# Appendix **C**



| As           |                    | n Ber<br>sts and environn<br>🕿 🕵 | INC.            | tt                   | Ashton Bennett Consultancy<br>Tel: 01484689531<br>email: geoenviro@ashton-bennett.co.uk<br>www.ashton-bennett.com |                         |                                                                         |                        |                   |  |  |  |  |
|--------------|--------------------|----------------------------------|-----------------|----------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|------------------------|-------------------|--|--|--|--|
| Proj<br>54 S | ject Na<br>Shirloo | ame<br>ck Road                   |                 |                      | Pr<br>32                                                                                                          | oject No.               | Co-ords: -                                                              | Hole Type<br>WLS       | •                 |  |  |  |  |
| Loc          | ation:             | Londor                           | า               |                      | -                                                                                                                 | Level: -                | Scale<br>1:50                                                           |                        |                   |  |  |  |  |
| Clie         | nt:                | Mr & N                           | Irs Ka          | y                    |                                                                                                                   |                         | Dates: 14/05/2015                                                       | Logged By<br>T Bennett |                   |  |  |  |  |
| Well         | Water<br>Strikes   | Sample<br>Depth (m)              | es & In<br>Type | Results              | Depth<br>(m)                                                                                                      | Level<br>(m AOD) Legend | Stratum Description                                                     |                        |                   |  |  |  |  |
|              |                    | 0.10<br>0.35                     | ES<br>ES        |                      | 0.08<br>0.15<br>0.45                                                                                              |                         | CONCRETE<br>MADE GROUND - Red brick gravel with concrete and to<br>coal | opsoil and             | -                 |  |  |  |  |
|              |                    | 0.70                             | D               |                      |                                                                                                                   |                         | MADE GROUND - Brown clay with red brick and coal g                      | ravel                  | -                 |  |  |  |  |
|              |                    | 0.90<br>1.00                     | ES<br>SPT       | N=4                  | 1 10                                                                                                              |                         | Brown orange mottled silty CLAY                                         |                        | -1                |  |  |  |  |
|              |                    | 1.30<br>1.20-1.60                | ES<br>D         | (1,0,1,1,1,1)        | 1.10                                                                                                              |                         | Brown silty CLAY (with selenite at 1.5 -2.0m)                           |                        | -                 |  |  |  |  |
|              |                    | 1.70-2.00<br>2.00                | D<br>SPT        | N=4<br>(1,1,1,1,1)   | 2.00                                                                                                              |                         | Brown very silty CLAY with selenite                                     |                        |                   |  |  |  |  |
|              |                    | 2.20                             | ES              | ,                    |                                                                                                                   | ××                      |                                                                         |                        | -                 |  |  |  |  |
|              |                    | 2.50-3.00                        | D               |                      | 2.60                                                                                                              | × × ×                   | Brown gre very silty CLAY with blue veins                               |                        | -                 |  |  |  |  |
|              |                    | 3.00                             | SPT             | N=4<br>(1 2 1 1 1 1) |                                                                                                                   | ××                      |                                                                         |                        | -3                |  |  |  |  |
|              |                    | 3.00-4.00                        |                 | (',_,',',',',')      |                                                                                                                   |                         |                                                                         |                        | -                 |  |  |  |  |
|              |                    | 4.00                             | SPT             | N=4<br>(1,2,1,1,1,1) |                                                                                                                   | × × ×                   |                                                                         |                        | -<br>- 4<br>-     |  |  |  |  |
|              |                    |                                  |                 |                      | 4.45                                                                                                              | ××-                     | End of Borehole at 5.45 m                                               |                        | -                 |  |  |  |  |
| 昌            |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        | -5                |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        | -                 |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        |                   |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        |                   |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        | -                 |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        | -<br>-7<br>-<br>- |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        | -                 |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        | - 8<br>           |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        | -                 |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        | -9                |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        | -                 |  |  |  |  |
|              |                    |                                  |                 |                      |                                                                                                                   |                         |                                                                         |                        | -                 |  |  |  |  |
| Rem          | l<br>harks:        | Monitori                         | Type            | Results              |                                                                                                                   |                         |                                                                         |                        |                   |  |  |  |  |
| . Ken        |                    | Drilling t                       | hroug           | h wooden deck        | ing 18ı                                                                                                           | m above ground          | level.                                                                  | AGS                    | S                 |  |  |  |  |

| Ask           |                   | n Ben<br>sts and Environd |           | t<br><sub>TIS</sub>     | Ashton Bennett Consultancy<br>Tel: 01484689531<br>email: geoenviro@ashton-bennett.co.uk<br>www.ashton-bennett.com |                  |               |                                                            |                        |  |  |
|---------------|-------------------|---------------------------|-----------|-------------------------|-------------------------------------------------------------------------------------------------------------------|------------------|---------------|------------------------------------------------------------|------------------------|--|--|
| Proje<br>54 S | ect Na<br>Shirloo | ame<br>ck Road            |           |                         | Pr<br>32                                                                                                          | oject N          | lo.           | Co-ords: -                                                 | Hole Type<br>WLS       |  |  |
| Loca          | ation:            | Londor                    | ٦         |                         |                                                                                                                   |                  | Scale<br>1:50 |                                                            |                        |  |  |
| Clie          | nt:               | Mr & N                    | Irs Kay   |                         | 1                                                                                                                 |                  |               | Dates: 14/05/2015                                          | Logged By<br>T Bennett |  |  |
| Well          | Water<br>Strikes  | Sample<br>Depth (m)       | es & In S | Situ Testing<br>Results | Depth<br>(m)                                                                                                      | Level<br>(m AOD) | Legend        | Stratum Descripti                                          | on                     |  |  |
|               |                   | 0.15<br>0.30              | ES<br>D   |                         |                                                                                                                   |                  |               | MADE GROUND - Topsoil with coal and potte<br>brick gravel. | ry and glass and red   |  |  |
|               |                   | 0.50                      | ES        |                         | 0.45                                                                                                              |                  |               | MADE GROUND - Brown clay with red brick a                  | and coal and roots     |  |  |
|               |                   | 0.90<br>1.00              | D<br>SPT  | N=3<br>(1,0,1,1,0,1)    | 1.00                                                                                                              |                  |               | Brown orange very silty CLAY                               |                        |  |  |
|               |                   | 1.60-1.90                 | D         |                         |                                                                                                                   |                  |               |                                                            |                        |  |  |
|               |                   | 2.00                      | SPT       | N=3<br>(1,1,1,1,0,1)    | 2.30                                                                                                              |                  |               |                                                            | -2                     |  |  |
|               |                   | 2.60<br>2.50-3.00         | ES<br>D   |                         |                                                                                                                   |                  | × × ×         | Brown very silty CLAY with blue veins                      |                        |  |  |
|               |                   | 3.00                      | SPT       | N=4<br>(1 1 1 1 1 1)    |                                                                                                                   |                  | × × ×         |                                                            | -3                     |  |  |
|               |                   | 3.00-3.50                 | D         | (.,.,.,.,.,.)           |                                                                                                                   |                  |               |                                                            |                        |  |  |
|               |                   | 3.60-4.00                 | D         |                         |                                                                                                                   |                  |               |                                                            |                        |  |  |
|               |                   | 4.00                      | SPT       | N=4<br>(1,2,1,1,1,1)    |                                                                                                                   |                  |               |                                                            | -4                     |  |  |
| MUMU<br>1     |                   |                           |           |                         | 4.45                                                                                                              | 8                | ××-           | End of Borehole at 4.45 n                                  |                        |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            | -<br>- 5<br>- 5        |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            |                        |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            | -                      |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            | - 6                    |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            |                        |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            | 7                      |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            |                        |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            |                        |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            | - 8                    |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            |                        |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            | -<br>-<br>- 9          |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            |                        |  |  |
|               |                   |                           |           |                         |                                                                                                                   |                  |               |                                                            |                        |  |  |
|               |                   |                           | Туре      | Results                 |                                                                                                                   |                  |               |                                                            | -                      |  |  |
| Rem           | arks:             | Drilling t                | hrough    | wooden deck             | ing 320                                                                                                           | cm abo           | ve grou       | nd level.                                                  | AGS                    |  |  |



