

1 – Scope of Work

The following calculation covers the design of surface water drainage and sizing of below ground attenuation for Turner Rise Retail Park

2 – Design Criteria

Design events –	1:1yr – No Surcharge
	1:1yr – No Flooding
	1:100yr + 30% climate change Controlled flooding contained onsite posing no
	risks to buildings
Min cover –	1200mm to pipework
Min gradients –	100Ø @ 1:60
	150Ø @ 1:100
	225Ø @ 1:167

SuDS Hierachy Compliance:

1 Store rainwater for later use

There is no rainwater harvesting planned/shown for the project.

2 Use infiltration techniques, such as porous surfaces in non-clay areas

The site is not deemed to be suitable for infiltration drainage and the preliminary findings of the site investigation confirmed that the site is underlain by London Clay. The main parking area driveway to the site is to be constructed using a porous paved surface. The free draining sub base material can be used to attenuate water in during the 1:100yr storm.

3 Attenuate rainwater in ponds or open water features for gradual release

The layout and size of the site does not lend itself to ponds. It is suggested that rain gardens are positioned at least 3m away from buildings in areas of good permeability. We have previously stated that infiltration drainage is not a viable option due to the underlying strata. The landscape architect will be providing a planter rain garden at the base of the RWP. In these above ground planters, an overflow pipe, set at the height of the rim of the planter allows water to run straight to the base of the planter when the planter is saturated and then on to a gully into the proposed drainage system

Figure 1 - Planter Rain Garden

Surface Water Calculations

4 Attenuate rainwater by storing in tanks or sealed water features for gradual release

Our proposal for the drainage is to restrict the flow to 5l/s and use the volume in the below ground pipework and manholes along with the voids in the permeable sub base to allow a slow release to the existing combined public demarcation manhole on site thus retarding the peak discharge and alleviating the load on the sewer during critical flow conditions.

5 Discharge rainwater direct to a watercourse

There are no watercourses in the vicinity of the site. This cannot be used for this site.

6 Discharge rainwater to a surface water sewer/drain

There are no surface water sewers or drains in the vicinity.

7 Discharge rainwater to the combined sewer.

The attenuated flow will be discharged to the existing public combined sewer on site.

3 – Design Inputs / Key Assumptions

Drainage catchments:

The existing areas were taken from Survey Solutions topographical survey carried out Feb 2013 refernece 12480SE-01.

The proposed catchment areas were taken from WCEC proposed site layouts

_			Area (m²)	Runoff Coefficient	Factored Area (m²)	Total (m²)	Total Factored	
	a nt	Roof	234	0.95	222.3			
	pm	Green Roof	0	0.4	0	070	591.6	
	Vel	Hardstanding	370	0.85	314.5	878		
	□ □	Soft Landscaping	274	0.2	54.8			
	d	Roof	230	0.95	218.5			
	pm	Green Roof	156	0.4	62.4	070		
	vel Vel	Hardstanding	241	0.85	204.85	878	535.95	
	L 0	Soft Landscaping	251	0.2	50.2			
_								

Interfaces with above ground drainage:

Location of rainwater pipes and foul stacks taken from WCEC sketches issued 30th October 2015

Receiving system:

Discharge from proposed drainage to existing ublic combined water sewer in Finchley Road is to be via the existing public demarcation chamber and lateral connection on site. Connection to be made into existing brick manhole manhole (size TBC). Outfall from this manhole is 150Ø. Cover level 73.790, Invert Level 72.050

Peak discharge:

The peak discharge rate from the site for all storms up to and including the 1:100yr + 30% climate change have been reduced to greenfield run-off rate. This has been set at 5l/s due to the size of the catchment.

evolve Consulting Engineers Ltd

4 – Modelling Results

Refer to MicroDrainage calculations in the appendix.

Consideration of exceedance of design event / or failure of the system:

Should the design event be exceeded the new development is not at risk of flooding due to the levels being higher than the drainage system. The flood water would emerge from the cover of EXMHC1 and flow offsite to Finchley road where it would be picked up ny the existing highway drainage. The surface and foul water systems are protected from surcharge with the use of non return valves at the outfall.

