (Cation conc. entered: 22 mg/kg, converted to compound conc.:24.77 mg/kg or 0.00248%) lead chromate: (Cation conc. entered: 39 mg/kg, converted to compound conc.:60.833 mg/kg or 0.00608%, Note 1 conc.: 0.0039%)

mercury dichloride: (Cation conc. entered: <1 mg/kg, converted to compound conc.:<1.353 mg/kg or <0.000135%) IGNORED Because: "<LOD"

nickel dihydroxide: (Cation conc. entered: 9 mg/kg, converted to compound conc.:14.215 mg/kg or 0.00142%) selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex: (Cation conc. entered: <3 mg/kg, converted to compound conc.:<7.661 mg/kg or <0.000766%) IGNORED Because: "<LOD"

divanadium pentaoxide; vanadium pentoxide: (Cation conc. entered: 105 mg/kg, converted to compound conc.:187.444 mg/kg or 0.0187%)

zinc chromate: (Cation conc. entered: 50 mg/kg, converted to compound conc.:138.707 mg/kg or 0.0139%) phenol: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD" naphthalene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" acenaphthylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" acenaphthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" phenanthrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" fluorenthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" phenanthrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" fluorenthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" phenanthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" fluorenthene: (Whole conc. entered as: <0.45 mg/kg or <0.000045%) pyrene: (Whole conc. entered as: <0.42 mg/kg or <0.000042%) benzo[a]anthracene: (Whole conc. entered as: <0.28 mg/kg or <0.000028%) chrysene: (Whole conc. entered as: <0.37 mg/kg or <0.000037%) benzo[b]fluoranthene: (Whole conc. entered as: <0.93 mg/kg or <0.000093%)

benzo[k]fluoranthene: (Whole conc. entered as: 0.38 mg/kg or 0.000038%) benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: 0.34 mg/kg or 0.000034%) indeno[123-cd]pyrene: (Whole conc. entered as: 0.67 mg/kg or 0.000067%) dibenz[a,h]anthracene: (Whole conc. entered as: 0.13 mg/kg or 0.000013%) benzo[ghi]perylene: (Whole conc. entered as: 0.65 mg/kg or 0.000065%) benzene: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD" toluene: (Whole conc. entered as: <5 mg/kg or <0.0005%) IGNORED Because: "<LOD" ethylbenzene: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD" ethylbenzene: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD" o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD"

diesel petroleum group: (Whole conc. entered as: 78 mg/kg or 0.0078%) TPH (C6 to C40) petroleum group: (Whole conc. entered as: 129 mg/kg or 0.0129%)

#### Legend

This determinand has one or more of its Hazard Statements and Risk Phrases defined and maintained by the Classifier

#### **Test Settings**

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this test to non hazardous because: "Not high enough concentration to be flammable"

#### Notes utilised in assessment

#### C14: Step 5

"identify whether any individual ecotoxic substance is present at or above a cut-off value ...", used on: Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "arsenic trioxide" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "copper (I) oxide" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "lead chromate" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "nickel dihydroxide" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "zinc chromate" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "phenanthrene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "fluoranthene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "pyrene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[a]anthracene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "chrysene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[b]fluoranthene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[k]fluoranthene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[a]pyrene; benzo[def]chrysene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "dibenz[a,h]anthracene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[ghi]perylene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "divanadium pentaoxide; vanadium pentoxide' Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "diesel petroleum group" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "TPH (C6 to C40) petroleum group"

#### Note 1, used on:

Test: "HP 5 on STOT SE 2; H371, STOT RE 2; H373" for determinand: "lead chromate" Test: "HP 7 on Carc. 1B; H350, Carc. 1A; H350, Carc. 1B; H350i, Carc. 1A; H350i" for determinand: "lead chromate" Test: "HP 10 on Repr. 1A; H360, Repr. 1B; H360, Repr. 1B; H360F, Repr. 1A; H360F, Repr. 1A; H360D, Repr. 1B; H360D, Repr. 1B; H360FD, Repr. 1A; H360Fd, Repr. 1B; H360Df, Repr. 1B; H360Df, Repr. 1A; H360Df, Repr. 1A; H360FD, Repr. 1A; H360FD, Repr. 1A; H360Fd, Repr. 1B; H360Df, Repr. 1A; H360Df, Repr. 1A; H360Df, Repr. 1A; H360Fd, Repr. 1A; H360Df, Repr.

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "lead chromate"

#### **Determinand notes**

Note 1, used on:

determinand: "lead chromate"

Note A , used on:

determinand: "zinc chromate"

WM3: Unknown oil , used on:

determinand: "TPH (C6 to C40) petroleum group"

# Appendix A: Classifier defined and non CLP determinands

#### pН

Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: None. Hazard Statements: None.

#### boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43 Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron trifluoride Data source: N/A Data source date: 06/08/2015 Risk Phrases: R14, T+; R26/28, C; R34, C; R35 Hazard Statements: EUH014, Acute Tox. 2; H330, Acute Tox. 2; H300, Skin Corr. 1A; H314, Skin Corr. 1B; H314

#### **Chromium (III) Sulphate** (CAS Number: 10101-53-8)

Comments: Data source: 10101-53-8 Data source date: 23/06/2015 Risk Phrases: None. Hazard Statements: None.

#### acenaphthylene (CAS Number: 208-96-8)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R22, R26, R27, R36, R37, R38 Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

#### acenaphthene (CAS Number: 83-32-9)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R36, R37, R38, N; R50/53, N; R51/53 Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 2; H411

fluorene (CAS Number: 86-73-7)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: N; R50/53 Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

phenanthrene (CAS Number: 85-01-8)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: R22, R36, R37, R38, R40, R43, N; R50/53 Hazard Statements: Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Carc. 2; H351, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Skin Irrit. 2; H315

#### anthracene (CAS Number: 120-12-7)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R36, R37, R38, R43, N; R50/53 Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### fluoranthene (CAS Number: 206-44-0)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21/08/2015 Risk Phrases: Xn; R22, N; R50/53 Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (CAS Number: 129-00-0)

Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21/08/2015 Risk Phrases: Xi; R36/37/38, N; R50/53 Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### indeno[123-cd]pyrene (CAS Number: 193-39-5)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: R40 Hazard Statements: Carc. 2; H351

#### benzo[ghi]perylene (CAS Number: 191-24-2)

Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23/07/2015 Risk Phrases: N; R50/53 Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

ethylbenzene (CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Risk Phrases: None. Additional Hazard Statements: Carc. 2; H351 Reason: 03/06/2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

# diesel petroleum group (CAS Number: 68334-30-5, 68476-34-6, 94114-59-7, 1159170-26-9)

Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: R40, R51/53, R65, R66 Hazard Statements: Flam. Liq. 3; H226, Skin Irrit. 2; H315, Acute Tox. 4; H332, Carc. 2; H351, Asp. Tox. 1; H304, STOT RE 2; H373, Aquatic Chronic 2; H411

### TPH (C6 to C40) petroleum group

Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: R10, R45, R46, R51/53, R63, R65 Hazard Statements: Flam. Liq. 3; H226, Asp. Tox. 1; H304, STOT RE 2; H373, Muta. 1B; H340, Carc. 1B; H350, Repr. 2; H361d, Aquatic Chronic 2; H411

#### **Appendix B: Notes**

#### C14: Step 5

from section: WM3: C14 in the document: "WM3 - Waste Classification"

"identify whether any individual ecotoxic substance is present at or above a cut-off value ..."

#### Note 1

from section: 1.1.3.2, Annex VI in the document: "CLP Regulations"

"The concentration stated or, in the absence of such concentrations, the generic concentrations of this Regulation (Table 3.1) or the generic concentrations of Directive 1999/45/EC (Table 3.2), are the percentages by weight of the metallic element calculated with reference to the total weight of the mixture."

#### Note A

from section: 1.1.3.1, Annex VI in the document: "CLP Regulations"

"Without prejudice to Article 17(2), the name of the substance must appear on the label in the form of one of the designations given in Part 3. In Part 3, use is sometimes made of a general description such as '... compounds' or '... salts'. In this case, the supplier is required to state on the label the correct name, due account being taken of section 1.1.1.4."

#### WM3: Unknown oil

from section: Chapter 3: 4. Waste oils and other wastes containing or contaminated with oil in the document: "WM3 - Waste Classification"

"If the identity of the oil is unknown, and the petroleum group cannot be established, then the oil contaminating the waste can be classified as non-carcinogenic due to the presence of oil if all three of the following criteria are met:

- the waste contains **benzo[a]pyrene (BaP)** at a concentration of less than 0.01% (1/10,000th) of the TPH concentration (This is the carcinogenic limit specified in table 3.2 of the CLP for BaP)
- this has been determined by an appropriate and representative sampling approach in accordance with the principles set out in Appendix D, and
- the analysis clearly demonstrates, for example by carbon bands or chromatograph, and the laboratory has reasonably concluded that the hydrocarbons present have not arisen from petrol or diesel

#### **Appendix C: Version**

Classification utilises the following:

- CLP Regulations Regulation 1272/2008/EC of 16 December 2008
- 1st ATP Regulation 790/2009/EC of 10 August 2009
- 2nd ATP Regulation 286/2011/EC of 10 March 2011
- 3rd ATP Regulation 618/2012/EU of 10 July 2012
- 4th ATP Regulation 487/2013/EU of 8 May 2013
- Correction to 1st ATP Regulation 758/2013/EU of 7 August 2013
- 5th ATP Regulation 944/2013/EU of 2 October 2013
- 6th ATP Regulation 605/2014/EU of 5 June 2014
- WFD Annex III replacement Regulation 1357/2014/EU of 18 December 2014
- Revised List of Wastes 2014 Decision 2014/955/EU of 18 December 2014
- WM3 Waste Classification May 2015
- 7th ATP Regulation 2015/1221/EU of 24 July 2015
- POPs Regulation 2004 Regulation 850/2004/EC of 29 April 2004
- 1st ATP to POPs Regulation Regulation 756/2010/EU of 24 August 2010
- 2nd ATP to POPs Regulation Regulation 757/2010/EU of 24 August 2010

HazWasteOnline Engine: WM3 1st Edition, May 2015 HazWasteOnline Engine Version: 2015.308.2983.5979 (04 Nov 2015) HazWasteOnline Database: 2015.308.2983.5979 (04 Nov 2015) Appendix D Ground and Water Ltd Ground Investigation Report Borehole Records 1b St John's Wood Park

| &water email: enquiries www.groundan |                  |                     |                 |                         |              |                 | enquiries@<br>roundand                | Dgroundandwater.co.uk BH1                                                            |     |
|--------------------------------------|------------------|---------------------|-----------------|-------------------------|--------------|-----------------|---------------------------------------|--------------------------------------------------------------------------------------|-----|
|                                      | o ot Ni          |                     |                 |                         |              | -               |                                       | Sheet 1 of                                                                           | 12  |
| iOJ<br>an                            | d adia           | ame                 | h St Io         | hn's Wood Pa            |              |                 | 10.<br>310                            | Co-ords: - WIS                                                                       | e   |
|                                      | ation.           |                     | NW8             | 60S                     |              | VVI IXI.        | 515                                   | Scale                                                                                |     |
|                                      |                  | London              |                 |                         |              |                 |                                       | Level: - 1:50                                                                        |     |
|                                      |                  | 1                   |                 |                         |              |                 |                                       | Logged B                                                                             | y   |
| le                                   | nt:              | LIV Inte            | rnatior         | nal                     |              |                 |                                       | Dates: 01/07/2015 SJM                                                                |     |
| I                                    | Water<br>Strikes | Sample<br>Depth (m) | es & In<br>Type | Situ Testing<br>Results | Depth<br>(m) | Level<br>(m AOD | Legend                                | Stratum Description                                                                  |     |
|                                      |                  | 0.30                |                 |                         |              |                 |                                       | MADE GROUND: TARMAC over crushed brickwork.                                          | -   |
|                                      |                  | 0.50                | D               |                         | 0.50         |                 | *****                                 | LONDON CLAY EODMATION: Soft grappe brown situ CLAY                                   | -   |
|                                      |                  | 0.80                | D               |                         |              |                 | 110                                   | LONDON CERT FORWATION. Sold of ange brown and CERT.                                  | -   |
| 5                                    |                  | 1.00                | SPT             | N=4<br>(1.1/            |              |                 | 015                                   |                                                                                      | -1  |
| 2                                    |                  | 1.00                |                 | 1,1,1,1)                |              |                 |                                       |                                                                                      | -   |
| ŝ                                    |                  | 1.50                | D               |                         |              |                 | 100                                   |                                                                                      | -   |
|                                      |                  | 2 00                | SPT             | N=10                    |              |                 |                                       |                                                                                      | -2  |
| 2                                    |                  | 2.00                | D               | (1,1/                   |              |                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                      | Ē   |
| ŝ                                    |                  | 2.50                | D               | _,_,-,-,                |              |                 |                                       |                                                                                      | -   |
|                                      | 0                |                     |                 |                         |              |                 |                                       |                                                                                      | -   |
| ŝ                                    |                  | 3.00<br>3.00        | SPT<br>D        | N=11<br>(2.2/           |              |                 |                                       |                                                                                      | -3  |
|                                      |                  | 0.50                |                 | 2,3,3,3)                |              |                 |                                       |                                                                                      | -   |
| į,                                   |                  | 3.50                | D               |                         | 3.60         |                 |                                       | LONDON CLAY FORMATION: Firm brown silty CLAY                                         | -   |
|                                      |                  | 4.00                | SPT             | N=17                    |              |                 |                                       |                                                                                      | -4  |
| ŝ                                    |                  | 4.00                | D               | (2,3/<br>4,4,4,5)       |              |                 | 100                                   |                                                                                      | -   |
|                                      |                  | 4.50                | D               |                         |              |                 | 1.5                                   |                                                                                      | -   |
|                                      |                  |                     |                 |                         |              |                 | 10                                    |                                                                                      | -   |
| ġ                                    |                  | 5.00<br>5.00        | SPT<br>D        | N=15<br>(3,3/           |              |                 | 1.5                                   |                                                                                      | -5  |
|                                      |                  | 5 50                | П               | 3,4,4,4)                |              |                 | 180                                   |                                                                                      | -   |
| č                                    |                  | 0.00                |                 |                         |              |                 |                                       |                                                                                      | -   |
| 8                                    |                  | 6.00                | SPT             | N=20                    |              |                 |                                       |                                                                                      | -6  |
| ò                                    |                  | 6.00                | D               | (3,4/<br>5,5,5,5)       |              |                 | 1.0                                   |                                                                                      | -   |
| 2                                    |                  | 6.50                | D               |                         |              |                 | 10                                    |                                                                                      | -   |
| 0                                    |                  | 7.00                | CDT             | N-25                    |              |                 | 1.2                                   |                                                                                      |     |
|                                      |                  | 7.00                | D               | (4,4/                   |              |                 | 11                                    |                                                                                      | - ' |
|                                      |                  | 7.50                | D               | -,~,•,•,                |              |                 | 110                                   |                                                                                      | -   |
|                                      |                  |                     |                 |                         |              |                 |                                       |                                                                                      | -   |
|                                      |                  | 8.00<br>8.00        | SPT<br>D        | N=27<br>(4,6/           |              |                 |                                       |                                                                                      | -8  |
|                                      |                  | 0.50                |                 | 6,7,7,7)                |              |                 | 100                                   |                                                                                      | -   |
|                                      |                  | 0.00                |                 |                         |              |                 | 1                                     |                                                                                      | -   |
|                                      |                  | 9.00                | SPT             | N=29                    | 9.00         |                 |                                       |                                                                                      | -9  |
|                                      |                  | 9.00                | D               | (5,5/<br>7,7,7,8)       |              |                 | 100                                   | CONDON CLAY FORMATION: FIRM to stiff grey silty CLAY occasional claystone fragments. | -   |
|                                      |                  | 9.50                | D               |                         |              |                 | 5.0                                   |                                                                                      | -   |
|                                      |                  |                     |                 |                         |              |                 |                                       |                                                                                      | -   |
| -                                    |                  |                     | Туре            | Results                 | 1            |                 |                                       | Continued next sheet                                                                 | 1   |
| m                                    | arks:            | Fine roo            | ts note         | a to 0.80m bg           | I.           |                 |                                       |                                                                                      | P.  |

| ame<br>acent to 1                                                             |                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sheet 2 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                               | h St Jo                                         | hn's Wood Pa                                                                                                                                                                                                                                        | Pr<br>ark G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oject N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO.<br>319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co-ords                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hole Typ<br>WI S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Londor                                                                        | n NW8                                           | 6QS                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Scale 1:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Liv Inte                                                                      | ernation                                        | nal                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01/07/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Logged E<br>SJM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sampl                                                                         | es & In                                         | Situ Testing<br>Results                                                                                                                                                                                                                             | Depth<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Level<br>(m AOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stratum Descriptior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10.00<br>10.00<br>10.50<br>11.00<br>11.00<br>11.50<br>12.00<br>12.00<br>12.50 | SPT<br>D<br>SPT<br>D<br>D<br>D<br>SPT<br>D<br>D | N=30<br>(6,7/<br>7,7,8,8)<br>N=32<br>(7,7/<br>8,7,8,9)<br>N=38<br>(8,9/<br>9,10,9,10)                                                                                                                                                               | 12.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LONDON CLAY<br>claystone fragm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FORMATION: Firm to stiff grey<br>nents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y silty CLAY occasional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                               |                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 15<br>- 15<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                               |                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                               |                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                               |                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>- 19<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                               | Liv Inte                                        | Samples & In         Depth (m)       Type         10.00       D         10.00       D         10.00       D         11.00       SPT         11.00       D         12.00       D         12.50       D         12.50       J         Type       Type | Samples & In Situ Testing           Depth (m)         Type         Results           10.00         SPT         N=30           10.00         D         (6,7)           10.00         D         (7,7)           11.00         SPT         N=32           11.00         D         (7,7)           11.00         D         (7,7)           11.00         D         (8,9)           12.00         SPT         N=38           12.00         SPT         N=38           12.00         SPT         N=38           9,10,9,10)         12.50         D           12.50         D         Image: Second Secon | Samples & In Situ Testing       Depth         Depth (m)       Type       Results       Depth         10.00       SPT       N=30       1         10.50       D       7,7,8,8)       1         11.00       SPT       N=32       1         11.00       SPT       N=32       1         11.00       SPT       N=38       1         12.00       SPT       N=38       1         12.00       D       8,9/       9,10,9,10)       12.50         12.50       D       12.50       Interval       1         12.50       D       12.50       Interval       1         12.50       D       Interval       1       1         12.50       D       Interval       1       1         12.50       Interval       Interval       1       1         Interval       Interval       Interval       Interval       1         Interval       Interval       Interval       Interval       Interval         Interval       Interval       Interval       Interval       Interval         Interval       Interval       Interval       Interval       Interval | Samples & IN Situ Testing       Depth       Level         Depth (m)       Type       Results       (m)       (m AOD         10.00       D       7.7.8.8)       (6,77)       (7,77)       (7,77)       (7,77)       (7,77)       (8,97)       (8,97)       (8,97)       (8,97)       (9,10,9,10)       12.50       D       12.50       D       12.50       D       12.50       D       12.50       D       12.50       I       12.50       I       12.50       I       12.50       I       12.50       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I | Liv International         Samples & In Situ Testing       Depth       Legend         Depth (m)       Type       Results       Depth       Legend       Legend         10.00       D       0       7.7.8.8)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | Liv International         Dates:           Samples & In Situ Testing<br>Depth (m)         Depth (m)         Legend<br>(n,0)         Legend<br>Depth (m, ADD)         Legend<br>LONDON CLA<br>(8,77)           11.00         D         7,7,8,8)         I         Image: Comparison of the second<br>Barbon of the second<br>Depth (m, ADD)         LONDON CLA<br>(2) system fragen           11.00         D         7,7,7,8,8)         Image: Comparison of the second<br>Barbon of the second<br>Depth (m, ADD)         LONDON CLA<br>(2) system fragen           12.00         SPT         N=38<br>(8,9)         Image: Comparison of the second<br>Depth (m, 2)           12.00         SPT         N=38<br>(8,9)         Image: Comparison of the second<br>Depth (m, 2)         Image: Comparison of the second<br>Depth (m, 2) <td< td=""><td>Liv International         Dates:         01/07/2015           Semple &amp; In Stur Testing<br/>Depth (m)         Depth (m)         I evel<br/>(m)         I evel<br/>(m)</td><td>Liv International         Dates:         01/07/2015         Csyste         Csyste</td></td<> | Liv International         Dates:         01/07/2015           Semple & In Stur Testing<br>Depth (m)         Depth (m)         I evel<br>(m)         I evel<br>(m) | Liv International         Dates:         01/07/2015         Csyste         Csyste |