## STRUCTURAL SOILS LTD

### **TEST REPORT**



1774

| Report No.                                  | 781707 - R1                                                                  |                                                                                                                           |                                                                      | 1774                           |
|---------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|
| Date                                        | 12-June-2015                                                                 | Contract                                                                                                                  |                                                                      |                                |
| Client<br>Address                           | Ashton Bennett<br>Unit K<br>Bridge Mills<br>Huddersfield Ro<br>Holmfirth HD9 | Consultancy<br>Dad<br>3TW                                                                                                 |                                                                      |                                |
| For the Atter                               | ntion of                                                                     | Frances Bennett                                                                                                           |                                                                      |                                |
| Samples sub<br>Testing Start<br>Testing Com | mitted by client<br>ed<br>pleted                                             | 27/05/2015<br>28/05/2015<br>12/06/2015                                                                                    | Client Reference<br>Client Order No.<br>Instruction Type             | Written                        |
| UKAS Accre                                  | edited Tests Unde                                                            | ertaken                                                                                                                   | I                                                                    |                                |
|                                             | Moisture Conter<br>Liquid Limit (de<br>Plastic Limit BS<br>Plasticity Index  | nt (oven drying method) BS1<br>efinitive method) BS1377:Pa<br>S1377:Part 2:1990,clause 5.3<br>Derivation BS1377:Part 2:19 | 377:Part 2:1990,clause 3.2<br>rt 2:1990,clause 4.3<br>990,clause 5.4 |                                |
| Please Note: F                              | Remaining samples                                                            | will be retained for a period of c                                                                                        | one month from today and will then be di                             | sposed of                      |
|                                             | Approved sig                                                                 | natories: Mark Athorne (Lab                                                                                               | oratory Manager) Steven Athorne (Se                                  | enior Technician)<br>Page 2 of |
|                                             | Structural Soils Lto                                                         | d The Potteries Pottery Street Castle                                                                                     | ford WF10 1NJ Tel: 01977 552255 e-mail ma                            | rk.athorne@soils.co.uk         |

## SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

| Exploratory<br>Position ID | Sample<br>Ref | Sample<br>Type | Depth<br>(m) | Moisture<br>Content<br>% | Liquid<br>Limit<br>% | Plastic<br>Limit<br>% | Plasticity<br>Index<br>% | %<br><425um | Description of Sample                       |
|----------------------------|---------------|----------------|--------------|--------------------------|----------------------|-----------------------|--------------------------|-------------|---------------------------------------------|
| WS1                        | 1             | D              | 1.70         | 28                       | 70                   | 23                    | 47                       | 91          | Brown slightly sandy slightly gravelly CLAY |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
| WS2                        | 1             | D              | 2.50         | 32                       | 74                   | 26                    | 48                       | 100         | Brown slightly sandy slightly gravelly CLAY |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              |                          |                      |                       |                          |             |                                             |
|                            |               |                |              | Contra                   | act:                 |                       |                          |             | Contract Ref.                               |
|                            | STR<br>S(     | RUCT           | URAI<br>LTD  |                          | ιτι.                 |                       |                          |             | · 781701                                    |

|                                         |                           |                                                                                                                            |                                                                                               |                                           | AST<br>in acco<br>Testi             | TCI<br>rdance<br>ng in ac | <b>TY CH</b><br>with clause<br>cordance w | ART<br>42.3 of<br>vith BS1          | <b>- PI</b><br>BS5930<br>377-2:19                      | <b>Vs L</b><br>1999<br>990 | L        |                       |              |          |
|-----------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|---------------------------|-------------------------------------------|-------------------------------------|--------------------------------------------------------|----------------------------|----------|-----------------------|--------------|----------|
|                                         |                           |                                                                                                                            |                                                                                               |                                           |                                     |                           |                                           | U - Up                              | oper Plas                                              | ticity Ra                  | inge     |                       |              |          |
| -                                       |                           | L - Lo                                                                                                                     | w Plastic                                                                                     | ity                                       | Intermediate H - High V - Very High |                           |                                           |                                     |                                                        |                            | ]        | E - Extren            | nely High    |          |
| 70                                      |                           |                                                                                                                            |                                                                                               |                                           |                                     |                           |                                           |                                     | C                                                      | /                          |          | CE                    |              |          |
| 50                                      |                           |                                                                                                                            |                                                                                               |                                           |                                     |                           | СН                                        |                                     |                                                        |                            |          |                       |              |          |
| - PI (%)                                |                           |                                                                                                                            |                                                                                               |                                           |                                     | СІ                        |                                           |                                     |                                                        |                            |          | ME                    |              |          |
| ty Index                                |                           |                                                                                                                            |                                                                                               | :L)                                       |                                     |                           |                                           |                                     |                                                        |                            |          |                       |              |          |
| Plastici                                |                           |                                                                                                                            |                                                                                               |                                           |                                     |                           |                                           |                                     | M                                                      | /                          |          |                       |              |          |
| 10                                      |                           |                                                                                                                            |                                                                                               |                                           |                                     |                           |                                           |                                     |                                                        |                            |          |                       |              |          |
| 0                                       |                           |                                                                                                                            | 20                                                                                            | IL                                        |                                     |                           |                                           | )                                   |                                                        | 80                         |          | 100                   |              | 120      |
|                                         |                           |                                                                                                                            | 20                                                                                            |                                           |                                     |                           | Liquid Lim                                | ;<br>it - LL (%                     | %)                                                     |                            |          | 100                   |              | 120      |
|                                         |                           | Sample I<br>Exploratory<br>Position ID                                                                                     | Identificat<br>Sample                                                                         | Depth                                     | BS<br>Met                           | Test<br>hod #             | Preparation<br>Method +                   | MC %                                | Ll<br>%                                                | L i                        | PL<br>%  | PI<br>%               | <425um<br>%  |          |
|                                         |                           | WS1<br>WS2                                                                                                                 | 1D<br>1D                                                                                      | 1.70<br>2.50                              | 3.2/4.3<br>3.2/4.3                  | 3/5.3/5.4<br>3/5.3/5.4    | 4.2.4<br>4.2.4                            | 28<br>32                            | 70                                                     | ) 4                        | 23<br>26 | 47<br>48              | 91<br>100    |          |
|                                         |                           |                                                                                                                            |                                                                                               |                                           |                                     |                           |                                           |                                     |                                                        |                            |          |                       |              |          |
|                                         |                           |                                                                                                                            |                                                                                               |                                           |                                     |                           |                                           |                                     |                                                        |                            |          |                       |              |          |
|                                         |                           |                                                                                                                            |                                                                                               |                                           |                                     |                           |                                           |                                     |                                                        |                            |          |                       |              |          |
|                                         | #<br>3.<br>4.<br>4.<br>5. | Tested in acco<br>2 - Moisture (<br>3 - Cone Pene<br>4 - One Point<br>6 - One Point<br>3 - Plastic Lin<br>4 - Plasticity 1 | ordance with<br>Content<br>crometer Me<br>Cone Penetrr<br>Casagrande I<br>nit Method<br>Index | the follow<br>thod<br>ometer Me<br>Method | ring claus                          | es of BS1                 | 377-2:1990.                               | + Tested<br>4.2.3 - Na<br>4.2.4 - W | in accordan<br>atural State<br>et Sieved<br>Non standa | ace with the               | followir | ng clauses of l       | BS1377-2:199 | 90.      |
|                                         |                           | Approved Si                                                                                                                | gnatories: J                                                                                  | .BARRE                                    | TT M.A                              | THORN                     | E A.FROST N                               | M.RANDE                             | RSON R.                                                | CLARKS                     | DN M.I   | FISHER C.C            | COLE M.ST    | OKES     |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 2                         | STRU                                                                                                                       | JCTUR                                                                                         | AL SC                                     | DILS                                |                           | A . C .                                   |                                     | Compil                                                 | ed By                      | MATT     |                       | FD           | Date     |
|                                         | Ì                         | ) ]<br>W. Yo                                                                                                               | The Pot<br>Pottery S<br>Castlet<br>orkshire                                                   | teries<br>Street<br>Ford<br>WF1(          | ) 1NJ                               | Contrac                   | M. fusl<br>t                              | ىھى .                               |                                                        |                            | Contra   | act Ref:<br><b>78</b> | ER<br>1701   | 12/06/15 |

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PiJVersion: v8 05 - Core+Geotech Lab-Castleford - 0002 | Graph L - ALINE STANDARD - EC7 | 781701 - UNKNOWN GPJ - v8 05 | 12/06/15 - 14:33 | MF. Structural Soils Lid, Branch Office - Castleford: The Potteries, Pottery Street, Castleford, West Yorkshire, WF10 1NJ. Tel: 01977-552255, Fax: 01977-552299, Web: www.soils.co.uk, Email: ask@soils.co.uk.



