

P&T Architects and Engineers

9A The Grove, London

Ground Movement Assessment

September, 2015

Card Geotechnics Limited 4 Godalming Business Centre, Woolsack Way, Godalming, Surrey, GU7 1XW Telephone: 01483 310 600 www.cgl-uk.com

Copyright: Card Geotechnics Limited

Card Geotechnics Limited ("CGL") has prepared this report in accordance with the instructions of engineers HRW on behalf of P&T Architects and Engineers ("the Client") under the terms of its appointment for consulting engineering services by the Client dated 17 August 2015. The report is for the sole and specific use of the Client, and CGL shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared and provided. Should the Client require to pass copies of the report to other parties for information, the whole of the report should be so copied, but no professional liability or warranty shall be extended to other parties by CGL in this connection without the explicit written agreement thereto by CGL.

Author	Anastasios Kar MEng MSc DIC	npaktsis, Engineer	B. Kampatikis
Checked	Robert Benson, Senior Engineer MSc BSc (Hons) CEng MICE FGS		(Plan
Approved	Nick Langdon, Director MSc BEng DIC CEnv CEng CMgr FICE FGS FCMI MIOD		Whange
Reference	CG/18545	Revision 0	Issue Date September 2015

CONTENTS

1.	INTRODUC	TION	4
2.	SITE CONT	EXT	5
	2.1 Site loc	ation	5
	2.2 Site des	scription	5
	2.3 Propos	ed development	5
	2.4 Anticip	ated geology	6
3.	GROUND I	NVESTIGATION	7
4.	GROUND	AND GROUNDWATER CONDITIONS	8
	4.1 Summa	ry	8
	4.2 Made G	iround	8
	4.3 Bagsho	t Formation	9
	4.4 Claygat	e Member	9
	4.5 Ground	water	9
	4.6 Geotec	hnical design parameters	9
5.	BASEMEN	T IMPACT ASSESSMENT – LAND STABILITY	11
	5.1 Introdu	ction	11
	5.2 Critical	sections for analysis	12
	5.3 Ground	movements arising from basement excavation	12
	5.4 Underp	in settlement due to workmanship	15
	5.5 Ground	movement due to retaining wall deflection	15
6.	BUILDING	DAMAGE ASSESSMENT	17
	6.1 Impact	Assessment – No.8 & No.9 The Grove	18
7.	CONSTRU	CTION MONITORING	20
8.	CONCLUSI	ONS	21

FIGURES

Figure 1	-	Site location plan
Figure 2	-	Site Layout
Figure 3	-	Typical section through basement
Figure 4	-	SPT 'N' values vs level (m AOD)
Figure 5	-	Undrained shear strength vs level (m AOD)
Figure 6	-	Undrained (Short Term) Ground Movements
Figure 7	-	Long Term Ground Movements
Figure 8	-	Net Vertical Ground Movements (Nos. 8 & 9)
Figure 9	-	Building Damage Category Assessment Plot

APPENDICES

Appendix A	 Existing Development Survey Plan
Appendix B	 Proposed Development Plans
Appendix C	 Ground Investigation Report
Appendix D	 Loading Information
Appendix E	 WALLAP Analysis Output

1. INTRODUCTION

It is proposed to construct a single level basement beneath the existing property at 9A The Grove in the London Borough of Camden. The basement will cover the existing building footprint, extend below the rear garden and form a lightwell in the front garden. The basement will be formed by underpinning the perimeter whilst a contiguous pile wall will be installed at the front garden for the construction of the lightwell. The structure will be used as habitable space.

The London Borough (LB) of Camden's Planning Guidance¹ was published in September 2013 and outlines requirements relating to basements within the borough. The assessment included in this report has full regard to the requirements of Camden's Planning Policy Framework, including Policy CS14 of the Core Strategy and Policy DP27 of the Development Policies Plan Document (DPD), as well as CPG4.

A Basement Impact Assessment (BIA) has already been undertaken for the property²by Geotechnical & Environmental Associates (GEA). The aforementioned assessment includes a desk study and a screening process addressing hydrological, hydrogeological and geotechnical issues specific to the property, following the methodology set out in CPG4.

The scope of this report is to provide an impact assessment in relation to land stability, and includes the prediction of ground movements due to the excavation and construction of the proposed basement. This has been completed in order to assess the potential damage that might be inflicted to the neighbouring properties, namely No.8 and No.9 The Grove, and any other structures that might be in the influence zone of the proposed development.

¹ The London Borough of Camden Planning Guidance: Basements and Lightwells (CPG4), September 2013

² Geotechnical & Environmental Associates (GEA), Rep. No. J15047, April 2015

2. SITE CONTEXT

2.1 Site location

The site is located in The Grove in the London Borough of Camden, N6 6JU. The Ordnance Survey Grid Reference for the approximate centre of the site is 528177E, 187307N. A site location plan is shown in Figure 1.

2.2 Site description

The site is broadly rectangular in plan with dimensions some 50m in length and some 15m in width (at the widest section). The dimensions of the proposed excavation are approximately 20m in length and some 10m in width, with the length orientated in an east-west direction perpendicular to The Grove. The existing building comprises a three level residential property (ground floor, first floor and second floor).

With reference to information provided by the GEA BIA, the typical elevation at the site is approximately 128m above Ordnance Datum (AOD) and the ground slopes gently towards the south and south-west. A survey plan showing the existing structure is included in Appendix A.

The existing house shares party walls with No. 9 to the north and No. 8 to the south. The property at No. 9 has an existing lower ground floor and has recently had a basement extension to the rear of the property (Camden planning ref. 2011/1047/P). A boundary wall to the east of the site separates the property from The Grove. To the west, the rear garden of the property is adjacent to boundaries of other properties along Highfields Grove.

No underground structures, including London Underground Limited assets, or buried services that could affect the works or be affected by them have been identified in the proximity of the property.

A site plan depicting the information above is presented as Figure 2 (from available survey drawings provided by the engineers HRW).

2.3 Proposed development

The proposed development comprises the construction of a basement level which will cover the existing house footprint and extend into the rear garden. A lightwell will be formed in the front garden.

The proposed basement will be constructed within an underpinned wall along the western and southern boundary with No.8. The party wall with No.9, which already has a lower ground floor, will not be underpinned. A 300mm diameter contiguous pile wall will be installed for the excavation and construction of the lightwell. The proposed basement formation level is at 125m AOD (which corresponds approximately to 3m below existing ground level). The foundation for the basement has been designed as a ground bearing raft with loads from party walls and internal walls transferred uniformly across the raft footprint.

Proposed development plans are included in Appendix B. A typical section through the proposed basement is presented as Figure 3 (from available drawing No. 1290SE010 T1, dated March 2015).

2.4 Anticipated geology

2.4.1 Published geology

The available online BGS Maps³ and the BGS Geological Map Extract of the area (Sheet No. 256) indicate that the bedrock geology at the site comprises the Bagshot Formation underlain by the Claygate Member of the London Clay Formation.

The Bagshot Formation comprises beds of fine sand with occasional seams of clay and silt and local beds of flint gravel. Its thickness in the area can reach up to 18m.

The Claygate Member constitutes the upper units of the London Clay Formation and comprises alternate units of clayey silt, sandy silt and silty sand with sandier units typically being predominant towards the top of the member becoming more clay dominant towards the base. The thickness of the Claygate Member is approximately 15m in the local area.

The London Clay Formation is an over-consolidated firm to very stiff, becoming hard with depth, fissured, blue to grey silty clay of low to very high plasticity. The upper and lower parts may contain silty or fine grained sand partings. The stratum may also contain laminated, structured, nodular claystone and rare sand partings.

³ BGS Website <u>www.bgs.ac.uk</u> (Accessed 02/08/2015)

3. GROUND INVESTIGATION

An intrusive site investigation was undertaken in February 2015 by Geotechnical & Environmental Associates (GEA)⁴ at the instruction of the engineer (engineersHRW).

The investigation comprised a single cable percussive borehole (BH1) drilled to a depth of 15m below ground level (bgl), two window sampler boreholes (BH2 and BH3) to a depth of 6m bgl each and a total of ten trial pits (TP1 to TP10, inclusive) to a maximum depth of 1.6m bgl. The exploratory holes were undertaken at selected positions to characterise the existing ground conditions, retrieve soil samples and investigate the extent and nature of the existing foundations. Borehole BH1 was drilled in the front garden whilst boreholes BH2 and BH3 were drilled in the rear garden. The trial pits were excavated at various locations within the footprint of the house and in the gardens.

In-situ testing comprised Standard Penetration Tests (SPT) between 1.2m and 13.5m bgl in borehole BH1. Bulk, disturbed and undisturbed samples were retrieved from the window sampler boreholes and the cable percussive boreholes. Standpipes were installed in the three boreholes to 6m depth.

Relevant factual data from the ground investigation report referenced above has been included within Appendix C, including the borehole logs and laboratory test results.

Laboratory tests on selected soil samples were completed by Geolabs Limited, a UKAS accredited geotechnical laboratory. The tests included the following:

- Unconsolidated undrained triaxial compression;
- Atterberg Limits;
- Moisture content;
- Particle Size Distribution;
- Bulk and Dry Density; and
- Chemical Tests.

Geotechnical test results are included in Appendix C.

⁴ Geotechnical & Environmental Associates (GEA), Rep. No. J15047, April 2015

4. GROUND AND GROUNDWATER CONDITIONS

4.1 Summary

The ground conditions encountered during the intrusive investigations are generally consistent with those expected from the desk study information reviewed in Section 2.5 of this report. The ground conditions on site derived from the GEA investigation are summarised in Table 1 below.

Strata	Depth to top m bgl ^ª [m AOD]	Thickness (m)
Brown clayey SAND/Brown sandy CLAY with gravel and brick fragments. [MADE GROUND]	0 [127.5 – 127.8]	1.80 - 3.40
Soft becoming stiff brown mottled sandy CLAY with occasional pockets of fine to medium sand. [BAGSHOT FORMATION]	1.80 – 3.40 [124.3 – 125.9]	0.90 – 3.85
Medium dense orange-brown slightly clayey fine to medium SAND. [BAGSHOT FORMATION]	4.10 – 7.25 [120.63 – 123.41]	7.65
Stiff grey silty CLAY. [CLAYGATE MEMBER]	14.90 [112.98]	Base not proven

Table 1. Summary of ground conditions

a) mbgl = metres below existing ground level; mAOD = metres above Ordnance Datum

Each stratum is discussed in the following sections together with the results of the geotechnical tests. Plots of SPT 'N' values and undrained shear strength, c_u (kPa) versus level (m bgl) are presented in Figure 4 and Figure 5 respectively.

4.2 Made Ground

The Made Ground encountered was described by GEA as predominantly sandy clay with layers of clayey sand in the front garden. The thickness of Made Ground varies between 1.8m and 3.4m, but typically in excess of 3m in proximity to the basement perimeter (BH1 and BH3). The Made Ground will be removed as part of the basement excavation.

4.3 Bagshot Formation

The Bagshot Formation was encountered directly below the Made Ground and is described as soft becoming stiff clay, underlain by medium dense slightly clayey fine to medium sand. The thickness of the clayey layer varies from 0.9m to 3.85m with the sandy units extending down to 14.9m bgl in borehole BH1.

A single SPT test in the clayey layer of Bagshot Formation recorded an 'N' value of 15, indicating firm to stiff clay. Measurements in the sand units at depth varied between 19 and 33 indicating generally medium dense to dense granular soils.

Particle size distribution tests indicate that the sandy units are generally uniformly graded with clay/silt fractions varying between 30.6% and 62%.

Two undrained triaxial tests were undertaken on samples at 4m and 6m bgl in borehole BH1, recording results of 70kPa and 22kPa, respectively. These results, and particularly the lower value, should be treated with caution given the high sand/silt content as they do not reflect the soil descriptions in the logs. The cohesive soils are generally of low to intermediate plasticity.

