# CampbellReith consulting engineers

# Flat 2, 55 Greencroft Gardens London NW6 3LL

Basement Impact Assessment

Audit

For

London Borough of Camden

Project Number: 12066-55 Rev: F1

November 2015

Campbell Reith Hill LLP Friars Bridge Court 41-45 Blackfriars Road London SE1 8NZ

T:+44 (0)20 7340 1700 F:+44 (0)20 7340 1777 E:london@campbellreith.com W:www.campbellreith.com



#### **Document History and Status**

| Revision | Date             | Purpose/Status      | File Ref                                                        | Author   | Check    | Review  |
|----------|------------------|---------------------|-----------------------------------------------------------------|----------|----------|---------|
| D1       | October<br>2015  | Comment             | AJMjw12066-<br>55-55<br>Greencroft<br>Gardens-<br>D1.doc        | A Marlow | A Marlow | E Brown |
| F1       | November<br>2015 | Issued for Planning | AJMjw12066-<br>111115-55-55<br>Greencroft<br>Gardens-<br>F1.doc | A Marlow | A Marlow | E Brown |
|          |                  |                     |                                                                 |          |          |         |
|          |                  |                     |                                                                 |          |          |         |
|          |                  |                     |                                                                 |          |          |         |
|          |                  |                     |                                                                 |          |          |         |
|          |                  |                     |                                                                 |          |          |         |
|          |                  |                     |                                                                 |          |          |         |

This document has been prepared in accordance with the scope of Campbell Reith Hill LLP's (CampbellReith) appointment with its client and is subject to the terms of the appointment. It is addressed to and for the sole use and reliance of CampbellReith's client. CampbellReith accepts no liability for any use of this document other than by its client and only for the purposes, stated in the document, for which it was prepared and provided. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of Campbell Reith Hill LLP. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the document as a whole. The contents of this document are not to be construed as providing legal, business or tax advice or opinion.

© Campbell Reith Hill LLP 2015

#### **Document Details**

| Last saved         | 11/11/2015 14:49                                  |
|--------------------|---------------------------------------------------|
| Path               | AJMjw12066-111115-55-55 Greencroft Gardens-F1.doc |
| Author             | A J Marlow, BSc CEng MIStructE FConsE             |
| Project Partner    | E M Brown, BSc MSc CGeol FGS                      |
| Project Number     | 12066-55                                          |
| Project Name       | Flat 2 55 Greencroft Gardens, London NW6 3LL      |
| Planning Reference | 2015/3981/P                                       |

#### 



#### Contents

| 1.0 | Non-Technical Summary                       | .1   |
|-----|---------------------------------------------|------|
| 2.0 | Introduction                                | .3   |
| 3.0 | Basement Impact Assessment Audit Check List | . 5  |
| 4.0 | Discussion                                  | . 8  |
| 5.0 | Conclusions                                 | . 11 |

### **Appendices**

Appendix 1: Residents' Consultation Comments Appendix 2: Audit Query Tracker Appendix 3: Supplementary Supporting Documents



#### 1.0 **NON-TECHNICAL SUMMARY**

- 1.1. CampbellReith was instructed by London Borough of Camden (LBC) to carry out an audit on the Basement Impact Assessment (BIA) submitted as part of the Planning Submission documentation for Flat 2, 55 Greencroft Gardens (planning reference 2015/3981/P). The basement is considered to fall within Category B as defined by the Terms of Reference.
- 1.2. The Audit reviewed the Basement Impact Assessment for potential impact on land stability and local ground and surface water conditions arising from basements development in accordance with LBC's policies and technical procedures.
- 1.3. CampbellReith was able to access LBC's Planning Portal and gain access to the latest revision of submitted documentation and review it against an agreed audit check list.
- 1.4. The BIA has been prepared by personnel who have suitable qualifications.
- 1.5. Flat 2, 55 Greencroft Gardens is a ground floor flat with rear garden access surrounded by flats at the front and side within No. 55 and also with No. 57, its adjoining semi-detached property.
- 1.6. The proposed development comprises the demolition of an existing single-storey extension and replacement with a longer single-storey extension, together with a new basement below the flat footprint and below the new extension.
- 1.7. The development will be founded in the London Clay and it is accepted that it will have no significant effect on either slope or ground stability nor the hydrogeology of the surrounding area.
- 1.8. It is accepted that the development is unlikely to be at risk from flooding, although Greencroft Gardens flooded in 1975 and 2002, and surface water flows into the sewer network and the ground will not be significantly altered. However, detailed proposals for the draining of the rear lower terrace and the discharge from the new extension roof are still required.
- 1.9. It is proposed to form the basement using underpinning techniques to two sides of the basement. Concerns remain over the detailed sequence of underpinning and temporary propping support of the head of each pin which should be clarified during the Party Wall process.
- 1.10. Concerns remain over the proposal to carry excavated spoil through the property and over the pavement on a conveyor into a roadside skip.
- 1.11. A building inspection survey report has been provided which indicates minor area of historic cosmetic cracking at variance with resident's concerns. A Ground Movement Analysis has been



carried out on seven no. surrounding walls and concluded that potential movement will be "Very Slight" (Burland Category 1) or less.

- 1.12. Although an acceptable movement monitoring procedure is identified in the BIA, this remains unrecognised in the Construction Method Statement. No comment is made regarding heave pressures on the underside of the basement slab due to the excavation of the London Clay.
- 1.13. Queries and requests for further information are summarised in Appendix 2.
- 1.14. It is recommended that outstanding detailed queries are resolved in a Basement Construction Plan prior to construction commencement.



### 2.0 INTRODUCTION

- 2.1. CampbellReith was instructed by London Borough of Camden (LBC) on 22 September 2015 to carry out a Category B Audit on the Basement Impact Assessment (BIA) submitted as part of the Planning Submission documentation for Flat 2, 55 Greencroft Gardens, Camden Reference 2015/3981/P.
- 2.2. The Audit was carried out in accordance with the Terms of Reference set by LBC. It reviewed the Basement Impact Assessment for potential impact on land stability and local ground and surface water conditions arising from basement development.
- 2.3. A BIA is required for all planning applications with basements in Camden in general accordance with policies and technical procedures contained within
  - Guidance for Subterranean Development (GSD). Issue 01. November 2010. Ove Arup & Partners.
  - Camden Planning Guidance (CPG) 4: Basements and Lightwells.
  - Camden Development Policy (DP) 27: Basements and Lightwells.
  - Camden Development Policy (DP) 23: Water.
- 2.4. The BIA should demonstrate that schemes:
  - a) maintain the structural stability of the building and neighbouring properties;
  - b) avoid adversely affecting drainage and run off or causing other damage to the water environment; and,
  - c) avoid cumulative impacts upon structural stability or the water environment in the local area.

and evaluate the impacts of the proposed basement considering the issues of hydrology, hydrogeology and land stability via the process described by the GSD and to make recommendations for the detailed design.

2.5. LBC's Audit Instruction described the planning proposal as the "*Demolition and reinstatement of a single storey rear extension. Excavation of a single storey basement extension.*"

and confirmed that the basement proposals neither involved nor neighboured listed buildings.

55 Greencroft Gardens, London NW6 3LL BIA - Audit



- 2.6. CampbellReith accessed LBC's Planning Portal on 06 October 2015 and gained access to the following relevant documents for audit purposes:
  - Basement Impact Assessment (BIA) and Appendices A to F Chelmer dated July 2015
  - Ground Movement Analysis (GMA) Chelmer dated September 2015
  - Architect's Proposed Drawings Simon Goldstein Architecture.
- 2.7. Following the issue of CampbellReith's D1 revision audit report, a revised Construction Method Statement, authored by S.R. Brunswick, was issued electronically by LBC's Planning Officer to CampbellReith on 02 November 2015 with a request to review the additional information. Accompanying this document was a building survey letter report dated 20 October 2015 by Martin Redston Associates.
- 2.8. The original text in the Discussion, Section 4 of our D1 report has been maintained and commentary added where relevant. The additional information identified in item 2.7 has been included within Appendix 3 "Supplementary Supporting Documents".