Ashton Bennett Consultancy Unit K Bridge Mills Huddersfield Road Holmfirth HD9 3TW Attention: Frances Bennett

# **Post Certification Report**

Date: Customer: Your Reference: [SDG] and Samples: 11392366,11392367,11392377,113

25/06/2015 H ABCON HMF 3207 and 3209

Location: No. Of Samples Received: Samples Scheduled:

17 Sulgrave Rd. and 54 Shirlock Rd.

12 10

Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

## **Post Certification Report**

Customer : H\_ABCON\_HMF Case :

А

Client Reference: 3207 and 3209

Location: 17 Sulgrave Rd. and 54 Shirlock Rd.

| Received Sample Overview |                      |          |             |              |  |  |  |  |  |  |
|--------------------------|----------------------|----------|-------------|--------------|--|--|--|--|--|--|
| Lab Sample No(s)         | Customer Sample Ref. | AGS Ref. | Depth (m)   | Sampled Date |  |  |  |  |  |  |
| 11392386                 | 54SR WS1             |          | 0.10        |              |  |  |  |  |  |  |
| 11392387                 | 54SR WS1             |          | 0.35        |              |  |  |  |  |  |  |
| 11392398                 | 54SR WS1             |          | 0.70        | 14/05/2015   |  |  |  |  |  |  |
| 11392388                 | 54SR WS1             |          | 0.90        |              |  |  |  |  |  |  |
| 11392399                 | 54SR WS1             |          | 1.20 - 1.60 | 14/05/2015   |  |  |  |  |  |  |
| 11392389                 | 54SR WS1             |          | 1.30        |              |  |  |  |  |  |  |
| 11392390                 | 54SR WS1             |          | 2.20        |              |  |  |  |  |  |  |
| 11392401                 | 54SR WS1             |          | 2.50 - 3.00 | 14/05/2015   |  |  |  |  |  |  |
| 11392366                 | 54SR WS2             |          | 0.15        |              |  |  |  |  |  |  |
| 11392377                 | 54SR WS2             |          | 0.30        |              |  |  |  |  |  |  |
| 11392367                 | 54SR WS2             |          | 0.50        |              |  |  |  |  |  |  |
| 11392380                 | 54SR WS2             |          | 0.90        | 14/05/2015   |  |  |  |  |  |  |

Only received samples which have had analysis scheduled will be shown on the following pages.

| Customer : H_ABCON_HMF<br>Case : | Client                       | Client Reference : 3207 and 3209                                                 |                                                          |  |  |  |  |  |  |  |  |  |
|----------------------------------|------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Results Legend                   | Lab Sample No(s)             | 11392399<br>11392399<br>11392398<br>11392388<br>11392388<br>11392387<br>11392386 | 11392380<br>11392377<br>11392367<br>11392367<br>11392366 |  |  |  |  |  |  |  |  |  |
| No Determination<br>Possible     | Customer<br>Sample Reference | 54SR WS1<br>54SR WS1<br>54SR WS1<br>54SR WS1<br>54SR WS1<br>54SR WS1             | 54SR WS2<br>54SR WS2<br>54SR WS2<br>54SR WS2<br>54SR WS2 |  |  |  |  |  |  |  |  |  |

| Post | Certification | Report |
|------|---------------|--------|
|------|---------------|--------|

| Results Legend                        | Lab Sample             | No(s)                | 9238             | 9238             | 9238     | 9239     | 9239        | 924(             | 9236             | 9236     | 923      | 9238 |
|---------------------------------------|------------------------|----------------------|------------------|------------------|----------|----------|-------------|------------------|------------------|----------|----------|------|
| X Test                                |                        |                      | 36<br>0          | 37               | 88       | 88       | 96          | 2                | မိ               | 57       | 7        | 8    |
| No Determination<br>Possible          | Custome<br>Sample Refe | 54SR WS1             | 54SR WS1         | 54SR WS1         | 54SR WS1 | 54SR WS1 | 54SR WS1    | 54SR WS2         | 54SR WS2         | 54SR WS2 | 54SR WS2 |      |
|                                       | AGS Refere             | ence                 |                  |                  |          |          |             |                  |                  |          |          |      |
|                                       | Depth (n               | ו)                   | 0.10             | 0.35             | 0.90     | 0.70     | 1.20 - 1.60 | 2.50 - 3.00      | 0.15             | 0.50     | 0.30     | 0.90 |
|                                       | Containe               | 60g VOC (ALE215)     | 60g VOC (ALE215) | 60g VOC (ALE215) | 1kg TUB  | 1kg TUB  | 1kg TUB     | 60g VOC (ALE215) | 60g VOC (ALE215) | 1kg TUB  | 1ka TUB  |      |
| Anions by Kone (soil)                 | All                    | NDPs: 0<br>Tests: 2  | x                |                  |          |          |             |                  |                  |          | x        |      |
| Anions by Kone (w)                    | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | X                |                  |          |          |      |
| Asbestos ID in Solid Samples          | All                    | NDPs: 0<br>Tests: 2  |                  |                  |          | X        |             |                  |                  |          | x        |      |
| CEN Readings                          | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | x                |                  |          |          |      |
| Dissolved Metals by ICP-MS            | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | x                |                  |          |          |      |
| Dissolved Organic/Inorganic<br>Carbon | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | x                |                  |          |          |      |
| Fluoride                              | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | x                |                  |          |          |      |
| GRO by GC-FID (S)                     | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | x                |                  |          |          |      |
| Hexavalent Chromium (s)               | All                    | NDPs: 0<br>Tests: 2  |                  |                  |          |          | x           |                  |                  |          |          | x    |
| Mercury Dissolved                     | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | x                |                  |          |          |      |
| Metals in solid samples by<br>OES     | All                    | NDPs: 0<br>Tests: 2  |                  |                  |          |          | x           |                  |                  |          |          | x    |
| Mineral Oil                           | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | x                |                  |          |          |      |
| PAH Value of soil                     | All                    | NDPs: 0<br>Tests: 3  |                  | x                |          |          |             | x                |                  | x        |          |      |
| PCBs by GCMS                          | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | x                |                  |          |          |      |
| рН                                    | All                    | NDPs: 0<br>Tests: 2  | x                |                  |          |          |             |                  |                  |          | x        |      |
| Phenols by HPLC (W)                   | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | x                |                  |          |          |      |
| Sample description                    | All                    | NDPs: 0<br>Tests: 10 | x                | x                | x        | x        | x           | x                | x                | x        | x        | x    |
| Total Dissolved Solids                | All                    | NDPs: 0<br>Tests: 1  |                  |                  |          |          |             | x                |                  |          |          |      |

| Customer : H_ABCON_HM<br>Case : | IF                     | Client              | Re               | fe               | re               | nc          | e           | :        | 32               | 207              | 7 a      | nd      |
|---------------------------------|------------------------|---------------------|------------------|------------------|------------------|-------------|-------------|----------|------------------|------------------|----------|---------|
| Results Legend                  | Lab Sample             | 11392386            | 11392387         | 11392388         | 11392398         | 11392399    | 11392401    | 11392366 | 11392367         | 11392377         | 11392380 |         |
| No Determination<br>Possible    | Custome<br>Sample Refe | 54SR WS1            | 54SR WS1         | 54SR WS1         | 54SR WS1         | 54SR WS1    | 54SR WS1    | 54SR WS2 | 54SR WS2         | 54SR WS2         | 54SR WS2 |         |
|                                 | AGS Refere             | ence                |                  |                  |                  |             |             |          |                  |                  |          |         |
|                                 | Depth (n               | 0.10                | 0.35             | 0.90             | 0.70             | 1.20 - 1.60 | 2.50 - 3.00 | 0.15     | 0.50             | 0.30             | 0.90     |         |
|                                 | Containe               | ər                  | 60g VOC (ALE215) | 60g VOC (ALE215) | 60g VOC (ALE215) | 1kg TUB     | 1kg TUB     | 1kg TUB  | 60g VOC (ALE215) | 60g VOC (ALE215) | 1kg TUB  | 1kg TUB |
| Total Organic Carbon            | All                    | NDPs: 0<br>Tests: 1 |                  |                  |                  |             |             | x        |                  |                  |          |         |
| TPH c6-40 Value of soil         | All                    | NDPs: 0<br>Tests: 2 |                  |                  | x                |             |             |          | x                |                  |          |         |

## **Post Certification Report**

Customer : H\_ABC Case :