4.4 Claygate Member

The Claygate Member was identified in borehole BH1 at 14.9m bgl (113mAOD) towards the base of the borehole, described as a stiff silty clay. No further in-situ or laboratory testing was undertaken to further classify this material, although it is likely to be beyond the depth of influence of the proposed basement. The London Clay at depth was not encountered.

4.5 Groundwater

Groundwater was encountered during the ground investigation as a seepage in borehole BH1 at a depth of 10.2m within the Bagshot Sand. A second slow inflow was recorded at 12.7m bgl and rose to 12.3m after 20 minutes. Monitoring standpipes were installed in all boreholes to 6m bgl during the site investigation. Two subsequent monitoring visits were undertaken and in both cases the standpipes were recorded as dry.

4.6 Geotechnical design parameters

Geotechnical design parameters for the proposed development are summarised in Table 2 below. These are based on the results of laboratory and in-situ testing. It should be noted that the parameters below are for heave/settlement calculations only.

Table 2. Geotechnical design parameters

Stratum	Design Level (Depth to top) (m bgl)* [m AOD]*	Bulk Unit Weight γ _b (kN/m ³)	Undrained Cohesion c _u (kPa) [c']	Friction Angle ¢' (°)	Young's Modulus E _u (MPa) [E']
Made Ground (CLAY)	0 [127.7]	17 ^ª	30 ^b [0]	27 ^c	15 ^d [11.25] ^d
Made Ground (SAND)	0 [128.0]	17 ^a	-	28 ^c	[2.5z] ^d
Bagshot Formation (CLAY)	3.2 [124.5]	19 ^ª	50 ^b [0]	23 ^c	30 [22.5] ^d
Bagshot Formation (SAND)	6.2 [121.5]	19 ^a	-	31 ^c	[46] ^d

*m bgl: metres below ground level

m AOD: metres above Ordnance Datum

Notes:

 The clayey Made Ground is considered to be representative for the calculation of heave, whereas the granular Made Ground is appropriate for the retaining wall analysis. This is because granular Made Ground was encountered in the front garden where the retaining wall is proposed to be installed.

Young's Modulus values for the clays in this table have been adopted for heave analysis. Different values are appropriate for retaining wall analysis (see reference [d] below).

Drained parameters have only been used in retaining wall analysis.

a. BS8002, assuming medium dense sand and firm clay for Bagshot Formation; loose sand and soft clay for Made Ground.

b. Based on log description of soft clay for Made Ground; for Bagshot Formation based on Cu=4.5N for N = 11
c. Sands (Made Ground and Bagshot Sand): Derived from SPT values for granular soil (CIRIA R143 for loose and medium)

dense sand respectively). Bagshot 'clay': Derived from PI based on BS8002 for PI=25. Made Ground (clay): Assumed. d. Stiffness for aranular Made Ground selected conservatively as E=1.5N for N=5 at 3m bal. increasing linearly from ground

Stiffness for granular Made Ground selected conservatively as E=1.5N for N=5 at 3m bgl, increasing linearly from ground surface. E=1.5N has been adopted from interpretation of CIRIA R143 (Table 11, page 84). Stiffness for Bagshot Sand based on E'=2N (CIRIA R143, pg84, from interpretation of Table 11). Stiffness for Bagshot 'clay' based on Eu = 600Cu (kPa) and for clayey Made Ground on Eu=500Cu (Lower bound). E' for clays derived as E'=Eu(1+v')/(1+v_u) based on page 87 of CIRIA R143, assuming v'=0.2. Eu for the retaining wall analysis was derived as Eu=1000Cu (kPa).

5. BASEMENT IMPACT ASSESSMENT - LAND STABILITY

5.1 Introduction

As noted in Section 2.3 of this report, the majority of the basement perimeter will be constructed by reinforced concrete underpinning methods which do not cause significant lateral ground movements due to their high stiffness. The underpins will be supported by temporary props during construction and by the floor slab in the permanent condition. Therefore the neighbouring buildings are expected to be affected only by ground heave and settlement due to workmanship (noting that No.9 will not be underpinned and therefore unaffected by the latter). Groundwater is not expected to affect the development. However, should inflows be recorded during the excavation appropriate contingency measures should be put in place.

The contiguous pile wall which is proposed to be installed at the front garden will be parallel to the façades of the adjacent buildings and therefore its effects on the properties are not expected to be significant. Nevertheless, a retaining wall analysis has been undertaken to assess the magnitude of ground movements that could affect the highway.

This section provides calculations to determine ground movements that will result from stress release due to excavations and settlements that will be induced by the reapplication of structural loadings. The predicted ground movements will be used for a damage assessment on the buildings adjacent to No. 9A.

The following construction process and effects are likely to give rise to ground movement that may impact upon adjacent structures:

- 1. Heave. Excavation of the basement gives rise to undrained elastic heave, resulting in upwards movement of the foundation soils. It has been noted that the thickness of the clayey materials which are subject to heave on unloading vary across the site. For this analysis it has been assumed conservatively that the basement is underlain by cohesive units of the Bagshot Formation. The amount of long-term heave/settlement depends on final construction loads and basement floor slab detailing. Heave movements are not anticipated to be significant within the granular layers of the Bagshot Formation and therefore they have been ignored.
- 2. Underpinning. Underpinning for the support of the walls of the existing basement is not expected to generate significant ground movements as the process involves

construction at intervals of relatively small width (~1m). The use of reinforced concrete limits the potential for lateral deflection and horizontal strain within the retained soils. The long term net bearing pressures beneath the underpins have been considered in the assessment, as well estimated party wall settlement due to workmanship.

3. Retaining wall installation and deflection. Both processes have the potential to generate vertical and lateral ground movements within the soils on the retained side of the wall, principally between the wall and The Grove highway. It is therefore considered that the installation of the wall and the subsequent excavation will not affect the adjacent properties to the north and south.

5.2 Critical sections for analysis

The critical constraints that will be considered for assessment are:

- No. 8 The Grove
- No. 9 The Grove
- The Grove highway

The plan locations of the critical sections are presented on Figure 2.

5.3 Ground movements arising from basement excavation

The clayey soils below basement formation level will be subject to stress relief during basement excavation. This is likely to give rise to a degree of elastic heave over the short term and potential heave or settlement over the long term as pore pressures recover in the clays and structural loads are reapplied. It is understood that a raft will form the permanent foundation system. The analysis assumes that the raft foundation will be formed directly on the firm clays of the Bagshot Formation (i.e. with Made Ground and softer zones removed).

The magnitude of ground movements has been calculated using OASYS Limited PDisp analysis software. PDisp assumes that the ground behaves as an elastic material under loading, with movements calculated based on the applied loads and the soil stiffness (E_u and E') input for each stratum.

5.3.1 Short term ground movements

For the short term analysis, the net stress change at proposed basement formation level due to various construction activities has been calculated and considers the following:

- 1. Stress decrease during excavation;
- 2. Application of stresses induced by the basement raft and the walls around the basement.

The load values used for each stage of construction and corresponding cumulative values applied in the PDisp analysis at proposed basement formation level (124.7m AOD) are summarised in Table 3.

The bulk unit weight of 19kN/m³ for the excavated soils (Made Ground and Bagshot Formation) has been adopted in Table 3, whilst a depth of 3m bgl has been adopted for the calculation of overburden relief. The gross raft load will be applied after the construction works and is estimated to be 26.8kPa. This has been modelled as a uniformly distributed load (UDL) across the basement footprint. This is based on distribution of the loads provided by HRW (Appendix D) and includes the self-weight of the slab. Modelling the load as a UDL is conservative as it is anticipated the structural loading will be concentrated locally beneath the underpin bases and reducing towards the centre of the raft. This would serve to reduce the heave around the basement perimeter and in proximity to the party walls. In addition, there is a load of 65kPa imposed by a steel frame along a 5.7X1.5 strip as shown on the available drawing 1290-GA001-P3 which has also been taken into account for the long term ground movement analysis.

Table 3. Net lo	d calculations	for PDISP	analysis
-----------------	----------------	-----------	----------

Stage 1 ^ª	Stage 2 ^ª	Stage 2 ^ª	Stage 2 ^a
Total basement excavation from ground level (kN/m ²) ^b	Loads applied by basement raft (kN/m ²) ^c	Loads applied by perimeter walls and live loads on the raft (kN/m ²) ^d	Load applied by steel frame on a 5.7mX1.5m area (kN/m ²)
-57	+6.25 ^d	+20.5	+65

a. Positive values (+) indicate stress increase and negative (-) values indicate stress reduction.

b. Assumes 3m basement excavation depth.

c. Assumes average slab thickness of 0.25m with unit weight of 25kN/m³.

d. Based on average wall load, distributed uniformly over the slab combined with the load over the slab as provided by the structural engineer.

At the centre of the excavation the maximum short term heave after the excavation is predicted to be 18mm which will be removed during the excavation process itself. The maximum net long term heave is expected to be in the order of 13mm. These values

reduce at the locations of the party walls to 13mm and 9mm respectively, as shown in the following sections.

The amount of undrained unloading (short term) has been estimated and the effects on the structures are presented as displacement contour plots within Figure 6. Displacement lines have been added to the PDISP models to illustrate the ground movement profiles at the locations of the adjacent structures and to undertake an impact/damage assessment for each of the affected structures.

5.3.2 Long term ground movements

Imposed loads and drained conditions have also been considered in a similar manner for the estimation of ground movements after the construction. The results are presented in Figure 7 which shows the predicted settlements at the level of the existing buildings foundations as well as the level of the excavation.

5.3.3 Total movements due to basement excavation

The total movements are expected to reach a maximum of 31mm of net heave, again for the centre of the excavation. The stiffness of the slab will further reduce these effects.

The vertical heave movements for the adjacent structures will be reduced due to their distance from the centre of the excavation. The total net maximum heave for Nos. 8 and 9 is predicted to be 22.5mm (occurring at the points closest to the excavation).

The results of the vertical ground movement analysis are summarised in Table 4 below for both short and long term. The PDISP output can be provided separately upon request.

Stage	Centre of excavation (mm) ^{a,b}	No. 8 (mm) ^{a,b}	No. 9 (mm) ^{a,b}
Short term movement	-17.6	-13.0	-13.0
Long term movement ^b	-12.7	-9.5	-9.5

Table 4. Summary of maximum heave movements within excavation and at constraint locations

a. Based on results of displacement line at level and plan location of constraint

b. Positive values (+) indicate settlement and negative (-) values indicate heave.

The results of the above assessment and corresponding ground movement profiles have been brought forward into Section 6 where the cumulative impact due to demolition,

excavation, pile wall installation and deflection on neighbouring properties has been assessed.

5.4 Underpin settlement due to workmanship

The heave/settlement assessment undertaken within PDisp assumes perfect workmanship in the underpin construction and does not allow for settlement of the dry pack between the party wall with No. 8 and the new RC underpins. With good construction practice, actual settlements would be expected to not exceed 5mm for a single lift underpinning operation. This value will be applied to the overall ground movement and corresponding impact assessment to calculate a predicted damage category for No. 8 The Grove.

5.5 Ground movement due to retaining wall deflection

As mentioned above the proposed retaining wall is not expected to have an impact on the adjacent buildings. However an analysis has been undertaken in order to assess the potential ground movements on the highway to the east of the basement. This section summarises the results of the analysis to illustrate the potential ground movements behind the wall and at a distance of 3.5m where the road is located based on the available drawings. The proposed construction methodology and sequence which was adopted is summarised below:

- 1. Install contiguous piled wall (ground level at 128m AOD).
- 2. Excavate to 125.0m AOD (wall assume to act as cantilever).
- 3. Install permanent 'strut' at 125.0m AOD (the basement slab).

Output from the analysis using WALLAP retaining wall analysis software, is provided in Appendix E.