### 3.0 BASEMENT IMPACT ASSESSMENT AUDIT CHECK LIST

| Item                                                                                                                                                                     | Yes/No/NA | Comment                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| Are BIA Author(s) credentials satisfactory?                                                                                                                              | Yes       | BIA Section 1.0.          |
| Is data required by Cl.233 of the GSD presented?                                                                                                                         | Yes       | BIA.                      |
| Does the description of the proposed development include all aspects<br>of temporary and permanent works which might impact upon geology,<br>hydrogeology and hydrology? | Yes       | BIA Sections 2.0 and 3.0. |
| Are suitable plan/maps included?                                                                                                                                         | Yes       | BIA Sections 2.0 to 6.0.  |
| Do the plans/maps show the whole of the relevant area of study and do they show it in sufficient detail?                                                                 | Yes       |                           |
| Land Stability Screening:<br>Have appropriate data sources been consulted?<br>Is justification provided for 'No' answers?                                                | Yes       | BIA Section 7.3.          |
| Hydrogeology Screening:<br>Have appropriate data sources been consulted?<br>Is justification provided for 'No' answers?                                                  | Yes       | BIA Section 7.2.          |
| Hydrology Screening:<br>Have appropriate data sources been consulted?<br>Is justification provided for 'No' answers?                                                     | Yes       | BIA Section 7.4.          |
| Is a conceptual model presented?                                                                                                                                         | Yes       | BIA Section 10.1.         |
| Land Stability Scoping Provided?<br>Is scoping consistent with screening outcome?                                                                                        | Yes       | BIA Section 8.2.          |

## 55 Greencroft Gardens, London NW6 3LL BIA - Audit

| Item                                                                               | Yes/No/NA | Comment                                          |
|------------------------------------------------------------------------------------|-----------|--------------------------------------------------|
| Hydrogeology Scoping Provided?<br>Is scoping consistent with screening outcome?    | N/A       |                                                  |
| Hydrology Scoping Provided?<br>Is scoping consistent with screening outcome?       | Yes       | BIA Section 8.3.                                 |
| Is factual ground investigation data provided?                                     | Yes       | BIA Appendix c.                                  |
| Is monitoring data presented?                                                      | Yes       | Standpipes monitored twice, see BIA Section 9.6. |
| Is the ground investigation informed by a desk study?                              | Yes       | BIA Section 1.3.                                 |
| Has a site walkover been undertaken?                                               | Yes       | BIA Section 1.3.                                 |
| Is the presence/absence of adjacent or nearby basements confirmed?                 | Yes       | BIA Section 2.10.                                |
| Is a geotechnical interpretation presented?                                        | Yes       | BIA Section 9.0.                                 |
| Does the geotechnical interpretation include information on retaining wall design? | Yes       | BIA Section 10.4.9.                              |
| Are reports on other investigations required by screening and scoping presented?   | N/A       |                                                  |
| Are baseline conditions described, based on the GSD?                               | Yes       |                                                  |
| Do the base line conditions consider adjacent or nearby basements?                 | Yes       |                                                  |
| Is an Impact Assessment provided?                                                  | Yes       | BIA Section 10.0.                                |
| Are estimates of ground movement and structural impact presented?                  | Yes       | BIA Ground Movement Analysis.                    |



# 55 Greencroft Gardens, London NW6 3LL BIA - Audit

| Item                                                                                                               | Yes/No/NA | Comment                                  |
|--------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------|
| Is the Impact Assessment appropriate to the matters identified by screen and scoping?                              | Yes       |                                          |
| Has the need for mitigation been considered and are appropriate mitigation methods incorporated in the scheme?     | Yes       | BIA Section 10.8.                        |
| Has the need for monitoring during construction been considered?                                                   | Yes       | BIA Section 10.6.                        |
| Have the residual (after mitigation) impacts been clearly identified?                                              | Yes       | BIA Section 10.8.                        |
| Has the scheme demonstrated that the structural stability of the building and neighbouring properties maintained?  | No        | Construction Method Statement requested. |
| Has the scheme avoided adversely affecting drainage and run-off or causing other damage to the water environment?  | Yes       | But further information requested.       |
| Has the scheme avoided cumulative impacts upon structural stability<br>or the water environment in the local area? | No        | Construction Method Statement requested. |
| Does report state that damage to surrounding buildings will be no worse than Burland Category 2?                   | Yes       | But review requested.                    |
| Are non-technical summaries provided?                                                                              | Yes       | BIA Section 11.0.                        |





### 4.0 **DISCUSSION**

- 4.1. The BIA has been carried out by a well established firm of consultants, Chelmer Consultancy Services, and the lead authors have suitable qualifications.
- 4.2. 55 Greencroft Gardens is a semi-detached four-storey property subdivided into a number of flats. Flat 2 is on the ground floor and has a party wall with Flat 1, front (north) and Flat 3 to the side (east) as well as No. 57 to its other side (west).
- 4.3. The proposed development comprises the demolition of an existing rear single storey extension and its replacement with a longer single storey extension. A single level basement will be created below the existing ground floor flat footprint and below the new extension.
- 4.4. Chelmer has produced a comprehensive BIA which has shown that the basement will be founded in the London Clay and will have no significant effect on slope or ground stability of the surrounding area and will not affect the hydrogeology of the surrounding area.
- 4.5. The BIA has identified that Greencroft Gardens suffered from the 1975 and 2002 flood events but the latest flood modelling by the Environment Agency and Camden SFRA gives a "Very Low" risk of flooding by surface water. However, appropriate mitigation design measures are proposed to lessen potential flooding into the basement.
- 4.6. Further information should be provided to determine potential methods to control surface water discharge including the possibility to discharge Flat 2's roof extension onto Flat 1's roof and the draining of the rear lower terrace.

The additional Construction Method Statement discusses the intended methodology of rainwater disposal but incorrectly identifies that "a soakaway will be constructed in the garden to drain the new roofs". The development site is underlain by London Clay and this solution is not possible. Chelmer's original BIA identified in its item 10.7.7 that "no direct connection to the mains drainage system is available at the rear of Flat 2". A solution is required to be identified that "must be attenuated by use of a Sustainable Drainage System (SUDS)... these SUDS schemes will require formal design, including accurate quantification od the design run-off volumes". This information is requested.

4.7. The BIA has a supplementary report entitled Ground Movement Analysis which evaluated the potential movement upon seven no. surrounding walls as well as a heave assessment on the basement slab. These all indicate a potential damage category of "Very Slight" – Burland Category 1 or less. The assessment assumes that temporary support will be provided in accordance with best practice.



4.8. The BIA has identified that Flat 1, No. 55 Greencroft Gardens was granted planning permission for a basement which, it is believed, was completed at the beginning of 2014. Adjacent and adjoining residents from Flat 7 of No. 55 and the owners of No. 57 have lodged concerns with the proposal for Flat 2 because they are still suffering apparent visual damage from the construction of Flats 1's basement. These issues should be investigated by the development team for Flat 2 and the Ground Movement Analysis and BIA adjusted to suit.

The CSM acknowledges that complaints were made during the basement development of Flat 1 by the top floor of no. 55. The CMS is accompanied by a letter report dated 20 October 2015 by Martin Redston Associates which identified "minor areas of plaster hairline cracking at various locations but these appear to be cosmetic and of no structural significance" following an inspection of the "external walls of the property (no. 55), the common hallway and staircase together with flat number 1, 3, 4, 5 and 8". This inspection has been previously carried out in October 2015 and was "in similar condition to currently". It is unfortunate that the survey did not include the two residents who have lodged complaints, namely Flat 7 of no. 55 and the occupiers of no. 57. Whether this was deliberate or access was not provided remains unclear. Taken at face value, the report appears to confirm that any cracking present is historical.

4.9. The BIA makes reference to a retaining wall analysis by engineers SR Brunswick as well as a Construction Method Statement. No details of either document are contained within the documentation for planning permission. This is particularly pertinent bearing in mind that there appears to be little or no scope for the removal of excavation spoil. The Method Statement should also include an indicative solution for the design of temporary works propping restraint during the underpinning process and the excavation of the basement. It is also apparent from the Architect's proposed floor layouts that a lightwell and two light slots are to be introduced adjacent to each flank party wall. Commentary from the Structural Engineer is required in the Method Statement to address the potential lack of lateral stability of the party walls generated by the introduction of these architectural features.

The CSM provides a detailed proposal for underpinning the party walls with no. 57 and Flat 3 of no.55. Whilst it is accepted that this can be achieved in principle, there are detailed aspects of the proposal that appear unacceptable e.g. the head of each pin should be propped horizontally to the existing Flat 1 underpinned wall before any excavation takes place, in order to minimise possible movement, until the sloping prop proposed can be bolted to the basement slab strip. Also greater clarity is required over the underpinning sequence below Flat 3's party wall. These concerns should be responded to either by the requirement for Basement Construction Plan or during the Party Wall Act approval process.



It is questionable whether the principle of "carrying excavated spoil through the property and then placed on a conveyor system... over the pavement and into a skip located in the parking bay on the roadway" will be acceptable to LBC and residents.

The CSM also provides an engineered solution to introduce structural steelwork box-frames to carry out the proposed structural alterations at ground floor and, at the same time, maintain structural stability to the party walls with Flat 1, no. 55 and no. 57. These proposals are acceptable and successfully allow the light slots, adjacent to each party wall to be formed. It should be noted, however, that the structural steel beam supporting the ground floor between Frames 1 and 2 will need to pass through the lightwell adjacent to Frame 1 and and no. 57's party wall.

4.10. General references are made in the BIA to the underpinning of the existing walls, reinforced concrete retaining walls for the rear lightwell and a proposal for the monitoring of ground movements. These proposals should be incorporated into the Construction Method Statement and expanded with further specific proposals. It should contain additional information such as how the underpinning will be formed, an estimate of structural loads and confirmation that the bearing stratum is adequate, intentions for shuttering and propping, consideration of the heave pressures contained in the BIA acting on the basement slab and so on.

The CSM does not verify that the movement monitoring proposals contained in item 10.6 of the BIA will be incorporated into construction proposals. Although it provides information on underpinning proposals; structural loadings; maintenance of load bearing pressures; intentions for shuttering and propping, which have been commented upon, no comment is made regarding heave pressures on the underside of the basement slab due to the excavation of the London Clay.

4.11. Whilst there are a number of outstanding issues to be refined and accepted, as these are of a minor and detailed nature, it is recommended that these are developed in a Basement Construction Plan prior to construction commencement.