PIC F4 MDPE INSPECTION

MH F1

PCC RING

74.900

73.755

74.000

72.455

100Ø

100Ø

0.900

1.300

450Ø

1050Ø

450Ø

600 x 600

C250

D400

MANHOL			APPROX. COVER		DIAMETER OF			COVER TYPE		SETTING OUT COORDS		DEMADI/S
			LVL		LARGEST PIPE	AFFROA. DEFIN		CLEAR OPENING	LUAD CLASS	Easting	Northing	REWIARNS
MH	S1	PUMP CHAMBER	72.900	71.315	100Ø	1.585	1200Ø	600 x 600	A15	-	-	
PIC	S1	MDPE INSPECTION	74.580	73.930	100Ø	0.650	450Ø	450Ø	B125	-	-	
MH	S2	PCC RING	73.910	72.550	150Ø	1.360	1050Ø	600 x 600	C250	-	-	
RE	S1	RODDING EYE	74.900	74.250	150Ø	0.650	N/A	N/A	A15	-	-	
MH	S3	PCC RING	74.800	74.060	150Ø	0.740	1050Ø	600 x 600	C250	-	-	
MH	S4	PCC RING	73.900	72.430	150Ø	1.470	1800Ø	600 x 600	C250	-	-	Hydrobrake Chamebr. 5l/s restriction.