The total predicted horizontal deflections at the back of the wall are calculated as the sum of the movements induced by the excavation and the movements induced by the installation of the piles (taken as 0.08% of the pile length as a conservative assessment for a clayey sand, based on empirical correlations outlined in CIRIA C580, Table 2.2 page 50). The results have been summarised within Table 5. The corresponding ground settlements at the critical constraints are also provided.

To estimate the horizontal ground movements at a distance of 3.5m behind the wall it has been assumed that the distance to negligible horizontal movements behind the wall is

twice the excavation depth (6m). Linear interpolation was then undertaken to determine the displacements at the road level.

Vertical ground movement immediately behind the wall, induced by excavation, has been calculated by taking 0.25% of the excavation depth as suggested by CIRIA C580 for excavations in sand. The reduction of the settlements with distance behind the wall is based on the factors provided within the relevant figures in CIRIA C580.

Vertical ground movement induced by pile installation has been taken as 0.05% of the pile length, based on interpretation of Table 2.2 of CIRIA C580 as for the horizontal movements on the previous page.

Section	Maximum wall deflection (mm) ^a	Total Horizontal deflection at location/level of constraint (mm) ^a	Vertical settlement below location of constraints (mm) ^b
The Grove	14.0	8.0	4.7

Table 5: Results of retaining wall analysis

a. Positive values indicate lateral wall deflection towards the basement excavation. Values derived from adding movements both from installation and excavation (from WALLAP analysis)

b. Positive values (+) indicate settlement and negative (-) values indicate heave behind the piled wall. Values derived from adding settlements both from installation and excavation (from CIRIA C580 correlations)

The vertical ground movements predicted by the above calculations are approximately of the same magnitude as the predicted heave at the same distance, therefore the net vertical ground movement will be negligible. A horizontal ground movement of 8mm is not expected to cause damage to the road.

In addition it should be noted that WALLAP uses a Winkler spring analysis to determine the wall displacements. In a Winkler medium, springs are used to represent a continuum and there is no transfer of shear stresses between the springs. In general, the application of this concept can lead to an overestimation of structural deformations; hence the resulting wall displacements and corresponding impact on the nearby structures and infrastructure may be over-predicted by the WALLAP program. However, the analysis is considered suitability conservative for the purposes of this assessment.

6. BUILDING DAMAGE ASSESSMENT

The calculated ground movements have been used to assess potential 'damage categories' that may apply to neighbouring structures due to the proposed basement construction method and assumed construction sequence. The methodology proposed by Burland and Wroth⁵ and later supplemented by the work of Boscardin and Cording⁶ has been used, as described in *CIRIA Special Publication 200*⁷ and *CIRIA C580*.

General damage categories are summarised in Table 6 below:

Category	Description
0 (Negligible)	Negligible – hairline cracks
1 (Very slight)	Fine cracks that can easily be treated during normal decoration (crack width <1mm)
2 (Slight)	Cracks easily filled, redecoration probably required. Some repointing may be required externally (crack width <5mm).
3 (Moderate)	The cracks require some opening up and can be patched by a mason. Recurrent cracks can be masked by suitable linings. Repointing of external brickwork and possibly a small amount of brickwork to be replaced (crack width 5 to 15mm or a number of cracks > 3mm).
4 (Severe)	Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows (crack width 15mm to 25mm but also depends on number of cracks).
5 (Very Severe)	This requires a major repair involving partial or complete re-building (crack width usually >25mm but depends on number of cracks).

 Table 6. Classification of damage visible to walls (reproduction of Table 2.5, CIRIA C580)

The above assessment criteria are primarily relevant for assessing masonry structures founded on strip footings. Therefore, this methodology will be adopted within the damage assessment for the affected structures in The Grove.

⁵ Burland, J.B., and Wroth, C.P. (1974). Settlement of buildings and associated damage, State of the art review. Conf on Settlement of Structures, Cambridge, Pentech Press, London, pp611-654

⁶ Boscardin, M.D., and Cording, E.G., (1989). *Building response to excavation induced settlement*. J Geotech Eng, ASCE, 115 (1); pp 1-21.

⁷ Burland, Standing J.R., and Jardine F.M. (eds) (2001), *Building response to tunnelling, case studies from construction of the Jubilee Line Extension London*, CIRIA Special Publication 200.

6.1 Impact Assessment – No.8 & No.9 The Grove

The results of the predicted ground movement below No. 9A The Grove due to the proposed basement development have been compiled to determine the overall lateral and vertical deflection of the two adjacent structures (Nos. 8 & 9).

6.1.1 No. 9 The Grove

Figure 8 shows the combined vertical ground movement due to the basement construction. The maximum total vertical ground movement at the location of the party walls is predicted in Section 5.3 to be 22.5mm of heave . As mentioned previously, the calculations conservatively assume application of a UDL across the raft footprint.

The maximum differential movement along the building is 18mm, resulting in a distortion of 1/830 (i.e. 18mm/15,000mm) which is within published limits^{8, 9} for preventing excess cracking and damage to load bearing walls and partitions. The corresponding maximum relative deflection is 6.5mm corresponding to a deflection ratio of 0.043%, calculated over a length of 15m (i.e. the width of the neighbouring property).

6.1.2 No. 8 The Grove

Settlements due to underpin workmanship for No.8 will serve to counteract the heave movement and slightly reduce the associated deflection ratio which has been estimated to 0.04% for a deflection of 6mm.

As noted in Section 5.1 the horizontal movements due to underpin deflection are not expected to be significant and therefore no specific calculations have been undertaken. However, based on the calculated maximum deflection ratio of 0.04%, the limiting horizontal strain for the buildings to exceed the limits of Damage 0 Category is 0.017%. For a building length of 15m this corresponds to a horizontal movement of 2.5mm. The limiting strain for the building to exceed Category 1 is 0.053%, corresponding to horizontal movement of 8mm at the party wall location. It is therefore considered that No 8 The Grove should not exceed Category 1 (very slight damage) with good quality workmanship and lateral support to the underpinning during the temporary works.

⁸ Skempton, A. W. & Mac Donald, D. H. (1956). The Allowable settlement of buildings. Proceedings of the Institution of Civil Engineers, Part 3, No. 5, pp 727-784.

⁹ Polshin, D. E. & Tokar, R. A. (1957). Maximum allowable non-uniform settlement of structures. Proc. 4th Int. Conf. SM&FE, Wiesbaden, No. 1, pp. 285.

This assessment is not applicable to No. 9 as no underpinning will be undertaken beneath this house. Therefore, No. 9 is considered to be affected only by heave and minor deflection with negligible impact on the structure.

Table 7 incorporates a summary of the maximum vertical deflection (mm) and limiting horizontal movement (mm) and strain for No. 8 The Grove.

Table 7. Summary of ground movements and	corresponding damage category
--	-------------------------------

Constraint	Limiting Net Horizontal movements (to exceed Category 0) (mm) ^a	Maximum deflection (mm)	Limiting Horizontal Strain (to exceed Category 0) ε _h ^b (%)	Deflection ratio Δ/L^c (%)	Damage category corresponding to the limiting values
Nos. 8	2.5	6	0.017	0.04	1 – Very Slight

a. Net horizontal movement along neighbouring structure.

b. See Box 2.5 (v) CIRIA C580 (2003) Embedded retaining walls guidance for economic design. (δ_h = horizontal movement in metres).

c. See Figure 2.18 (a) CIRIA C580 (2003) Embedded retaining walls guidance for economic design. (L = length of adjacent structure in metres, perpendicular to basement; Δ = relative deflection).

Damage 'Category 1' corresponds to 'very slight' damage, or fine cracks of up to 1mm in width. The damage assessment plot is presented in Figure 9.

7. CONSTRUCTION MONITORING

The results of the ground movement analysis suggest that with good construction control, damage to the structures surrounding the basement, generated by the assumed construction methods and sequence should not exceed Category 1 (very slight damage). The locations of buried services are not known, however based on the predicted ground movements, strain levels on such services are expected to be sustainable.

The monitoring system should operate broadly in accordance with the 'Observational Method' as defined in CIRIA Report 185¹⁰. Monitoring can be undertaken by using positional surveys compared to baseline values established before any excavation work is undertaken onsite. Regular monitoring of these positions will determine if any horizontal translation, tilt or differential settlement of the neighbouring structure is occurring as the construction progresses. Monitoring data should be checked against predefined trigger limits and can also be further analysed to assess and manage the damage category of the adjacent buildings as construction progresses.

The horizontal deflection/translation of the secant pile wall during construction should be limited to restrict the damage category for the adjacent critical properties to within Category 1 'very slight'. This value should form the basis of the 'traffic light' trigger levels established prior to excavation commencing onsite. 'Trigger levels' should be discussed and agreed with the party wall surveyor.

¹⁰ Nicholson, D., Tse, Che-Ming., Penny, C., The Observational Method in ground engineering: principles and applications, CIRIA report R185, 1999

8. CONCLUSIONS

- The scope of this report was to provide a summary of the ground conditions on site and an assessment of the potential ground movements due to the proposed development. An assessment of hydrological and hydrogeological issues has already been undertaken by others (*Geotechnical & Environmental Associates, Rep. No. J15047, April 2015*).
- The proposed development at 9A The Grove comprises the construction of a single basement beneath the house footprint and partly beneath the rear garden. The basement is proposed to be constructed by underpinning techniques, although the existing basement walls with No.9 will not be underpinned as part of the construction. The site is underlain by the Bagshot Formation and it has been assumed the raft will be formed directly onto the natural firm cohesive soils of this stratum. The underpin and raft formation levels should be inspected by a competent geotechnical engineer before casting.
- The construction of the basement will generate ground movements predominantly due to excavation induced heave. Assessment of induced settlement due to underpin construction and contiguous wall construction has also been considered.
- A conservative assessment indicates that the calculated ground movement would limit building damage categories to no worse than 'Category 1' (very slight).
 Damage Category 1 is within allowable limits as specified by London Borough of Camden's *Camden Planning Guidance: Basements and Lightwells*, September 2013.
- It should be noted that good workmanship will be critical in controlling ground movements during construction. Reference should be made to the Association of Specialist Underpinning Contractors guidance¹¹ in this respect.
- It is proposed that an appropriate monitoring regime is in place before construction commences, in order to manage risk and potential damage to the adjacent properties and any existing buried services.

¹¹ ASUC (October 2013) Guidelines on safe and efficient basement construction directly below or near to existing structures.

FIGURES

APPENDIX A

Existing Development Survey Plan

APPENDIX B

Proposed Development Plans

Proposed Basement Plan

<u>NOTE</u> REINF	ORCE		DETAIL
RESP		LITY O MNT Sł	F THE (KETCHE
ALLOV	V FOR	THE F	OR APPO
•	BASEN	/ENT S /ENT V	SLAB VALLS
•	GROU	ND FLO	DOR SL

TEMPORARY WORKS NOTE: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ENSURING THAT HIS OPERATIONS DO NOT IN ANY WAY IMPAIR THE SAFETY OR CONDITION OF THE EXISTING STRUCTURE. HE SHALL PROVIDE ANY TEMPORARY SUPPORTS REQUIRED FOR THIS PURPOSE, AND SHALL CAREFULLY INSPECT THE CONDITION OF THE BUILDING STRUCTURE. HE SHALL PROVIDE ANY TEMPORARY SUPPORTS REQUIRED FOR THIS PURPOSE, AND SHALL CAREFULLY INSPECT THE CONDITION OF THE STRUCTURE BOTH BEFORE AND DURING THE EXECUTION OF THE WORK AND IMMEDIATELY INFORM THE ENGINEER IF HE CONSIDERS THAT ANY MORE STRINGENT PROCEDURE THAN THAT SPECIFIED IS NECESSARY.