H\_ABCON\_HMF

Client Reference : 3207 and 3209

**Post Certification Report** 

| Results Legend                                                                                                                                                                                                                                                                                                                                                                      | (                                           | Customer Sample Ref.                                                                                       | 54SR WS1                                                       | 54SR WS1               | 54SR WS1                                                                | 54SR WS1                                                      | 54SR WS1                                                                       | 54SR WS1                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| #         ISO17025 accredited.           M         mCERTS accredited.           aq         Aqueous / settled sample.           diss.filt         Dissolved / filtered sample.           *         subcontracted test.           **         % recovery of the surrogate str<br>check the efficiency of the met<br>results of the individual compo<br>within the samples are not corr | andard to<br>hod. The<br>unds<br>rected for | Depth (m)<br>Sample Type<br>Date Sampled<br>Date Received<br>SDG Ref<br>Lab Sample No.(s)<br>AGS Reference | 0.10<br>Soii/Solid<br>-<br>19/05/2015<br>150520-14<br>11392386 | 0.35<br>Soil/Solid<br> | 0.70<br>Soii/Solid<br>14/05/2015<br>19/05/2015<br>150520-14<br>11392398 | 0.90<br>Soil/Solid<br>-<br>1905/2015<br>150520-14<br>11392388 | 1.20 - 1.60<br>Soii/Solid<br>14/05/2015<br>19/05/2015<br>150520-14<br>11392399 | 2.50 - 3.00<br>Soiil/Solid<br>14/05/2015<br>19/05/2015<br>150520-14<br>11392401 |
| this recovery.<br>1-5&+§@ Sample deviation (see appendi                                                                                                                                                                                                                                                                                                                             | x)                                          | Add Reference                                                                                              |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
| Component<br>Moisture Content Ratio (% of as                                                                                                                                                                                                                                                                                                                                        | LOD/Un<br>%                                 | its Method<br>PM024                                                                                        | 15                                                             | 26                     | 14                                                                      | 25                                                            | 23                                                                             | 21                                                                              |
| received sample)<br>Mineral oil >C10-C40                                                                                                                                                                                                                                                                                                                                            | <1 mg/k                                     | kg TM061                                                                                                   | §_                                                             | §_                     |                                                                         | §                                                             |                                                                                | 14.8                                                                            |
| Mineral Oil Surrogate %                                                                                                                                                                                                                                                                                                                                                             | %                                           | TM061                                                                                                      |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
| Organic Carbon, Total                                                                                                                                                                                                                                                                                                                                                               | <0.2 %                                      | 6 TM132                                                                                                    |                                                                |                        |                                                                         |                                                               |                                                                                | <0.2 M                                                                          |
| рН                                                                                                                                                                                                                                                                                                                                                                                  | 1 pH Un                                     | iits TM133                                                                                                 | 11<br>8 м                                                      |                        |                                                                         |                                                               |                                                                                |                                                                                 |
| Chromium, Hexavalent                                                                                                                                                                                                                                                                                                                                                                | <0.6 mg                                     | /kg TM151                                                                                                  | y m                                                            |                        |                                                                         |                                                               | <0.6                                                                           |                                                                                 |
| TPH >C6-C40                                                                                                                                                                                                                                                                                                                                                                         | <10 mg/                                     | /kg TM154                                                                                                  |                                                                |                        |                                                                         | 35.4<br>§                                                     |                                                                                |                                                                                 |
| PCB congener 28                                                                                                                                                                                                                                                                                                                                                                     | <3 µg/k                                     | kg TM168                                                                                                   |                                                                |                        |                                                                         |                                                               |                                                                                | <3<br>M                                                                         |
| PCB congener 52                                                                                                                                                                                                                                                                                                                                                                     | <3 µg/k                                     | kg TM168                                                                                                   |                                                                |                        |                                                                         |                                                               |                                                                                | <3<br>M                                                                         |
| PCB congener 101                                                                                                                                                                                                                                                                                                                                                                    | <3 µg/k                                     | (g TM168                                                                                                   |                                                                |                        |                                                                         |                                                               |                                                                                | <3<br>M                                                                         |
| PCB congener 118                                                                                                                                                                                                                                                                                                                                                                    | <3 µg/k                                     | (g TM168                                                                                                   |                                                                |                        |                                                                         |                                                               |                                                                                | <3<br>M                                                                         |
| PCB congener 138                                                                                                                                                                                                                                                                                                                                                                    | <3 µg/k                                     | (g TM168                                                                                                   |                                                                |                        |                                                                         |                                                               |                                                                                | <3<br>M                                                                         |
| PCB congener 153                                                                                                                                                                                                                                                                                                                                                                    | <3 µg/k                                     | (g 1M168                                                                                                   |                                                                |                        |                                                                         |                                                               |                                                                                | <3<br>M                                                                         |
| PCB congener 180                                                                                                                                                                                                                                                                                                                                                                    | <3 µg/k                                     | (g 1M168                                                                                                   |                                                                |                        |                                                                         |                                                               |                                                                                | <3<br>M                                                                         |
| Sum of detected PCB 7<br>Congeners                                                                                                                                                                                                                                                                                                                                                  | <21 µg/                                     | Kg IM168                                                                                                   |                                                                |                        |                                                                         |                                                               |                                                                                | <21                                                                             |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                             | <0.6 mg/                                    | /kg TM181                                                                                                  |                                                                |                        |                                                                         |                                                               | 14.7<br>M                                                                      |                                                                                 |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                             | <0.02<br>ma/ka                              | TM181                                                                                                      |                                                                |                        |                                                                         |                                                               | 1.62<br>M                                                                      |                                                                                 |
| Copper                                                                                                                                                                                                                                                                                                                                                                              | <1.4 mg/                                    | /kg TM181                                                                                                  |                                                                |                        |                                                                         |                                                               | 23.2<br>M                                                                      |                                                                                 |
| Lead                                                                                                                                                                                                                                                                                                                                                                                | <0.7 mg/                                    | /kg TM181                                                                                                  |                                                                |                        |                                                                         |                                                               | 23.3<br>M                                                                      |                                                                                 |
| Mercury                                                                                                                                                                                                                                                                                                                                                                             | <0.14<br>mg/kg                              | TM181                                                                                                      |                                                                |                        |                                                                         |                                                               | <0.14<br>M                                                                     |                                                                                 |
| Nickel                                                                                                                                                                                                                                                                                                                                                                              | <0.2 mg                                     | /kg TM181                                                                                                  |                                                                |                        |                                                                         |                                                               | 52.1<br>M                                                                      |                                                                                 |
| Selenium                                                                                                                                                                                                                                                                                                                                                                            | <1 mg/ł                                     | kg TM181                                                                                                   |                                                                |                        |                                                                         |                                                               | <1 #                                                                           |                                                                                 |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                | <1.9 mg/                                    | /kg TM181                                                                                                  |                                                                |                        |                                                                         |                                                               | 84.1<br>M                                                                      |                                                                                 |
| Polyaromatic hydrocarbons,<br>Total USEPA 16                                                                                                                                                                                                                                                                                                                                        | <10 mg/                                     | /kg TM213                                                                                                  |                                                                | <10<br>§               |                                                                         |                                                               |                                                                                |                                                                                 |
| Polyaromatic hydrocarbons,<br>Total 17                                                                                                                                                                                                                                                                                                                                              | <10 mg/                                     | /kg TM213                                                                                                  |                                                                |                        |                                                                         |                                                               |                                                                                | <10                                                                             |
| Soluble Sulphate 2:1 extract as SO4 BRE                                                                                                                                                                                                                                                                                                                                             | <0.004                                      | g/I TM243                                                                                                  | 1.32<br>§ M                                                    |                        |                                                                         |                                                               |                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                                                                            |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                                                                            |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                                                                            |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                                                                            |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                                                                            |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                             | _                                                                                                          |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                                                                            |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                                                                            |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                                                                            |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                                                                            |                                                                |                        |                                                                         |                                                               |                                                                                |                                                                                 |

Customer : H\_ABC Case :