Appendix E Pdisp Analysis for heave from excavation

MAUND Job No. Sheet No. Rev. as **GEO-CONSULTING LTD** New News St Johns Park London NW8 NN6 Drg. Ref. Basement heave calcs Made by JM Date Checked Basement - September 2015 layout Settlement Contours : Grid 1 at 48.0000m 50.00 -25.00 -20.00 45.00 -15.00 -10.00 40.00 -5.000 0 35.00 30.00 25.00 [<u></u>] 7 20.00

30.00

X [m]

50.00

10.00

15.00

10.00

5.000

.0

-10.00

Scale x 1:594 y 1:594 Contour Interval: 5mm 70.00

|       | MAUND              | Job No. | St |
|-------|--------------------|---------|----|
| Oasys | GEO-CONSULTING LTD |         |    |

# New News St Johns Park London NW8 NN6 Basement heave calcs

Basement - September 2015 layout

| Job No.       | Sheet No. | Rev.    |
|---------------|-----------|---------|
|               |           |         |
|               |           |         |
| Drg. Ref.     |           |         |
| Made by<br>JM | Date      | Checked |
|               |           |         |

# **Displacement for Line 1**

Line Displacement





| Oasys                     | MAUND<br>GEO-CONSULTING LTD | Job No.       | Sheet No. | Rev.    |
|---------------------------|-----------------------------|---------------|-----------|---------|
| New News St Johns Park Lo | ondon NW8 NN6               | Drg. Ref.     |           |         |
| Basement heave calcs      |                             |               |           |         |
| Basement - September 2015 | layout                      | Made by<br>JM | Date      | Checked |

# **Displacement for Line 2**

Line Displacement



# New News St Johns Park London NW8 NN6

Basement heave calcs

asys)

Basement - September 2015 layout

| Job No.       | Sheet No. | Rev.    |
|---------------|-----------|---------|
|               |           |         |
|               |           |         |
| Dra Ref       |           |         |
| Dig. Nei.     |           |         |
| Made by<br>JM | Date      | Checked |

#### **RESULTS FOR GRIDS**

Analysis: Boussinesq Global Poisson's ratio: 0.30 Horizontal rigid boundary level: 20.00 [m OD]

The maximum displacement difference between Boussinesg method (-16.539mm) and Mindlin method (-16.552mm) occurs at point X=34.000m Y=18.467m Level 48.000mOD and is 0.013417mm Name

| Name            |                      | Location             |                           |                  |                  | Stres                    | ses                               |                          |
|-----------------|----------------------|----------------------|---------------------------|------------------|------------------|--------------------------|-----------------------------------|--------------------------|
|                 | <b>X</b><br>[m]      | <b>Y</b><br>[m]      | <pre>Z[Level] [mOD]</pre> | <b>Z</b><br>[mm] | [mOD]            | [kN/m <sup>2</sup> ]     | Sum Princ<br>[kN/m <sup>2</sup> ] | Vert Strain [-]          |
| Soil Excavation | 34.00000             | 14.15000             | 48.00000                  | -29.763          | 47.914           | -67.000                  | -171.88                           | -0.0030921               |
|                 | 3.50000              | 0.00000              | 48.00000                  | -0.30732         | 47.914           | -1.3159E-6               | -0.056472                         | 1.4740E-6                |
|                 | 10.50000             | 0.00000              | 48.00000                  | -0.82359         | 47.914           | -3.9504E-6               | -0.10769                          | 2.8107E-6                |
|                 | 14.00000 17.50000    | 0.00000              | 48.00000<br>48.00000      | -1.0964          | 47.914 47.914    | -5.3929E-6<br>-6.3473E-6 | -0.13459                          | 3.5129E-6<br>4.0632E-6   |
|                 | 21.00000             | 0.00000              | 48.00000                  | -1.4699          | 47.914           | -6.8617E-6               | -0.17014                          | 4.4405E-6                |
|                 | 28.00000             | 0.00000              | 48.00000                  | -1.6232          | 47.914           | -7.2427E-6               | -0.18477                          | 4.8225E-6                |
|                 | 31.50000 35.00000    | 0.00000              | 48.00000<br>48.00000      | -1.6501          | 47.914<br>47.914 | -7.2962E-6<br>-7.3047E-6 | -0.18746                          | 4.8927E-6<br>4.9046E-6   |
|                 | 38.50000             | 0.00000              | 48.00000                  | -1.6378          | 47.914           | -7.2722E-6               | -0.18622                          | 4.8603E-6<br>4.7516E-6   |
|                 | 45.50000             | 0.00000              | 48.00000                  | -1.5176          | 47.914           | -6.9943E-6               | -0.17463                          | 4.5577E-6                |
|                 | 49.00000<br>52.50000 | 0.00000              | 48.00000                  | -1.3898          | 47.914           | -5.8664E-6               | -0.14447                          | 4.2445E-6<br>3.7707E-6   |
|                 | 56.00000<br>59.50000 | 0.00000              | 48.00000<br>48.00000      | -0.94469         | 47.914 47.914    | -4.6139E-6<br>-3.0474E-6 | -0.11971                          | 3.1244E-6<br>2.3868E-6   |
|                 | 63.00000             | 0.00000              | 48.00000                  | -0.40083         | 47.914           | -1.7244E-6               | -0.065676                         | 1.7142E-6                |
|                 | 70.00000             | 0.00000              | 48.00000                  | -0.068941        | 47.914           | 0.0                      | -0.032581                         | 0.0                      |
|                 | 3.50000              | 2.25000              | 48.00000                  | -0.22468         | 47.914           | -2.2120E-6               | -0.072537                         | 1.8933E-6                |
|                 | 7.00000              | 2.25000              | 48.00000                  | -0.84801         | 47.914           | -4.8544E-6               | -0.11120                          | 2.9024E-6<br>4.2208E-6   |
|                 | 14.00000             | 2.25000              | 48.00000                  | -1.7575          | 47.914           | -13.071E-6               | -0.20972                          | 5.4730E-6                |
|                 | 21.00000             | 2.25000              | 48.00000                  | -2.3188          | 47.914           | -16.155E-6               | -0.26468                          | 6.9074E-6                |
|                 | 24.50000<br>28.00000 | 2.25000              | 48.00000                  | -2.4519          | 47.914<br>47.914 | -16.558E-6<br>-16.734E-6 | -0.27694                          | 7.2275E-6<br>7.4069E-6   |
|                 | 31.50000 35.00000    | 2.25000              | 48.00000<br>48.00000      | -2.5603          | 47.914 47.914    | -16.805E-6<br>-16.816E-6 | -0.28711                          | 7.4929E-6<br>7.5073E-6   |
|                 | 38.50000             | 2.25000              | 48.00000                  | -2.5445          | 47.914           | -16.773E-6               | -0.28560                          | 7.4535E-6                |
|                 | 45.50000             | 2.25000              | 48.00000                  | -2.3849          | 47.914           | -16.369E-6               | -0.27077                          | 7.0663E-6                |
|                 | 49.00000 52.50000    | 2.25000              | 48.00000<br>48.00000      | -2.2050          | 47.914<br>47.914 | -15.716E-6<br>-14.194E-6 | -0.25405                          | 6.6301E-6<br>5.9020E-6   |
|                 | 56.00000             | 2.25000              | 48.00000                  | -1.5115          | 47.914           | -11.019E-6               | -0.18359                          | 4.7914E-6<br>3.4455E-6   |
|                 | 63.00000             | 2.25000              | 48.00000                  | -0.62015         | 47.914           | -3.1188E-6               | -0.087258                         | 2.2775E-6                |
|                 | 70.00000             | 2.25000              | 48.00000                  | -0.31821         | 47.914           | -1.4044E-6<br>0.0        | -0.038098                         | 1.4854E-6                |
|                 | 0.00000 3.50000      | 4.50000              | 48.00000                  | -0.32679         | 47.914 47.914    | -1.4701E-6<br>-3.8673E-6 | -0.057277                         | 1.4950E-6<br>2.4695E-6   |
|                 | 7.00000              | 4.50000              | 48.00000                  | -1.2866          | 47.914           | -11.260E-6               | -0.16425                          | 4.2865E-6                |
|                 | 14.00000             | 4.50000              | 48.00000                  | -2.8547          | 47.914           | -41.873E-6               | -0.37042                          | 9.6647E-6                |
|                 | 17.50000<br>21.00000 | 4.50000              | 48.00000                  | -3.3805          | 47.914 47.914    | -47.262E-6<br>-49.006E-6 | -0.42860                          | 11.183E-6<br>11.979E-6   |
|                 | 24.50000             | 4.50000              | 48.00000                  | -3.8706          | 47.914           | -49.626E-6               | -0.47524                          | 12.400E-6                |
|                 | 31.50000             | 4.50000              | 48.00000                  | -4.0073          | 47.914           | -49.961E-6               | -0.48771                          | 12.726E-6                |
|                 | 38.50000             | 4.50000              | 48.00000                  | -3.9878          | 47.914           | -49.921E-6               | -0.48591                          | 12.679E-6                |
|                 | 42.00000 45.50000    | 4.50000              | 48.00000<br>48.00000      | -3.9186          | 47.914 47.914    | -49.757E-6<br>-49.346E-6 | -0.47959                          | 12.514E-6<br>12.192E-6   |
|                 | 49.00000             | 4.50000              | 48.00000                  | -3.5363          | 47.914           | -48.242E-6               | -0.44410                          | 11.588E-6                |
|                 | 56.00000             | 4.50000              | 48.00000                  | -2.4419          | 47.914           | -35.030E-6               | -0.31856                          | 8.3119E-6                |
|                 | 63.00000             | 4.50000              | 48.00000                  | -0.91460         | 47.914           | -17.390E-6               | -0.20711                          | 5.4044E-6<br>3.1177E-6   |
|                 | 66.50000<br>70.00000 | 4.50000              | 48.00000                  | -0.45899         | 47.914 47.914    | -2.1878E-6               | -0.070464                         | 1.8392E-6<br>1.1552E-6   |
|                 | 0.00000              | 6.75000              | 48.00000                  | -0.43748         | 47.914           | -2.0883E-6               | -0.067942                         | 1.7734E-6                |
|                 | 7.00000              | 6.75000              | 48.00000                  | -1.9150          | 47.914           | -31.776E-6               | -0.26170                          | 6.8279E-6                |
|                 | 14.00000             | 6.75000              | 48.00000                  | -3.4649          | 47.914           | -148.85E-6               | -0.83237                          | 21.702E-6                |
|                 | 17.50000 21.00000    | 6.75000              | 48.00000                  | -5.6851          | 47.914 47.914    | -248.94E-6<br>-252.10E-6 | -0.93701                          | 24.432E-6<br>25.575E-6   |
|                 | 24.50000             | 6.75000              | 48.00000                  | -6.3381          | 47.914           | -253.01E-6               | -1.0015                           | 26.115E-6                |
|                 | 31.50000             | 6.75000              | 48.00000                  | -6.5038          | 47.914           | -253.33E-6               | -1.0118                           | 26.503E-6                |
|                 | 35.00000             | 6.75000              | 48.00000                  | -6.5121          | 47.914           | -253.46E-6               | -1.0171                           | 26.448E-6                |
|                 | 42.00000             | 6.75000              | 48.00000                  | -6.3972          | 47.914           | -253.19E-6               | -1.0068                           | 26.253E-6<br>25.854E-6   |
|                 | 49.00000             | 6.75000              | 48.00000                  | -5.9027          | 47.914           | -250.81E-6               | -0.96010                          | 25.034E-6                |
|                 | 56.00000             | 6.75000              | 48.00000                  | -4.1432          | 47.914           | -201.44E-6               | -0.70887                          | 18.482E-6                |
|                 | 59.50000<br>63.00000 | 6.75000<br>6.75000   | 48.00000                  | -2.5240          | 47.914<br>47.914 | -66.746E-6<br>-12.584E-6 | -0.37357                          | 9.7443E-6<br>4.3723E-6   |
|                 | 66.50000<br>70.00000 | 6.75000              | 48.00000                  | -0.61751         | 47.914 47.914    | -3.3516E-6<br>-1.1867E-6 | -0.086573                         | 2.2596E-6<br>1.3233E-6   |
|                 | 0.00000              | 9.00000              | 48.00000                  | -0.54365         | 47.914           | -2.8040E-6               | -0.078543                         | 2.0500E-6                |
|                 | 7.00000              | 9.00000              | 48.00000                  | -2.7647          | 47.914           | -102.96E-6               | -0.44372                          | 11.571E-6                |
|                 | 14.00000             | 9.00000              | 48.00000                  | -6.5888          | 47.914           | -0.0087780               | -2.6582                           | 68.643E-6<br>100.85E-6   |
|                 | 17.50000 21.00000    | 9.00000              | 48.00000                  | -10.819          | 47.914 47.914    | -0.0088183               | -4.0878                           | 105.71E-6<br>107.28E-6   |
|                 | 24.50000             | 9.00000              | 48.00000                  | -11.645          | 47.914           | -0.0088248               | -4.1731                           | 107.94E-6                |
|                 | 31.50000             | 9.00000              | 48.00000                  | -11.837          | 47.914           | -0.0088253               | -4.1902                           | 108.38E-6                |
|                 | 35.00000 38.50000    | 9.00000<br>9.00000   | 48.00000                  | -11.846          | 47.914<br>47.914 | -0.0088253               | -4.1910                           | 108.41E-6<br>108.32E-6   |
|                 | 42.00000 45.50000    | 9.00000              | 48.00000<br>48.00000      | -11.714          | 47.914 47.914    | -0.0088250               | -4.1793                           | 108.10E-6<br>107.62E-6   |
|                 | 49.00000             | 9.00000              | 48.00000                  | -11.106          | 47.914           | -0.0088215               | -4.1205                           | 106.57E-6                |
|                 | 56.00000             | 9.00000              | 48.00000                  | -8.2567          | 47.914           | -0.0085500               | -3.5415                           | 91.480E-6                |
|                 | 59.50000<br>63.00000 | 9.00000<br>9.00000   | 48.00000<br>48.00000      | -4.0153          | 47.914<br>47.914 | -506.78E-6<br>-25.164E-6 | -0.86363                          | 22.487E-6<br>6.0840E-6   |
|                 | 66.50000<br>70.00000 | 9.00000              | 48.00000 48.00000         | -0.77546         | 47.914<br>47.914 | -4.8341E-6<br>-1.4899E-6 | -0.10362                          | 2.7043E-6<br>1.4803E-6   |
|                 | 0.00000              | 11.25000             | 48.00000                  | -0.62661         | 47.914           | -3.4453E-6               | -0.087088                         | 2.2730E-6                |
|                 | 7.00000              | 11.25000             | 48.00000                  | -3.6425          | 47.914           | -228.46E-6               | -0.67716                          | 17.651E-6                |
|                 | 14.00000             | 11.25000             | 48.00000<br>48.00000      | -17.001          | 47.914<br>47.914 | -66.928<br>-66.995       | -162.19<br>-169.30                | -0.0033370<br>-0.0031591 |
|                 | 17.50000             | 11.25000             | 48.00000                  | -24.918          | 47.914           | -66.995                  | -169.58                           | -0.0031517               |
|                 | 24.50000             | 11.25000             | 48.00000                  | -25.890          | 47.914           | -66.995                  | -169.68                           | -0.0031490               |
|                 | 31.50000             | 11.25000             | 48.00000                  | -26.102          | 47.914           | -66.995                  | -169.70                           | -0.0031485               |
|                 | 35.00000             | 11.25000             | 48.00000                  | -26.112          | 47.914<br>47.914 | -66.995<br>-66.995       | -169.70<br>-169.70                | -0.0031485               |
|                 | 42.00000 45.50000    | 11.25000<br>11.25000 | 48.00000<br>48.00000      | -25.967          | 47.914<br>47.914 | -66.995                  | -169.69<br>-169.67                | -0.0031488               |
|                 | 49.00000             | 11.25000             | 48.00000                  | -25.267          | 47.914           | -66.995                  | -169.62                           | -0.0031506               |
|                 | 56.00000             | 11.25000             | 48.00000                  | -21.105          | 47.914           | -66.995                  | -168.50                           | -0.0031799               |
|                 | 63.00000             | 11.25000             | 48.00000                  | -2.1240          | 47.914           | -40.713E-6               | -0.30012                          | 7.8298E-6                |
|                 | pp.50000             | 11.25000             | 48.00000                  | -U.90275         | 47,914           | -b.2532E-6               | -0.11804                          | 3.0807E−6                |