	DRAINAGE KEY		GEN 1. TH EVO	NERAL NO HIS DRAWIN DLVE DESIGI	DTES IG TO BE READ IN CONJUNCTION N STATEMENT.	ON WITH TH	IE
	EXISTING PRIVATE SURFACE WATER SEWER		2. TH Rel Man	HIS DRAWIN EVANT ARC	IG IS TO BE READ IN CONJUNC HITECTS, SERVICES & SPECIA RS DETAILS, DRAWINGS AND :	TION WITH LIST SPECIFICAT	ALL TIONS.
	PROPOSED PRIVATE SURFACE WATER SEWED		3				
	EXISTING PRIVATE FOUL WATER SEWER		DIM	ENSIONS AF	RE IN MILLIMETRES UNLESS NO	OTED	
	PROPOSED PRIVATE FOUL WATER SEWER		UTH TO E	HERWISE. AL	LL DIMENSIONS TO EXISTING E D AND CONFIRMED ON SITE B	LEMENTS A	ARE TOR
- ·	EXISTING PRIVATE COMBINED WATER SEWER		NOT	TES			
· — · —	PROPOSED PRIVATE COMBINED WATER SEWER		1.	ALL LEVEL	S ARE RELATIVE TO ORDNANO	E DATUM (OD).
	EXISTING PUBLIC COMBINED WATER SEWER		2.	EXISTING I	DRAINAGE DEPTHS AND LOCA	TIONS ARE	BASED
· _ · _	PROPOSED PUBLIC COMBINED WATER SEWER			ON CCTV S		IS DATED C	OCT 15
				CONTRAC	TOR ON SITE PRIOR TO ANY W	ORKS	NT
MH	ADAINDOINED DRAINAGE			SERVICE A	UTHORITIES FOR DETAILS OF	SERVICES	
	PROPOSED PRIVATE SURFACE WATER PRECAST			TREATMEN	NT IF SERVICES EXPOSED		
			3.	REFER TO	ARCHITECT'S /M&E CONSULTA	ANTS AINAGE AB(OVE
PIC	PROPOSED PRIVATE SURFACE WATER MDPE			GROUND F	LOOR SLAB.		
RE	PROPOSED PRIVATE SURFACE WATER RODDING EYE		4.	NO PRIVAT	E DRAINAGE SHALL DRAIN ON	TO THE HIC	SHWAY.
<.\MH				ADEQUATE SHALL BE	E PROVISION (I.E. GULLIES, CH MADE ON THE PRIVATE SITES	ANNEL DRA	NNS), NT THIS.
	EXISTING PRIVATE SURFACE WATER PRECAST		5.	ALL PRIVA	TE DRAINAGE WORKS TO BE II	N ACCORDA	ANCE
				WITH PAR AND BS 83	T H OF THE CURRENT BUILDIN	G REGULAT	IONS
MH	PROPOSED PRIVATE FOUL WATER PRECAST		6		RNAL DRAINAGE SHOWN ON TH		
j	CONCRETE RING MANHOLE		0.	BEEN BASI	ED UPON CLAY/CONCRETE (VI	TRIFIED	
PIC	PROPOSED PRIVATE FOUL WATER MDPE INSPECTION			CLAYWARI 5911-1 & B	E TO BS 65 AND BS EN 295 OR S EN 1916 AND FLEXIBLY JOIN ⁻	CONCRETE [ED)	TOBS
)	CHAMBER		7.	ALL DRAIN	RUNS BELOW STRUCTURAL S	LAB ARE TO) BE
MH	EXISTING PRIVATE FOUL WATER PRECAST CONCRETE			CAST IRON	I TIMESAVER BY ST-GOBAIN O		ACT
j	RING MANHOLE			IRON DRAI	NAGE AT THE POINT WHERE T	HE PIPE EN	IERGES
				FROM BEN	EATH THE SLAB		
)			8.	ALL PIPE C	CONNECTIONS TO FOUL STACK	(S TO BE 10	ØØ
			٥			ב בודטריי	
МН	EXISTING PUBLIC COMBINED WATER PRECAST		9.	REMOVED	AND REPLACED WITH TYPE 1	E EITHER BACKFILL C	R
)	CONCRETE RING MANHOLE			FILLED WI	TH MASS CONCRETE		
			10.	ALL PROP	OSED SERVICES TO BE COORI	DINATED WI	TH
	PROPOSED CHANNEL DRAIN		11				
			11.	ALL FOUL EYES & PU	MANHOLES, INSPECTION CHAI MP CHAMBER TO HAVE DOUB	LE SEALED	DDING
				COVERS.			
	STUB STACK		12.	HYDROBR/	AKE, PUMPS AND ASSOCIATED		s to
	SOIL VENT PIPE			MANUFAC	TURERS DETAILS.	vviiii	
	POLYPROPYLENE INSPECTION CHAMBER		13.	ATTENUAT	ION UNITS TO BE INSTALLED I	N STRICT	
	MANHOLE			ACCORDA	NCE WITH MANUFACTURERS [DETAILS.	
	BACKDROP		14.	WHERE IN	VERT LEVELS ARE SPECIFIED	FOR INTER	
				THESE INV	ERTS. OTHERWISE PIPES ARE	TO BE LAI	ото
TO PRE-DEVELO ATES FOR THE S I RETURN PERIO	OPMENT ENQUIRY WITH THAMES WATER REQUESTS GREENFIELD SURFACE WATER DISCHARGE LEAVING THE SITE. THEREFORE 51/s FOR DS UP TO AND INCLUDING THE 1:100YR + 30% HAS BEEN USED TO			INTERNA	L FOUL PIPES		
TTENUATION.				150Ø = G	RADIENT 1:80		
PLICATIONS TO	THAMES WATER AND CAMDEN LLFA ARE IN PROGRESS . THIS DESIGN				L SURFACE WATER PIPES		
SEWER. NO WO	AL OF DRAINAGE PROPOSAL AND SUITABILITY OF CONNECTION TO DRKS ARE TO COMMENCE UNTIL PLANNING APPROVAL OF THE			100Ø = G	RADIENT 1:80		
STRATEGY IS OF ATER.	STAINED & FINAL CONNECTION TO PUBLIC SEWER IS CONSENTED BY		15.	WHERE FO	DUL AND SURFACE WATER SEV LESS THAN 100MM CLEARANCI	VERS CROS E SHORT LE	SS AND
FOR THE PREDI	CTED FOUL FLOWS OF 4.01/s HAVE BEEN RECEIVED FROM THAMES			OF BOTH F	RUNS ARE TO BE ENCASED IN	CONCRETE	
			16.	INTERNAL	FOUL DRAINAGE POSITIONS A	ND RAINWA	TER
ALKS WITH THAI	MES WATER REQUIRED FOR DIVESTION OF EXISTING PUBLIC SEWER		17		ON IS DEPENDANT ON THAMES		
			17.	APPROVAL	OF DRAINAGE PROPOSAL AN		ITY OF
SED ON A GREE	NROOF AREA OF 15001 AND A POROUS PAVED AREA OF 19001.			CONNECTI	E UNTIL CONSENT TO CONNE	CT IS RECE	IVED
			18.	FROM THE	M. NAGE DETAILS REFER TO EVOI	VE DRAWI	NGS
			10	1973-01-50			
			13.		ROUTES, POWER AND COMMS	DUCTING R	EFER
			20				0.14
			20.	GROUND E	DUCTING AND CONFIRM AND COOR		S FOR
				PUMPS			
		╞	С	06.11.15	ISSUED FOR APPROVAL	PV	V PW
		ł	В	10.09.15	ISSUED FOR PLANNING	PV	V PW
		F	A	01.09.15	ISSUED FOR INFORMATION	PV	V PW
		F	Rev.	Date	Revision	Ву	/ Chk
				<u> </u>		<u></u>	
				F	UK APPROV	AL	
			Clien	nt			
			AS	HBURY	& BLOOM		
			D '				
			Proje				
			264	+-∠/U HI	NUTLEY KUAD		
		ŀ	D	vine Title			
			Draw				
			ч К	NERVI	ARRANGEMENT		
		I	JL.				