: H\_ABCON\_HMF

Client Reference: 3207 and 3209

**Post Certification Report** 

| Results Legend                                                        | (                    | Customor Sample Pof  | 549D W/92  | 5/10D W/02    | 5/00 W/02  | 549D W92   | 1    |
|-----------------------------------------------------------------------|----------------------|----------------------|------------|---------------|------------|------------|------|
| # ISO17025 accredited.                                                | ľ                    | Sustomer Sample Rei. | 04011 W02  | 0401\ W02     | 0401V W02  | 34311 1132 |      |
| M mCERTS accredited.<br>ag Agueous / settled sample.                  |                      | Donth (m)            | 0.15       | 0.30          | 0.50       | 0.90       |      |
| diss.filt Dissolved / filtered sample.                                |                      | Sample Type          | Soil/Solid | Soil/Solid    | Soil/Solid | Soil/Solid |      |
| * subcontracted test.                                                 |                      | Date Sampled         | -          | -             | -          | 14/05/2015 |      |
| ** % recovery of the surrogate sta<br>check the efficiency of the met | ndard to<br>hod. The | SDG Ref              | 150520-14  | 150520-14     | 150520-14  | 150520-14  |      |
| results of the individual compo<br>within the samples are not corr    | unds<br>rected for   | Lab Sample No.(s)    | 11392366   | 11392377      | 11392367   | 11392380   |      |
| this recovery.<br>1-5&+\$@ Sample deviation (see appendi              | x)                   | AG5 Reference        |            |               |            |            |      |
| Component                                                             | LOD/Un               | its Method           |            |               |            |            |      |
| Moisture Content Ratio (% of as                                       | %                    | PM024                | 22         | 20            | 24         | 23         |      |
| received sample)                                                      |                      |                      | §          | ş             | §          |            | <br> |
| pH                                                                    | 1 pH Un              | iits TM133           |            | 7.78          |            |            |      |
| Chromium Hexavalent                                                   | <0.6 mg              | /kg TM151            |            | Ş M           |            | <0.6       |      |
|                                                                       | -0.0 mg/             |                      |            |               |            | #          |      |
| TPH >C6-C40                                                           | <10 mg/              | kg TM154             | 426        |               |            |            |      |
| Amonio                                                                | <0.6 mg              | /kg TM191            | §          |               |            | 17.5       |      |
| Arsenic                                                               | <0.0 mg/             | ng minor             |            |               |            | 17.5<br>M  |      |
| Cadmium                                                               | <0.02                | TM181                |            |               |            | 1.33       |      |
|                                                                       | mg/kg                |                      |            |               |            | M          |      |
| Copper                                                                | <1.4 mg/             | /kg 1M181            |            |               |            | 44.5<br>M  |      |
| Lead                                                                  | <0.7 ma              | /kg TM181            |            |               |            | 136        |      |
|                                                                       | - J.                 | <b>J</b>             |            |               |            | М          |      |
| Mercury                                                               | <0.14                | TM181                |            |               |            | 0.315      |      |
| Nickel                                                                | mg/kg<br><0.2 mg     | /kg TM181            |            |               |            | 21.1       |      |
| INICKEI                                                               | <0.2 mg/             | ng ninton            |            |               |            | 21.1<br>M  |      |
| Selenium                                                              | <1 mg/ł              | kg TM181             |            |               |            | <1         |      |
| 7:                                                                    | (1.0                 |                      |            |               |            | #          |      |
| ZINC                                                                  | <1.9 mg/             | rkg TM181            |            |               |            | 82.6<br>M  |      |
| Polyaromatic hydrocarbons,                                            | <10 mg/              | kg TM213             |            |               | 13.2       | 111        |      |
| Total USEPA 16                                                        |                      |                      |            |               | §          |            |      |
| Soluble Sulphate 2:1 extract as                                       | <0.004               | g/l TM243            |            | 0.0375        |            |            |      |
| 504 BRE                                                               |                      |                      |            | <u>\$ IVI</u> |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            | <br> |
|                                                                       |                      |                      |            |               |            |            | <br> |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      | _                    |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            | <br> |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |
|                                                                       |                      |                      |            |               |            |            |      |

Customer : H\_ABCON\_HMF

Case :

## **Post Certification Report**

| And the set of t  |                                                                    |                   |                              |                       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------|------------------------------|-----------------------|--|--|--|
| Burner water         | Results Legend<br># ISO17025 accredited.<br>M mCERTS accredited    | Cu                | istomer Sample Ref.          | 54SR WS1              |  |  |  |
| Martin Statistics         Martin Statistics         Martine Statistics         Martin St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aq Aqueous / settled sample.                                       |                   | Depth (m)                    | 2.50 - 3.00           |  |  |  |
| Image: Construction of the construction of         | tot.unfilt Total / unfiltered sample.                              |                   | Sample Type                  | Soil/Solid            |  |  |  |
| Normal Section of Weilling Weilli         | * subcontracted test.<br>** % recovery of the surrogate sta        | andard to         | Date Received                | 19/05/2015            |  |  |  |
| Adv series           Adv series           Comparent         Market           Comparent          Comparent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | check the efficiency of the met<br>results of the individual compo | hod. The<br>ounds | SDG Ref<br>Lab Sample No.(s) | 150520-14<br>11392401 |  |  |  |
| Display         Openal Market         Market <th< td=""><td>within the samples are not corr<br/>this recovery.</td><td>rected for</td><td>AGS Reference</td><td>11002101</td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | within the samples are not corr<br>this recovery.                  | rected for        | AGS Reference                | 11002101              |  |  |  |
| Mathy large loop of Upsig     7009     -2     -2     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td>Component</td> <td>x)</td> <td>s Method</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Component                                                          | x)                | s Method                     |                       |  |  |  |
| Attribution         Control         Contro         Control <thcontrol< th=""></thcontrol<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Methyl tertiary butyl ether                                        | <5 µg/kg          | TM089                        | <5                    |  |  |  |
| Calcard         Original         Total         Control         Control <thcontrol< th=""> <thcontrol< th=""> <thc< td=""><td>(MTBE)<br/>Benzene</td><td>&lt;10 ua/ka</td><td>a TM089</td><td>2 N<br/>&lt;10</td><td></td><td></td><td></td></thc<></thcontrol<></thcontrol<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (MTBE)<br>Benzene                                                  | <10 ua/ka         | a TM089                      | 2 N<br><10            |  |  |  |
| Note $j = j_0$ $j_0 = j_0$ Emploration $d j_0 j_0$ TMB8 $d j_0 j_0$ $MB8$ $d j_0 j_0$ $MB8$ $d j_0 j_0$ $MB8$ $d j_0 j_0$ $a j_0 j_0 a j_0$ $MB8$ $d j j_0 a j_0$ $MB8$ $d j j_0 a j_0$ $MB8$ $d j j_0 a j_0$ $a j_0 d j_0 a j_0$ $MB8$ $d j j_0 a j_0$ $MB8$ $d j j_0 a j_0$ $MB8$ $MB8$ $a j_0 d j_0 a $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | <2 µg/kg          | TM089                        | 2 N                   |  |  |  |
| Layound     Supe     Take     Layound     Supe     Take     Layound       mp cyllen     Supe     Take     Supe     Take     Supe     Sup     Sup     Sup<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ethylbenzene                                                       | <2 µg/kg          |                              | 2 N                   |  |  |  |
| mix.yere     < bysic     Nose     21       oXylere     3/uNg     Nose     21       sum deteded mo sylere V     3/uNg     Nose     24       GC     24/uS     Nose     24       M     I     I     I       GC     24/uS     Nose     24/uS     I       M     I     I     I     I       GC     24/uS     I     I     I       M     I     I     I     I     I       GC     34/uS     I     I     I     I       M     I     I     I     I     I       GC     I     I     I     I     I       M     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | <0 µg/kg          | TM003                        | 2 N                   |  |  |  |
| cAyenCipyTillingCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipyCipy <t< td=""><td>п,р-хуіепе</td><td>&lt;о µу/ку</td><td>T 1009</td><td>2 N</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | п,р-хуіепе                                                         | <о µу/ку          | T 1009                       | 2 N                   |  |  |  |
| aun diedend moxyments4 yugingTMU894 a<br>2<br>2aunor (Adecaded BTEX by CC)4 yugingTMU894 a<br>2<br>2aunor (Adecaded BTEX by CC)aunor (Adeca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o-Xylene                                                           | <3 µg/kg          | I 1M089                      | <3<br>2 N             |  |  |  |
| sum dietered STEX by C<24<br>27408<24<br>2 </td <td>sum of detected mpo xylene by GC</td> <td>&lt;9 µg/kg</td> <td>TM089</td> <td>&lt;9</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sum of detected mpo xylene by GC                                   | <9 µg/kg          | TM089                        | <9                    |  |  |  |
| Image: sector of the sector  | sum of detected BTEX by GC                                         | <24 µg/kg         | g TM089                      | <24                   |  |  |  |
| Image: section of the section of th |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: sector of the sector  |                                                                    |                   |                              |                       |  |  |  |
| Image: sector of the sector  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: state of the state of |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: series of the series  |                                                                    |                   |                              |                       |  |  |  |
| Image: Second  |                                                                    |                   |                              |                       |  |  |  |
| Image: Second                |                                                                    |                   |                              |                       |  |  |  |
| Image: Second                |                                                                    |                   |                              |                       |  |  |  |
| Image: state of the state of |                                                                    |                   |                              |                       |  |  |  |
| Image: state of the state of |                                                                    |                   |                              |                       |  |  |  |
| Image: state of the state o  |                                                                    |                   |                              |                       |  |  |  |
| Image: Second  |                                                                    |                   |                              |                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                   |                              |                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                   |                              |                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                   |                              |                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                   |                              |                       |  |  |  |

Case :

**Post Certification Report** 

Location: 17 Sulgrave Rd. and 54 Shirlock Rd.