#### 5.0 CONCLUSIONS

- 5.1. The BIA has been prepared by personnel who have suitable qualifications.
- 5.2. Flat 2, 55 Greencroft Gardens is a ground floor flat with rear garden access surrounded by flats at the front and side within No. 55 and also No. 57, its adjoining semi-detached property.
- 5.3. The proposed development comprises the demolition of an existing single-storey extension and replacement with a longer single storey extension, together with a new basement below the flat footprint and below the new extension.
- 5.4. The development will be founded in the London Clay and it is accepted that it will have no significant effect on either slope or ground stability nor the hydrogeology of the surrounding area.
- 5.5. It is accepted that the development is unlikely to be at risk from flooding, although Greencroft Gardens flooded in 1975 and 2002, and surface water flows into the sewer network and the ground will not be significantly altered. However, detailed proposals for the draining of the rear lower terrace and the discharge from the new extension roof are still required.
- 5.6. It is proposed to form the basement using underpinning techniques to two sides of the basement. Concerns remain over the detailed sequence of underpinning and temporary propping support of the head of each pin which should be clarified during the Party Wall process.
- 5.7. Concerns remain over the proposal to carry excavated spoil through the property and over the pavement on a conveyor into a roadside skip.
- 5.8. A building inspection survey report has been provided which indicates minor area of historic cosmetic cracking at variance with resident's concerns. A Ground Movement Analysis has been carried out on seven no. surrounding walls and concluded that potential movement will be "Very Slight" (Burland Category 1) or less.
- 5.9. Although an acceptable movement monitoring procedure is identified in the BIA, this remains unrecognised in the Construction Method Statement. No comment is made regarding heave pressures on the underside of the basement slab due to the excavation of the London Clay.
- 5.10. It is recommended that outstanding detailed queries are resolved in a Basement Construction Plan prior to construction commencement.



# **Appendix 1: Residents' Consultation Comments**

55 Greencroft Gardens, London NW6 3LL BIA - Audit



Appendix

Residents' Consultation Comments

| Surname           | Address                       | Date                     | Issue Raised                                               | Response        |
|-------------------|-------------------------------|--------------------------|------------------------------------------------------------|-----------------|
| Ekizoglou         | Flat 7, 55 Greencroft Gardens | 12.08.2015<br>11.09.2015 | Damage to building caused by completed basement to Flat 1. | See 4.7 to 4.10 |
| Spender/Humphries | 57 Greencroft Gardens         | 19.08.2015               | Damage to building caused by completed basement to Flat 1. | See 4.7 to 4.10 |
|                   |                               |                          |                                                            |                 |
|                   |                               |                          |                                                            |                 |
|                   |                               |                          |                                                            |                 |

55 Greencroft Gardens, London NW6 3LL BIA - Audit



**Appendix 2: Audit Query Tracker** 



#### Audit Query Tracker

| Query No | Subject                          | Query                                                                                                                                                                                                                                                                                                                                                                                                  | Status                                                                                                                                                                                                                                                           | Date closed out                                    |
|----------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1        | Rainwater Disposal               | Draining of rear lower terrace and roof of new extension                                                                                                                                                                                                                                                                                                                                               | SUDS attention scheme to be developed following quantification of run-off volumes, see item 4.6                                                                                                                                                                  | To be provided in<br>Basement<br>Construction Plan |
| 2        | Movement Analysis                | Review in light of ongoing damage from Flat<br>1 basement and CMS (item 3)                                                                                                                                                                                                                                                                                                                             | Survey report provided shows historical cracking<br>but without inspecting complainant's properties,<br>see item 4.8                                                                                                                                             | To be provided in<br>Basement<br>Construction Plan |
| 3        | Construction Method<br>Statement | <ul> <li>To be provided and to include commentary upon at least:</li> <li>Equipment and removal of excavation spoil</li> <li>Indicative design of temporary works</li> <li>Structural stability of party walls</li> <li>Formation of underpinning</li> <li>Estimation of structural loadings</li> <li>Adequacy of bearing stratum</li> <li>Retaining wall analysis</li> <li>Heave pressures</li> </ul> | Concerns remain over spoil removal process, see<br>item 4.9<br>Concerns remain over temporary support, see<br>item 4.9<br>Accepted<br>Concerns remain over proposals, see item 4.9<br>Accepted<br>Accepted<br>Accepted<br>No information provided, see item 4.10 | To be provided in<br>Basement<br>Construction Plan |



# **Appendix 3: Supplementary Supporting Documents**

### Flat 2 – 55 Greencroft Gardens

### **Construction Method Statement**

#### 1.0 Introduction

- 1.1 The following document has been prepared as a response to queries raised by Campbell Reith in their Basement Impact Assessment Audit dated October 2015.
- 1.2 I am Steven Brunswick CEng, FICE FCIOB a Chartered Engineer and have prepared the structural design for the proposed alterations to Flat 2 at 55 Greencroft Gardens, NW6 3LL, a copy of which is attached to this document and includes the underpin details and structural load assessment.
- 1.3 To maintain stability of the adjacent properties both to the side and above the existing load bearing walls have been designed to be replaced with box frames which will provide the necessary stability to the party walls and maintain the existing load paths.

#### 2.0 Construction Method Statement

- 2.1 Prior to the start of the underpinning trial holes are to be dug to confirm the level of the existing foundations and their configuration. This is to be recorded and advised to the Structural Engineer to review to ensure that the proposals contained in the current design are appropriate. It is anticipated that the depth of underpinning required is no more than 1.2m deep and the walls are of masonry construction with stepped brick footings founded on levelling mortar poured over London clay. One party wall, adjacent to Flat 1 has been previously underpinned and the proposed levels match those in Flat 1 so no further underpinning will be required to that wall.
- 2.2 The excavation will be undertaken primarily using hand tools but if possible a small tracked excavator will be used for the bulk dig for the formation of the slab. All spoil will be carried through the property and then placed on a conveyor system to carry the spoil over the pavement and into a skip located in the parking bay on the roadway.

- 2.3 The Underpinning will be carried out in the sequence shown working on the pins in the order given ensuring that pins and underpinning have cured prior to adjacent pins being worked on. The underpinning sequence will be as follows to maintain stability and will include the formation of the LG floor slab to act as a prop between party walls.
  - 2.3.1 Excavate below the existing wall for all pins marked "1" supporting the exposed earth face with steel trench sheets back propped to the retained ground with steel whalings top and bottom. The back line of the underpin is to be the line of the masonry wall and not the step footing to allow for potential development to the adjacent property. The formation of the underpin is to be checked to ensure that ground is suitable and if necessary any soft spot is to be dug out and backfilled with C20 concrete to formation level.
  - 2.3.2 The base of the underpinned is to be widened by the provision of a heel to match the width of the stepped footing so that the foundation width is maintained and the GBP is not increased.
  - 2.3.3 As the underpin is dug out a trench is to be formed to allow construction of the reinforced ground bearing floor slab and the sides battered back or sheeted and propped.
  - 2.3.4 The underside of the existing masonry footing is to be cleaned to remove any soil and any loose masonry.
  - 2.3.5 The reinforcement as detailed is to be fixed in place ensuring the designated cover and laps are achieved and the vertical face is to be shuttered.
  - 2.3.6 The pin and associated section of slab are then to be cast and left for 48 hours to cure.
  - 2.3.7 Once the pin has cured the 75mm gap between the underside of the party wall and the new underpin is to be dry packed using a 1 : 3 damp cement sand mix with a non-shrink additive.
  - 2.3.8 The reinforced underpin is designed to act as a retaining wall for the height retained but to ensure any movement is controlled an RMD slimshore is to be provided to prop the top the underpin and be bolted using 4/M12 chemical

anchors to both the slab and the underpin with the prop at 30 degrees to the horizontal.

- 2.3.9 The sequence 2.2.1 to 2.2.8 is to be repeated for pins marked "2"
- 2.3.10 The sequence 2.2.1 to 2.2.8 is to be repeated for pins marked "3"
- 2.3.11 The sequence 2.2.1 to 2.2.8 is to be repeated for pins marked "4"
- 2.3.12 The sequence 2.2.1 to 2.2.8 is to be repeated for pins marked "5"
- 2.4 On completion of the underpinning the reinforced slab is to be completed with the box frames in place so that they can form part of the new construction and act with the new foundations.
- 2.5 Once the basement slab is complete and cured for 7 days the temporary propping can be removed.
- 2.6 The box frames are to be bolted to the party wall using M8 chemical anchors at 600 vertical ctrs in pairs and then any gap dry packed to provide stability to the party wall. This will ensure that the party walls are stable in the long term.

#### 3.0 Rainwater disposal

- 3.1 The area of solid construction is not significantly increased over the current condition so the volumes of rainfall entering the drainage system will not be greatly increased.
- 3.2 The rainwater from the new roofs will be collected and discharged into the existing drainage system utilising the new pitched roofs and guttering before discharging using new plastic down pipes.
- 3.3 The down pipe will discharge into a new gully located at the head of the extended existing drain. If this proves to be not possible, a soakaway will be constructed in the garden to drain the new roofs.
- 3.4 The existing main roof drainage will be maintained and a sealed chamber constructed within the property with access maintained to allow for future maintenance.

**S R Brunswick CEng** 

- 4.0 Movement Analysis
  - 4.1 I am aware that complaints have been made that during the development of Flat 1 some movement has become apparent but I am unaware of the severity or history of these but understand that the areas of concern are on the top floor.
  - 4.2 During any underpinning operation there is the potential for movement to occur and as there will be a load transfer from the existing to the new foundations and that can result in minor cracking of finishes. The sequencing of the work and limiting the extent of open work at any one time is designed to minimise this type of movement to the point where any movement comes under the category of minor redecoration to make good.
  - 4.3 In advance of any works the Party Wall surveyor will visit all the apartments above and to the side of Flat 2 to draw up a condition survey and so establish a base condition to monitor against.