Scale @ A1 Drawn bv Checked by 1:100 PW PW Drawing No. Revision 1973-01-500 С

evolveuk.biz 020 7251 6888

GLASGOW

South Block/Studio 104,

60-64 Osborne Street

Glasgow, G1 5QH

LONDON

London, EC1V 9BJ

140 Old Street

Evolve		Page 1
140 Old Street	Finchley Road	
London	SWS1	<u> </u>
EC1V 9BJ		Micro
Date 06/11/15	Designed by Paul White	
File 151105 - SWS1.MDX	Checked by PW	Diamatje
XP Solutions	Network 2015.1	·

Time Area Diagram for Storm

Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)
0-4	0.039	4-8	0.004

Total Area Contributing (ha) = 0.043

Total Pipe Volume (m³) = 1.284

©1982-2015 XP Solutions

Evolve										Page	2
140 Old	Street	;			Finch	ley Ro	ad				
London					SWS1					4	
EC1V 9BJ	г									Mice	J
Date 06/	Date 06/11/15						Paul Wi	nite			
File 151	105 -	SWS1.M	DX		Check	ed by	PW			DIdi	lidyt
XP Solut	ions				Netwo	ork 201	5.1				
Existing Network Details for Storm											
	PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/	k s) (mm)	HYD Sect	DIA (mm)	
	1.000	10.892	0.135	80.7	0.005	5.00	0	.0 0.600	0	100	
	1.001	3.725	-1.615	-2.3	0.000	0.00	0	.0 0.600	0	100	
	1.002	15.412	1.380	11.2	0.018	0.00	0	.0 0.600	0	150	
	1.003	6.986	0.120	58.2	0.000	0.00	0	.0 0.600	0	150	
	2.000	19.065	0.190	100.3	0.004	5.00	0	.0 0.600	0	150	
	2.001	20.000	1.630	12.3	0.000	0.00	0	.0 0.600	0	150	
	1.004	4.690	0.380	12.3	0.016	0.00	0	.0 0.600	0	150	
				<u>Netw</u>	ork Re	sults	<u>Table</u>				
			PN US (/IL Σ m)	I.Area (ha)	Σ Bas Flow (se Vel l/s)(m/s	Cap) (1/s)			
		1.	000 72	.450	0.005		0.0 0.8	6 6.7			
		1.	001 72	.315	0.005		0.0 0.0	0.0			
		1.	002 73	.930	0.023		0.0 3.0	3 53.6			
		1.	003 72	.550	0.023		0.0 1.3	2 23.3			
		2.	000 74	.250	0.004		0.0 1.0	0 17.7			
		2.	001 74	.060	0.004		0.0 2.8	9 51.1			
		1.	004 72	.430	0.043		0.0 2.8	8 51.0			