# New News St Johns Park London NW8 NN6

'S

Basement heave calcs Basement - September 2015 layout

asy

| Job No.       | Sheet No. | Rev.    |
|---------------|-----------|---------|
|               |           |         |
|               |           |         |
| Drg. Ref.     |           |         |
|               |           |         |
| Made by<br>JM | Date      | Cnecked |

| Name | v                    | Location             | 7[1 em ] ]           | 7                             | (a) a                      | Stre                                   | sses                          | Nemb Church                            |
|------|----------------------|----------------------|----------------------|-------------------------------|----------------------------|----------------------------------------|-------------------------------|----------------------------------------|
|      | <b>x</b><br>[m]      | <b>x</b><br>[m]      | [mOD]                | 2<br>[mm]                     | [mOD]                      | [kN/m <sup>2</sup> ]                   | [kN/m <sup>2</sup> ]          | [-]                                    |
|      | 70.00000             | 11.25000             | 48.00000             | -0.37585                      | 47.914                     | -1.7438E-6                             | -0.061331                     | 1.6008E-6                              |
|      | 3.50000              | 13.50000             | 48.00000             | -1.5859                       | 47.914<br>47.914<br>47.914 | -19.128E-6<br>-283.15E-6               | -0.20889                      | 2.3855E-6<br>5.4508E-6<br>20.801E-6    |
|      | 10.50000             | 13.50000             | 48.00000             | -19.064                       | 47.914<br>47.914           | -66.931                                | -163.55                       | -0.0033018                             |
|      | 17.50000 21.00000    | 13.50000<br>13.50000 | 48.00000<br>48.00000 | -28.327                       | 47.914<br>47.914           | -67.000                                | -171.69                       | -0.0030971                             |
|      | 24.50000<br>28.00000 | 13.50000<br>13.50000 | 48.00000<br>48.00000 | -29.374<br>-29.529            | 47.914<br>47.914           | -67.000<br>-67.000                     | -171.80<br>-171.81            | -0.0030942                             |
|      | 31.50000<br>35.00000 | 13.50000<br>13.50000 | 48.00000<br>48.00000 | -29.595                       | 47.914<br>47.914           | -67.000                                | -171.82                       | -0.0030937                             |
|      | 38.50000<br>42.00000 | 13.50000             | 48.00000             | -29.566                       | 47.914<br>47.914<br>47.014 | -67.000                                | -171.82<br>-171.81            | -0.0030937<br>-0.0030940               |
|      | 49.00000             | 13.50000             | 48.00000             | -29.217                       | 47.914 47.914              | -67.000                                | -171.73                       | -0.0030945                             |
|      | 56.00000             | 13.50000             | 48.00000             | -23.869                       | 47.914 47.914              | -0.0025459                             | -170.37                       | -0.0031313                             |
|      | 63.00000             | 13.50000             | 48.00000             | -2.3344                       | 47.914<br>47.914           | -49.358E-6<br>-7.0325E-6               | -0.33697                      | 8.7908E-6<br>3.2757E-6                 |
|      | 70.00000             | 13.50000<br>15.75000 | 48.00000<br>48.00000 | -0.39942<br>-0.65640          | 47.914<br>47.914           | -1.8745E-6<br>-3.6919E-6               | -0.063597                     | 1.6599E-6<br>2.3545E-6                 |
|      | 3.50000<br>7.00000   | 15.75000<br>15.75000 | 48.00000<br>48.00000 | -1.5519                       | 47.914<br>47.914           | -18.346E-6<br>-270.29E-6               | -0.20401<br>-0.76610          | 5.3236E-6<br>19.968E-6                 |
|      | 10.50000 14.00000    | 15.75000             | 48.00000             | -18.592                       | 47.914 47.914              | -66.931                                | -163.34<br>-171.03            | -0.0033071<br>-0.0031144               |
|      | 21.00000             | 15.75000             | 48.00000             | -27.530                       | 47.914 47.914              | -66.999                                | -171.43                       | -0.0031039                             |
|      | 28.00000             | 15.75000             | 48.00000             | -28.709                       | 47.914                     | -66.999                                | -171.40                       | -0.0031027                             |
|      | 35.00000             | 15.75000             | 48.00000             | -28.785                       | 47.914                     | -66.999                                | -171.48                       | -0.0031025                             |
|      | 42.00000<br>45.50000 | 15.75000             | 48.00000 48.00000    | -28.636                       | 47.914<br>47.914           | -66.999                                | -171.47                       | -0.0031029                             |
|      | 49.00000 52.50000    | 15.75000             | 48.00000<br>48.00000 | -27.903                       | 47.914<br>47.914           | -66.999<br>-66.999                     | -171.39                       | -0.0031048                             |
|      | 56.00000<br>59.50000 | 15.75000<br>15.75000 | 48.00000<br>48.00000 | -23.243<br>-6.5776            | 47.914<br>47.914           | -66.998<br>-0.0024964                  | -170.09                       | -0.0031387<br>55.052E-6                |
|      | 63.00000<br>66.50000 | 15.75000             | 48.00000<br>48.00000 | -2.2758                       | 47.914<br>47.914           | -46.992E-6<br>-6.8139E-6               | -0.32671                      | 8.5233E-6<br>3.2216E-6                 |
|      | 70.00000             | 15.75000             | 48.00000<br>48.00000 | -0.39297                      | 47.914<br>47.914           | -1.8383E-6<br>-3.1984E-6               | -0.062976                     | 1.6437E-6<br>2.1892E-6                 |
|      | 3.50000<br>7.00000   | 18.00000             | 48.00000 48.00000    | -1.3732                       | 47.914 47.914              | -14.372E-6<br>-178.07E-6               | -0.17886                      | 4.6675E-6<br>15.214E-6                 |
|      | 10.50000             | 18.00000             | 48.00000             | -14.105                       | 47.914 47.914              | -66.646                                | -152.49<br>-157.80            | -0.0035582                             |
|      | 21.00000             | 18.00000             | 48.00000             | -20.625<br>-21.246<br>-21.541 | 47.914<br>47.914<br>47.914 | -66.699                                | -158.05<br>-158.12<br>-158.14 | -0.0034192<br>-0.0034174<br>-0.0034167 |
|      | 28.00000             | 18.00000             | 48.00000             | -21.684                       | 47.914<br>47.914           | -66.699                                | -158.16                       | -0.0034164                             |
|      | 35.00000<br>38.50000 | 18.00000             | 48.00000             | -21.756                       | 47.914<br>47.914           | -66.699                                | -158.16                       | -0.0034162                             |
|      | 42.00000 45.50000    | 18.00000             | 48.00000<br>48.00000 | -21.615                       | 47.914<br>47.914           | -66.699<br>-66.699                     | -158.15<br>-158.13            | -0.0034165                             |
|      | 49.00000<br>52.50000 | 18.00000             | 48.00000<br>48.00000 | -20.950<br>-19.962            | 47.914<br>47.914           | -66.699<br>-66.699                     | -158.09                       | -0.0034182                             |
|      | 56.00000<br>59.50000 | 18.00000 18.00000    | 48.00000<br>48.00000 | -17.310<br>-5.1539            | 47.914<br>47.914           | -66.699<br>-0.0015978                  | -157.18<br>-1.4635            | -0.0034419<br>38.022E-6                |
|      | 63.00000<br>66.50000 | 18.00000 18.00000    | 48.00000<br>48.00000 | -1.9715<br>-0.85496           | 47.914<br>47.914           | -34.435E-6<br>-5.6989E-6               | -0.27373                      | 7.1417E-6<br>2.9377E-6                 |
|      | 70.00000             | 18.00000 20.25000    | 48.00000 48.00000    | -0.35794                      | 47.914 47.914              | -1.6476E-6<br>-2.4985E-6               | -0.059618                     | 1.5561E-6<br>1.9363E-6                 |
|      | 7.00000              | 20.25000             | 48.00000             | -2.3824                       | 47.914 47.914              | -9.3118E-6<br>-62.876E-6               | -0.35436                      | 3.7555E-6<br>9.2431E-6                 |
|      | 14.00000             | 20.25000             | 48.00000             | -6.9974                       | 47.914 47.914              | -762.20E-6<br>-0.0011579               | -1.1280                       | 29.359E-6<br>44.138E-6                 |
|      | 21.00000             | 20.25000             | 48.00000             | -8.0254<br>-8.5266            | 47.914 47.914              | -0.0011893                             | -1.8962                       | 47.983E-6<br>49.366E-6                 |
|      | 28.00000             | 20.25000             | 48.00000             | -8.9050                       | 47.914                     | -0.0011908                             | -1.9309                       | 50.269E-6                              |
|      | 35.00000             | 20.25000             | 48.00000             | -8.9695                       | 47.914 47.914 47.914       | -0.0011909                             | -1.9366                       | 50.399E-6                              |
|      | 42.00000             | 20.25000             | 48.00000             | -8.8442                       | 47.914                     | -0.0011906                             | -1.9255                       | 50.128E-6<br>49.684E-6                 |
|      | 49.00000             | 20.25000             | 48.00000             | -8.2832                       | 47.914                     | -0.0011877                             | -1.8718                       | 48.727E-6<br>46.332E-6                 |
|      | 56.00000<br>59.50000 | 20.25000 20.25000    | 48.00000<br>48.00000 | -5.9534                       | 47.914<br>47.914           | -0.0010602<br>-195.06E-6               | -1.4701                       | 38.257E-6<br>15.226E-6                 |
|      | 63.00000<br>66.50000 | 20.25000 20.25000    | 48.00000<br>48.00000 | -1.5417<br>-0.71056           | 47.914<br>47.914           | -19.063E-6<br>-4.1857E-6               | -0.20378                      | 5.3173E-6<br>2.5184E-6                 |
|      | 70.00000             | 20.25000<br>22.50000 | 48.00000<br>48.00000 | -0.30164<br>-0.39038          | 47.914<br>47.914           | -1.3635E-6<br>-1.8095E-6               | -0.054282                     | 1.4169E-6<br>1.6537E-6                 |
|      | 3.50000<br>7.00000   | 22.50000<br>22.50000 | 48.00000<br>48.00000 | -0.83616<br>-1.6227           | 47.914<br>47.914           | -5.3858E-6<br>-19.977E-6               | -0.11070                      | 2.8890E-6<br>5.5533E-6                 |
|      | 10.50000 14.00000    | 22.50000<br>22.50000 | 48.00000<br>48.00000 | -2.7778<br>-3.8514            | 47.914<br>47.914           | -65.727E-6<br>-102.18E-6               | -0.40052                      | 10.448E-6<br>14.775E-6                 |
|      | 17.50000 21.00000    | 22.50000             | 48.00000<br>48.00000 | -4.5279<br>-4.9055            | 47.914<br>47.914           | -111.82E-6<br>-114.30E-6               | -0.64777                      | 16.897E-6<br>17.882E-6                 |
|      | 24.50000 28.00000    | 22.50000             | 48.00000             | -5.1094                       | 47.914 47.914              | -115.08E-6<br>-115.37E-6               | -0.70421                      | 18.370E-6<br>18.618E-6                 |
|      | 31.50000             | 22.50000             | 48.00000             | -5.2630                       | 47.914 47.914              | -115.47E-6<br>-115.49E-6               | -0.71807                      | 18.732E-6<br>18.750E-6                 |
|      | 42.00000             | 22.50000             | 48.00000             | -5.2414                       | 47.914                     | -115.43E-6<br>-115.24E-6               | -0.71610                      | 18.680E-6<br>18.498E-6                 |
|      | 45.50000             | 22.50000             | 48.00000             | -5.0087                       | 47.914                     | -114.73E-6<br>-113.26E-6               | -0.69508                      | 18.132E-6<br>17.408E-6                 |
|      | 56.00000             | 22.50000             | 48.00000             | -4.1876<br>-3.2814<br>-2.0870 | 47.914                     | -108.01E-6<br>-86.193E-6<br>-35.540P 6 | -0.48307                      | 12.600E-6                              |
|      | 63.00000             | 22.50000             | 48.00000             | -1.1231                       | 47.914 47.914              | -9.2232E-6                             | -0.14498                      | 3.7837E-6                              |
|      | 70.00000             | 22.50000             | 48.00000             | -0.23426                      | 47.914 47.914 47.914       | -1.0608E-6                             | -0.047982                     | 1.2524E-6                              |
|      | 3.50000              | 24.75000             | 48.00000             | -0.59406                      | 47.914                     | -3.0433E-6                             | -0.084451                     | 2.2042E-6<br>3.6060E-6                 |
|      | 10.50000             | 24.75000             | 48.00000             | -1.7139                       | 47.914                     | -16.601E-6                             | -0.21431                      | 5.5925E-6<br>7.4503E-6                 |
|      | 17.50000             | 24.75000             | 48.00000             | -2.7549                       | 47.914                     | -28.076E-6                             | -0.33157                      | 8.6523E-6<br>9.3314E-6                 |
|      | 24.50000 28.00000    | 24.75000             | 48.00000             | -3.1842                       | 47.914                     | -29.939E-6<br>-30.152E-6               | -0.37200                      | 9.7075E-6<br>9.9112E-6                 |
|      | 31.50000<br>35.00000 | 24.75000<br>24.75000 | 48.00000<br>48.00000 | -3.3086<br>-3.3151            | 47.914<br>47.914           | -30.235E-6<br>-30.248E-6               | -0.38348                      | 10.007E-6<br>10.023E-6                 |
|      | 38.50000<br>42.00000 | 24.75000<br>24.75000 | 48.00000<br>48.00000 | -3.2908                       | 47.914<br>47.914           | -30.198E-6<br>-30.053E-6               | -0.38180                      | 9.9632E-6<br>9.8111E-6                 |
|      | 45.50000<br>49.00000 | 24.75000<br>24.75000 | 48.00000<br>48.00000 | -3.1055                       | 47.914<br>47.914           | -29.701E-6<br>-28.815E-6               | -0.36482                      | 9.5201E-6<br>8.9927E-6                 |
|      | 52.50000<br>56.00000 | 24.75000<br>24.75000 | 48.00000             | -2.5279                       | 47.914<br>47.914           | -26.445E-6<br>-20.505E-6               | -0.30833                      | 8.0457E-6<br>6.4558E-6                 |
|      | 59.50000<br>63.00000 | 24.75000             | 48.00000             | -1.3425                       | 47.914 47.914              | -11.150E-6<br>-4.5464E-6               | -0.16907                      | 4.4122E-6<br>2.7207E-6                 |
|      | 66.50000             | 24.75000             | 48.00000             | -0.39677                      | 47.914 47.914              | -1.8145E-6<br>0.0                      | -0.064395                     | 1.6808E-6<br>1.0857E-6                 |
|      | 3.50000              | 27.00000             | 48.00000             | -0.39896                      | 47.914                     | -1.7668E-6                             | -0.065122                     | 1.6998E-6                              |
|      | 10.50000             | 27.00000             | 48.00000             | -1.0787                       | 47.914 47.914 47.914       | -6.2602E-6<br>-8.7654E-6               | -0.13480                      | 3.5183E-6<br>4.4858E-6                 |
|      | 17.50000             | 27.00000             | 48.00000             | -1.7222                       | 47.914                     | -10.269E-6                             | -0.19949                      | 5.2064E-6<br>5.6730R-6                 |
|      | 24.50000<br>28.00000 | 27.00000             | 48.00000             | -2.0298                       | 47.914<br>47.914           | -11.329E-6<br>-11.481E-6               | -0.22824                      | 5.9568E-6<br>6.1196E-6                 |
|      | 31.50000<br>35.00000 | 27.00000<br>27.00000 | 48.00000<br>48.00000 | -2.1269                       | 47.914<br>47.914           | -11.545E-6<br>-11.555E-6               | -0.23751                      | 6.1988E-6<br>6.2120E-6                 |
|      | 38.50000<br>42.00000 | 27.00000 27.00000    | 48.00000<br>48.00000 | -2.1127                       | 47.914<br>47.914           | -11.516E-6<br>-11.409E-6               | -0.23612                      | 6.1624E-6<br>6.0387E-6                 |
|      | 45.50000             | 27.00000             | 48.00000             | -1.9705                       | 47.914                     | -11.170E-6                             | -0.22273                      | 5.8129E-6                              |

# New News St Johns Park London NW8 NN6

'S

Basement heave calcs Basement - September 2015 layout

lasy

| Job No.       | Sheet No. | Rev.    |
|---------------|-----------|---------|
|               |           |         |
|               |           |         |
| Drg. Ref.     |           |         |
| Made by<br>JM | Date      | Checked |
|               |           |         |