### Asbestos Identification Asbestos Identification - Soil

|                                                                                                                                |                                                                                                                  |                  | - AJ             | 063103   |                             | incation                       | I - 301                        |                    |                           |                   |                    |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|------------------|----------|-----------------------------|--------------------------------|--------------------------------|--------------------|---------------------------|-------------------|--------------------|
|                                                                                                                                |                                                                                                                  | Date of Analysis | Analysed By      | Comments | Amosite (Brown)<br>Asbestos | Chrysotile (White)<br>Asbestos | Crocidolite (Blue)<br>Asbestos | Fibrous Actinolite | Fibrous<br>Anthrophyllite | Fibrous Tremolite | Non-Asbestos Fibre |
| Customer Sample Ref.<br>Depth (m)<br>Sample Type<br>Date Sampled<br>Date Receieved<br>SDG<br>Original Sample<br>Method Number  | 54SR WS1 NS Z<br>0.70<br>SOLID<br>14/05/2015 00:00:00<br>27/05/2015 12:26:20<br>150520-14<br>11,392,398<br>TM048 | 28/5/15          | Rebecca Rawlings | -        | Not Detected                | Not Detected                   | Not Detected                   | Not Detected       | Not Detected              | Not Detected      | Not Detected       |
| Customer Sample Ref.<br>Depth (m)<br>Sample Type<br>Date Sampled<br>Date Receivered<br>SDG<br>Original Sample<br>Method Number | 54SR WS2 NS Z<br>0.30<br>SOLID<br>28/05/2015 08:45:02<br>150520-14<br>11,392.377<br>TM048                        | 1/6/15           | Kevin Gill       | -        | Not Detected                | Not Detected                   | Not Detected                   | Not Detected       | Not Detected              | Not Detected      | Not Detected       |

H ABCON HMF Customer : Case :

Client Reference: 3207 and 3209

### **Post Certification Report**

Location: 17 Sulgrave Rd. and 54 Shirlock Rd.

### **CEN 10:1 SINGLE STAGE LEACHATE TEST**

### WAC ANALYTICAL RESULTS

### **REF : BS EN 12457/2**

| Client | Reference |     |
|--------|-----------|-----|
| Maaa   | 0         | (1) |

Lab Sample Number(s)

Customer Sample Ref.

**Sampled Date** 

Depth (m)

Case

SDG

| Mass Sample taken (kg)  | 0.117 |
|-------------------------|-------|
| Mass of dry sample (kg) | 0.090 |
| Particle Size <4mm      | >95%  |

150520-14

11392401

54SR WS1 2.50 - 3.00

14-May-2015

#### **Site Location Natural Moisture Content (%)** 3 **Dry Matter Content (%)** 7

| 7  | Sulgrave Rd | and | 54 | Shirlock |
|----|-------------|-----|----|----------|
| 30 | .2          |     |    |          |
| 76 | 8           |     |    |          |

# Landfill Waste Acceptance **Criteria Limits**

| • • •                    |        |
|--------------------------|--------|
| Solid Waste Analysis     | Result |
| Total Organic Carbon (%) | <0.200 |
| Loss on Ignition (%)     | -      |
| Sum of BTEX (mg/kg)      | <0.024 |
| Sum of 7 PCBs (mg/kg)    | <0.021 |
| Mineral Oil (mg/kg)      | 14.8   |
| PAH Sum of 17 (mg/kg)    | <10.0  |
| pH (pH Units)            | -      |
| ANC to pH 6 (mol/kg)     | -      |
| ANC to pH 4 (mol/kg)     | -      |

| Inert Waste<br>Landfill | Stable<br>Non-reactive<br>Hazardous<br>Waste in Non-<br>Hazardous<br>Landfill | Hazardous<br>Waste Landfill |
|-------------------------|-------------------------------------------------------------------------------|-----------------------------|
| 3                       | 5                                                                             | 6                           |
| -                       | -                                                                             | -                           |
| 6                       | -                                                                             | -                           |
| 1                       | -                                                                             | -                           |
| 500                     | -                                                                             | -                           |
| 100                     | -                                                                             | -                           |
| -                       | -                                                                             | -                           |
| -                       | -                                                                             | -                           |
| -                       | -                                                                             | -                           |

| Eluate Analysis              | C <sub>2</sub> Conc <sup>n</sup> in 1 | 0:1 eluate (mg/l)  | <b>A</b> <sub>2</sub> 10:1 conc <sup>r</sup> | leached (mg/kg)    | Limit values for compliance leaching test<br>using BS EN 12457-3 at L/S 10 l/kg |       |        |  |
|------------------------------|---------------------------------------|--------------------|----------------------------------------------|--------------------|---------------------------------------------------------------------------------|-------|--------|--|
|                              | Result                                | Limit of Detection | Result                                       | Limit of Detection |                                                                                 |       | _      |  |
| Arsenic                      | 0.000161                              | <0.00012           | 0.00161                                      | <0.0012            | 0.5                                                                             | 2     | 25     |  |
| Barium                       | 0.0453                                | <0.00003           | 0.453                                        | <0.0003            | 20                                                                              | 100   | 300    |  |
| Cadmium                      | <0.0001                               | <0.0001            | <0.001                                       | <0.001             | 0.04                                                                            | 1     | 5      |  |
| Chromium                     | 0.000386                              | <0.00022           | 0.00386                                      | <0.0022            | 0.5                                                                             | 10    | 70     |  |
| Copper                       | 0.00342                               | <0.00085           | 0.0342                                       | <0.0085            | 2                                                                               | 50    | 100    |  |
| Mercury Dissolved (CVAF)     | <0.00001                              | <0.00001           | <0.0001                                      | <0.0001            | 0.01                                                                            | 0.2   | 2      |  |
| Molybdenum                   | 0.000458                              | <0.00024           | 0.00458                                      | <0.0024            | 0.5                                                                             | 10    | 30     |  |
| Nickel                       | 0.00314                               | <0.00015           | 0.0314                                       | <0.0015            | 0.4                                                                             | 10    | 40     |  |
| Lead                         | 0.000174                              | <0.00002           | 0.00174                                      | <0.0002            | 0.5                                                                             | 10    | 50     |  |
| Antimony                     | <0.00016                              | <0.00016           | <0.0016                                      | <0.0016            | 0.06                                                                            | 0.7   | 5      |  |
| Selenium                     | 0.000407                              | <0.00039           | 0.00407                                      | <0.0039            | 0.1                                                                             | 0.5   | 7      |  |
| Zinc                         | 0.00229                               | <0.00041           | 0.0229                                       | <0.0041            | 4                                                                               | 50    | 200    |  |
| Chloride                     | 4.9                                   | <2                 | 49                                           | <20                | 800                                                                             | 15000 | 25000  |  |
| Fluoride                     | 0.505                                 | <0.5               | 5.05                                         | <5                 | 10                                                                              | 150   | 500    |  |
| Sulphate (soluble)           | 907                                   | <10                | 9070                                         | <100               | 1000                                                                            | 20000 | 50000  |  |
| Total Dissolved Solids       | 982                                   | <5                 | 9820                                         | <50                | 4000                                                                            | 60000 | 100000 |  |
| Total Monohydric Phenols (W) | <0.016                                | <0.016             | <0.16                                        | <0.16              | 1                                                                               | -     | -      |  |
| Dissolved Organic Carbon     | <3                                    | <3                 | <30                                          | <30                | 500                                                                             | 800   | 1000   |  |
|                              |                                       |                    |                                              |                    |                                                                                 |       |        |  |

### **Leach Test Information**

| Date Prepared            | 26-May-2015 |
|--------------------------|-------------|
| pH (pH Units)            | 7.87        |
| Conductivity (µS/cm)     | 1490        |
| Temperature (°C)         | 20.00       |
| Volume Leachant (Litres) | 0.873       |

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

25/06/2015 16:21:23

Customer : H\_ABCON\_HMF Case :

Client Reference: 3207 and 3209

## **Post Certification Report**

Location: 17 Sulgrave Rd. and 54 Shirlock Rd.