Evolve		Page 3
140 Old Street	Finchley Road	
London	SWS1	<u> </u>
EC1V 9BJ		Micco
Date 06/11/15	Designed by Paul White	
File 151105 - SWS1.MDX	Checked by PW	Dialiada
XP Solutions	Network 2015.1	1

Manhole Schedules for Storm

MH Name	MH Cl (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdro (mm)
Gully	72.900	0.450	Open	Manhole	10	1.000	72.450	100				
MHS1	72.900	0.585	Open	Manhole	1200	1.001	72.315	100	1.000	72.315	100	
PICS1	74.580	0.650	Open	Manhole	1200	1.002	73.930	150	1.001	73.930	100	
MHS2	73.910	1.360	0pen	Manhole	1050	1.003	72.550	150	1.002	72.550	150	
RES1	74.900	0.650	0pen	Manhole	10	2.000	74.250	150				
MHS2	74.800	0.740	0pen	Manhole	1050	2.001	74.060	150	2.000	74.060	150	
MHS4	73.900	1.470	0pen	Manhole	1800	1.004	72.430	150	1.003	72.430	150	
									2.001	72.430	150	
Outfall	73.590	1.540	0pen	Manhole	0		OUTFALL		1.004	72.050	150	
	1	1	1		1						1	

Evolve		Page 4							
140 Old Street	Finchley Road								
London	SWS1								
EC1V 9BJ		Mirro							
Date 06/11/15	Designed by Paul White	Drainago							
File 151105 - SWS1.MDX	Checked by PW	Diamage							
XP Solutions	Network 2015.1								
PIPELINE	SCHEDULES for Storm								
Ups	stream Manhole								
PN Hyd Diam MH C.Level Sect (mm) Name (m)	I.Level D.Depth MH MH DIAM. (m) (m) Connection (mm	, L*W)							
1.000 o 100 Gully 72.900	72.450 0.350 Open Manhole	10							
1.001 0 100 MHS1 72.900	72.315 0.485 Open Manhole	1200							
1.002 0 150 PICST 74.580 1.003 0 150 MHS2 73.910	73.930 0.500 Open Manhole 72.550 1.210 Open Manhole	1050							
2.000 o 150 RES1 74.900 2.001 o 150 MHS2 74.800	74.250 0.500 Open Manhole 74.060 0.590 Open Manhole	10 1050							
1.004 o 150 MHS4 73.900	72.430 1.320 Open Manhole	1800							
Downstream Manhole									
PN Length Slope MH C.Lev (m) (1:X) Name (m)	el I.Level D.Depth MH MH DI (m) (m) Connection (AM., L*W mm)							
1.000 10.892 80.7 MHS1 72.9	00 72.315 0.485 Open Manhole	1200							
1.001 3.725 -2.3 PICS1 74.5	80 73.930 0.550 Open Manhole	1200							
1.002 15.412 11.2 MHS2 73.9 1.003 6.986 58.2 MHS4 73.9	00 72.430 1.320 Open Manhole	1800							
2.000 19.065 100.3 MHS2 74.8 2.001 20.000 12.3 MHS4 73.9	00 74.060 0.590 Open Manhole 00 72.430 1.320 Open Manhole	1050 1800							
1.004 4.690 12.3 Outfall 73.5	90 72.050 1.390 Open Manhole	0							
<u>Free</u> Flowing (Dutfall Details for Storm								
Outfall Outfall C. Pipe Number Name	Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)								
1.004 Outfall	73.590 72.050 72.050 0 0								
Simulatio	n Criteria for Storm								
Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Inlet Coefficient 0.800Hot Start Level (mm)0 Flow per Person per Day (l/per/day) 0.000Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (l/s)0.000Number of Leput Hudgeseenbe 0Number of Character (Character Character (Leput Hudgeseenbe 0									
Number of Online Contr Number of Offline Contr	Number of Online Controls 2 Number of Time/Area Diagrams 1 Number of Offline Controls 0 Number of Real Time Controls 0								
Syntheti	ic Rainfall Details								
©1982-	2015 XP Solutions								