| Name | x                                | Location<br>Y                    | Z[Level]                         | z                                | Calc Level                 | Stre:<br>Vert Stress                   | sses<br>Sum Princ                   | Vert Strain                         |
|------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------------------|-------------------------------------|-------------------------------------|
|      | [m]                              | [m]                              | [mOD]                            | [ mm ]                           | [mOD]                      | [kN/m²]                                | [kN/m²]                             | [-]                                 |
|      | 49.00000                         | 27.00000                         | 48.00000                         | -1.8144                          | 47.914<br>47.914           | -10.649E-6<br>-9.5330E-6               | -0.20820                            | 5.4337E-6<br>4.8289E-6              |
|      | 56.00000<br>59.50000<br>63.00000 | 27.00000<br>27.00000<br>27.00000 | 48.00000<br>48.00000<br>48.00000 | -1.2400<br>-0.86132<br>-0.51927  | 47.914<br>47.914<br>47.914 | -7.4342E-6<br>-4.6527E-6<br>-2.4067E-6 | -0.15153<br>-0.11214<br>-0.077117   | 3.9548E-6<br>2.9269E-6<br>2.0128E-6 |
|      | 66.50000                         | 27.00000                         | 48.00000                         | -0.26609                         | 47.914                     | -1.1671E-6<br>0.0                      | -0.052026                           | 1.3580E-6<br>0.0                    |
|      | 0.00000                          | 29.25000<br>29.25000             | 48.00000                         | -0.10600                         | 47.914<br>47.914           | 0.0<br>-1.0712E-6                      | -0.036698                           | 0.0<br>1.3332E-6                    |
|      | 7.00000 10.50000 14.00000        | 29.25000<br>29.25000<br>29.25000 | 48.00000                         | -0.44445                         | 47.914 47.914              | -1.8675E-6<br>-2.9187E-6<br>-2.9192E-6 | -0.070284                           | 1.8345E-6<br>2.4202E-6              |
|      | 17.50000                         | 29.25000<br>29.25000<br>29.25000 | 48.00000                         | -1.0795                          | 47.914<br>47.914           | -4.6183E-6<br>-5.0207E-6               | -0.13193                            | 3.4434E-6<br>3.7677E-6              |
|      | 24.50000<br>28.00000             | 29.25000<br>29.25000             | 48.00000<br>48.00000             | -1.2950<br>-1.3445               | 47.914<br>47.914           | -5.2330E-6<br>-5.3395E-6               | -0.15249                            | 3.9799E-6<br>4.1080E-6              |
|      | 31.50000 35.00000                | 29.25000<br>29.25000             | 48.00000 48.00000                | -1.3684                          | 47.914<br>47.914           | -5.3864E-6<br>-5.3939E-6               | -0.15985                            | 4.1721E-6<br>4.1829E-6              |
|      | 42.00000                         | 29.25000<br>29.25000<br>29.25000 | 48.00000 48.00000 48.00000       | -1.35/4<br>-1.3199<br>-1.2518    | 47.914 47.914 47.914       | -5.2881E-6<br>-5.1291E-6               | -0.15493                            | 4.1424E-6<br>4.0437E-6<br>3.8706E-6 |
|      | 49.00000<br>52.50000             | 29.25000<br>29.25000             | 48.00000<br>48.00000             | -1.1419                          | 47.914<br>47.914           | -4.8211E-6<br>-4.2603E-6               | -0.13785                            | 3.5979E-6<br>3.1987E-6              |
|      | 56.00000                         | 29.25000<br>29.25000             | 48.00000 48.00000                | -0.77190                         | 47.914<br>47.914           | -3.3742E-6<br>-2.3006E-6               | -0.10237                            | 2.6720E-6<br>2.0803E-6              |
|      | 66.50000                         | 29.25000                         | 48.00000                         | -0.16082                         | 47.914 47.914 47.914       | -1.3713E-0<br>0.0                      | -0.038745                           | 1.1035E-6<br>0.0                    |
|      | 0.00000<br>3.50000               | 31.50000<br>31.50000             | 48.00000<br>48.00000             | -0.042739<br>-0.13761            | 47.914<br>47.914           | 0.0                                    | -0.030662                           | 0.0<br>1.0643E-6                    |
|      | 7.00000                          | 31.50000<br>31.50000             | 48.00000 48.00000                | -0.26235                         | 47.914 47.914              | -1.0721E-6<br>-1.5535E-6               | -0.053407                           | 1.3940E-6<br>1.7632E-6              |
|      | 17.50000                         | 31.50000 31.50000 31.50000       | 48.00000                         | -0.54565                         | 47.914<br>47.914<br>47.914 | -2.0177E-6<br>-2.3734E-6<br>-2.6042E-6 | -0.081300                           | 2.1221E-6<br>2.4254E-6<br>2.6546E-6 |
|      | 24.50000                         | 31.50000 31.50000                | 48.00000                         | -0.81284                         | 47.914                     | -2.7396E-6<br>-2.8132E-6               | -0.10778                            | 2.8133E-6<br>2.9130E-6              |
|      | 31.50000<br>35.00000             | 31.50000<br>31.50000             | 48.00000<br>48.00000             | -0.86658                         | 47.914<br>47.914           | -2.8473E-6<br>-2.8529E-6               | -0.11357                            | 2.9642E-6<br>2.9730E-6              |
|      | 38.50000<br>42.00000             | 31.50000<br>31.50000             | 48.00000                         | -0.85839                         | 47.914                     | -2.8318E-6<br>-2.7771E-6               | -0.11265                            | 2.9405E-6<br>2.8626E-6              |
|      | 45.50000<br>49.00000             | 31.50000<br>31.50000             | 48.00000                         | -0.78206                         | 47.914 47.914              | -2.6717E-6<br>-2.4863E-6               | -0.10462                            | 2.7306E-6<br>2.5328E-6              |
|      | 56.00000<br>59.50000             | 31.50000<br>31.50000<br>31.50000 | 48.00000 48.00000 48.00000       | -0.46701<br>-0.32246             | 47.914<br>47.914<br>47.914 | -2.1861E-6<br>-1.7614E-6<br>-1.2728E-6 | -0.073610                           | 2.2606E-6<br>1.9214E-6<br>1.5500E-6 |
|      | 63.00000                         | 31.50000<br>31.50000             | 48.00000                         | -0.18782                         | 47.914                     | 0.0                                    | -0.045912                           | 1.1984E-6<br>0.0                    |
|      | 70.00000                         | 31.50000<br>33.75000             | 48.00000                         | -0.0025684<br>0.0054838          | 47.914                     | 0.0                                    | -0.026042                           | 0.0                                 |
|      | 3.50000<br>7.00000               | 33.75000<br>33.75000             | 48.00000<br>48.00000             | -0.056264                        | 47.914<br>47.914           | 0.0                                    | -0.033085                           | 0.0<br>1.0905E-6                    |
|      | 10.50000                         | 33.75000<br>33.75000             | 48.00000                         | -0.22549<br>-0.31422             | 47.914                     | 0.0<br>-1.1451E-6                      | -0.051234                           | 1.3373E-6<br>1.5778E-6              |
|      | 21.00000                         | 33.75000                         | 48.00000                         | -0.45025                         | 47.914<br>47.914<br>47.914 | -1.3598E-6<br>-1.4771E-6<br>-1.5644E-6 | -0.074789                           | 1.9521E-6<br>2.0713E-6              |
|      | 28.00000<br>31.50000             | 33.75000<br>33.75000             | 48.00000<br>48.00000             | -0.51675                         | 47.914<br>47.914           | -1.6151E-6<br>-1.6395E-6               | -0.082317<br>-0.083871              | 2.1487E-6<br>2.1892E-6              |
|      | 35.00000<br>38.50000             | 33.75000<br>33.75000             | 48.00000                         | -0.53171<br>-0.52362             | 47.914<br>47.914           | -1.6436E-6<br>-1.6283E-6               | -0.084140                           | 2.1962E-6<br>2.1703E-6              |
|      | 42.00000                         | 33.75000                         | 48.00000                         | -0.50394                         | 47.914 47.914              | -1.5899E-6<br>-1.5198E-6               | -0.080808                           | 2.1093E-6<br>2.0087E-6              |
|      | 52.50000<br>56.00000             | 33.75000<br>33.75000<br>33.75000 | 48.00000 48.00000                | -0.41872<br>-0.34908<br>-0.26436 | 47.914<br>47.914<br>47.914 | -1.2354E-6<br>-1.0118E-6               | -0.071394<br>-0.064070<br>-0.055275 | 1.6724E-6<br>1.4428E-6              |
|      | 59.50000                         | 33.75000                         | 48.00000                         | -0.17351                         | 47.914                     | 0.0                                    | -0.045790                           | 1.1952E-6<br>0.0                    |
|      | 66.50000<br>70.00000             | 33.75000<br>33.75000             | 48.00000<br>48.00000             | -0.018603 0.032083               | 47.914<br>47.914           | 0.0                                    | -0.028725                           | 0.0                                 |
|      | 0.00000                          | 36.00000                         | 48.00000                         | 0.041021                         | 47.914<br>47.914           | 0.0                                    | -0.021844                           | 0.0                                 |
|      | 10.50000                         | 36.00000                         | 48.00000                         | -0.10418<br>-0.15004             | 47.914<br>47.914<br>47.014 | 0.0                                    | -0.033433                           | 0.0<br>1.0452E-6<br>1.2121E-6       |
|      | 17.50000                         | 36.00000                         | 48.00000                         | -0.20911                         | 47.914                     | 0.0                                    | -0.052183                           | 1.3621E-6<br>1.4831E-6              |
|      | 24.50000<br>28.00000             | 36.00000                         | 48.00000<br>48.00000             | -0.27548                         | 47.914                     | 0.0                                    | -0.060270                           | 1.5732E-6<br>1.6332E-6              |
|      | 31.50000<br>35.00000             | 36.00000<br>36.00000             | 48.00000<br>48.00000             | -0.30183                         | 47.914<br>47.914           | -1.0051E-6<br>-1.0081E-6               | -0.063793                           | 1.6652E-6<br>1.6707E-6              |
|      | 38.50000<br>42.00000             | 36.00000                         | 48.00000                         | -0.29770                         | 47.914 47.914              | 0.0                                    | -0.063220                           | 1.6502E-6<br>1.6025E-6              |
|      | 49.00000                         | 36.00000                         | 48.00000 48.00000 48.00000       | -0.26105<br>-0.22711<br>-0.18212 | 47.914<br>47.914<br>47.914 | 0.0                                    | -0.054313                           | 1.5255E-6<br>1.4177E-6<br>1.2800E-6 |
|      | 56.00000                         | 36.00000                         | 48.00000                         | -0.12853                         | 47.914                     | 0.0                                    | -0.042854                           | 1.1186E-6<br>0.0                    |
|      | 63.00000<br>66.50000             | 36.00000                         | 48.00000                         | -0.018421<br>0.025692            | 47.914                     | 0.0                                    | -0.029809                           | 0.0                                 |
|      | 70.00000                         | 36.00000<br>38.25000             | 48.00000<br>48.00000             | 0.057984                         | 47.914<br>47.914           | 0.0                                    | -0.019193<br>-0.018638              | 0.0                                 |
|      | 3.50000                          | 38.25000<br>38.25000             | 48.00000                         | 0.042413 0.011892                | 47.914<br>47.914           | 0.0                                    | -0.022702                           | 0.0                                 |
|      | 10.50000 14.00000 17.50000       | 38.25000<br>38.25000             | 48.00000                         | -0.022537                        | 47.914                     | 0.0                                    | -0.032025                           | 0.0                                 |
|      | 21.00000                         | 38.25000                         | 48.00000                         | -0.11262                         | 47.914                     | 0.0                                    | -0.040837<br>-0.044292<br>-0.046921 | 1.1561E-6<br>1.2248E-6              |
|      | 28.00000                         | 38.25000                         | 48.00000                         | -0.14214                         | 47.914                     | 0.0                                    | -0.048706                           | 1.2714E-6<br>1.2966E-6              |
|      | 35.00000<br>38.50000             | 38.25000<br>38.25000             | 48.00000<br>48.00000             | -0.14914<br>-0.14534             | 47.914                     | 0.0                                    | -0.049840                           | 1.3010E-6<br>1.2847E-6              |
|      | 42.00000<br>45.50000             | 38.25000<br>38.25000             | 48.00000<br>48.00000             | -0.13628                         | 47.914<br>47.914           | 0.0                                    | -0.047789                           | 1.2474E-6<br>1.1883E-6              |
|      | 49.00000                         | 38.25000                         | 48.00000                         | -0.099276                        | 47.914<br>47.914           | 0.0                                    | -0.042414<br>-0.038530              | 1.1071E-6<br>1.0057E-6              |
|      | 59.50000                         | 38.25000<br>38.25000<br>38.25000 | 48.00000                         | -0.0025969                       | 47.914<br>47.914<br>47.914 | 0.0                                    | -0.029289                           | 0.0                                 |
|      | 66.50000                         | 38.25000<br>38.25000             | 48.00000                         | 0.056980                         | 47.914<br>47.914<br>47.914 | 0.0                                    | -0.020309                           | 0.0                                 |
|      | 0.00000 3.50000                  | 40.50000 40.50000                | 48.00000<br>48.00000             | 0.083535<br>0.069947             | 47.914                     | 0.0                                    | -0.016014<br>-0.019132              | 0.0                                 |
|      | 7.00000                          | 40.50000 40.50000                | 48.00000                         | 0.052158                         | 47.914<br>47.914           | 0.0                                    | -0.022551                           | 0.0                                 |
|      | 14.00000                         | 40.50000                         | 48.00000                         | 0.011218                         | 47.914                     | 0.0                                    | -0.029531<br>-0.032641              | 0.0                                 |
|      | 24.50000<br>28.00000             | 40.50000                         | 48.00000                         | -0.033922                        | 47.914<br>47.914<br>47.914 | 0.0                                    | -0.035254<br>-0.037275<br>-0.038667 | 0.0                                 |
|      | 31.50000                         | 40.50000                         | 48.00000                         | -0.045030                        | 47.914                     | 0.0                                    | -0.039427                           | 1.0292E-6<br>1.0327E-6              |
|      | 38.50000<br>42.00000             | 40.50000<br>40.50000             | 48.00000<br>48.00000             | -0.043260                        | 47.914<br>47.914           | 0.0                                    | -0.039070<br>-0.037949              | 1.0198E-6<br>0.0                    |
|      | 45.50000<br>49.00000             | 40.50000 40.50000                | 48.00000                         | -0.028009                        | 47.914<br>47.914           | 0.0                                    | -0.036196                           | 0.0                                 |
|      | 52.50000                         | 40.50000 40.50000                | 48.00000                         | 0.0028694                        | 47.914 47.914              | 0.0                                    | -0.030915                           | 0.0                                 |
|      | 63.00000<br>66.50000             | 40.50000                         | 48.00000                         | 0.062762                         | 47.914<br>47.914<br>47.914 | 0.0                                    | -0.024067<br>-0.020570<br>-0.017306 | 0.0                                 |
|      | 70.00000                         | 40.50000<br>42.75000             | 48.00000                         | 0.089114<br>0.094590             | 47.914                     | 0.0                                    | -0.014409                           | 0.0                                 |
|      | 3.50000 7.00000                  | 42.75000<br>42.75000             | 48.00000<br>48.00000             | 0.087878                         | 47.914<br>47.914           | 0.0                                    | -0.016280                           | 0.0                                 |
|      | 10.50000                         | 42.75000                         | 48.00000                         | 0.067279                         | 47.914 47.914              | 0.0                                    | -0.021586                           | 0.0                                 |
|      | 21.00000                         | 42.75000 42.75000 42.75000       | 48.00000                         | 0.036267                         | 47.914 47.914              | 0.0                                    | -0.026546                           | 0.0                                 |
|      | 24.50000                         | 42.75000                         | 48.00000                         | 0.029717                         | 47.914                     | 0.0                                    | -0.030116                           | 0.0                                 |

# New News St Johns Park London NW8 NN6

'S

Basement heave calcs

asy

| Job No.       | Sheet No. | Rev.    |
|---------------|-----------|---------|
|               |           |         |
|               |           |         |
|               |           |         |
| Drg. Ref.     |           |         |
| Made by<br>JM | Date      | Checked |
|               |           |         |