- APPROX PARTY WALL LINE

Column Schedule			
REF	SIZE	GRADE	
C1	11000022002286	6005	

Beam Schedule			
REF	SIZE	GRADE	
B1	UC203x203x46	S355	
B2	UC203x203x86	S355	
B3	SHS150x150x8.0	S355	

ING AND SCHEDULING IS THE CONTRACTOR. ES WILL BE PROVIDED BY EHRW POINTMENT. VING FOR TENDER PURPOSES: - 100kg/m³ - 90kg/m³ LAB - 125kg/m³

2000	3000	4000	5000

NOTES

1. DO NOT SCALE OUT OF THIS DRAWING

- 2. THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH ARCHITECTS AND OTHER CONSULTANTS INFORMATION
- 3. REFER TO THE ARCHITECT FOR DIMENSIONS AND SETTING OUT
- FOR ALL NEW OPENINGS etc. 4. ALL AREAS OF DEFECTIVE STRUCTURE FOUND DURING
- DEMOLITION WORKS ARE TO BE REPORTED TO THE ENGINEER. IF NOT ALREADY ADDRESSED.
- 5. WHERE POSSIBLE REMEDIAL OR REPLACEMENT WORKS TO BE INSTALLED BEFORE REMOVAL OF EXISTING STRUCTURE - IF IN DOUBT, REFER TO THE ENGINEER
- 6. FOR GENERAL NOTES REFER TO DRAWING 1290/N/050-051
- 7. FOR MOVEMENTS AND TOLERANCES REFER TO DRAWING 1290/N/052
- 8. ALL STRUCTURAL WORKS SHOWN ARE BASED ON VARIOUS ASSUMPTIONS FOLLOWING LIMITED OPENING UP WORKS. FURTHER OPENING UP AND SURVEY WORK IS TO BE UNDERTAKEN IMMEDIATELY UPON COMMENCEMENT OF THE WORKS AS ADVISED BY eHRW, REFER TO GENERAL NOTES SECTION 7.00.
- 9. REFER TO ARCHITECTS DRAWINGS FOR FULL EXTENT OF DEMOLITION.
- 10. ALL DIMENSIONS SHOWN ARE SUBJECT TO SITE SURVEY TO BE COMPLETED BY THE CONTRACTOR.
- 11. REFER TO INFORMATION BY OTHERS FOR LOCATION OF CAST-IN SERVICES, GULLIES, MANHOLES ETC
- 12. ALL BEAMS BEARING ONTO MASONRY TO HAVE 440x215x100 DEEP MASS CONCRETE PADSTONE UNO.

<u>LEGEND</u>	
	DENOTES EXISTING LOADBEARING MASONRY WALLS TO BE RETAINED
	DENOTES NEW LOADBEARING MASONRY WALLS
	DENOTES NEW RC WALLS / UNDERPINNING
	DENOTES DOUBLED JOIST OR FLITCH BEAM LOCATION
	DENOTES EXISTING WALLS TO BE REMOVED
<u>GST</u>	DENOTES GALVANISED METAL WALL STRAPS. REFER TO TYPICAL DETAILS
200	DENOTES 200 THK RC SLAB
RJ1	DENOTES 50x200 C24 JOISTS AT 400crs WITH 18 THK PLYWOOD DECK
RJ2	DENOTES 50x150 C24 JOISTS AT 400crs WITH 18 THK PLYWOOD DECK
P1 -	DENOTES 440x215x100 WIDE MASS CONCRETE PADSTONE
DJ -	DENOTES DOUBLED JOIST WITH M12 BOLTS AT 300crs

T1	15.07.15	TENDER ISSUE	DJP	AR
P3	15.06.15	PRE-TENDER COORDINATION ISSUE	DJP	AR
P2	27.05.15	COORDINATION ISSUE	DJP	AR
P1	30.03.15	WORK IN PROGRESS ISSUE	DJP	AR
Rev	Date	Amendments	Ву	Chk'd

engineersHRW London 0207 407 9575 Oxford 01865 251 206 www.ehrw.co.uk

9A The Grove

Drawing title: **Proposed Basement Plan**

Chk'd by: Scale at A1: Drawn by: Date: DJP MAR' 2015 1 : 50 AR **TENDER** Project Number: Drawing Type: Drawing No: Revision: 1290 GA 001 **T1**

1:50 0 1000

ENSURING THAT HIS OPERATIONS DO NOT IN ANY WAY IMPAIR THE SAFETY OR CONDITION OF THE EXISTING SUPPORTS REQUIRED FOR THIS PURPOSE, AND SHALL CAREFULLY INSPECT THE CONDITION OF THE BUILDING SUPPORTS REQUIRED FOR THIS PURPOSE, AND SHALL CAREFULLY INSPECT THE CONDITION OF THE STRUCTURE WORK AND IMMEDIATELY INFORM THE ENGINEER IF HE CONSIDERS THAT ANY MORE STRINGENT PROCEDURE

NOTES

- 1. DO NOT SCALE OUT OF THIS DRAWING
- 2. THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH ARCHITECTS AND OTHER CONSULTANTS INFORMATION
- 3. REFER TO THE ARCHITECT FOR DIMENSIONS AND SETTING OUT
- FOR ALL NEW OPENINGS etc.
- 4. ALL AREAS OF DEFECTIVE STRUCTURE FOUND DURING DEMOLITION WORKS ARE TO BE REPORTED TO THE ENGINEER. IF NOT ALREADY ADDRESSED.
- 5. WHERE POSSIBLE REMEDIAL OR REPLACEMENT WORKS TO BE INSTALLED BEFORE REMOVAL OF EXISTING STRUCTURE - IF IN DOUBT, REFER TO THE ENGINEER
- 6. FOR GENERAL NOTES REFER TO DRAWING 1290/N/050-051
- 7. FOR MOVEMENTS AND TOLERANCES REFER TO DRAWING 1290/N/052
- 8. ALL STRUCTURAL WORKS SHOWN ARE BASED ON VARIOUS ASSUMPTIONS FOLLOWING LIMITED OPENING UP WORKS. FURTHER OPENING UP AND SURVEY WORK IS TO BE UNDERTAKEN IMMEDIATELY UPON COMMENCEMENT OF THE WORKS AS ADVISED BY eHRW, REFER TO GENERAL NOTES SECTION 7.00.
- 9. REFER TO ARCHITECTS DRAWINGS FOR FULL EXTENT OF DEMOLITION.
- 10. ALL DIMENSIONS SHOWN ARE SUBJECT TO SITE SURVEY TO BE COMPLETED BY THE CONTRACTOR.
- 11. REFER TO INFORMATION BY OTHERS FOR LOCATION OF CAST-IN SERVICES, GULLIES, MANHOLES ETC
- 12. ALL BEAMS BEARING ONTO MASONRY TO HAVE 440x215x100 DEEP MASS CONCRETE PADSTONE UNO.

Column Schedule
 REF
 SIZE
 GRADE

 C1
 UC203x203x86
 S335

Beam Schedule										
REF SIZE GRADE										
B1	UC203x203x46	S355								
B2 UC203x203x86 S355										
B3 SHS150x150x8.0 S355										

P3	15.06.15	PRE-TENDER COORDINATION ISSUE	DJP	AR
P2	27.05.15	COORDINATION ISSUE	DJP	AR
P1	30.03.15	WORK IN PROGRESS ISSUE	DJP	AR
Rev	Date	Amendments	Ву	Chk'd

engineersHRW London 0207 407 9575 Oxford 01865 251 206 www.ehrw.co.uk

9A The Grove

Drawing title: Proposed Section A-A

2000	3000	4000	5000

APPENDIX C

Ground investigation report

GE	Geotechnical & Environmental Associates	l			Tytten C	hanger House oursers Road St Albans AL4 0PG	Site 9A The Grove, London, N6 6JU	Borehole Number BH1
Boring Met	hod Ission	Casing 15	Diamete 0 mm to	r 12.00 m	Ground	Level (mOI 127.88)) Client Mr Nick Burns	Job Number J15047
		Locatio	n		Dates 13	6/02/2015	Engineer EngineersHRW	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thicknes	s) Description	Vater Vater
					127.83 127.68	(0,0) (0,1)	Block Paving	
0.50	D1					(0.70	Made Ground (brown silty clayey sand with gravel and brick fragments)	
0.90	D2				126.98	0.90	Made Ground (brown silty sandy clay with gravel brick and ash fragments)	
1.20-1.65 1.20	SPT(C) N=6 D3	1.20	DRY	1,1/1,2,1,2		(0.90)	
1.80	D4				126.08	1.80	Made Ground (brown mottled orange-brown and	
2.00-2.45 2.00	SPT N=3 D5	1.50	DRY	1,0/1,0,1,1			occasionally grey slity clayey sand with occasional brick fragments)	
						(1.60		
2.70	D6							
3.00-3.45 3.00	SPT N=11 D7	1.50	DRY	1,1/2,3,3,3	404.40			
					124.48	3.40 	Soft becoming stiff brown mottled orange-brown and grey silty sandy CLAY with occasional pockets of orange-brown	× <u> </u>
3.70	D8						Tine to medium sand and rare fine grave	×
4.00-4.45	U9							× × ×
4.50	D10							× ×
4.80	D11							<u>×</u>
5.00-5.45	SPT N=15	1.50	DRY	3,3/3,3,4,5		 		××
5.00						(3.85)	× ×
								× ×
								××
6.00	013							× <u>×</u>
6.50	D14							× ×
						-		× <u>×</u>
								×
					120.63	7.2	Medium dense orange-brown clayey fine to medium SAND	
7.50-7.95 7.50	SPT N=19 D15	1.50	DRY	2,3/4,4,5,6		- (0.05	with layers of orange-brown and grey sandy day	
						(0.95)	
					119.68	8.20	Medium dense brown occasionally mottled orange-brown	
							slightly clayey fine to medium SAND	
9.00-9.45	SPT N=33	1.50	DRY	4,6/6,8,9,10				
9.00	D16					-		
Remarks Groundwate	r monitoring standpip	installee	d to a dep	oth of 6.00 m.		<u> </u>	Scale (approx)	Logged By
							1:50	AT
							Figure N J150	o. 47.BH1

GE	Geotechnical & Environmental Associates				Tytten C	hanger House oursers Road St Albans AL4 0PG	Site 9A The Grove, London, N6 6JU		Boreho Numbe BH1	ole er 1
Boring Meth	nod ssion	Casing	Diamete 0 mm to 1	r 12.00 m	Ground	Level (mOD)	Client Mr Nick Burns		Job Numbe	er
		Locatio	n		Dates 13	3/02/2015	Engineer EngineersHRW		Sheet 2/2	/
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
10.50 10.50-10.95 12.00-12.45 12.00 13.50-13.95 13.50 14.50	D17 SPT N=28 SPT N=29 D18 SPT N=19 D19 D20	10.50	DRY DRY 13.10	Seepage(1) at 10.20m, no rise after 20 mins, sealed at 10.50 Mm, 4,5/6,7,7,8 4,5/6,7,8,8 Slow Inflow(2) at 12.70m, rose to 12.30m in 20 mins. 3,4/4,4,5,6	112.98		Stiff grey silty CLAY Complete at 15.00m			▼2 ▼2 ▼2
Remarks						<u>F</u>		Scale (approx) 1:50 Figure N	Logged By AT	d
								J150	47.BH1	

Standard Penetration Test Results

: 9A The Grove, London, N6 6JU Site

Client : Mr Nick Burns

Engineer	: Engineer	sHRW											1 / 1
Borehole	Base of	End of	End of	Test	Seating	g Blows	Blows f	or each 7	5mm pen	etration			
Number	Borehole (m)	Seating Drive (m)	Test Drive (m)	Type	1	2	1	2	3	4	Result	Comme	nts
BH1	1.20	1.35	1.65	CPT	1	1	1	2	1	2	N=6		
BH1	2.00	2.15	2.45	SPT	1	0	1	0	1	1	N=3		
BH1	3.00	3.15	3.45	SPT	1	1	2	3	3	3	N=11		
BH1	5.00	5.15	5.45	SPT	3	3	3	3	4	5	N=15		
BH1	7.50	7.65	7.95	SPT	2	3	4	4	5	6	N=19		
BH1	9.00	9.15	9.45	SPT	4	6	6	8	9	10	N=33		
BH1	10.50	10.65	10.95	SPT	4	5	6	7	7	8	N=28		
BH1	12.00	12.15	12.45	SPT	4	5	6	7	8	8	N=29		
BH1	13.50	13.65	13.95	SPT	3	4	4	4	5	6	N=19		