S R Brunswick CEng., FICE FCIOB

31st October 2015

Ref: 1515 CMS-1

# Appendix –

Structural Design & foundation load assessment



| S I         | S R BRUNSWICK CEng FICE |       |         |       |        |           |       |       |         |       |           |             |         | Prepa      | red by | SR     | в      |       |      | Sheet | ։<br>151 | 5 - <sup>-</sup> | 1    |       |   |  |
|-------------|-------------------------|-------|---------|-------|--------|-----------|-------|-------|---------|-------|-----------|-------------|---------|------------|--------|--------|--------|-------|------|-------|----------|------------------|------|-------|---|--|
| 138 \<br>Ea | Wood                    |       | c Hill, | Kent  | ton, N | /iddle    | esex  | HA3   | 0JN     |       |           |             |         |            |        | Check  | ked by |       |      |       |          | Date:            | Ma   | / '15 |   |  |
| E Ma        | ail: sr                 | b@si  | rbrun   | swick | k.con  | 0700<br>า | 5 20  | 2 003 |         |       | _         |             |         |            |        |        |        |       |      |       |          |                  | ivia | y 13  | , |  |
|             |                         |       |         |       |        | 55        | Gr    | een   | cro     | oft(  | Gai       | rde         | ns      |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         | The   | e foll  | owir  | ng c   | alcu      | latio | ons a | are f   | or th | ne d      | lesig       | in of   | f an       | enla   | irge   | d ba   | sen   | nent |       |          |                  |      |       |   |  |
|             |                         | and   | inte    | erna  | l alte | erati     | ons   | to th | nis g   | Iroui | nd f      | loor        | flat    | in a       | terra  | ace    | d pro  | oper  | ty.  |       |          |                  |      |       |   |  |
|             |                         | The   | 200     | ralci | ılati  | ons       | sho   | uld   | he r    | ead   | in c      | onii        | Incti   | on v       | /ith : | all re | عامد   | ant   | Δrch | niter | te       |                  |      |       |   |  |
|             |                         | Dra   | wind    | as.   | The    | cac       | ulat  | ions  | ha\     | ve be | en        | pre         | pare    | ed to      | con    | nply   | with   | n all | rele | evan  | t        |                  |      |       |   |  |
|             |                         | Briti | ish S   | Stan  | daro   | ds a      | nd E  | Build | ing     | Reg   | ulat      | ions        |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         | Loa   | ding    | gs    |        |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       | Dec     |       | Tor    |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       | RUU     | Pav   | vina   | ace       |       |       |         | 1 :   | 20        | KN          | /m2     |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | Mer   | mbra   | ane       |       |       |         | 0.2   | 20        | KN          | /m2     |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | Raf   | ters   |           |       |       |         | 0.    | 10        | KN          | /m2     |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | P/b   | d ar   | id sł     | kim   |       |         | 0.3   | 30        | KN          | /m2     |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         | 1.8   | 30        | KN          | /m2     |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | Sup   | ber    |           |       |       | sa      | y 2.  | 0 K       | N/m         | 2 to    | allo       | w fo   | or pla | ante   | rs    |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         | L 3.  | 8 K       | N/m         | 2       |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | Flat  | roc    | of.n      | o ac  | ces   | s       | Sa    | av 1.     | .9 K        | N/m     | 2          |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        | ,         |       |       | -       |       | .,        |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | Flo   | or     |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       | Boa    | ards      |       |       |         |       | 0.        | 15          | KN      | /m2        |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       | Jois   | sts       |       |       | <u></u> |       | 0.        | 15          | KN      | /m2        |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       | Plas   | steri     | boai  | α&    | SKI     | n     | U.<br>1   | 30<br>50    | KN.     | /m2<br>/m2 |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       | Jup    |           |       |       |         |       | 2         | 10          | KN      | /m2        |        |        |        |       |      |       |          | -                |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         |       | 2.        |             | 1.1.1   |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | Par   | titior | ns -      | stud  |       |         | say   | 0.        | 60          | KN      | /m2        |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | Cav   | vity V | Vall      |       |       |         |       | 3.6       | 0           | KN/     | m2         |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | Soli  | d w    | all 2     | 15    |       |         | say   | 4.        | 50          | KN.     | /m2        |        |        |        |       |      |       |          | -                |      |       |   |  |
|             |                         |       |         | SOI   |        |           | 54U   |       |         | say   | ו.)<br>קע | ∠ K<br>′N/~ | <u></u> | 12         |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | 100   | mel    | UIE       |       |       | 5       | ayı   | .J N      |             | ı∠      |            |        |        |        |       |      |       |          | -                |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         |       |           |             |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | Tim   | ber    | to b      | e G   | rade  | e C1    | 6 to  | BS        | 526         | 8       |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         | Ste   | el to  | be        | Gra   | de 4  | 3 to    | BS    | 449       | 9           |         |            |        |        |        |       |      |       |          |                  |      |       |   |  |
|             |                         |       |         |       |        |           |       |       |         |       |           | Ì           | Ì       |            |        |        |        |       |      |       |          | 1                |      |       |   |  |



| S R BRUNSWICK CEng FICE                    |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              | Prepa  | red by |        |          |           | Sheet | :<br>4 - 4 | <b>_</b> |      |       |          |     |   |
|--------------------------------------------|------------------------------------------------------------------------------------|------------|-----------------|-----------------------|-----------------|------------|---------------|---------------|--------------|--------------|------|--------------|--------------|--------|--------|--------|----------|-----------|-------|------------|----------|------|-------|----------|-----|---|
| 100                                        | Maa                                                                                | door       |                 | Kan                   | ton N           | Aiddl      |               | •             |              |              |      |              |              |        |        | Chool  | od by    | <u>5R</u> | В     |            | Data     | 151  | 5-0   | 3        |     |   |
| Fax<br>E Ma                                | : 020<br>ail: sr                                                                   | 893<br>b@: | 0 814<br>srbrun | , Ken<br>6 M<br>Iswic | lob: 0<br>k.con | 07803<br>n | 3 262         | пАЗ<br>009    | UJIN         |              |      |              |              |        |        | Crieci | keu by   | •         |       |            | Date.    | Ma   | y '15 | ;        |     |   |
|                                            |                                                                                    |            |                 |                       |                 | 55         | Gr            | eer           | ncre         | oft          | Ga   | rde          | ns           |        |        |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 | Joi                   | sts             | to f       | lat r         | oof           |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        | Spa    | an 3   | 900      |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 | UD                    | L 1             | .9 K       | N/m           | 12            |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       |          |     |   |
| <br>                                       |                                                                                    |            |                 |                       | Max             |            | 1 1           | 0 v           | 2 00         |              | ° –  | 26           |              | m      |        |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       | Ivia            |            |               | .9 X          | 5.90         | Sy /         | 0 -  | 5.0          |              |        |        |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       | Z re            | eqd        | =             | 3.6           | e6 /         | 5.3          | x 1. | 1 x ′        | 1.25         | ; =    | 496    | 6 e3   | mm       | 3/m       |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 | Try        | 17            | 5 x 5         | 50 @         | <u>)</u> 40  | 0 ct | rs (         | Z =          | 560    | e3     | mm     | 3 / r    | n)        |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       | Cl 4            |            |               |               |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       |          |     | - |
|                                            |                                                                                    |            |                 | Dei                   | riect           | ION        | 10            |               | 1 v (        | 3 0)         | 4    | 31           | 20 <b>1</b>  | v 9    | م ب    | 19.0   | _        | 12 0      | mm    |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              | 0 X    | 10.9   | _      | 13.0     |           |       | Pro        | vide     |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        |        | Тос    | b hig    | h         |       | 200        | ) x 5    | 0@   | ,400  | ) ctr    | s   |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        |        |        |          |           |       | Def        | 1 = 9    | 9.1m | ۱m    |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        |        |        |          |           |       | 0.0        | 023      | x sp | an    |          |     |   |
| Beam R1 carrying roof / skylight - (R2 Sim |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              | Simi   | lar)   |        | 500      |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              | Spa    |        | 500    |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 | UD                    | L 1             | .9 >       | (4.5          | /2 ·          | + sa         | y 0.3        | 3KN  | /m f         | or g         | lass   | =      | 4.6    | KN/ı     | n         |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              | Í            |      |              | Ŭ            |        |        |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 | Ma                    | хBN             | / 4        | .6 x          | 5.58          | Sq /         | 8 =          | 17   | 4 K          | nm           |        |        |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 | -                     | 000             |            |               | 0.5           |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       | <u> </u> |     |   |
|                                            |                                                                                    |            |                 | Iry                   | 203             | 5 X 1      | 33)           | (25           | 0B           |              |      |              |              |        |        |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 | L /                   | Rv =            | = 55       | 500 /         | / 31          | = 1          | 78           |      |              |              | D/T    | = 2    | 26     |          |           |       |            |          |      |       | -        |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        | _      |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            | Pb            | c = 7         | 79 N         | /mm          | 12   |              |              |        |        |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       | <u> </u> |     |   |
|                                            |                                                                                    |            |                 | Fbc                   | c = `           | 17.4       | + e6          | /23           | 1.9          | e3 =         | = /: | 5 N/I        | mm           | 2      |        | OK     |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        |        | UN     |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       | Def             | flect      | ion           |               |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 | 5 x                   | 4.6             | x (5       | .5)4          | x e           | 5/3          | 84 2         | 210  | x 23         | 56           | = 1    | 1 m    | m      |          |           |       |            |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        | _      | L ,    |          |           |       |            | _        |      |       | L        |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        | Spa    | an /   | 500      | OK        |       |            | Pro      |      | 33 v  | (25      |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        |        |        |          |           |       |            | <br>203  | 1    |       | .20      |     |   |
|                                            |                                                                                    |            |                 |                       |                 | -          |               | 1             |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       | <u> </u> |     |   |
|                                            |                                                                                    |            |                 | Fra                   | me              | 1 0        | n lin         | e of          | fext         | erna         | al w | all a        | abov         | ve     |        |        |          |           |       |            |          |      |       |          |     |   |
| <br>                                       |                                                                                    |            |                 | The                   | e fra           | me         | is to         | be            | a bo         | ox fra       | ame  | bea          | aring        | g on   | the    | extg   | ) fou    | nda       | tion  |            |          |      |       | <u> </u> |     |   |
|                                            |                                                                                    |            | -               | with                  | n inte          | erm        | edia          | te b          | eam          | 1 to (       | carr | y Gr         | a fic        | or     |        |        |          | 43        | 800   |            |          |      |       |          |     |   |
| Loading                                    |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       |          |     |   |
| <br>                                       | I op beam         I op beam           Masonry         4.5 KN/m2 x 4.8m = 21.6 KN/m |            |                 |                       |                 |            |               |               |              |              |      |              |              |        |        |        |          |           |       |            | <u> </u> |      |       |          |     |   |
|                                            |                                                                                    |            | Ra              | sonr                  | y 4             | ł C.+<br>م | <u>\N/N</u>   | 112 X<br>'n/m | 4.8<br>2 v 1 | m =<br>2/2 - | 21   | ט א.<br>א. פ | .IN/M<br>N/m | 1      |        | 3300   |          |           |       |            | <br>For  | typi | ، ادم | deta     | ile |   |
|                                            |                                                                                    |            | 1st             | floo                  | r               | 2.1        | /.0 K<br>KN/r | n2 x          | sav          | 2m           | = 4  | .0 K         | N/m          | ۰<br>۱ |        | -      |          |           |       |            | <br>see  | she  | et /  | 11       |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      | 29.          | 6 KI         | N/m    |        |        | -  -     |           |       | _          |          |      |       |          |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               |               |              |              |      |              |              |        | 33     | 800    |          |           |       |            |          |      |       |          |     |   |
| <br>                                       |                                                                                    |            |                 |                       |                 |            | <u> </u>      |               |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       | <u> </u> |     |   |
| <br>                                       |                                                                                    |            |                 |                       |                 | <u> </u>   |               |               |              |              |      |              |              |        |        |        | <u> </u> |           |       |            | <br>     |      |       | <u> </u> |     |   |
|                                            |                                                                                    |            |                 |                       |                 |            |               | 1             |              |              |      |              |              |        |        |        |          |           |       |            |          |      |       |          |     |   |