Basement - September 2015 layout

| x         y         ZLEAVEL]         S         Calc Leovel         Wett Stress         Burpino         Vett Stress           28.0000         42.7500         48.00000         0.025126         47.354         0.0         -0.032277         0.0           31.5000         42.7500         48.00000         0.022129         47.354         0.0         -0.031293         0.0           42.0000         42.7500         48.00000         0.022129         47.354         0.0         -0.03043         0.0           42.0000         42.7500         48.00000         0.02769         47.354         0.0         -0.03043         0.0           42.0000         42.7500         48.00000         0.05282         47.354         0.0         -0.02273         0.0           52.0000         42.7500         48.00000         0.05282         47.354         0.0         -0.02051         0.0           52.0000         42.7500         48.00000         0.07377         41.000         -0.02051         0.0           52.0000         42.7500         48.00000         0.07383         47.354         0.0         -0.02253         0.0           14.00000         42.7500         48.00000         0.07383         47.354         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | х        |          |          |          |            | stress                   | ses       |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|----------|----------|------------|--------------------------|-----------|-------------|
| Impl         Impl <th< th=""><th></th><th>r 1</th><th>Y,</th><th>Z[Level]</th><th>z</th><th>Calc Level</th><th>Vert Stress</th><th>Sum Princ</th><th>Vert Strain</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | r 1      | Y,       | Z[Level] | z        | Calc Level | Vert Stress              | Sum Princ | Vert Strain |
| 28.0000         42.7500         48.0000         0.025422         47.914         0.0         -0.031207         0.0           35.0000         42.7500         48.00000         0.02322         47.914         0.0         -0.031207         0.0           42.0000         42.75000         48.00000         0.02322         47.914         0.0         -0.031207         0.0           42.0000         42.75000         48.00000         0.02322         47.914         0.0         -0.03297         0.0           45.0000         42.75000         48.00000         0.05186         47.914         0.0         -0.023737         0.0           45.0000         42.75000         48.00000         0.05292         47.914         0.0         -0.023733         0.0           55.0000         42.75000         48.00000         0.05292         47.914         0.0         -0.022651         0.0           70.0000         42.75000         48.00000         0.05924         47.914         0.0         -0.012878         0.0           70.0000         42.00000         0.02924         47.914         0.0         -0.012871         0.0           70.0000         45.00000         40.00000         0.02924         7.914         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | [m]      | [m]      | [mOD]    | [ mm ]   | [mOD]      | [kN/m²]                  | [kN/m²]   | [-]         |
| 24.00000         42.75000         48.00000         0.024422         47.934         0.0         0.031207         0.0           38.00000         42.75000         48.00000         0.024222         47.934         0.0         0.031207         0.0           38.00000         42.75000         48.00000         0.024222         47.934         0.0         0.03123         0.0           45.00000         42.75000         48.00000         0.024222         47.934         0.0         0.002977         0.0           45.00000         42.75000         48.00000         0.042328         47.934         0.0         0.02977         0.0           45.00000         42.75000         48.00000         0.077377         47.934         0.0         0.022733         0.0           55.00000         42.75000         48.00000         0.028282         47.934         0.0         0.017866         0.0           66.00000         42.75000         48.00000         0.12939         47.934         0.0         0.017866         0.0           7.00000         45.00000         48.00000         0.12939         47.934         0.0         0.012051         0.0           7.00000         45.00000         40.00000         0.129308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |          | 10 0000  | 10 0000- |          | 18 1       |                          |           |             |
| 1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1:         1: <th1:< th="">         1:         1:         1:<!--</td--><td></td><td>28.00000</td><td>42.75000</td><td>48.00000</td><td>0.025422</td><td>47.914</td><td>0.0</td><td>-0.031207</td><td>0.0</td></th1:<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 28.00000 | 42.75000 | 48.00000 | 0.025422 | 47.914     | 0.0                      | -0.031207 | 0.0         |
| 38.500.00         42.750.00         48.0000         0.022761         47.544         0.0         0.031525         0.0           45.500.00         42.750.00         48.0000         0.032761         47.914         0.0         -0.032527         0.0           45.500.00         42.750.00         48.0000         0.041028         47.914         0.0         -0.0227745         0.0           52.500.01         42.750.00         48.0000         0.041028         47.914         0.0         -0.023233         0.0           52.500.01         42.750.00         48.0000         0.073757         47.914         0.0         -0.023238         0.0           63.000.00         42.750.00         48.00000         0.097184         47.914         0.0         -0.01386         0.0           70.000.01         42.0000         0.09708         47.914         0.0         -0.012581         0.0           7.000.01         45.0000         0.93288         47.914         0.0         -0.01612         0.0           7.000.01         45.0000         0.938930         47.914         0.0         -0.01612         0.0           7.000.01         45.0000         48.0000         0.078358         47.914         0.0         -0.02604 </td <td></td> <td>35.00000</td> <td>42.75000</td> <td>48,00000</td> <td>0.022789</td> <td>47.914</td> <td>0.0</td> <td>-0.031913</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 35.00000 | 42.75000 | 48,00000 | 0.022789 | 47.914     | 0.0                      | -0.031913 | 0.0         |
| 42.0000         42.7500         48.0000         0.027610         47.944         0.0         -0.030643         0.0           49.0000         42.7500         48.0000         0.033176         47.944         0.0         -0.027454         0.0           49.0000         42.7500         48.0000         0.027377         47.944         0.0         -0.027454         0.0           55.5000         42.7500         48.0000         0.073777         47.944         0.0         -0.022851         0.0           66.5000         42.7500         48.0000         0.09208         47.944         0.0         -0.01286         0.0           70.0000         42.7500         48.0000         0.09208         47.944         0.0         -0.012878         0.0           70.0000         45.0000         0.99305         47.944         0.0         -0.012878         0.0         0.012878         0.0         0.012878         0.0         0.012878         0.0         0.012878         0.0         0.012878         0.0         0.012878         0.0         0.02488         0.0         0.02488         0.0         0.02488         0.0         0.02488         0.0         0.02488         0.0         0.02488         0.0         0.02488         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 38.50000 | 42.75000 | 48.00000 | 0.024222 | 47.914     | 0.0                      | -0.031525 | 0.0         |
| 45.50000         42.75000         48.00000         0.03176         47.914         0.0         -0.023277         0.0           52.5000         42.7500         48.00000         0.64038         47.914         0.0         -0.023233         0.0           52.5000         42.7500         48.00000         0.077377         47.914         0.0         -0.023233         0.0           63.0000         42.7500         48.0000         0.073757         47.914         0.0         -0.017386         0.0           63.0000         42.7500         48.0000         0.09208         47.914         0.0         -0.012586         0.0           70.0000         42.7500         48.0000         0.09208         47.914         0.0         -0.012587         0.0           7.0000         45.0000         0.098530         47.914         0.0         -0.01612         0.0           14.0000         45.0000         0.088530         47.914         0.0         -0.02084         0.0           14.0000         45.0000         0.078258         47.914         0.0         -0.02084         0.0           14.0000         45.0000         0.078258         47.914         0.0         -0.025690         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 42.00000 | 42.75000 | 48.00000 | 0.027610 | 47.914     | 0.0                      | -0.030643 | 0.0         |
| + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 45.50000 | 42.75000 | 48.00000 | 0.033176 | 47.914     | 0.0                      | -0.029277 | 0.0         |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 49.00000 | 42.75000 | 48.00000 | 0.041038 | 47.914     | 0.0                      | -0.027454 | 0.0         |
| 55         55         66         0.0000         42.75000         48.00000         0.084122         47.914         0.0         -0.01386         0.0           66         50000         42.75000         48.00000         0.092088         47.914         0.0         -0.01386         0.0           0.00000         42.75000         48.00000         0.097034         47.914         0.0         -0.012578         0.0           0.00000         45.00000         48.00000         0.098854         47.914         0.0         -0.012571         0.0           10.5000         45.00000         48.00000         0.098854         47.914         0.0         -0.018971         0.0           10.5000         45.00000         48.00000         0.078535         47.914         0.0         -0.023459         0.0           11.50000         45.00000         48.00000         0.07659         47.914         0.0         -0.023459         0.0           24.50000         45.00000         48.00000         0.067288         47.914         0.0         -0.024651         0.0           24.50000         45.00000         48.00000         0.067288         47.914         0.0         -0.024665         0.0           24.50000 <td></td> <td>56.00000</td> <td>42.75000</td> <td>48.00000</td> <td>0.062292</td> <td>47.914</td> <td>0.0</td> <td>-0.025233</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 56.00000 | 42.75000 | 48.00000 | 0.062292 | 47.914     | 0.0                      | -0.025233 | 0.0         |
| 63.00000         42.75000         48.00000         0.092182         47.914         0.0         -0.012366         0.0           0.0000         42.75000         48.00000         0.09208         47.914         0.0         -0.012578         0.0           3.5000         45.00000         48.0000         0.10059         47.914         0.0         -0.012578         0.0           3.5000         45.00000         48.00000         0.19885         47.914         0.0         -0.012578         0.0           1.0000         45.00000         48.00000         0.98885         47.914         0.0         -0.012578         0.0           1.0000         45.00000         48.00000         0.098810         47.914         0.0         -0.021955         0.0           1.4.0000         45.00000         48.00000         0.076539         47.914         0.0         -0.022459         0.0           2.0000         45.00000         48.00000         0.067234         47.914         0.0         -0.022459         0.0           2.00000         45.00000         48.00000         0.067234         47.914         0.0         -0.022602         0.0           2.00000         45.00000         48.00000         0.067234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 59.50000 | 42.75000 | 48.00000 | 0.073797 | 47.914     | 0.0                      | -0.020051 | 0.0         |
| 66.5000         42.75000         44.0000         0.92088         47.914         0.0         -0.012857         0.0           0.00000         45.0000         44.0000         0.10099         47.914         0.0         -0.012251         0.0           7.0000         45.0000         48.0000         0.984814         47.914         0.0         -0.012371         0.0           7.0000         45.0000         48.0000         0.984814         47.914         0.0         -0.0189814         0.0           11.5000         45.0000         48.0000         0.078536         47.914         0.0         -0.023469         0.0           12.50000         45.0000         48.0000         0.07659         47.914         0.0         -0.023469         0.0           24.50000         45.0000         48.0000         0.66728         47.914         0.0         -0.025614         0.0           35.5000         45.0000         48.0000         0.67728         47.914         0.0         -0.025614         0.0           35.5000         45.0000         48.0000         0.67728         47.914         0.0         -0.022618         0.0           45.0000         45.0000         48.00000         0.67744         47.914 <td></td> <td>63.00000</td> <td>42.75000</td> <td>48.00000</td> <td>0.084122</td> <td>47.914</td> <td>0.0</td> <td>-0.017386</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 63.00000 | 42.75000 | 48.00000 | 0.084122 | 47.914     | 0.0                      | -0.017386 | 0.0         |
| $\begin{array}{c} 70.00000 & 42.75000 & 43.00000 & 0.097014 & 47.914 & 0.0 & -0.012578 & 0.0 \\ 3.50000 & 45.00000 & 43.00000 & 0.098805 & 47.914 & 0.0 & -0.013971 & 0.0 \\ 10.50000 & 45.00000 & 43.00000 & 0.098805 & 47.914 & 0.0 & -0.016012 & 0.0 \\ 10.50000 & 45.00000 & 43.00000 & 0.098805 & 47.914 & 0.0 & -0.018084 & 0.0 \\ 11.50000 & 45.00000 & 43.00000 & 0.098805 & 47.914 & 0.0 & -0.023459 & 0.0 \\ 12.00000 & 45.00000 & 43.00000 & 0.074029 & 47.914 & 0.0 & -0.023459 & 0.0 \\ 24.00000 & 45.00000 & 43.00000 & 0.074029 & 47.914 & 0.0 & -0.022459 & 0.0 \\ 24.00000 & 45.00000 & 43.00000 & 0.066844 & 47.914 & 0.0 & -0.022459 & 0.0 \\ 35.00000 & 45.00000 & 43.00000 & 0.067298 & 47.914 & 0.0 & -0.022554 & 0.0 \\ 35.00000 & 45.00000 & 43.00000 & 0.067298 & 47.914 & 0.0 & -0.022509 & 0.0 \\ 45.00000 & 45.00000 & 43.00000 & 0.067298 & 47.914 & 0.0 & -0.022599 & 0.0 \\ 45.00000 & 45.00000 & 43.00000 & 0.067298 & 47.914 & 0.0 & -0.022599 & 0.0 \\ 45.00000 & 45.00000 & 43.00000 & 0.07446 & 47.914 & 0.0 & -0.022599 & 0.0 \\ 45.00000 & 45.00000 & 43.00000 & 0.07446 & 47.914 & 0.0 & -0.022699 & 0.0 \\ 49.00000 & 45.00000 & 48.00000 & 0.07446 & 47.914 & 0.0 & -0.022608 & 0.0 \\ 49.00000 & 45.00000 & 48.00000 & 0.092683 & 47.914 & 0.0 & -0.012805 & 0.0 \\ 55.500000 & 45.00000 & 48.00000 & 0.092683 & 47.914 & 0.0 & -0.016902 & 0.0 \\ 66.500000 & 45.00000 & 48.00000 & 0.092683 & 47.914 & 0.0 & -0.016902 & 0.0 \\ 66.500000 & 45.00000 & 48.00000 & 0.092683 & 47.914 & -0.0 & -0.01692 & 0.0 \\ 55.500000 & 45.00000 & 48.00000 & 0.092683 & 47.914 & -0.0 & -0.01692 & 0.0 \\ 66.500000 & 45.00000 & 48.00000 & 0.092683 & 47.914 & -0.0 & -0.01692 & 0.0 \\ 55.500000 & 45.00000 & 48.00000 & 0.092764 & 47.914 & -0.0 & -0.01692 & 0.0 \\ 66.500000 & 45.00000 & 48.00000 & -2.7280 & 47.914 & -67.000 & -171.88 & -0.03092 \\ 1.666667 & 14.15000 & 48.00000 & -2.9759 & 47.914 & -67.000 & -171.88 & -0.03092 \\ 24.00000 & 14.15000 & 48.00000 & -2.9759 & 47.914 & -67.000 & -171.88 & -0.03092 \\ 34.00000 & 1.450000 & 48.00000 & -2.9759 & 47.914 & -67.000 & -171.88 & -0.03093 \\ 51.3333 & $                                                                                                                                                                                                                                                                                                                           |        | 66.50000 | 42.75000 | 48.00000 | 0.092088 | 47.914     | 0.0                      | -0.014862 | 0.0         |
| 0.00000         45.00000         48.00000         0.10099         47.914         0.0         -0.013971         0.0           7.00000         45.00000         48.00000         0.998814         47.914         0.0         -0.013971         0.0           14.00000         45.00000         48.00000         0.089950         47.914         0.0         -0.013984         0.0           14.00000         45.00000         48.00000         0.074059         47.914         0.0         -0.023495         0.0           24.50000         45.00000         48.00000         0.07659         47.914         0.0         -0.025444         0.0           24.50000         45.00000         48.00000         0.067298         47.914         0.0         -0.02544         0.0           35.50000         45.00000         48.00000         0.067298         47.914         0.0         -0.02599         0.0           45.00000         48.00000         0.067298         47.914         0.0         -0.02599         0.0           45.00000         48.00000         0.072440         47.914         0.0         -0.022602         0.0           45.00000         48.00000         0.08156         47.914         0.0         -0.022608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 70.00000 | 42.75000 | 48.00000 | 0.097014 | 47.914     | 0.0                      | -0.012578 | 0.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0.00000  | 45.00000 | 48.00000 | U.10099  | 47.914     | 0.0                      | -0.012051 | 0.0         |