Tyttenhanger House Coursers Road St Albans AL4 0PG

Job Number

J15047

Sheet

	Geotechnical &			Tytten	hanger House	Site		Number
J	Environmental Associates			0	St Albans AL4 0PG	9A The Grove, London, N6 6JU		BH2
Excavation Drive-in Win	Method dow Sampler	Dimensi	ons	Ground	Level (mOD) 27.51	Client Mr Nick Burns		Job Number J15047
		Location	I	Dates	10010045	Engineer		Sheet
				19	/02/2015	EngineersHRW		1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Kater
0.40	D1				(0.70)	Made Ground (brown silty sandy clay with gravel an brick fragments)	d rare	
				126.81	0.70	Made Ground (brown silty sandy clay with gravel an abundant brick fragments)	d	
1.50	D2			126.31		Made Ground (brick fragments with packets of pale sandy clay)	brown	
3.50	D3			124.31	3.20	Soft pale brown mottled orange-brown sandy CLAY		
				123.41	(0.90)	Dele braue elever fine to medium CAND	-	· · · · · · · · · · · · · · · · · · ·
5.00	D4			121.51	(1.90)	Complete at 6.00m	-	
Remarks Groundwate Groundwate	r not encountered. r monitoring standpip	e installed	to a depth of 6.00 m.				Scale (approx)	Logged By
							1:50	AT
							Figure No	o.
							J1504	7.BH2

	Geotechnical &			Tyttenl C	hanger ourser	· House s Road	Site		Number
52	 Environmental Associates 			0	St AL	Albans 4 0PG	9A The Grove, London, N6 6JU		BH3
Excavation	Method	Dimensi	ons	Ground	Level	(mOD)	Client		Job
Drive-in Wind	dow Sampler			1	27.71	(Mr Nick Burns		Number J15047
		Location	1	Dates			Engineer		Sheet
				19	/02/20	015	EngineersHRW		1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	D (Thio	epth (m) ckness)	Description	I	Kater Agter
						(0, (0))	Made Ground (dark brown silty sandy clay with gravel and	3 L	****
0.20	D1			127 31	E	(0.40)	rare brick and concrete fragments)	X	
				127.01		0.40	Made Ground (brown silty sandy clay with gravel, occasio brick and ash fragments and occasional pockets of	nal	
0.60	D2				-	(0.60)	orange-brown sandy clay)		
				126.71	<u> </u>	1.00	Made Ground (orange-brown silty very sandy clay with		
					-	(0,00)	occasional brick and ash fragments)	XXX	
					-	(0.80)			
				125.91		1.80	Firm grange brown mettled hale brown condu CLAV		
					-		Firm orange-brown motiled pare brown sandy CLAY	ŀ	
2 20	50				E				
2.20								•	
								-	
						(2.50)		-	··
					-	(2.50)		ŀ	
					Ē			•	
3.50	D4				E.			•	
					-			·	
					-			ŀ	
				123.41		4.30	Pale brown mottled orange-brown clayey fine to coarse		
					-		SAND		
					E			- - -	
						(1 70)			
5.20	D5				E	(1.10)		· ÷	
					-				<u></u>
					-			.	
				121.71		6.00	Complete at 6.00m		
					E				
					-				
					-				
					-				
					E				
					-				
					Ē				
					-				
					-				
					-				
					E				
Remarks Groundwater	not encountered.				<u> </u>		Sca	le ox)	Logged Bv
Groundwater	r monitoring standpip	e installed	l to a depth of 6.00 m.				1:50	0	AT
							Figu	ire Nc).
							_ J	J1504	7.BH3

Trial Pit Widbury Barn Geotechnical & Site Widbury Hill Number Environmental Ware Associates 9A The Grove, London, N6 6JU 6 Herts SG12 7QE **Excavation Method** Job Dimensions Ground Level (mOD) Client Manual Number 365 x 550 x 610 Mr Nick Burns J15047 Sheet Location Dates Engineer 18/03/2015 Engineers HRW 2/2 Section B - B': -Front Wall; of House Concrete floor slab Made Ground (orange-brown silly slightly clayey sand with gravel, brick and concrete fragments) Brick Corbel Scale: Remarks: 1:20 All dimensions in millimetres Logged by: Sides of trial pit remained stable during excavation AT Groundwater: Not encountered

GEA Geoter Enviro Associ	chnical & nmental ates	Widbury Barn Widbury Hill Ware Herts SG12 7OF	Site 9A The Grove, London, N6 6JU	Trial Pit Number 10
anual	Dimensions 620 x 530 x 360	Ground Level (mOD)	Client Mr Nick Burns	Job Number J15047
	Location	Dates 18/03/2015	Engineer Engineers HRW	Sheet 2/2
Section B - I	<u>B': -</u>	· A. O. A. Concrete	Floor slob.	N
A		Made Grave With grave fragments	nd (brown clayey silf el, brick and concre)	y sand zte
emarks:		Made Grav With grave fragments	nd (brown clayey silt el, brick and concre)	Scale:

9	Geotechnical & Environmental Associates	Widbury Barn Widbury Hill Ware Herts SG12 7QE	Site Photographs
Site	9A The Grove, London, N6 6JU		Job Number J15047
Client Engineer	Mr Nick Burns Engineers HRW		Sheet 6 / 6

View of Trial Pit No 9

View of Trial Pit No 10

SUMMARY OF GEOTECHNICAL TESTING

			Sample	details		Class	ificatio	n Tests	5	Densi	ty Tests	Undrained	d Triaxial Co	mpression	C	hemical Te	ests	
Borehole / Trial Pit	Sample Ref	Depth (m)	Туре	Description	MC (%)	LL (%)	PL (%)	PI (%)	<425 μm (%)	Bulk Mg/m³	Dry Mg/m³	Cell Pressure kPa	Deviator Stress kPa	Shear Stress kPa	рН	2:1 W/S SO4 (g/L)	W/S Mg (mg/L)	Other tests and comments
BH1	D8	3.70	D	Yellow and orange brown sandy silty CLAY with rare fine gravel	23	44	17	27	98									
BH1	U9	4.00	U	Firm light brown fine sandy CLAY with rare orange staining	27					1.98	1.56	80	141	70				
BH1	D10	4.50	D												6.7	0.04		
BH1	D11	4.80	D	Yellow brown sandy CLAY with rare fine gravel	27	37	17	20	99									
BH1	U13	6.00	U	Firm yellow brown sandy CLAY	18					1.85	1.57	120	44	22				
BH1	D14	6.50	D												7.1	0.03		
BH1	D16	9.00	D	Yellow brown clayey silty fine SAND														Particle Size Distribution
BH1	D19	13.50	D	Yellow brown sandy silty CLAY														Particle Size Distribution
BH2	D3	3.50	D	Orange brown sandy silty CLAY	25	42	20	22	99						7.9	0.54		
BH2	D4	5.00	D	Yellow brown clayey silty fine SAND														Particle Size Distribution
BH3	D3	2.20	D	Orange brown and black fine sandy silty CLAY	25	42	20	22	97									
BH3	D4	3.50	D												8.0	0.05		

Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

Checked and Approved by	Project Number:	
5 Rudo	GEO / 22285 Project Name:	GEOLABS
JUME	9A THE GROVE, LONDON, N6 6JU	
Senior Technician 13/03/2015	J15047	

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire

SUMMARY OF GEOTECHNICAL TESTING

Sample details						Class	sificatio	n Tes	ts		Density	Tests	Undraine	d Triaxial Co	npression	Cł	nemical Te	ests	
Borehole / Trial Pit	Sample Ref	Depth (m)	Туре	Description	MC (%)	LL (%)	PL (%)	PI (%	<42 μm	5 1)	Bulk Mg/m³	Dry Mg/m³	Cell Pressure kPa	Deviator Stress kPa	Shear Stress kPa	рН	2:1 W/S SO4 (g/L)	W/S Mg (mg/L)	Other tests and comments
ВНЗ	D5	5.20	D	Yellow brown clayey silty fine SAND						Ī									Particle Size Distribution

Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

Checked and Approved by	Project Number:	
COL	GEO / 22285	®
2 Dune	Project Name:	GEOLABS
<i>U</i>	9A THE GROVE, LONDON, N6 6JU	
Senior Technician 13/03/2015	J15047	
13/03/2015	515047	

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire

 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

 Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire

 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

 Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire

 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

 Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire

Quick Undrained Triaxial Compression Test

BH/TP No	BH1	Description:
Sample Ref Depth (m) Sample Type	U9 4.00 U	Firm light brown fine sandy CLAY with rare orange staining

Specimen Details

Specimen conditions		Undisturbed
Length	(mm)	201.3
Diameter	(mm)	102.3
Moisture Content	(%)	27
Bulk Density	(Mg/m³)	1.98
Dry Density	(Mg/m³)	1.56
Test Details		
Latex membrane thickness	(mm)	0.3
Membrane correction	(kPa)	1.1
Axial displacement rate	(%/min)	2.0
Cell pressure	(kPa)	80
Strain at failure	(%)	19.9
Maximum Deviator Stress	(kPa)	141
Shear Stress Cu	(kPa)	70

Orientation of the sample	Vertical
Distance from top of tube mm	90

Checked and Approved by: Project Number:

Senior Technician

Project Name:

GEO / 22285

9A THE GROVE, LONDON, N6 6JU

GEOLABS

J15047 13/03/2015 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Test Report By GEOLABS Limited Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire

Page 1 of 1 (Ref 38476.59146)

Quick Undrained Triaxial Compression Test

BH/TP No	BH1	Description:
Sample Ref	U13	Firm vollow brown condy CLAV
Depth (m)	6.00	Firm yellow brown sandy CLAP
Sample Type	U	
		11

Specimen Details

	Undisturbed
(mm)	201.2
(mm)	102.7
(%)	18
(Mg/m³)	1.85
(Mg/m³)	1.57
(mm)	0.3
(kPa)	0.2
(%/min)	2.0
(kPa)	120
(%)	2.5
(kPa)	44
(kPa)	22
	(mm) (mm) (%) (Mg/m³) (Mg/m³) (Mg/m³) (Mg/m3) (Mg/m3) (kPa) (%) (kPa) (%) (kPa) (kPa)

Orientation of the sample	Vertical
Distance from top of tube mm	50

Checked and Approved by: Project Number: Project Name:

Senior Technician

GEO / 22285

9A THE GROVE, LONDON, N6 6JU

GEOLABS

J15047 13/03/2015 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Test Report By GEOLABS Limited Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire

Page 1 of 1 (Ref 38476.59150)

APPENDIX D

Loading Information

PRC	XPARTY	
LLI	INE	

C	olumn Schedu	ule
DEC	SIZE	GRADE
TYLET.		