|   | S R BRUNSWICK CEng FICE              |                                  |             |                            |             |                 |           |        |       |           |       |          |       | Prepa    | ared by |      | D      |          | ;    | Sheet | t:<br>151 | E    | 4     |       |            |     |    |          |
|---|--------------------------------------|----------------------------------|-------------|----------------------------|-------------|-----------------|-----------|--------|-------|-----------|-------|----------|-------|----------|---------|------|--------|----------|------|-------|-----------|------|-------|-------|------------|-----|----|----------|
|   | 120                                  | Maa                              | dooo        |                            | Kani        | N               | 1:ddl     |        | •     |           |       |          |       |          |         |      | Chool  | kod by   | 38   | 5     |           | _    | Data  | 101   | э- ́       | 4   |    |          |
|   | T38<br>Eav                           | • 020                            | 2020        | K FIIII,<br>D 91 <i>11</i> | Keni<br>S M | ion, N<br>ob: 0 |           | esex   | 000   | UJIN      |       |          |       |          |         |      | Checi  | keu by   | •    |       |           |      | Date. | Ma    | . '16      |     |    |          |
|   | F M:                                 | . 020<br>ail: sr                 | 0930<br>h@s | rhrun                      | swick       | 00.0<br>( con   | 1003<br>n | 202    | 009   |           |       |          |       |          |         |      |        |          |      |       |           |      |       | Ivia  | y ic       | )   |    |          |
|   |                                      | un. 31                           | DW3         | Torun                      | 300101      |                 | 55        | Gr     | eer   | ncro      | oft   | Ga       | rde   | ns       |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
| _ |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             | Loa                        | ding        | g Gr            | d flc     | or     |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            | ,           |                 | floc      | or 1.  | 9 K   | N/m       | 2 x 8 | 8/2      | =     | 7.6      | KN/     | m    |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             | Тор                        | Me          | embe            | er        |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            | UD          | L 29            | 9.6 I     | KN/r   | n     |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   | Max BM 29.6 x 4.3Sq / 8 = 68.4 KNm   |                                  |             |                            |             |                 |           |        |       |           |       |          |       | <u>ן</u> |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            | Tn          | 202             |           | 60     |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      | L / Ry = 1.2 x 4300 / 51.9 = 100 |             |                            |             |                 |           |        |       |           |       |          |       |          |         | ד/ח  | = 1    | 18       |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         | ויש  | - 1    | 4.0      |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             | Pbr             | ; = 1     | 391    | N/m   | m3        |       | -        | -     |          | -       |      |        | -        |      |       |           | -+   |       |       |            |     |    |          |
|   | 1                                    |                                  |             |                            |             |                 |           |        |       |           |       |          | 1     |          | 1       |      |        | 1        |      |       |           |      |       |       |            |     |    |          |
|   | Fbc = 68.4 e6 / 581.1 e3 = 114 N/mm2 |                                  |             |                            |             |                 |           |        |       |           |       |          | n2    |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   | Deflection Deflection                |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             | 5 x             | 29.6      | 5 x (4 | 4.3)  | 4 x e     | 25/3  | 384      | x 21  | 0 x      | 608     | 8 =  | : 1(   | ).3n     | nm   |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         | _    | ,      |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         | Spa  | an / 4 | 417      |      |       |           |      | Pro   |       |            | £   |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          | Οĸ   |       |           |      | 203   |       | 60<br>7 b0 | TOP |    |          |
|   |                                      |                                  |             |                            | Mid         | dle             | mer       | nhe    | r     |           |       |          |       |          |         |      |        |          |      |       |           |      | ιορ   | me    | nbe        | ;   |    |          |
|   |                                      |                                  |             |                            | IVIIG       |                 | 1 7       | 6 K    | N/m   |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             | 00              |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 | Max       | x BN   | 17.   | 6 x 4     | 1.3S  | 3 / p    | 3 =   | 17       | .6 K    | Nm   |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          | By      | Insp | ecti   | on       |      |       |           |      | Pro   | vide  |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          | Fro     | m s  | ht/:   | 3        |      |       |           |      | 203   | 3 x 1 | 33 x       | (25 | UB |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            | Pot         | tom             | mo        | mbo    | r     |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            | ουι         | lom             | me        | mbe    | ;     |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   | -                                    |                                  |             |                            |             |                 | UD        | L 2    | 9.6   | + 7       | 6 =   | = 37     | 7.2 k | (N/n     | n<br>n  |      |        | -        |      |       |           | -+   |       |       |            |     |    | -        |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           | -     |          |       | •/ 11    | -       |      |        |          |      |       |           | -+   |       |       |            |     |    | <u> </u> |
|   |                                      |                                  |             |                            |             | Max             | k BN      | / 37   | .2 x  | 4.3       | Sq/   | 8 =      | - 86  | KN       | m       |      |        |          |      |       |           | -    |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             | Try             | 203       | B UC   | 60    | con       | cret  | e er     | icas  | ed       |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       | L.       |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             | ⊦bc             | ; = 8     | 56 e6  | oʻ/5  | 81.1      | e3    | = 1      | 49 N  | ı/mr     | n2      |      | 01     |          |      |       |           | -+   |       |       |            |     |    |          |
|   |                                      |                                  |             | $\left  \right $           |             |                 |           |        |       |           |       | <u> </u> |       |          |         |      | UK     |          |      |       |           | -+   |       |       |            |     |    | <u> </u> |
|   |                                      |                                  |             | $\left  - \right $         | Def         | lecti           | ion       |        |       |           |       |          |       |          |         |      |        |          |      |       |           | -+   |       |       |            |     |    | <u> </u> |
|   | -                                    |                                  |             | $\left  \right $           | 190         | 5 x             | 37 2      | ) x (2 | 4.3). | <br>4 x e | 5 /   | 384      | x 21  | 0 ×      | 608     | 8 =  | : 1'   | 3 0n     | hm   |       | $\vdash$  | -+   |       |       |            |     |    | -        |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       | 1        |         |      |        | $\vdash$ |      |       |           |      |       |       | -          |     |    |          |
|   |                                      |                                  | ŀ           |                            |             |                 |           |        |       |           |       |          |       |          |         |      | Spa    | an /     | 330  |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          | higł | ۱P    | rovide    | e 20 | )3 L  | JC 7  | 1          |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      | def   | lecti | on 1       | 0.3 | mm |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           | Ţ    |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |
|   |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           | -+   |       |       |            |     |    | <u> </u> |
|   |                                      |                                  |             | $\left  \right $           |             |                 |           |        |       |           |       | -        |       |          |         |      |        |          |      |       |           | -+   |       |       |            |     |    | -        |
|   |                                      |                                  |             | $\left  \right $           |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       | $\vdash$  | -+   |       |       |            |     |    |          |
| - |                                      |                                  |             |                            |             |                 |           |        |       |           |       |          |       |          |         |      |        |          |      |       |           |      |       |       |            |     |    |          |