| 10.50007 45.00007 46.0000 0.083530 47.914 0.0 -0.023084 0.0<br>17.50000 45.00000 48.00000 0.078536 47.914 0.0 -0.023084 0.0<br>24.50000 45.00000 48.00000 0.070659 47.914 0.0 -0.023459 0.0<br>24.50000 45.00000 48.00000 0.067298 47.914 0.0 -0.023459 0.0<br>31.50000 45.00000 48.00000 0.0667298 47.914 0.0 -0.023654 0.0<br>33.50000 45.00000 48.00000 0.0667298 47.914 0.0 -0.025544 0.0<br>33.50000 45.00000 48.00000 0.0667298 47.914 0.0 -0.02569 0.0<br>45.00000 45.00000 48.00000 0.0667298 47.914 0.0 -0.025604 0.0<br>45.00000 45.00000 48.00000 0.0667834 47.914 0.0 -0.025604 0.0<br>45.00000 45.00000 48.00000 0.0672840 47.914 0.0 -0.025099 0.0<br>45.50000 45.00000 48.00000 0.077460 47.914 0.0 -0.025099 0.0<br>45.50000 45.00000 48.00000 0.072480 47.914 0.0 -0.022599 0.0<br>45.50000 45.00000 48.00000 0.072840 47.914 0.0 -0.022609 0.0<br>55.50000 45.00000 48.00000 0.072840 47.914 0.0 -0.022609 0.0<br>55.50000 45.00000 48.00000 0.072840 47.914 0.0 -0.022699 0.0<br>55.50000 45.00000 48.00000 0.097289 47.914 0.0 -0.022699 0.0<br>55.50000 45.00000 48.00000 0.092583 47.914 0.0 -0.01232 0.0<br>59.50000 45.00000 48.00000 0.092729 47.914 0.0 -0.01235 0.0<br>59.50000 45.00000 48.00000 0.10131 47.914 -3.80678-6 -0.001435 0.0<br>59.50000 45.00000 48.00000 0.1030 47.914 -0.000 -0.0132 2.30178-6<br>14.00000 14.15000 48.00000 -2.3484 47.914 -67.000 -171.40 -0.033047<br>23.3333 14.15000 48.00000 -28.631 47.914 -67.000 -171.40 -0.033097<br>23.036667 14.15000 48.00000 -28.631 47.914 -67.000 -171.88 -0.033992<br>44.60000 14.15000 48.00000 -28.631 47.914 -67.000 -171.88 -0.033992<br>55.00000 41.15000 48.00000 -28.631 47.914 -67.000 -171.88 -0.033992<br>23.06000 14.15000 48.00000 -28.631 47.914 -67.000 -171.88 -0.033992<br>33.66667 14.15000 48.00000 -28.631 47.914 -67.000 -171.88 -0.033992<br>56.030000 14.15000 48.00000 -2                                                                                                                                                                                                                                                                                                   |        | 7.00000  | 45,00000 | 48,00000 | 0.094814 | 47.914     | 0.0                      | -0.016012 | 0.0         |
| $ \begin{array}{c} 14,00000 & 45,00000 & 48,00000 & 0.083910 & 47,914 & 0.0 & -0.020084 & 0.0. \\ 21.00000 & 45,00000 & 48,00000 & 0.074029 & 47,914 & 0.0 & -0.023459 & 0.0. \\ 24.00000 & 45,00000 & 48,00000 & 0.06769 & 47,914 & 0.0 & -0.023465 & 0.0. \\ 28.00000 & 45,00000 & 48,00000 & 0.066729 & 47,914 & 0.0 & -0.025544 & 0.0. \\ 35.0000 & 45,00000 & 48,00000 & 0.067298 & 47,914 & 0.0 & -0.0256104 & 0.0. \\ 35.00000 & 45.00000 & 48,00000 & 0.067298 & 47,914 & 0.0 & -0.0256104 & 0.0. \\ 45.00000 & 45.00000 & 48,00000 & 0.067298 & 47,914 & 0.0 & -0.0256104 & 0.0. \\ 45.00000 & 45.00000 & 48,00000 & 0.06734 & 47,914 & 0.0 & -0.025600 & 0.0. \\ 45.00000 & 45.00000 & 48,00000 & 0.076476 & 47,914 & 0.0 & -0.025099 & 0.0. \\ 45.00000 & 45.00000 & 48,00000 & 0.076476 & 47,914 & 0.0 & -0.022608 & 0.0. \\ 55.00000 & 45.00000 & 48,00000 & 0.087164 & 47,914 & 0.0 & -0.022608 & 0.0. \\ 55.00000 & 45.00000 & 48,00000 & 0.097289 & 47,914 & 0.0 & -0.022608 & 0.0. \\ 55.00000 & 45.00000 & 48,00000 & 0.097289 & 47,914 & 0.0 & -0.012857 & 0.0. \\ 66.00000 & 45.00000 & 48,00000 & 0.097289 & 47,914 & 0.0 & -0.012857 & 0.0. \\ 66.00000 & 45.00000 & 48,00000 & 0.097289 & 47,914 & -3.0672-6 & -0.01139 & 2.39120 & 0.0. \\ 55.00000 & 45.00000 & 48,00000 & -2.16394 & 47,914 & -3.0672-6 & -0.01139 & 2.39120 & 0.0. \\ 53.00000 & 45.00000 & 48,00000 & -2.0634 & 47,914 & -3.0672-6 & -0.01139 & 2.39120 & 0.0. \\ 53.00000 & 14.15000 & 48,00000 & -2.959 & 47,914 & -67,000 & -171.88 & -0.003092 & 0.0. \\ 1100 & 100000 & 14.15000 & 48,00000 & -2.959 & 47,914 & -67,000 & -171.88 & -0.003092 & 0.0. \\ 120.33333 & 14.15000 & 48,00000 & -2.959 & 47,914 & -67,000 & -171.88 & -0.003092 & 0.0. \\ 13.00000 & 14.15000 & 48,00000 & -2.959 & 47,914 & -67,000 & -171.88 & -0.003092 & 0.0. \\ 14.00000 & 14.15000 & 48,00000 & -2.959 & 47,914 & -67,000 & -171.88 & -0.003092 & 0.0. \\ 55.03333 & 14.15000 & 48,00000 & -2.959 & 47,914 & -67,000 & -171.88 & -0.003092 & 0.0.03992 & 0.0.03993 & 40,0000 & -2.959 & 47,914 & -67,000 & -171.88 & -0.003992 & 0.0.03993 & 40,0000 & -2.959 & 47,914 & -67,0$                                                                                                                                                                                                                                                                                                                               |        | 10.50000 | 45.00000 | 48.00000 | 0.089590 | 47.914     | 0.0                      | -0.018084 | 0.0         |
| $ \begin{array}{c} 17,50000 & 45.00000 & 48.00000 & 0.078536 & 47,914 & 0.0 & -0.021905 & 0.0 \\ 24,50000 & 45.00000 & 48.00000 & 0.070659 & 47,914 & 0.0 & -0.023459 & 0.0 \\ 33,50000 & 45.00000 & 48.00000 & 0.06649 & 47,914 & 0.0 & -0.026620 & 0.0 \\ 33,50000 & 45.00000 & 48.00000 & 0.0667288 & 47,914 & 0.0 & -0.026020 & 0.0 \\ 38,50000 & 45.00000 & 48.00000 & 0.067288 & 47,914 & 0.0 & -0.025796 & 0.0 \\ 42,00000 & 45.00000 & 48.00000 & 0.067284 & 47,914 & 0.0 & -0.025796 & 0.0 \\ 42,00000 & 45.00000 & 48.00000 & 0.067834 & 47,914 & 0.0 & -0.025796 & 0.0 \\ 45.00000 & 45.00000 & 48.00000 & 0.067834 & 47,914 & 0.0 & -0.02599 & 0.0 \\ 45.50000 & 45.00000 & 48.00000 & 0.072440 & 47,914 & 0.0 & -0.02599 & 0.0 \\ 55.50000 & 45.00000 & 48.00000 & 0.072440 & 47,914 & 0.0 & -0.024229 & 0.0 \\ 55.50000 & 45.00000 & 48.00000 & 0.097289 & 47,914 & 0.0 & -0.02892 & 0.0 \\ 63.00000 & 45.00000 & 48.00000 & 0.097289 & 47,914 & 0.0 & -0.018957 & 0.0 \\ 63.00000 & 45.00000 & 48.00000 & 0.097289 & 47,914 & 0.0 & -0.018957 & 0.0 \\ 63.00000 & 45.00000 & 48.00000 & 0.10131 & 47,914 & 0.0 & -0.01325 & 0.0 \\ 63.00000 & 45.00000 & 48.00000 & -0.6994 & 47,914 & -0.02957 & -0.0 \\ 14.15000 & 48.00000 & -28.787 & 47,914 & -67.000 & -171.40 & -0.03194 \\ 7.80587 & 14.15000 & 48.00000 & -28.787 & 47,914 & -67.000 & -171.40 & -0.03194 \\ 23.3333 & 14.15000 & 48.00000 & -29.789 & 47,914 & -67.000 & -171.88 & -0.003927 \\ 23.06667 & 14.15000 & 48.00000 & -29.789 & 47,914 & -67.000 & -171.88 & -0.003927 \\ 24.23333 & 14.15000 & 48.00000 & -29.793 & 47,914 & -67.000 & -171.88 & -0.003927 \\ 24.23333 & 14.15000 & 48.00000 & -29.789 & 47,914 & -67.000 & -171.88 & -0.003927 \\ 24.23333 & 14.15000 & 48.00000 & -29.789 & 47,914 & -67.000 & -171.88 & -0.003927 \\ 24.23333 & 14.15000 & 48.00000 & -29.789 & 47,914 & -67.000 & -171.88 & -0.003927 \\ 24.23333 & 14.15000 & 48.00000 & -29.793 & 47,914 & -67.000 & -171.88 & -0.003927 \\ 24.23333 & 14.15000 & 48.00000 & -29.793 & 47,914 & -67.000 & -171.88 & -0.003927 \\ 24.23333 & 14.15000 & 48.00000 & -29.793 & 47,914 & -67.000 & -171.88 $                                                                                                                                                                                                                                                                                                                            |        | 14.00000 | 45.00000 | 48.00000 | 0.083910 | 47.914     | 0.0                      | -0.020084 | 0.0         |
| $\begin{array}{c} 21. \ 0.0000 & 45.00000 & 48.0000 & 0.074029 & 47.914 & 0.0 & -0.023459 & 0.0 \\ 28.00000 & 45.0000 & 48.0000 & 0.06769 & 47.914 & 0.0 & -0.025844 & 0.0 \\ 33.5000 & 45.0000 & 48.0000 & 0.067128 & 47.914 & 0.0 & -0.02594 & 0.0 \\ 33.5000 & 45.0000 & 48.0000 & 0.067128 & 47.914 & 0.0 & -0.02594 & 0.0 \\ 42.0000 & 45.0000 & 48.0000 & 0.067128 & 47.914 & 0.0 & -0.02599 & 0.0 \\ 42.0000 & 45.0000 & 48.0000 & 0.067128 & 47.914 & 0.0 & -0.02599 & 0.0 \\ 42.0000 & 45.0000 & 48.0000 & 0.072440 & 47.914 & 0.0 & -0.02509 & 0.0 \\ 45.5000 & 45.0000 & 48.0000 & 0.072440 & 47.914 & 0.0 & -0.022608 & 0.0 \\ 52.5000 & 45.0000 & 48.0000 & 0.072440 & 47.914 & 0.0 & -0.022608 & 0.0 \\ 55.5000 & 45.0000 & 48.0000 & 0.092683 & 47.914 & 0.0 & -0.02268 & 0.0 \\ 59.5000 & 45.0000 & 48.0000 & 0.092683 & 47.914 & 0.0 & -0.012857 & 0.0 \\ 66.5000 & 45.0000 & 48.0000 & 0.092683 & 47.914 & 0.0 & -0.012857 & 0.0 \\ 66.5000 & 45.0000 & 48.0000 & 0.092683 & 47.914 & 0.0 & -0.012857 & 0.0 \\ 66.5000 & 45.0000 & 48.0000 & 0.10030 & 47.914 & 0.0 & -0.012857 & 0.0 \\ 66.5000 & 45.0000 & 48.0000 & -28.6994 & 47.914 & -0.0 & -0.012857 & 0.0 \\ 14.1500 & 48.0000 & -28.6974 & 47.914 & -0.0 & -0.012857 & 0.0 \\ 14.5000 & 14.1500 & 48.0000 & -28.694 & 47.914 & -0.0 & -0.012857 & 0.0 \\ 14.5000 & 14.1500 & 48.0000 & -28.694 & 47.914 & -0.0 & -0.012857 & 0.0 \\ 14.5000 & 14.1500 & 48.0000 & -28.464 & 47.914 & -67.000 & -171.48 & -0.03994 \\ 23.3333 & 14.1500 & 48.0000 & -28.464 & 47.914 & -67.000 & -171.88 & -0.03994 \\ 23.3333 & 14.1500 & 48.0000 & -28.464 & 47.914 & -67.000 & -171.88 & -0.03992 \\ 42.00000 & 14.1500 & 48.0000 & -28.464 & 47.914 & -67.000 & -171.88 & -0.03992 \\ 42.00000 & 14.1500 & 48.0000 & -28.464 & 47.914 & -67.000 & -171.88 & -0.03992 \\ 34.0000 & 14.1500 & 48.0000 & -28.464 & 47.914 & -67.000 & -171.88 & -0.03992 \\ 34.0000 & 14.1500 & 48.0000 & -28.464 & 47.914 & -67.000 & -171.88 & -0.03992 \\ 44.0000 & 14.1500 & 48.0000 & -28.467 & 47.914 & -67.000 & -171.88 & -0.03992 \\ 44.00000 & 14.1500 & 48.00000 & -28.694 & 47.914 & -67.000 & -171.88 & -0.$                                                                                                                                                                                                                                                                                                                           |        | 17.50000 | 45.00000 | 48.00000 | 0.078536 | 47.914     | 0.0                      | -0.021905 | 0.0         |
| $\begin{array}{c} 12.5.0000 & 45.0000 & 48.0000 & 0.66449 & 47.914 & 0.0 & -0.025544 & 0.0 \\ 31.5000 & 45.0000 & 48.0000 & 0.66728 & 47.914 & 0.0 & -0.02504 & 0.0 \\ 35.0000 & 45.0000 & 48.0000 & 0.66728 & 47.914 & 0.0 & -0.02506 & 0.0 \\ 45.0000 & 45.0000 & 48.0000 & 0.66728 & 47.914 & 0.0 & -0.02508 & 0.0 \\ 45.0000 & 45.0000 & 0.000 & 0.06724 & 47.914 & 0.0 & -0.02508 & 0.0 \\ 45.0000 & 45.0000 & 0.000 & 0.076476 & 47.914 & 0.0 & -0.02508 & 0.0 \\ 55.0000 & 45.0000 & 0.000 & 0.076476 & 47.914 & 0.0 & -0.022608 & 0.0 \\ 55.0000 & 45.0000 & 0.000 & 0.087164 & 47.914 & 0.0 & -0.022608 & 0.0 \\ 55.0000 & 45.0000 & 0.000 & 0.087164 & 47.914 & 0.0 & -0.022608 & 0.0 \\ 55.0000 & 45.0000 & 48.0000 & 0.097283 & 47.914 & 0.0 & -0.018957 & 0.0 \\ 65.0000 & 45.0000 & 48.0000 & 0.10131 & 47.914 & 0.0 & -0.01835 & 0.0 \\ 65.0000 & 45.0000 & 48.0000 & 0.10131 & 47.914 & 0.0 & -0.01835 & 0.0 \\ 65.0000 & 45.0000 & 48.0000 & 0.10131 & 47.914 & -0.0 & -0.0132 & 0.0 \\ 8.00000 & 45.0000 & 48.0000 & -0.6694 & 47.914 & -0.00299 & -0.00132 & 0.0 \\ 70.0000 & 45.0000 & 48.0000 & -2.1484 & 47.914 & -5.000 & -111.40 & -0.01312 \\ 1.110 & 1.5000 & 48.0000 & -28.780 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 14.5000 & 41.15000 & 48.0000 & -28.780 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 22.3333 & 14.15000 & 48.0000 & -28.780 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 23.3333 & 14.15000 & 48.0000 & -28.740 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 24.66667 & 14.15000 & 48.0000 & -28.740 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 24.66667 & 14.15000 & 48.00000 & -28.740 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 24.3333 & 14.15000 & 48.00000 & -28.740 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 37.3333 & 14.15000 & 48.00000 & -28.740 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 34.00000 & 14.15000 & 48.00000 & -28.740 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 45.6667 & 14.15000 & 48.00000 & -28.740 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 34.00000 & 14.15000 & 48.00000 & -28.740 & 47.914 & -67.000 & -111.8 & -0.003194 \\ 34.00000 & 14.15000 & 48.00000 & -28.769 & 47.91$                                                                                                                                                                                                                                                                                                                           |        | 21.00000 | 45.00000 | 48.00000 | 0.074029 | 47.914     | 0.0                      | -0.023459 | 0.0         |
| 31         50000         45         00000         0         067298         47         914         0.0         -0         026202         0.7           38         50000         45.00000         45.00000         0.067834         47.914         0.0         -0.025796         0.7           42.0000         45.00000         45.00000         0.067834         47.914         0.0         -0.025796         0.7           45.50000         45.00000         45.00000         0.072440         47.914         0.0         -0.024027         0.7           49.0000         45.00000         45.00000         0.07476         47.914         0.0         -0.02092         0.7           59.50000         45.00000         48.00000         0.092683         47.914         0.0         -0.016802         0.7           66.50000         45.00000         48.00000         0.1092684         47.914         0.0         -0.012857         0.7           66.50000         45.00000         48.00000         -0.102394         7.914         0.0         -0.012857         0.7           111         0.00000         14.15000         48.00000         -2.1484         47.914         -3.007576         -0.0121639         2.91756 <td></td> <td>24.50000</td> <td>45.00000</td> <td>48.00000</td> <td>0.070859</td> <td>47.914</td> <td>0.0</td> <td>-0.024685</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 24.50000 | 45.00000 | 48.00000 | 0.070859 | 47.914     | 0.0                      | -0.024685 | 0.0         |
| $ \begin{array}{c} 35.0000 & 45.0000 & 48.0000 & 0.067100 & 47.914 & 0.0 & -0.025096 & 0.0 \\ 42.0000 & 45.0000 & 48.0000 & 0.069574 & 47.914 & 0.0 & -0.025099 & 0.0 \\ 45.0000 & 45.0000 & 48.0000 & 0.076476 & 47.914 & 0.0 & -0.025099 & 0.0 \\ 45.0000 & 45.0000 & 48.0000 & 0.076476 & 47.914 & 0.0 & -0.022608 & 0.0 \\ 55.0000 & 45.0000 & 48.0000 & 0.087164 & 47.914 & 0.0 & -0.022608 & 0.0 \\ 55.0000 & 45.0000 & 48.0000 & 0.087164 & 47.914 & 0.0 & -0.022608 & 0.0 \\ 55.0000 & 45.0000 & 48.0000 & 0.087164 & 47.914 & 0.0 & -0.022608 & 0.0 \\ 55.0000 & 45.0000 & 48.0000 & 0.097289 & 47.914 & 0.0 & -0.018957 & 0.0 \\ 63.0000 & 45.0000 & 48.0000 & 0.097289 & 47.914 & 0.0 & -0.01835 & 0.0 \\ 63.0000 & 45.0000 & 48.0000 & 0.10131 & 47.914 & 0.0 & -0.01835 & 0.0 \\ 70.0000 & 45.0000 & 48.0000 & 0.10131 & 47.914 & 0.0 & -0.01132 & 0.0 \\ 70.0000 & 45.0000 & 48.0000 & -0.6994 & 47.914 & -3.0678-6 & -0.09189 & 2.39178-6 \\ 14.15000 & 48.0000 & -26.631 & 47.914 & -3.0678-6 & -0.00183 & 2.39178-6 \\ 14.0000 & 14.1500 & 48.0000 & -26.631 & 47.914 & -67.000 & -171.48 & -0.03192 \\ 28.0000 & 14.1500 & 48.0000 & -29.594 & 47.914 & -67.000 & -171.48 & -0.03192 \\ 28.0000 & 14.1500 & 48.0000 & -29.648 & 47.914 & -67.000 & -171.88 & -0.03929 \\ 28.0000 & 14.1500 & 48.0000 & -29.648 & 47.914 & -67.000 & -171.88 & -0.03929 \\ 24.66667 & 14.1500 & 48.0000 & -29.794 & 47.914 & -67.000 & -171.88 & -0.03929 \\ 24.0000 & 14.1500 & 48.0000 & -29.794 & 47.914 & -67.000 & -171.88 & -0.03929 \\ 24.0000 & 14.1500 & 48.0000 & -29.794 & 47.914 & -67.000 & -171.88 & -0.03929 \\ 37.3333 & 14.1500 & 48.0000 & -29.794 & 47.914 & -67.000 & -171.88 & -0.03929 \\ 37.3333 & 14.1500 & 48.0000 & -29.648 & 47.914 & -67.000 & -171.88 & -0.03929 \\ 34.0000 & 14.1500 & 48.0000 & -29.794 & 47.914 & -67.000 & -171.88 & -0.03929 \\ 34.0000 & 14.1500 & 48.0000 & -29.774 & 7.914 & -67.000 & -171.88 & -0.03929 \\ 34.0000 & 14.1500 & 48.0000 & -29.774 & 7.914 & -67.000 & -171.88 & -0.03929 \\ 34.0000 & 1.84667 & 48.0000 & -3.8768 & 47.914 & -67.000 & -171.88 & -0.03929 \\ 34.0000 & 1.84667 & 48.00000 & $                                                                                                                                                                                                                                                                                                                           |        | 31.50000 | 45.00000 | 48.00000 | 0.067298 | 47.914     | 0.0                      | -0.026020 | 0.0         |