E	Beam Schedul	e
REF	SIZE	GRADE
B1	UC203x203x46	S355
B2	UC203x203x86	S355
B3	SHS150x150x8.0	S355

- NOTE REINFORCEMENT DETAILING AND SCHEDULING IS THE RESPONSIBILITY OF THE CONTRACTOR. REINFORCEMNT SKETCHES WILL BE PROVIDED BY EHRW ALLOW FOR THE FOLLOWING FOR TENDER PURPOSES: - 100kg/m3 - 90kg/m³ - 125kg/m
- TEMPORARY WORKS NOTE: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ENSURING THAT HIS OPERATIONS DO NOT IN ANY WAY IMPAIR THE SAFETY OR CONDITION OF THE EXISTING STRUCTURE. HE SHALL PROVIDE ANY TEMPORARY SUPPORTS REQUIRED FOR THIS PURPOSE, AND SHALL CAREFULLY INSPECT THE CONDITION OF THE BUILDING STRUCTURE. HE SHALL PROVIDE ANY TEMPORARY SUPPORTS REQUIRED FOR THIS PURPOSE, AND SHALL CAREFULLY INSPECT THE CONDITION OF THE STRUCTURE BOTH BEFORE AND DURING THE EXECUTION OF THE WORK AND IMMEDIATELY INFORM THE ENGINEER IF HE CONSIDERS THAT ANY MORE STRINGENT PROCEDURE 2000 3000 4000

NOTES

- DO NOT SCALE OUT OF THIS DRAWING
- THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH ARCHITECTS AND OTHER CONSULTANTS INFORMATION
- REFER TO THE ARCHITECT FOR DIMENSIONS AND SETTING OUT FOR ALL NEW OPENINGS etc.
- ALL AREAS OF DEFECTIVE STRUCTURE FOUND DURING DEMOLITION WORKS ARE TO BE REPORTED TO THE ENGINEER. IF NOT ALREADY ADDRESSED.
- WHERE POSSIBLE REMEDIAL OR REPLACEMENT WORKS TO BE INSTALLED BEFORE REMOVAL OF EXISTING STRUCTURE IF IN DOUBT, REFER TO THE ENGINEER
- FOR GENERAL NOTES REFER TO DRAWING 1290/N/050-051
- FOR MOVEMENTS AND TOLERANCES REFER TO DRAWING
- ALL STRUCTURAL WORKS SHOWN ARE BASED ON VARIOUS ASSUMPTIONS FOLLOWING LIMITED OPENING UP WORK'S FURTHER OPENING UP AND SURVEY WORK IS TO BE UNDERTAKEN IMMEDIATELY UPON COMMENCEMENT OF THE WORK'S AS ADVISED BY eHRW, REFER TO GENERAL NOTES SECTION 7.00.
- REFER TO ARCHITECTS DRAWINGS FOR FULL EXTENT OF
- 0. ALL DIMENSIONS SHOWN ARE SUBJECT TO SITE SURVEY TO BE COMPLETED BY THE CONTRACTOR.
- 1. REFER TO INFORMATION BY OTHERS FOR LOCATION OF CAST-IN SERVICES, GULLIES, MANHOLES ETC
- ALL BEAMS BEARING ONTO MASONRY TO HAVE 440x215x100 DEEP MASS CONCRETE PADSTONE UNO.

LEGEND	
	DENOTES EXISTING LOADBEARING MASONRY WALLS TO BE RETAINED
V/////	DENOTES NEW LOADBEARING MASONRY WALLS
1.2 2 1	DENOTES NEW RC WALLS / UNDERPINNING
	DENOTES DOUBLED JOIST OR FLITCH BEAM LOCATION
	DENOTES EXISTING WALLS TO BE REMOVED
GST	DENOTES GALVANISED METAL WALL STRAPS, REFER TO TYPICAL DETAILS
200	DENOTES 200 THK RC SLAB
RJI >	DENOTES 50x200 C24 JOISTS AT 400crs WITH 18 THK PLYWOOD DECK
RJ2	DENOTES 50x150 C24 JOISTS AT 400crs WITH 18 THK PLYWOOD DECK
P1 -	DENOTES 440x215x100 WIDE MASS CONCRETE PADSTONE
DJ -	DENOTES DOUBLED JOIST WITH M12 BOLTS AT 300crs

engineersHRW

9A The Grove

Proposed Basement Plan

As indicated	DJP	MAR' 2015	AR
Р	RELI	MINAR	Y
Proved Namber	Drawing Type	Drawing No.	

APPENDIX E

WALLAP Analysis Output

CARD GEOTECHNICS LIMITEDSheet No.Program: WALLAP Version 6.05 Revision A45.B58.R49Job No. CG18545Licensed from GEOSOLVEMade by : ANKData filename/Run ID: CG18545 Wall - SLSDate:27-08-2015Basement Impact Assessment - SLSChecked :

INPUT DATA

Units: kN,m

SOIL PROFILE

Stratum	Elevation of	Soil	types
no.	top of stratum	Active side	Passive side
1	128.00	1 Granular Made Ground	1 Granular Made Ground
2	124.80	3 Bagshot Clay	3 Bagshot Clay
3	121.00	4 Bagshot Sand	4 Bagshot Sand

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	Passive	
	Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ко	NC/OC	Ka	Kp	kN/m2
(Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Granular	17.00a	0	0.531	NC	0.311	4.085	
	Made Ground	19.00b	(2500)		(0.250)	(0.000)	(0.000)	
2	Not defined							
3	Bagshot	18.00	50000	1.000	OC	1.000	1.000	50.00u
	Clay				(0.490)	(2.389)	(2.390)	
4	Bagshot	19.00a	46000	0.455	OC	0.252	5.545	
	Sand	21.00b			(0.250)	(0.000)	(0.000)	
5	Bagshot Cl-	18.00	41600	0.561	OC	0.343	3.524	0.0d
	ay Drained				(0.250)	(1.348)	(5.175)	

Note: (a) and (b) are Bulk Densities above and below the water table

Additional soil parameters associated with Ka and Kp

		param	eters for	Ka	param	Кр		
		Soil	Wall	Back-	Soil	Wall	Back-	
·	Soil type	friction	adhesion	fill	friction	adhesion	fill	
No.	Description	angle	coeff.	angle	angle	coeff.	angle	
1	Granular Made Ground	28.00	0.636	0.00	28.00	0.636	0.00	
2	Not defined							
3	Bagshot Clay	0.00	0.500	0.00	0.00	0.500	0.00	
4	Bagshot Sand	33.00	0.581	0.00	33.00	0.581	0.00	
5	Bagshot Clay Drained	26.00	0.561	0.00	26.00	0.561	0.00	

GROUND WATER CONDITIONS

Density	of wat	ter =	10.00	kN/m3				
					Active	side	Passive	side
Initial	water	table	e eleva	ation	118.0	0 0	118.	00

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

Type of structure = Fully Embedded Wall Elevation of toe of wall = 121.00 Maximum finite element length = 0.40 m Youngs modulus of wall E = 2.8000E+07 kN/m2 Moment of inertia of wall I = 1.3200E-03 m4/m run E.I = 36960 kN.m2/m run Yield Moment of wall = Not defined

STRUTS and ANCHORS

Strut/			X-section			Inclin	Pre-	
anchor		Strut	area	Youngs	Free	-ation	stress	Tension
no.	Elev.	spacing	of strut	modulus	length	(degs)	/strut	allowed
		m	sq.m	kN/m2	m		kN	
1	Not	defined						
2	125.00	2.00	0.017800	2.100E+08	2.00	0.00	0	No

SURCHARGE LOADSSurchDistanceLengthWidthSurchargeEquiv. Partial-argefromparallelperpend.-----kN/m2----soilfactor/no.Elev.wallto wallNear edgeFar edgetypeCategory1128.000.00(A)6.005.0015.00=N/AN/A

Note: A = Active side, P = Passive side

CONSTRUCTION STAGES

Construction	Stage description
stage no.	
1	Apply surcharge no.1 at elevation 128.00
2	Change EI of wall to 25872 kN.m2/m run
	Yield moment not defined
	Reset wall displacements to zero at this stage
3	Excavate to elevation 125.00 on PASSIVE side
4	Install strut or anchor no.2 at elevation 125.00
5	Change properties of soil type 3 to soil type 5
	Ko pressures will not be reset
б	Change EI of wall to 18480 kN.m2/m run
	Yield moment not defined
	Allow wall to relax with new modulus value

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability	ana	alysis:								
Method	of	analysis	5 -	Stre	ngth	Factor	method	1		
Factor	on	soil st	rength	n for	cald	culating	g wall	depth	=	1.00

Parameters	for undrained strata:		
Minimum	equivalent fluid density	=	5.00 kN/m3
Maximum	depth of water filled tension crack	=	0.00 m

Bending moment and displacement calculation: Method - Subgrade reaction model using Influence Coefficients Open Tension Crack analysis? - No Non-linear Modulus Parameter (L) = 12.00 m

Boundary conditions: Length of wall (normal to plane of analysis) = 6.00 m

Width of excavation on active side of wall = 5.00 m Width of excavation on passive side of wall = 5.00 m $\,$

Distance to rigid boundary on active side = 20.00 mDistance to rigid boundary on passive side = 5.00 m

OUTPUT OPTIONS

Stage	Stage description	Output	c options	
no.		Displacement	Active,	Graph.
		Bending mom.	Passive	output
		Shear force	pressures	
1 Apply	surcharge no.1 at elev. 128.00	No	No	No
2 Change	EI of wall to 25872kN.m2/m run	No	No	No
3 Excav.	to elev. 125.00 on PASSIVE side	No	No	No
4 Instal	l strut no.2 at elev. 125.00	No	No	No
5 Change	soil type 3 to soil type 5	No	No	No
6 Change	EI of wall to 18480kN.m2/m run	No	No	No
* Summar	y output	Yes	-	Yes

Program WALLAP - Copyright (C) 2013 by DL Borin, distributed by GEOSOLVE 69 Rodenhurst Road, London SW4, UK. Tel: +44 20 8674 7251

CARD GEOTECHNICS LIMITED | Sheet No. Program: WALLAP Version 6.05 Revision A45.B58.R49 | Job No. CG18545 Licensed from GEOSOLVE | Made by : ANK Data filename/Run ID: CG18545 Wall - SLS | 9A The Grove | Date:27-08-2015 Basement Impact Assessment - SLS | Checked :

Units: kN,m Stage No. 3 Excavate to elevation 125.00 on PASSIVE side

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

 Fos for toe
 Toe elev. for

 elev. = 121.00
 Fos = 1.000

 Stage --- G.L. -- Strut

 No. Act. Pass.
 Elev.

 Stafety at elev.
 -ation

 3 128.00
 125.00

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 6.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 20.00 from wall Passive side 5.00 from wall

*** Wall displacements reset to zero at stage 2

Node	Y	Nett	Wall	Wall	Shear	Bending	Strut	EI of
no.	coord	pressure	disp.	rotation	force	moment	forces	wall
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m	kN.m2/m
1	128.00	6.70	0.014	3.86E-03	0.0	-0.0		25872
2	127.60	6.77	0.013	3.86E-03	2.7	0.6		25872
3	127.20	8.85	0.011	3.86E-03	5.8	2.3		25872
4	126.80	10.88	0.009	3.85E-03	9.8	5.4		25872
5	126.40	12.86	0.008	3.80E-03	14.5	10.3		25872
6	126.00	14.79	0.006	3.69E-03	20.0	17.2		25872
7	125.60	16.69	0.005	3.49E-03	26.3	26.4		25872
8	125.30	18.10	0.004	3.25E-03	31.6	35.1		25872
9	125.00	21.39	0.003	2.93E-03	37.5	45.5		25872
10	124.80	10.65	0.002	2.65E-03	40.7	53.4		25872
		-106.90	0.002	2.65E-03	40.7	53.4		
11	124.40	-104.29	0.002	1.95E-03	-1.6	64.5		25872
12	124.00	-37.89	0.001	1.22E-03	-30.0	55.5		25872
13	123.60	0.87	0.001	6.46E-04	-37.4	40.5		25872
14	123.30	16.06	0.000	3.34E-04	-34.9	29.3		25872
15	123.00	22.87	0.000	1.19E-04	-29.0	19.6		25872
16	122.70	24.07	0.000	-1.47E-05	-22.0	11.9		25872
17	122.40	21.85	0.000	-8.91E-05	-15.1	6.3		25872
18	122.00	16.17	0.000	-1.30E-04	-7.5	2.0		25872
19	121.60	9.31	0.000	-1.39E-04	-2.4	0.3		25872
20	121.30	3.98	0.000	-1.38E-04	-0.4	-0.0		25872
21	121.00	-1.35	0.000	-1.38E-04	0.0	-0.0		

| Sheet No. | Date:27-08-2015 | Checked :