Evolve		Page 5								
140 Old Street	Finchley Road									
London	SWS1	m m								
ECIV 9BJ		Micro								
Date 06/11/15	Designed by Paul White	Drainage								
File 151105 - SWS1.MDX	Checked by PW	Drainiage								
XP Solutions	Network 2015.1									
Synthet	Synthetic Rainfall Details									
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	FSR Profile Type Sun 30 Cv (Summer) O nd and Wales Cv (Winter) O 20.700 Storm Duration (mins) 0.438	nmer .750 .840 30								

©1982-2015 XP Solutions

Evolve						Evolve									
140 Old St	reet			Finch	ley Road										
London				SWS1				Y.							
EC1V 9BJ								Micco							
Date 06/11	/15			Desig	ned by Pa	ul White									
File 15110	5 - SW	S1.N	1DX	Checke	ed by PW			Urainage							
XP Solutions Network 2015.1															
			<u>Onl</u>	ine Contro	ols for S	<u>torm</u>									
	_				1 0 0 1	/	a. o =								
Pump Mannote: MHSI, DS/PN: 1.001, VOLUME (M°): 0./															
			:	[nvert Leve]	(m) 72.3 ⁻	15									
Depth (m)	Flow (]	l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)							
0 100		-, -,	0 000	0,0000	1 700	0,0000	0 500	0,000							
0.100	2.0	0000	1.000	2.0000	1.800	2.0000	2.500	2.0000							
0.300	2.0	0000	1.100	2.0000	1.900	2.0000	2.700	2.0000							
0.400	2.0	0000	1.200	2.0000	2.000	2.0000	2.800	2.0000							
0.500	2.0	0000	1.300	2.0000	2.100	2.0000	2.900	2.0000							
0.600	2.0	0000	1.400	2.0000	2.200	2.0000	3.000	2.0000							
0.700	2.0	0000	1.600	2.0000	2.300	2.0000									
							I								
<u>Hydro</u>	-Brake	Opt	imum® Mar	nhole: MHS	4, DS/PN:	: 1.004, V	olume (m³): 4.2							
				Unit Roforo		-0063-5000-	1450-5000								
			D	esion Head	(m)	-0003-5000-	1 450 - 5000								
			Des	ign Flow (1	() /s)		5.0								
				Flush-F	lo™	C	alculated								
				Object	ive Line	ar discharg	e profile								
			T	Diameter (mm)		63								
	Minin	num C	IN Nutlot Pipo	Vert Level	(m) mm)		72.430								
	Sug	ggest	ed Manhole	Diameter (mm)		1200								
			Contro	1 Points	Head (r	n) Flow (l/s	;)								
		D	ocian Doint	t (Coloulata	() 1 4		0								
		D	esign Foin	Flush-Fl	o™ 0.08	32 1.	5								
				Kick-Fl	.o® 0.09	94 1.	4								
		M	ean Flow o	/er Head Rar	ige	- 3.	4								
The hydro	logical	cald	culations h	ave been ba	sed on the	Head/Disch	arge relat	ionship for							
the Hydro	-Brake (Optin	num® as spe	cified. Sh	ould anoth	er type of	control dev	vice other							
than a Hy	dro-Bral	ke Op	otimum® be	utilised th	en these s	torage rout	ing calcula	ations will							
be invail	ualeu														
Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)							
0.100		1.5	1.200	4.6	3.000	7.0	7.000	10.5							
0.200		2.0	1.400	4.9	3.500	7.6	7.500	10.9							
0.300		2.4	1.600	5.2	4.000	8.1	8.000	11.2							
0.400		2.8	1.800	5.5	4.500	8.5	8.500	11.6							
0.500		3.U 3.3	2.000	5.8	5.000	9.0	9.000	11.9 12.2							
0.800		3.8	2.400	6.3	6.000	9.8	3.300	12.2							
1.000	1.000 4.2 2.600 6.6 6.500 10.2														
			©1	982-2015 X	KP Soluti	ons									
L															