|                                              | CEN 10                                        | :1 SINGLE          | STAGE LEA                                               | CHATE TES          | БТ                      |                                                                                 |                             |  |  |
|----------------------------------------------|-----------------------------------------------|--------------------|---------------------------------------------------------|--------------------|-------------------------|---------------------------------------------------------------------------------|-----------------------------|--|--|
| WAC ANALYTICAL RES                           | SULTS                                         |                    |                                                         |                    |                         | REF : BS E                                                                      | N 12457/2                   |  |  |
| Client Reference                             |                                               |                    | Site Location                                           |                    | 17 Su                   | ılqrave Rd. ar                                                                  | nd 54 Shirlock              |  |  |
| Mass Sample taken (kg)                       | 0.117                                         |                    | Natural Moist                                           | ure Content (%     | <b>30.2</b>             | 5                                                                               |                             |  |  |
| Mass of dry sample (kg)                      | 0.090                                         |                    | Dry Matter Co                                           | ntent (%)          | , 76.8                  |                                                                                 |                             |  |  |
| Particle Size <4mm                           | >95%                                          |                    | •                                                       | . ,                |                         |                                                                                 |                             |  |  |
| Case                                         |                                               |                    |                                                         |                    | Landfil                 | I Waste Acce                                                                    | eptance                     |  |  |
| SDG                                          | 150520-14                                     |                    |                                                         |                    | (                       | Criteria Limit                                                                  | S                           |  |  |
| Lab Sample Number(s)                         | 11392401                                      |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
| Sampled Date                                 | 14-May-2015                                   |                    |                                                         |                    |                         | Stable<br>Non-reactive                                                          |                             |  |  |
| Customer Sample Ref.                         | 54SR WS1                                      |                    |                                                         |                    | Inert Waste<br>Landfill | Hazardous                                                                       | Hazardous<br>Waste Landfill |  |  |
| Depth (m)                                    | 2.50 - 3.00                                   |                    |                                                         |                    |                         | Hazardous                                                                       |                             |  |  |
| Solid Waste Analysis                         | Result                                        |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
| Total Organic Carbon (%)                     | <0.200                                        |                    | •                                                       |                    | 3                       | 5                                                                               | 6                           |  |  |
| Loss on Ignition (%)                         | -                                             |                    |                                                         |                    | -                       | -                                                                               | -                           |  |  |
| Sum of BTEX (mg/kg)<br>Sum of 7 PCBs (mg/kg) | <0.024                                        |                    |                                                         |                    | 6                       | -                                                                               | -                           |  |  |
| Mineral Oil (mg/kg)                          | 14.8                                          |                    |                                                         |                    | 500                     | -                                                                               | -                           |  |  |
| PAH Sum of 17 (mg/kg)                        | <10.0                                         |                    |                                                         |                    | 100                     | -                                                                               | -                           |  |  |
| pH (pH Units)                                | -                                             |                    |                                                         |                    | -                       | -                                                                               | -                           |  |  |
| ANC to pH 4 (mol/kg)                         | -                                             |                    |                                                         |                    | -                       | -                                                                               | -                           |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
| Eluate Analysis                              | <b>C</b> <sub>2</sub> Conc <sup>n</sup> in 10 | ):1 eluate (mg/l)  | eluate (mg/l) A2 10:1 conc <sup>n</sup> leached (mg/kg) |                    |                         | Limit values for compliance leaching test<br>using BS EN 12457-3 at L/S 10 l/kg |                             |  |  |
| Motal Prop                                   | Result                                        | Limit of Detection | Result                                                  | Limit of Detection |                         |                                                                                 |                             |  |  |
| Metal Prep                                   | U                                             | <0                 | U                                                       | <0                 | -                       | -                                                                               | -                           |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
|                                              |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |
| Longh Tost Information                       | 1                                             | 1                  | 1                                                       |                    |                         |                                                                                 |                             |  |  |
| Leach Test Information                       |                                               |                    |                                                         |                    |                         |                                                                                 |                             |  |  |

| Date Prepared            | 26-May-2015 |
|--------------------------|-------------|
| pH (pH Units)            | 7.87        |
| Conductivity (µS/cm)     | 1490        |
| Temperature (°C)         | 20.00       |
| Volume Leachant (Litres) | 0.873       |
|                          |             |

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Customer : H\_ABCON\_HMF Case :

(

Client Reference : 3207 and 3209

**Post Certification Report** 

Location: 17 Sulgrave Rd. and 54 Shirlock Rd.

## Table of Results - Appendix

| REPO        | RT KEY                 |                                            |                    |                                    |                                                          |                                                            | Results expressed as (e.g.)    | 1.03E-07 is equival | ent to 1.03x10-7 |
|-------------|------------------------|--------------------------------------------|--------------------|------------------------------------|----------------------------------------------------------|------------------------------------------------------------|--------------------------------|---------------------|------------------|
| NDP         | No Determination       | on Possible                                | #                  | ISO 17025 Accredited               | *                                                        | Subcontracted Test                                         | м                              | MCERTS Accr         | edited           |
| NFD         | No Fibres Detec        | Detected PFD Possible Fibres Detected      |                    | »                                  | Result previously reported<br>(Incremental reports only) | EC                                                         | Equivalent Ca<br>(Aromatics Ca | rbon<br>3-C35)      |                  |
| Note: Metho | d detection limits are | not always achievable due                  | to various o       | ircumstances beyond our control    |                                                          |                                                            |                                | Wet/Drv             | Surrogate        |
| Me          | ethod No               |                                            | Refer              | rence                              |                                                          | Description                                                |                                | Sample <sup>1</sup> | Corrected        |
|             |                        |                                            |                    |                                    |                                                          |                                                            |                                |                     |                  |
| AS          | BLAGA                  |                                            |                    |                                    |                                                          |                                                            |                                |                     |                  |
|             | PM001                  |                                            |                    |                                    | Preparation of Samp                                      | bles for Metals Analysis                                   |                                |                     |                  |
|             | PM024                  | Modified BS 1377                           |                    |                                    | Soil preparation incl<br>Asbestos Containing             | uding homogenisation, moisture s<br>g Material             | creens of soils for            |                     |                  |
|             | PM115                  |                                            |                    |                                    | Leaching Procedure                                       | for CEN One Stage Leach Test 2                             | ::1 & 10:1 1 Step              |                     |                  |
|             | TM048                  | HSG 248, Asbestos:<br>analysis and clearan | The analyce proced | ysts' guide for sampling,<br>lures | Identification of Asbe                                   | estos in Bulk Material                                     |                                |                     |                  |
|             | TM061                  | Method for the Deter<br>Dept.of EP, 1998   | mination           | of EPH,Massachusetts               | Determination of Ex                                      | tractable Petroleum Hydrocarbons                           | by GC-FID (C10-C40)            |                     |                  |
|             | TM089                  | Modified: US EPA M                         | ethods 80          | 20 & 602                           | Determination of Ga<br>compounds by Head                 | soline Range Hydrocarbons (GRC<br>Ispace GC-FID (C4-C12)   | 0) and BTEX (MTBE)             |                     |                  |
|             | TM090                  | Method 5310, AWWA<br>EPA Method 415.1 &    | A/APHA, 2<br>9060  | 20th Ed., 1999 / Modified: US      | Determination of Tot<br>Waste Water                      | tal Organic Carbon/Total Inorganic                         | c Carbon in Water and          |                     |                  |
|             | TM104                  | Method 4500F, AWW                          | VA/APHA            | , 20th Ed., 1999                   | Determination of Flu                                     | oride using the Kone Analyser                              |                                |                     |                  |
|             | TM123                  | BS 2690: Part 121:19                       | 981                |                                    | The Determination of                                     | f Total Dissolved Solids in Water                          |                                |                     |                  |
|             | TM132                  | In - house Method                          |                    |                                    | ELTRA CS800 Oper                                         | ators Guide                                                |                                |                     |                  |
|             | TM133                  | BS 1377: Part 3 1990                       | );BS 6068          | 3-2.5                              | Determination of pH                                      | in Soil and Water using the GLpH                           | I pH Meter                     |                     |                  |
|             | TM151                  | Method 3500D, AWV                          | VA/APHA            | , 20th Ed., 1999                   | Determination of He                                      | xavalent Chromium using Kone ar                            | nalyser                        |                     |                  |
|             | TM152                  | Method 3125B, AWV                          | VA/APHA            | , 20th Ed., 1999                   | Analysis of Aqueous                                      | Samples by ICP-MS                                          |                                |                     |                  |
|             | TM154                  | In - house Method                          |                    |                                    | Determination of Per<br>Carbon range C6- C               | troleum Hydrocarbons by EZ Flas<br>40                      | h GC-FID in the                |                     |                  |
|             | TM168                  | EPA Method 8082, P<br>Chromatography       | olychlorir         | nated Biphenyls by Gas             | Determination of WH<br>GC-MS in Soils                    | HO12 and EC7 Polychlorinated Bip                           | phenyl Congeners by            |                     |                  |
|             | TM181                  | US EPA Method 601                          | 0B                 |                                    | Determination of Ro                                      | utine Metals in Soil by iCap 6500                          | Duo ICP-OES                    |                     |                  |
|             | TM183                  | BS EN 23506:2002,<br>38924 3               | (BS 6068           | -2.74:2002) ISBN 0 580             | Determination of Tra<br>Vapour Atomic Fluor              | ace Level Mercury in Waters and L<br>rescence Spectrometry | eachates by PSA Cold           | l                   |                  |
|             | TM184                  | EPA Methods 325.1                          | & 325.2,           |                                    | The Determination of Spectrophotometric                  | f Anions in Aqueous Matrices usir<br>Analysers             | ng the Kone                    |                     |                  |
|             | TM213                  | In-house Method                            |                    |                                    | Rapid Determination                                      | of PAHs by GC-FID                                          |                                |                     |                  |
|             | TM243                  |                                            |                    |                                    | Mixed Anions In Soi                                      | ls By Kone                                                 |                                |                     |                  |
|             | TM259                  | by HPLC                                    |                    |                                    | Determination of Ph                                      | enols in Waters and Leachates by                           | HPLC                           |                     |                  |

<sup>1</sup> Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

## **Post Certification Report**

Location: 17 Sulgrave Rd. and 54 Shirlock Rd.