|          | S                                   | S R BRUNSWICK CEng FICE<br>138 Woodcock Hill, Kenton, Middlesex HA3 0JN |               |                  |              |                |            |              |       |       |        |        |         |          |        |       | Prepa             | ared by     | /:<br>SP | B    |   | Sh | eet:<br>1 | 51        | 5_1 | 5        |   |
|----------|-------------------------------------|-------------------------------------------------------------------------|---------------|------------------|--------------|----------------|------------|--------------|-------|-------|--------|--------|---------|----------|--------|-------|-------------------|-------------|----------|------|---|----|-----------|-----------|-----|----------|---|
|          | 138                                 | Woo                                                                     | dcoc          | k Hill,          | Kent         | ton, I         | Middle     | esex         | НАЗ   | 0JN   |        |        |         |          |        |       | Chec              | ked by      | <u>,</u> |      |   | Da | te:       | 01        | 0 ( | <u> </u> |   |
|          | Fax<br>E M                          | :: 020<br>ail: sı                                                       | ) 893<br>rb@s | 0 8140<br>rbrun: | 5 M<br>swicł | ob: (<br>k.cor | )7803<br>n | 3 262        | 009   |       |        |        |         |          |        |       |                   |             |          |      |   |    | N         | /lay      | '15 | ;        |   |
|          |                                     |                                                                         |               |                  |              |                | 55         | Gr           | eer   | ncr   | oft    | Ga     | rde     | ns       |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  | Sta          | nch            | ion        |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  | Sia          | псп            |            |              |       |       |        |        | Ht      | say      | 6600   | )     |                   |             |          |      |   | _  |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  | Cap          | o co           | nne        | ctio         | n wit | th to | tal le | oad    | = 37    | 7.2 >    | (4.3   | /2 =  | 80                | KN          |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  | BM           |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              | cap            |            | nneo         | ctior |       | 30 x   | 0.0    | 5       | =        | 4      | .0 K  | Nm                |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              | Sta            | bility     | /            |       | 80    | x 6.6  | 5 X 2  | 2.5%    | <u> </u> | 13.    | 2 KP  | <u>vm</u><br>2 KI | Nm          |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        | 17.   |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  | Try          | 203            | 3 UC       | 46           |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          | L/Ry 1.5 x 6600 / 51.1 = 194        |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        | ד/ח   | 1                 | 0 5         |          |      | _ |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        | ויש   | - 1               | 0.0         |          |      | _ |    | _         |           |     |          |   |
|          | Pbc = 86 N/mm2 Pc = 25 N/           |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          | 5 N/r  | nm    | 2                 |             |          |      |   |    |           |           |     |          |   |
|          | Fbc = 17.2 e6 / 449.2 e3 = 38 N/mm2 |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          | Fbc = 17.2 e6 / 449.2 e3 = 38 N/mm2 |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      | _ |    | _         |           |     |          |   |
|          |                                     | Fc = 80 e3 / 58.8 e2 = 14 N/mm2                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              | U۲             | =          | 38           | / 86  | +     | 14 /   | 25     | = 1<br> | 1.1      |        |       | Tor               | )<br>hic    | 1h       |      |   |    | rovi      | ida       |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       | 100               |             | , i i    |      |   | 2  | ) 3 L     | JC        | 52  |          |   |
|          |                                     |                                                                         |               |                  | Fra          | me             | 2 01       | n re         | ar e  | leva  | atior  | h      |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              | din            |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  | top          | me             | y<br>mbe   | er           |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                | Ro         | of           | 1.9   | 9 Kn  | /m2    | xs     | ay 3    | m        | =      | 5.    | 7 KN              | l/m         |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                | ma         | son          | ry cl | add   | ing    | 3.6    | Kn/n    | n2 x     | 0.7    | = 2   | .5 K              | <u>(N/m</u> | <u>)</u> |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       | 8.2               | KN          | /m       |      |   |    |           |           |     |          |   |
| -        |                                     |                                                                         |               |                  | Mid          | dle            | mer        | nbe          | r sa  | y as  | top    | ast    | floor   | spa      | ans p  | bara  | llel              |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              | Use            | e sa       | me           | sect  | ion   | for a  | all sp | bans    | s so     | assi   | Jme   | UD                | L =         | 16 k     | KN/m | 1 |    |           |           |     |          |   |
| <u> </u> |                                     |                                                                         | -             |                  |              | Ma             | x BN       | / 1          | 6 x 4 | 4.38  | 5g / 8 | 8 =    | 37      | <br>KNr  | n<br>n |       |                   |             |          |      |   | +  |           | $\neg$    |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              | Try            | 203        |              | 6 46  | 07.   |        | 140    |         |          |        | 1/100 |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            | FDC          | ; = . | 376   | 20/2   | 449.   | 2 ec    | s =      | 821    | N/III | mz                |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  | Def          | lect           | ion        |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              | 5 x            | 16 >       | <b>‹</b> (4. | 3)4   | x e5  | / 38   | 34 x   | 210     | x 4      | 564    | = 7   | 7.4m              | m           |          |      |   |    |           | $\square$ |     |          |   |
| <b> </b> |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             | 0ĸ       |      |   | _  | _         | -         |     |          |   |
| ⊢        |                                     |                                                                         | -             |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           | +         |     |          | + |
|          |                                     |                                                                         |               |                  | Sta          | nch            | ion b      | by ir        | ispe  | ctio  | n to   | be 2   | 203     | UC       | 46     |       |                   |             |          |      |   |    |           |           |     |          |   |
| <b> </b> |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           | _         |     |          | - |
| <b> </b> |                                     |                                                                         | ╞──           |                  |              |                |            |              |       |       |        | -      |         |          |        |       |                   |             |          |      |   | +  | -         | -         |     |          | - |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           |           |     |          |   |
|          |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   |    |           | $\square$ |     |          |   |
| <b> </b> |                                     |                                                                         |               |                  |              |                |            |              |       |       |        |        |         |          |        |       |                   |             |          |      |   | +  | _         | -         |     |          |   |
|          | 1                                   | I                                                                       | 1             | 1                |              |                | 1          | 1            | 1     | 1     | I      | 1      | 1       |          | 1      |       | 1                 |             | I        |      |   |    |           |           |     | L        | 1 |