| 38.50000         45.00000         46.00000         0.667834         47.914         0.0         -0.025796         0.7           45.00000         45.00000         48.00000         0.067834         47.914         0.0         -0.025099         0.7           45.00000         45.00000         48.00000         0.072440         47.914         0.0         -0.024027         0.7           53.0000         45.00000         48.00000         0.07476         47.914         0.0         -0.02892         0.7           53.0000         45.00000         48.00000         0.081530         47.914         0.0         -0.016802         0.7           53.0000         45.00000         48.00000         0.092683         47.914         0.1         -0.012857         0.7           65.00000         45.00000         48.00000         -0.02394         47.914         0.0         -0.012857         0.7           66.00000         48.00000         -0.03954         47.914         0.0         -0.012857         0.7           111         0.00000         14.15000         48.00000         -2.1484         47.914         -67.000         -111.40         -0.0031947           133.33         14.15000         48.00000         -29.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 35.00000 | 45.00000 | 48.00000 | 0.067100 | 47.914     | 0.0                      | -0.026104 | 0.0         |
| 42.00000       45.00000       0.069574       47.914       0.0       -0.025099       0.0         45.00000       45.00000       0.072440       47.914       0.0       -0.022087       0.0         45.00000       45.00000       0.07476       47.914       0.0       -0.022088       0.0         55.0000       45.00000       48.00000       0.08153       47.914       0.0       -0.018957       0.0         55.00000       45.00000       48.00000       0.097288       47.914       0.0       -0.014835       0.0         63.00000       45.00000       48.00000       0.10131       47.914       0.0       -0.011433       0.0         70.0000       45.00000       48.00000       -0.10131       47.914       -0.0       -0.01132       0.0         11ine 1       0.000       48.00000       -0.10131       47.914       -0.02239       -0.03134       7.83778         4.00000       -4.97380       47.914       -67.000       -171.78       -0.00392         2.8.00000       14.15000       48.00000       -28.787       47.914       -67.000       -171.78       -0.00392         2.8.00000       14.15000       48.00000       -29.644       47.914       -67.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 38.50000 | 45.00000 | 48.00000 | 0.067834 | 47.914     | 0.0                      | -0.025796 | 0.0         |
| ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ****         ****         ****         ****         ****         ****         *****         *****         *****         *****         *****         ******         ******         *******         ********         *******************         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 42.00000 | 45.00000 | 48.00000 | 0.069574 | 47.914     | 0.0                      | -0.025099 | 0.0         |
| 1.1.0000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000         1.1.00000 <td< td=""><td></td><td>45.50000</td><td>45.00000</td><td>48.00000</td><td>0.072440</td><td>47.914</td><td>0.0</td><td>-0.024027</td><td>0.0</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 45.50000 | 45.00000 | 48.00000 | 0.072440 | 47.914     | 0.0                      | -0.024027 | 0.0         |
| 56         00000         45         00000         0         00000         45         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         00000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 52,50000 | 45.00000 | 48.00000 | 0.081530 | 47.914     | 0.0                      | -0.022608 | 0.0         |
| $ \begin{array}{c} 59, 50000 & 45,0000 & 48,0000 & 0.092683 & 47,914 & 0.0 & -0.016802 & 0.0 \\ 66,50000 & 45,0000 & 48,0000 & 0.092683 & 47,914 & 0.0 & -0.012855 & 0.0 \\ 70,0000 & 45,0000 & 48,0000 & 0.10030 & 47,914 & 0.0 & -0.012855 & 0.0 \\ 70,0000 & 14,15000 & 48,0000 & -0.66994 & 47,914 & -39,577E-6 & -0.091639 & 2.3917E-6 \\ 9.33333 & 14,15000 & 48,0000 & -2,1284 & 47,914 & -39,577E-6 & -0.03191 & 7,8768E-6 \\ 9.33333 & 14,15000 & 48,0000 & -2,2280 & 47,914 & -67,000 & -171.78 & -0.03194 \\ 18,66667 & 14,15000 & 48,0000 & -28,787 & 47,914 & -67,000 & -171.78 & -0.03392 \\ 28,00000 & 14,15000 & 48,00000 & -29,648 & 47,914 & -67,000 & -171.88 & -0.03392 \\ 28,00000 & 14,15000 & 48,00000 & -29,798 & 47,914 & -67,000 & -171.88 & -0.03392 \\ 28,00000 & 14,15000 & 48,00000 & -29,798 & 47,914 & -67,000 & -171.87 & -0.03392 \\ 24,20000 & 14,15000 & 48,00000 & -29,798 & 47,914 & -67,000 & -171.88 & -0.03392 \\ 44,66667 & 14,15000 & 48,00000 & -29,798 & 47,914 & -67,000 & -171.88 & -0.03392 \\ 37,3333 & 14,15000 & 48,00000 & -29,740 & 47,914 & -67,000 & -171.88 & -0.03392 \\ 45,66667 & 14,15000 & 48,00000 & -29,243 & 47,914 & -67,000 & -171.88 & -0.03392 \\ 46,66667 & 14,15000 & 48,00000 & -29,243 & 47,914 & -67,000 & -171.88 & -0.03392 \\ 46,66667 & 14,15000 & 48,00000 & -29,243 & 47,914 & -67,000 & -171.80 & -0.03392 \\ 46,66667 & 14,15000 & 48,00000 & -23,986 & 47,914 & -67,000 & -171.80 & -0.03392 \\ 56,00000 & 14,15000 & 48,00000 & -23,986 & 47,914 & -67,000 & -171.80 & -0.03392 \\ 56,00000 & 14,15000 & 48,00000 & -1,2393 & 47,914 & -419,26E-6 & -0.96719 & 4,3611E-6 \\ 34,00000 & 0.94667 & 48,00000 & -1,2393 & 47,914 & -67,000 & -171.83 & -0.03392 \\ 34,00000 & 0.94667 & 48,00000 & -1,2393 & 47,914 & -67,000 & -171.83 & -0.03392 \\ 34,00000 & 0.94333 & 48,00000 & -2,2554 & 47,914 & -49,25E-6 & -0.96719 & 4,3611E-6 \\ 34,00000 & 0.93333 & 48,00000 & -2,2554 & 47,914 & -67,000 & -171.63 & -0.03392 \\ 34,00000 & 0.23333 & 48,00000 & -2,2554 & 47,914 & -67,000 & -171.63 & -0.03392 \\ 34,00000 & 0.23333 & 48,00000 & -2,2554 & 47,914 & -67,000 & -1$                                                                                                                                                                                                                                                                                                                             |        | 56.00000 | 45.00000 | 48.00000 | 0.087164 | 47.914     | 0.0                      | -0.018957 | 0.0         |
| $ \begin{array}{c} 63.00000 & 45.00000 & 46.00000 & 0.097289 & 47.914 & 0.0 & -0.014835 & 0.0 \\ 65.50000 & 45.00000 & 48.00000 & 0.10131 & 47.914 & 0.0 & -0.01132 & 0.0 \\ 70.00000 & 45.00000 & 48.00000 & -0.6699 & 47.914 & -3.80672-6 & -0.09163 & 2.39172-6 \\ 8.66667 & 14.15000 & 48.00000 & -2.1484 & 47.914 & -3.80672-6 & -0.09163 & 2.39172-6 \\ 14.00000 & 14.15000 & 48.00000 & -3.2484 & 47.914 & -3.80672-6 & -0.09163 & 2.39172-6 \\ 14.00000 & 14.15000 & 48.00000 & -3.2484 & 47.914 & -67.000 & -171.40 & -0.03194 \\ 23.3333 & 14.15000 & 48.00000 & -28.747 & 47.914 & -67.000 & -171.80 & -0.03194 \\ 23.3333 & 14.15000 & 48.00000 & -28.445 & 47.914 & -67.000 & -171.80 & -0.03194 \\ 24.00000 & 14.15000 & 48.00000 & -29.746 & 47.914 & -67.000 & -171.80 & -0.03194 \\ 25.3333 & 14.15000 & 48.00000 & -29.746 & 47.914 & -67.000 & -171.80 & -0.03194 \\ 24.00000 & 14.15000 & 48.00000 & -29.746 & 47.914 & -67.000 & -171.80 & -0.031923 \\ 45.66667 & 14.15000 & 48.00000 & -29.740 & 47.914 & -67.000 & -171.80 & -0.031923 \\ 45.66667 & 14.15000 & 48.00000 & -29.740 & 47.914 & -67.000 & -171.80 & -0.031923 \\ 55.00000 & 14.15000 & 48.00000 & -29.843 & 47.914 & -67.000 & -171.80 & -0.031923 \\ 56.00000 & 14.15000 & 48.00000 & -29.843 & 47.914 & -67.000 & -171.83 & -0.031923 \\ 56.00000 & 14.15000 & 48.00000 & -29.983 & 47.914 & -67.000 & -171.83 & -0.031923 \\ 56.00000 & 14.15000 & 48.00000 & -3.2986 & 47.914 & -67.000 & -171.83 & -0.031923 \\ 56.00000 & 14.15000 & 48.00000 & -3.2986 & 47.914 & -67.000 & -171.83 & -0.031923 \\ 56.00000 & 14.15000 & 48.00000 & -3.2986 & 47.914 & -67.000 & -171.83 & -0.031963 \\ 56.00000 & 14.15000 & 48.00000 & -3.2986 & 47.914 & -67.000 & -171.83 & -0.031963 \\ 56.00000 & 14.15000 & 48.00000 & -1.2937 & 47.914 & -14.9746 & -0.06671 & 7.3718 \\ 56.00000 & 14.15000 & 48.00000 & -1.2938 & 47.914 & -14.9746 & -0.06671 & 1.3772 & -0.013103 \\ 34.00000 & 0.88667 & 48.00000 & -3.5561 & 47.914 & -56.983 & -169.18 & -0.063163 \\ 34.00000 & 1.88667 & 48.00000 & -2.5756 & 47.914 & -67.000 & -11.884 & 31.4426 \\ 34.00000 & 1.88667 & 48.00000$                                                                                                                                                                                                                                                                                                                             |        | 59.50000 | 45.00000 | 48.00000 | 0.092683 | 47.914     | 0.0                      | -0.016902 | 0.0         |
| 66.50000         45.00000         48.00000         0.10030         47.914         0.0         -0.012855         0.0           Line 1         0.00000         14.15000         48.00000         -0.66994         47.914         -3.0672-6         -0.091639         2.39172-6           9.33333         14.15000         48.00000         -2.1244         47.914         -3.9672-6         -0.031639         2.39172-6           14.00000         14.15000         48.00000         -2.280         47.914         -67.000         -171.4         -0.003104           18.66667         14.15000         48.00000         -28.787         47.914         -67.000         -171.8         -0.0031929           28.00000         14.15000         48.00000         -29.684         47.914         -67.000         -171.8         -0.0031929           28.00000         14.15000         48.00000         -29.796         47.914         -67.000         -171.8         -0.0031922           32.66667         14.15000         48.00000         -29.740         47.914         -67.000         -171.8         -0.0031922           45.66667         14.15000         48.00000         -23.983         47.914         -67.000         -171.8         -0.031962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 63.00000 | 45.00000 | 48.00000 | 0.097289 | 47.914     | 0.0                      | -0.014835 | 0.0         |
| $\begin{array}{c} 70.00000 & 45.00000 & 48.00000 & -0.6694 & 47.914 & -0.0 & -0.011032 & 0.0.7 \\ Line 1 & 4.66667 & 14.15000 & 48.00000 & -0.6694 & 47.914 & -3.8077-6 & -0.09163 & 2.39178-6 \\ 9.3333 & 14.15000 & 48.00000 & -3.7280 & 47.914 & -0.023999 & -6.0238 & 153.928.6 \\ 14.00000 & 14.15000 & 48.00000 & -36.631 & 47.914 & -67.000 & -171.40 & -0.003194 \\ 28.00000 & 14.15000 & 48.00000 & -28.681 & 47.914 & -67.000 & -171.81 & -0.003194 \\ 28.00000 & 14.15000 & 48.00000 & -28.697 & 47.914 & -67.000 & -171.80 & -0.003194 \\ 28.00000 & 14.15000 & 48.00000 & -28.697 & 47.914 & -67.000 & -171.81 & -0.003194 \\ 28.00000 & 14.15000 & 48.00000 & -28.691 & 47.914 & -67.000 & -171.81 & -0.003192 \\ 32.66667 & 14.15000 & 48.00000 & -29.795 & 47.914 & -67.000 & -171.88 & -0.003922 \\ 42.00000 & 14.15000 & 48.00000 & -29.795 & 47.914 & -67.000 & -171.88 & -0.003922 \\ 45.66667 & 14.15000 & 48.00000 & -29.493 & 47.914 & -67.000 & -171.88 & -0.003922 \\ 45.66667 & 14.15000 & 48.00000 & -29.59 & 47.914 & -67.000 & -171.87 & -0.003925 \\ 56.00000 & 14.15000 & 48.00000 & -28.938 & 47.914 & -67.000 & -171.87 & -0.003925 \\ 56.00000 & 14.15000 & 48.00000 & -28.938 & 47.914 & -67.000 & -171.83 & -0.003925 \\ 56.00000 & 14.15000 & 48.00000 & -1.2937 & 47.914 & -67.000 & -171.83 & -0.003925 \\ 56.00000 & 14.15000 & 48.00000 & -1.2937 & 47.914 & -149.262-6 & -0.9677 & 25.2088-6 \\ 65.3333 & 14.15000 & 48.00000 & -1.2937 & 47.914 & -149.262-6 & -0.96679 & 25.2088-6 \\ 65.3333 & 14.15000 & 48.00000 & -1.2937 & 47.914 & -149.248-6 & -0.063192 \\ 14.15000 & 48.00000 & -1.2937 & 47.914 & -149.248-6 & -0.06606 & 17.2438 \\ 44.00000 & 3.8933 & 48.00000 & -1.2937 & 47.914 & -149.748-6 & -0.8600 & 4.90688-6 \\ 34.00000 & 3.8933 & 48.00000 & -3.4124 & 47.914 & -59.9438-6 & -0.6601 & 6.91642-6 \\ 34.00000 & 3.8933 & 48.00000 & -3.4124 & 47.914 & -59.9438-6 & -0.6601 & 6.91642-6 \\ 34.00000 & 3.8933 & 48.00000 & -3.5924 & 47.914 & -57.913 & -1.4384 & 3.1442-6 \\ 34.00000 & 14.29267 & 48.00000 & -2.594 & 47.914 & -57.900 & -17.1.66 & -0.003193 \\ 34.00000 & 14.29267 & 48.0000$                                                                                                                                                                                                                                                                                                                             |        | 66.50000 | 45.00000 | 48.00000 | 0.10030  | 47.914     | 0.0                      | -0.012855 | 0.0         |
| Line         1         0.00000         14.15000         48.00000         -0.09994         47.914         -3.8067E-5         -0.001839         2.3917E-5           9.3333         14.15000         48.00000         -9.7280         47.914         -9.9577E-5         -0.03104           18.66667         14.15000         48.00000         -8.7280         47.914         -67.000         -171.78         -0.003104           28.00000         14.15000         48.00000         -28.787         47.914         -67.000         -171.78         -0.003104           28.00000         14.15000         48.00000         -29.684         47.914         -67.000         -171.85         -0.003092           28.00000         14.15000         48.00000         -29.759         47.914         -67.000         -171.87         -0.003092           32.66667         14.15000         48.00000         -29.740         47.914         -67.000         -171.88         -0.003092           45.66667         14.15000         48.00000         -29.243         47.914         -67.000         -171.88         -0.003092           45.66667         14.15000         48.00000         -29.243         47.914         -67.000         -171.88         -0.0031301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time 1 | 70.00000 | 45.00000 | 48.00000 | 0.10131  | 47.914     | 0.0                      | -0.011032 | 0.0         |
| $\begin{array}{c} 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Line 1 | 4 66667  | 14.15000 | 48.00000 | -0.66994 | 47.914     | -3.8067E-6               | -0.091639 | 2.3917E-0   |
| $ \begin{array}{c} 14,0000 & 14,15000 & 48,0000 & -28,631 & 47,914 & -67,000 & -171,40 & -0.003104 \\ 18,65667 & 14,15000 & 48,0000 & -28,454 & 47,914 & -67,000 & -171,88 & -0.003094 \\ 28,3333 & 14,15000 & 48,0000 & -29,644 & 47,914 & -67,000 & -171,88 & -0.003092 \\ 32,66667 & 14,15000 & 48,0000 & -29,759 & 47,914 & -67,000 & -171,88 & -0.003092 \\ 42,00000 & 14,15000 & 48,0000 & -29,759 & 47,914 & -67,000 & -171,88 & -0.003092 \\ 42,00000 & 14,15000 & 48,0000 & -29,694 & 47,914 & -67,000 & -171,88 & -0.003092 \\ 42,00000 & 14,15000 & 48,0000 & -29,609 & 47,914 & -67,000 & -171,88 & -0.003092 \\ 42,00000 & 14,15000 & 48,0000 & -29,609 & 47,914 & -67,000 & -171,87 & -0.003092 \\ 45,66667 & 14,15000 & 48,0000 & -28,190 & 47,914 & -67,000 & -171,87 & -0.003093 \\ 51,3333 & 14,15000 & 48,0000 & -28,190 & 47,914 & -67,000 & -171,87 & -0.003093 \\ 66,66667 & 14,15000 & 48,0000 & -28,196 & 47,914 & -67,000 & -171,87 & -0.003192 \\ 66,66667 & 14,15000 & 48,0000 & -28,196 & 47,914 & -66,099 & -170,42 & -0.003192 \\ 70,0000 & 1,415000 & 48,0000 & -0,4007 & 47,914 & -18,265 & -0.06749 & 22,008 \\ 70,0000 & 1,84667 & 48,00000 & -0,4007 & 47,914 & -18,818 & -0 & 0.03721 & 1,66328 \\ 70,0000 & 1,84667 & 48,0000 & -3,4124 & 47,914 & -59,9432 & -0.01800 & 4,9688 \\ 7,914 & -59,9432 & -0.01800 & 4,9686 & 47,914 & -59,9432 & -0.01800 & 4,9686 \\ 34,00000 & 0,89333 & 48,00000 & -3,4124 & 47,914 & -42,7948 & -0.01800 & 1,91487 \\ 34,00000 & 0,8367 & 48,0000 & -25,551 & 47,914 & -42,1782 & -0.030160 & 17,2438 \\ 34,00000 & 11,84607 & 48,00000 & -25,551 & 47,914 & -67,000 & -11,834 & 3,14426 \\ 34,00000 & 11,84607 & 48,00000 & -25,551 & 47,914 & -67,000 & -11,842 & 3,14426 \\ 34,00000 & 11,84607 & 48,00000 & -25,551 & 47,914 & -67,000 & -11,837 & 48,514426 \\ 34,00000 & 12,9267 & 48,00000 & -25,551 & 47,914 & -67,000 & -11,832 & 48,514426 \\ 34,00000 & 12,9267 & 48,00000 & -25,551 & 47,914 & -67,000 & -11,837 & -0.003197 \\ 34,00000 & 12,9267 & 48,00000 & -25,551 & 47,914 & -67,000 & -11,832 & 48,514426 \\ 34,00000 & 22,8533 & 48,00000 & -25,551 & 47,914 & -67,000 $                                                                                                                                                                                                                                                                                                                             |        | 9.33333  | 14.15000 | 48,00000 | -9.7280  | 47.914     | -0.029399                | -6.0238   | 153.928-6   |