Evolv	ve									Page	e 7
140 Old Street					Finch	Finchley Road					
London					SWS1	SWS1					
EC1V 9BJ										Mir	
Date 06/11/15					Design	Designed by Paul White					מחהחות
File 151105 - SWS1.MDX					Checke	Checked by PW					
XP Solutions Network 2015.1											
Storage Structures for Storm											
Porous Car Park Manhole: MHS4, DS/PN: 1.004											
			Infilt	ration	Coefficie	nt Base	e (m/hr)	0.00000			
				Memor	ane Perco. Max Per	Lation colatio	(mm/nr) on (l/s)	1000			
						Safety	/ Factor	2.0			
					To	F Vort la	Porosity	0.30			
					111	Wi Wi	idth (m)	5.5			
						Ler	ngth (m)	34.0			
					Denressio	Slop Stora) (1:X) 200 (mm)	35.0			
				I	Evapora	ation ((mm/day)	3			
					Cap Vo	lume De	epth (m)	0.250			
Time Area Diagram for Green Roof at Pipe Number 1.003 (Storm)											
Area (m³) 156 Evaporation (mm/day) 3 Depression Storage (mm) 5 Decay Coefficient 0.050											
Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)
0	4	0 002835	32	36	0 000572	64	68	0 000116	96	100	0 000023
4	8	0.002321	36	40	0.000469	68	72	0.000095	100	100	0.000019
8	12	0.001900	40	44	0.000384	72	76	0.000077	104	108	0.000016
12	16 20	0.001556	44	48 52	0.000314	76 80	80 84	0.000063	108	112	0.000013
20	24	0.001043	52	56	0.000211	84	88	0.000043	116	120	0.000009
24	28	0.000854	56	60	0.000172	88	92	0.000035			
28	32	0.000699	60	64	0.000141	92	96	0.000028			
					0 0015						
	U1982-2015 XP Solutions										

Evolve		Page 8									
140 Old Street	Finchley Road										
London	SWS1	4									
EC1V 9BJ		- Com									
Date 06/11/15	Designed by Paul White										
File 151105 - SWS1.MDX	Checked by PW	Drainage									
XP Solutions	Network 2015.1										
100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm											
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficcient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000											
Number of Input Hydrographs O Number of Storage Structures 1 Number of Online Controls 2 Number of Time/Area Diagrams 1 Number of Offline Controls O Number of Real Time Controls O											
<u>Synthetic Rainfall Details</u> Rainfall Model FSR Ratio R 0.437 Region England and Wales Cv (Summer) 1.000 M5-60 (mm) 20.600 Cv (Winter) 1.000											
Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON											
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 100 Climate Change (%) 30											
US/MH Return Cli PN Name Storm Period Cha	mate First (X) First (Y) First (nge Surcharge Flood Overfl	Z) Overflow ow Act.									
1.000 Gully 15 Summer 100	+30% 100/15 Summer										
1.001 MHS1 15 Summer 100	+30% 100/15 Summer										
1.002 PICS1 15 Summer 100	+30% +30% 100/15 Summer 100/60 Summer										
2.000 RES1 15 Summer 100	+30%										
2.001 MHS2 15 Summer 100	+30%										
1.004 MHS4 60 Summer 100	+30% 100/15 Summer 100/60 Summer										
Water Surcharged US/MH Level Depth	Flooded Pipe Volume Flow / Overflow Flow	Level									
FN NAME (M) (M)	(m~) vap. (1/5) (1/5) Status	Exceeded									
1.000 Gully 72.714 0.164	0.000 0.57 3.6 FLOOD RISK										
1.001 MHS1 72.691 0.276	0.000 0.36 17.8 0k										
1.003 MHS2 73.910 1.210	0.071 0.64 12.7 FLOOD) 1									
2.000 RES1 74.294 -0.106	0.000 0.19 3.1 0k										
2.001 MHS2 74.085 -0.125	0.000 0.06 3.1 0k	,									
1.004 10104 13.900 1.320	5.021 0.15 5.0 FL00L	, 1									
©1982-2015 XP Solutions											
@1907 7013 VI DOTUCIOU2											