| S R BRUNSWICK CEng FICE |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          | Prepa     | red by        | SR    | в                 |       | Sheet:<br>1515 - 7 |   |           |                |           |      |       |   |  |  |
|-------------------------|-------------------|-------|----------------|---------------|------------------|------------|-------|-------------|-------|------|-----------|-------|------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|-------|-------------------|-------|--------------------|---|-----------|----------------|-----------|------|-------|---|--|--|
| 138                     | Woo               | dcocl | k Hill,        | Ken           | ton, I           | Viddl      | esex  | HA3         | 0JN   |      |           |       |                                                                                                                                          |           |               | Check | ked by            | :     |                    |   | Date:     |                |           |      |       |   |  |  |
| Fax<br>E Ma             | k: 020<br>ail: sr | b@s   | 0 814<br>rbrun | 46 N<br>ISWIC | /IOD: (<br>k.cor | 0780<br>n  | 3 262 | 009         |       |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  | 55         | Gr    | eer         | ncro  | oft  | Ga        | rde   | ns                                                                                                                                       |           |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       | Dor            | aian          | of               | floo       | riai  | oto         |       |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       | Des            | sign          |                  |            | r joi | 515         |       |      |           |       |                                                                                                                                          | Spa       | an 4          | 800   |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                | חוו           |                  | 216        | n/m   | 2           |       |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   | _         |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  | 2. T F     |       |             |       |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               | Ma               | x BN       | 12    | .1 x        | 4.8   | Sq / | 8 =       | = 6.  | 0 K                                                                                                                                      | Nm        |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                | Z re          | eqd              | 6.0        | e6 /  | 5.3         | x 1.  | 1 :  | = 10      | )37   | e3 n                                                                                                                                     | nm3       | /m            |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               | Trv              | 25         | 0 x 5 | 50 Ø        | D 40  | 0 ct | rs (      | 7 =   | 116                                                                                                                                      | 65 e?     | 3 mr          | n3 /  | m )               |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               |       | ,                 |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                | Def           | flect            | ion<br>2.1 | x 0.4 | 1 x (       | 4.8)  | xe   | 3/3       | 84 x  | 8.8                                                                                                                                      | x 56      | <u>.9</u>     | = 1   | 1.6               | nm    |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  |            |       |             | ,     |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   | Provide   |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               | 0.0   | 024               | x sp  | an                 |   | 25<br>Gr  | 0 x 5<br>ade   | 0@<br>C16 | 2400 | ) ctr | S |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       | Bea            | am (          | G1 t             | rim        | ming  | g sta       | air   |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               | Spa   | an 4              | 000   |                    |   | _         |                |           |      |       |   |  |  |
|                         |                   |       |                | Loa           | ading            | g          |       |             |       |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   | +         |                |           |      |       |   |  |  |
|                         |                   |       |                |               | floo             | or<br>Dr   | 2.1   | KN          | /m2   | x 3. | 9/2       | 2     | 4                                                                                                                                        | =         | 4.1           | KN    | /m                |       |                    |   | _         |                |           |      |       |   |  |  |
|                         |                   |       |                |               | End              |            | ng v  | vaii        | 0.0   | NN/  | mz        | x 3.4 | +                                                                                                                                        |           | : <u>Z.</u> ( | 6.1   | <u>v/m</u><br>KN/ | 'n    |                    |   | Re        | actio          | on 12     | 2.21 | ٢N    |   |  |  |
|                         |                   |       |                | Max           |                  | 1 6        | 1 v   | 460         | / 0   |      | 12.2      | Knr   | <b>_</b>                                                                                                                                 |           |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                | Ivia          |                  |            |       | 434         | 10    | -    |           | NIII  |                                                                                                                                          |           |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               | Try              | 203        | 3 x 1 | 33 x        | (25   | UB   |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                | L/R           | y = 1            | 4e3        | / 31  | =           | 129   | Pb   | c = 1     | 02    | N/m                                                                                                                                      | D/T<br>m2 | = 2           | :6    |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               | Fb               | \<br>\ = 1 | 22    | <u>6</u> 6/ | 23    | 0    | 3 -       | 55    | NI/r                                                                                                                                     | nm2       |               |       |                   |       |                    |   | _         |                |           |      |       |   |  |  |
|                         |                   |       |                | _             |                  |            | ۲.۲   |             | 20    |      |           | 55    | 1 1/1                                                                                                                                    |           |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                | Def           | flect            | ion<br>61  | x (4) | )4 x        | e5 /  | 384  | <br>  x 2 | 10 x  | 234                                                                                                                                      | 56 =      | - 4           | 1mn   | <br>n             |       |                    |   | +         |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               | OK    |                   |       |                    |   | Pro<br>20 | ovide<br>3 x 1 | ;<br>33 > | (25  | UB    |   |  |  |
|                         |                   |       |                | Bea           | am (             | G2 8       | G3    | car         | ryin  | g G  | 1         |       |                                                                                                                                          |           |               | _     |                   | 0.0   |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               | Spa   | an 4              | 800   |                    |   | +         | -              |           |      |       |   |  |  |
|                         |                   |       |                |               |                  | Loa        | ding  | g fro       | om C  | 51 1 | m fr      | om    | sup                                                                                                                                      | port      |               |       |                   |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               | BM               | 12         | .2 x  | 1 x 3       | 3.8 / | 4.8  | = !       | 9.7 ł | <nm< td=""><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td></nm<> |           |               |       |                   |       |                    |   | +         |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               |       | <br>              |       |                    |   |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               | Ву    | insp              | ectio | on                 |   | 20        | $3 \times 1$   | ;<br>33 > | (25  | UB    |   |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   |           |                |           | -    |       |   |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    |   | $\perp$   |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  |            |       |             |       |      |           |       |                                                                                                                                          |           |               |       |                   |       |                    | _ |           |                |           |      |       |   |  |  |
|                         |                   |       |                |               |                  | 1          |       |             |       |      | 1         |       |                                                                                                                                          |           |               |       |                   |       |                    |   |           |                | 1         |      |       |   |  |  |



|   | S          | S R BRUNSWICK CEng FICE   |                      |                               |                          |                         |                       |               |              |              |       |       |        |        | Prepared by: |       |          |             |          |       |     | Sheet: |          |  |          |          |  |  |  |
|---|------------|---------------------------|----------------------|-------------------------------|--------------------------|-------------------------|-----------------------|---------------|--------------|--------------|-------|-------|--------|--------|--------------|-------|----------|-------------|----------|-------|-----|--------|----------|--|----------|----------|--|--|--|
|   | 400        |                           |                      |                               |                          |                         |                       | -             |              | <b>.</b>     |       |       |        |        |              |       | Ohaa     | lin al le i | SR       | В     |     |        | 1515 - 9 |  |          |          |  |  |  |
|   | Fax<br>Fax | vvoo<br>k: 020<br>ail: sr | acoc<br>) 893<br>b@s | ik Hill,<br>30 814<br>Sirbrun | , Ken<br>16 - N<br>Iswic | ton, I<br>Nob:<br>k.cor | vildali<br>0780:<br>n | esex<br>3 262 | HA3<br>2 009 | UJN          |       |       |        |        |              |       | Cnec     | кеа ру      | :        |       |     |        | May '15  |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         | 55                    | Gr            | eer          | ncre         | oft   | Ga    | rde    | ns     |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      | _                             |                          |                         |                       |               |              |              |       |       |        | _      |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      | Des                           | sign                     | <u>of</u>               | new                   | ret ret       | aini         | ng ۱         | wall  | to    | LG f   | 00     | <u></u>      |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              | Ht r  | retai    | ined        | sav      | 25    | 00  |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | Ass                      | sum                     | ed s                  | oil p         | ara          | met          | ers f | for t | back   | fill ı | nate         | erial |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         | der                   | isity         | 18           | B KN         | √/m2  | 2     |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         | Ka                    | = 0           | ).38         | 1            |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | Sur                      | cha                     | rao                   | 6014          | 10           | <b>K</b> NI/ | m2    |       |        |        |              |       |          |             |          | -     |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | Sui                      | Cha                     | lige                  | Say           | 10           |              |       |       |        |        |              |       |          |             |          | -     |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      | H1                            | 10                       | KN/r                    | m2 x                  | 0.3           | 8 x 2        | 2.5          | = 9   | .5 K  | (N/m   | 1      |              |       |          | 7           | <u> </u> |       |     | H1     |          |  |          |          |  |  |  |
|   |            |                           |                      | H2                            | soil                     | = '                     | 18 x                  | 0.38          | 3 x 2        | 2.5S         | q/2   |       |        |        |              |       |          |             | _        |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       | 21.           | 4 KI         | √/m          |       |       |        | H3     |              |       |          | H2          |          | ſ     |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      | <u>ц</u> 2                    | Ma                       | tor                     | _ 1(                  |               | /m2          | × 2          | 080   |       |        |        |              |       | Ζ        |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      | пэ                            | vva                      |                         | - n                   | 20            | /mz<br>KN/   | . x z.<br>m  | .030  | /2    |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        | To     | tal lo       | ad    | = 62     | 2.2 ł       | KN/r     | n     |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | Ma                       | x BN                    | / for                 | car           | ntile        | /er          | = /0  |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | 9.5                      | x2.                     | 5/2                   | + 2           | 1.4          | x 2.         | 5/3   | + 2   | 20 X I | 2/3    | = 4          | 3 KI  | Nm       |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       | Ult           | load         | d sav        | v 43  | 3 KN  | J/m :  | x 1.   | 55 =         | 66    | .7 K     | (Nm         |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       | 0.0           |              |              | ,     |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | Try                      | 300                     | ) thic                | ck R          | Cw           | all          |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         | Cov                   | ver s         | say (        | 50m          | m     |       |        |        | d =          | 240   | )        |             |          |       |     |        |          |  |          |          |  |  |  |
| - |            |                           |                      |                               | N // /-                  | *da                     | a*fa                  |               | _ (          | 67           | 26    |       | 2 1    | 240    | <b>Sa</b> 1  | 25)   |          | 0.03        | 22       |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | IVI/L                    | Jus                     | q ic                  | u             | - (          | 50.7         | eo    | /(6   | es x   | 240    | Syx          | 35)   |          | 0.03        | 55       |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | a1                       | = 1                     | 0.94                  |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | Ast                      | = 6                     | 6.7                   | e6 /          | (0.8         | 37 x         | 500   | ) x 0 | .94 :  | x 24   | 0)           | = 6   | 680      | mm          | 2 / r    | n     |     |        |          |  |          |          |  |  |  |
| - |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
| - |            |                           |                      |                               | Pro                      | vide                    | ь H1                  | 66            | n 20         | 0 ct         | rs (  | 101   | 0 mi   | m2     | ) in e       | ach   | fac      | e ve        | ortic    | allv  |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | 1 10                     |                         | Dis                   | tribu         | ition        | ste          | el T  | 12    | @2     | 00 0   | trs          | (56   | 6 m      | m2 /        | / m      | in ea | ach | face   | )        |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       | Ĭ      |        |              | Ì     |          |             |          |       |     |        | Ĺ        |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          | mir                     | ו ste                 | el C          | ).13         | % a          | rea   | = 3   | 90 n   | nm2    | 2/m          |       |          | 1           |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | Ch                       |                         |                       | dar           |              | Ļ            |       |       |        |        |              |       |          | <u> </u>    |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               | CIR                      | ECK                     | Sna                   | an /          | den          | ><br>th =    | 7     |       |        |        | M/ł          | ndSc  | - r      | 12          |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         | Mf                    | = 1           | .8           |              |       |       | Mf     | Cor    | np           | = 1.  | 1<br>1   |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          | Allo                    | ował                  | ole s         | spar         | =            | 7 x   | 1.8   | x 1.1  | x 2    | 40           | = 3   | 300      | )           |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        | OK           |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          | -                       |                       |               |              | -            | 1     | -     | -      |        |              |       | -        | -           |          |       |     |        |          |  | -        | -        |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          | <u> </u>                |                       |               |              | <u> </u>     |       |       |        |        |              |       | <u> </u> | <u> </u>    |          |       |     |        |          |  | <u> </u> | <u> </u> |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       | -     |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |
|   |            |                           |                      |                               |                          |                         |                       |               |              |              |       |       |        |        |              |       |          |             |          |       |     |        |          |  |          |          |  |  |  |