| $ \begin{array}{c} 18.66667 \\ 14.15000 & 48.00000 & -28.787 \\ 23.3333 & 14.15000 & 48.00000 & -29.684 \\ 47.914 & -67.000 & -171.78 & -0.003092 \\ 28.00000 & 14.15000 & 48.00000 & -29.684 \\ 47.914 & -67.000 & -171.87 & -0.003092 \\ 37.3333 & 14.15000 & 48.00000 & -29.79 & 47.914 & -67.000 & -171.88 & -0.003092 \\ 42.00000 & 14.15000 & 48.00000 & -29.740 & 47.914 & -67.000 & -171.88 & -0.003092 \\ 42.00000 & 14.15000 & 48.00000 & -29.740 & 47.914 & -67.000 & -171.88 & -0.003092 \\ 45.66667 & 14.15000 & 48.00000 & -29.243 & 47.914 & -67.000 & -171.88 & -0.003092 \\ 45.66667 & 14.15000 & 48.00000 & -28.243 & 47.914 & -67.000 & -171.83 & -0.003092 \\ 55.00000 & 14.15000 & 48.00000 & -28.986 & 47.914 & -67.000 & -171.83 & -0.003092 \\ 55.00000 & 14.15000 & 48.00000 & -28.986 & 47.914 & -66.999 & -170.42 & -0.003196 \\ 65.3334 & 14.15000 & 48.00000 & -1.2937 & 47.914 & -14.23318-6 & -0.16719 & 4.36318-6 \\ 65.3334 & 14.15000 & 48.00000 & -1.2937 & 47.914 & -14.8818-6 & -0.066719 & 4.36318-6 \\ 54.00000 & 0.00000 & 48.00000 & -1.4654 & 47.914 & -12.8318-6 & -0.016719 & 4.36318-6 \\ 34.00000 & 0.6947 & 14.914 & -14.8418-26- & -0.066719 & 14.36318-6 \\ 34.00000 & 0.54000 & 48.00000 & -1.2837 & 47.914 & -14.24838-6 & -0.16800 & 4.90886 \\ 34.00000 & 0.54000 & 48.00000 & -1.2851 & 47.914 & -12.8318-6 & -0.01800 & 4.90688-6 \\ 34.00000 & 0.54000 & 48.00000 & -2.3127 & 47.914 & -14.2748-6 & -0.2600 & 11.2437 \\ 34.00000 & 0.54000 & 48.00000 & -2.3125 & 47.914 & -16.6993 & -15.804 & 14.9068-6 \\ 34.00000 & 0.54000 & 48.00000 & -2.2720 & 47.914 & -67.000 & -171.66 & -0.003163 \\ 34.00000 & 12.92667 & 48.00000 & -27.259 & 47.914 & -67.000 & -171.83 & -0.003163 \\ 34.00000 & 12.92667 & 48.00000 & -27.259 & 47.914 & -67.000 & -171.66 & -0.003163 \\ 34.00000 & 12.92667 & 48.00000 & -27.259 & 47.914 & -66.993 & -15.804 & 144.206-6 \\ 34.00000 & 22.16000 & 48.00000 & -3.5502 & 47.914 & -66.993 & -15.0632 & 48.5166-6 \\ 34.00000 & 22.16000 & 48.00000 & -3.8502 & 47.914 & -66.993 & -15.0632 & 48.5166-6 \\ 34.00000 & 22.16000 & 48.00000 & -3.8502 & 47.914 & -66.999 & -$                                                                                                                                                                                                                                                                                                                          |        | 14.00000 | 14.15000 | 48.00000 | -26.631  | 47.914     | -67.000                  | -171.40   | -0.0031045  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 18.66667 | 14.15000 | 48.00000 | -28.787  | 47.914     | -67.000                  | -171.78   | -0.0030947  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 23.33333 | 14.15000 | 48.00000 | -29.445  | 47.914     | -67.000                  | -171.85   | -0.0030929  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 28.00000 | 14.15000 | 48.00000 | -29.684  | 47.914     | -67.000                  | -171.87   | -0.0030923  |
| $ \begin{array}{c} 37, 3333, 333, 44, 15000, 48, 00000, -23, 609 47, 914 -67, 000 -171, 488 -0, 0030925 \\ 46, 66667 14, 15000 48, 00000 -23, 243 47, 914 -67, 000 -171, 87 -0, 0030925 \\ 45, 66667 14, 15000 48, 00000 -28, 203 47, 914 -67, 000 -171, 87 -0, 0030925 \\ 55, 00000 14, 15000 48, 00000 -28, 100 47, 914 -67, 000 -171, 70 -0, 003095 \\ 56, 00000 14, 15000 48, 00000 -28, 190 47, 914 -419, 265-6 -0, 96749 25, 2085-6 \\ 56, 3333 14, 15000 48, 00000 -4, 5398 47, 914 -419, 265-6 -0, 1679 25, 2085-6 \\ 56, 3333 14, 15000 48, 00000 -1, 2897 47, 914 -13, 9315-6 -0, 1679 25, 2085-6 \\ 56, 3333 14, 15000 48, 00000 -1, 2897 47, 914 -73, 3055-6 -0, 1679 25, 2085-6 \\ 56, 3333 14, 15000 48, 00000 -2, 3727 47, 914 -73, 3055-6 -0, 1679 25, 2085-6 \\ 56, 3333 14, 15000 48, 00000 -2, 3727 47, 914 -73, 3055-6 -0, 1679 25, 2085-6 \\ 56, 3333 14, 15000 48, 00000 -2, 3727 47, 914 -72, 3055-6 -0, 1679 10, 3775-6 \\ 34, 00000 1, 84667 48, 00000 -2, 3757 47, 914 -22, 4835-6 -0, 26501 6, 91645-6 \\ 34, 00000 -3, 8433 48, 00000 -2, 3757 47, 914 -491, 755-6 -1, 3484 35, 1445-6 \\ 34, 00000 -7, 3867 48, 00000 -75, 551 47, 914 -66, 998 -15, 6084 144, 205-6 \\ 34, 00000 -12, 92667 48, 00000 -29, 204 47, 914 -67, 000 -171, 66 -0, 003163 \\ 34, 00000 11, 08000 48, 00000 -27, 259 47, 914 -67, 000 -171, 66 -0, 003093 \\ 34, 00000 12, 92667 48, 00000 -27, 259 47, 914 -67, 000 -171, 66 -0, 003163 \\ 34, 00000 12, 92667 48, 00000 -32, 561 47, 914 -67, 914 -67, 914 -60, 939 -156, 120 -0, 003163 \\ 34, 00000 12, 92667 48, 00000 -27, 259 47, 914 -67, 000 -171, 66 -0, 003163 \\ 34, 00000 12, 92667 48, 00000 -31, 567 47, 914 -67, 914 -66, 988 -170, 63 -0, 003163 \\ 34, 00000 12, 92667 48, 00000 -37, 259 47, 914 -46, 145, 128 -25, 713 507, 7055-6 \\ 34, 00000 20, 3133 48, 00000 -35, 570 47, 914 -145, 714 -67, 000 -171, 66 -0, 003163 \\ 34, 00000 20, 21333 48, 00000 -35, 570 47, 914 -48, 1855-6 -0, 46255 12, 0655-6 \\ 34, 00000 22, 15000 48, 00000 -5, 677 47, 914 -145, 914 -6, 0, 8059 92 20, 06555 \\ 34, 00000 27, 70000 48, 00000 -1, 8612 47, 914 -8, 96585-6 -0, 22999 7, 8, 2655-6$                                                                                                                                                                                                                                                                                                                             |        | 32.66667 | 14.15000 | 48.00000 | -29.759  | 47.914     | -67.000                  | -171.88   | -0.0030921  |
| $\begin{array}{c} 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\$ |        | 37.33333 | 14.15000 | 48.00000 | -29.740  | 47.914     | -67.000                  | -171.88   | -0.0030922  |
| $ \begin{array}{c} {\rm 51,\ 3333\ 14,\ 15000\ 48,\ 00000\ -23,\ 966\ 47,\ 914\ -67,\ 000\ -111,\ 70\ -0,\ 003096 \\ {\rm 56,\ 00000\ 14,\ 15000\ 48,\ 00000\ -23,\ 966\ 47,\ 914\ -149,\ 26E-6\ -0,\ 96749\ 25,\ 208E-7\\ {\rm 70,\ 00000\ 14,\ 15000\ 48,\ 00000\ -1,\ 9537\ 47,\ 914\ -12,\ 31E-6\ -0,\ 06719\ 4,\ 3631E-6\ -0,\ 067121\ 4,\ 3631E-6\ -0,\ 3631E-6\ -0,\ 364\ -0,\ 067121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -0,\ 077121\ -$                                                                                                                                                                                                                                                                                                                                             |        | 46.66667 | 14.15000 | 48,00000 | -29.243  | 47.914     | -67.000                  | -171.87   | -0.0030925  |
| $ \begin{array}{c} 56,00000 & 14.15000 & 48,00000 & -4.3966 & 47,914 & -66.999 & -170.42 & -0.031301 \\ 60.66667 & 14.15000 & 48,00000 & -4.5938 & 47,914 & -149.26E & -0.96749 & 25.208E-6 \\ 65.3334 & 14.15000 & 48,00000 & -1.2937 & 47,914 & -12.831E-6 & -0.06719 & 4.3631E-6 \\ 70.0000 & 1.4.15000 & 48,00000 & -1.2937 & 47,914 & -1.8812E-6 & -0.06719 & 4.3631E-6 \\ 34.00000 & 0.00000 & 48,00000 & -1.6554 & 47,914 & -1.2831E-6 & -0.0632-6 \\ 34.00000 & 3.69333 & 48.00000 & -2.3727 & 47,914 & -14.274E-6 & -0.26501 & 6.9164E-6 \\ 34.00000 & 3.69333 & 48.00000 & -3.4124 & 47,914 & -52.433E-6 & -0.6691 & 17.243E-6 \\ 34.00000 & 7.38667 & 48.00000 & -4.9863 & 47,914 & -55.943E-6 & -0.6691 & 17.243E-6 \\ 34.00000 & 7.38667 & 48.00000 & -12.829 & 47,914 & -50.9478 & -56.648 & 144.20E-6 \\ 34.00000 & 11.08007 & 48.00000 & -12.829 & 47,914 & -67.000 & -116.84 & 31.144E-20E-6 \\ 34.00000 & 11.08007 & 48.00000 & -25.551 & 47,914 & -67.000 & -116.16 & -0.0031633 \\ 34.00000 & 11.68207 & 48.00000 & -27.259 & 47,914 & -66.930 & -169.16 & -0.0031633 \\ 34.00000 & 18.4667 & 48.00000 & -27.259 & 47,914 & -67.000 & -116.32 & -0.0031633 \\ 34.00000 & 18.4667 & 48.00000 & -27.259 & 47,914 & -67.000 & -116.3 & -0.0031633 \\ 34.00000 & 18.4667 & 48.00000 & -37.259 & 47,914 & -67.000 & -117.63 & -0.0031978 \\ 34.00000 & 18.4667 & 48.00000 & -37.259 & 47,914 & -67.930 & -170.63 & -0.0031978 \\ 34.00000 & 20.3133 & 48.00000 & -36.527 & 47,914 & -14.512 & -25.713 & 507.05E-6 \\ 34.00000 & 22.16007 & 48.00000 & -5.8708 & 47,914 & -14.512 & -25.91 & 507.05E-6 \\ 34.00000 & 22.160067 & 48.00000 & -3.8507 & 47,914 & -8.8276E-6 & -0.46245 & 12.065E-6 \\ 34.00000 & 22.8533 & 48.00000 & -3.8507 & 47,914 & -8.8276E-6 & -0.46245 & 12.065E-6 \\ 34.00000 & 22.85533 & 48.00000 & -3.8502 & 47,914 & -8.8276E-6 & -0.26997 & 7.8265E-6 \\ 34.00000 & 27.70000 & 48.00000 & -3.8502 & 47,914 & -8.9558E-6 & -0.22995 & 5.4562E-6 \\ 34.00000 & 27.70000 & 48.00000 & -1.8612 & 47.914 & -8.9558E-6 & -0.22995 & 5.4562E-6 \\ 34.00000 & 27.70000 & 48.00000 & -1.8612 & 47.914 & -8.9558E-6 & -0.22995 &$                                                                                                                                                                                                                                                                                                                              |        | 51.33333 | 14.15000 | 48.00000 | -28.190  | 47.914     | -67.000                  | -171.70   | -0.0030967  |
| $ \begin{array}{c} 60.66667 \\ 6.5.3334 \\ 14.15000 \\ 48.00000 \\ -1.2937 \\ 47.914 \\ -12.312-6 \\ -12.312-6 \\ -0.67721 \\ -1.88188-6 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.063721 \\ -0.06372 \\ -0.063721 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.06372 \\ -0.03163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.003163 \\ -0.0000 \\ -0.001016 \\ -0.003163 \\ -0.00$                                                                                                                                                                        |        | 56.00000 | 14.15000 | 48.00000 | -23.986  | 47.914     | -66.999                  | -170.42   | -0.0031301  |
| $\begin{array}{c} \mathbf{b}_{5,3434} & 14_{1,5000} & 48_{0,0000} & -1_{2,937} & 47, 914 & -12_{2,331E-6} & -0_{0,6772} & 16_{0,522-6} \\ \mathbf{Line} & 2 & 34_{0,0000} & 0_{0,0000} & 48_{0,0000} & -0_{-1,0071} & 47, 914 & -1_{-1,881E-6} & -0_{0,6721} & 1_{6,632E-6} \\ 34_{0,0000} & 0_{0,0000} & 48_{0,0000} & -2_{2,727} & 47, 914 & -1_{4,274E-6} & -0_{0,6520} & 6_{0,916} \\ 34_{0,0000} & 3_{0,69333} & 48_{0,0000} & -2_{3,4727} & 47, 914 & -14_{2,274E-6} & -0_{0,6500} & 6_{0,9164E-6} \\ 34_{0,0000} & 3_{0,69333} & 48_{0,0000} & -4_{2,865} & 47, 914 & -52_{2,483E-6} & -0_{0,6606} & 17_{2,743E-6} \\ 34_{0,0000} & 7_{3,8667} & 48_{0,0000} & -4_{3,865} & 47, 914 & -52_{2,483E-6} & -0_{0,6606} & 17_{2,743E-6} \\ 34_{0,0000} & 7_{3,8667} & 48_{0,0000} & -7_{5,751} & 47, 914 & -55_{9,933E-6} & -0_{6,696} & 17_{2,743E-6} \\ 34_{0,0000} & 12_{0,22667} & 48_{0,0000} & -25_{5,12} & 47, 914 & -67, 000 & -171_{1,66} & -0_{0,031633} \\ 34_{0,0000} & 12_{2,92667} & 48_{0,0000} & -27_{2,55} & 47, 914 & -67, 000 & -171_{1,66} & -0_{0,031633} \\ 34_{0,0000} & 16_{1,62000} & 48_{0,0000} & -27_{2,55} & 47, 914 & -67, 000 & -171_{1,63} & -0_{0,031633} \\ 34_{0,0000} & 16_{1,62000} & 48_{0,0000} & -6_{1,623} & 47, 914 & -14_{9,74E-6} & -10_{1,632} & 48_{1,51E-6} \\ 34_{0,0000} & 22_{1,6000} & 48_{0,0000} & -5_{1,670} & 47_{1,914} & -14_{9,74E-6} & -0_{1,632} & 48_{1,51E-6} \\ 34_{0,0000} & 22_{1,6000} & 48_{0,0000} & -3_{1,5670} & 47_{1,914} & -48_{1,74E-6} & -0_{1,6632} & 48_{1,51E-6} \\ 34_{0,0000} & 22_{1,6000} & 48_{0,0000} & -3_{1,6572} & 47_{1,914} & -48_{1,51E-6} & -0_{1,6299} & 7_{1,26E-6} \\ 34_{0,0000} & 27_{1,70000} & 48_{0,0000} & -1_{1,8612} & 47_{1,914} & -8_{1,9658E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 60.66667 | 14.15000 | 48.00000 | -4.5938  | 47.914     | -419.26E-6               | -0.96749  | 25.208E-6   |
| $ \begin{array}{c} 1.0 \pm 0.00000 & 1.4 \pm 1.50000 & 48 \pm 0.00000 & -1.6554 & 47,914 & -1.88188-6 & -0.0637211 & 1.65328-6 \\ 34.00000 & 0.000000 & 1.8054 & 47,914 & -14.2748-6 & -0.126501 & 6.91648-6 \\ 34.00000 & 3.69333 & 48 \pm 0.0000 & -3.4124 & 47,914 & -32.4638-6 & -0.39707 & 10.3778-6 \\ 34.00000 & 5.54000 & 48.00000 & -3.4124 & 47,914 & -32.4638-6 & -0.39707 & 10.3778-6 \\ 34.00000 & 7.38667 & 48.00000 & -7.551 & 47,914 & -491.758-6 & -0.1848 & 35.1448-6 \\ 34.00000 & 7.38667 & 48.00000 & -7.551 & 47,914 & -491.758-6 & -1.3484 & 35.1448-6 \\ 34.00000 & 7.38667 & 48.00000 & -7.551 & 47,914 & -691.798 & -5.6084 & 144.208-6 \\ 34.00000 & 12.92667 & 48.00000 & -29.204 & 47,914 & -67.000 & -171.68 & -0.0031633 \\ 34.00000 & 12.92667 & 48.00000 & -29.204 & 47,914 & -66.998 & -170.63 & -0.003193 \\ 34.00000 & 16.62000 & 48.00000 & -27.259 & 47,914 & -66.998 & -170.63 & -0.003193 \\ 34.00000 & 18.46667 & 48.00000 & -65.676 & 47,914 & -14.512 & -25.713 & 507.058-6 \\ 34.00000 & 22.16000 & 48.00000 & -5.670 & 47,914 & -14.9.748-6 & -0.8679 & 48.5188-6 \\ 34.00000 & 22.00667 & 48.00000 & -5.670 & 47,914 & -14.5128-6 & -0.46245 & 12.0658-6 \\ 34.00000 & 22.0567 & 48.00000 & -3.8502 & 47,914 & -14.5188-6 & -0.8679 & 21.0658-6 \\ 34.00000 & 22.05607 & 48.00000 & -5.670 & 47,914 & -14.5188-6 & -0.8679 & 21.0658-6 \\ 34.00000 & 22.05677 & 47,914 & -14.5188-6 & -0.8679 & 21.0658-6 \\ 34.00000 & 27.70000 & 48.00000 & -1.8612 & 47.914 & -8.96588-6 & -0.22995 & 5.45628-6 \\ 34.00000 & 27.70000 & 48.00000 & -1.8612 & 47.914 & -8.96588-6 & -0.20955 & 5.45628-6 \\ 34.00000 & 27.70000 & 48.00000 & -1.8612 & 47.914 & -8.96588-6 & -0.20955 & 5.45628-6 \\ 34.00000 & 27.70000 & 48.00000 & -1.8612 & 47.914 & -8.96588-6 & -0.20955 & 5.45628-6 \\ 34.00000 & 27.70000 & 48.00000 & -1.8612 & 47.914 & -8.96588-6 & -0.20955 & 5.45628-6 \\ 34.00000 & 27.70000 & 48.00000 & -1.8612 & 47.914 & -8.96588-6 & -0.20955 & 5.45628-6 \\ 34.00000 & 27.70000 & 48.00000 & -1.8612 & 47.914 & -8.96588-6 & -0.20955 & 5.45628-6 \\ 34.00000 & 27.70000 & 48.00000 & -1.8612 & 47.914 & -8.96588-6$                                                                                                                                                                                                                                                                                                                      |        | 65.33334 | 14.15000 | 48.00000 | -1.2937  | 47.914     | -12.331E-6               | -0.16719  | 4.3631E-6   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Line 2 | 34.00000 | 14.15000 | 48.00000 | -0.40071 | 47.914     | -1.8818E-6<br>-7.3063E-6 | -0.063721 | 4.90688-6   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 34.00000 | 1.84667  | 48.00000 | -2.3727  | 47.914     | -14.274E-6               | -0.26501  | 6.9164F-F   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 34.00000 | 3.69333  | 48.00000 | -3.4124  | 47.914     | -32.483E-6               | -0.39767  | 10.377E-6   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 34.00000 | 5.54000  | 48.00000 | -4.9863  | 47.914     | -95.943E-6               | -0.66096  | 17.243E-6   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 34.00000 | 7.38667  | 48.00000 | -7.5751  | 47.914     | -491.75E-6               | -1.3484   | 35.144E-6   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 34.00000 | 9.23333  | 48.00000 | -12.829  | 47.914     | -0.019478                | -5.6084   | 144.20E-6   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 34.00000 | 12,92667 | 48,00000 | -29.204  | 47.914     | -67.000                  | -171.66   | -0.0030978  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 34.00000 | 14.77333 | 48.00000 | -29.621  | 47.914     | -67.000                  | -171.83   | -0.0030935  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 34.00000 | 16.62000 | 48.00000 | -27.259  | 47.914     | -66.998                  | -170.63   | -0.0031246  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 34.00000 | 18.46667 | 48.00000 | -16.539  | 47.914     | -1.4512                  | -25.713   | 507.05E-6   |
| 34.00000 24.00667 48.00000 -3.8502 47.914 -149.742-6 -0.80759 21.0655-6<br>34.00000 25.85333 48.00000 -3.8502 47.914 -44.5185-6 -0.46245 12.0672-6<br>34.00000 25.85333 48.00000 -2.6577 47.914 -18.2702-6 -0.29990 7.82652-6<br>34.00000 27.70000 48.00000 -1.8612 47.914 -8.96582-6 -0.20905 5.45622-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 34.00000 | 20.31333 | 48.00000 | -8.8216  | 47.914     | -0.0010816               | -1.8632   | 48.516E-6   |
| 34.00000 25.85333 48.00000 -2.6677 47.914 -18.2708-6 -0.2990 7.82658-6<br>34.00000 27.70000 48.00000 -1.8612 47.914 -8.96588-6 -0.20905 5.45628-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 34.00000 | 22.16000 | 48.00000 | -5.6780  | 47.914     | -149.74E-6<br>-44 518E-6 | -0.80759  | 21.065E-6   |
| 34.00000 27.70000 48.00000 -1.8612 47.914 -8.9658E-6 -0.20905 5.4562E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 34.00000 | 25.85333 | 48,00000 | -2.6677  | 47.914     | -18.270R-6               | -0.29990  | 7.8266F-6   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 34.00000 | 27.70000 | 48.00000 | -1.8612  | 47.914     | -8.9658E-6               | -0.20905  | 5.4562E-6   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |          |          |          |            |                          |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |          |          |          |            |                          |           |             |