(continued)

Stage No.3 Excavate to elevation 125.00 on PASSIVE side

Node	Y		ACTIVE side							
no.	coord			Effectiv	e stresse	s	Total	Soil		
		Water	Vertic	Active	Passive	Earth	earth	stiffness		
		press.	-al	limit	limit	pressure	pressure	coeff.		
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3		
1	128.00	0.00	15.00	4.66	61.28	6.70	6.70	71.1		
2	127.60	0.00	21.78	6.77	88.99	6.77	6.77a	427		
3	127.20	0.00	28.47	8.85	116.32	8.85	8.85a	854		
4	126.80	0.00	35.01	10.88	143.03	10.88	10.88a	1280		
5	126.40	0.00	41.38	12.86	169.06	12.86	12.86a	1707		
6	126.00	0.00	47.61	14.79	194.48	14.79	14.79a	2134		
7	125.60	0.00	53.72	16.69	219.47	16.69	16.69a	2561		
8	125.30	0.00	58.27	18.10	238.03	18.10	18.10a	2881		
9	125.00	0.00	62.79	19.51	256.50	21.39	21.39	3201		
10	124.80	0.00	65.80	20.44	268.80	24.54	24.54	3414		
		Total>	65.80	16.00m	185.30	16.00	16.00a	27715		
11	124.40	Total>	63.45	18.00m	182.95	18.95	18.95	27715		
12	124.00	Total>	78.67	20.00m	198.17	47.09	47.09	27715		
13	123.60	Total>	85.16	22.00m	204.65	66.46	66.46	27715		
14	123.30	Total>	90.05	23.50m	209.54	76.60	76.60	27715		
15	123.00	Total>	94.96	25.00m	214.46	84.09	84.09	27715		
16	122.70	Total>	99.91	26.50m	219.40	89.81	89.81	27715		
17	122.40	Total>	104.87	28.00m	224.37	94.47	94.47	27715		
18	122.00	Total>	111.54	30.00m	231.04	99.86	99.86	27715		
19	121.60	Total>	118.25	32.00m	237.75	104.92	104.92	27715		
20	121.30	Total>	123.31	33.50m	242.81	108.68	108.68	27715		
21	121.00	Total>	128.39	35.00m	247.89	112.47	112.47	27715		

Node	Y		PASSIVE side							
no.	coord			Effectiv	ve stresse	s	Total	Soil		
		Water	Vertic	Active	Passive	Earth	earth	stiffness		
		press.	-al	limit	limit	pressure	pressure	coeff.		
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3		
1	128.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
2	127.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
3	127.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
4	126.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
5	126.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
6	126.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
7	125.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
8	125.30	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
9	125.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
		0.00	0.00	0.00	0.00	0.00	0.00	80.8		
10	124.80	0.00	3.40	1.06	13.90	13.90	13.90p	485		
		Total>	3.40	1.00m	122.90	122.90	122.90p	63848		
11	124.40	Total>	10.64	3.00m	130.13	123.24	123.24	63848		
12	124.00	Total>	17.97	5.00m	137.46	84.98	84.98	63848		
13	123.60	Total>	25.43	7.00m	144.93	65.60	65.60	63848		
14	123.30	Total>	31.15	8.50m	150.64	60.54	60.54	63848		
15	123.00	Total>	36.96	10.00m	156.46	61.22	61.22	63848		
16	122.70	Total>	42.87	11.50m	162.37	65.74	65.74	63848		
17	122.40	Total>	48.88	13.00m	168.38	72.63	72.63	63848		
18	122.00	Total>	57.02	15.00m	176.52	83.69	83.69	63848		
19	121.60	Total>	65.29	17.00m	184.79	95.61	95.61	63848		
20	121.30	Total>	71.56	18.50m	191.06	104.70	104.70	63848		
21	121.00	Total>	77.87	20.00m	197.37	113.82	113.82	63848		

Note: 16.00a Soil pressure at active limit 122.90p Soil pressure at passive limit

Stage No.3 Excav. to elev. 125.00 on PASSIVE side

CARD GEOTECHNICS LIMITEDSheet No.Program: WALLAP Version 6.05 Revision A45.B58.R49Job No. CG18545Licensed from GEOSOLVEMade by : ANKData filename/Run ID: CG18545 Wall - SLSDate:27-08-20159A The GroveDate:27-08-2015Basement Impact Assessment - SLSChecked :

Units: kN,m

Stage No. 5 Change properties of soil type 3 to soil type 5 Ko pressures will not be reset

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

FoS for toeToe elev. for
elev. = 121.00Stage --- G.L. ---StrutFactor MomentToeNo. Act. Pass.Elev.of
equilib.elev. Penetr
safety at elev.5128.00125.00125.00Conditions not suitable for FoS calc.

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 6.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 20.00 from wall Passive side 5.00 from wall

*** Wall displacements reset to zero at stage 2

Node	Y	Nett	Wall	Wall	Shear	Bending	Strut	EI of
no.	coord	pressure	disp.	rotation	force	moment	forces	wall
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m	kN.m2/m
1	128.00	6.79	0.013	3.46E-03	0.0	-0.0		25872
2	127.60	7.27	0.011	3.46E-03	2.8	0.6		25872
3	127.20	9.71	0.010	3.46E-03	6.2	2.4		25872
4	126.80	11.94	0.009	3.44E-03	10.5	5.8		25872
5	126.40	13.96	0.007	3.39E-03	15.7	11.0		25872
6	126.00	15.77	0.006	3.26E-03	21.7	18.5		25872
7	125.60	17.36	0.005	3.04E-03	28.3	28.4		25872
8	125.30	18.41	0.004	2.77E-03	33.7	37.7		25872
9	125.00	21.23	0.003	2.41E-03	39.6	48.8	50.6	25872
		21.23	0.003	2.41E-03	-11.0	48.8		
10	124.80	10.16	0.003	2.14E-03	-7.9	47.0		25872
		10.55	0.003	2.14E-03	-7.9	47.0		
11	124.40	-12.75	0.002	1.63E-03	-8.3	47.4		25872
12	124.00	-22.73	0.001	1.14E-03	-15.4	41.2		25872
13	123.60	-13.38	0.001	7.40E-04	-22.6	32.6		25872
14	123.30	3.22	0.001	4.97E-04	-24.1	25.2		25872
15	123.00	11.97	0.001	3.14E-04	-21.9	18.1		25872
16	122.70	15.31	0.001	1.87E-04	-17.8	12.1		25872
17	122.40	15.22	0.001	1.05E-04	-13.2	7.4		25872
18	122.00	12.20	0.000	4.57E-05	-7.7	3.3		25872
19	121.60	7.72	0.000	2.00E-05	-3.7	1.2		25872
20	121.30	4.40	0.000	1.28E-05	-1.9	0.4		25872
21	121.00	8.25	0.000	1.09E-05	0.0	-0.0		
At e	elev. 12	5.00 Strut	force =	101.2 kN/s	strut =	50.6 kN,	/m run	

| Sheet No. | Date:27-08-2015 | Checked :

(continued)

Stage No.5 Change properties of soil type 3 to soil type 5 Ko pressures will not be reset

Node	Y		ACTIVE side							
no.	coord			Effectiv	<i>v</i> e stresse	s	Total	Soil		
		Water	Vertic	Active	Passive	Earth	earth	stiffness		
		press.	-al	limit	limit	pressure	pressure	coeff.		
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3		
1	128.00	0.00	15.00	4.66	61.28	6.79	6.79	79.3		
2	127.60	0.00	21.78	6.77	88.99	7.27	7.27	476		
3	127.20	0.00	28.47	8.85	116.32	9.71	9.71	951		
4	126.80	0.00	35.01	10.88	143.03	11.94	11.94	1427		
5	126.40	0.00	41.38	12.86	169.06	13.96	13.96	1903		
6	126.00	0.00	47.61	14.79	194.48	15.77	15.77	2379		
7	125.60	0.00	53.72	16.69	219.47	17.36	17.36	2854		
8	125.30	0.00	58.27	18.10	238.03	18.41	18.41	3211		
9	125.00	0.00	62.79	19.51	256.50	21.23	21.23	2886		
10	124.80	0.00	65.80	20.44	268.80	24.06	24.06	3078		
		0.00	65.80	22.54	231.89	22.54	22.54a	16008		
11	124.40	0.00	72.23	24.74	254.54	24.74	24.74a	16008		
12	124.00	0.00	78.67	26.95	277.26	40.59	40.59	16008		
13	123.60	0.00	85.16	29.17	300.11	60.06	60.06	16008		
14	123.30	0.00	90.05	30.85	317.34	70.83	70.83	16008		
15	123.00	0.00	94.96	32.53	334.67	79.19	79.19	16008		
16	122.70	0.00	99.91	34.22	352.09	85.88	85.88	16008		
17	122.40	0.00	104.38	35.76	367.87	91.50	91.50	16008		
18	122.00	0.00	111.54	38.21	393.09	98.07	98.07	16008		
19	121.60	0.00	118.25	40.51	416.73	104.20	104.20	16008		
20	121.30	0.00	123.31	42.24	434.57	108.88	108.88	97565		
21	121.00	0.00	128.39	43.98	452.47	117.06	117.06	97565		

Node	Y		PASSIVE side							
no.	coord			Effectiv	<i>v</i> e stresse	s	Total	Soil		
		Water	Vertic	Active	Passive	Earth	earth	stiffness		
		press.	-al	limit	limit	pressure	pressure	coeff.		
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3		
1	128.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
2	127.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
3	127.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
4	126.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
5	126.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
6	126.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
7	125.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
8	125.30	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
9	125.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
		0.00	0.00	0.00	0.00	0.00	0.00	39.3		
10	124.80	0.00	3.40	1.06	13.90	13.90	13.90p	236		
		0.00	3.40	1.17	11.99	11.99	11.99p	19604		
11	124.40	0.00	10.64	3.64	37.49	37.49	37.49p	19604		
12	124.00	0.00	17.97	6.15	63.31	63.31	63.31p	19604		
13	123.60	0.00	25.43	8.71	89.63	73.44	73.44	19604		
14	123.30	0.00	31.15	10.67	109.76	67.61	67.61	19604		
15	123.00	0.00	36.96	12.66	130.25	67.22	67.22	19604		
16	122.70	0.00	42.87	14.69	151.09	70.57	70.57	19604		
17	122.40	0.00	48.88	16.74	172.26	76.27	76.27	19604		
18	122.00	0.00	57.02	19.53	200.96	85.88	85.88	19604		
19	121.60	0.00	65.29	22.37	230.10	96.48	96.48	19604		
20	121.30	0.00	71.56	24.51	252.19	104.48	104.48	106214		
21	121.00	0.00	77.87	26.67	274.43	108.82	108.82	106214		

Run ID. CG18545 Wall - SLS | Sheet No. 9A The Grove | Date:27-08-2015 Basement Impact Assessment - SLS | Checked : (continued) Stage No.5 Change properties of soil type 3 to soil type 5 Ko pressures will not be reset Note: 24.74a Soil pressure at active limit 63.31p Soil pressure at passive limit

CARD GEOTECHNICS LIMITEDSheet No.Program: WALLAP Version 6.05 Revision A45.B58.R49
Licensed from GEOSOLVEJob No. CG18545
Made by : ANKData filename/Run ID: CG18545 Wall - SLSDate:27-08-2015
Checked :9A The GroveDate:27-08-2015
Checked :

Units: kN,m

Stage No. 6 Change EI of wall to 18480 kN.m2/m run Yield moment not defined Allow wall to relax with new modulus value

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 6.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 20.00 from wall Passive side 5.00 from wall