| ## S R BRUNSWIC                                           | K CEng FICE                     | Prepared by:                   | Sheet:                           |  |  |  |  |  |
|-----------------------------------------------------------|---------------------------------|--------------------------------|----------------------------------|--|--|--|--|--|
| 138 Woodcock Hill Kenton M                                | iddlesex HA3 0JN                | Checked by:                    | Date:                            |  |  |  |  |  |
| Fax: 020 8930 8146 Mob: 07<br>E Mail: srb@srbrunswick.com | 7803 262 009                    |                                | May '15                          |  |  |  |  |  |
|                                                           | 55 Greencroft Gardens           | 6                              |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 | Party W                        | all                              |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           | Dry Pack to be 1:3              |                                |                                  |  |  |  |  |  |
|                                                           | cement:sand mix                 |                                |                                  |  |  |  |  |  |
|                                                           | additive and well               |                                |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
| Ganaral Notas                                             | 1                               |                                |                                  |  |  |  |  |  |
| 1) concrete section to be                                 |                                 |                                |                                  |  |  |  |  |  |
| match the existing wall                                   |                                 | 200                            | ctrs in each face.               |  |  |  |  |  |
| thickness.<br>2) Concrete to achieve                      |                                 | 800<br>Dist                    | mm lap<br>ribution reinforcement |  |  |  |  |  |
| 35N at 28 days<br>3) Cover to reinforcement               |                                 | H12                            | 2 @ 200 ctrs 600mm               |  |  |  |  |  |
| to be min 40mm each                                       |                                 |                                |                                  |  |  |  |  |  |
| 4) 100mm kicker to be                                     |                                 |                                |                                  |  |  |  |  |  |
| of wall                                                   |                                 |                                |                                  |  |  |  |  |  |
| 5) Provide shear key between adjacent                     |                                 |                                |                                  |  |  |  |  |  |
| sections using 225 x 75 x 300 long shaped timber.         | Top of RC slab to               |                                |                                  |  |  |  |  |  |
| orientated vertically, at                                 | be 250mm below                  |                                |                                  |  |  |  |  |  |
|                                                           | insulation,                     | Hee as e                       | el to be same width              |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           | Rev A                           |                                | ,                                |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 | Corner bars top and bottom.    |                                  |  |  |  |  |  |
| Base reinforce<br>H16 @ 200 ct                            | ement trs top and bottom        | 200 ctrs                       |                                  |  |  |  |  |  |
| in each directi<br>800mm                                  | ion, min lap                    |                                |                                  |  |  |  |  |  |
|                                                           |                                 | -                              |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
| Wall and                                                  | d base to be built in max 1.2n  | n widths to suit final profile |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
| Underp                                                    | inning / LG floor detail        |                                |                                  |  |  |  |  |  |
| Same detail                                               | is to be provided at rear light | well                           |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |
|                                                           |                                 |                                |                                  |  |  |  |  |  |

| S R BRUNSWICK CEng FICE |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    | Prepa | red by         | :<br>SR       | в              |        |       | Sheet:<br>1515 - 11 |      |         |       |        |          |  |  |
|-------------------------|--------------------------|----------------------|-----------------------------|--------------------------|----------------------------|----------------------|-----------------|--------------|-------------|--------|----------|-----|----|-------|----------------|---------------|----------------|--------|-------|---------------------|------|---------|-------|--------|----------|--|--|
| 138<br>Fax<br>E M       | Woo<br>k: 020<br>ail: sr | dcoc<br>) 893<br>b@s | k Hill,<br>80 814<br>Frbrun | , Ken<br>46 - N<br>Iswic | ton, I<br>/lob: (<br>k.cor | Middle<br>0780:<br>n | esex<br>3 262   | HA3<br>2 009 | 0JN         |        |          |     |    |       | Checkeu Dy. Da |               |                |        |       |                     |      | May '15 |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            | 55                   | Gr              | eer          | ncre        | oft    | Ga       | rde | ns |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             | Тур                      | oica                       | l ste                | elw             | ork          | det         | ail    |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
| <br>Г                   |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
| <br>-                   | Corr<br>Con              | ner<br>necti         | on                          | -                        |                            |                      | Г               |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         | 10m                      | m er                 | nd                          |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
| <br>_                   | full p                   | profile              | e fillet                    | t  _                     |                            |                      |                 |              |             | _      |          |     |    | 203   | B UC           | 60            | -              |        |       |                     |      |         |       |        |          |  |  |
| <br>-                   | 2 x 4                    | 1.<br>4 M2           | 0                           | -                        |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         | Grad                     | de 8.                | 8                           |                          |                            |                      |                 |              |             | Ħ      |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      | $  \rangle$                 |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        | <u> </u> |  |  |
| <br>                    |                          |                      | <u> </u>                    |                          |                            |                      | ┝╺╋             | ╟─           |             |        | ╞        |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      | L               |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       | _                   |      |         |       |        | -        |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       | 203            | x 1           | 33 ×           | 25     | UB    |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        | ┢╴       |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
| <br>                    |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    | 8     | mm e<br>M20    | end p<br>Grad | late<br>le 8.8 | 3 bolt | s -   |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          | _   |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            | $\setminus$          |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 | H            |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        | <u>-</u> |     |    |       |                |               |                |        |       |                     |      |         |       |        | -        |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             | -      |          |     |    |       | 203            |               | ; 71           | con    | cret  | e er                | icas | ed      |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               | -              |        |       |                     |      | -       |       |        |          |  |  |
| <br>                    |                          |                      |                             |                          |                            |                      |                 |              |             |        | 1        |     |    |       |                |               |                |        |       |                     |      |         |       |        | <u> </u> |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        | $\vdash$ |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             | Bott                     | om s                       | ectio                | n to l          | )<br>De co   | ncret       | te /   |          |     |    |       | NO             | TE:           | Th             | e fra  | me    | s are               | e to | be c    | n e   | xistir | ıg       |  |  |
| <br>                    |                          |                      |                             | enca                     | ased,                      | , 75m                | nm co<br>will a | over i       | using<br>re |        | -        |     |    |       | four           | ndat          | ions           | an     | d the | e ne                | w L( | G flo   | or i  | s to   |          |  |  |
|                         |                          |                      | $\left  \right $            | 35N                      | /mm                        | 2 at 2               | 28 da           | ys. s        | ection      | n to l | be -     |     |    |       | enc            | ase           | ιne            | JOU    | lom   | sec                 | uon  | ut tř   | ie tř | ame    | ;        |  |  |
|                         |                          |                      |                             | Enc                      | asen                       | nent f               | to be           | to all       | sect        | tions  | -        |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             | belo                     | w ba                       | iseme                | ent s           | ab           |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        | <u> </u> |  |  |
| <br>                    |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      | L                           |                          |                            | L                    |                 |              |             | L      | L        |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        | $\vdash$ |  |  |
| <br>                    |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        | <u> </u> |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        | <u> </u> |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        |          |     |    |       |                |               |                |        |       |                     |      |         |       |        | -        |  |  |
|                         |                          |                      |                             |                          |                            |                      |                 |              |             |        | 1        |     |    |       |                |               |                |        |       |                     |      |         |       |        |          |  |  |



Martin Redston Associates

Consulting Civil & Structural Engineers

martin@redston.org

3 Edward Square, London N1 0SP
 Tel 020 7837 5377 Fax 020 7837 3211

6 Hale Lane, London NW7 3NX
 Tel 020 8959 1666 Fax 020 8906 8503

Our ref: 15.640 20<sup>th</sup> October 2015

55 Greencroft Gardens C/o Ms Shelley Fey Parkfords Management 1 Regent Terrace Rita Road London SW8 1AW

Dear Ms Fey,

#### 55 Greencroft Gardens, London NW6 3LL

Further to my visit to the property on the 1<sup>st</sup> of October 2015 I am writing to confirm that I have discovered no structural problems or other major issues in relation to the building structure. During my visit I was able to inspect the external walls of the property, the common hallway and staircase together with flat number 1, 3, 4, 5 and 8. There were minor areas of plaster hairline cracking at various locations but these appear to be cosmetic and of no structural significance. The front elevation indicated signs of minor easing of mortal joints, in particular over the front door, however these appear to be old and long standing in origin and did not appear to be of major structural significance.

As discussed I previously visited the property on 14<sup>th</sup> October 2014 and although I did not report formally at that time it is clear that the building was in a similar condition to currently, indicating that no deterioration has occurred over the last 12 months. I understand that the basement structure was completed in accordance with Building Control Guidelines and as far as can be ascertained no damage has occurred as a result of that work since completion.

Finally I would confirm my view that any minor damage to the property is typical of the structural conditions of many similar buildings in the immediate vicinity and therefore it is important that maintenance should continue on a regular basis to ensure that the structure remains in good condition in the future.

I trust that this information is according to your current requirements but if you have any further questions please do not hesitate to contact me. As agreed, a note of our professional fees is enclosed for your soonest attention.

Yours Sincerely,

Martin Redston.