## **Test Completion Dates**

| Lab Sample No(s)                   | 11392386    | 11392387    | 11392388    | 11392398    | 11392399    | 11392401    | 11392366    | 11392367    | 11392377    | 11392380    |
|------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Customer Sample Ref.               | 54SR WS1    | 54SR WS2    | 54SR WS2    | 54SR WS2    | 54SR WS2    |
| AGS Ref.                           |             |             |             |             |             |             |             |             |             |             |
| Depth                              | 0.10        | 0.35        | 0.90        | 0.70        | 1.20 - 1.60 | 2.50 - 3.00 | 0.15        | 0.50        | 0.30        | 0.90        |
| Туре                               | SOLID       |
| Anions by Kone (soil)              | 04-Jun-2015 |             |             |             |             |             |             |             | 04-Jun-2015 |             |
| Anions by Kone (w)                 |             |             |             |             |             | 28-May-2015 |             |             |             |             |
| Asbestos ID in Solid Samples       |             |             |             | 29-May-2015 |             |             |             |             | 02-Jun-2015 |             |
| CEN 10:1 Leachate (1 Stage)        |             |             |             |             |             | 26-May-2015 |             |             |             |             |
| CEN Readings                       |             |             |             |             |             | 29-May-2015 |             |             |             |             |
| Dissolved Metals by ICP-MS         |             |             |             |             |             | 29-May-2015 |             |             |             |             |
| Dissolved Organic/Inorganic Carbon |             |             |             |             |             | 01-Jun-2015 |             |             |             |             |
| Fluoride                           |             |             |             |             |             | 29-May-2015 |             |             |             |             |
| GRO by GC-FID (S)                  |             |             |             |             |             | 07-Jun-2015 |             |             |             |             |
| Hexavalent Chromium (s)            |             |             |             |             | 03-Jun-2015 |             |             |             |             | 03-Jun-2015 |
| Mercury Dissolved                  |             |             |             |             |             | 29-May-2015 |             |             |             |             |
| Metals in solid samples by OES     |             |             |             |             | 01-Jun-2015 |             |             |             |             | 01-Jun-2015 |
| Mineral Oil                        |             |             |             |             |             | 02-Jun-2015 |             |             |             |             |
| PAH Value of soil                  |             | 02-Jun-2015 |             |             |             | 29-May-2015 |             | 02-Jun-2015 |             |             |
| PCBs by GCMS                       |             |             |             |             |             | 30-May-2015 |             |             |             |             |
| pН                                 | 03-Jun-2015 |             |             |             |             |             |             |             | 04-Jun-2015 |             |
| Phenols by HPLC (W)                |             |             |             |             |             | 01-Jun-2015 |             |             |             |             |
| Sample description                 | 28-May-2015 | 28-May-2015 | 28-May-2015 | 27-May-2015 | 28-May-2015 | 26-May-2015 | 28-May-2015 | 28-May-2015 | 28-May-2015 | 27-May-2015 |
| Total Dissolved Solids             |             |             |             |             |             | 29-May-2015 |             |             |             |             |
| Total Organic Carbon               |             |             |             |             |             | 01-Jun-2015 |             |             |             |             |
| TPH c6-40 Value of soil            |             |             | 04-Jun-2015 |             |             |             | 04-Jun-2015 |             |             |             |

H ABCON HMF

Client Reference: 3207 and 3209

Location: 17 Sulgrave Rd. and 54 Shirlock Rd.

Customer : Case :

## Appendix General

for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9 NDP -No determination possible due to insufficient/unsuitable sample

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately

11. Results relate only to the items tested

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol)

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

> 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

> 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample

> 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5 -C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

### Sample Deviations

| 1 | Container with Headspace provided for volatiles analysis       |
|---|----------------------------------------------------------------|
| 2 | Incorrect container received                                   |
| 3 | Deviation from method                                          |
| 4 | Holding time exceeded before sample received                   |
| 5 | Samples exceeded holding time before presevation was performed |
| § | Sampled on date not provided                                   |
| • | Sample holding time exceeded in laboratory                     |
| 0 | Sample holding time exceeded due to sampled on date            |
| & | Sample Holding Time exceeded - Late arrival of instructions.   |
|   |                                                                |

### Asbestos

#### Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

| Asbestos Type             | Common Name     |  |
|---------------------------|-----------------|--|
| Chrysof le                | White Asbestos  |  |
| Amosite                   | Brow n Asbestos |  |
| Cro a dolite              | Blue Asbe stos  |  |
| Fibrous Act nolite        | -               |  |
| Fib to us Anthop hyll ite | -               |  |
| Fibrous Tremol ite        | -               |  |

### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation

| -  |
|----|
| Ø. |

### STRUCTURAL SOILS LTD

### **TEST REPORT**



| Report No.                                  | 781779 R1                                                                    |                                                                                             |                                                                               |                                                          |                             | 1774          |
|---------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|---------------|
| Date                                        | 01-September-2                                                               | 2015 Contra                                                                                 | act 54SR Lond                                                                 | on                                                       |                             |               |
| Client<br>Address                           | Ashton Bennett<br>Unit K<br>Bridge Mills<br>Huddersfield Ro<br>Holmfirth HD9 | Consultancy<br>oad<br>3TW                                                                   |                                                                               |                                                          |                             |               |
| For the Atter                               | tion of                                                                      | Tristan Bennett                                                                             |                                                                               |                                                          |                             |               |
| Samples sub<br>Testing Start<br>Testing Com | nitted by client<br>ed<br>pleted                                             | 14/08/2015<br>17/08/2015<br>01/09/2015                                                      |                                                                               | Client Reference<br>Client Order No.<br>Instruction Type | Written                     |               |
| UKAS Accre                                  | dited Tests Unde                                                             | ertaken                                                                                     |                                                                               | •                                                        |                             |               |
|                                             | Moisture Conter<br>Liquid Limit (de<br>Plastic Limit BS<br>Plasticity Index  | nt (oven drying meth<br>efinitive method) BS<br>S1377:Part 2:1990,cla<br>Derivation BS1377: | od) BS1377:Part 2:<br>1377:Part 2:1990,cl<br>ause 5.3<br>Part 2:1990,clause 5 | 1990,clause 3.2<br>ause 4.3<br>5.4                       |                             |               |
| Please Note: R                              | emaining samples                                                             | will be retained for a p                                                                    | eriod of one month fro                                                        | om today and will then b                                 | be disposed of              |               |
|                                             | Approved sig                                                                 | gnatories: Mark Athor                                                                       | rne (Laboratory Ma                                                            | nager) Steven Athorne                                    | e (Senior Technicia<br>Page | nn)<br>e 2 of |

Structural Soils Ltd The Potteries Pottery Street Castleford WF10 1NJ Tel: 01977 552255 e-mail mark.athorne@soils.co.uk

## SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

| ploratory<br>sition ID | Sample<br>Ref | Sample<br>Type | Depth<br>(m) | Moisture<br>Content<br>% | Liquid<br>Limit<br>% | Plastic<br>Limit<br>% | Plasticity<br>Index<br>% | %<br><425um       | Description of Sample                       |       |
|------------------------|---------------|----------------|--------------|--------------------------|----------------------|-----------------------|--------------------------|-------------------|---------------------------------------------|-------|
| 54SR                   | 1             | D              | 0.45         | 38                       | 68                   | 24                    | 44                       | 83                | Brown slightly sandy slightly gravelly CLAY |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
| 54SR                   | 2             | D              | 0.55         | 34                       | 69                   | 25                    | 44                       | 95                | Brown slightly sandy slightly gravelly CLAY |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
|                        |               |                |              |                          |                      |                       |                          |                   |                                             |       |
| I                      |               | 1              | 1            |                          | 1                    | 1                     | 1                        |                   |                                             |       |
| 2                      | a==           | TT CT          |              | Contra                   | ICT:                 |                       |                          |                   | Contract Ref:                               |       |
| Ú,                     | STR<br>S(     | NUCT           | URAI<br>LTD  |                          |                      |                       |                          | 54SR London 7817' |                                             | 81779 |