*** Wall displacements reset to zero at stage 2

Node	Y	Nett	Wall	Wall	Shear	Bending	Strut	EI of
no.	coord	pressure	disp.	rotation	force	moment	forces	wall
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m	kN.m2/m
1	128.00	6.68	0.014	3.96E-03	0.0	-0.0		18480
2	127.60	6.77	0.013	3.96E-03	2.7	0.4		18480
3	127.20	8.85	0.011	3.96E-03	5.8	1.9		18480
4	126.80	10.88	0.009	3.94E-03	9.8	4.6		18480
5	126.40	12.86	0.008	3.87E-03	14.5	9.1		18480
6	126.00	14.82	0.006	3.72E-03	20.0	15.7		18480
7	125.60	16.75	0.005	3.44E-03	26.4	24.7		18480
8	125.30	18.10	0.004	3.11E-03	31.6	33.2		18480
9	125.00	21.23	0.003	2.65E-03	37.5	43.4	51.6	18480
		21.23	0.003	2.65E-03	-14.1	43.4		
10	124.80	10.32	0.003	2.32E-03	-10.9	40.9		18480
		12.28	0.003	2.32E-03	-10.9	40.9		
11	124.40	-9.01	0.002	1.69E-03	-10.3	40.4		18480
12	124.00	-18.63	0.001	1.13E-03	-15.8	34.3		18480
13	123.60	-10.02	0.001	6.76E-04	-21.5	26.5		18480
14	123.30	5.65	0.001	4.18E-04	-22.2	19.9		18480
15	123.00	13.37	0.001	2.35E-04	-19.3	13.8		18480
16	122.70	15.75	0.001	1.18E-04	-15.0	8.8		18480
17	122.40	14.73	0.001	5.01E-05	-10.4	5.1		18480
18	122.00	10.66	0.000	7.18E-06	-5.3	2.1		18480
19	121.60	5.45	0.000	-8.32E-06	-2.1	0.7		18480
20	121.30	1.68	0.001	-1.29E-05	-1.0	0.3		18480
21	121.00	5.09	0.001	-1.45E-05	0.0	-0.0		
At (elev. 12	5.00 Strut	force =	103.1 kN/	strut =	51.6 kN	/m run	

| Sheet No. | Date:27-08-2015 | Checked :

(continued)

Stage No.6 Change EI of wall to 18480 kN.m2/m run Yield moment not defined Allow wall to relax with new modulus value

Node	Y				- ACTIVE s	ide		
no.	coord			Effectiv	ve stresse	s	Total	Soil
		Water	Vertic	Active	Passive	Earth	earth	stiffness
		press.	-al	limit	limit	pressure	pressure	coeff.
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	128.00	0.00	15.00	4.66	61.28	6.68	6.68	84.5
2	127.60	0.00	21.78	6.77	88.99	6.77	6.77a	507
3	127.20	0.00	28.47	8.85	116.32	8.85	8.85a	1014
4	126.80	0.00	35.01	10.88	143.03	10.88	10.88a	1522
5	126.40	0.00	41.38	12.86	169.06	12.86	12.86a	2029
6	126.00	0.00	47.61	14.79	194.48	14.82	14.82	2536
7	125.60	0.00	53.72	16.69	219.47	16.75	16.75	3043
8	125.30	0.00	58.27	18.10	238.03	18.10	18.10a	3424
9	125.00	0.00	62.79	19.51	256.50	21.23	21.23	3804
10	124.80	0.00	65.80	20.44	268.80	24.21	24.21	3764
		0.00	65.80	22.54	231.89	23.33	23.33	19572
11	124.40	0.00	72.23	24.74	254.54	26.45	26.45	19572
12	124.00	0.00	78.67	26.95	277.26	42.46	42.46	19572
13	123.60	0.00	85.16	29.17	300.11	61.59	61.59	19572
14	123.30	0.00	90.05	30.85	317.34	71.94	71.94	19572
15	123.00	0.00	94.96	32.53	334.67	79.83	79.83	19572
16	122.70	0.00	99.91	34.22	352.09	86.08	86.08	19572
17	122.40	0.00	104.38	35.76	367.87	91.27	91.27	26053
18	122.00	0.00	111.54	38.21	393.09	97.36	97.36	26053
19	121.60	0.00	118.25	40.51	416.73	103.15	103.15	26053
20	121.30	0.00	123.31	42.24	434.57	107.62	107.62	26053
21	121.00	0.00	128.39	43.98	452.47	115.60	115.60	26053

Node	Y		PASSIVE side								
no.	coord			Effectiv	ve stresse	s	Total	Soil			
		Water	Vertic	Active	Passive	Earth	earth	stiffness			
		press.	-al	limit	limit	pressure	pressure	coeff.			
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3			
1	128.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0			
2	127.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0			
3	127.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0			
4	126.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0			
5	126.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0			
6	126.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0			
7	125.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0			
8	125.30	0.00	0.00	0.00	0.00	0.00	0.00	0.0			
9	125.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0			
		0.00	0.00	0.00	0.00	0.00	0.00	6812			
10	124.80	0.00	3.40	1.06	13.90	13.88	13.88	280			
		0.00	3.40	1.17	11.99	11.05	11.05	23268			
11	124.40	0.00	10.64	3.64	37.49	35.46	35.46	23268			
12	124.00	0.00	17.97	6.15	63.31	61.09	61.09	23268			
13	123.60	0.00	25.43	8.71	89.63	71.62	71.62	23268			
14	123.30	0.00	31.15	10.67	109.76	66.29	66.29	23268			
15	123.00	0.00	36.96	12.66	130.25	66.46	66.46	23268			
16	122.70	0.00	42.87	14.69	151.09	70.33	70.33	23268			
17	122.40	0.00	48.88	16.74	172.26	76.54	76.54	30094			
18	122.00	0.00	57.02	19.53	200.96	86.70	86.70	30094			
19	121.60	0.00	65.29	22.37	230.10	97.70	97.70	30094			
20	121.30	0.00	71.56	24.51	252.19	105.94	105.94	30094			
21	121.00	0.00	77.87	26.67	274.43	110.51	110.51	30094			

| Sheet No. | Date:27-08-2015 | Checked :

(continued)

Stage No.6 Change EI of wall to 18480 kN.m2/m run Yield moment not defined Allow wall to relax with new modulus value Note: 18.10a Soil pressure at active limit 123.45p Soil pressure at passive limit

CARD GEOTECHNICS LIMITED Program: WALLAP Version 6.05 Revision A45.B58.R49 Licensed from GEOSOLVE		Sheet No. Job No. CG18545 Made by : ANK
Data filename/Run ID: CG18545 Wall - SLS 9A The Grove Basement Impact Assessment - SLS		Date:27-08-2015 Checked :
······	Units:	kN,m

Stage No.6 Change EI of wall to 18480kN.m2/m run

Stage No.6 Change EI of wall to 18480kN.m2/m run

CARD GEOTECHNICS LIMITED | Sheet No. Program: WALLAP Version 6.05 Revision A45.B58.R49 | Job No. CG18545 Licensed from GEOSOLVE | Made by : ANK Data filename/Run ID: CG18545 Wall - SLS | 9A The Grove | Date:27-08-2015 Basement Impact Assessment - SLS | Checked :

Summary of results

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

Units: kN,m

				FoS for elev. =	toe 121.00	Toe ele FoS =	ev. for 1.000
Stage	e G	.L	Strut	Factor	Moment	Toe	Wall
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr
				Safety	at elev.		-ation
1	128.00	128.00	Cant.	Conditio	ns not su	itable fo	or FoS calc.
2	128.00	128.00		No analy	sis at th	nis stage	
3	128.00	125.00	Cant.	1.857	121.80	122.86	2.14
4	128.00	125.00		No analy	sis at th	nis stage	
5	128.00	125.00	125.00	Conditio	ns not su	itable fo	or FoS calc.
6	128.00	125.00	125.00	Conditio	ns not su	itable fo	or FoS calc.

CARD GEOTECHNICS LIMITED | Sheet No. Program: WALLAP Version 6.05 Revision A45.B58.R49 | Job No. CG18545 Licensed from GEOSOLVE | Made by : ANK Data filename/Run ID: CG18545 Wall - SLS | Date:27-08-2015 Basement Impact Assessment - SLS | Checked :

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 6.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Units: kN,m

Rigid boundaries: Active side 20.00 from wall Passive side 5.00 from wall

Bending moment, shear force and displacement envelopes

Node	Y	Displac	cement	Bending	Bending moment		force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	128.00	0.014	0.000	0.0	-0.0	0.0	0.0
2	127.60	0.013	0.000	0.6	0.0	2.8	0.0
3	127.20	0.011	0.000	2.4	0.0	6.2	0.0
4	126.80	0.009	0.000	5.8	0.0	10.5	0.0
5	126.40	0.008	0.000	11.0	0.0	15.7	0.0
6	126.00	0.006	0.000	18.5	0.0	21.7	0.0
7	125.60	0.005	0.000	28.4	0.0	28.3	0.0
8	125.30	0.004	0.000	37.7	0.0	33.7	0.0
9	125.00	0.003	0.000	48.8	0.0	39.6	-14.1
10	124.80	0.003	0.000	53.4	0.0	40.7	-10.9
11	124.40	0.002	0.000	64.5	0.0	0.0	-10.3
12	124.00	0.001	0.000	55.5	0.0	0.0	-30.0
13	123.60	0.001	0.000	40.5	0.0	0.0	-37.4
14	123.30	0.001	0.000	29.3	0.0	0.0	-34.9
15	123.00	0.001	0.000	19.6	0.0	0.0	-29.0
16	122.70	0.001	0.000	12.1	0.0	0.0	-22.0
17	122.40	0.001	0.000	7.4	0.0	0.0	-15.1
18	122.00	0.000	0.000	3.3	0.0	0.0	-7.7
19	121.60	0.000	0.000	1.2	0.0	0.0	-3.7
20	121.30	0.001	0.000	0.4	-0.0	0.0	-1.9
21	121.00	0.001	0.000	0.0	-0.0	0.0	-0.0

Maximum and minimum bending moment and shear force at each stage

Stage		- Bending	moment -			Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	14.0	124.40	-0.0	128.00	5.6	124.80	-7.2	123.60
2	No calcu	lation at	this sta	ge				
3	64.5	124.40	-0.0	121.30	40.7	124.80	-37.4	123.60
4	No calcu	lation at	this sta	ge				
5	48.8	125.00	-0.0	128.00	39.6	125.00	-24.1	123.30
6	43.4	125.00	-0.0	128.00	37.5	125.00	-22.2	123.30

Summary of results (continued)

Maximum and minimum displacement at each stage

Stage	Displacement				Stage description		
no.	maximum	elev.	minimum	n elev.			
	m		m				
1	0.004	128.00	0.000	128.00	Apply surcharge no.1 at elev. 128.00		
2	Wall di	splaceme	ents rese	et to zero	Change EI of wall to 25872kN.m2/m run		
3	0.014	128.00	0.000	128.00	Excav. to elev. 125.00 on PASSIVE side		
4	No calc	ulation	at this	stage	Install strut no.2 at elev. 125.00		
5	0.013	128.00	0.000	128.00	Change soil type 3 to soil type 5		
6	0.014	128.00	0.000	128.00	Change EI of wall to 18480kN.m2/m run		

Strut forces at each stage (horizontal components)

Stage	Strut no. 2
no.	at elev. 125.00
	kN/m run kN/strut
5	50.60 101.20
б	51.56 103.11

CARD GEOTECHNICS LIMITED Program: WALLAP Version 6.05 Revision A45.B58.R49	Sheet No. Job No. CG18545 Mada by : ANK
Data filename/Run ID: CG18545 Wall - SLS 9A The Grove Basement Impact Assessment - SLS	 Date:27-08-2015 Checked :
Units	 : kN,m

Bending moment, shear force, displacement envelopes